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1 INTRODUCTION 

Sorghum (Sorghum bicolor (L.) Moench) is grown worldwide for food, feed, fodder, 

fuel and industrial products. It is cultivated widely throughout tropical, subtropical 

and temperate regions between latitudes 45O N and 45' SS. Roughly 95 percent of 

the world's sorghum area lies in developing countries, mainly in Africa and Asia 

(ICRISAT and FAO, 1996). This crop is primarily grown in agroecologies subject to 

low rainfall and drought, predominantly by subsistence farmers. 

In India, sorghum is the most important cereal for poor people in semi-arid zones. It 

is grown in the states of Maharashtra, Karnataka, Andhra Pradesh, Tamil Nadu, 

Gujarat, Madhya Pradesh and Uttar Pradesh. Widespread adoption of high yielding 

hybrids in Maharashtra, Karnataka, Tamil Nadu, Madhya Pradesh and Uttar 

Pradesh increased the yield levels by 2 to 3 fold. 

The genus Sorghum is characterized by a vast and diverse germplasm pool; the 

immense morphological diversity of the cultivated races has emerged because 

ofvariable climate and geographical exposures in which its wild ancestors 

evolved,coupled with selection pressures imposed by the environment and by man 

fombmestication (Duncan eta/., 1991). Domesticated sorghum has resulted through 

direct selection from principally one or two wild races in Africa (de Wet et a/., 1970). 

Snowden (1936) and Harlan and de Wet (1972) postulated that sorghum emerged 



from separate centers of origin and they subdivided the cultivated sorghums into 

morphologically distinct races: bicolor, guinea, caudatum, kafir and durra. They 

speculated that the race durra and bicolor arose from the wild subspecies 

aethiopicum, the kafirs arose from verticilliflorum, and the guineas evolved from 

arundinaceum. 

Since there is immense morphological diversity of the cultivated sorghum, due to 

natural introgression, geographical isolation and disruptive selection, utilization of 

wild species is limited. In USA, among lines or hybrids released for commercial 

production, 2l0I0 had unadapted cultivar parentage and less than 1% had wild 

parentage (Duncan et al., 1991). Wild species have been utilized for green bug 

resistance (Bramel-Cox et al., 1986) and for shoot fly resistance (Nwanze et a/., 

1990). 

Sorghums in the tropics have evolved in a hostile environment where unreliable 

rainfall, poor soils, pests, diseases and parasitic weeds all constantly exert harsh 

selection pressures. The traditional cultivars may not be high yielding under 

optimum conditions but they have a high survival value in unfavourable conditions. 

These cultivars are photosensitive long-duration types and are generally high 

biomass producers with poor grain yields. Therefore, the production of relatively 

short-duration photoperiod-insensitive sorghums has become the primary objective 

of almost all sorghum improvement programmes. The major genotypic changes 



brought about during the 1960s triggered cultivar-input-management interaction and 

resulted in quantum jumps in productivity; they also imparted stability to production 

and enabled adoption of new cropping systems leading to more efficient land and 

water use (Rao, 1982). In India, sorghum hybrids were developed from temperate x 

tropical crosses by manipulating height and maturity genes and the critical stages of 

growth, viz, seedling, flowering and grain filling, coinciding with periods of assured 

rainfall. This resulted in quantum jump in productivity from 560 kglha in 1970 to 

1020 kglha in 1996. The changes in area, production and productivity of kharif 

sorghum in India over 25 years are presented in Table 1. Though the productivity 

increased, the area under cultivation decreased from 1,15,221000 ha in 1970 to 

61,88,000 ha in 1996. 

Table 1. Area, productlon and productivity of kharif sorghum in India. 

TE 1970 1992-93 1993-94 1994-95 1995-96 TE 1996 

A 11522 7498 6838 5949 5778 61 88 

P 6456 91 78 7284 5874 5860 6339 

Y 560 1224 1065 988 101 4 1022 

Reproduced from the AlCSlP Progress Report 1997. A = area (000 ha); P = 
production (000 t); Y = yield (kglha); TE =triennium ending. 
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The decrease in area of cultivation is due to low demand for food, limited 

commercialization, limlted yield increases and grain mould susceptibility (Rana et al., 

1997). In AlCSlP trials in 1986, the check and top ranked hybrid, CSH 9, yielded 

3413 kg/ha (AICSIP). In 1996, the top ranked hybrid, MLSH 14, produced 3945 

kg/ha (AICSIP), showing only 14% yield increase in 10 years. Incidentally, both 

hybrids are highly susceptible to grain moulds. Hence there is a need for developing 

high yielding grain mould resistant hybrids so as to break the yield plateau. Also 

such resistant hybrids should have good grain quality to meet the needs of domestic 

as well as international markets. Since there is a low utilization of kharif grain for 

food, the grain can be exported to other countries. As the standards for importation 

by other countries are very stringent, the strengthening of genetic resistance to grain 

moulds may be useful to promote export (Rana et a/., 1997). 

Sorghum grain mould disease is caused by a complex range of fungi including 

Fusarium moniliforme (Sheld.), Cunlularia lunata (Wakker) Boedijn, and Phoma 

sorghina (Sacc.) Boerma et a/. (Castor and Frederiksen, 1980; Forbes et al., 1992). 

The most obvious symptom of grain mould is the appearance of pink, orange, grey, 

white or black discoloration on the grain surface, depending on the specific fungal 

species present (Plate 1). 

Losses due to grain mould are both quantitative and qualitative (Esele, 1995). 

Quantitatively, grain mould causes substantial yield losses. Annual global losses to 



grain mould have been estimated as US $130 million (ICRISAT, 1992), and in India 

losses in grain yield have been estimated to be 30% (Murty and Rana, 1993). 

Qualitatively, grain moulds result in mouldy and discoloured pericarp leading to low 

price of the produce, a soft and chalky endosperm, sprouting (reduced germination 

of seed), decreased grain filling and size, mycotoxin, decreased test weight besides 

altered chemical composition (Glueck and Rooney, 1980; Williams and Rao, 1981 ; 

Jambunathan et a/., 1986). Hence breeding grain mould resistant hybrids may help 

to break yield stagnation, create good profitability, better recovery of industrial 

products and promote the export of good quality of grain. 

Knowledge of resistant sources, mechanisms of resistance, characters associated 

with resistance, number of genes involved in resistance and the type of gene action, 

help in deciding the breeding procedure to be followed to incorporate resistance into 

high yielding background. 

In view of the above, the present investigation has been undertaken with the 

following objectives. 

1. To screen sorghum genotypes for grain mould resistance. 

2. To evaluate sorghum genotypes for morphological and biochemical 

characters associated with grain mould resistance. 



3. To study correlations between grain mould resistance, and morphological 

and biochemical characters. 

4. To determine the genetics and inheritance pattern of grain mould resistance 

genes by generation mean analysis. 

5. To analyze the genetics of characters associated with resistance by 

generation mean analysis. 

6. To determine the genetic basis of grain yield and yield components in two 

susceptible x resistant crosses. 





2 REVIEW OF LITERATURE 

Grain mould in sorghum is caused by a complex of fungi. From observations and 

studies in the USA, Africa and India, it is evident that Fusarium moniliforme, 

Fusarium semitectum and Curvularia lunata are the major causal agents of sorghum 

grain moulds (Murty et a/., 1980; Williams and Rao, 1981 ; Anonymous, 1976). 

Castor and Frederiksen (1 980) reported that in Texas the predominant field fungi in 

decreasing order of prevalence belong to the genera Alternaria, Fusarium, and 

Curvularia. It is thought that only a few fungi infect sorghum spikelet tissues during 

the early stages of grain development. These are, in approximate order of 

importance, Fusarium moniliforme (Sheld.), Curvularia lunata (Wakker) Boedijn, F. 

semitectum Berk., and Rav., and Phoma sorghina (Sacc.) Boerma et a/. (Forbes et 

ab, 1992). 

Symptoms: Colonization occurs primarily on the exposed part of the grain. Post- 

maturity colonization is generally what produces the "mouldy appearanceQf grain 

maturing in humid environments (Forbes et a/., 1992). Fungal colonization of 

sorghum grain by different fungi produce a different set of symptoms. The colour of 

the mouldiness depends on the fungi involved. F. moniliforme produces pinkish- 

white to orange-powdery fungal growth on dry infected sorghum seeds. Phoma 

sorghina produces black pycnidia scattered over the surface of infected seed. 



Cumlaria lunata appears as a shiny, velvety black, fluffy growth on the grain 

surface (Bandyopadhyay, 1986). 

Losses: Losses caused by grain mould are both quantitative and qualitative (Esele, 

1995). At ICRISAT Asia Center, Patancheru (India), losses of up to 100% in highly 

susceptible cultivars have been experienced (Williams and Rao, 1981). In Texas 

(USA), unusually heavy rains at grain maturity during 1976 affected 400,000 ha of 

sorghum, and caused a loss of $46 million (Castor and Frederiksen, 1980). In 

another report, annual global losses to grain moulds have been estimated at 

US$130 million (ICRISAT, 1992). Sundaram et a/. (1 972) stated in their report on a 

survey of sorghum and millet diseases in India, in hybrid sorghums, losses of up to 

50% due to head moulds were observed in experimental plots at Coimbatore (India). 

Denis and Girard (1 980) reported results of comparison of yield and mould infection 

at three sites in Senegal. They found that when there were few other limiting factors 

to plant development, grain moulds had a clear negative effect on yield. Glueck and 

Rooney (1 976) and Glueck (1 978) reported variability in 1000-grain weight from 19.3 

g to 33.5 g and of test weight from 47.3 to 62.2 Ib bu" under severe weathering 

conditions of Texas A&M. Singh and Agarwal (1 989) reported that 100-seed weight 

was reduced to 67, 43 and 40% by C. lunata, F. moniliforme and P. sorghi 

respectively. Preharvest sprouting may also occur under prolonged rainfall, high 

humidity and alternate wetting and drying conditions (Castor and Frederiksen, 1980; 

Forbes et a/,, 1992). This leads to loss of seed viability and enhances the 



development of grain moulds, thus causing chalkiness of the grain and loss of 

weight (Castor and Frederiksen, 1977; Maiti el a/., 1985). Qualitatively, grain mould 

results in a loss of grain market value (Anonymous, 1976; Castor and Frederiksen, 

1980; Forbes eta/., 1992). In villages in Central India the market prices of sorghum 

grain were significantly related to degree of mould infection, and the prices of the 

mouldy grain was about 20% less than that of the cleanest grain (von Oppen and 

Jambunathan, 1978). The mouldiest of the grain in these samples was, however, 

not nearly as severely moulded as grain from many improved sorghum cultivars in 

our grain mould screening nurseries. Williams and Rao (1981) recorded, in addition 

to actual weight loss caused by grain mould infection, losses in marketable yield 

occur due to reduction in consumer acceptability, even with moderately moulded 

grain. 

Sorghum grain deterioration from mould infection results in physiological and 

chemical changes (Glueck et a/., 1977). The fungi also cause reduction in seed 

viability, reduction in kernel size, kernel density, and increase in electrolyte leachate 

(Murty et a/., 1980; Castor and Frederiksen, 1981 ; lbrahim et a/., 1985; Maiti et ab, 

1985; Singh and Makne, 1985; Singh and Agarwal, 1989; Forbes eta/., 1992). 

Loss in viability of moulded sorghum grain and reduction in seedling vigour are 

reported by many workers (Arif and Ahmed, 1969; Narasimhan and Rangaswamy, 

1969; Tripathi, 1974; Mathur et a/., 1975; Castor, 1977; Rao and Williams, 1977). 



Fungus-infected seed often exhibit reduction in germination and emergence which 

cause poor stands in farmers' fields (Bhatnagar, 1971 ; Castor, 1977). In addition, 

seedlings may be killed after emergence, or their growth may be reduced 

(Bhatnagar, 1971). 

Fungi such as F. moniliforme and C. lunata secrete enzymes that can degrade 

endosperm (starch) and germ tissues; the process is often accompanied by visibly 

moulded kernels (Wadje and Deshpande, 1976). In moulded grain, soluble 

carbohydrates are usually decreased as they are utilised to provide energy for 

growth and development of fungi (Glueck and Rooney, 1976). Somani et a/. (1993) 

reported that crude protein was slightly reduced but crude fat, starch and ash 

contents were significantly reduced in moulded seeds. Moulds also alter the 

composition of phenolic compounds (Waniska etal., 1992). 

Grain moulds produce chemicals that are toxic to man and animals. The species of 

Fusarium produce zearalenone, a mycotoxin which has oestrogenic properties and 

which has considerable acute effects in some animals at very low concentration 

(Mirocha and Christensen, 1974; Martin and Gilman, 1976; Rukmini and Bhat, 

1978). 

Screening technique: Before 1977, the search for grain mould resistance was 

conducted mainly under natural incidence of mould in the field. While this method is 



satisfactory in years when the rains are frequent and prolonged throughout the 

flowering and grain-filling period, it is unsatisfactory when these conditions do not 

occur and chances of identifying escapes as resistant sources increase (Williams 

and Rao, 1981). At ICRISAT and Texas A&M, thousands of breeding lines were 

successfully screened by bagging heads inoculated with conidial-mycelial 

suspension of Fusarium moniliforme, Fusarium semitectum and Curvularia lunata, 

and providing sprinkler irrigation in the evening hours during the grain-filling period. 

The technique, however, did not work in the extremely hot and dry part of the year 

(Castor, 1977; Williams and Rao, 1981). 

A laboratory-based screening technique was reported by Williams and Rao (1981). 

They incubated postrainy season grain on blotting paper at 25°C in an alternating 12 

h light and 12 h dark regime and were able to distinguish between cultivars in 

degree of mould development. Anahosur (1983) found that, for screening grain 

mould resistant sorghums, spray on the panicles after emergence was quite 

effective for the development of moulds. 

Bandyopadhyay and Mughogho (1988) evaluated three techniques for mould 

screening by inoculating panicles with mould causing fungi, bagging of panicles and 

providing overhead sprinkler irrigation on rain-free days. They showed that mould 

resistance screening without inoculation and bagging of panicles was feasible if 

overhead sprinkler irrigation was used from flowering to harvest (for 54 d from 



flowering). When ambient relative humidity was low, however, sprinkler irrigation 

could also be ineffective in maintaining sufficient humidity for grain mould 

development. Saikunakorn (1989) showed that inoculation and noninoculation had 

no distinctive effect on the virulence of the disease. An in vitro technique for 

screening sorghum lines for resistance to Fusarium moniliforme, Fusarium 

semitectum and Curvularia lunata was developed by Singh and Prasada Rao 

(1 993). The technique involved inoculation of seeds with the spores of grain mould 

fungi, transferring inoculated seeds into presterilized petri plates, and incubating at 

28% for 5-6 d in humidity chambers. 

Resistant sources: Initially a few resistant sources were reported from natural 

screening (Gray et a/., 1971 ; Koteswara Rao and Poornachandrudu, 1971) but no 

information was provided by authors for date of flowering of these resistant sources. 

Other reports of resistant sources under natural conditions include Zummo (1976), 

Glueck and Rooney (1 976), Rao and Williams (1 977), Rana et al. (1 978), Castor 

and Frederiksen (1 980), Denis and Girard (1 980), Pascual and Dalneecio (1 985), 

and Lakshmanan and Mohan (1 989). Some of the lines reported as resistant by the 

above authors are IS 452, IS 455, IS 472, IS 473, Funks 814, E 35-1, IS 2238, IS 

2327, IS 14332, IS 2261, IS 9225, CO 25, TNS 25, and TNS 28. Satwar (1983) 

screened 26 entries with fungal suspension inoculation and found that IS 14332, 

Sel-4, Sel-10, 11 8, IL 13 and IL 14 showed least grain mould and greatest 

germination percentage. 



Bandyopadhyay et al. (1 988) screened 7132 germplasm accessions over several 

years and identified 156 accessions as resistant. All resistant lines except IS 25017 

had coloured pericarp. Coloured lines were of two types, red and brown with a 

coloured testa. Some of the red resistant sources were IS 14375, IS 14380, and IS 

14390. Brown resistant sources included IS 14387, IS 151 19, IS 18139, and IS 

18240. 

Prasada Rao et al. (1995) screened 51 photosensitive guinea sorghum germplasm 

lines using an in vitro screening technique and identified 14 accessions showing 

moderate to high mould resistance. 

Singh et a/. (1995) evaluated 347 converted Zera-zera germplasm accessions 

against three fungi, Fusarium moniliforme, F. pallidoroseum and Cun/ularia lunata, 

and 143 lines were selected as having moderate to high levels of resistance. Most 

of these lines mature early, i.e. 29-45 days after flowering. 

A large and diverse set of landraces was evaluated for grain mould resistance at 

different stages of grain maturity (Menkir et a/., 1996b). They identified sorghum 

accessions that were free from colonization by one or more fungal species across 

three sampling dates. IS 919, IS 2821, IS 3441, IS 9323, IS 9370 and IS 16100 

were resistant to F. moniliforme for two years across all sampling dates. 



