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Abstract 

Sorghum [Sor.ghrrnt h,rolor (I,.) Mocncl~] is tlle 5Ih most iniporlant 

cercal crop globally after wheat, maize, rice and barley (I:AO, 2003; F A 0  

and ICRISAT, 1996). I l ~ i r  Cq grass is grown in more than 80 countries, 

mostly in tropical and sub-tropical regions. '1 he average annual sorghum 

area cultivated anlourlts to 44 M Ila. wit11 an average annual grain 

production o r  63 M tons, and average grai~i  yield o r  1.4 t ha-' (FAO, 2003; 

F A 0  and ICFUSA'I-. 1996). Strrgliun~ h a s  dolnesticated in Ethiopia and part 

o l  Congo, with secolldaly cellters of 'origi~~ in India, Sudan and Nigeria. 

I'roduction of sorghutll ill semi-arid regions of tlir world is limited 

b) drougl~t. Ileveloping plat~ts tllal have an advanlage under water-li~nited 

cundit io~~s is a rliaior chnllenge for sorgliu~r~ i~nprove~nent programs 

globally, llirre are lhree distinct stages in which drougl~t affects sorghum: 

Vegetative (GSI); I're-l:luweri~~g ((iS2); and Post-l:lowering (tiS3). 'The 

besl cllaracterized form of drougl~t stress tolerance in sorghum during tl~is 



post-f loweri~lg stage o f  g r o w t l ~  is called "stay greetl." Stay-green is a 

drought-tolerance trait i n  grain so rg l~u~n .  When water is linlited during the 

grain f i l l ing period. genotypes possessing this trait maintain more 

photosynthetically active leaves cotnpared wi th  genotypes not possessing 

Il l is trait. 

Putative Q'fL for stay-green trait fro111 1315 have been identified in five 

recently published studies (I'uinstra et al, 1997: Crasta et al 1999; Xu el al, 2000; 

'l'ao et al, 2000 and Subudhi et al 2000). Using tile linkage map developed by 

Ullattramakki et al (2000) identified six genornic regions associated with stay- 

green trait in 835 parent. Tlie identification o f  these QTL provided us an 

opportunity for marker assisted breeding (bfAR) for introgression o f  QTL from 

1335 to ~.ccutre~~t parents. 

We aimed at tra~lsfer o f  O'H. fro111 I335 to recurrent parents, S35 and 

ICSVI I I. Botll recurrent parents have been advanced lo UC3 and BC4 

gctlerations (br itltrogression o f  Q f L  from donor parent using SSR marker 

assisted selectiotl (MAS), targeting six VI'L detected. In this study, all genotypes 

in two generatio~ls from each recurrent paretit were screened with foreground 

markers to identil j the genotypes fur 01 L of  our ititerest a ~ ~ d  also screened with 

background tnarkers to select the genotypes li)r all other loci from recurrent 

parent. Selected individuals are advanced to next generation. 



CHAPTER I 

INTRODUCTION 

So far the horror scenarios forescen by Maltlius (1 798) have not come true, 

and agricultural productio~~ has managed to keep up wit11 the growing demands. At 

this nloniellt over 6 billion people need to be red and it is expected that in the year 

2050 tllorc tl~an 10 I)illio~~ pcoplc will ir~h;~bil the earth (FA0, 19%). Moreover, 

~ I C I I I ~ I I ~ S  per capita will rise u l i e ~ ~  standards or  living in developing cour~tries 

improve. As a consequence there will be a luge increase in the dcmand for food, 

and production will need to triple in the coming 40 years (Bindraban, 1997; W W  

199.5). Ilistury has indeed s l ~ o v ~ n  a continutius increase in crop yields, resulting 

Lio~n i~nproved agrollonly a r~d  plan( breeding efforts. Ilowever, in the light of the 

spced at ~ l ~ i c h  the 11u111an population develops, and taking into account the 

expected reduction oT available arable land due to cli~natic changes and human 

interventio~~, a continued effort to i~nprove agricultural production in the future 

will be vital. Reduction of losses caused by abiotic and biotic stress will therefore 

continue to be a key issue ill enlianci~~g food security. 

Scenario studies on ~ o r l d  food security generally assume Illat a large 

increase in production will be achieved by conventional and biotechnological 

1 



genetic i~~~provement of crop species (FAO, 1996; Agrebo. 1996). 'l 'l~e knowledge 

that is obtained with the new tools of biotechnology can be used lo contribute to 

enhanced food security throughout the world. The study presented in this thesis 

lbcuscs on the use of some of the n~udern biological tools (Marker-Assisted 

Selection, MAS) tbr the improvernenl and acceleration of genetic crop 

improve~nent in sorgl~un~. 

1.2 Background infor~nation on sorgllunl 

Sorgllum [Sorghu,,~ bicoior (L.) Moench] is the 5Ih   no st important cereal 

crop globally alier wheat, nlnize, rice and barley (I:AO, 2003; FA0  and ICKISAS, 

1996). 'l 'l~is Cq grass is grown in Illore than 80 countries, tnostly in tropical and 

sub-tr~~pical regions. 'I Ile average annual sorgl~uln area cullivatcd anlounts to 44 M 

ha, u i t l ~  an average annual grain production of 63 M tons, and average grain yield 

of 1.4 L ha-' (FAO, 2003: 1:AO and IC:IUSA'f, 1996). Sorgliu~n was domesticated 

in Ethiopia and part of Congo, with secondary centers of origin in India, Sudan 

and Nigeria (www.africaticrops.11et). 

Crop ecologists have described live races of cultivated sorghum that have 

come into conurlon usage among sorgl~un~ breeders (w.aTricancrops.net ).They 

arc: d u ~ ~ . a ,  kalir, guinea, hicolor and caudalu~n. All five major races of sorghum 

originated and continue to be cultivated in Africa, with several races often being 

used for different purposes within the same agro-ecosystetn. Although sorghum 



culti\.ation I ~ a s  become an iti~portant component of agriculture in various industrial 

countries, it relilair~s largely a developing coulltry crop. Some 90% of the world's 

cultivated sorgtluln area is in developing countries, mainly in Africa a~id  Asia. As 

a collti~~ent, Africa is the largest producer of sorghum grain with approximately 

18.5 M tons produced an~iually. Leading producers around llle world during liscal 

year 2003 included the llllited States (9.3 M Ions), India (7 M tons), Nigeria (7.8 

M tons), and Mexico (5.3 M to11s1208). 

I'roductio~~ of sorgliu~ii it1 senii-arid regiol~s of the world is limited by 

drougl~t. Ucvelopil~g ~)lauts that have all advantage under water-limited co~iditions 

is a major cl lal le~~ge for sorgllu~n i~nproverne~~t programs globally. 

1.3 Sorg1111m usage 

111 111a1i> p:Irts or tlic \vorld sorgl1~1111 has t~ilditio~liilly been used in food 

products and various food itcnls; porridge, unleavened bread, cookies, cakes, 

couscous, and maltcd beverages are rnadc I'ro111 tllis versatile grain. 'Traditional 

Sotrd preparatioti ol' sorgliu~~i is quitc varied. I3oiletl sorg l~u~ns  are one of the 

si~~iplcst  uses a~id  s111s11. corticous grains arc ~loll~ially dcsircd l i ~ r  this type oT food 

product. 'I l ~ e  whole grain may be ground into flour or decorticated berore grinding 

to produce either a line particle product or Ilour, which is then used in various 

traditional hods .  



Sorgllu~~l has unique properties that nlake i t  well suited li)r food uses. Some 

sorgllu~~l varieties are rich in antioxidants and all sorgllu~n varieties are gluten- 

free, providing an attractive alternative for wheat allergy sulTerers. 

Sorgllu~n stover is an inlportant source of animal feed in ~nixcd farniing 

situations. 

Sorghunl grain is also an inlporta~lt ani~nal feed used in countries like the 

U.S.A., Mexico. Drazil, Venezuela, Argenti~la, and Australia. Good-quality 

sorgllu~~ls are available with a nutritional Seedi~lg value that is nearly cqi~ivalent to 

that of corn (such sorghun~s have 5% lower feed value tllarl maize due to 1% 

loser ]:at contenl as a result of sorghum's relatively srllaller embryo size). 

As much as 12% of do~l~estic sorgl~urll production in India goes to produce 

ethanol and its various co-products. 

With demand for renewable fuel sources (including etllanol) increasing, 

supplj and demand Ibr co-products like sorghum-UL)GS (distillers dried grains 

with solubles, which are an excellent livestock feed) will increase as well due to 

sorghum grain's Savorable nutritional prolile. 



Sorgllum has disti~~ct advantages wllrtl used ill a crop rotation scheme, 

especially wit11 cotton or wheat. It has a liigll yield pote~ltial and the highest 

recorded yield for the crop is 20.1 t ha". However, sorgllu~n grain yields in Africa 

arid Asia. including India, remain very low. 

Sorghum is one of the most drought tolerant cereal crops currently under 

cultivation. It offers farniers the ability to reduce costs on irrigation and other on- 

far111 expenses ( I ~ t t ~ : / l w w w . g r a i ~ ~ s . o r ~ g r ~ i ~ ~ s i s o r g l ~ u ~ ~ ~ ~ I ~ t ~ ~ ) ,  

1.4 Uro l~g l~ t  tolel.a~ice 

Drought is actually a nleteorological evelit wl~icll implies the absence of 

rainfall Ibr a period of t i t ~ ~ e  - long enough to cause nioisture-depletion in the soil 

and water delicit wit11 a decrease of water potential in plant tissues. But from an 

agricultural point of view, a working delinition of drought would be the 

i~iadequacy of water availability (including prccipitation, irrigation, and stored soil 

~noisture) in quantity and distribution during the life cycle of a crop plant, which 

reslricts tllr expressiotl ol'tull ge~~et ic  potential ofthe plant. 

Drouglit acts as a serious linliting [actor in agricultural production by 

preventing a crop fro~n reaching its genetically deternlined theoretical maximum 

yield. Most crops are sc~lsitive to water dclicits, panicularly during early seedling 

growth and fro111 flowering tluough seed developn~ent. 



111 agriculture, drougl~t tolerance refers to the ability of a crop plant to 

produce its eco~loniic product with minimu111 luss in n water-dclicit environment 

relative to a water-constrai~~t-free productio~i envi ro~~~nent .  All understanding of 

the genetic basis of drougl~t lolerance in crop plants is a pre-requisite to evolving 

superior genotypes throl~gli either conve~~tional breeding ~nelllodology or 

bioteclu~ological approaclies(Jiban Mitra; Current Science, vol. 80, no. 6, 25 

March 2001 ). 

1.5 ' I ' e r~ l~ i~ ln l  d r u ~ ~ g l l t  tolcr;tnce in surgltu111 

'l'liere are three distir~ct stages in wl~icll drought affects sorghum: 

Vegetative (GSI): I're-Flowering (GS2); and I'ost-l:lowering (GS3). 'l'he plants 

rcspo~~se  to stress at the two stagcs ((jS2 and CiS3) is very differcnt, and sorghum 

genotypes one11 behave dil'fcrc~~tly at the two stages, sometimes sl~owing good 

drought tolerance at one stage but being drougllt sensitive at the other stage. 

Visual affects of drought sensitivity in the pre-llowering stage include leaf rolling, 

leal'erectness, leaf bleaching, leaf firing, delayed flowering, poor panicle exertion, 

saddle effect, panicle and lloret blasting, and reduced panicle size. Sorghum with 

good pre-lloweri~ig drouglit tolera~ice exllibil the following cllaracteristics: it 

resists panicle abortion, exerts panicles normally, its maturity is not delayed, and it 

expresses a substantial portio~l of its grain yicld potential. I'ost-llowering stress is 

cliaracterized by premature leaf and plant death (senescence), stalk collapse and 

lodging, charcoal rot, and reduced seed size. 'She best characterized forni of 



drouglit stress tolerance in sorgliu~n during this post-flowering stage of growth is 

called ''stay gree~i." l'lie stay-green trait cat1 be delined as the ability to resist 

preniature plant senescence, retain green leaves, fill grain nonnally. and resist 

lodging under co~iditio~is of post-flowering drougllt stress (Rosenow D.T., 

13reeding to enhance drought tolerance in sorgliu~n. I'rocecdings of the 23rd 

Biennial Sorgllu~n Industr)' Conference. SICNA: Lubbock, Texas, USA.). 

