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Abstract

Seed quality for both germination in the next generation and for human
consumption is adversely affected due to preharvest sprouting in peanut.
It also makes seeds more vulnerable to infection by a number of patho-
gens. Therefore, it is desirable to have 2-3 weeks of fresh seed dor-
mancy (FSD) in the peanut varieties. In this context, one F, population
was developed from a cross between non-dormant (ICGV 00350) and
dormant (ICGV 97045) genotypes. Phenotyping of this population
showed control of the trait by two recessive genes. In parallel, genotyp-
ing of the population with Diversity Arrays Technology (DArT) and
DArT-seq markers provided a genetic map with 1152 loci covering a
map distance of 2423.12 ¢cM and map density of 2.96 cM/loci. Quantita-
tive trait locus (QTL) analysis identified two major QTLs, namely gfsd-1
and ¢fsd-2 explaining 22.14% and 71.21% of phenotypic variation,
respectively. These QTLs, after validation in different genetic back-
grounds, may be useful for molecular breeding for FSD in peanut.

The peanut or groundnut (Arachis hypogaea L.) is an important
legume crop cultivated throughout the tropical, subtropical and
temperate regions covering more than 100 countries of the world
(FAO 2014). This crop is well known for its multiple uses such as
for food, oil, confectionary and dietary for human consumption
including as a fodder for livestock (see Pandey et al. 2012, Janila
et al. 2013). Most of the peanut cultivation in Africa and Asia is
under rainfed environments, where untimely rains prior to harvest
cause the seeds to germinate inside the soil resulting in reduced
pod yield and poor seed quality. Such pre-sprouted seeds provide
low market price to the farmers, besides predisposing them to
infection by other pathogens and contamination by mycotoxins
and aflatoxin that are potent carcinogens. Thus, the lack of
dormancy in these varieties always makes farmers anxious about
untimely rain and puts more pressure on farmers to harvest crops
at the right stage in a very less time period manually. The delay
in harvesting could lead to 10-20% yield loss due to sprouting
in the field (Gautreau 1984), even higher in Spanish types
(Khalfaoui 1991), and in some situations, the loss can be as high
as 50% (Varman and Raveendran 1991). Therefore, it is very
important to equip all the popular varieties with 2-3 weeks of
fresh seed dormancy (FSD) to avoid such losses. Foliar applica-
tion of maleic hydrazide (diethanolamine salt of 1.2-dihydroxy-3,
6, pyridazine-dione), a growth inhibitor, has been reported to
induce dormancy in Spanish Bunch types of peanuts (Gupta et al.
1985). However, this is not an economically feasible option for

*These authors contributed equally to this work.

rainfed peanut cultivation; on the other hand, the genetic option
of varieties with short periods (2-3 weeks) of FSD is sustainable
and cost-effective. Such varieties besides reducing preharvest
sprouting losses also allow farmers to harvest the crop at a later
stage in the case of unseasonal rains. Thus, breeding for FSD is
an economically important objective in peanut.

The cultivated peanut, based on branching pattern, flower
arrangement on the main axis and pod and kernel features, is
divided into three major botanical types, that is Spanish (subsp.