Measurlng graln moulds: The use of an effective evaluation system is as 

important as the choice of inoculating technique (Williams and Rao, 1981). Visual 

assessments of grain mould severity on panicle and seed surface were used for 

screening resistant sources. Using well-defined units such as percentage of 

paniclelseed surface affected, field grade score on panicle surface and threshed 

grade score on seed surface were recorded (Bandyopadhyay and Mughogho, 

1988). Mouldiness of the total panicle can be misleading because some cultivars 

develop mould on the rachis and glumes but maintain clean seed and vice versa 

(Williams and Rao, 1981). Castor and Frederiksen (1980) noted that field ratings on 

natural or Fusarium inoculated heads would have permitted some susceptible 

sorghum lines to escape detection, since mould growth on kernels was 

predominantly hidden by the glumes and became visible only after threshing. 

Test weight and germination are two commonly used means of measuring grain 

mould. In general kernel weight and germination were reduced more by Fusadum 

than Curvularia spp. (Castor and Frederiksen, 1980). They also noted that the 

genotype BTx 398, had little reduction in germination with either Curvularia or 

Fusarium infection indicating that the discolourationlmould on kernels was 

superficial; very little internal damage had occured. Denis and Girard (1977) and 

Castor and Frederiksen (1980) regarded loss in viability to be so important a part of 

grain mould that they recommend a germination test as part of standard evaluation 

for identification of grain mould resistance. Others also found that loss of seed 



viability and germination increased with increasing infection by mould causing fungi 

(Mahalinga etal., 1988; Singh and Agarwal, 1989; Forbes etal., 1989). 

Another method of estimating grain mould severity is based on colony-forming units, 

CFU, or the degree of fungal colonization per unit of kernel tissue. This is measured 

by serial dilution of dried, ground kernel tissue, plating on selection media, and 

unting of colonies, Infection frequencies can also be measured by plating and 

incubating the entire kernel on blotting paper or on a selective agar medium 

(Hepperly et a/., 1982; Gopinath and Shetty, 1985; Granja and Zambolim, 1984; 

Forbes et a/., 1989). 

Seitz et a/. (1 977) evaluated grain mould incidence by measuring the concentration 

of ergosterol (a sterol which is very much specific to fungi and a measure of 

quantities of total fungal mass present in the seed). Jambunathan et a/. (1991) 

studied ergosterol concentration in mould-susceptible and mould-resistant sorghum 

at different stages of grain development. They found that ergosterol concentration 

increased with increasing days after flowering in the mould-susceptible accessions 

and was 10-fold higher in grains collected at 50 days after flowering than in the 

corresponding mould-resistant accessions. Forbes et a/. (1989) found that the 

quantity of ergosterol was highly correlated (rz0.97) to visual grain mould score. 



Jambunathan et al. (1995) found that concentrations of volatile compounds in 

mould-susceptible sorghum were higher than those in mould-resistant sorghum. Of 

the 10 compounds that were identified, Fmethyl butanol was several fold higher in 

mould-susceptible sorghums, 

Seltz et al. (1975) measured sprouted kernels, incidence of Fusarium, and 

germination of samples of weathered sorghum in Kansas. It was found that 

incidence of Fusarium was positively related to the amount of sprouting. Hence, a 

"Fusarium sprouting index" was developed to measure the relative resistance of 

lines to Fusariuminduced sprouting. 

Characters associated with resistance: Forbes (1986) reported that on 

susceptible cultivars initial infection by F. moniliforme occurs on the apical ends on 

the spikelet tissues: lemma, palea, glumes, filaments, and senescing styles. Fungal 

mycelium advances basipetally, either by colonizing spikelet tissues or by growing in 

voids between these tissues. Within 5 d of inoculation, mycelium can be seen in all 

parts of the spikelet, with denser growth around the ovary base. In the next stages 

of invasion, a dense mycelial mat progresses acropetally, between the aleurone 

layer and the pericarp. Subsequent invasion of the endosperm, embryonic tissues 

and pericarp originates from this peripheral mat. Certain plant and grain 

characteristics are reported to be associated with grain mould resistance (Glueck 

and Rooney, 1980). Morphological characters like panicle shape, glume, seed size 



and days to flower play an important role in governing mould resistance (Glueck et 

a/., 1977). Relative panicle compactness seemed to have little impact on expression 

of resistance or susceptibility (Williams and Rao, 1981 ; lbrahim etal., 1985; Mukuru, 

1992; Menkir et a/., 1996b). 

Differences in maturity can bias mould damage estimates in sorghum. Various 

studies did not find a strong association between days to 50% flowering and grain 

mould damage scores (Ibrahim eta/., 1985; Mukuru, 1992; Menkir etal., 1996b). 

Physical and chemical characters of glumes and seed play an important role in 

providing resistance against grain mould. The glume appears to be the plant's first 

defence against fungal invasion; later it is the chemical and physical properties of 

caryopsis that appear to be more important in resistance to grain moulding (Waniska 

et al., 1992). Mansuetus et a/. (1 988) found that colony-forming units (CFU) or the 

numbers of viable fungal propagules were greater on inoculated susceptible cultivars 

than on resistant ones at the boot leaf stage of growth. Grain mould was negatively 

correlated with glume cover (r=-0.56), glume length (r=-0.56) and glume area (r- 

0.62) when the cultivars were inoculated. The r values were negative and 

nonsignificant when the cultivars were not inoculated (Mansuetus et a/., 1988). 

Murty (1977) reported that seeds completely enclosed in long papery glumes show 

resistance to grain mould. Williams and Rao (1980) concluded after examining 

several thousand diverse sorghum lines at ICRISAT that there was no apparent 



correlation between resistance and grain enclosed by long glumes and by normal 

glumes. Waniska et a/. (1992) reported relatively high levels of free phenolic 

compounds (1-2%) in the glumes at anthesis, and their levels increased to 2-10% 

during normal development. Inoculation with fungi caused an increase in phenolic 

compounds at 10, 14 and 20 days after anthesis, especially in resistant and 

moderately resistant cultivars. Mansuetus (1990) found that resistant cultivars 

responded more to infection than susceptible cultivars by increasing free phenolic 

compound levels in their glume tissues. They also reported that darker glume colour 

had increased free phenolic acids and phenolic bound acids than light-coloured 

glumes. 

Physical and chemical properties of the kernel are associated with grain mould 

resistance (Glueck and Rooney, 1976; Castor and Frederiksen, 1980). In general, 

darker kernel colour was associated with increased resistance to grain mould 

(Menkir et a/., 1996a; Doherty et a/., 1987). It was observed that the pigmented 

testa was the most influential seed characteristic affecting mould resistance (Ellis, 

1972; Esele et a/., 1993; Hahn et a/,, 1983; Hahn and Rooney, 1985; Jimenez and 

Vallejo, 1986). Waniska et a/. (1 989) reported that cultivars with pigmented testa 

were more resistant to moulding and contained higher levels of free phenolic acid. 

Harris and Burns (1973) identified the link between high tannin content and grain 

mould resistance. 



High concentrations of flavan-4-01s have been found to correlate strongly with grain 

mould resistance (Butler, 1989; Jambunathan et al., 1991 ; Martinez et a/., 1994). 

Jambunathan et a/. (1990) found that concentration of flavan-4-01s in grain mould 

resistant lines was two-fold higher than in mould-susceptible grain at or after 30 days 

of flowering. Menkir etal. (1996b) found that resistant sorghum accessions with red 

pericarp, but without pigmented testa, had mostly corneous endosperm texture, 

relatively high levels of apigeninidin, leteolinidin and flavan-4-01s and a negligible 

amount of tannin. Resistance in this group was strongly associated with high 

concentration of flavan-4-01s. However, they found an inverse relationship between 

concentration of flavan-4-01s and resistance to grain mould damage in some red 

sorghum accessions. Melake-Berhan et a/. (1996) studied changes in phenolic 

compounds during seed development. They found flavan-4-01 concentrations were 

high and similar for both the mould-resistant and mould-susceptible genotypes at 

early stages of seed development. In susceptible genotypes, the flavan-4-01 

concentration dropped by 67% between the third and last sampling dates compared 

with a 20% decline for the resistant genotypes in the same period. These results 

indicated that the high flavan-4-01 resistant genotypes, but not the high flavan-4-01 

susceptible (hfs) genotypes, maintained high levels of flavan-4-01s throughout seed 

development and maturation, especially at the time when fungal infection of seeds 

was at its highest. 



Thin mesocarp (thin pericarp) sorghums appeared to withstand weathering better 

than those with thick mesocarp since thin mesocarp contained few starch granules 

(Glueck and Rooney, 1980; Rooney and Miller, 1982). Esele et a/. (1 993) observed 

that when crosses were made between thick mesocarp x thin mesocarp all the 

progenies in F,, F, and BC, were susceptible to grain moulds. This indicated that 

the factors determining resistance were unrelated to mesocarp thickness. 

Sorghum kernels with more corneous endosperm and hard seed were more 

resistant to grain mould than those with floury endosperm (Ibrahim et a/,, 1985; 

Jambunathan et a/., 1992; Mukuru, 1992; Garud, 1992; Kumari and Chandrashekar, 

1992). These observations led Jambunathan et a/. (1992) to conclude that grain 

mould resistance in sorghum cultivars with white pericarp was mostly due to kernel 

hardness. However Menkir eta/, (1 996a) found that resistance to grain mould was 

not always associated with the more corneous endosperm texture in white or red 

pericarp sorghums without pigmented testa. Increased levels of resistance to grain 

mould in brown sorghums were not associated with endosperm texture. The 

presence of pigmented testa in brown sorghums confers a greater effect than 

endosperm texture on reducing grain mould damage (Giueck and Rooney, 1980; 

Bandyopadhyay et a/., 1988; Menkir et a/., 1996a), 

Glue& and Rooney (1980) found that the most convincing relationships were 

between resistance and factors affecting water uptake and movement in the grain. 



When the moisture content of the grain was at 18 to 20% or more, then 

microorganism growth was more prolific. Lines with slower drying grain have more 

mould problems (Williams and Rao, 1980; Singh et a/,, 1995). Rana et a/. (1977) 

studied the water absorption capacity of susceptible and resistant genotypes and 

found that lines having low water absorption capacity when soaked for a two-hour 

period, were resistant to grain mould. 

Antifungal proteins identified in cereal caryopses such as maize, barley and 

sorghum were found to play a role in the defence of seeds against pathogen 

invasion (Vigers et ab, 1991; Bass eta/., 1992; Kumari and Chandrashekar, 1992; 

Darnetty et a/., 1993). Kumari and Chandrashekar (1 994) identified three proteins, 

with 18, 26, and 30 kDa sizes, that were potentially inhibitory to the growth of 

Fusarium moniliforme, the grain mould pathogen. These proteins appeared only in 

the endosperm of sorghum grains as revealed by dot immunobinding assay. The 26 

and 30 kDa antifungal proteins were also present in pearl millet and maize, while the 

18 kDa protein was found only in sorghum. Seetharaman et a/. (1996) observed 

significant changes in sorghum antifungal proteins during caryopsis development 

and post maturation. Sormetin, chitinase and glucanase increased during seed 

development through physiological maturity (30 days after anthesis) and decreased 

subsequently. They also found that the levels of antifungal protein were lower in 

mouldy caryopses from the same panicles, and sormetin levels at 30 days after 

anthesis correlated significantly with mould ratings (rd.65). 



Genetics of resistance: Generation mean analysis of resistance to two grain 

moulds, namely C. lunata and F. moniliforme, indicated large dominance effects 

and significant epistatic effects for resistance. Additive and additive x additive 

effects were also present but only next in importance to the dominance effects 

(Murty and House, 1984; Kataria et al., 1990). 

Diallel studies of crosses between resistant and susceptible lines under artificial 

inoculation with fungi indicated that additive gene action was predominant in the 

inheritance of resistance to Fusarium moulds (Narayana and Prasad, 1983) and 

both additive and non-additive components of variance determined the expression of 

mould reaction to Cuwularia (Dabholkar and Baghel, 1983). 

Shivanna et a/. (1994) in their studies with F,, F,, BC,, and BC, of crosses between 

resistant and susceptible lines found that the inheritance of grain mould resistance 

was governed by four independently assorting genes, two with complementary 

interactions and the other two with additive interactions. 

Patel et a/, (1983) observed overdominance and partial dominance for grain mould 

resistance under normal and late sowing conditions. 

Esele et a/. (1993), while studying the genetics of catyopsis traits associated with 

mould resistance, observed that R-, Y- (pericarp colour) and I- (intensifier) genes 



conferred dominant grain mould resistance individually and their effects were 

additive when present together. 

Genetics of associated characters: The open and closed glume character 

expression indicated its dominance and recessiveness respectively (Singh, 1987). 

Kullaiswamy and Goud (1982) found that three pairs of genes were involved for 

gaping glumes, and gaping glumes were dominant over normal glumes. 

F, segregation for glume colour was found to be 3:1 indicating a single gene 

difference, reddish purple glume being dominant over blackish-purple glumes (Mani, 

1986; Rao and Rana, 1989). Shivanna and Patil (1988), when they crossed black- 

glumed x straw-glumed lines, found digenic segregation with interaction. 

Jayaramaiah and Goud (1982) crossed varieties with deep purple coloured glume 

with light purple coloured glume (ventral side), and found trigenic segregation in F, 

(45:19) with deep purple colour dominant over light purple coloured glume. 

Saraswathi eta/. (1 994) found that seed colour was governed by a single dominant 

gene when red seed was crossed with white seed. Chariya Srichantub (1988) 

suggested that two genes were involved in the inheritance of phenol Content 

(catechin equivalents). 



Genes at seven loci were found responsible for the different characteristics affecting 

caryopsis traits: R, Y, I, Z, B,, B, and S genes (Stephens, 1946; Quinby and Martin, 

1954; Rooney and Miller, 1982)- The R and Y genes determine pericarp colour. If 

both genes are dominant (R-Y-), then the pericarp is red. When the Y gene is 

homozygous recessive (R-yy or rryy), the pericarp is colourless or white regardless 

of the R gene. A lemon yellow pericarp is found when the R gene is homozygous 

recessive and the Y gene is dominant (rrY-). The intensifier gene (I) modifies the 

colour of the pericarp to appear bright when dominant (I-) and dull when recessive 

(ii). The B, and B, genes determine the presence or absence of pigmentation in the 

testa. When the complementary B, and B, genes are dominant (B,-B;), testa 

pigmentation is present, and when either or both genes are homozygous recessive 

(B,-b,b,, b,b,B,-,or b,b,b,b,), pigmentation is absent. The colour of the pigmented 

testa is controlled by another gene (TP) in which brown is dominant to purple. The 

spreader gene (S) allows the brown colour of a pigmented testa to be present in the 

epicarp (S-). The mesocarp is thin when the Z gene is dominant (2-) and thick 

when the gene is recessive (zz). 

Sorghum genotypes vary in resistance to preharvest sprouting (Clark et ab, 1967). 

In wheat, there are several reports of positive relationship between red seed colour 

and resistance to sprouting (Gfeller and Svejda, 1960; Khan and Strand, 1977). 

Reitan (1980) reported two mechanisms for controlling dormancy, one associated 

with and one not associated with seed coat colour. The mechanism not associated 



with seed colour appeared to be contributed by recessive genes in wheat. DePauw 

and McCaig (1 983) found a genetic mechanism for sprouting resistance associated 

with red colour and one or more mechanisms not associated with seed colour. 

Resistance breeding: Initially derivatives of Zera-zera germplasm from Sudan and 

Ethiopia were used extensively in breeding programmes at ICRISAT and in India to 

produce high yielding mould tolerant progenies. These progenies were better than 

the high yielding elite lines for grain mould resistance at low pressure of mould. 

Murty et a/ (1980) utilized 370 parents including Zera-zera and elite lines from 

national programmes to develop grain mould resistant lines. The F, under natural 

infestation and FJF, under artificial inoculation were screened to obtain lines less 

susceptible to Curvularia and Fusarium. They further reported that increase of level 

of resistance could be achieved by selective intermating of resistant progenies in 

specific crosses or recurrent selection in random-mating populations. However, 

under moderate to high mould disease pressure, these lines became susceptible 

(Mukunr, 1992). Duncan et a/. (1987) developed a random-mating population 

involving 24 experimental or partially converted restorer or maintainer lines chosen 

for their resistance to Fusarium head blight, screened at various locations and 

developed sources of agronomically desirable B- and R-lines resistant to F. 

moniliforme, F. semitectum and F. roseum. 



Mukuru (1992) developed five white-grained advanced selections with mould 

resistance by crossing coloured resistant sources with high yielding white 

susceptible lines after screening the progenies under sprinkler irrigation. He further 

observed that resistance in white grain type was associated with grain hardness. 

Gaud et a/. (1994) developed mould resistant lines viz., GMRP4, GMRP9, 

GMRP13, GMRP28, GMRP33, by incorporating traits like grain hardness, lax 

panicle and glume coverage in the breeding programme. Stenhouse et a/. (1996) 

mentioned that glume cover and pigmented glume traits have not been fully 

exploited for development of resistance sources. 

Stenhouse et a/, (1996) reported improvement of guinea sorghum having grain 

mould resistance through pedigree and population breeding approach to produce 

high yielding grain-mould resistant guinea material. 