6 The physiology of "Stay-green" in so rg l~u l~ i  

1.6.1 W l ~ a t  is slay-green? 

Staj-green call be defined as exte~ided Soliar grec~~ness during grain-f~lling 

under post-anthesis drougllt stress, ar~d can be viewed as a consequence of the 

halalice bet\vee~i N denland by tllc grain and N supl~ly lio~ii the roots during grain 

filling (Ilorrell et al., 2001). Stay-green is a drought-tolerance trait in grain 

sorglium. When water is liniited during tlie grain filling period, genotypes 

possessirig this trait maintain Inore photosynthetically active leaves cornpared with 

genotlpes not possessing this trait. According to 'I'enkouano et al., non-senescence 

or stay-green is a ~ncchanisni of delayed leaf and plant death that clrcunivents the 

detrimental effects of reduced soil moisture conibined with high temperatures 

during drought stress that occurs during post-anthesis growth. 



1.6.2 Nitrogen dynamics and tlie stay-green pl~enornenon 

1'11~ lo~~gevit) and pl~otosyntl~ctic ci~pacity of a leaf are related to its N 

status. During senescence, amino acids cease to be fornlcd, existing protein is 

dcgl.;dcd and IIUI rcpl;~ccd, and the resultant ;~rnino acids are translocated out of 

the 1e;lf. A considerable proportion of Icaf protein is bound in pig~nent-protein 

complexes of the pl~otosynthetic apparatus. Degradation of these pigment-protein 

complexes results in tile characteristic yellowing of the leaf as chloruphyll is 

released from this dissociation and subsecluer~tly broken down during senescence 

(Ilorrcll e( al.. 2000). 

I:rorn as early as 40 days aner elnergence, Inore nitrugell is allocated lo the 

leaves of stay-gree11 I~jbrids as co~llpared wit11 tl~eir senescent counterparts, 

resulting in a higher specific Icaf ~~ i t roge~ l  (S1,N). It is I~ypothesiscd that this 

higller SLN initiates a chain of responses, i~lcluding enhanced radiation use 

efliciency (KUI;.) and trar~spiration efficiency ( IE) ,  which enable the plant to set a 

higher yield potential by antl~esis, ultiniately leading to higher grain yield and 

lodging resistance under conditions of post-anthesis drought. It is further 

I~ypothesised that aller anthesis, higher SLN delays the onset and reduces the rate 

of lea[ senescence, and that tl~is is associated with increased nitrogen uptake from 

tllc soil co~npared with the senescent control. Evidence to support this framework 

is given in tlie following ligure (After http:/lwww.regional.org.auiauIasa~2003): 



More N par l~t toned M o r ~  C pa r t~ l~oned  

~ n l o  leaves before \ / lnI0 leaves 
anlhes~s Th~cke r  leaves an'hes1s 

H~gher  RUE H~gher  TE I 
More C and N 

durlng gram filling 

Increased s ~ n k  
demand via h~gher 

graln numbers + 
H~gher N uptake 

dur~ng gram 6111ng / 
Figure 1. Nitrogen dynamics and the stay-green pl~enolnenon in grain 

sorglrunl 

The concept of a mini~iium SLN level, below which leaves will senesce, 

was proposed by Rorrell and Ilain~ncr (2000). They concluded that SLN in stay- 

green sorghum hybrids reniained above the 'threshold' senescence level for a 

lo~lger pcrivd llia~l in scnescc~it liybrids for at lcast tliree reasons: 

l'he leaf N benchmark at anthesis was higher in stay-green than in 

senescent hybrids; 



N uptake during grain filling was higher in stay-green than senescent 

hybrids; and 

the remobilization of N frorn leaves of stay-green hybrids during 

grain filling was less compared with that of senescent I~ybrids. 

1.6.3 Stay-green and yield 

Grain yield is the product of grain numher and grain size. Grain number is 

generally the main determinant of differences in grain yield, and this has also been 

observed for sorghum, grown under post-anthesis drought stress in southern India 

(I3orrell et al.. 1999). 1:actors related to t l ~ e  stay-green ~nechanisms of trait sources 

U35 and KS19. which can potentially increase the panicle growth rate around 

: ~ ~ ~ t l ~ c s i s  :~nd hence cat1 have ti positive el'lect on g r a i ~ ~  nunlber, include increased 

1,AI (Burrell et al., 1999) and ir~creased SLN, which increase RUE (Muchow et 

al.. 1994) and competition for assimilate from the stem (Borrell et al., 1991, 

1:ischer et al., 1986). Grain size is a secondary yield determinant and is often 

negatively associated with grain number (e.g., Bidinger et al., 2001). Ilence, grain 

size is indepcnder~t of green leaf area at anthesis (Borrell et al., 1999). Ilowever, 

the retention of photosy~~thetic capacity under water-limited conditions of stay- 

green hybrids ensures continued availability of new assi~nilates and is associated 

wit11 i~lcrcascd N-uptake during grain f i l l i~~g (Uorrell et al., 20U0), potentially 

improving grain size. Borrell el al. (1999) found that grain size was correlated 

with relative rate of leaf senescence during grain filling such that reducing rate of 



leaf senescence from 3% to 1% loss of leaf area per day resulted in doubling grain 

size fronl about 15 nlg to 30 nig. Thus tile stay-green trait can potentially increase 

grain yield by i~nproving botli grain number and grain filling ability. 

1.7 Quastitalive trails 

Quarltitative traits are typically controlled by many genes each contributing 

only a s~nall part to the observed variation. Selection for quantitative traits is 

dil'licult. because the relation between observed trait values in tlle field (the 

phenotype) and tile underlying genetic collstitutio~~ (tlie genotype) is generally not 

straigl~tlbrward. 'Ihe e~ivironmental variance resulting l'ro111 dill'ercnces in growing 

cu~iditions further obscures tlie relatio~l betwcc~l phenotype and genotype. Plant 

brccdcrs ~ o u l d  like to gct i l  beitcr grip 011 qua~iiiti~tive traits by direct selection lor 

the ge~ietic ractors tllat are respo~~sible Tur the observed variability in quantitative 

traits. 'I liis can be achieved tl~rougli indirect selection: selection for otlier readily 

recognizable Sactors, wliicll are associated tlle target trait and genes controlling it. 

Molecular tiiarkers, derived frorii recent bio-technological developments, can be 

uscd Sur tliis purpose. 

1.8 Molecular markers 

'Ilie discovey of restriction enzytiles (Smith and Wilcox, 1970) and the 

polymerase cliain reaction (PCR; Mullis and Faloona, 1987) have created the 

opportunity to visualise the cornposition of organisms at the DNA level, and 



obtain a so-called genetic fingerprint (e.g., Kearsey and I'ooni. 1996). The 

visualisation is routi~iely perfornied by tlie scparaliun, by elcctroplioresis (through 

gels or capillaries), oT DNA-frag~iients lliat result from a sclcctivc digestion with 

cnzyliies or l'ragnie~~ts tliat result froni a selective atiiplificatio~i using I'CK. DNA 

l i a g ~ ~ ~ c ~ ~ t  t l i f irc~lces that rcsult in dini.rc~it clcctropl~oretic n~igration patterns 

bet\vcen saniples or individunls arc called polynlorpliic ~iiarkers. 'llie visible 

dilkre~ices of Sragmenl ballding patterns on tlie gel (or difrerences in tinie required 

to pass tlirougli tlie capillar)) result fro111 difSerences at the UNA level. Not all 

types 01' ~iiarkcrs are tlie sanie. 'l'lic i~il'un~iation coiltent dcpcrids on tlie method 

t11:1t was used to o b t e i ~ ~  tllc liinrker data and the ~ ~ o p u l a l i u ~ ~  i l l  wliicll tlie tiii~rkers 

were 'scored'. kor instance, it is not always possible to distinguish genome 

I I ; I ~ I I I C I I \ S  tI1;1t are prcselit ill I io~no~ygous  condition lro~ii liclcrozygous liagmcnts. 

111 a Iicterogeneous pol)ulalion like an I;>, co-doniiniint markers like KFLPs 

(Uotslein el a/.,  1980) and co-donii~~antly scored AFLl's (Vos el al. 1995) yield 

tiiorc i~ilbr~iiation Ilia11 do~~i inant  niarkers like 1Ul'l)s (Welsli and McCleland, 

1990) and doniit~a~itly scored Alil,l's. Advanced tools li)r tlie retrieval of marker 

data and the subsequerit analysis have been developed and allow a quick and 

reliable analysis in most plant species. Ili~portant inrotmation on the genetic 

background of individual platits and populations can be derived from linkage that 

is obscrved bctwcc~i uiarkers. 



1.9 QTL analysis 

(ienctic factors that ;Ire responsible for a part o f  the vbscrvcd plicnotyl~ic 

variation for a quantitative trait can be called quantitative trait loci (Q'l'Ls). 

A l t l ~oug l~  si~l l i lar  to a gcnc, a Q'I'L ~nerely indicates a region on the gc~lonle, and 

could bc conlprised o f  one or nlore Sunction;~l gcries (Ialconer and Mackay, 1996). 

In QI'L-mapping tlie association between observed trait values and 

presenceiabsence o f  alleles o f  niarkers is mapped unto a linkage tnap and 

analysed. When i t  is significantly clear that the correlation that is observed did not 

result fro111 some raridoni process, i t  is procl;~irned that a VI 1, is detected. Also the 

s i ~ e  o f  the :illelic c f i c t  oS t l ~ e  dctcctcd Q I L ctni be estiniatcd. A breeder can 

allalysc Q I L occurrences and use this knowledge to his advantage, for instance by 

using illdirect sclcction. When selection is (partly) based on genetic intomlation 

rctriebed througll the epplication o f  niolecular niarkers this is called marker- 

tissisted selection. 

1.10 Marker-assisted selection 

Marker-assisted selection (MAS), sometiines also called marker-aided 

sclectiun, is a relatively new tool for plant breeders. In  its sitnplest form i t  can be 

applied to replace evaluatioll o f  a trait that is diff icult or expensive to evaluate. 

Wlicll a lllarkcr is Sound 11101 co-scgregates wit11 a rilajor gcne for an important 

trait, i t  rilay be easier and cheaper to screen lor the presence o f  the marker allele 



linked to tlie gene, than to screen for tlie trait of i~iterest. I:ro111 t i ~ ~ i e  to tirr~e the 

l i~~kage  bctwce~~ tlie ~narker and tlie gclie sliould tlie~i be vcrilied. 

When Inore co~iiplex. polygenic co~itrolled traits are conccn~ed, tlie breeder 

is hccd wit11 the problcni ol'how to col~ihine :IS 111al1y as possible beneficial alleles 

Ibr tile trait of interest at tlie Q'ILs Illat ucre detected. In tl~is case tlie breeding 

niaterial can be screened for ~iiarkers 1Ii;it are linked to each of tlie Q'l'Ls. Based on 

sucl~ an analysis, specific crosses ciu~ be devised for the creation of an optin~al 

genotype, co~r~bi~i ing  be~ielicial Q1'L allelcs from different loci. This situation, 

wliicl~ is the 111ain sul~ject of tliis thesis, could also be called marker-assisted 

b~.ecliirig. 

Marker-assisted selection may be used to licilitatc a co~~trolled inflow of 

I ~ O U  ge11ctic ~liat~ri:~l illto e c u ~ ~ o ~ ~ i i ~ a l l y  i~iiporti~lit, a g r o ~ ~ o ~ ~ ~ i c a l l y  elite, ge~ietic 

backgrour~ds. "Wild" or "~JII-atlapled" exotic gcrniplas~n nlaterial olien carries 

desired coriipo~ients that niay be missing in cultivated material. Such colnponents 

can he transferred to elite cultivated n~aterial by repealed backcrossing. In a 

backcross prograln, the presence of the desired Q I L  alleles cat1 be verilied 

conti~~uously hy observing li~iked ~narkcrs. At tlie same time, and with little extra 

el'l'ort. 111arkers can provide infor~natio~i on the origin of the rernai~idcr of the 

genome, allowing seleclion within the backcross ~naterial for individual genotypes 

tl~at Iiavc lost the majority ofu~iwa~itcd doiior parent LINA in gcnoniic regions ilia1 

are not associated with the trait being introg~essed. Usually the application olthis 

marker-assisred backcross procedure will also result in a reduction of the number 



ol'backcross generations that are required, Illereby speeding up the brecding 

~)rogriun il' tile tinle required for the ~llarker data collection docs not delay 

generatio11 advance. 

I .  Selection o f  S35 13C31:l genotqpes and ICSVl  11 13C31:l genotypes 

l i ~ r  tlle presence o r  ~nt~rkcrs  linked to stay-greerl Q I'L (foreground selection) from 

dollor 035. 

2 .  Among the selected RC31:I gel~otypes wit11 donor marker alleles 

linked to stay-green (J1'1.. idenlilicatior~ of'gc~~otyl)es will1 ~ l l i ~ i i ~ n a l  donor alleles 

i l l  gc l lo~~ l ic  regions Itlore dist;i~lt lrom tllcsc target VI'1, (background selection). 

3. Uackcrossirlg selected UC31:I i~~dividuals to advance tllcm to the 

UC4 I I  generation. 