fastigiata var. vulgaris), Valencia (subsp. fastigiata var. fasti-

giata) and Virginia (subsp. hypogaea var. hypogaea). The Span-
ish and Valencia genotypes have non-dormant seeds and short
maturity duration, whereas Virginia genotypes have dormant
seeds for variable periods and long maturity duration (Upad-
hyaya and Nigam 1999). In the semi-arid regions of Asia and
Africa, which cover almost 60% of the world’s peanut produc-
tion area, generally Spanish peanut varieties are cultivated.
Studies on methods of dormancy testing and inheritance
pattern (Khalfaoui 1991, Faye et al. 2010), physiochemical
mechanisms and influential factors (Nautiyal et al. 2001, Hu
et al. 2010) of dormancy in peanut were reported. It was reported
that ethylene and an inhibitor, possibly the abscisic acid, may
interact to control dormant peanut seed germination (Carmen
et al. 2009). Some variability for dormancy among botanical
types and cultures within a botanical type were also reported
(Wang et al. 2012). Screening of segregating populations, as well
as breeding lines for FSD, was often carried out visually at the
harvesting stage, which compels the conventional breeders to
generate and maintain a large number of breeding materials till
harvest stage to perform a selection. Further, it is very difficult to
perform phenotypic selection under field conditions as every
breeding and selection cycle/season may not receive rain during
the harvesting stage. In practice, the dormancy test is conducted
on promising breeding lines that were selected and forwarded
based on other important selection parameters over the genera-
tions. Based on dormancy test, large numbers of promising breed-
ing lines get rejected at advanced stage, leading to wastage of
time and resources. Genomics-assisted breeding (GAB) has pro-
ven to be a very successful approach to improve not only simply
inherited traits with high precision and accuracy such as improve-
ment of rust resistance (Varshney et al. 2014b) and high oleate
trait (Janila et al. 2016) in peanut, enhancement of resistance to
fusarium wilt and ascochyta blight in chickpea (Varshney et al.
2014a) but also complex traits such as drought tolerance in chick-
pea (Varshney et al. 2013b). Identification of genomic regions/
genes controlling FSD and the development of user-friendly
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markers is a prerequisite for deploying GAB in improving peanut
genotypes. The availability of linked markers for FSD in peanut
would enable to track FSD trait among the segregating lines
resulting in optimal utilization of time and resources. However,
to date, no study has been conducted to identify genes/markers
associated with FSD in peanut.

Although simple sequence repeats (SSRs) have been used
extensively for the construction of genetic maps and identification
of genomic regions controlling agronomically important traits in
cultivated peanut, genetic maps based on SSR markers have only
100-300 marker loci (see Pandey et al. 2012, Varshney et al.
2013a). The genome ploidy of cultivated peanuts allowed the
identification and use of a limited number of good quality and
informative single nucleotide polymorphisms (SNPs) in genetics
and breeding studies (Khera et al. 2013). In such scenario, Diver-
sity Arrays Technology (DArT) provides a good choice as high-
throughput marker genotyping platform that can provide a rela-
tively large number of polymorphic loci for constructing dense
genetic maps in peanut. The other advantages of DArT markers
include low cost, genome-wide profiling of a large number of
SNPs and insertion/deletion polymorphisms (Kilian 2008). The
DArT markers are currently being used in more than 55 species
(http://www.diversityarrays.com/) and are more popular in crops
with the unsequenced genome. More recently, the DArT markers
were deployed for genome-wide association studies (GWAS) in
peanut, leading to the identification of 524 marker—trait associa-
tions for 50 agronomical traits in peanut (Pandey et al. 2014).
Therefore, the present study has deployed DArT and next-genera-
tion sequencing (NGS)-based DArT platform called as DArT-seq,
for mapping FSD in the F, mapping population.

Materials and Methods

Plant materials and DNA isolation: One F, mapping population
derived from the cross between contrasting parents, ICGV 00350 (non-
dormant genotype) and ICGV 97045 (dormant genotype), was developed
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with 368 individuals. Both the parents are Spanish genotypes in which
ICGV 00350 is released and cultivated in the states of Tamil Nadu and
Andhra Pradesh in India under irrigated as well as in a rain-fed
condition. Fig. 1 shows the parents used to make crosses and depicts the
impact of lack of FSD. The F;s from the cross ICGV 00350 x ICGV
97045 were sown along with the parents during 2011-12 postrainy
season followed by the confirmation of hybridity using molecular
markers. A total of 368 F, seeds were harvested from above-mentioned
true F; plants. All the 368 F, plants were planted in the field during
2012 rainy season. For genotyping, leaf samples were collected, and
genomic DNA was isolated from the F, plants following modified
CTAB method described by Mace et al. (2003). After quantification,
DNA samples were diluted to 100 ng/ul.