Genetics of yield and yield components: Different types of analysis, like diallel, 

line x tester, and generation mean analysis were conducted on different genotypes 

for studying the genetics of yield and yield components in sorghum. Additive and 

non-additive gene actions were significant for variable plant height (Kulkarni and 

Shinde, 1987; Nimbalkar and Bapat, 1987; Mallick and Gupta, 1988). In some 

reports, additive gene action was predominant for plant height (Harer and Bapat, 

1982; Deshmukh, 1983; Palanisamy and Subramanian, 1986; 



Chandrashekharappa, 1987; Yang, 1991 ; Senthil and Palanasamy, 1994). In 

contrast, Kide et a/. (1 982), Patil et a/. (1 982), Hugar et a/, (1 986), Berenji (1 988), 

Chhina and Phul (1988), and Wanzel (1988) reported that non-additive gene action 

was more important for the character. 

Predominantly additive gene effect for variable days to 50% flower was observed by 

Kirby and Atkin (1968), Harer and Bapat (1982), Deshmukh (1983), Kukadia et a/. 

(1983), Chandrashekharappa (1987), Mallick and Gupta (1988), and Senthil and 

Palanasamy (1 994). In contradiction, non-additive gene action was found important 

for days to 50% flower (Kide et a/., 1982; Palanisarny and Subramanian, 1986; 

Wanzel, 1988). Overdominance for the character has also been reported 

(Anonymous, 1976). Equal importance of additive and non-additive gene effects 

was reported for flowering by Nagabasaiah (1982), Deshmukh (1983), Hugar et a/. 

(1986), Kulkarni and Shinde (1987), and Nimbalkar and Bapat (1987). Nayeem 

(1 991) observed that days to 50% flowering was governed by 13 genes. 

Predominantly additive gene effects for panicle length were reported by Patidar and 

Dabholkar (1 981), Harer and Bapat (1 982), Nagabasaiah (1 982), Patil et a/. (1 982), 

Thombre etal. (1985), Palanisamy and Subramanian (1986), Chandrashekharappa 

(1987), and Senthil and Palanasamy (1994). Dominance/non-additive gene action 

was more important than additive gene action for panicle length (Desai etal., 1985; 

Patil and Thombre, 1985; Chhina and Phul, 1988; Nimbalkar et a/., 1988; Wanzei, 



1988; Pillai et a/., 1995). Partial dominance for this trait was also reported 

(Anonymous,l976). Both additive and non-additive gene effects were estimated to 

be important for the character (Giriraj and Goud, 1982; Chandak and 

Nandanwankar, 1983; Mallick and Gupta, 1988). Among gene interactions, additive 

x additive was reported to be significant (Karale et a/., 1984; Patil and Thombre, 

1985; Thombre eta/., 1985). Nayeem (1991) reported that the genes involved for 

panicle length were two to five in number. 

Desai eta/. (1985), Patil and Thombre (1985), Nimbalkar etal. (1988), and Rao et 

a/. (1 994) reported predominantly dominantlnon-additive gene effects for primary 

branches. In contrast, additive gene action for primaries was observed by lndi and 

Goud (1 981 a), Thombre etal, (1 985), and Gao (1 992). Importance of both additive 

and non-additive gene action for this variable was observed by others (Giriraj and 

Goud, 1982; Hugar e l  a/., 1986; Mallick and Gupta, 1988). 

Harer and Bapat (1982), Patil et a/, (1982), Deshmukh (1983)) Thombre et a/. 

(1985), Chhina and Phul (1988), Nimbalkar et a/. (1988), and Rao et a/. (1994) 

reported that dominanceinon-additive gene effects predominated for panicle weight. 

Other workers reported additive and non-additive gene action to be important for 

panicle weight (Giriraj and Goud, 1982; Chandak and Nandanwankar, 1983; Mallick 

and Gupta, 1988), While Thombre et a/, (1985), and Rao e l  a/. (1994) observed 

additive x additive gene interaction to be important, Patil and Thombre (1985) and 



Nimbalkar et a/. (1988) found dominant x dominant gene interaction to be more 

important. 

Most workers reported predominantly dominant gene effects for grain yield per plant 

(Harer and Bapat, 1 982; Kide et a/., 1982; Nagabasaiah, 1982; Patil et a/., 1982; 

Kukadia et a/., 1983; Berenji, 1988; Chhina and Phul, 1988; Yang, 1991; Gao, 

1993). In contrast, additive gene action for this trait was reported by Beil and Atkins 

(1967), Rao et a/. (1968), Deshmukh (1983), Rao (1970), Patidar and Dabholkar 

(1 981), Giriraj and Goud (1 982), Chandak and Nandanwankar (1 983), Thombre et 

a/. (1 985), Shinde and Jagadeshwar (1 986), Kulkarni and Shinde (1 987), Mallick 

and Gupta (1 988), and Spivakov (1 988). Dominance x dominance gene interaction 

was found to be the most important gene interaction by lndi and Goud (1981a), lndi 

and Goud (1981 b), Desai et a/. (1985) and Patil and Thombre (1985). Rao et al. 

(1 994) found all three epistatic interactions to be significant in the crosses. 



3 MATERIALS AND METHODS 

The present study comprised two sets of experiments: The first set dealt with 

evaluation of sorghum genotypes for grain mould resistance and other related 

morphological and biochemical characters. The second set involved crossing 

between susceptible and resistant genotypes selected from the first experiment and 

analysing the genetic basis of grain mould resistance and related morphological 

characters. 

3.1 EVALUATION OF SORGHUM GENOTYPES FOR GRAIN MOULD 

RESISTANCE ANDRELATEDCHARACTERS 

Experiments la and Ib were conducted during kharif 1994 at the Directorate of Oil 

Seeds, Rajendranagar, Hyderabad (India). Twenty-two sorghum genotypes, 

including released and prereleased varieties, restorers and nonrestorers, advanced 

breeding lines, and germplasm lines, obtained from the National Research Centre 

for Sorghum (NRCS), the All India Co-ordinated Sorghum Improvement Project 

(AICSIP) and the International Crops Research Institute for the Semi-Arid Tropics 

(ICRISAT) were utilised. The materials utilised in the experiment and ancillary data 

are listed in Table 2. Seeds of 22 sorghum genotypes were sown in 4 m long rows 



Table 2. The sorghum genotypes evaluated for graln moulds during 1994. 

S.No Genotype 

1 AKMS 148 
2 2968 
3 AKR 150 
4 MS 4228 
5 R 1413 
6 IS 14375 
7 IS 14387 
8 IS 18144 
9 IS 18528 
10 IS 24495 
11 IS 25017 
12 SP 33316 
13 SP 33349 
14 SP 33486 
15 GM 15018 
16 GM 15375 
17 TNS 30 
18 858586 
19 GMRP 13 
20 IS 21443 
21 SPV 462 
22 SPV 475 

Origin 

lndia 
lndia 
lndia 
lndia 
l ndia 
Zimbabwe 
Zimbabwe 
Lebanon 
Lebanon 
S.Africa 
Sudan 
lndia 
lndia 
lndia 
lndia 
lndia 
lndia 
lndia 
lndia 
Malawi 
lndia 
lndia 

Source 

AlCSlP 
AlCSlP 
AlCSlP 
NRCS 
NRCS 
ICRISAT 
ICRISAT 
ICRISAT 
ICRISAT 
ICRISAT 
ICRISAT 
ICRISRT 
lCRlSAT 
ICRISAT 
AlCSlP 
AlCSlP 
AlCSlP 
AlCSlP 
AlCSlP 
AlCSlP 
AlCSlP 
AlCSlP 

Grain mould 
resistance' 
S 
S 
S 
S 
S 
R 
R 
R 
R 
R 
R 
MR 
MP 
M P 
MR 
M F( 
M R 
R 
M P 
M R  
S 
S 

' S Susceptible; R r Resistant; MR Moderately resistant. 
AICSIP - All lndia Coordinated Sorghum lmprovemont Project, NRCS = National Research Centre for Sorghum, 
ICRISAT - International Crops Research Institute for the SembArid Tropics. 



(two rows each) on ridges 0.75 m apart, in June 1994, in a randomised complete 

block design in two sets of experiments. Experiment la was conducted under 

sprinklers with three replications for evaluating genotypes for grain mould resistance 

and other related characters. Experiment Ib was conducted in two replications for 

recording grain yield per plant and plant height of the genotypes. Standard and 

recommended agronomical practices were followed throughout the duration of the 

crop. Land was prepared by deep ploughing, discing and harrowing. Ridging was 

done 75 cm apart. ~trazine" at a rate of 1 kg ha" of active ingredient was applied 

before sowing. A basal fertiliser dose of 42 kg ha" of N and of P,O, was applied. 

Seedlings were thinned 20 d after emergence to 10 plants m" row length. Earthing- 

up and one hand weeding were done three weeks after emergence. The crop was 

top dressed with 46 kg ha" of N 25 d after emergence. 

Field screening technique for grain moulds: The screening technique followed was 

that of Bandyopadhyay and Mughogho (1988). Sprinklers were arranged in 

sequence grid pattern, the shortest distance between any two sprinklers being 12 m. 

The test plots were sprinkled for 1 h in the morning, if it did not rain the previous night 

and same morning, and for an additional hour in the evening, if it did not rain 

throughout the day. Overhead sprinkler irrigation was provided on this basis from 

flowering to grain maturity (black layer formation) and up to two weeks later when 

Panicles were harvested. Observations were recorded on the following variables. 



32 

Fleld grade score (FGS): FGS, a visual score for mould severity on the panicle 

surface, was recorded at the harvesting time. Five panicles from each replication in 

each test entry were scored visually for mould severity on a scale of 1 = no mould 

visible on the panicle; 2 = scant superficial mould growth up to 10% of the panicle 

surface covered by mould; 3 = moderate mould growth and 11.25% of the panicle 

surface moulded; 4 = considerable mould growth with 26-50% of the panicle surface 

moulded; and 5 = extensive mould growth with more than 50% of the surface 

moulded. 

Threshed grade score (TGS): TGS estimates the severity of mould effect on the 

seed surface. Five panicles from each replication of the 22 genotypes were 

harvested 14 d after maturity (54 d after 50% bloom) and threshed. Each panicle 

was hand threshed carefully in order to minimise damage to the grain surface. A 

sample of 35 g of threshed grain was spread in a 9 cm diameter petri plate and 

scored visually for mould severity. Like FGS, TGS was recorded on 1 to 5 scale, of 

1 = no mould and 5 = more than 50% of the seed surface covered by mould. 

Greln germinatlon: 100 grains from each of the 5 panicles from each replicate, 

which were scored for TGR, were incubated in petri dishes lined with wet filter paper, 

for 4 d at 30°C, and number of germinated seed was counted. 



Ergosteml: Ergosterol was determined according to the modified method of 

Jambunathan et a/. (1991). From each entry, 3 panicles were chosen at random 

and dried. Grains from dried panicles were removed and mixed thoroughly. A 25 g 

sample of the mixed grain was ground in a Udy Cyclone mill (U.D. Corp., Boulder, 

CO) to pass through a 0.4 mm screen. Duplicate 10g of samples of ground grain 

were weighed in polythene screw cap bottles (125 rnl capacity), 50 ml of methanol 

(MeOH) was added, and bottles were shaken vigorously on a reciprocating shaker 

for 60 min at room temperature. The mixture was allowed to settle and 25 ml of 

clear extract was transferred into a screw-capped test tube containing 3 g of KOH 

and was shaken till the KOH dissolved. Ten rnillilitres of n-hexane was added and 

the mixture was incubated at 75% in a water bath for 30 min and then allowed to 

cool to room temperature. Five ml of distilled water was then added, the solution 

was mixed thoroughly, and the top hexane layer was removed with the help of 

Pasteur pipette and transferred to a 50 ml beaker. To the remaining aliquot in the 

test tube, 10 rnl of hexane was added and mixed vigorously and hexane layer was 

removed carefully and pooled with the earlier extract. This procedure was repeated 

twice and all the pooled hexane extracts in the beaker were evaporated to dryness 

in a hot-water bath. The residue was redissolved in 5 ml methanol (HPLC grade) 

and filtered through a 0.45 mm filter (Millex, HV, Millipore Corp,, Bedford, MA) and 

the filtrate was used for ergosterol analysis. 



Ergosterol was determined in a SHIMADZU LC-6A high performance liquid 

chromatograph with manual loading. The extract was loaded on a reverse-phase 

column [3 pm particle size, 6 mm x 8 cm] consisting of two 4 cm Zorpax Reliance 

Cartridges (DuPont). The mobile phase was methanol-water (96:4 vtv) at a flow rate 

of 1.2 ml min". The column temperature was maintained at 50°C, and the 

absorbance of eluted ergosterol was detected at 282 nm. The standard ergosterol 

(Sigma) had a retention time of 8.3 min. 

Along with the experimental sample, a sample of standard grain mould susceptible 

check variety (Bulk Y) was also analysed every time to maintain the accuracy of the 

procedure. The standard ergosterol was loaded in 2.5, 5.0, 7.5, and 10.0 mg 

concentration for computation of the instrument every time. The instrument was 

calibrated for standard ergosterol and directly gave ergosterol content of the sample 

in ppm. 

Estlmatlon of total phenols: The Folin-Ciocalteau's method (Kaluza et a/., 1980) 

was followed for estimation of total phenols in glumes and seeds of sorghum. 

Developing sorghum panicles were tagged at 50% flowering and harvested 30 d 

after flowering. At each time of sampling, three panicles from each replicate were 

collected and oven dried soon thereafter. Glumes from oven dried panicles were 

removed and were mixed thoroughly. About 2 g of glume sample was ground in a 

Udy Cyclone mill to pass through a 0.4 mm screen. 



Similarly, seeds were collected from three panicles from each replication 40 d after 

flowering, oven dried and mixed thoroughly. About 2 g of seed was ground in Udy 

Cyclone mill. The glume and seed powder were defatted with n-hexane and air 

dried. Duplicate 250 mg samples of defatted glume and seed material were 

extracted twice with 5 ml methanol and twice with 5 ml methanol-HCI (1NHCL). 

Tubes containing the defatted glume and seed material suspended in the extractant 

were placed on Staurt tube rotator (TR-2) and mixed for 1 h. The tubes were then 

centrifuged for 10 min and the supernatant decanted into vials. The two methanol 

extracts for each sample and the two methanol-HCI extracts were pooled separately 

to form methanol and acid-methanol extracts, 

One ml of methanol extract and 1 ml acid-methanol extract were mixed in a 50 ml 

volumetric flask. One ml of I N  Folin-Ciocalteau's reagent (diluted 2N Folin- 

Ciocalteau's reagent to 1 N with water) and 2 ml of 20% sodium carbonate solution 

were added to the extract and mixed. The flasks were incubated for 15 min in a 

water bath at 60°C then removed and cooled to room temperature. Volume was 

made up to 50 ml by adding distilled water. Readings for absorbance were recorded 

at 560 nm against reagent blank. 

One mg of tannic acid was dissolved in 1 ml water and 0.2, 0.3, 0.4, and 0.5 ml 

aliquots made up to 1 ml with methanol. The procedure given above for analysis of 



phenols was followed and a standard curve was plotted. Using the standard curve, 

the quantity of phenol as mg tannic acid equivalent (g sample)" was calculated. 

Estimation of flavan4-01s: The procedure of Butler (1982) was followed for 

estimation of flavan-4-01s in glumes and seeds. 0.5 ml of the methanol-HCI extract, 

prepared as described above, was taken and 7 ml of water-saturated butanol was 

added. Simultaneously a blank was prepared by mixing methanol, water-saturated 

butanol and 0.1 N acetic acid in a 70:15:15 ratio vlv. The tubes along with the blank 

were rotated in the test tube rotator for 1 h. The absorbance was read at 550nm in 

spectrometer (spectronic 21, Bausch & Lamb, USA ). All the results were calculated 

as A 550 g" dry sample. 

Seed hardness: Seeds were equilibrated to a moisture content of 6.5 i 1.0% by 

keeping the samples in the oven at 37°C for 3-4 d, before hardness determinations 

were made. The seed hardness was tested by measuring resistance to grinding by 

the Stenvert hardness tester (Glencreston, Stanmore, England). The grinding 

resistance offered by 18 g of sorghum grains in a micro hammer-cutter mill was 

measured in seconds to obtain a fixed volume of flour (Pomeranz ef a/., 1985). 

Number of days to flowering: In different genotypes, flowering data were 

recorded on ten random panicles in each replication. Also days to 50% flowering 

Was recorded in each panicle. 



Plant height and grain yield per plant: In experiment Ib, data on plant height (cm) 

and grain yield per plant (g) were recorded on 10 random plants in two replications. 

Percentage g l u m  covec Percentage seed cover by glume was recorded visually 

as 25% glume cover, 50% glume cover, 75% glume cover, 90% glume cover and 

100% glume cover. 

Glume colour: Visual scores of 1 to 5 were given to different glume colours, where 

1 = straw glume, 2 = light red glume, 3 = red glume, 4 = dark purple glume; and 5 = 

black glume. 

Seed colouc Visual scores given to seed colour were 1 = white seed, 3 = red seed, 

and 5 = brown seed. 