4. Selection o f  S35 BC4FI genotypes and 1CSVl I I UC4FI genotypes 

for the presence o f  donor nlarkers linked to stay-green Q'I'L (foreground 

selection). 

5 .  Among the selected BC4Fl genotypes with donor marker alleles linked 

to stay-green QTI,, identification o f  genotypes with minimal linkage drag 

(background selection). 



Review of Literature 

'I Itis section gives an overview of the different topics dealt with in 

the study of marker-assisted selection of the stay-green trait in sorghu~n. 

2.1 Stay-green character-cliaracteristics and gene action 

'I enkounno et al. (1993) investigated l l~e  inherilarlce of charcoal rot 

resistance directly, by exposure 01' sorgllun~ to M<~cro/~honrino /~haseolina, 

and indirectly, by detcr~ninntion of the inlleritance or non-senescence. 'They 

cvalu;~ted diallcl crosses I)ctwccn two non-senesccrlt, cllarcoal rot rcsistant 

inbred lines (B3S and SC59Y-l 11:) and two senescent, charcoal rot 

susceptible inbreds (13'1.~378 and U'l'x623) under controlled field 

conditions. They tlcten~lined that non-senescence was regulated by 

dominant and recessive epistatic interaction between two non-senescence- 

inducing loci and a third locus with rnodirying el'lects. ' I  hey also concluded 

that non-senescence and cllarcoal rot resistance are not different 

~nanifestations oTa single trait. i.e., they are not to be evaluated with each 

Walulu et al. (1994) studied the mode of gene action fur the stay- 

green trait in sorghu~n. F1 and 1:2 backcrosses obtained from a cross 

1 L: 



between U35 (stay-green trait donor) and 'I'x7U00 (drought sensitive) were 

subjected to nloisture stress at the grain filling period in the Geld and 

rainout shelters. Stay-green was evaluated on an individual plant basis 

scoring visual Ical' and plant dcatli. 'I heir results suggcstcd Illat a major 

gene influences this stay-green trait in H35, iuld that this gene exhibits 

varied levels of donlinaot gene action depending on the environment in 

whicll the evaluation is made. 'l'l~e Srequeney distributions of the licld- 

grown U C I I ~ ,  population indicated co~nplete do~ninance ofthis single major 

gene. Van Oosteroni and coworkers Sound similar results in 1996. 

Van Oostero~n ct al. (1996). hasetl on their diallcl analysis study of 

stay-grccll in sorghum, idcntilied that the expression of heterosis for non- 

senescence was stable across e~~viron~nents/experhlents. The inheritance of 

the timing of onset of senescence was additive, but a slow senescence rate 

was dominant over a last rate. 

Horrell e( al. (1999) round that sorghum grain size was correlated 

with the relative rate of leaf senescence during grain filling such that 

reducing rate of leal' senescence Srotn 3% to 1% loss of leaf area per day 

resulted in doubling of grain size from about 15 mg to 30 mg. 'Shus the 

stay-green trait has potential to increase sorghum grain yield by improving 

both grain number and grain filling ability. 



'I'honias and Ilowarth (2000) studied the stay-green trait 

physiologically by measuring the progress rate of senescence in several 

plant species. 'l'hey observed that although the stay-green phenotype is 

sulxrlicially sitnilar in all species and gcnolypes, the genetic and 

physiological routes to the trait are diverse. They classified the stay-green 

into live types (A, 13. C, D and E). 111 Type A stay-greens, senescence is 

initiated late but then proceeds at a nortnal rate; l 'ype B stay-greens initiate 

sencscellce on scl~cdule, but thcreal'ter senesce co~nparatively slowly; 111 

I'ypc C stay-green behaviour, chlorophyll niay be rctained rnore or less 

indefinitely; 'l'ype 1) confers stay-greet1 by killi~tg lllc Icaf'through drying or 

lreezing; 111 'I'ype I': the photosynthetic capacity of an intensely green 

genotype follows the no r t~~a l  ontogenic pattern , but comparison of absolute 

piglnet~t cut i tc~~ts  identilies it as a stay-green. 'l'ype A and D are more 

Sunctiol~al stay-green types. 

l3ort-ell and I la~n~l lcr  (20UO) observed that when sorghun~ hybrids 

were grown under terminal water deficit conditions, stay-green could bc 

viewed as a consequence of the balance between nitrogen demand by the 

grain and nitrogen supply during grain filling. More nitrogen is allocated to 

the leaves of stay-green hybrids compared with their senescent 

coullterparls, resullil~g in higher specilic leaf nitrogen (SI,N) levels. I1 is 



11) l)o~llcsiscd that this iligller S L N  initiates a chain of responses, including 

enhanced radiation use elliciency (IIUE) and transpiration efliciency (TE), 

~ l ~ i c h  enable the plant to set a higher yield potential by the time of 

a~~thesis ,  ulti~nately leading to lligllcr grain yield potential and lodging 

resistance under post-antl~esis drought stress conditions. Earlier, Sinclair 

and liorie (1989) in maize and Mucllow and Sinclair (1994) in sorglium 

de~nonstrated tile positive corrclatiori uf pl~otosyr~tl~etic capacity with 

specilic IeaC~litroge~i (S1,N). 

Borrell et al., (1999, 2000) rcported that stay-gree~l and yield were 

~~ositively ;~ssociatcd in sorgllu~n in a range of studies conducted in both 

Austr;~lia iuld I~ldii~. l~igl~liglltil~g the value of retaining green leaf al.ea 

utidcr conditions of post-anthesis drtiugllt stress. Grain yield is the product 

of grain rlulnhcr and grain s i x .  Grain number is generally the main 

dcterlniria~~t of dilltrences in grain yield, and this has also been observed 

for sorgl~utn. grown u~lder post-antllesis drought stress in southern India 

(Borrell et al., 1999). 

Borrell et al. (2000) identilied that stay-green sorghum hybrids 

produced 47% more post anthesis biomass than their senescent counterparts 

under terminal moisture deficit conditions. 



Van Oosteroun et al. (2001) described the effects of N-stress on 

developt~ietnt and growth of sorglntt~~~ by identifying critical values for 

stover N content (SNC) and specilic leaf nitrogen (SLN) For a range of 

physiological processes. I3elow the critical values (adjusted It2 valuc for 

SNC is 0.98 and for SLN it is 0.78). the relative rates of processes declined 

linearly wi(h declinit~g SNC or SLN. 

Wanon~s et al. (1991) reported that visual ratings Tor the percentage 

of values under drought stress. Xu et al. (2000) nleasure sorghutnn l'oliage 

clllorool~yll c o ~ ~ t c ~ ~ t  with c l ~ l u r o ~ ~ l ~ y l l  ~nnetcr (SI'AL) values) and a 

spectroplnototlletric method. 'lhe SI'AD value lnad a signilicant linear 

relatio~nsllip with total leaf chloropl~yll (I<'-O.Y I )  and with visual stay-green 

rating (1c2=0.82). 

2.2 DNA tnarkers a r e  used to construct genetic linkage maps in 

Linkage maps of organisn~s, to map genomic regions controlling 

qualitative and qu;c~~titatice traits, to exercise indirect selection for several 

agronomic traits and to isolate the genes involved based on their map 

position. Utility of molecular ~narkers in genetics and plant breeding is 

depictcd itn the ligurc-2 below: 



Figure 2. Stages of molecular marker utilization in genetics 

and plant breeding. 



Nearly every agrot~o~nic  trait i~~iaginahle has been subjected to DNA 

marker niapping and Q I'L analyses [e.g.. drought tolerance (Martin, 1999). 

seed hardness (Keim el al., 1990). pl;~nt height (Lin et al.. 1995) and yield 

(Stuhcr ct al.. IY87)J. 

Uhattramakki et al. (2000) constructed an i~ltegrated SSII (I 13 loci) 

; I I I ~  Ill:LI' (323 loci) 111arkcr-bascd gcnctie linkage nlnp of sorghum using 

as a mapping population 137 recombinant inbred lines (RILs), derived 

lion1 the cross between U 1x623 and IS 3620C. Most of SSII primer 

sequences reported were developed from clones isolated Srorn two sorghum 

IjAC librt~rics and tlirce criricl~cd sorghu~n goncr~nic I)NA (gl)NA) libraries. 

Very few of the sorpl~unl SSR primer sequences reported were developed 

Sroln the sorgl~urn DNA sequences present in public databases. I,oci 

detected by 323 1Il:LI' probe-enzyme combinations and 313 SSR primer 

pairs were mapped (LOI) score 2 3.00). Of the SSR primers developed, 

165 (53%) were found to detect polymorphism in a population composed of 

18 diverse sorghutn lines 

Kong e l  al. (2000) also constructed an integrated sorghum linkage 

map with RFLP and SSR markers using the recombinant inbred lines 



derived fro111 tlie cross between BTx623 and IS 3620C. 'l'he markers were 

distributed across the 10 sorghurii linkage groups (LC;), covering 1287.2 

cM ol'tlie sorghum gciiome (based on LOL) >5.0). 

2.3 Mapping the stay-green trait  in sorgl iun~ 

Most agror~ornically important traits of crop plaits have complex 

i~ilieritar~cc patterns and are undcr lllc control of many genes. 'l'lie genetic 

loci associated ~ i t h  conlplex traits are called quantitative trait loci (QTLs). 

'l'raits controlled by these Q'l'l,s are often strongly influenced by the 

e~ivironnient (including tlie g e ~ ~ e t i c  backgrourid iri which they are 

observed). I3ecause of tliis, the segregation patterns observed for such 

polygenic traits appeiir to deviate liorii the relatively sir~iple palterns o r  

Mendelian inheritance , and hence the underlying genes controlling these 

trait are hard to trace. '1 his limitation has been overcome by the 

construction of highly saturated molecular maps in many crop species. The 

theoretical basis of interpreting the association of marker loci with QTLs 

has provided by Matl~cr and Jinks (197 I), 'I ariksley el al. (1982), Soller and 

Reckmann (1983), and Edwards et al. (lY87a. 1987b). The theoretical basis 

lor idcntilication of QI'Ls associated with individual marker loci has also 

been studied by several authors (Jayakar, 1970; McMillan and Robertson, 



1974; Soller and Beckmann, 1983; Edwards et al.. 1987~. 1987h; and 

Cowen, 1988). Like wise, the use o f  flanking niarker loci for Q r L  

identitication has suggested by Lander and Uotstien (1989) and Knapp et al. 

l 'he developnlent o f  molecular niarker tecllnologies and the use o f  

these markers in  detecting and mapping quantitative trait loci has become a 

powerful approach for the studying tile genetic and phenotypic basis o f  

co~nplex traits (Edward et al., 1987a. 1987b; I'aterson el al., 1988; Williams 

et al., 1992). I f  individual genetic co~llponents associated with a complex 

trait can he identified. t l lc l~  research cat1 Ibcus on thc func t i c~~~  o f  each locus 

i~ldepe~ldently willlout the c o t ~ f o u ~ ~ d i ~ ~ g  el'kcts o f  other segregating loci 

(1)orweiler et al., 1992; Yand et al.. 1995). ' l l ~ e  complex expression o f  

drought tolerance makes this trait difficult to study using traditional genetic 

and physiological methods. Use o f  niolecular markers and Q'fL analysis o f  

drougl~t tolerance in lines grown in replicated and carefully induced 

drought environnlents has lead to a better understanding o f  the inheritance 

o f  this trait in sorghun~ (l'uinistra et al., 1996, 1997, 1998; Crasta et al., 

1999; '1 ao et al., 2000; Xu et al., 2000b; Subudhi et al., 2000; Kebede et al., 

2001; Sanchez et al., 2002; tlaussn~ann el al., 2002). 



Lander and Botstcin (1989) described a set of analytical methods 

that niodiq and extend the classical theory for mapping Ql'Ls and that are 

ilnplen~ented in the computer sollwarc package MapmakeriQ1'1.. They 

p~.o\idcd explicit grol)hs that allow exl)crin~ental geneticists lo eslitnate, in 

any particular case. the nutnber of progeny required to map QTL 

underlying a quantitative trait. L)etectir~g ~narker-V1'L associations can be 

carricd out by means of likelihood ratio tcsts that involve the use of a pair 

of markers bracketing a Q'I'I.. a procedure termed "interval 

111;1pping"(Jetlse11. 1989; Knapp et al., I YYO; Lander and Holstein, 1989; 

Wcller, 1987) altl~ough si~npler approaches are possible (I laley and Knott, 

1992; I'hoday. 1961; Weller, 1987). 

'l'uinstra et al. (1996) identified the Q I L  associated with post 

flowering drought toleral~ce ill sorghun~ using 98 RlLs derived from the 

cross between K'lx7078 (pre-llowering drought tolerant, post-flowering 

drought sensitive) and 1335 (pre-llowrring drought sensitive, post-flowering 

drought tolerant). 'Illis population was gcnotyped with 150 M P U  and 20 

I<I:LP markers and a linkage map was col~structed using MapmakerIQl'L. 

