Pectin induced transcriptome of a Rhizoctonia solani strain causing sheath blight disease in rice reveals insights on key genes and RNAi machinery for development of pathogen derived resistance

Rao, T B and Chopperla, R and Methre, R and Punniakotti, E and Venkatesh, V and Sailaja, B and Reddy, M R and Yugander, A and Laha, G S and Madhav, M S and Sundaram, R M and Ladhalakshmi, D and Balachandran, S M and Mangrauthia, S K (2019) Pectin induced transcriptome of a Rhizoctonia solani strain causing sheath blight disease in rice reveals insights on key genes and RNAi machinery for development of pathogen derived resistance. Plant Molecular Biology (TSI). pp. 1-13. ISSN 0167-4412

[img] PDF - Published Version
Restricted to ICRISAT users only

Download (2MB) | Request a copy

Abstract

Key message RNAi mediated silencing of pectin degrading enzyme of R. solani gives a high level of resistance against sheath blight disease of rice. Abstract Rice sheath blight disease caused by Rhizoctonia solani Kuhn (telemorph; Thanatephorus cucumeris) is one of the most devastating fungal diseases which cause severe loss to rice grain production. In the absence of resistant cultivars, the disease is currently managed through fungicides which add to environmental pollution. To explore the potential of utilizing RNA interference (RNAi)-mediated resistance against sheath blight disease, we identified genes encoding proteins and enzymes involved in the RNAi pathway in this fungal pathogen. The RNAi target genes were deciphered by RNAseq analysis of a highly virulent strain of the R. solani grown in pectin medium. Additionally, pectin metabolism associated genes of R. solani were analyzed through transcriptome sequencing of infected rice tissues obtained from six diverse rice cultivars. One of the key candidate gene AG1IA_04727 encoding polygalacturonase (PG), which was observed to be significantly upregulated during infection, was targeted through RNAi to develop disease resistance. Stable expression of PG-RNAi construct in rice showed efficient silencing of AG1IA_04727 and suppression of sheath blight disease. This study highlights important information about the existence of RNAi machinery and key genes of R. solani which can be targeted through RNAi to develop pathogen-derived resistance, thus opening an alternative strategy for developing sheath blight-resistant rice cultivars.

Item Type: Article
Divisions: Research Program : Genetic Gains
CRP: UNSPECIFIED
Uncontrolled Keywords: Oryza sativa, Polygalacturonase, Transgenic, RNAseq, Silencing, Rice, Fungi, Disease
Subjects: Others > Rice
Others > Genetics and Genomics
Others > Plant Disease
Depositing User: Mr Ramesh K
Date Deposited: 12 Mar 2019 09:44
Last Modified: 17 Jan 2020 03:10
URI: http://oar.icrisat.org/id/eprint/11088
Official URL: http://dx.doi.org/10.1007/s11103-019-00843-9
Projects: UNSPECIFIED
Funders: DBT
Acknowledgement: Authors are thankful to the Director, ICAR-IIRR, for his kind support. Financial support received from DBT Grant (BT/ PR6466/COE/34/16/2012) is acknowledged. We are also grateful to anonymous reviewers for their constructive suggestions to improve this manuscript. TBR is thankful to Prof. Krishna Satya and Prof. Sudhakar, Biotechnology Division, Acharya Nagarjuna University, Guntur, (A.P) for the guidance and support.
Links:
View Statistics

Actions (login required)

View Item View Item