Phenotyping for fresh seed dormancy: All the 368 F,.; lines along
with parents were phenotyped for FSD during 2012 rainy season
following the methodology described by Upadhyaya and Nigam (1999).
In brief, 30 mature seeds from each F, plant (F, . ; seeds), shelled the
next day after harvesting, were treated with fungicides captan and thiram
at 0.2 g per 100 g seeds and placed on moist filter paper in a Petri dish.
Regular watering at 24-h interval maintained the moisture level
continuously. While watering the Petri dishes, care was taken not to
expose the seeds to light. The Petri dishes were kept in the incubator
that was set to 35 4+ 3°C and complete darkness. The germination rate
was recorded following three-day gap from 30th October to 20th
November 2012. The progeny which did not show any germination
symptoms even on 17th day were treated with 5% Ethrel (Ethrel is trade
name of ethephon with a concentration of 0.75% w/w active ingredient)
to check their viability.

Genotyping with DArT and DArT-seq markers: Selected F, lines
along with their parents were genotyped with the DArT and DArT-seq
features at the Diversity Arrays Technology Pty Ltd. (DArT P/L),
Australia. All the polymorphic markers in the population were used for
the construction of the dense genetic map. The method of genotyping
with DArT is explained in detail in Pandey et al. (2014) and at http://
www.diversityarrays.com/dart-application. The DArT-seq method next-
generation sequencing (NGS) platform, deploys sequencing of the
representations to achieve higher marker densities for conducting high-
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(b) Genotype with fresh seed non-dormancy

Fig. 1: Impact of fresh seed dormancy on seed quality. The pods are (a) healthy and of good quality in the case of dormant genotype ICGV 97045
which can be used, upon harvest, either for the consumption or for planting again in the field for cultivation. On the other hand, the pods are (b)
unhealthy and of poor quality in the case of non-dormant genotype ICGV 00350 that is neither suitable for consumption nor for cultivation. The vari-
eties with non-dormancy trait upon receiving uncertain rain at the harvest stage result in huge yield loss and quality deterioration of the produce. Such
varieties despite having several good-quality traits are not accepted by the farming community
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resolution genetic and trait mapping. Detailed genotyping procedure for
DArT-seq is explained in Raman et al. (2014) and also at http://
www.diversityarrays.com/dart-application-dartseq. ~ Nevertheless,  the
method is briefly described below which will help in relating the results.

In the case of DArT markers, the first step involved complexity reduc-
tion in each DNA sample to obtain a ‘representation’ followed by the
determination of sequence variation in the form of presence vs. absence
through hybridization to DArT array consisting of a library from peanut.
The fluorescent signal emitted from the hybridized fragments was recorded
and analysed using the DArTsoft software. In the case of DArT-seq assay,
DNA samples were digested/ligated primarily with two different adaptors
accompanying to overhang by two different restriction enzymes (Raman
et al. 2014). The Illumina flowcell attachment sequence, sequencing pri-
mer sequence and varying length barcode regions were included while
designing the PsfI-compatible adapter. The flow cell attachment sequence
and the Msel-compatible overhang sequence contained the reverse adapter.
The Pstl-Msel fragments were amplified for 30 PCR cycles using the fol-
lowing reaction conditions: 94°C for 1 min, followed by 29 cycles of 94°C
for 20 s, ramp 2.4°C/s to 58°C, 58°C for 30 s, ramp 2.4°C/s to 72°C,
72°C for 45 s. At last, amplicons were held at 72°C for 7 min and then at
10°C. All PCR amplicons from the 96-well multiplexed in equimolar
amount and kept to c-Bot (Illumina) bridge PCR after that sequenced on
Ilumina Hiseq2000. A single lane sequencing was followed for all the
amplicons; the single reads sequencing was run for 77 cycles. All the
generated sequences from each lane were subjected to proprietary DArT
analytical pipelines. Poor-quality sequences were filtered away from the
FASTAQ files in the primary pipeline. In the barcode region, more stringent
selection criteria (>Phred pass score of 30) were employed in comparison
with the rest of the sequence. Resultantly, in the barcode split step, the
sequences assignments to specific samples were very authentic. In marker
calling, around 2 000 000 identified sequences per barcode/sample were
used. Finally, identical sequences were broken into fastqcall files. In the
secondary proprietary pipeline of DArT P/L, the fastqcall files were used
for detecting presence/absence markers (PAM) through SNP calling algo-
rithms (DArTsoftseq). The sequence data were then subjected to an analy-
tical pipeline that identified all the polymorphic sequences of the DArT-
seq markers generated from the parental lines of the F, population (ICGV
00350 and ICGV 97045) and scored polymorphic sequence variations
were as present/absent (present = 1 vs. absent = 0). The nomenclature of
DArT and DArT-seq markers was mentioned with ‘Ah’ and ‘Ahs’ prefix,
respectively.