They identilied six genomic regions specifically associated with pre- 

Ilowering drought tolerance and also rr~apped eight additional regions 



generally associated with yield or yield cotllpotletits under fully-irrigated 

cot~ditions. 

' l u i~~s t ra  ct nl. (IVY7) idcntilicd t l ~ c  gcnon~ic rcgic~ns (Q'l'L) 

associated with post-lloweritlg drought tolerance and for potentially related 

cotnponents o f  grain development. 'I hey used the same set o f  98 KlLs as a 

til;~plii~)g l )op i~ l i~ t io~ i  derived lion1 the cross betwec~i l<'l'x7078 (pre- 

llowering drought tolerant, post-floweri~lg drougllt sensitive) and 1335 (pre- 

I lo\\cr i~lg drought sensitive, post-llowcring drougllt tolerant). 'lhey 

idctllilied 13 getlo~l~ic regiot~s associated with one or Inore measures o f  

post-llowerit~g dro i~gl~t  tolcrancc, l 'wtr Q'I'Ls were identified with major 

el'l'ects on yield and "stny-green" under post-llowering drought stress 

conditions. 'l'liese loci were also associated with yield under fully-irrigated 

conditiotis, suggesting that these drouglit tolerance loci have pleiotropic 

ell'ects on graiti yield under not)-stress conditions. 111 this population, 

several dil'l'erent QI'L were associated with expression o f  the stay-grain 

tri~it. Stay-green Q'1 L on linkage group I' was positively associated with 

yield under fully irrigated conditions and the stay-green QI'L on linkage 

group (i was weakly associated with yield under fully irrigated conditions, 

suggesting the tolerance mechanism controlling yield and stay-green under 



post-flowering drought also inlluences yield under li~lly irrigated conditions 

when the dilTerences in stay-green were not expressed. Q' I ' IL  analysis also 

indicated an association between stay-green and rate of grain development 

a1 locus on linkage group 11. 'lhe sttip-green associatcd wit11 low rate of 

grain lill. 

'l'unislra et al. (1998) tcsted in a population o r  NILS the plienolypic 

el'fects of three different genomic regions associatcd with various measures 

of agronomic ~)erfonnance in drougl~t andlor non-drougl~t environ~nents. In 

niost cases, NILS contraslirlg for a specilic locus d i k e d  in phenotype as 

predicted by Q I L analysis. NILS contrasti~~g at the Q'I'L flanked by marker 

loci tM5175 and /If10150 exhibited large dit'fcrences in grain yield across a 

range of environments. On curther analysis they concluded the differences 

in agronomic performance rnight be associated with a drought tolerance 

~neclianis~n tllal also inlluences heat tolerance. 

Crasta el al. (1999) developed a QI'L map using 142 IWLP markers 

from a set olRILs obtained from the cross between B35 and elite pollinator 

line K'l'x430. '1 hese IllLs and their parcnlal lines were evaluated for post- 

flowering drought tolerance and ~riaturity in different environments. By 



using siniple interval niapping they identified seven stay-green QI'Ls and 

two ni;tturity Ql'Ls. Out of seven stay-grcen Q'ILs detected, tlirec niajor 

Q'I'Ls (SCiA, SGD and SGG) contributed 42% of observed plienotypic 

\sriahility (1,011 9.0) atid 4 minor Ql1 .s  (StiU, StiI.1, Sti1.2 arid SGJ) 

significa~itly contributed an additional 25% of observed phenotypic 

variability in stay-green ratings. 

'l'ao et al. (2000) evaluated 160 ItILs, derived l iom the cross 

between QL 39 and QL 41. as a segregating populatioli for genome 

~iiapping of the stay-green trait. l 'hey added 118 additional markers, 

i~lcludi~lg 17 SSI< ~iiarkcrs and 101 1<1:1,1' riiarkers, to a previously 

publislied linkage tilap (l'ao et al.. 1998) by using same IUL population. In 

total tliey identilied live genomic regions associated with the stay-green 

trait. 'I liey also conlir~ned these results by composite interval mapping with 

inclusion of QTI, x Environment interaction. 

Xu et al. (200Ub) mapped U ' L s  controlling the stay-green trait and 

cliloropliyll content it1 sorgliuln using as a mapping population 98 F7 RlLs 

derived from tlie cross 1335 x KI'x7UUU. 'l'hey identified four stay-green 

(Stg) Q'fLs located on three linkage groups. Two stay-green Q'I'Ls, s!gl 



atid stg2. are located on sorgliu~il linkage group (LC;) A, which correspo~ids 

to chro~iiosonie 3 on the Klein bin map 'l'he otlier two stay-green Q'l'Ls 

detected are located on LG L) (clirolnoso~ne 2) atid LC; J (chrott~osut~ie 10). 

rcspcctivcly. I I~cy c s t i ~ ~ ~ ; ~ t c d  tl~at st;ly-grccn Q I 1- srgl and srg2 account for 

13-20% a t ~ d  20-3096, resl)ectively, of obser\~ed phenotypic variability for 

h i s  trait in tliis lUL !napping population. They also identified three QTLs 

Ivr chloropl~yll colltelit (cllll, c.1112 and ~1113) that togctlicr explained 25- 

30% of the obsened phenotypic variability. 'l'lle genomic regions 

corrcsl~onding to stgl and s1g2 contai~i ;III AUA rcspo~isive gene and genes 

for key photosynthetic enzymes and heat shock proteins. 

Subudlii et al. (2000) assessed tllc consistency of Q'I Ls co~itrolli~ig 

the stay-green trait in sorghum across several genetic backgrounds and 

environments. 'l'lley evaluated the 1UL rnapping population Sroni the cross 

1335 x 'I'x7000. 'I he map of the (1335 x 'I'x7000) derived RIL population 

(Xu et al., 2000) was expanded by the addition of 91 markers (RFLP, SSR 

and IUI'L) ~narkers). '1 liey rnapped Sour stay-grcen Q'I'Ls and identified 

that there are partial similarities iri case of the Q'L'Ls detected on LC; A and 

LCi U of tlie (l335 x ICI'x7000)-derived population and tlie (U35 x 

Kl'x7078)-derived population previously reported by 'I'uinstra et al. (1997). 



'l'he nomenclature of the stay-green Q I'Ls lirst used by Xu et al. (2000) 

(i.e., stgl.  slg2, stg3 and stg4) was adopted as standard. 

Mahalakshmi and Didingcr (2002) evaluated a set of 72 diverse 

genotypes of sorghum [So,phun~ bicolor (I,.) Moe~lch] for their patterns o r  

post-flowering leaf senescence ullder terlninal drought stress conditions to 

identil) superior sources or  tile stay-grccn trait. I xa f  scllcscence patterns 

were detern~inrd by litting logistics or linear functions to the percentage of 

green leaf area (% GIA) .  They identified several tropically-adapted lines 

with slay-greet) exp~.essiot~ equivalent to tllose o r  the bcst lcmperale lines 

(viz., B35 and KS 19). 

Kcbcdc ct al. (2001) idcntilicd t l~c  gcnotnic rcgions associated with 

post-flowering drought tolerance (stay-green) using IlFLP markers and an 

k'7 KIL population derived from the cross SC56 x ICI'x7000. 'I'he genetic 

linkage map for this IUI, population covers 1355 cM for the sorghum 

genome and consists of 144 loci. Nine QI'Ls, distributed across seven of 

the ten linkage sorgllum groups, were detected Tor stay-green in several 

environ~nents using the method of composite interval mapping. They also 

idcntilied the tl~rec ()'I Ls present on sorghum LC; A (chromosome I), LC; 

Ci (chromosome 7). and LC; J (cluomosorne 10) that were consistently 



detected across different terminal drought stress environments. 'They also 

conducted cornparatice mappit~g studies, identifying that two of the 

sorgliutn stay-green Q 1'L.s ide~itified in their study correspond to stay-green 

Q I'Ls detected in tiiaize. In addition to this, QSLs respo~isiihe fur sorghum 

lodging tolera~ice and pre-tlowering drouglit tolerance were detected. 

Cha et al. (2002) mapped slay-green VSLs in rice using both 

pllenolypic and ~nolccular markers. 'l'l~ey r~iappcd the stay-green mutant 

(sgt.(t)] locus to the long arm of rice clirotnoso~nc 9 between RFLP markers 

KG662 and CY85. at 1.8- and 2.1-cM intervals, respectively. 'I'l~ey found no 

difference in ~ ) l~o tosy~~ t I~e t i c  activity between the st;~y-green tnutant and 

yellowing wild-type leaves, indicating that senescence of the 

pliutosyntlietic apparatus is proceeding nor~iially in [lie tnutant leaves and 

that the niutation only all'ects the rate of cl~lurophyll degradation during 

leaf senescence. Ihus this rice stay-green mutant is cosrnetic in nature and 

corresponds to the less useful category described by 'l'hotnas and IIowarth 

(2000). 

Sanchez et al. (2002) reported on lour Q'1'1, associated with the stay- 

green trait using a RII. population derived from the cross B35 x R'fx7000, 

and linkage maps wcll covered with IIAPL), SSRs and W L P  markers. 

1 hese four major Q'Sl,s [previously reported by Crasta et al. (1999). Xu et 



al. (2000). and Subudlii el al. (2000)l were consisle~illg idc~i t i f ied in all 

field trials and accounted for 53.5% o f  the plie~iotypic variance for tlie stay- 

greeri trait. 

I l ; ~ u s s ~ ~ ~ a ~ i n  ct al. (2002) dcvcl t r lu l  a Q I I >  Iiiap lor Ilic stay-green 

trait i r i  sorgliu~n using trio reconibinruit inbred populatio~is (I<11'1 and 

1U1'2) hased on donor parelit E36-1. I ' l ie mode o f  gene action for tlie stay- 

green ill tlieir illyestigation ranged fro111 purely additive to over do~ninance. 

'l'hree Q'1'L.s or1 1.C; A (c l i ro~i ioso~i ie I), LCi E (c l i ro~i~osonie 5) and Lt i  Ci 

(cliromoso~ne 7) were comtnon to botli RIP1 and R11'2. 'l'liese tliree Q f L s  

Sro~ii donor parent 136- 1. along wit11 the l iw r  Q I'Ls l ' ro r~~ dollor parent U35, 

are potelilia1 candidates Ibr tra~isfcr o f  tlic stay-grecn trait into locally- 

:idal)tcd clitc s o r g l i u ~ ~ ~  ~ i~atc r ia ls  l iaving producer atid cotisu~iicr-preferred 

grain atid fodder quality traits. 'fhese findings have provided the basis for 

an attempt to transfer stay-green Q 1'Ls from the selected donor parents to a 

range o f  ecorio~riically iriiportant recurre111 parents. 

2.4 Marker-assisted selection 

An important area i n  which ~nolecular biology is being applied for 

transfer o f  traits from exotic donor parents to more elite locally-adapted 

crop cultivars is ~iiarkcr-assisted selection (MAS). MAS has been 



advocated as a useful tool for rapid genetic advance it1 case oTQl'Ls (Lande 

and l'liotnpson. 1990: Knapp, 1994. 1998). (i in~elhrb and Lande (I 995) 

presented a detailed a11;llysis of the rclatiotiship between genrtic ~narkers 

and Q 1'1,s in the process of MAS. 

Mollall et al. (1997) concluded tllat MAS could be used lo pyramid 

~na,jor genes including disease and insect resistance genes, with the ultimate 

goal of producing the crop cultivars hit11 more desirable traits. A study 

conductctl hy liathir~gtor~ et al. (1997) assessed the usefulness of rnarkcr- 

assisted effects estitnated Srom early generation testcross data for predicting 

later generations testcross perforn~ance. 

MAS can he used to pyratilid several resistance genes into a single 

host genot>pe. Where hybrid cultivars are possible, Witcombe and Hash 

(2000) have described how tilultiple resistance gene pyrarnids can be used 

practically to strategically deploy resistance genes in potentially more 

durable manner t h a ~ ~  has been previously practiced. 'fhe frequency of 

genotypes having resistance alleles at several loci increases greatly in both 

the seed parent and its l~ybrids w11e11 the overall frequency of resistance 

alleles in the tnaintai~ter line increases. 



2.5 Efficiency of marker-assisted selection 

Ilospital et al. (1997) used coluputer sirnulatio~~s to study the 

el'liciency of MAS based on an index cotnbi~iing tlie plienotypic value and 

~iiolecular score of i~idividuals. 'l'licy observed that in tlie first generation 

the ratio of relative elliciency (RE) of expected eflicie~icy of MAS over the 

espcctcd el'liciclicy ul'~,urcly ~)l~criot)pic sclcctiorl gcticrally increases with 

1 )  larger population size, 

2 )  lo~ver lieritabilily values oftlie trait, and 

3) high type-I error risk of the regression. 