Glume Index: Glume index (GI) was calculated as given below. 

GI = Length of glumelbreadth of glume. 

Means, coefficients of variation (CV), standard errors (SE) and correlations were 

calculated using the GENSTAT 5 statistical package. Correlations were estimated 

between Field Grade Score, Threshed Grade Score, and different biochemical and 

morphological characters. 



3.2 GENETICS OF GRAIN MOULD RESISTANCE AND RELATED 

CHARACTERS 

During kharif of 1995 and 1996,lO and 8 crosses, respectively, were made between 

mould resistant and susceptible genotypes. A list of the genotypes selected for 

crossing and different cross combinations is given in Table 3. The F, hybrids and 

the parent lines were raised during rabi 1994 and 1995 and additional crosses were 

made to generate 6 families viz., P,, P,, F,, BC,, BC,, and F, in each cross. Six 

families in each of the 10 and 8 crosses were grown during kharif 1995 and 1996, 

respectively, at ICRISAT Asia Center, Patancheru, Andhra Pradesh. These families 

were grown in a randomised complete block design with three replications on 4 m 

long ridges 0.75 m apart. Each parental line, F,, BC, and BC,, was grown in a 

single-row plot and F,s were grown in 6r0w plots. The experimental materials were 

screened for grain mould resistance under sprinkler irrigation as described above. 

During 1996, replicated yield trials of families from two crosses of grain mould 

susceptible x resistant varieties were grown for genetic analysis of grain yield and 

yield components, and their relation to other traits. The families, in each cross, were 

grown in a randomised complete block design with two replications on 4 m long 

ridges 0.75 m apart. Parental lines, F,s, BC,s and BCP had a single-row plot and 

F,s had Crow plots. In each replication observations were recorded on ten plants 





each from P,, P, and F,, 15 plants each from BC, and BC,, 70 to 75 plants from F, in 

1995 and 65 plants from F, in 1996. Data on the following traits were recorded. 

FIeld grade score: Panides from different families and crosses were scored 

visually for mould severity 54 d after 50% flowering. FGS was recorded on a scale 

of 1 to 9 where, 1 = free from mould, 2 = 5% of the panide moulded, 3 = 10% of the 

panide moulded, 4 = 15% of the panicle moulded, 5 = 30% of the panide moulded, 

6 = 40% of the panicle moulded, 7 = 50% of the panicle moulded, 8 = 60% of the 

panide moulded and 9 70% moulded. 

Threshed grade score: The panicles which were evaluated for FGS were 

harvested and threshed carefully. Samples of 35 g of seed from each panide were 

spread on petri dishes and were scored visually for mould severity on the seed 

surface on a scale of 1 to 9 as described for FGS. 

Number of days to flowec Flowering data were recorded on individual plants 

from each family in each cross. Also data on days to 50% anthesis were recorded. 

cohr :  During 1995, seed colour was scored on a scale of 1 to 10 in all the 

CTDSses except white seed x white seed (S,xR,); 1 = white, 2 = grey, 3 = very ligM 

red, 4 - ligM red, 5 - red, 6 = yellow, 7 = light brown, 8 = brown, 9 = dark brown, and 

10 = mddbh brown. 



Percentage glume covec Percentage seed cover by glume was scored as 

described above. 

Percentage sprouting on panlcle: Percentage preharvest sprouting (0 to 100%) 

was estimated visually on panicle during 1995. 

Glume colouc During 1995, the cross between straw glurne (SJ x purple glume 

(R,) was scored at the time of harvesting on a scale of 1 to 9; where 1 = straw, 2 = 

grey, 3 = light red, 4 = red, 5 = light brown, 6 = purple, 7 = dark purple, 8 = black, 

and 9 = dark black glume. 

Gmln yleld and yleld components: Yield and yield components viz., plant height, 

panide length, panicle weight, primary branches and yield per plant were recorded 

in the two crosses, S,xR, and S,x%, grown in the yield trial experiment. Means, 

SEs, and variances of the families were estimated in different crosses. In different 

crosses frequency distributions of all the families were worked out. 

Genemtlon mean analysls: Generation mean analyses were camed out on 

original and where necessary on transformed data. Square root transformation was 

applied to the variables FGS and TGS, and angular transformation was applied to 

the vatiables percentage sprouting and percentage glume cover. Genetic effects of 

the generation means were estimated by a weighted least square regression 



(WLSR) analysis (Cavalli, 1952; Hayman,1958) using the notation and definition of 

Mather and Jinks (1 977; pp 36-67). 

Since generation means of parents and progenies were estimated with equal 

percision, each generation was weighted by the variance of the mean for that 

generation. The equation fitted for Least Square Regression was 

Y = E B + E  

Y = Vector of generation means = [ PI, P,, F,, F,, BC,, BCJ' 

= Coefficient matrix 

B = Vector of parameter = [m d h i j I]' 

E = Enov vector 

Where m = mean, d = additive effects, h = dominance effects, i = additive x additive 
interactions, j = additive x dominance interactions, I = dominance x dominance 
interactions. 

The coefficient matrix is 

Generations Parameters 

stimates of genetic parameters were derived from the equation 



P = ( XT W1 X).' (XT W1 )Y 

Where XT = Transpose of X 

@ = Vector of estimates of parameter 

W = Diagonal matrix for weights 

= diag[s2,,,s2,,s2,, ,s2,,,s2,,s2,J 

W' = Inverse of weight matrix, W 

Suitability of the genetic model was judged by its RZ value and by the model- 

associated F-statistic which indicates whether a statistically significant relationship 

exists between the genetic effects and the genetic means. Significance of estimates 

of genetic parameters were tested by 1-test. Step-wise regression was followed in 

an attempt to obtain the best possible regression for the given set of response and 

explanatory variables. Initially the method starts by fitting a one-term model by 

introducing the variable that had largest correlation with the response variable. 

Subsequently, it adds new variable which has largest partial F-statistic or which 

minimized the residual mean squares or improves R2. At each stage it tries to avoid 

a variable or drop a variable whichever improves RZ. The current model is modified 

by the best term according to the criteria based on variance ratio. Suppose that the 

residual sum of squares and residual degrees of freedom for current model are So 

and Do and after making a one-term change S, and D,. If the variance ratio for any 

term that is dropped is greater than the value of a preset outratio, the term that most 

reduces residual mean square is dropped i.e., a term is dropped if at least one 



term has 

[(S,-SJ/(D,-DJ] 1 (S,jDJ> Outratio 

If no term satisfies the criteria for dropping, then the term that most reduces the 

residual mean square is added to the model if the variance ratio is 

[(So-S,)/(D,-D,)] J (S,/D,) > lnratio 

If neither criterion is met, the model is left unchanged and is deemed as the optimal 

model. Generally outratios and inratios are taken to be 4, which corresponds 

roughly to the upper 5% point of the F distribution. For the variables, seed colour, 

percentage glume cover and percentage sprouting, observations recorded from 

some generations were constant and hence the variances were zero. The usual 

weights for these variables will be infinite, so normal scaling test cannot be applied. 

Hence unified theory of least square (Rao, 1973) was used for estimating these 

parameters. 

Similarly estimates of genotype x environment interactions were calculated by 

weighted least square regression analysis as described above, on the two years 

Pooled data of six crosses. 



The coefficient matrix for genotype x environment: 

Generations Years Parameters 
.....) 

[ml [crl [hl [el [exdl 
p , 1995 1.0 1.0 1.0 1.0 
P, 1996 1.0 1.0 -1.0 -1.0 
"2 1995 1.0 -1.0 1.0 -1.0 

1 P, 1996 1.0 -1.0 -1.0 1.0 
/ F, 1995 1 .O 1.0 1.0 
/ F, 1996 1 .O 1.0 -1 .O 
j BC, 1995 1 .O 0.5 0.5 1.0 0.5 
j BC, 1996 1.0 0.5 0.5 -1 .O -0.5 
/ BC, 1995 1 .O -0.5 0.5 1.0 -0.5 
1 BC, 1996 1.0 -0.5 0.5 -1 .O 0.5 

F, 1995 1 .O 0.5 1 .O 
Fa 1996 1 .O 0.5 -1.0 

- >  

j 
[exh] 

Where m = mean, d = additive effects, h = dominance effects, e = environment 
effects, exd = environment x additive interactions, exh = environment x dominance 
interactions. 





4 RESULTS 

4.1 PERFORMANCE OF SORGHUM GENOTYPES FOR GRAIN MOULD 

RESISTANCE AND MORPHOLOGICAL CHARACTERS 

A list of the 22 genotypes studied with anallary data is given in Table 2. The means 

of these genotypes for different variables recorded are sumrnarised in Table 4. 

4.1.1 Means 

Fleld Grade Score (FGS): The various genotypes screened under sprinkler 

irrigation recorded mean scores of 1 to 5 for FGS. The genotypes, IS 14375, IS 

14387, IS 18144, IS 18528, IS 24495, IS 25017, SP 33487, and 858586, recorded 

mean FGS scores of 1.3 to 3.0 and thus were ciassitied as resistant (Plate 2). The 

genotypes, 2968, SPV 475, SPV 462, MS 4228, AKMS 148, AKR 150, and R 141 3, 

showed mean FGS scores of 4 to 5 and were considered as susceptible (Plate 3). 

The remaining 7 genotypes gave moderate FGS mean scores of 3.1 to 3.9 and 

were considered as moderately resistant. 

Threshed Gmde Score VGS): Means of the genotypes screened for this variable 

ranged from 1.9 to 5. Genotypes, viz., 2968, SPV 462, SPV 475, MS 4228, AKMS 

14B9 M R  150, R 1413, SP 33487, GM 15373, TNS 30 and GMRP 13 with mean 
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Table 4. Means of different variables In 22 sorghum genotypes. 

ASMS 148 
2968 
AKR 150 
MS 4228 
R 1413 
IS 14375 
IS 14387 
IS 18144 
IS 18528 
IS 24495 
IS 2501 7 
SP 33316 
SP 33349 
SP 33487 
GM 15018 
GM 15373 
TNS 30 
858586 
GMRP 13 
IS 21443 
SPV 462 
SPV 475 
Mean 
S h  
C V ( O / O )  

FGS TGS %GER ERGO G-PHEN G-PHEN' S-PHEN 
we) 

28.3 70.8 113.3 70.0 41.7 
6.4 253.6 73.3 81.7 40 0 

35.4 170.1 106.7 90.0 76.7 
52.9 92.3 216.7 186.7 116.7 
18.3 134 0 166.7 116.7 73 3 
89.5 13 9 123.3 186.7 160 0 
94.7 5.7 146.7 240 0 333.3 
90.3 10.9 200.0 233 3 580.0 
83.8 17.6 170.0 203.3 288.3 
80.6 12.3 116.7 130.0 74.0 
89.3 44.5 143.3 100.0 76.7 
68.3 40 9 216.7 216.7 53.3 
77.8 16 0 310.0 223.3 126.7 
45.9 38 6 3100 2167 1767 
63.4 55 5 200.0 1667 51 7 
34.8 29.9 176.7 151.7 86 7 
57.4 45.2 193.3 116 7 90 0 
84.2 25 1 46.7 33 3 76 7 
27.2 109.8 150.0 1517 600  
85.4 34 4 63.3 43 3 46 7 
44.6 102.4 96.7 103 3 63 3 
21.8 177.9 173.3 136 7 58.3 
58.2 68.2 159.7 144.2 125.0 

6 1  1 9 0  20.3 2 3 5  17.8 
183  4 8 4  2 2 0  2 8 2  24.7 

S-PHEW G-FLAV SRAV 
(A554 9.1 i 0 4 1 )  

FGS = Field QRQ awe. TOS . Ttvehod grade score. %GER = Germlnabon ERGO = ErgosWd. G.PHEN = Glume p h d ,  0. 
PHEW O l m  phnolm .cd melhsnd, S.PHEN. Seed phend. S PHEN' =Seed phend in aud methanol. G R A V  = Glumr Ibvn. 
4.46. S.FLAV. Sssd k m . 4 . d r .  S.HRD Seed hardness. DF . Days co flower HT = Plant hulght YD PL = Y~dd.plmt. %G.COV 

Glume cover. QLCL . Glum@ cobur, SDCL = Seed mlouc. GLINDX = Gldma ~nde: 



Table 4 Contd. .. 

Genotype S-HRD DF HT YDIPL %G-COV GLCL SDCL GLINDX 
( S L L  I 4-4 (cm) (g) 

~ s M S 1 4 8  4 1 7  56 1390 5 6 0  2 5 0  1 1 1 5  
2968 3 05 66 1290 7 0 5  2 5 0  1 1 1 1  
AKR150 3 6 1  60 1418 7 2 2  5 0 0  1 1 2 2 
MS 4228 4 55 61 1557 7 9 2  5 0 0  4 1 2 6 
R 1413 3 9 8  72 1521 7 4 2  2 5 0  1 1 2 6 
IS 14375 6 47 69 295 3 59 6 50 0 5 3 1 6  
IS 14387 6 78 61 250 1 56 4 50 0 5 5 2 4 
IS 18144 4 65 59 222 3 39 7 75 0 5 3 2 5 
IS 18528 5 07 58 203 4 37 4 75 0 5 5 2 5 
1s 24495 5 39 51 2178 2 9 7  2 5 0  1 1 2 0 
IS 25017 5 70 73 285 6 78 5 50 0 5 1 1 6  
SP33316 4 9 0  60 1783 5 9 3  2 5 0  3 1 1 6  
SP 33349 5 66 58 1760 5 2 8  5 0 0  3 3 1 5  
SP 33487 4 05 62 1325 7 7 5  5 0 0  2 5 1 6  
GM 15018 4 5 9  59 1634 9 0 0  2 5 0  2 1 1 3  
GM 15373 4 96 57 1592 5 1 7  2 5 0  4 1 1 3  
TNS 30 4 28 69 2150 6 9 2  5 0 0  1 1 1 0  
858586 6 04 67 295 5 59 8 50 0 1 1 2 0 
GMRP 13 3 7 9  70 2188 92 3 4 0 0  1 1 1 6  
IS21443 5 16 63 265 6 49 7 90 0 1 1 1 3  
SPV 462 4 22 70 2370 1067 2 5 0  1 1 1 6  
SPV 475 3 09 70 1949 8 4 8  5 0 0  1 1 1 3  
Mean 4 73 63 2013 6 6 3  4 4 1  2 3  1 6  1 8  
S E i  0 36 1 1 1 2  6 5  4 0  0 4  0 3 0 1 
CV(%) 13 30 3 7 9  1 3 9  4 2 2  7 3 3  79 0 28 9 

FGS = F ~ d d  gnde 8mm TGS . Thmrhed gnde %ore XGER = Getm~nabon ERGO = Ergostotol G PHEk = Oume phOod G 
PHEW = G i w  phnd m md m r h l  S PHEN . Seed phend S PHEN' = Svod phend In oud memami G FLAV - Giume nevan 
4 ds S FUV - Sed h n n  4 dc S HRD . Seed hwchm$ DF = Days lo  Howor HT = Plant b q h t  YD PL = Y~ddphnt %G COV 

G1un-e CQVOI QLCL . CYuru cobur SDCL . SPOd mbu GLINDX = Glume ~ndex 

- - 



Piate 2. Panicles of grain mould resistant sources. 
A: coloured grain sources; R1 = IS 14375 , R2 = IS 

14387. 
8: White grain sources; R7 = 858586, R8 rr IS 

21 443. 



Plate 2 



Plate 3. Panicles of grain mould susceptible sources; S, = 
AKMS 148, S, = MS 4228, S, = R 1413, S, r AKR 150 





TGS of 4 to 5 showed maximum susceptibility to grain mould. On the other hand, IS 

14375, IS 14387, IS 181 44, IS 18528, IS 2501 7, 058586, and IS 21 443, recorded 

mean TGS of 1.9 to 3, exhibiting high resistance to grain moulds. 

Gemlnatlon percentage (%GER): Means for seed germination varied from 6 to 

94% with 2968 being most affected by grain moulds and recording least (6%) seed 

germination (Plate 4). The genotypes with coloured grain, viz., IS 14375, IS 14387, 

IS 18144, and IS 18528, showed high mean %GER, indicating negligible damage 

caused by grain moulds (Plate 5). Wh~te grain lines, IS 25017, IS 24495, IS 21443 

and 858586, also showed high mean seed germinat~on (80 to 90%) atthough some 

of them showed moderate mean values for FGS and TGS. 

Ergostem1 (ERGO): The mean quant~ty of ergosterol In different l~nes ranged from 

5 to 253 mg gseed' The line 2968 showed maxlmum ERGO content of 253 mg 

gseed' whlle IS 14387 had mlnimum content of 5 mg gseed' Fig 1 dep~cts 

chromatographs ~ndicating the d~fferent quant~tles of ERGO In suscept~ble and 

res~stant genotypes. Genotypes IS 14375, IS 14387, IS 18144, IS 18528, IS 24495, 

IS 25017, 858586 and IS 21443, recorded low ERGO contents of 5 to 45 mg 

W e d ' .  On the other hand, genotypes 2968, SPV 462, SPV 475, AKR 150, MS 

4228 and AKMS 148, recorded high ERGO contents ranging from 70 to 253 mg 

gseed '. 