Construction of genetic map: The genotyping data for polymorphic
markers were used to construct a genetic map using JoinMap 4.0 (Van
Ooijen 2006). The highly distorted markers were removed from the
genetic map construction, and only markers with the goodness of fit to
3 : 1 ratio were considered for map construction. The markers were
grouped into linkage groups based on logarithm of odds (LOD)
groupings and ‘Create groups for mapping’ command using the Kosambi
map function (Kosambi 1944) and recombination frequency of 0.45.
Marker order within linkage groups was established by ‘Calculate Map’
command, and the genetic map was redrawn using MapChart for
Windows for better visuality (Voorrips 2002).

QTL analysis: The composite interval mapping model in the software
WinQTL cartographer 2.5 (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)
was used for QTL identification (Wang et al. 2007). The walking speed,
window size and a number of control markers were set to 1 cM, 10 cM
and 5 cM, respectively. The default genetic distance (5 cM) was used to
define a QTL in a specific experiment. LOD thresholds were conducted
to determine the significance of a QTL, and the thresholds were
established with 500 permutations (Churchill and Doerge 1994).

Results
Inheritance and variation for FSD

The phenotyping data generated on 368 F,.3 plants of the cross
ICGV 00350 x ICGV 97045 were used to study the inheritance

of FSD. The F; seeds harvested on the female parent after
hybridization did not show fresh seed dormancy, suggesting
recessive nature. Of the total 368F,.; plant progeny evaluated for
seed dormancy, only 23 were found dormant and the remaining
plants did not possess FSD. Because a subset of this population
consisting of 188 F, . 3 plant progeny were selected for further
genotyping, only this subset was analysed for inheritance pattern
separately through chi-square test. The chi-square test performed
on the complete population as well as the subset revealed good-
ness of fit to 15 : 1 (non-dormant to dormant) ratio (Table 1),
suggesting that FSD is controlled by two recessive duplicate
genes (chi-square P-value for complete and the subset was 0.83
and 0.82, respectively).

DArT and DArT-seq based genetic map

With the 15,360 DArT array and DArT-seq approach, we found
a total 1074 (6.9%) DArT and 3616 (23.5%) DArT-seq polymor-
phic markers in the population. After removing severely dis-
torted markers, a total of 659 (4.2%) DArT and 794 (5.1%)
DArT-seq polymorphic markers were used for the construction
of genetic linkage map. Of the total 1453 polymorphic marker
loci, 1152 marker loci were successfully mapped on to 20 link-
age groups (LGs) covering a total map distance of 2423.1 cM
and marker density of 2.96 cM/loci (Table 2, Fig. 2). Of the
1152 mapped loci, 563 and 589 loci were mapped onto ‘A’ and
‘B’ genomes with the average intermarker distance of 3.1 and
2.7 cM/loci covering 1184.7 and 1238.5 cM distance, respec-
tively. The number of mapped loci ranged from 8 (AO1) to 156
loci (B09); the individual LG length varied from 59.6 cM (AO1)
to 184.3 cM (A09), and marker density ranged from 0.7 cM/loci
(B09) to 7.4 cM/loci (A01).