111 studies over successive generations of selectio~i, higher efficiency 

of MAS for Q 1'Ls \+it11 large eflkcts in early generations is balanced by a 

Iligher rate of fixation of urifavorable alleles at Q'Tl,s with small effects in 

later getierations. ' I  his explains wliy MAS may heconie less efficient than 

plicnotypic seleclion in the long-term. MAS eSficiency therefore depends 

on the genetic deteniiination oS the target trait. 

The efficiency of MAS was ge~ierally reduced with increasing 

distaticc between the ti~arkcrs llat~kiiig tlic target Q'I'L. So, the optimal 

distance reco~nrnendcd between two llanking markers is about 5-10 cM 



(Hospital et al.. 1997). 'l'he eficiency of niarker-assisted selection rnay be 

less than that of pllenotypic selection in tile long-tenn (Ilospital et al., 

1997). 

Knapp (1998) presented esliniates of the probability of selecting one 

or tilore superior genotypes by MAS to predict its cost efficiency relative to 

phenotypic selection. ' lhe frequency of superior genotypes among the 

selected progeny illcreases as the selection intellsity increases. Van Uerloo 

and Stan1 (1998) assessed effectivelless of MAS compared to phenotypic 

selection sliowi~lg that MAS appears partially pronlising when dominant 

alleles are present st (2.1 1,s and linked in coupling phase. Uncertainty in 

esti~ilalcd (J'I.1. niap positions reduces llic benelils of MAS. 

Young (1999) pointed out that despite innovations like better marker 

systerns and improved genetic rnappitig strategies, most marker 

associations are not suficiently robust for successful MAS. Channet et al. 

(1999) showed that tile accuracy of VI'l, location determination greatly 

affects selection erliciency. MAS for Q'I'Ls has recently started to be 

applied to the genetic i~nprovernent of quantitative characters in several 



crops such as toolato (Lowson et al., 1997; Bernaclhi et al., 1998), maize 

(Graham et al., 1997), and barley ( I l a~ i  et al.. 1997; 'l'oqjinda et al., 1998). 

llospital and Cllnrcosset (1997) tlcternlined the optinla1 position and 

nu~nber of marker loci for manipulating Ql'Ls via foreground selection. 

Further. they investigated the conlbination of foreground and background 

selection in 011, introgression. Opensliaw (1994) detenniried the 

populat~oti size and nlarker density required in background selection. 

I:ritscli ct ;)I. ( I O O O )  d c t c r ~ ~ ~ i n c d  the ~luri~ber of 111;irkcr data poinls 

(MDP) required in background selection and the size ol' the segregating 

popul;rtion reqi~ircd to recover dcsirahle individuals, cotnparing a two-stage 

sclcctio~l proccdurc (ollc backgrou~id and orle li)rcground selection) will1 

alternative selection procedures (one foreground and two or three 

background selection steps). 'I'hey observed Illat as the nurnber of selection 

steps ir~creases, the total nurr~ber of MDP required (and hence the 

operational cost to generate these) decreases. 

Moreau et al. (2000) evalualcd the relative efliciency of MAS in the 

first cycle uf sclcction tllrougli ;in ;lnnlytical approach taking into account 

the effect of experimental design (population size, numbcr of trials and 

replicationltrial) on QI'L detection. I'hey concluded that expected economic 



rcturns of MAS conipared to the pl~e~iotypic selection decreases with the 

cost of genotyping. 

Ilrcher el a1..(2003) nt ClMMY'l' caliie to some prcli~iii~iary 

coticlusions on the relati\,e cost e~fectiveriess of conventional breeding 

methuds as co~npared to MAS Tor QPM (Quality protein ~naize) line. When 

11lic11otyl)ic s c rcc r~ i~~g  is sinlple (in other words, wllc~i it is relittively easy to 

deteniline \chetlicr a given plant variety possesses a given trait, such as a 

certain grain color). con\,c~itiunal breeding is, and will co~itinue to be, 

extre~~lely cost-ellcclivc. Conversely, ~ I I C I I  pl~ct~olypic scrce~ii~ig is 

cxpc~isive, tech~~icallq dif'licult, or even i~npossible, MAS will olien be 

ad\antageous. MAS oflcrs an alternative that is si~nple, direct, and very 

reliable. OIier~ work on diseases like rna i~e  streak virus which are strictly 

quarar~tiried can he carried out using molecular markers. Marker-assisted 

selection ollen allows breeders to cut down on the number of seasons 

needed to produce a desircd product. Ever1 a high-end MAS scheme that 

tt~ight rut1 a few thousand dollars more t l ~ a ~ ~  a conventional scheme is to the 

:~dditional bcllclit to Ii~rtl~crs w1ic11 a ctiricty hccotncs available sooncr . 



C H A P T E R  111 

Materials And  hlethods 

3.1 I'lant niaterial 

BClFl  and RCIII farnilies derived from crosses between S35 and B35: 

Segregating UC,Fl and [)Carl progenies derived from n series o f  backcrosses 

hctween recurrel~t parent ICSV I I I (- S35)  and slay-green trait donor parent B35 

were tlie suh,ject o f  this study. [Figure 3(a) and 3(b)  for an overview o f  the 

backcrossi~ig prograni] 

3.2 Sltc~rt t lescr i l~ l ion or ~~arettt:t l  lines used i n  l l ~ e  buckcross program: 

B35 is a R C I  derivative o f  laridrace gernlplasm accessio~i IS 12555, which 

is a durra race sorghum from Ethiopia (Kosenow et al., 2003). I t  is 3 well 

cliaracterizetl source for tlie stay-green colnponent o f  lolerance to terminal 

drought stress; seberal different researcl~ groups from the USA arid Australia have 

idelililied a ~ i u ~ n h c r  o f  st:iy-green Q l l . s  hated on I<IL mapping populations 

derived from crosses involving this line or its derivatives . Based upon a limited 

SSR-based genetic diversity study recently conducted at ICRISAT-Patancheru 

(Folkertsma et al., in preparation), U35 appears to be genetically quite diverged 

from the elite recurrent parents used in this study, which facilitates its use in 

marker-assisted breeding programs. It is also phenotypically divergent from many 

Asian and African elite sorgliunl open-pollinated varieties and hybrid parental 

,I r3 



lines. It is potentially "yield resistallt" due to its short plant height, slnall 
panicle size, and low grain number per panicle. 

S 35 This is n selectiot~ froln ICSV I I I, wliich has been released in 

Chad and Ca~ncrool~ 

lCSV 1 I 1  'l'liis is a pure-line cultivar developed at ICRISAT Asia 

Celiter. Patallcl~em, llidin tllrougli pedigree selection ill a three-way cross 

(SI'V 35 x E 35-1) x CS 3541. 'fhe parents SI'V 35 and CS 3541 are 

converted plioto-insensitive three-gene dwarf zerazera types or~g~nat ing 

Irom Ethiop~a and Sudan, respectively; while E 35-1 is a zcrazera type 

originating Sruni Ethiopia. ICSVI I I is a photo-insensitive, self-pollinated 

cultivar that flowers in 65-72 days and matures in 100-1 10 days. The green 

stalks are slightly sweet and juicy. 11 is a caudatum type, with white hard 

grains, thin pericarp arid ~iorlnal endosperm. This open-pollinated sorghum 

variety has been released in Ghana as 'Kapaala'. 



Figure %a). Scheme for transfer of st*)-grrrn Qr1.s into rl i tr  
qor~hum linm b) n~arhrr-assislrd wln'tion 
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Fig8rr Xb). Stbcmc for t r u s k r  of tray-pm QTL into &te soqbum lina by 
marlurusbted *lion: BCJFt and BCIFI for ICSI' I I I 
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3.3 DNA extraction 

Seeds o f  backcross progenies fro111 selected individuals were sown 

individually in sniall pots. At tlie salne time seeds o f  the parental lines were sown. 

Staggered sowing was entploqed to encure co-flowering o f  tlie recurrent parent 

and hackcross progenies. 'I lierefore recurrent parent seed was also sown a week 

hefore and aner the sowing o f  backcross progenies. 

DNA fro111 i~ldividual platits of lhe BC3Fland 13C41:l populalions was 

extracted f ro~n o~ie-\beck-old seedli~igs by using a modified CTAB method 

(Saghai-Maroof et al., 1984). DNA was further purified by KNase digestion 

f o l l n ~ e d  hy extraction with phenol1 clilorol'orm/ iso-aniqlalcolic~l and ethanol 

precipitation. A 96-well plate mini DNA extraction protocol (Mace et al.. 2004) 

Has employed. 

3.4 96-well plate mini  DNA extrnctiur~ 

A. Preparation and orocessing 

I. Steel balls (2 per extraction tube), pre-chilled at - 

20°C for about 30 ~ni~iutes, were added to the extraction tubes, 

which are kept on ice. 

2.  3% C I Af3 buffer (3% wiv C'I'AU, 1.4 M NaCI, 20 

mM t U  I A, 100 m M  I ris-I ICI. p l  l 8.0, 0.17% p-mercaptoethonol) 

was pre-heated in +65"C water bath before start o f  sample 



3. Six-inch long leaf strips were collected (final 

weight 30 mg) from one-week-old seedlings, then CUI in to pieces 

(I nlni in length). These strips were transferred to !he extraction 

tuhes. 

U .  Cir~ndinl! :~nd extrdclioti 

1. 450 p1 o f  pre-lieated 3% C'fAl3 buffer was added to 

eacll extraction tube coritaining a leaf sample. 

2 .  Grinding was carried out using Sigma GenoGrinder 

at 500 strokesiminute for 1\40 periods o f  2 tniriutcs each. 

3. Grinding was repeated until the color o f  solution 

hecomes pale green atid leafstrips were sufficie~ltly macerated. 

4 Alier grinding, the tube box was fixed in a lucking 

device and incubated at +6S°C i l l  a water bath for 10 minules with 

occasional ri la~iual shaking. 

C. Solvent extractioli 

1 .  450 p l  o f  chloroform : iso-amylalcohol 

(C:IAA=24:I)  mixture was added to each tube and the samples 

were centrifuged at 6200 rpm for I 0  minutes. 

2. Alter centrifugation the aqueous layer was 

transrerrcd to a fresh tubc (approximately 300 pl) .  

D. Initial DNA oreci~i tat ion 



I .  '1.0 each tube containing aqueous layer. 0.7 vcllume 

(approximately 210 PI) of cold (kept at -20°C) isopropanol was 

added. then solution was carefully mixed arid the tubes were kept 

at -20°C for I 0  rni~iutes. 

2. I he san~ples were centrifuged at 6200 rpm for IS 

minutes. 

3. 'l'lie supernatant was decanted under a fume-hood 

and pellcts were allowed to air dry (minimum 20 minutes) 

E. K l s e  treatllient 

1 .  In order to remove RNA 200 p I  ol low salt 'I'E 

buffer and 30 ~ r l g  o f  RNase (stock 10 rng/}il) were added to the 

each tuhe containing dry pellet and mixed properly. 

2 .  '1 he solution was incubated at 37°C for 30 minutes. 

F. Solvent extraction 

I .  Aller incubation, 200 p1 o f  plienol - C: IAA mixture 

(25:24:1) was added to each tuhe carefully rnixed and centrifuged 

at 5000 rpni Ihr 10 minutes. 

2. The aqueous layer was transferred to the fresh tubes 

and the step was repeated with the C:lAA mixture. 

G DNA prccipil:~tion 



I. 1.0 the tubes col~tait~il lg aqucous I qe r  15p1 (approxilnately 1110'~ 

volurne) 3M Sodium acetate atid 300~1  (2 vol) 100% ctliarlol \\as added and 

subsequet~tly placed in lieezcr for 5 n~illules. 

2. l:ollo\ritig i~~cubntic~ti Iio\ war celitrik~gcd a; 6200 rpln Tor 15 

t~ i i~~utes .  

I I. E t t~a~ lo l  was11 

1. Aner centrifugation supernalant was carehlly decanted and to the 

pellets add 200111 o f  70% etllatlol followed by centrifugalion at 5000 rprn for 5 

111i11utes. 

I. ' inal  re-susoe~isiun 

I. I'ellcts ol~tained by carefully dccanling t l~e  supcrtiatant nnd allowed 

lo air dry for one hour. 

2. Conil)lctcly dried pellets were re-suspended in 1U0~11 o f  'TloEl 

buffer arid kept at room tcrnperature to dissolve completely. 

3. 1)issolred I INA  samples were kept in 4°C. 