Plate 5. Seed and germination in grain mould resistant parents. 
R, = IS 14375, R,= IS 14375, R, = 858586 and R, = 
IS 21443. a = Seed, b = Seed germination. 



Plate 5 



8: Resistant Lines (9 to 15): 

Fig f Chromatograms of ergosterol in grain mould susceptible and resistant lines of sorghum. 



Glume phenols: In different genotypes glume phenols in methanol extracts (G- 

PHEN) and acid-methanol extracts (G-PHEN') ranged from 33 to 310 mg gseed". 

The line SP 33487 recorded the maximum phenol content of 310 mg gseed', while 

858586 recorded the minimum content of 33 mg gseed'. Eight lines, viz., SP 

33349, SP 33487, SP 33316, IS 14387, IS 14375, IS 18144, IS 18528, and GM 

1501 8, were characterised by high phenol contents of 123 to 31 0 mg gseed'. Other 

lines, 2968, SPV 462 and IS 21443, showed moderate phenol content of 40 to 100 

mg gseed '. 

Seed phenols: The lines showed w~de variation for seed phenols In both methanol 

(S-PHEN) and acid-methanol (S-PHEN') extracts ranging from 36 to 580 mg 

gseed'. The genotype IS 18144 showed the maximum seed phenol content of 580 

mg gseed', while 2968 showed the least content of 36 mg gseed'. Certain other 

lines, viz., IS 14375, IS 14387, IS 18144, IS 18528, and SP 33487, showed high 

content of seed phenols ranging from 160 to 580 mg gseed'. 

Glume flavan-4-01s (G-FLAV): In a very few genotypes, v e ,  IS 14375, IS 18144, 

IS 18528, SP 33316 and SP 33349, glume flavan-4-01s were detected. The line IS 

18528 recorded the h~ghest level of glume flavan-4-01s. 



Seed flavan-4-01s (S-FLAV): Except SP 33316, all other lines having G-FLAV also 

developed flavan-4-01s in their seeds. Here also IS 18528 recorded the highest 

content of seed flavan-4-01s. 

Seed hardness (S-HRD): The seed of varlous genotypes, harvested from kharif 

crop, took 3.0 to 6.78 sec to grind a standard volume. Eight lines, IS 14375, IS 

14387, IS 18528, IS 24495, IS 25017, SP 33349, 858586 and IS 21443, were 

relatively hard seeded taking 5 to 6 sec to grind, while 2968 and SPV 475 took only 

3 sec to grind. 

Days to flower (OF): Among genotypes DF vaned from 51 to 73 days to reach 

50% flowering. Lines IS 24495, AKMS 148, IS 18144, IS 18528, SP 33316, SP 

33349, GM 15018 and GM 15373, were found early flowering (51 to 60 days), and 

MS 4228, IS 14387, SP 33487, and IS 21443, were medium flower~ng (61 to 65 

days); whereas 2968, R 1413, IS 14375, IS 25017, GM 15373, 858586, SPV 462 

and SPV 475, were late flowering (66 to 73 days). 

Plant height (HT) and grain yield plant' (YD,'PL): Plant height of the genotypes 

ranged from 129 to 295 cm and the grain yield varied from 29 to 106 g plant '.  Grain 

yields of SPV 462, SPV 475, 2968, AKR 150, MS 4228, R1413, IS 25017, SP 

33487, GM 1501 8 and GMRP 13, were very high ranglng from 70 to 106 g plant '. 



Glume cover (% GZOV): Glume cover on the seed varied from 25 to 90%. Three 

lines, IS 21443, IS 18144, and IS 18528, showed maximum glume cover of 90%, 

75% and 75% respectively, on the seed. 

Glume colour (GL- CL): Eleven genotypes, AKMS 148, 2968, AKR 150, R 141 3, 

IS 24495, TNS 30, 858586, GMRP 13, IS 21443, SPV 462 and SPV 475, had straw- 

coloured glumes (score I ) ,  whlle seven genotypes, MS 4228, IS 14375, IS 14387, 

IS 18144, IS 18528, IS 25017 and GM 15373, showed dark glumes (4 to 5 score). 

The remaining four genotypes, SP 33316, SP 33349, SP 33487 and GM 15018, had 

light coloured glumes (2 to 3 score). 

Seed colour (SO-CL): Most of the genotypes, except IS 14387, IS 18528, SP 

33349. IS 14375 and SP 33487, were found white seeded 

Glume index (GL-INDX): Among genotypes, the glume Index vaned from 1 . I  to 2.6 

exhibiting a wide range of length 1 breadth ratlo. 

4.1.2 Correlations 

Conelatlons between ditlerent characters: Correlation coefficients estimated 

between 17 characters recorded on 22 genotypes are given \n Tabie 5.  Field grade 

Score (FGS) showed strong positive correlations w~th threshed grade score (r = 



Table 5. Correlations between different variables in 22 sorghum genotypes 

1. FGS 1.000 

2. TGS 0.929' 1.000 

3. XGER 4.843 '-0.905' 1 .MX) 

4. ERGO 0.777' 0.742'4 826' 1.000 

5. G-PHEN -0.167 0 037 -0.037 -0.272 1 000 

6. G-PHEN'4.513'4.403 0.31 1 -0.402 0.758' 1.000 

7. S-PHEN 4.597'4 608' 0.485'-0.420' 0.261 0.642' 1.000 

8. S-PHENv-0.682'4 602' 0.518'-0.536' 0 349 0.722' 0 774' 1 000 

9. G-FLAV -0 446'4.491' 0.422'4.369 0.301 0.505' 0 396 0 516' 1 000 

10 S-FLAV -0.403 4.428' 0 385 -0.335 0.269 0 453' 0 408 0 554' 0.918' 1.000 

11. S-HRD -0.786'4.828' 0.861--0.806'-0.041 0 259 0 295 0 483' 0 313 0 304 1 000 

12. DF 0.141 0.251 4.225 0.366 4.21 5 -0 304 -0 243 -0.168 4.262 -0.256 -0 169 1 .OOO 

13. HT -0 597'-0 638' 0.700'-0.482'-0.422W.136 0 175 0.225 0.089 0 081 0 674' 0 375 1 000 

14. YDfPL 0 498' 0 625'-0.509' 0 532' 0 014 -0 184 -0 461'-0.338 -0 497'-0 467'-0 469' 0 624'-0.123 1.000 

15 G-COV -0 495'-0.504' 0 560'-0 364 0 036 0.154 0 530' 0.448' 0 360 0 433' 0.279 0 028 0.451' -0.394' 1.000 
'L 

16. GLCL -0 753'-0 729' 0.612'-0.559' 0 243 0 612' 0.655' 0.685' 0.573' 0 521' 0 616'-0 121 0.351' -0.437' 0.333 1.000 

17. SDCL -0 659'-0.528' 0 423'-0.444' 0 425' 0.704' 0 683' 0.921' 0 548' 0 629' 0 387 -0 225 0.066 -0.355 0.447' 0.615' 1.000 

18. GL-IN -0 188 -0.290 0 256 -0.166 0.041 0.334 0.551' 0 460' 0 245 0 278 0 228 -0 194 0 024 -0.254 0.203 0 245 0.356 1 000 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

* Siqnlcant a1 p - 0 05 



0.93) and ergosterol content (r = 0.78), and strong negative correlations with 

germination percentage (r = - 0.84), seed hardness (r = - 0.79), glume colour (r = - 

0.75), and seed colour (r = - 0.66). Field grade score also showed significant 

negative correlations with acid-methanol extract of glume phenols (r = - 0.51), seed 

phenols (r = -0.59), flavan-4-01s in glumes (r = -0.45), and percentage glume cover (r 

= -0.50). Also, FGS showed significant positive correlation (r = 0.50) with grain yield 

plant'. 

Similarly, threshed grade score (TGS) showed strong positrve correlations with 

ergosterol content ( r  = 0.74) and grain yleld (r = 0.63). In contrast. TGS showed 

strong negatlve correlat~ons with seed hardness (r = -0.83), glume colour (r = -0.73), 

and seed phenols (r = -0.60 and -0.61). It also showed significant negative 

correlations w~th seed colour, glume coverage and glume flavan-4-01s. 

Percentage seed germination revealed strong positive correlations with seed 

hardness (r = 0.86), glume colour (r = 0.61), plant height (r = 0.70), and seed 

phenols (r = 0.49 and 0.52). Like FGS and TGS, ergosterol content also revealed 

strong negative correlat~ons with seed hardness (r = -0.81), glume calour (r = -0.56) 

and seed phenols (r = -0.54). 

Glume and seed phenol contents, in general, showed high positive correlations with 

glum0 colour and seed colour. The content of glume flavan-4-01s showed moderate 



positive correlations with seed and glume colours. Seed hardness showed 

significant positive correlations with plant height (r = 0.67) and glume colour (r = 

0.62). 

lntragroup correlations: The 22 genotypes were grouped based on characteristics 

such as seed colour, glume colour, and seed hardness (Table 6). The correlations 

of FGS and TGS with other characters were computed within different groups, and 

the estimates of intragroup correlations are given in Tables 7 and 8. 

In the coloured seed group, both FGS and TGS showed strong negative correlations 

with glume phenols and glume colour. Likewise In the whlte seed group, both FGS 

and TGS showed srgnlficant negative correlatlons with grain hardness. Also in lines 

with straw glumes, both fleld grade score and threshed grade score stiowed strong 

negative correlation (r = -0.78 and r = -0.87) with seed hardness. In the coloured 

glume lines, TGS showed slgnlf~cant negatlve correlations with seed hardness and 

glume colour. In the soft seed lines, FGS and TGS exhibited high negative 

correlations with glume colour. In the hard seed Ilnes, FGS and TGS showed 

significant negative correlations with seed phenols and seed hardness. 

Coflelatlons In the F, genemtlon: Estlmatlon of correlatlons In the cross between 

straw glume (SJ x purple glume (R,) revealed (Table 9) that FGS and TGS show 
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Table 6. Grouplng of sorghum genotypes based on morphological characters. 

Genotype Seed colour Glume colour Seed hardness 

AKMS 148 
2968 
AKR 150 
MS 4228 
R 1413 
IS 14375 
IS 14387 
IS 18144 
IS 18528 
IS 24495 
IS 2501 7 
SP 33316 
SP 33349 
SP 33487 
GM 15018 
GM 15373 
TNS 30 
858586 
GMRP 13 
IS 21443 
SPV 462 
SPV 475 

Seed colour + = coloured seed, Glume cobur + - coloured glume, Seed hardness + = hard seed 
Seed colour - - white seed, Glurne mlour - = straw glurne, Seed hardness - = soft seed. 



Table 7. Correlatlon matrix In dlflerent sorghum llnes for Fleld Grade Score. 

Char 22 Lines Lines with Lines with Lines with Lines with Lines with Lines with 
coloured white straw coloured hard soft 
seed seed glume ylume seed seed 

ERGO 0 777' 0.547 0.753' 0.729' 0 664' 0512 0 721' 

G-PHEN -0.167 0 941' 0004 0 315 0 449 0.084 -0 706' 

G.PHEN' -0.513' 0 173 0.223 0 315 -0.450 -0.532 -0 827' 

S.PHEN -0 597' -0 310 -0.039 0 097 -0 607 -0.693 -0.667' 

G-FLAV -0.446' 0 208 .0.217 0 000 -0 172 -0 195 -0.518 

S.FLAV -0.403 0 319 0 000 0 000 -0 21 1 -0 127 -0.595' 

S-HRD -0.786' -0 605 -0.807' .O 783' -0.582 -0.757' -0.521 

FGS. F l d d g ~ d e  I-, T a .  nn,t,.,jq& -. XGER. G e m u ~ b ~ .  ERGO- Ergosieml. G PHEN- Olwns phend. G-PHEW. 
phenol m .Cd mhvpl. S PHEN. S.ed ph.noi. S.PHEN'. S.ed phenol m .ad memad. G.FUV- Okrm hvan.4.ok. S. 

Fuvz SeedIlavn.l.ols. S.HRD. - m u ,  D F . b y ' & b r .  HT. P*nlh.~ghl. YDPL. Y&i'Pbt.%G.COV- O k r m 0 ~ ~ .  
GLCL- Qlume cdwr,  SDCL. S..d cdour. OLINDX. OIume ncbr 
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Table 8. Correlation matrix In different sorghum llnes for Threshed Grade Score. 

Char 22 Lines Lines with Lines with Lines with Lines with Lines with 
coloured white straw coloured hard 
seed seed glume glume seed 

TGS 1.000 1.000 

%GER -0.905' -0.935' 

ERGO 0.743' 0.870' 

G-PHEN 0.037 0.935' 

G-PHEN' -0.404 0.036 

S.PHEN -0.608' -0.488 

S-PHEW -0.602' -0.446 

G-FLAV -0.490' -0.151 

S-FLAV -0.428' -0.070 

S-HRD -0.828' -0.663 

DF 0.251 -0.252 

HT -0.637' -0.918' 

YDlPL 0.625' 0.559' 

G-COV -0.509' -0.300 

GL-CL -0.729' -0.974' 

SD-CL -0.528' 0.200 

GL-INDX -0.290 -0.588 

'Significant at p = 0.05 

Lines with 
soft 
seed 

T@=Threshed grade score, XGER-Germinatim, ERGO=Ergosterd, G-PHEN-Glum phenol, G-PHEW- Glume phenol In acid 
mehnol, S.PHEN=Seed phenol, S.PHEN4=Seed phenol in add mehmol, G-FLAV=Glume Ilavan.l.ds, S-FLAV=Seed flavan-4-ds, 

HRD=Seed hardnors, DF-days to Rower. HT-Plent height, YDIPL-Yiddcplsnt, %G.COV=Glurne covet, GLCL-Glume cdour, 
SDCL=Swd wbur ,  GLINDX=Glume index. 





high negative correlations with glume C O ~ O U ~  (r = -0.40 and -0.49, respectively) and 

low negative correlations with seed colour (r = -0.1 8 and -0.29, respectively). 

Also, Figs 2 and 3 illustrate the relations of field grade score and threshed grade 

score with glume colour in different families of the cross straw glume (S,) x coloured 

glume (R,). In P,, BC, and F, families, the FGS and TGS values decreased as the 

intensity of glume colour increased. Obviously, both FGS and TGS are negatively 

associated with glume colour. 

4.2 GENERATION MEAN ANALYSIS FOR GRAIN MOULDS IN DIFFERENT 

CROSSES OF SORGHUM 

Sorghum genotypes utilised in the crossing programme and their ancillary data are 

given in Table 3 and Plate 6. 

4.2.1 Field grade score (FGS) 

Family means: Mean values for field grade score of the parents, F,, F,, and 

backcross generations raised during 1995 kharif, are given in Table 10. The mean 

values for FGS of susceptible lines S,, S, and S,, were consistently high over the 

Years. They ranged from 4.6 to 4.9, on a scale of 1 to 5 where 1 = no moulds and 5 

= more than 50% moulds, during 1994 (Table 4) and were consistently high during 
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Figure 2. The relation of field grade score with glume colour in 
different families of the cross S, (P,) x R, (P,). 



Figure 3. The relation of threshed grade score with glume colour in 
different families of the cross S, (PI, x R, (P,). 
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Plate 6. A - Grain mould susceptible sources utilised in crossing 
programme; AKMS 14B, MS 4228 and AKR 150. 

B - Grain mould resistant sources utilised in crossing 
programme, IS 14375, IS 14387 and IS 25017. 



Plate 6 



Table 10. Means of the six families for field grade score in different crosses of sorghum during 1995. 

Families S,xR, S$R, S,xRl 

BC, M 3.69 2.89 3.24 
SE 0.26 0.20 0.19 

M = Mean, SE = Standard error. 



1995 and 1996 (8.30 to 9.00 and 8.63 to 8.97, respectively), on a scale of 1 to 9 

where 1= no moulds and 9 = 75% moulded (Tables 10 and 11). The lines S, and S, 

showed moderate resistance during 1994 (scores 3.1 to 3.3 on a scale of 1 to 5 ) but 

showed high mean value during 1995 (7.37 to 8.50 on a 1 to 9 scale). Two resistant 

lines, R, and R, consistently showed low mean values for FGS over the years. Field 

grade scores varied from 1.4 to 1.6 (scale of 1 to 5) during 1994, 2.20 to 2.87 during 

1995, and 2.97 to 3.93 during 1996, (scale of 1 to 9 was used during 1995 and 

1996). The white resistant source, R,, recorded a mean value of 2.83 on a scale of 

1 to 5 during 1994, but became susceptible during 1995 (mean values varied from 

7.63 to 8.20). However R, showed low resistance with mean FGS values ranging 

from 6.23 to 6.40 during 1996. 

In seven out of ten crosses evaluated during 1995, the F, means were significantly 

different from that of P, (susceptible parent) and P, (resistant parent), but they 

tended towards the resistant parents. The F, means were significantly different from 

those of the other five generations and tended towards the resistant parents. The 

means of BC,, in general, tended towards the PI, whereas the means of BC, were 

greater than that of P, but less than that of BC, and PI. 