QTLs controlling fresh seed dormancy

Two QTLs for FSD were identified with the major phenotypic
effect (>20%) using genetic mapping information and phenotyp-
ing data of the population. Of the two QTLs, the QTL ‘gfsd-1’
(Ah2374-Ah4907) located on A0S explained 22.14% phenotypic
variation (PV) (Table 3, Fig. 3a), while the QTL ‘gfsd-2’
(Ahs44221-Ahs442211) explained 71.21% PV. The QTL with the
largest effect (qfsd-2) was 1.4 cM interval between marker loci
Ahs4422]-Ahs442211 on the linkage group ‘B06’ (Table 3,
Fig. 3b). The LOD value of ‘gfsd-1’ was 5.63 with the additive
effect of —0.48 and dominance effect of 0.42, while ‘gfsd-2’ had
LOD value of 8.97 with the additive effect of -0.43 and domi-
nance effect of 0.47.

Table 1: Assessment of genetic nature of FSD based on chi-square val-
ues and associated probability levels (P-value) in the segregating F, . 3
population (ICGV 00350 x ICGV 97045)

Expected
Observed  Expected numbers
Trait numbers  proportions for 15 : 1 ratio Chi-square P-value
Entire population size = 368
ND 344 15 345 0.046 0.83
D 24 1 23
Subset size = 188
ND 168 15 169 0.053 0.82
D 12 1 11

ND, non-dormant; D, dormant.
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Table 2: Features of the genetic map constructed for the F, population ICGV 00350 x ICGV 97045)

Linkage The number of Total map Average inter-marker Linkage The number of Total map Average inter-marker
groups mapped loci distance (cM) distance (cM/loci) groups mapped loci distance (cM) distance (cM/loci)
A01 8 59.60 7.4 BO1 75 142.4 1.9
A02 88 121.2 1.4 B02 13 81.30 6.3
A03 22 92.00 42 BO3 59 149.6 2.5
A04 26 129.6 5.0 B0O4 40 118.3 3.0
A05 37 162.0 44 BO5 33 106.2 32
A06 81 93.30 1.2 B06 35 116.1 33
A07 25 61.60 2.5 BO7 73 146.8 2.0
A08 132 184.3 1.4 B08 59 184.9 3.1
A09 75 163.4 22 B09 156 111.6 0.7
A10 69 117.7 1.7 B10 46 81.30 1.8
Total 563 1184.7 3.14 589 1238.5 2.78
R . alternative primer binding sites on homeologous chromosomes,
Discussion

Fresh seed dormancy is an economical and highly desirable trait
in all the existing popular and new peanut cultivars to facilitate
their better adoption in the farmer’s field. In this context, the
study successfully identified two major QTLs controlling FSD
that will facilitate the development of breeder-friendly markers
for their deployment in molecular breeding.

Genetic control of fresh seed dormancy

Despite the availability of several reports on genetic studies of
FSD in peanut, there was no clarity on its inheritance pattern.
Lin and Lin (1971) reported it as a monogenic trait with com-
plete dominance of dormancy over non-dormancy. In contrast,
Hull (1937), John et al. (1948) and Nautiyal et al. (1994)
reported it as a polygenic trait. Further, Stokes and Hull (1930)
and Ramchandran et al. (1967) reported partial dominance in
their study with Spanish x Virginia crosses. In another study
involving a cross between two Spanish genotypes, dormancy
was reported as a quantitatively inherited trait and genetically
controlled by additive, dominance and digenic epistatic effects
(Khalfaoui 1991). The present study revealed the goodness of fit
to 15 : 1 ratio for non-dormant and dormant phenotypes, sug-
gesting two dominant duplicate genes involved in governing
non-dormant trait known as duplicate dominant epistasis. The
dominant allele at either or both loci results in non-dormant phe-
notype. If we consider d/ and d2 as the recessive alleles respon-
sible for dormancy phenotype, then eight gene combinations in
F, population, viz. DIDI D2D2, DIDI d2d2, DIDI D2d2,
Dldl D2D2, DI1dl d2d2, D1dl D2d2, didl D2D2 and dldl
D2d2, result in non-dormant phenotype. The dormant phenotype
is expressed in the absence of the two dominant alleles (did!
d2d2). Therefore, the presence of any of these two dominant
alleles will produce non-FSD, while the FSD condition occurs
only when both these genes will be in a homozygous recessive
condition (dld1 d2d2). Both dominant and recessive genes con-
trolling dormancy were reported in the literature depending on
the parents used in the study. The above results suggest a role of
more than one mechanism governing FSD in peanut. Further, it
will be interesting to study whether different mechanisms gov-
erning FSD have effects on other seed quality parameters, partic-
ularly seed viability and seedling vigour.