3.6 Checking DNA quality and DNA concentration 

The DNA quality was checked using 0.8% agarose gel. I p I  o f  DNA 

solution was rnixed with the I 111 o f  orange dye and 4 p i  o f  distilled water and 

loaded in to wells on 0.8% agarose gel. 'I he gel was run for 10 min. after which 

the quality was checked under UV. A smear o f  DNA indica~cd poor qualily 



4 6 
whereas a clear band ~~ id ica ted good qual~ty. Sa~liples o f  poor quality 

were re-extracted. 

'The DNA concentratloll of each sa~tiple \+as assesscd using the Spectrafluor 

Plus Spectrophotonieter by staining DNA u l lh  1'1cogreen'~ (11200 d~lutlon) Dased on 

tlie Ilelatike Fluorescetice lltiits ( K F U )  d u e s  slid using the standard graph, DNA 

co~icc~itrations \\,ere calculated 'l'lie DNA u.a\ d~luted to a final colicelltratlun of 2 5 

~i&/ l l l  I:igure 4 represents a caliblation g~aplt uliele 

DNA concentration : 2 78273 f i  0 002019'RFU 

Figure 4. Slandard grrpb eapressi~~g the correlalio~i between KFll 

and DNA co~~rentrnt io~i .  

RFU 4000 
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O 0 
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3.7 Selectiol~ of the n~arkers 

SSR markers linked to QrLs fur stay-greet) on varlous linkage groups [Figure-5 and 

Figure-6 for an overview of the staygreet1 ()'l'Ls in 035 parent] were used f o ~  

foreground selection to select the indiv~duals presumably having the donor allele 

(foreground selection) at a particular target stay-green QTL 



Figure 5: ('onwnrur map of Stay-green O'I I. in RJS donor pnrent 

Stay-green consensus QTL map of 635 

LCA IGB LCC LCD LCE IAF I~ ,c . ( ;  ICH ICI ICJ  

Figure6: SSR markers linked to ('onsenuur stay-grwn Q'I I .  m n p l ~ d  
in donor ~ a r e n t  BJS 

S ~ Q . A  S U . 8  5U.3  Stg.1 Stg.3 mQ.4 
LGA LGB LGB LGC LGC LGJ 



is flanked by these marker loci. 'The tighter the ~tlarkers are linked to the Q'I'I., the 

greater the chance that the QTL  mapped hetween a pair o f  flanking markers has 

indeed been transferred ( but deterniination o f  this is out side the scope o f  the 

project). 'Therefore, phenotypic testing o f  the final products o f  the M A D  exercise 

need to be pcrli)rtlled in order to co~l l i r r l l  l l lc tratlsfer of  slay-green Q I'L. At the 

same time selected niarkers unlinked to stay-green have been used to select those 

individuals with n i i ~ l i ~ r l a l  linkage drag (background selectio~l) 



3.8 Amplification o f  SSR markers 

PCR reactions were conducted in 384 wells plates in a PI: 9700 Perkin 

Elmer (Nonvalk Conn.) DNA thern~ocycler. 'l'lie reactions were performed in 

volumes o f  5111 using four different PCR protocols (appendix 1 )  and a touchdown 

I'CK program. 

Co~i i l iosi l i t r~~ o f  reaction mixture- 

* I 0  11iM 'Iris-IIL'I (p l l  8.31, 

50 11iM KCI, 1.25-2.5 ~ i g  oTL)NA, 

2 phl o f  forvvard and reverse priliier, 

1 n lM MgC12, 

a 80-100 pM oreach dN'l'P and 

O I t~li i ls 01 1 ilq DNA ~)oIy~i~cr:isc. 

l ' l ie touch dow~ i  I'CR progralii consisted o f  an initial denaturation for 15 

min at +94'C and then [ I 0  cycles o f  denaturation for 10 sec at +94"C, annealing 

at 61-52°C for 20 sec, tllc atinealing temperature for each cycle is reduced with 

I°C, and extension at t72'C for 30 sec]. 35 cycles [denaturation for 10 sec at 

+94"C, annealing at + 54°C Tor 20 sec and extension at +72"C for 30 sec]. The last 

I'CI< cycle is lidlowed by a 20 III~II cxtclision at 4 72'C to ensure amplilicalion to 

equal length o f  both DNA strands. 



I f  the parents shoiring the polyniorpliisni differ in product size hy more 

than 5bp. then PCR products were separated on 6% non-dennturinp I'AGl:. (Poly 

Acryl amide (;el Electrophoresis) gels and silver stained using tlie procedure o r  

Fritz el al (1999). l l ' t l ie pol!murphis~ii delcctcd hetween tile parents is less tliiin S 

bp, llien PCII products were separi~tcJ b y  ci~pil lary electrtiplioresis u ~ i n g  AI>l 

I'risrn 3700 (I'erkin Illnier) I )NA Sequencer. I k r  capillary eleclroplioresis 

purpose fluoresce~it-l:~hclvd primes are used in the PC'II reactio~is. 

3.9 Non-tlcnaturinl: I'AGE (1)oly acryl an~it le gcl clcctrol~horesis) 

I 111 o f  loading dye (ora~ige rcd + I<l) ['A t- NaCl 4 glycerol) wns added to 

3 111 of I'CR product. From this rnixtl~rc. 2 111 o f  sample is It~aded into 6% non- 

denaturing I',A(il: gel. 1 Iic gel was prcpilrcd using: 

52.5 rnl o f  doubled distilled water 

7.5 rnl or I 0  X 'I 13E bull'er 

I 5  rnl of  Acryla~iiide: Uis-acrylan~ide (29: I )  solution 

450 111 o f  Arnnloniu~n Per Sulpliate (APS) and 

I00 p I  ufTtMI;D. 

75 n ~ l  total 

Along with the samples, a standard 100 hp marker ladder (50 nglpl) was 

also loaded in the first and last lane o f  the gel to ensure proper sizing o f  amplified 



PCR fragnients. Most o f  the markers used allowed clear differentiation o f  donor 

and recurrelit raretit alleles. 'l'lie gel was run at 550 \I of  colistant power in 0.5X 

'I'BE buffer for 3 liours using a Bio-Kad gel seque11cing apparatus. 

3.10 Silter s l a i~~ i t t g  

Alter running o f  I'AGE gels for required tinrc, tlic gels were developed hy 

silver staining. 

Sequential s tgs  irivolved in silver s ~ a u  

I lie gel was treated as follows:- 

I .  Watcr for 5 n i i ~ i .  

2. 0.1% C'I A13 solutio~i for 20 tnin (2 grn ill 2 lit of water) 

3 .  0.3% a~ i r~ i io~ i ia  solurioti (or 15 n i i ~ i .  (20 nrl o!"25% atn~tiotiia solution 

in 2 l i t o f  water) 

4. 0.1% silver nitrate ~ ~ i l u t i o n  ( i~r  IS 1rii11 (2g1n o f  silver nitrate + 8 ml o f  

I M  NaOlI in 2 lit of water and add arnnirl~iia solution up In tlle solution becomes 

colorless) 

5 .  1)evclnper (30 gm of  Sod i~~m carbonate + 4 0 0 ~ 1  o f  1:ormaldehyde in 2 

l it o f  water) 

Alter developing the gels were rinsed in water for I min and placed in 

fixer (30 rnl Glycerol in 2 lit of water) for less than a minute. 

Note:- Cotiti~iuous shaking is required throughout tlie silver staining 

procedure. 



ARer silver staining o f the  I'A(iII gels, t l l r  size (base pair) o f t l l e  intensely 

nmplif ied specific hands or alleles for each SSK ~narker \%as estlnlntcd hased on 

its migration relative to the IOOhp ONA ladder ( f rag~i~cnts r i ~ r ~ g i ~ ~ g  froni IOOhp to 

1000hp) and presence or ahsetice o f  parental nlleles were scored. 

3.1 1 Data collection ant1 analysis 

3.1 1.1 Scoring of the gels 

' l ' l~e hands i n  the gels were scored as A,  U, 11, 01:1: a ~ l d  "-" based on 

their patierr! co~np;ired wit11 tliose o f t l i e  parents. "A" was del i~ led as tlie presence 

o r  allele froni r l ~ e  recurrent p;lrelli (S 35, ICSV I I I). "11" was delilied as the 

presence o f  allele from U 35. "11" was de l i~ l cd  as the heicro~ygous (presence o f  

boll1 recrlrrellt a11d dotlor percllt ;illelcs). "0I:I" was defined as an allele from 

ncitlicr I'rotii donor porcnt nor I'ro~n tile recurrent p;irellt allele and "-" was a 

missing sample. 



(' l l ; i l ' l 'ER I \ '  

Results 

4.1 Checking quality and quantity o f  D N A  salnples 

After 1soln1111g tllc DNA, lllc sa~llplcs \vele loadetl 111to O 8"0 agarose 

gcls, ;IIOII~ \c11l1 tllc \I~III~:IIIIS. 101 LIICCLIII~ IIIC I)NI\ l~llilll~! ;III~ t11li1111y I S  ~IIC 

bauds were clear. w ~ t l ~ o u t  ally slllear. Illis i ~ ~ d ~ c a t e d  gootl q ~ l a l ~ t y  DNA I f  t l~cy 

slloaed any vllenl. I)hh \\\.;IS IC-enl~ac~etl for ~llost. saliiplcs I)N:2 

c o n c e ~ ~ t ~ a t i o ~ ~ s  here assessed w ~ l l l  the Spcclralluor I'lus Sl iect tol i l~olo~~~eler 

us111g Picog~eeu~H. I'lle figu~e-7 beloa s l l o ~ s  the c l~~a l~ t y .  and g~ves all 

~ ~ ~ d ~ c a t l o n  o f  the q u a ~ ~ t ~ t y ,  o f  L)NA of sa11111les prepared I'or II( ,I'I progsllics 

~ ~ l v o l \ i n g  leclulellt pale111 S35 

Iig11rc7- I PSI of I)h \ q~l:llity 011 II.R'>/I, sg:irosc gel ~ i t l ~  50 I I ~  1111tl 100 11g e~itrkrrs 
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Likewise DNA quality and qua~ltity was assessed for sa~liples of all 

ge~lcratio~ls a ~ d  di lu t~o~ls  \\ere ~llade accordi~lgl~ to reach litlal 

co~lcentratiorls of 2.5 11gl111. wllic11 was tlle~i used as te~~lpla te  I I I  PC'R 

reaclio~ls. 

PCR was done \wtli selectc(1 p~i~i iers  Sol Oath fo r tg~ou~ id  and 

backgrou~ld se lect io~~ for all gcllc~atio~is,  t\lter a set of I'C'I< rcactio~is was 

co11il)Ieted. PCR products were loaded o~l to  6% I'Atil gcls and sel~arated 

elcct~opl~oietically. I , ' o l l o \ r ~ ~ ~ g  silver s t a i ~ ~ i ~ ~ g  of tlie l'/\(if gels, tile bands 

wele scored and co~~ lp ; l~ed  w1t11 tlic pa~c~i ta l  alleles and \ r~t l l  a I00 bp 

~ i i a ~ k e r  ladder as a ~ e l i . ~ e ~ ~ c e  lor allcle ~1c.c. 

I:ol the ~ ) ~ i ~ l i c l s  hllosc ploduct s1c.c d ~ l l c ~ c ~ ~ c c  1s bclow 5 1111, scori~ig 

was done e~nployi~lg  the I('KISA'I' Apl~lictl Gc~lori~ics 1,abolatory's ABI 

Psis111 3700 (Perkin El~ner) auto~liated DNA sequencer, w111cl1 is based OII 

[lie principle of capilla1.y e lect ropl~o~es~s .  I'CR is d o ~ ~ e  using primers tllat 

are fluoresce~ltly-labeled I :~gu~e- l  g~ves  an irlsigl~t about tile scor~rig of 

output from tile AUI seclucllcer for tlie marker .Y/.rp225 i l l  tlte S 35 t3C41:, 

gelleralloll. 



Figure 8-Graphical representation (ABI Prism 3700 chromalogram) o f  

tlie PCR products of the primer pair for sorghum SSH marker locus X ~ ~ p 2 2 5  

for lltc UC4FI ge~tcraliort on intrugressius of stay-green Q'I'Ls from donor 

parent U35 and recurrent parent S 35.  



4.2 RECURRENT PARENT S3S 5 6 

For recurrent parent S35, a total of 14 foregroulld ~liarkers and I6 

background 111al.ke1s \ w e  s c ~ e e ~ l e d  f o ~  t iugc t l~~g Q I'Ls c o ~ ~ t ~ o l l i ~ ~ g  tile stay-grccli 

trait (Table-1 for foregrouod and Table-la for background markers used for tile 

S35 crosses). In the BC3FI generatlorl, a total of I8 p o p u l a t ~ o ~ ~ s  and in the UL'JI:, 

g e l ~ e ~ a t i o ~ ~  a total of I I populatiol~s were ge~lotyped and selected ilidividuals 

ad\aliced by selling and b a c k c ~ o s s i ~ ~ g  witli pollen fro111 recurlent parent S 35 

Figure-9 sllows the PAGE gel I'OI the SSK marker alleles of U35 and S 35 at locus 

.\'/x1'07. 