The remaining three crosses, R,xR,, S,xR, and R,xR,, showed different patterns. In 

R,xR,, the mean values of P, and P, were not significantly different and there was 

little variation in the means of F,, F,, BC,, and BC,. In S,xR,, the mean values of P, 



and P, were significantly different; the mean value of F, was equal to the mid-parent 

value, and the BC, mean was equal to that of P,. In R,xR,, the mean value of PI was 

less than that of P, while mean values of F, and BC, were similar to that of PI 

parent. However, the F, mean was significantly different from those of all other 

generations, while the mean values of BC, and F, tended towards P,. 

The list of crosses tested during 1996 is shown in Table 3. The family means of 

different crosses, grown during 1996, for field grade score, are given in the Table 11. 

In four crosses, S,xR,, S,xR,, S,xR3, and S,xR, the F, means were significantly 

different from the mid-parent value and tended towards the more resistant parent. In 

the cross, S,xR,, the mean values of BC, and BC, were not significantly different. In 

two crosses, S,xR, and S,xR,,, the F, means were less than those of both the 

parents. Also, the mean values of BC, and BC, were less than those of recurrent 

parents. In S,xR,, the F, was similar to that of BC,. Whereas in S,xR,,, the F, mean 

was similar to that of BC,; in this cross, the mean values of F,, BC,, BC,, F, were 

greater than those of both the parents. In R,xR3, the mean values of F,, F,, BC,, and 

BC, tended towards the R,, the more susceptible of the two parents. 

Frequency distributions; Frequency distributions for field grade score (FGS) of PI,  

P,, F,, BC,, BC,, and F, families of ten crosses grown during 1995 are depicted in 

Figs 4 to 6. In five crosses, S,xR,, S,xR,, S,xR,, R,xR,, and S,xR, (Figs 5 and 6), the 

F, distributions showed bimodal pattern. The F, distributions, in general, were 





2 i 6 S 
Field Grade Score 

6 7 6 9 

Field Grade Score 

Figure 4. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for FGS (1995). 
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Figure 5. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for FGS 11995). 
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Figure 6. Frequency distributions of PI, P,, F,, F,, BCl and BC, 
families in different crosses of sorghum for FGS (1995). 



skewed towards the resistant parents (P,). The distributions in BC, were somewhat 

similar to that of F,. Also the distributions of BC, and BC, tended to overlap. 

In the white susceptible (S,) x white resistant (R,) cross, the F, and F, distributions 

were skewed towards the susceptible P, parent (Fig. 5). Further the distribution in 

BC, was similar to that of F,. In the red resistant (R,) x brown resistant (R,) cross, 

the F, distribution was unimodal (Fig. 5). In this cross the distribution of BC, was 

similar to that of P,, and an overlapping of BC, and BC, was observed. 

The F, distributions in four crosses, S,xRl, S,xR, S,xRl and S,xR,, were more or less 

bimodal with modes in the range of 2 to 4 (Figs 5 and 6). The distributions showed 

an extended tail towards higher (more susceptible) scores, with small peaks forming 

a second mode in the range of 6 to 8. The F, and F, distributions were skewed 

towards the resistant parent. 

Figures 7 and 8 depict the frequency distributions of different families, for field grade 

score, in different crosses of sorghum evaluated during 1996. The F, distributions 

were found unimodal in the crosses, S,xRl, SlxR3, S,xR, and R,xR3, bimodal in one 

cross, R,xR,, and exponential in three crosses of S,xR,, S,xR, and SlxRl,. The F, 

distributions were skewed towards the parent with the greater resistance, and the 

distribution of BC, overlapped with that of BC,. 
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Figure 7. Frequency distributions of P,, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for FGS (1996). 
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Figure 8. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for FGS (1996). 



Segregation pattern: Estimates of gene number and mode of inheritance were 

determined from the analysis of segregation patterns of F, and BC, populations, and 

the results are summarised in the Tables 12 and 17. In different crosses, 

segregation ratios in F, and BC,, for FGS and TGS, were almost similar. The 

segregation patterns in F, and BC,, for field grade score in various crosses between 

susceptible x resistant lines, are described below. 

(i) White susceptible x red resistant (R,) crosses: In three crosses, SlxRl, S,xRl 

and S,xRl the observed F, segregation pattern showed good fit to the 9 resistant 

(R):7 susceptible (S) ratio. The BC, populations segregated into 1 R:3S ratio. These 

results may be explained by a model of two major nonallelic genes with duplicate 

recessive epistasis (Plate 7). 

In S&R,, the F, population segregated into 181 resistant : 44 susceptible plants 

which showed good fit to 53:11 ratio. Further, the segregation of BC, population 

conformed to the 1 R:1 S ratio (Tables 12 and 17). The F, segregation indicates the 

involvement of three major nonallelic genes. 

(ii) White susceptible x brown resistant (R,) crosses: In S,xR,, the F, segregation 

fitted to the modified trigenic ratio of 39R:25S, suggesting interaction among 

three independently assorting gene pairs (Table 12 and Plate 7).  



Table 12. Segregation ratios for field grade score of F, and backcross populations derived from crosses of susceptible x reslstant 
l3-'mw=- 

Cmss Generation Resistant Susceptible Ratio X' Probability 
 genotype(^) genotype(S) 

R = Resistant. S = Susceptible. 



Plate 7. Parents and F, of white susceptible x coloured resistant crosses, 
A. White susceptible (AKMS 148, resistant F, and coloured 

reslstant (IS 14375). 
B. White susceptible (MS 423B), coloured resistant F, and 

coloured resistant (IS 14387). 





In S$R,, the F, progeny segregated into 156 resistant : 69 susceptible plants which 

fitted to the 45R:19S ratio, indicating interaction among three major nonallelic genes. 

Also, the segregation pattern in the BC, fitted to the 1 R:l S ratio (Table 12). 

The F, population of S,xR,, segregated into 82 resistant : 143 susceptible plants 
R 

which conformed to the modified trigenic ratio of 27:37, indicating interaction among 

three nonallelic gene pairs (Table 12). Further, the segregation pattern of BC, 

population fitted to the1 R:7S ratio. 

(iii) Brown resistant (R,) x white resistant (R,) cross: In the F, population of this 

cross, 93 resistant : 132 susceptible plants were scored (Table 12). This 

segregation pattern fits to the modified trigenic ratio of 27:37, suggesting 

complementary interaction among three nonallelic genes. The segregation pattern 

in the BC, conformed to the 1 R:7S ratio. 

Red resistant (R,) x brown resistant (R,) cross: In this cross, the F, population 

segregated into 190 resistant : 20 susceptible plants, which showed good fit to the 

trigenic ratio of 57:7 (Table 12). This modified ratio indicates complex interaction 

among three major genes; the segregation pattern in the BC, population fitted to the 

3R:l S ratio. 



Generation mean analysis: Estimates of genetic effects for field grade score, 

recorded during 1995, are given in the Table 13. The R2 values obtained in ten 

crosses were very high (84 to 100°/~), indicating that the model was a good fit. 

Estimates of additive gene effects [dl were found significant in all the ten crosses. In 

five of the crosses, SpR,, S,xR,, S,>.:R2, S,xR2 and RlxR2, significant negative 

dominance gene effects [h] were observed. In these crosses, the estimates of 

additive gene effects were greater than the estimates of dominance gene effects. In 

general, dominance x dominance gene interactions [I] were found exclusively in the 

crosses where dominance effects were absent. In three crosses, S,xR,, S,xR,, 

S2xR2, significant additive x dominance interactions Lj] were observed. 

Estimates of genetic effects for field grade score in different crosses grown during 

1996 are given in the Table 14. Significant additive gene effects were observed in 

all crosses except R,xR2. In contrast, significant negative dominance gene effects 

were observed in only two of the eight crosses studied. Among interaction effects, 

additive x additive interaction was found most frequent in all but one cross. 

However, in five crosses additive x dominance gene effects were greater in 

magnitude and were in the opposite direction. 

4.2.2 Threshed grade score (TGS) 



Table 13. Estimates of gene effects for field grade score in different crosses of sorghum during 1995. 

Cross S1xR1 S$Rl 

Iml 5.198' 4.732' 

significant at p = 0.05 





Family means: The mean value of susceptible lines S,, S, and S, were consistently 

high within and over the years 1994, 1995 and 1996. Mean values of three lines 

ranged from 4.7 to 4.9 on a scale of 1 to 5 where 1 = no mould and 5 = > 50% 

mould during 1994 (Table 4). They were also consistently high during 1995 and 

1996, ranging from 7.97 to 8.93 and 8.30 to 8.57, respectively, on a scale of 1 to 9 

(Table 15 and 16). Two lines, S, and S, were moderately resistant during 1994 

(scores 3.3 to 3.47 on a scale of 1 to 5), but showed high mean values during 1995 

(7.20 to 7.83 on a scale of 1 to 9). On the other hand resistant lines Rl and R, 

consistently showed low TGS values within and over the years. TGS values varied 

from 1.87 to 1.91 on a scale of 1 to 5 during 1994, and from 2.00 to 2.43 on a scale 

of 1 to 9 during 1995. TGS values were slightly higher (2.50 to 3.47) during 1996 

compared to previous years. The white resistant source (R,) recorded a mean value 

of 3.1 on a scale of 1 to 5 during 1994 but became susceptible during 1995 with 

TGS values ranging from 7.43 to 8.03. However, it showed a moderate mean value 

of 5.60 to 5.63 during 1996. 

Mean values of six families in different crosses, grown during 1995, for threshed 

grade score are given in the Table 15. In all the crosses, except S,xR,, RlxR, and 

R&R,, the mean TGS values of Fls were significantly different from those of both the 

parents. Also, the mean TGS values of F, tended towards the resistant parent. 

Likewise, the mean TGS value of BC, and BC, generations tended towards the 



Table 15. Means of the six families for threshed grain mould score in different crosses of sorghum during 1995. 

Families 

M = Mean, SE = Standard enor. 



respective recurrent parent. The F, means were significantly different from those of 

the other five generations and these tended towards the resistant P, parent. 

In cross S,xR,, even though the parental means differed significantly, the difference 

between them was not large. The means of BC,, BC,, and F, were similar to those 

of P, and the mean of F, was close to those of midparent value. Further, the 

difference between the means of F, and BC, was found nonsignificant, while the 

mean values of P, and F, were close to the mid-parent value. In the cross R,xR, the 

difference between the parental mean values was nonsignificant, and the means of 

F,, BC,, BC,, and F, were greater than those of both the parents (Table 15). 

However, the mean values of F, and BC, did not show significant difference. 

The means of different families in eight crosses, grown during 1996, are given in 

Table 16. In four crosses, S,xR,, S,xR,, S,xR, and S,xR,, the F, mean values were 

significantly different from those of both the parents, but tended towards the resistant 

parent. Also the F, means, in general, tended towards the resistant parent. 

Likewise, the mean values of BC, and BC, tended towards the recurrent parent. In 

the cross, S,xR,, the F, mean tended towards P, and the means of BC,, BC,, and F, 

were intermediate between those of parents. 

In two crosses, S,xR,, and R,xR,, the parental mean values showed negligible 

differences. In S,xR,,, both the parents were susceptible and the mean values of the 





F,, BC,, BC, and F, were less than those of both parents. Conversely, in RlxR2, both 

the parents were resistant and the TGS means of four families were greater than 

those of the both parents. In R,xR,, the F, mean value tended towards P, while the 

mean values of BC,, BC, and F, tended towards P,. 

Frequency distributions: Frequency distributions of different families for TGS in 

eighteen crosses, grown during 1995 and 1996, are depicted in Figs 9 to 13. The F, 

generations of three crosses, S,xR,, S,xR, and R,xR,, showed distinct bimodal 

distributions (Fig. 11). The distributions of F, hybrids were skewed towards the lower 

parent, while the distributions of BC, and BC, overlapped with those of recurrent 

parents. In the BC, of S,xR,, S,xR,, and in the BC, of R2xR, plants were observed in 

all the categories from 2 to 9. On the other hand in S,xRl, S,xR,, S,xR,, S,xR, and 

S,xR,, the F, frequency distributions were unimodal with one end of the curve 

tapering (Figs 10 and 11). The distributions of the F, hybrids were skewed towards 

the resistant parent. 

In most of the crosses, the distributions of BC, and BC, overlapped with those of 

recurrent parent, and were found relatively even over 2 to 9 categories. In R,xR, 

and S,xR,, the F, distribution was continuous from 6 to 9 range with a mode at 8 

(Fig. 9). However the distribution of F, overlapped with those of both the parents. 
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Figure 9. Frequency distributions of P,, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for TGS (1995). 
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Figure 10. Frequency distributions of P,, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for TGS (1995). 
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Figure 11. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for TGS (1995). 



Frequency distributions of six families for TGS in eight crosses tested during 1996, 

are shown in Figs 12 and 13. In six crosses SlxR,, S,xR,, SlxR,, S,xRl, R,xR, and 

RpR,, the F, distributions were unimodal (Figs 13 and 14). However, the 

distributions of F, were skewed towards the resistant parent and the distributions of 

BC, overlapped with those of BC,. In S,,xR, and S,xR,,, the F, distributions skewed 

towards high TGS values. The values of F, hybrids were distributed in the range of 

6 to 8 (Plate 8) while the distributions of BC, and BC, overlapped with each other. 

Segregation pattern: Segregation ratios for TGS in F,, BC, and BC, generations of 

ten crosses were found identical to those of FGS in various crosses (Tables 12 and 

17). As such, the inheritance pattern, estimates of gene number, etc., given in 4.2.1 

of this chapter hold good for the data summarised in Table 17. 

Generation mean analysis: Estimates of gene effects for threshed grade score in 

different crosses grown during 1995, are given in Table 18. Threshed grade score, 

similar to field grade score, showed significant additive gene effects in various 

crosses except R,xR,. Also, significant dominance gene effects were observed in 

five crosses, viz., SpR,, S,xR,, S,xR,, S,xR, and S,xR,. Further significant 

dominance x dominance interactions were recorded in those crosses where 

dominance gene action was absent. On the other hand, in four crosses, SpR,, 

S,xR,, SpR, and R,xR,, additive x dominance gene interactions were found 

significant. 
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Figure 12. Frequency distributions of PI, P,, Fl, F,, BCl and BC, 
families in different crosses of sorghum for TGS (1996). 
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Figure 13, Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for TGS (1996). 







Plate 8. Parents and F, of white susceptible x white moderately 
resistant crosses. 
A: White susceptible (MS 422B), moderately resistant F, 

and whlte moderately resistant (IS 24495). 
6:  White susceptible (MS 422B), moderately resistant F, 

and white moderately resistant (IS 30469-1 51 87-2). 



Plate 8 



63 

Estimates of gene effects for TGS in different crosses grown during 1996 are given 

in Table 19. In most of the crosses, except S1xRl, significant additive gene effects 

were observed. In the crosses SlxR, and SlxR,, significant negative dominance 

effects were recorded. In four crosses SlxRl, S,xR,, SlxR3 and S,xRl, significant 

additive x dominance interactions were observed. 

Genotype x Environment (GxE) interactions: Estimates of GxE interadions for 

pooled data of 1995 and 1996, in six crosses, for FGS and TGS, are given in Tables 

20 and 21. For both the variables, the various crosses showed significant additive 

gene effects. Significant dominant gene effects were also observed in most of the 

crosses. Environmental, environmental x additive and environmental x dominance 

components, in general, were of lesser magnitude. In the cross S,xR3, 

environmental effects, environment x additive (e x d) and environment x dominance 

(e x h) interactions were found significant and substantial. In R,xR,, substantial e x d 

and e x h interactions were observed, and in R,xR,, e x h interactions were recorded 

both for FGS and TGS. 

4.3 GENETIC ANALYSIS OF MORPHOLOGICAL CHARACTERS IN 

DIFFERENT CROSSES OF SORGHUM 

4.3.1. Days to flowering 









Family means: In nine out of ten crosses, during 1995, the F, means tended 

towards the early parent (Table 22). Also the mean values of BC,, BC, and F, 

tended towards the mean of the early parent. However, in one cross, SlxR3, while 

the F, and BC, means were close to the mid-parent value, the BC, and F, means 

tended towards the early parent. 

Means of the six families in different crosses for days to flowering, grown during 

1996, are given in Table 23. In the crosses, S,xR,, S,xR,, S,xR6 and R,xR,, the F, 

and BC, means were similar. On the other hand, in crosses, S,xR,, S,xR, and 

R,xR,, the F, mean tended towards the early parent. However in two crosses, S,xR, 

and S,xR,, the F, means were similar to the mid-parent value. In two other crosses, 

S,xR,, and S5xR,, the F, means tended towards the late parent. 

Frequency distributions: Frequency distributions in six families for days to 

flowering in ten crosses, grown during 1995, are depicted in Figs 14 to 16. In two 

crosses, S,xR, and R,xR,, the F, distributions were bimodal (Figs 15a and 14a). In 

three crosses, S5xRl, R&R,, and S,xR, (Figs 1 5c, 16c, and 16d), the F, distributions 

showed trimodal pattern. While in five crosses, S6xR,, SlxR3 S,xR,, S,xR,, and S,xR, 

(Figs 14, 15 and 16), the F, distributions showed four to five modes. In all ten 

crosses, the distributions of F,, BC, and BC, overlapped with those of early parent. 



