

Figure 1. Leaf spot symptoms on pigeonpea caused by Periconia byssoides Pers.

The authors wish to thank the Commonwealth Mycological Institute for identifying the fungus.

- P.P. Mehta and R.K.P. Sinha (Department of Plant Pathology, Rajendra Agricultural University, Pusa, Bihar, India)

Entomology

Pheromone Trap Network for *Heliothis armigera* in India

Cooperative work between ICRISAT and the Tropical Products Institute in London had led to

the development of pheromone traps which are very effective in attracting and trapping Heliothis armigera males. The synthetic pheromone is a 97:3 mixture of (Z)-11-Hexadecenal and (Z)-9-Hexadecenal. One mg of this pheromone is absorbed on a rubber septum, which is placed inside a funnel trap held 2 meters above ground level. Our record catch is 288 H. armigera moths in one trap in one night at ICRISAT Center. We can increase the catches by making the traps more complicated but we have accepted a compromise between efficiency and cost. We have found that a baited septum is attractive for more than 80 days, but the catches decline considerably after 40 days. We have standardized the use of each septum for 28 days.

Here at ICRISAT we are continuing experiments to improve our pheromone utilization. In these experiments we are comparing the catches of moths in pheromone and light traps with populations of *H. armigera* eggs and larvae in the fields. We are hoping to establish the relationship of trap catches and field populations across climatic and other conditions. We already know that the light trap:pheromone trap catch ratios are not constant, but we think that the data we are collecting from pheromone traps will be useful in monitoring populations of the insect.

We had earlier set up, in collaboration with the All India Coordinated Pulse Improvement Project, a net-work of light traps across India for the recording of H. armigera and other pest populations. Some of our collaborators have found difficulty in maintaining these traps, particularly in the rainy season when the expensive lamps are occasionally broken by rain. Sorting the catches in these traps requires a skilled recorder and can take considerable time. Light traps are particularly difficult to run in areas where there is a poor electricity supply. As pheromone traps are free from these problems, the AICPIP-ICRISAT collaboration was extended to include a pheromone trap network in 1981. Some cooperators now have both pheromone and light traps and the catches in these will give useful comparisons. Some cooperators have only pheromone traps. In 1981, pheromone traps were successfully used at 11 sites (Table 1). We have recently increased this number and hope to extend the network further both inside India and in neighboring countries.

We hope that the catch records from the expanded network, continued over a number of seasons, will be useful for correlating climatic data with *H. armigera* populations.

Table 1. Monthly catches of Heliothis	thly catches	s of Heliot		rera in phe	eromone tra	ps in opera	ation at dif	lpha miger lpha in pheromone traps in operation at different location in India (1981-82)	tion in L	ndia (1981-	82).
Month/year	Pantnagar	Hissar ^a	Kanpur	Gwalior	Jabalpur	Badnapur	I CRISAT ^a	Coimbatore	Anand	Faizabad	i lond
La Anil.	NTT	NTT	NTT T	NTT	NT'T	NITT	Ţ		1		
	TLN	T L L N	TIN	TIN	TIN			TIN		ILN	ITI
Aurice + 81	TIN		TIN			TIN	30.2		IIN	ĨIJ	IIN
Contambar 01			5	TIN	с О	Ϋ́ς,	c.121	,	-	0	4
September 81	NET	245.5	ö	61	22	102	318.5	2	38	5	2
October 81	188	78.3	0	32	68	582	30.8	185	18	0	0
November 81	11	37.8	17	10	96	73	282.0	119	33	. m	
December 81	ہ ک	22.8	4	2	110	80	454.7	264	178		- C
January 82	, —	23.0	. 26	16	491	202	315.0	286	586	ı .—	
February 82	و	275.0	34	310	870	173	189.8	316	1088	9	42
March 82	1087	729.0	549	974	2361	17	54.5	209	1269	209	249
April 82	·448	1906.0	1241	516	463	64	314.3	202	683	32	9
May 82	20	1702.0	213	73	DN	15	65.3	357	301	ND	15
June 82	0	235.5	. 183	31	ND	ΩN	82.8	343	129	ND	32
^a These data are the means of four traps	re the means	of four t		at Hissar and of six at	of six at	ICRISAT Cen	Center. Other	Other locations had only	had only (one trap.	
NTI = Trap not installed;	t installed;	; ND = Data not	a not yet	received.							
· · · · · · · · · · · · · · · · · · ·			-								

Using this information we should be able to determine the dynamics of this pest in Asia. We eventually hope to be able to predict the size and timing of attacks in any area and so help to plan timely control measures.

We are very grateful for the excellent cooperation that we are receiving from the entomologists of AICPIP. We wish to thank Dr. Nesbitt of TPI who supplies the many septa required in these studies and Drs. V.S. Bhatnagar and S. Sithanantham who conducted the early experimentation on trap design. It is hoped that a complete account of this experimentation will be available in the near future.

- C.S. Pawar, C.P. Srivastava, and W. Reed (ICRISAT)

Incidence of Pod Borer on Pigeonpea Cuitivars Under Intercropping

During the 1981-82 rainy season, five pigeonpea varieties were grown as a pure crop and as an intercrop with pearl millet (BJ 104) at our station. For intercropping, pearl millet and pigeonpea were grown at a 2:1 row propor-

					1.1			
Table 1.	Data on pod borer incidence and grain yield in pigeonpea grown as pure crop and intercrop during the 1981-82 rainy season at Solapur, Maharashtra, India.							
	Pu	ire cro	p	Ir	itercro	р		
Variety	Pods examined	Pods affected by pod borer(%)	Yield (kg/ha)	Pods examined	Pods affected by pod borer(%)	Yield (kg/ha)		
No.148 BDN 2 ICP-1	452 866 576	23.2 19.4 18.5	612 627 591	738 691 634	37.1 23.4 17.5	337 511 398		

BDN T

T.21

SE +

CV (%)

725

348

12.0

15.8

13.9

0.8

698

360

1251

1006

26.7

38.8

5.15

30:2 381

61

330