Dense genetic linkage map

A moderately dense linkage map is essential for the detection
of QTL and its phenotypic effect with higher precision. The

competition for primers and dilution with correct annealing tar-
gets are the major constraints for using SSR and SNP marker
system in a polyploid crop. In such circumstances, the use of
DArT and DArT-seq genotyping platform seems to be a better
option. The DArT and DArT-seq genotyping platforms manage
the complexity reduction in the genome and therefore have
been used in different range of crops for the genetic studies,
such as rice (Jaccoud et al. 2001), barley (Wenzl et al. 2004),
eucalyptus (Lezar et al. 2004), Arabidopsis (Wittenberg et al.
2005), cassava (Xia et al. 2005), wheat (Akbari et al. 2006),
pigeonpea (Yang et al. 2006), sorghum (Mace et al. 2008),
banana (Risterucci et al. 2009), tomato (Van Schalkwyk et al.
2012), rapeseed (Raman et al. 2012) and several fungal patho-
gens of chickpea (Sharma et al. 2014) and animals (Kilian
2008, www.diversityarrays.com).

The DArT array has been used recently in conducting gen-
ome-wide association studies using the ‘Reference Set’ devel-
oped by ICRISAT for several agronomic traits in peanut
(Pandey et al. 2014). In the present study, we report dense
linkage map using the DArT array and NGS-based DArT-seq
for the first time in Arachis spp. using an intraspecific F, map-
ping population. In earlier studies on mapping in peanut, only
SSR-based genetic maps were constructed using F, and RIL
populations (see Pandey et al. 2012, Varshney et al. 2013a).
Several linkage maps were constructed with the early-generation
markers, viz. RFLP and RAPD, SSR and with SNPs (see Pan-
dey et al. 2012, Zhou et al. 2014). In this study, 20 linkage
groups were identified which corresponded to linkage groups of
the previously published genetic linkage maps with the SSRs.
In the area of genetic mapping in cultivated peanut, there are
two recent studies on the development of intraspecific dense
genetic maps using either SSRs and/or SNPs. In one study, the
intraspecific dense genetic map was developed with 1261 (1241
SSR and 20 transposons) marker loci with a map density of
one loci/1.14 ¢cM (Shirasawa et al. 2013). The main drawback
of this map was the use of small population size, that is 91
Fss. In the other study, the genetic map has the highest number
of mapped loci, that is 1685 loci (1621 SNPs and 64 SSRs)
(Zhou et al. 2014). For developing this high-density genetic
map, genotyping by sequencing technology (GBS) was used to
achieve a higher number of mapped loci, and the technology
has clearly emerged as the preferred genotyping platform. The
current availability of reference genomes for both the diploid
progenitors in the public domain will further catalyse the
deployment of sequence-based genotyping platforms to enhance
the precision in trait mapping and molecular breeding studies in
peanut.
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Fig. 2: Genetic map for ICGV 00350 x ICGV 97045 population. Genetic map was constructed on the basis of the F, population using DArT and
DArT-seq markers. The mapped loci are present on the left side and their positions are mentioned on the right side of linkage groups

on the identification of QTLs for FSD in peanut. As a result, no
comparison can be made for identified QTLs from the past stud-
In addition to the being first DArT and DArT-seq based genetic  ies in peanut. Further, it is important to mention here that both
map, this study also has the distinction of being the first study =~ QTLs showed high phenotypic variation, negative additive effect