Table 22. Means of the six families for days to flower in different crosses of sorghum during 1995. 

M = Mean, SE = Standard error. 
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Figure 14. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for DF (1995). 
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Figure 15. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for DF (1995). 
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Figure 16. Frequency distributions of P,, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for DF (1995). 



In F, and BC, families differential transgressive segregants for earliness were 

obtained. 

Frequency distributions in six families, for days to flowering, of eight crosses during 

1996 are shown in Figs 17 and 18. In three crosses, SlxRl, R,xR, and R,xR,, the F, 

distributions were bimodal (Figs 17 and 18). On the other hand, in three crosses, 

SlxR,, SlxR, and S,xR,, trimodal distributions were observed. However, in two 

crosses, SlxR6, SlxR16, four peaks were observed for the F, distributions. In two 

crosses, SlxRl and S,xR,, the distributions of F, and BC, overlapped with those of 

the early parent and the distributions of BC, overlapped with those of recurrent 

parent. On the other hand, in six crosses, S,xR,, S,xR,, SlxRl,, S,xR,, RlxR, and 

RpR,, the F, distributions ranged between the parents. Whereas in three crosses, 

S,xRl6, R,xR, and R,xR,, the mode of the distribution tended towards the early 

parent, in two crosses, S,xR, and S,xRl, it was intermediate. However, in one cross 

S,xR, the mode in F, distribution was earlier than those of the early parent. 

Generation mean analysis: Estimates of gene effects for days to flowering during 

1995 are given in Table 24. In all the crosses, except R,xR, and S,xR,, the R2 

values were high (76 to 100°/~). In various crosses, additive gene effects and its first 

order interaction, additive x additive gene interaction were found predominant. In six 

crosses, estimates of additive x dominance gene interactions were more important. 
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Figure 17. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
familes in different crosses of sorghum for DF (1996). 
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Figure 18. Frequency distributions of P,, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for DF (1996). 
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Estimates of gene effects in seven crosses, grown during 1996, are given in Table 

25. In three crosses, SlxRl, S,xR2, and S,xR,,, the R2 values varied from 39 to 67%, 

whereas substantial R2 values (91 to 100%) were obtained in the remaining crosses. 

The results indicate that additive gene effects were important and significant in most 

of the crosses. However, in one cross, RlxR2, dominance and dominance x 

dominance interaction were more important. 

4.3.2 Seed colour 

Family means: In four white x red crosses, SlxRl, S2xRl, S,xR, and S,xR,, the F, 

means were greater than those of both the parents (Table 26). Although the BC, 

means tended towards the red parent, the BC, and F, means were greater than 

those of red parent. 

However, in white x brown crosses, S,xR,, S2xR2 and S,xR,, the F, means (score 7.2 

to 7.9) were less than those of the brown parent (score 8). The means of BC, and 

BC, tended towards recurrent parents and the F, means were less than those of the 

brown parent. 

On the other hand, in the brown (R,) x white (R,) cross, the F, and BC, means 

tended towards the brown parent, while the BC, mean tended towards the mid- 

parent value. However, in the red (R,) x brown (R,) cross, the F, mean was greater 



Table 25. Estimates of gene effects for days to flower in sorghum during 1996. 

Cross SlxRl SlxR2 SlxR3 SlxR,, S,xRl R1x& RpR, 

[m] 77.24' 75.19* 77.13' 69.2s 76.76' 91.38' 78.93' 

[a - 4.81' -2.76' - 5.67' 0.87' - 6.12' 2.32' - 3.68. 

[hl -28.99' 

81 - 3.99' -12.20' 

[il -1 1.07' 

111 - 5.69' 16.34' 

59.06 39.06' 94.75 67.22 91.23 99.51 94.75 

' Significant at p = 0.05 





than those of both the parents. The BC, and F, means tended towards the mid- 

parent value and that of BC, tended towards the brown parent. 

Frequency distributions: Frequency distributions of six families for seed colour 

are depicted in Figs 19 to 21. In all ten crosses, the F, distributions showed 

unimodal pattern with 2 to 3 peaks. In the white x red and red x brown crosses (Figs 

19 and 20), the F, distributions skewed towards the red parent (score 5). In white x 

red crosses (Fig. 20), except in R,xR,, the BC, distribution spread between those of 

PI, P, and F,. The BC, distributions were similar to those of the F, showing 

maximum peak at score 5 (red colour). The BC, and BC, distributions overlapped at 

the score 5 (red) and BC, distributions showed a second peak at score 8 (brown). 

Also, in white x brown crosses, F, distributions (Fig. 21) were unimodal, the 

maximum peak being at score 8. The F, distributions overlapped those of P, (the 

brown parent), while the BC, distribution was spread between two parents. 

Likewise, BC, distribution also was spread from white parent to F, (score 1 to 10). 

Generation mean analysis: In different crosses substantial dominant gene effects 

were observed which were greater in magnitude than additive gene effects (Table 

27). In four crosses, S,xR,, SlxR,, S,xR, and RpR,, additive gene effects were 

found significant. On the other hand, in S,xR,, S,xR,, S,xR,, RlxR, and S,xR,, 

dominance x dominance gene interactions were found significant. In three crosses, 

SpR,, SrR, and R,xR, additive x dominance gene interactions were significant. 



2 4 6 8 10 
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Figure 19. Frequency distributions of P,, P,, F,, F,, BC, and BC, 
families in R,xR, cross for seed colour (1995). 
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Figure 20. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for seed colour 
(1 995). 
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Figure 21. Frequency distributions of P,, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for seed colour 
(1 995). 





4.3.3 Percentage glume cover 

Family means: In all the crosses, except S,xR,, (Table 28) the F,, BC,, and BC, 

mean values were greater than those of both the parents. However, in SlxR3, the 

means of F,, BC,, BC, and F, tended towards larger parent (P,). Further, the means 

of BC, and the F, were not significantly different. 

Frequency distributions: Frequency distributions in families, for glume cover, are 

shown in Figs 22 to 24. In three crosses, S,xR,, S2xRl, and S,xR, (Fig. 23), the F, 

distributions showed bimodal pattern. However, the distributions of F, and BC, 

overlapped with those of P,, while BC, distributions overlapped with those of P,. 

On the other hand, in seven crosses, SlxR3, S,xR,, S,xR,, S2xR,, S,xR,, R&R, and 

R,xR,, the F, distributions were more or less normal and symmetrical. The F, 

distributions, in general, skewed towards the larger parent, and BC, distributions 

overlapped with those of P, and P,. 

Generation mean analysis: In nine out of ten crosses, R2 values were very high. 

In one cross, S,xR,, low R2 value of 31% was obtained (Table 29). In general, 

additive and dominance genetic effects were significant, but the net dominance 

effect was greater in magnitude than the net additive gene effects (Table 29). In six 



Table 28. Means of the six families for percentage glurne cover In different crosses of sorghum 
during 1995. 

Families S,xRl 

P, M 50.00 
SE 00.00 

P, M 53.30 
SE 01.58 

F, M 62.20 
SE 02.47 

B, M 66.10 
SE 02.61 

B, M 65.30 
SE 02.07 

F, M 65.60 
SE 01.10 

M = Mean. SE = Standard error. 
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Figure 22. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for glume cover 
(1 995). 



%Glume Cover 
40 60 8D 100 

%Glume Cover 

%Glume Cover 
i o  60 80 loo 

%Glume Cover 

Figure 23. Frequency distributions of P,, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for glume cover 
(1 995). 
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Figure 24. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in different crosses of sorghum for glume cover 
(1 995). 



Table 29. Estimates of gene effects for glume cover in different crosses of sorghum during 1995. 
- -- 

Cross SlxRl SpR, S,xR, S,xRl SlxR, SpR2 SgR2 S I ~ R ~  RpR, RlxR2 

[m] 51.66' 38.33' 78.74' 63.63' 77.09' 37.50 50.00' 37.50 37.91' 70.30' 

R2 99.97 98.20 97.54 87.69 91.66 88.24 99.79 31.60 99.02 81.74 

significant at p = 0.05. 



of the crosses, positive dominance effects were observed; whereas, in four crosses, 

S,xR,, S6xRll SlxR2 and R,xR,, negative dominance effects were noted. Also, 

significant negative additive x additive gene interactions were observed in three 

crosses in which negative dominant gene effects were noted. Further, six crosses 

showed significant negative dominance x dominance gene interactions. 

4.3.4 Preharvest sprouting 

Familymeans: Means of the six families for preharvest sprouting in six crosses are 

given in the Table 30. In one cross, viz, SlxR3 sprouting was observed in all the 

families. The means of the F, and the BC, families were greater than those of both 

the parents. Also the BC, and F, means tended towards the P,. 

Generation mean analysis: In four crosses, predominant dominant gene effects 

were observed for sprouting (Table 31). Out of these, two crosses, S,xRl and SlxR2, 

showed negative dominance effects and negative additive x additive gene 

interactions. In two other crosses, S,xR, and R,xR3 significant additive gene effects 

were noted. Additive x dominance interactions were found predominant in most of 

the crosses. Further, in S,xRl, SlxR2 and S,xR3, important dominance x dominance 

interactions were noted. 





Table 31. Estimates of gene effects for prehanrest spr~~t lng in different crosses of sorghum 
durlng 1995. 

C ~ S S  StXR, S5xR1 StXR, S#R2 S1xR3 R ~ R 3  

[ml 0.33 8.68' 0.67' 7.72' 11 58' 4.58' 

[dl 0.33 0.00 0.33 0.00 -6.92' -4.58' 

[hI 10.31' -8.68' 16.73' -6.95' 1.58 2.14 

[il -8.68' -7.72' 

IiI 10.64' -6.65' 18.05' 9.27' -4.06 -5.89 

[[I -10.64' -17.39' 42.51' -6.73 

R2 76.03 68.99 97.04 91.15 99.70 90.65 

Significant at p = 0.05 



4.3.5 Glume colour 

Family means: Means and standard errors of six families in the cross straw glume 

(S,) x purple glume (R,), for glume colour, are given in the Table 32. The means of 

P, and P, were significantly different, and the means of F, and F, tended towards the 

mid-parent value (3.5). On the other hand, BC, and BC, means tended towards the 

recurrent parent. 

Frequency distributions: Frequency distributions of the families are depicted in 

Fig. 25. The F, showed bimodal distribution, while the F, was unimodal with an 

intermediate mode (score 4). Distributions of BC, and BC, overlapped with each 

other. 

Generation mean analysis: Estimates of gene effects, in cross S,xR, for glume 

colour are given in Table 32. The high R2 value of 99.3% indicates that the model 

was a good fit. Additive gene action was the most important and significant effect 

observed for glume colour. 

4.4 GENERATION MEAN ANALYSIS FOR GRAIN YIELD, AND YIELD 

COMPONENTS IN TWO SUSCEPTIBLE x RESISTANT CROSSES OF 

SORGHUM 





Glume colour(score) 

Figure 25. Frequency distributions of PI, P,, F,, F,, BC, and BC, 
families in a cross of sorghum for glume colour (1995). 



4.4.1 Plant height 

Family means: In two crosses, S,xR, and SlxR2, F,, BC,, BC, and F, means tended 

towards the tall parent, (P,), indicating dominance of tallness. In S,xR,, the F, mean 

was greater than that of the tall parent (Table 33). 

Generation mean analysis: In both the crosses estimates of gene effects revealed 

significant additive effects. In S,xR,, dominance genetic effects and dominance x 

dominance interaction effects, were in the opposite directions and both were 

significant (Table 34). However in S,xR2, additive x dominance interaction was 

found most important. 

4.4.2. Panicle length 

Family means: In S,xR,, the F, mean was greater than those of both the parents, 

whereas in S,xR,, the F, mean tended towards P, (Table 33). Also, the BC, and BC, 

means tended towards P,, while F, means tended towards the mid-parent value. 

Generation mean analysis: In both the crosses, additive gene effects were 

important and significant. In S,xR,, both dominance x dominance gene interactions 

and additive x additive gene interactions were found significant (Table 34). 



Table 33. Means of the familles for graln yield and yield components In two crosses of sorghum. 

Families Plant height 
(m)  

S1xR1 S1xR2 

Pi 160.0 156.0 

p2 301.2 296.0 

FI 312.5 292.0 

BC1 298.5 298.8 

BC2 318.3 289.2 

F2 275.2 289.2 

Panicle length 
( m )  

S,xR, S1xR, 

26.0 27.5 

31.0 30.4 

33.0 29.5 

29.7 28.6 

31.6 29.3 

29.1 28.2 

Panicle weight Primary branches 
(9) 

S1xR, S,xR2 S,xR, S,xR2 

47.5 41.3 46.9 43.5 

43.3 50.3 35.0 48.2 

94.8 79.0 47.9 52.2 

07.8 73.4 54.0 53.6 

74.4 70.0 55.6 54.3 

46.1 43.3 51.8 48.1 

Grain yield plant" 
(9) 

S1xR, S,xR2 

28.0 28.9 

27.6 36.2 

64.9 55.2 

61.9 52.4 

47.5 50.2 

28.4 26.9 





4.4.3 Panicle weight 

Family means: In both the crosses, the F,, BC, and BC, means were greater than 

those of both the parents. However, the F2 mean tended towards the mid-parent 

value (Table 33). 

Generation mean analysis: The R2 value was very low (17%) in the cross S,xR,, 

while in S,xR,, the R2 value was very high (82%). In SlxR,, dominance effects were 

most important (Table 34); dominance x dominance and additive x additive 

interactions, though significant, were of lesser magnitude. Further, the estimates of 

dominance and dominance x dominance interaction were in same direction (Table 

34) 

4.4.4 Primary branches 

Famllymeans: In both the crosses, the F,, BC,, and BC, means were greater than 

those of the parents (Table 33). In SlxRl, the F, mean was greater than those of 

both the parents but was less than those of BC, and BC,. On the other hand, in 

S,xR,, the F, mean tended towards P, (R,). 
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Generation mean analysis: In S,xR, and S,xR,, R2 values of 67.09O/0 and 11.62%, 

respectively, were recorded. In S,xR,, dominance gene effects were found 

important; significant negative dominance x dominance gene interactions were also 

observed (Table 34). 

4.4.5 Grain yield per plant 

Family means: In both crosses, the F,, BC,, and BC, means were greater than 

those of parents. However, the F, mean values tended towards those of respective 

parents (Table 33). 

Generation mean analysis: Gene effects for grain yield per plant are given in the 

Table 34. In both the crosses, dominance and dominance x dominance effects 

were predominant. The values of both the estimates were high but were in the 

opposite directions. In these crosses, significant additive x additive gene effects 

were also observed. 

In susceptible x resistant crosses, the F, and backcross generations showed large 

variability for disease reaction and agronomic characters (Plate 9). Two hundred 

and fifty progenies were advanced to F, and F, generations. About twenty progenies 

with good agronomic characters and moderate resistance to grain mould were 

selected for the breeding programme. 



Plate 9. F, segregants in white susceptible x coloured resistant crosses. 
A: MS 4228 x IS 14387. 
8: AKMS 14B x IS 14375. 



Plate 9 





5 DISCUSSION 

The potential yields of present day commercial hybrids are not fully realised as they 

are highly susceptible to grain moulds. Losses caused by grain moulds are both 

quantitative and qualitative (Esele, 1995). The changes in physical properties 

include decreased filling and size of the grain and a chalky endosperm which 

disintegrates during harvest and threshing, thus causing considerable loss in grain 

yields. The mouldy grain becomes unfit for human consumption leading to 

unremunerative price in the market causing losses to farmers. Most improved 

varieties and hybrids mature earlier than local varieties, often before the end of the 

rainy season. This results in increased exposure to grain moulds, greatly limiting the 

adoption of these improved varieties and hybrids (ICRISAT and FAO, 1996). 

Though the restorers of present day hybrids have good yield and some tolerance to 

pests and diseases, the male-sterile lines are medium to late, poor yielders and 

highly susceptible to grain moulds. Breeding grain mould resistant male-steriles and 

restorers is a prerequisite for planning an effective hybrid breeding programme 

aimed at durable resistance. 

Breeding for biotic resistance can be taken up in the following stages. 

(i) Locating the resistance gene(s) in the germplasm or defining the sources of such 

genes (Sharma, 1994). 



(ii) Once the gene sources are detected and maintained, the next step is to identify 

the defence mechanisms (morphological and biochemical) operating in the 

resistance sources against pathogen(s) invasion (Sharma, 1994). 

(iii) The third step is to identify the genetic control (gene actionlinheritance) of 

resistance by simple crossing between two contrasting parents or by following some 

appropriate mating design, such as diallel. Segregation patterns in F,, BC,, and BC, 

generations can also define the nature and number of gene(s) involved in 

resistance (Sharma, 1994). 

Exploitation of any genotype in a resistance breeding programme or for commercial 

release should ideally be preceded by knowledge about the number, nature and 

diversity of genes controlling resistance in the genotype. This information helps in 

deciding the breeding procedure to be followed to incorporate resistance into high 

yielding backgrounds. In the present study, several genotypes were evaluated for 

grain mould resistance, and certain morphological and biochemical characters 

associated with resistance. Resistant and susceptible genotypes were selected and 

crosses were made among them to study the genetics of grain mould resistance and 

other associated characters. 