Figare 9. PAGE gel for SSR locus,yh.fl with 100 bp ladder for 8 set of BCJFI 
progenies b w d  On donor parent 835 and reeurrent parent S 35. 

MarkerXorpO7; Allele sizes 8351s 35 2221233, A = S 35 homozygote, B = 
R35 hnmnrvont~ H = hrtrrn7vuot~ 

Figure 10. PAGE gel for the SSR loci Xnp88 and Xorp298 for 8 set of BCaj 
progenies based on donor prent 835 and recurrent parent ICSV 111 (post-PCR 
multiplexing). 

Makers Xq8&Yap298: Allele sizes for Xtrp88: 835 = 102, ICSV I I I = 
179 
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Table I. List of markers used for screening backcross 

populations based on donor parent 835 and recurrent parent S 35. 

- 
Marker  Target Q T L  ~ roduc is i ze  f o z 5  I'roduct size for 

S 35 1 

'I'AU1.L.:-I(II) List o f  barkgroul~d n~nrkcrs usctl fur sclcction of 

recurrent parent S35 
I.---- [ -. h,arker"sed --, ---- ~ 

Linkage ?ire for 1335 1 S I Z ~  for S ? S ~  



4.3 Recurrent parent ICSV 1 I1 

For recurrent parent ICSV I I I ,  a total of 8 foregrou~~d l r~a~kers  and 

13 backgrourld t l i a~hc~s  wcrc sclcc~cd for scrcel~ir~g tile targc!ed Q'I'Ls 

cor~trolling the stay-green trait (Table-2 for list of foreyrouc~d niarkers and 

Table-2a for list of backgrourld rl~al.kers used for ICSVl I I c~osses).  In the 

I3ClFI gerlc~atrorl, a total of 7 populal~oris were scrcerled and selected 

rvitl~ yollcr~ ~ I V I I I  recul~ellt p;rlerlt It'SV 1 1  I ,  l:igure-l0 below shows llle 

PAGE gel for the post-PC'R rl~ultiplexi~~g of.'r'/.r[1298 and ,k'/.rp88 

I'nble 2.  List of rrrurkers used for screelrit~g bnckcross ~)ol)ulations 

based on donor parent U35 and recurrerlt parent ICSC' I I I .  



Table- 2(a) List of markers used for background selection 
of the recurre111 paret~t  ICS\'I I I 

-- - --- 1 L~nkage I hlarher used I s G T B ~ T T  sYe for S35 I 
group 

212 -_____ 
-.1.12-- 

A 257 - 
__l - ro ._ -~  

xI*E!2_48_ 

160 

150 

u _.Ylr;p2!__. 
C 

D 

. Y 1 4 8 1 7 ? -  
E Xtxp295 167 ] 
F x txp289  280 

Xtxp230 195 
. ~- - -- 

G X'!xF! 41 I t'! 
.- ~ x txpzo  . -- - 204 217 ~ - ~ -  

200 208 2- _- - ?i!?~2!0-- __ - - . .- 
I X L ~ ~ 5 7  2 4 6 _ -  254 
J Xlxp65 -It 140 

Xtxp9 116 
Xtxp 12 

-. 
132 



' Note H= Heterozygote A = S 35 allele homozygote B = 835 allele homozygote U = Off-type - = Mlss~ng 
datapoint Q) 

C 







Contd . Table3 Part of sco-sheet for the S 35-BC,F, generatton 
stgA stgB I stg3 

'tit 1 Xtrp88 Xtxp43 Xtxp357 Xtxp7 
6703 A I A  A A 

stg4 
xrxp 1 xtxp 

75 225 
A A 
A A  
A I A  
I A  
A A  

6709 -- H  H -  H A- A A ' U ' A  A I A  
H  H  H A A B l  - 6710 - - A p -  B 
A A A A A i B j H  B 671 1 _--- H _____7--____ 6732~ A 

?-- A, A A A .- A / H  H  H  

1 xtxp 
Xtxp296 I 56 

A I A  

xzxp 
23 
H  
H 
A 
H 
H 

B 
H  
H  

xtxp 
298 

7 

A A 1 -  

( A I A  A A I A ~ A  
6706 ' A I A --- - A A A I A  
6708 I H  --- - H  A H - _-- - A I A  

6733 - H  A A A I H  A - - -- Fl , _- _ - _ - _ - _ - A A  
6734 H  H  A A A ---- - H  - - - - _ __ - - - A - A _ H  - -  H 
6735 H  - H A A - - A I A _I- A H i 

t 6738 
6739 H  
6740 H A A A A 
6741 H  A A A 

1 6742 H A A A H  / 6743 1 A A A A I A  1 A A A 
6744 1 A A A  A H I A N  
6745 I A A A I A  A / A  H A  A ' A  

[ 6 7 4 6 1  A 1 A I A A - / A  H ' I H H  

H 
H  
A 
H 













8601 A 
8602 

A 

1 8 6 %  A , 8606 
H A 8607 -- - A - -  A I B -:I 
H A A A H B 1 8608 

- -- - - 
I 8609 --- A A -  - A 

A 
A H l T _ B I I  

8610 A _ A-+ 
861 1 
P 

A A -- 
A 
A 
-d 

8612 B , A I  A I A - 
8613 1 A 1 A 1 A A i B I A I  
8614 H I A  A A I H i -  
8615 H I A  A A I H  A 
8616 H I -  A A H ' A  
8617 i A AA A , A B A-J 
8618 A ' A  A A I A  A I 
8619 l A I A A I A ! H I A  
8620 A I A  
8621 I H I H  
8622 B / A  

A I A ~ A !  - 
A I H I H I H  
A I B I H I H  





-A A 

/ ~ o n t d . .  Table-5 Part of scoring she2  for the S 3 5 - 6 ~ 4 ~ 1 7  



A 

/ Contd.. ~a'ble-5 Part of scoring sheet for the 3 35-BC4F1 1- 













stg3 

A 
1 8 7 5 2  B A 

I A A 
I A i A  A 

8755 1 I A A A 
A A 1 , -- A A 

8757 I A 1 A I B I A  A 
7 

I 8758 A H ----- - 
8759 A T 2 tkpp - 

A A H I -  1 8760 
A _ _- 

A A  - H ' - A 

A H _ L H - -  

A 
A 
A 
A 
A A----- 
A 

8764 1 A - 1 A A 1 A -- 
8765 I-- A -  A H  -__ A f*: 
8 7 6 6  A I A 1 H I  A A 

A 
A 
A 
A 
A 
A 
A 

8767 I A A A I A  
8768 
8769 
8770 

A A I  - A I - 
A A ' A / A  
A A H i A  

8774 B 
8775 1 B 
8776 1 B 

8771 - ' B A  A 
8772 A 

1 6  
8773 1 B 

- 1  A 
B ~ A I A ~  A 
B I H I A ;  A 

B l H  - 





CHAPTER V 

Discussion 

Using ~narker-assisted selection, we are able to introgrcss genomic 

regions from exotic stay-green donor parent 9 3 5  into the genetic 

backgrounds of elite recurrent parents (S 35 and ICSV 11 1) over two 

generations. Markers l i ~ ~ k e d  to stay-preen VI'L regions to be transferred 

from donor R35 to recurrent parents S 35 and ICSV I I I were used for 

foreground selection whereas unlinked markers, evenly distributed over 

genomic regions of the recurrent parent that were to be recovered, were 

used for background selection. Based on the genotype data, individuals 

heterozygous (in the BC?I;I and BC&I generation) for markers spanning 

stay-green Q'TL regions were selected during the first step of selection 

(loreground selection). From among the individuals selected in this first 

step, those with rninitnal presence of donor alleles at marker loci unlinked 

to stay-green V f L s  were selected during the second step (background 

selection). 

5.1 Selection criteria 

Markers, especially rorcground markers, were taken into 

consideration for selection of the individual segregants to be advanced. The 

8 1 



individuals scored as 'A' ,  'H' or 'R' for r~iarkers used in foreground 

selection and 'A' allele for background markers were selected for 

generation advance. Individuals scored '11' at a particular, are expected to 

produce progeny segregating 1:2:1 for holnozygosity for the recurrent 

p t i re~~t  allele (scorcd 'A'), Iictero~ygosity (scored 'Il'), and lio~no~ygosity 

for the donor parent allele (scored 'U') if they are advanced by selling, or 

segregating 1:l for homozygosity for the recurrent parent allele (scored 

'A') and Ilctcro7)gosity (scored '11') if tl~ey are advanced by backcrossing 

to the recurrent parent. Presence of the 'A' genotype for background 

markers and the 'H' genotype lirr foreground markers Ilanking a particular 

stay-green VI'L ensures tlic recovery of the recurrent parent gcnolnc (S 35 

or lCSV 1 1  1) wliile advancing i~itrogressiori of a genoniic region 

con(ributing to the stay-green trait. Individuals meeting these criteria were 

selected and advanced to next the gct~eration by selling and backcrossing. 

Individuals scorcd 'A' h r  all (k)regroutid and background) markers should 

be very similar to the recurrent parent (in fact, they should be identical to 

the recurrent parent except for s~nall  introgressions that were not detected 

due to the limited genotnic coverage possible with the small total number of 

nlarker used in this study) and could be selected as controls entries for use 

in field trials to assess the efficacy ofrnarker-assisted selection for the stay- 

green trait. 



For selected individuals, the markers scored as '11' or '13' and those 

that didn't amplify during the BC,FI generation were screened again in next 

generation. The markers scored 'A' (i.e., homozygous for the allele of the 

recurrent parent) are not tested further in more advanced generations 

because recovery of the recurretit parent genotype at these loci has beer1 

co~npleted and their genetic constitution is not expected to change further 

assuming a negligible rate of ~ i ~ ~ ~ t a t i o n  and no outcrossing to non-recurrent 

parent geriotypes. Once tlie recurrent parent genolile has been recovered for 

all the background ~iiarkers, a ge~ieration of selling and selection for donor 

parelit tiiarker allelc Iiol~ior) gotes at loci llalikitig specific target stay-green 

Q'I'Ls will he conducted, and the selected genotypes then niultiplied by 

selling and tested niultilocationally to evaluate thc~n phenotypically for the 

stay-greet~ cliaractcr and otlicr agrono~iiic trails. Alter testing, if the 

progeny with the staygreen trait are Sound to be significantly superior 

co~nparcd wiLli tlie recurrent parent corltrols, they can be released as 

itnproved versions of that variety will1 improved potential to tolerate 

(erlllitial drought stress due to introgression o l  the stay-green character. 

5.2 BC,Fl generation for recurrent parent S 35 

Out of 19 UC,I't individuals (0601 4 6  19) screened in population 

3001 (as all example), 4 individuals were selected and advanced by 

backcrossing to the HC~I'I .  These 4 selected individuals were targeted for 



QTLs sfgA, and st@ + stg4. Based on the getlot~ping results from 18 

BC,FI populatiolls (367 individuals). 100 illd~viduals were selected and 

advanced to the next ge~leration by selfing and backcrossing ['Table0]. 

. 
r ~ e n e r a t i o ~ ~ ~ , ~ ~  for recurrent p a ~ e n t  S 35 1 

4 and 6630 -1 slg37 1 
6628 and 6634 stg 4 
6651, 6654, 6655, 

Population , 

3001 

6673-6696 and6685 
6697-6707 6100__ 

6734, 6740Tand 

6732, 6737, and 

individuals 
660 1-661 9 

1 

Selected 
J@ividuals- 
661 2and-6g13 

3007 16756-6776 

Targeted QTL(s) 
stgA 

6602 and 6603 
6633. 6627, and 

6748 _ - 

6739 
6758 

>f36gand6771slg~ 
6773- 
6!;8 and 6709 
7877, 7879, 
and7880 
6783 

3008 

3009 
3010 

stg A + slg 4 

~194- 
stgA + slg4 
sf937 + stg4 

st937 
stgA 

ZgB? 
st944 

6708-671 4 

78715881 
6778-6801 



/ 6807, 681 1 ,  and / 
301 1 

3012 

7304 I 9ty-t 

7289 I stg2 + 
7283, 7290, and 1 

6828. 6839. and 

6802-6825 

6826-6849 

3013 

3031 

3033 1 7327-7350 1 and 7343 I slg2 + slgB? 
17329, 7332, 7339,l 

6842 
None 
7282,7283,7285,7 
299 
7291, 7292, and 

6850-6857 

7282-7305 

7303 
None - 
7327, 7328, 7340, 

681 5 
6827, 6829, 6831, 
and6832 

sfg3? + stg.B? 

stg 1 + st92 

slgl + slg2 + stgB? 

and 7371 - 
7360, 7363, 7366, 
and 7368 

7375, 7376, 7378, 
7380, 7390, 7396, 

3035 

stg3? + stgB? 

slg3? + stgB? + slg4 

3034 17351-7374 

7346, and 7347 
7338, 7342, and 
7348 
7353 
7356. 7357. 7361. 

stgB? 

slg2 
slgl + stg2 



5.3 B C ~ F I  generation for recurrent parent S 35 

Out of 88 BCIFl individuals (8601-8692) screened in population 

3001, 3002, 3006, 3008, 3010, 301 1, 3031 about 26 individuals were 

selected for advancement for further generation based on the genolyping 

results, These selected individuals were targeted for QTLs sfgA, and s ~ g A  

+ slg4, stg.3?+stg.4, stg.3?, stg.B+stg.4 etc., [Table 91. 