Two major QTLs for fresh seed dormancy
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Fig. 2: Continued

and positive dominance effect. The non-detection of small-effect
QTLs might be due to phenotypic scoring in the form of either
present or absent for seed dormancy. Because of this reason, the
phenotypic variation was discontinuous leading to the detection
of only large-effect QTLs. The genetic control of preharvest
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sprouting or vivipary is a very important trait in many cereals
and oilseed rape breeding programmes. QTL studies reported the
identification of responsible gene/QTLs in other crop species for
seed dormancy/preharvest sprouting (PHS) (rapeseed, rice, Ara-
bidopsis, wheat, barley and sorghum) (Feng et al. 2009, Bent-
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Table 3: Details of two major QTLs for fresh seed dormancy identified in ICGV 00350 x ICGV 97045 population
Linkage LOD Phenotypic Nearest Marker Additive Dominance
S. N. QTLs group value variance (PV) % marker interval effect effect
1 qfsd-1 A05 5.63 22.14 Ah2374 Ah4907-Ah2374 -0.48 0.42
2 qfsd-2 B06 8.97 71.21 Ahs44221 Ahs442211 -Ahs44221 -0.43 0.47
PV, phenotypic variation; QTL, quantitative trait locus.
@) LOD score ®) LOD score
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Fig. 3: Features of two major QTLs for fresh seed dormancy in ICGV 00350 x ICGV 97045 population. (a) The QTL ‘gfsd-1’ identified on linkage
group AO5 explained 22.14% phenotypic variation (PV). (b) The QTL ‘gfsd-2’ identified on linkage group B06 explained 71.21% phenotypic varia-
tion. The mapped loci are present on the left side and their positions are mentioned on the right side of the linkage groups. The vertical green line indi-

cates the significant threshold (LOD = 3.0)

sink et al. 2010, Marzougui et al. 2012, Schatzki et al. 2013,
Cabral et al. 2014).

In wheat, the PHS was reported as a polygenic quantitative
trait and, so far, by using 35 bi-parental mapping populations,
approximately 165 QTLs were identified for this trait (Jaiswal
et al. 2012). For example, Chen et al. (2008) reported QTLs for
PHS in wheat which explained up to 30.6% phenotypic variation
and the QTL was found located on the long arm of chromosome
4A. In an another study in wheat, four consistent QTLs were
identified for PHS on chromosome 4A that showed maximum
58.1% of the phenotypic variation (Cabral et al. 2014). Similarly
in the case of barley, QTLs were identified on 4H, 5H and 6H
and explained 25, 81 and 12% PV, respectively (Gong et al.
2014). In the case of rice, PHS has been reported as a complex
and polygenic trait. More than 40 QTLs associated with PHS
were identified across all the chromosomes of rice cultivars and
wild relatives (Marzougui et al. 2012). In another study in rice,
three putative QTLs with phenotypic variations ranging from 4

to 21% have been reported (Wan et al. 2005). This study also
indicated that seed dormancy/PHS is affected by a number of
minor genetic effects.

In Arabidopsis, QTL analysis revealed 11 QTLs for the ‘seed
dormancy-specific’ loci, including the DELAY OF GERMINA-
TION (DOG) genes (Bentsink et al. 2006, 2010). The DOGI
gene is expressed in seeds during the maturation stage, and func-
tional loss of DOGI results in a lack of seed dormancy (Bent-
sink et al. 2006). The phenotypic variance of these 11 QTLs
identified in six populations ranged from 42 to 66% (Bentsink
et al. 2010). Besides cereals, the QTL mapping led to the
identification of 5 QTLs for total seed dormancy (TSD) in win-
ter oilseed rape that together explained 42% PV (Schatzki et al.
2013). These studies highlight the genetic complexity of seed
dormancy and preharvest sprouting in several crops. Realizing
the importance of FSD trait in peanut in enhancing the quality
and shelf life of seeds for the market value as well as seed
production, the development of cultivars with dormancy up to
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harvesting for a short time will be an important goal of future
peanut breeding programmes.

In summary, this study reports the construction of dense
genetic map for intraspecific cultivated genotypes based on
DAIT and DArT-seq-based genotyping platform and identifica-
tion of two major QTLs for FSD. These results will further facil-
itate fine mapping and identification of candidate genes involved
in FSD as well as the deployment of markers flanking the QTLs
for the development of improved lines with dormancy up to har-
vesting through genomics-assisted breeding approaches.
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