Table-9. GENERATION BClFl OF S35 
- 



5.4 BCsFj generation for recurrent parent ICSV Ill 

Out of 58 BC3FI individuals screened in population 3050-3056 

about 13 individuals were selected for advancement for further generation 

based on the genotyping results. These selected iridividuals were targeted 

for QTLs stgA, stg.6, stg.1, stg.2 etc., [Table -101. 

Table-10. GENERATION BCIFl OF ICSVl l l  



5.4 BCIF1 generation for recurrent parent ICSV 111 

Out of 120 BC4FI individuals screened in population 3050-3056 

about 24 individuals were selected for advancement for further generation 

based on the genotyping results. These selected individuals were targeted 

for QTLs stgA, stg.B, stg.1, stg.2 etc., [Table I I]. 

Table-11. Generation BCdFj ICSVI 11 



5.5 Backcrossing Attempted for the Selected BC,FI Individuals 

Advance of selected individuals from the BCjFl progeny 

involving parent S 35 and BCjFl progeny involving recurrent parent 

ICSV (11 

Out of the 100 individuals selected for advancement only 45 

individuals were backcrossed with recurrent parent S 35 and 10 individuals 

were backcrossed with recurrent parent ICSV 111. BC4FI seed numbers 

harvested from these 55 individuals are listed in Table 12. The reasons for 

comparatively low number of crosses made are as follows: 

b The individual segregants in the BCjFI populations showed 

different times of panicle initiation than their recurrent parents (which 

were sown on multiple sowing dates in order to minimize this common 

problem in backcross generations). 



9 Due to slight drizzle during crossing season, which is quite abnonnal in 

the summer season, collection of pollen became a difficult task. Pollen 

collection should always be carried in dry weather conditions as pollen 

sticks to the wet sides of pollen collection bags from which it cannot be 

shaken onto the stigmas of emasculated florets. 

P Re-sowing of some pots where the BC3FI seed initially sown had failed 

to genninate was not accompanied by additional sowing of the recurrent 

parent. I'lanrs produced by this later BC,I:, sowing came to flowering 

late--during the peak of the summer season's high temperatures, which 

adversely affected pollen production and ultimately resulted in poor 

crossing and selfed seed set. 

9 The short period of sorghum pollen viability, and lack of an effective 

pollen storage protocol for soghurn is another major limitation. 

P Even in the crossed individuals there was poor seed set due to the 

relatively high temperatures during ttrtilization and early grain filling 

stages of growth. 

9 Finally, a major problem was that the foreground marker data 

generation was not completed before the segregating generation 

individuals started to flower, so that the number of plants that needed to 

be emasculated for backcrossing was greater than the capacity of the 

team of ICRISA'C support staff assisting with this activity so that choice 

of plants to be enlasculated was in fact random rather than being based 



on the data for marker alleles at loci flanking the target stay-green 

Table-12. BC4FI seeds produced during attempted backcrossing for 

selected individuals from the BCJFl generation for recurrent parent 





Tablela BCdFl seeds produced during attempted backcrossing 

for selected individuals from the BC,FI generation for recurrent parent 

ICSV 11 1. 



5.6 Efficiency of marker-assisted selection 

Marker-assisted selection has the potential to greatly reduce the time 

required for selecting desirable genotypes with traits of interest (Morris et 

al., 2003). Marker-assisted selection is more efficient and cost-effective 

than conventional selection for traits with low heritabilities and large 

phenotypic eSfects (Ilospital et al., 1997). 'I lirougli MAS, we advanced two 

backcross generations within one year. When conventional breeding 

strategies are applied, the advancement of two backcross generations with 

selection for the stay-green character would take two years, and it might be 

very difficult to differentiate reliably between individuals heterozygous for 

more than one of the genomic regions contributing to tlie trail. 

Conventional breeding schemes feature lower short-term operational costs 

during tlie research stage, but take longer times to complete, whereas MAB 

features higher short-term operational costs during tlie research stage, but 

takes less time to complete. Release stage and adoption stages are assumed 

to be identical in terms of cost as well as duration in case of MAS and 

conventional selection. From an economic point of view, the advantage of 

MAS thus derives from the fact that the release and adoption stages move 

forward in tirne. This suggests that MAS needs more initial investment but 

is worthwhile because by accelerating the rate of release of improved 
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cultivars (or the rate of gain achieved between cultivar releases if the 

frequency of releases in time remains the same), MAS generates large 

additional economic benefits (Morris et al., 2003). 

The efficiency of MAS is generally reduced with increasing genetic 

distance between the llanking markers used for each QI'L for which MAS 

is being applied. IJospital et al. (1997), based on the simulation studies, 

recommended an optinla1 distance between two adjacent flanking markers 

of about 5-10 cM. We observed that the frequency of recurrent genotypes 

among the selected progeny increased as the selection intensity for 

recurrent genotypes increased, as predicted by Knapp (1998). Practically 

speaking, the number of markers that must be uscd decreases in each 

successive backcross generation, because once the recurrent parent allele 

has been fixed at any given non-target locus, it is not necessary to continue 

screening at that locus in subsequent generations as the locus will remain 

homozygous for the rest of the generations of selection regardless of 

whether these involve seifing or backcrossing to the recurrent parent 

(Morris et al., 2003). The decreasing number of markers required in each 

successive generation reflects the increasing percentage of the recurrent 

parent genome that is recovered in homozygous form, and hence fixed, in 

each backcross generation. 

The fact that MAS technology is so challenging should not be a 

reason for discouragement, but instead, should provide a wake-up call for 



more ingenuity, better planning and execution of marker-assisted breeding 

programs. MAS for quantitative traits is in an important transition phase, 

and the field is on the verge of producing convincing results. Technology 

development, including automation, allele-specific diagnostics and DNA 

chips, will lnake olarker-assisted selection approaches based on large-scale 

screening much more powerful and effective (Young, 1999) in future. 

5.7 Reconlmendations for the future: 

9 Field evaluation (phenotyping) to assess the success or failure 

of the slay-green QT'L introgression attempted in this study will be 

required for both single- and multiple-Q'I'L introgression homozygotes 

(with the non-stay-green recurrent parent as a negative control for this 

trait and a positive control for grain and stover yield, and other 

agronomic and product quality traits of potential interest to farmers and 

consumers) once these have been developed by a generation of selfing 

and identified by a further generation of marker-assisted selection. 

9 Fine mapping of the individual stay-green QTLs can be 

initiated using BC5F, progeny produced by backcrossing selected U C ~ F I  

individuals heterozygous for markers flanking single stay-green QTLs 

and ho~nozygous for recurrent parent alleles at all other marker loci 

tested, following field evaluation of the corresponding B C ~ F Z  progenies 



to confirm that they are segregating in the expected Mendelian manner 

for the stay-green phenotype.. 

9 Nature of the dominance and epistatic properties of these 

QTLs should be studied in selected BC4F2 families developed by selfing 

BC4Ft individuals heterozygous for various pair-wise combinations of 

the six target stay-green Q'TLs from donor parent 8 3 5 .  

P Interaction(s) of the Q'1'L(s) with environment can be studied 

only once sufficient seed of individual QTL introgression homozygotes, 

can be multiplied by selfing to permit their evaluation in multilocational 

replicated trials 

9 Whether the Ql'1,s are structural or regulatory in nature needs 

to be determined. If they are regulatory in nature, the breadth of their 

sphere of inlluence will need to be assessed. 

9 Feasibility of generating ESTs, to have better understanding 

of this complex trait, should be explored in the QTL introgression lines 

under both stress and non-stress conditions and in various plant tissues 

(roots, leaves, panicles, .. .). 

9 Comparative genome mapping of potentially related traits in 

other related cereals (especially rice and maize) should be performed 



5.8 Focus areas for more advanced studies: 

During the past decade, the development of molecular genetics and 

Q'I'L analysis has allowed us to identi@ genomic regions involved in 

drought tolerance in several crop species including sorghum. The weakness 

of this quantitative-genetic approach is that it provides very little 

information about the mechanisms and pathways involved in drought 

tolerance (or) about the ~nultitude of genes involvd in the plant's response 

to drought. The recent develop~nent of functional genotnics should help to 

overcome this limitation, because it can allo.,v I:F to study simultaneously 

the expression of scveral tllousand genes. Use of near-isogenic Q'TL 

introgression lines in such studies will help to rocus attention on the 

variation in expression of genes tl~at are at least physically linked to the 

genonlic region that is contributng most to the phenotypic expression of 

the trait of interest. 

Based on progress to date, it is very much clear that a 

multidisciplinary approach-conbining physiology, breeding and 

biotechnology is required for an tffective understanding of a plant response 

to drought stress (Ribaut et al., 202; Jones et al., 1997, Prioul et al., 1997). 

The QTLs characterized pro\fdc a powerl'ul base of information and 

gernlplasm for the genetic dtsection of pl~ysiological drought. This 



approach can be combined with functional genomics and proteomics to 

identify the key pathways involved in drought stress tolerance and 

sensitivity, and further provide an insight of how these pathways interact. 

This in turn, may lead to more efiicient and effective strategies for 

developing cereals with higher levels of sustainable productivity under 

water-limited conditions. 



CHAPTER VI 

Summary 

Sorghum [Sorghum bicolor (L.) Moench] is the 51h rnost important 

cereal crop globally aRer wheat, maize, rice and barley (FAO, 2003; FA0 

arid ICRISAT, 1996). 1 his Cq grass is grown in more than 80 countries, 

n~ostly in tropical and sub-tropical regions. The average annual sorghum 

area cultivated amounts to 44 M ha, with an average annual grain 

productiorl of 63 M tons, and average grain yield of 1.4 t ha.' (FAO, 2003; 

FA0  and ICI1ISA'l', 1996). Sorghuun was domesticated in Ethiopia and part 

of Congo, with secondary centers of origin in India, Sudan and Nigeria. 

Production of sorghum in semi-arid regions of the world is limited 

by drought. Developing plants that have an advantage under water-limited 

conditions is a major challenge for sorghum improvement programs 

globally. There are three distinct stages in which drought affects sorghum: 

Vegetative (GSI); Pre-Flowering (GS2); and Post-Flowering (GS3). The 

best characterized form of drought stress tolerance in sorghum during this 

post-flowering stage of growth is called "stay green." Stay-green is a 

drought-tolerance trait in grain sorghum. When water is limited during the 

l o o  



grain f i l l i ng  period, genotypes possessing this trait maintain more 

photosynthetically active leaves con~pared w i th  genotypes not possessing 

this trait. 

Putative QTL for stay-green trait from 035 have been identified in five 

recently published studies (l'uinstra et al, 1997: Crasla et al 1999; Xu el al, 2000; 

Tao et al, 2000 and Subudhi et al 2000). Using the linkage map developed by 

Bhattramakki et al (2000) identified six genomic regions associated with stay- 

green trait in 035 parent. 'The identification o f  these QTL provided us an 

opportunity for marker assisted breeding (MAB) for introgression o f  QI'L from 

835 to recurrent parents. 

We aimed at transfer o f  Q'fL from L135 to recurrent parents, S35 and 

ICSVI I I. Both recurrent parents have been advanced to BC3 and BC4 

generations for introgression o f  QTL from donor parent using SSR marker 

assisted selection (MAS), targeting six Q T L  detected. In this study, all genotypes 

in two generations from each recurrent parent were screened with foreground 

markers to identify the genotypes for Q I ' L  o f  our interest and also screened with 

background markers to select the genotypes for all other loci from recurrent 

parent. Selected individuals are advanced to next generation. 

Field evaluation(phenotyping) o f  the stay green behaviour is required to 

enhance the selection potential. Nature o f  the dominance and episratic properties 

o f  these QTL's should also be studied. Whether the QTL's are structural or 



regulatory is to studied in detail. Feasibility o f  generating EST's, to have better 

understanding o f  this complex trait and Comparative genome mapping to study 

the trait in  other related cereals wi l l  make marker assisted selection approaches 

based on large scale screening much more powerful and erective. 
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