5.1 PERFORMANCE OF SORGHUM GENOTYPES FOR GRAIN MOULD 

RESISTANCE AND OTHER MORPHOLOGICAL CHARACTERS. 



5.1.1 Means 

Bandyopadhyay and Mughogho (1988) evaluated three techniques for mould 

screening and showed that mould resistance screening without inoculation and 

bagging of panicles was feasible if overhead sprinklers were used from flowering to 

harvest. In the present study, 22 sorghum genotypes, representing wide diversity, 

were screened under sprinkler irrigation for grain mould resistance and other traits. 

The means of these genotypes for different variables recorded are shown in 

Table 4. 

Field grade score (FGS) and threshed grade score (TGS): The genotypes IS 

14375, IS 14387, IS 18144, IS 18528, IS 24495, IS 25017, SP 33487 and 856586 

were classified as mould resistant as they recorded low FGS and TGS values. 

These genotypes were also found to be resistant by others (Bandyopadhyay and 

Mughogho, 1988; Anonymous, 1995; ICRISAT, 1994). The genotypes 2968, SPV 

475, SPV 462, MS 4228, AKMS 14B, AKR 150, were classified as susceptible as 

their mean FGS and TGS were high (score 4 to 5). Other reports (Anonymous, 

1995) identified genotypes such as 2968, SPV 462 and SPV 475 as moderately 

resistant. One reason for these conflicting results could be the screening technique 

utilised in the studies. Screening techniques will be discussed in detail in 5.2.1 of 

this chapter. Castor and Frederiksen (1980) found that field ratings on natural or 

Fusarium inoculated heads would have permitted some susceptible sorghum lines 



to escape detection as mould growth was hidden by the glumes and visible only 

after threshing. In the present study also some of the genotypes, viz., SP 33487, 

GM 15373, and TNS 30 recorded moderate values for FGS, and high for TGS 

(Table 4). Genotypes such as SP 3331 6, SP 33349 and GM 1501 8 were classified 

as moderately resistant lines. 

Graln germination: Earlier studies found that grain germination was so closely 

related to grain moulds that resistant genotypes could be identified from germination 

tests (Denis and Girard, 1977). In this study, the coloured seeded genotypes, which 

were identified as resistant sources (low FGS and TGS), showed high mean 

germination percentage. The susceptible genotypes, with high FGS and TGS, 

showed very low germination percentage. Similar results were observed by 

Mahalinga et a/. (1 988), Singh and Agarwal (1 989), and Forbes et a/. (1 989). Some 

of the white-seeded lines showed good mean germination although they recorded 

moderate values for FGS and TGS. This indicated that the discoloration on the 

seed was superficial and very little damage had occurred internally. Castor and 

Frederiksen (1 980) also observed similar results. 

Ergosterol: Ergosterol is a steroid which is very much specific to fungi. The 

quantity of ergosterol in a grain sample is an index of fungal mass (Seitz eta/., 1977) 

and is another criterion for measuring grain mould damage. Table 4 shows the 

mean ergosterol content in the genotypes studied and Fig. 1 depicts 



chromatographs indicating the different quantities of ergosterol in susceptible and 

resistant genotypes. Forbes et a/. (1989) and Jambunathan et a/. (1991) reported 

that concentration of ergosterol was 10-fold higher in susceptible than in resistant 

genotypes. In the present study, genotypes such as 2968, SPV 462, SPV 475, AKR 

150, MS 422B and AKMS 148 recorded high mean ergosterol content confirming 

the results observed from FGS, TGS and germination studies. On the other hand, 

genotypes IS 14375, IS 14387, IS 18144, IS 18528, IS 24495, IS 25017, 858586 . 

and IS 21443 recorded low mean ergosterol content confirming their resistance to 

grain moulds. 

Glume phenols: Morphological characters such as panicle shape, glume and seed 

size and colour and days to flower play an important role in governing mould 

resistance. The glume appears to be the plant's first defence mechanism against 

grain moulds (Waniska et a/., 1992). Phenolic compounds in the glume increased 

20 d after anthesis, especially in resistant and moderately resistant cultivars 

(Mansuetus et a/., 1988; Waniska et a/,, 1992). In this study also, resistant and 

moderately resistant lines IS 14387, IS 14375, IS 18144, IS 18528, SP 33349, SP 

33316 (white seeded) and GM 15018 (white seeded), recorded high content of 

glume phenols in both methanol extracts and acid-methanol extracts 30 d after 

anthesis. On the other hand, white seeded resistant genotypes, viz., B58586 and IS 

21443, recorded very much lower content of glume phenols in the glumes 

comparable to that recorded in susceptible genotypes such as 2968 and SPV 475. 



The line SP 333487 recorded very high phenol content in glume, showed moderate 

FGS and high TGS score. From this study it appears that content of phenols in the 

glumes is one of the important characters governing grain mould resistance. 

Seed phenols: Brown coloured seed, with testa having high phenolic acid content 

was the most influential seed characteristic affecting mould resistance in several 

studies (Ellis, 1972; Hahn et a/., 1983; Hahn and Rooney, 1985; Jimenez and 

Vallejo, 1986; Esele et a/., 1993). Menkir et a/. (1996a) found that resistance to 

grain mould was not always related to a high concentration of tannin in brown 

sorghums. They further reported that higher levels of resistance to moulding seem 

to arise from the combined effects of tannin and flavan-4-01s. In the present study, 

the lines with high content of phenols in the seed were IS 14375, IS 14387, IS 

18144, IS 18528 and SP 33487; except for the line SP 33487, all other lines were 

found resistant to grain moulds. 

Glume flavan-4-01s: Flavan-4-01s in glumes are not reported in the literature. In 

the present study, flavan-4-01s were detected in the glumes 30 d after anthesis in 

coloured seed lines IS 14375, IS 18144, IS 18528, SP 33349, and white seed line 

SP 33316. It is interesting to note that white seed line SP 33316, with moderate 

FGS and TGS, showed moderate resistance to grain moulds. 



Seed flavan-4-01s: Grain mould resistance has been found to correlate strongly 

with high concentration of flavan-4-01s in seeds (Butler, 1982; Jambunathan et a/., 

1991; Martinez et a1.,1994). All the lines with flavan-4-01s in glumes, except white 

seeded SP 3331 6, recorded high flavan-4-01s in seeds also 30 d after anthesis. 

Seed hardness: Sorghum kernels with more corneous endosperm and hard seed 

were more resistant to grain moulds than those with floury endosperm (Ibrahim et 

a/., 1985; Jambunathan et al., 1992; Mukuru, 1992; Kumari and Chandrashekar, 

1992). However, Menkir et a/. (1996a) found that resistance was not always 

associated with corneous endosperm in white sorghums. In the present study the 

resistant sources IS 14375, IS 14387, IS 18528, and SP 33349 with coloured seed, 

and IS 24495, IS 25017, 858586 and IS 21443 with white seed, were relatively hard 

seeded and were moderately resistant. However, white seeded lines recorded only 

moderate hardness. Susceptible lines 2968, SPV 462, SPV 475 and MS 4228 were 

very soft seeded. One coloured resistant line, IS 18144, recorded moderate 

hardness of seed. 

Days to flower: The genotypes showed large variation for flowering. The studies 

did not show any clear pattern; both susceptible and resistant genotypes were early, 

medium and late flowering. Similar results were observed by lbrahim et al. (1985), 

Mukuru (1 988), and Menkir et a/. (1 996b). 



Plant height and grain yield: In general, the resistant lines were taller and the 

susceptible lines were higher grain yielding. 

Glume cover: Seeds completely enclosed in long papery glumes were found to 

show resistance to grain moulds (Murty, 1977). However, Williams and Rao (1980) 

concluded that there was no apparent correlation between resistance and grain 

glume cover. In this study also only three resistant lines, IS 21443, IS 18144 and IS 

18528, showed maximum glume cover on the seed. 

Glume colour: All the coloured resistant lines recorded dark coloured glumes. 

Some of the white resistant and moderately resistant lines, viz., for example IS 

25017, GM 15373, SP 33316 and GM 15018, also had coloured glumes. 

Mansuetus eta/. (1 988) found that darker glume colour had increased phenolic acid 

and was related to resistance. 

Seed colour: All the lines with coloured seeds, except SP 33487, were found grain 

mould resistant. Similar results were observed by Jambunathan et a/. (1986). SP 

33487, which recorded high quantity of phenols in its glume and seed, was 

susceptible to grain mould presumably because of its soft grain texture. 

Glume Index: The genotypes showed large variation for glume index and the trait 

did not show clear relationship to grain mould resistance. 



5.1.2 Correlations 

Correlations between different morphological characters: Correlations between 

17 characters, recorded on the 22 genotypes are given in Table 5. Field grade 

score (FGS) showed strong positive correlations with threshed grade score (TGS). 

Williams and Rao (1981) reported that FGS could be misleading because some 

cultivars developed mould on the rachis and glume but maintained clean seed, and 

vice versa. 

Ergosterol concentration serves as an index of grain mould infection. In the present 

study, FGS showed strong positive correlations with ergosterol content. Forbes ef 

a/. (1989) and Jambunathan eta/. (1991) reported that the quantity of ergosterol was 

highly correlated to visual grain mould. 

Seed germination was adversely affected by grain moulds; seed viability and 

germination decreased with increasing infection by mould causing fungi (Mahalinga 

et a/., 1988; Singh and Agarwal, 1989; Forbes et a/., 1989). In the present study 

also, FGS showed strong negative correlation with germination percentage. 

Among genotypes studied, FGS showed high negative correlation with seed 

hardness, and from the mean data it is clear that the resistant lines with coloured 

seed were also hard seeded. In white seed lines, resistance was ascribed to seed 



hardness (Jambunathan etal., 1992). However, in brown sorghum, increased levels 

of resistance to grain mould were not associated with endosperm texture (Menkir et 

a/., 1996a). 

FGS showed significant negative correlations with glume colour, phenols in acid- 

methanol extracts of glumes and with flavan-4-01s in glumes (Table 5). Glume 

colour in turn showed significant positive correlations with phenols and flavan-4-01s 

in glumes and seeds. 

FGS showed significant positive correlation with grain yield/ plant indicating that the 

susceptible lines studied were higher yielding. On the other hand, FGS showed 

significant negative correlation with seed phenols. Harris and Burns (1973), Doherty 

eta/ .  (1987) and Menkir et a/. (1996a) reported strong association between phenols 

and mould resistance. 

Grain mould score showed significant negative correlations with glume cover, glume 

length and glume area when the cultivars were inoculated, and correlations were 

nonsignificant when the cultivars were not inoculated (Mansuetus, 1990). In the 

present study also FGS revealed significant negative correlation with glume cover. 



Three other grain mould measuring variables, viz., threshed grade score, 

percentage seed germination and ergosterol, showed correlations similar to that of 

FGS. TGS, ergosterol content and percentage germination showed strong negative 

correlations with seed hardness, glume colour, seed phenols and flavan-4-01s. 

lntragroup correlations: Grouping of 22 genotypes based on seed colour, glume 

colour and seed hardness, and correlations of these characters with FGS and TGS 

within each group are given in Tables 6, 7 and 8. In the coloured seed, coloured 

glume and sofl seed groups, FGS and TGS showed substantial negative 

correlations with glume colour. Likewise, FGS and TGS also showed significant 

negative correlations with seed hardness in the white seed, straw glume, coloured 

glume, soft seed and hard seed groups. 

Correlations in the F, generation: Table 9 shows the correlation matrix for the 

characters observed in the F, of cross between straw glume line (S,) and purple 

glume line (R,). These results also confirmed the strong negative correlations of 

FGS and TGS with glume colour. Figs 2 and 3 depict that the FGS and TGS values 

decreased as the glume colour increased in P,, BC, and F, families. The strong 

correlation between mould resistance and glume colour, in different generations, 

could also be due to linkage between the characters. From these results it is 

apparent that glume colourlphenols and flavan-4-01s are important characters 



contributing to grain moulds resistance in the genotypes studied. Mansuetus (1990) 

also reported similar results. 

An overview of the means and correlations indicates that seed hardness, glume 

colour, seed phenols, seed flavan-4-01s and glume cover, in association with one 

another, bring about high resistance to grain moulds. Menkir et a/. (1 996a) reported 

that, even among brown sorghum accessions, higher levels of resistance to 

moulding seemed to arise from the combined effect of tannin and flavan-4-01s. The 

tannins in brown sorghums are polyphenols, which render the grain astringent and 

unpalatable. High tannin levels result in low digestibility and reduced protein 

efficiency ratio and thus present problems of utilisation of brown coloured seed 

(Butler, 1982). Glumes with intense red and purple colour have a tendency to stain 

the sorghum kernels in humid conditions (Rooney and Miller, 1982). Threshing is 

difficult in sorghum lines with long enclosed glumes; in guinea sorghums, glumes 

cover the seed up to physiological maturity and open up only at the time of harvest. 

Very hard seeds have low digestibility and are not suitable for some food 

preparations, Hence it is important to strike a balance between the level of grain 

mould resistance and grain hardness. Thus breeding for light glume colour with high 

levels of glume flavan-4-ols, moderate seed hardness, glume cover up to 30 d after 

anthesis along with free threshing might result in mould resistant lines with desirable 

grain quality. 
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5.2 GENERATION MEAN ANALYSIS FOR GRAIN MOULD RESISTANCE IN 

DIFFERENT CROSSES OF SORGHUM. 

Susceptible and resistant genotypes were selected for study of the genetic basis of 

resistance after evaluating sorghum genotypes for grain mould resistance and 

characters associated with resistance. The genotypes selected for crossing and 

their ancillary data are given in Table 3. Ten and eight resistant x susceptible 

crosses were analysed for grain mould resistance under sprinkler irrigation during 

1995 and 1996, respectively. Though the values were different for field grade score 

and threshed grade score, the trends were very similar and hence they were treated 

together as measures of resistance to grain moulds. 

5.2.1 Field grade score and threshed grade score 

Family means: Mean values of the parents, F,, F,, and backcross generations for 

FGS and TGS during 1995 and 1996 are given in Tables 10, 11, 15 and 16. The 

genotypes S,, S, and S, were consistently susceptible, while R, and R, were found 

resistant over the years. However, genotypes S,, S, and R,, were moderately 

resistant during 1994, while S, and S, were rated susceptible during 1995 and R,, 

during 1996. Similarly, R,, a white resistant genotype, was scored as resistant 

during 1994, susceptible during 1995 and moderately resistant during 1996. 

Bandyopadhyay and Mughogho (1988) reported that when ambient humidity is low, 



sprinkler irrigation may be ineffective in maintaining sufficient humidity for grain 

mould development. Fig. 26 depicts rainfall distribution during the crop growing 

period of three years from 1994 to 1996. High rainfall was recorded during weeks 9 

to 11 of 1994, during weeks 10 to 13 of 1995 and during weeks 3 to 6 of 1996. 

Forbes et a/. (1992) reported that post-maturity colonisation is generally what 

produces the mouldy appearance of grain maturing in humid environments. Heavy 

rains at grain maturity, especially during the critical period from 30 to 50 d after 

anthesis, cause maximum grain damage (Castor and Frederiksen, 1980). Figures 

27 and 28 illustrate the rainfall patterns of 1995 and 1996 during the post-maturity 

periods of different genotypes. The post-maturity period, i.e., 30 to 50 d after 

anthesis, of IS 25017 R,, white resistant source, coincided with heavy rainfall weeks 

during 1995 and low rainfall weeks during 1996. Accordingly, the mean FGS of R, 

was high during 1995 and moderate during 1996. It appears that the white resistant 

sources are rather unstable and the FGS reaction of such genotypes depends on 

the level of ambient humidity during the post-maturity period. Bandyopadhyay and 

Mughogho (1988), in their screening experiments under inoculation and bagging, 

observed that only one genotype IS 14332 behaved differently during 1983 (FGS 

2.6 to 2.9) and 1984 (FGS 3.2 to 3.4). Incidentally IS 14332 is also a white resistant 

source. Though the sprinkler irrigation screening technique is efficient, there is a 

need for developing a superior technique to avoid inconsistent results while 

evaluating white resistant sources. 



Week (Aug-Oct) 

Figure 26. Rainfall distribution during three years (1 994-1 996), 
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Week (Aug . Oct) 

Figo 27. Post-maturity period of sorghum genotypes and rainfall pattern 
during 1995, 



Week (Aug - Oct) 

Fig, 28, Post-maturity period of sorghum genotypes and rainfall pattern 
during 1996, 



The family means of different crosses grown during 1995 and 1996, for FGS and 

TGS are given in Tables 10, 11, 15 and 16. In S,xR,, SpR,, S,xR,, S,xR,, S,xR,, 

S&R, and S,xR, crosses, F, means tended towards the resistant parent, indicating 

that resistance is governed by dominant genes. The F, means, in general, also 

tended towards the resistant parent , confirming dominance of resistance genes. 

In the white susceptible (S,) x white resistant (R,) cross, the F, mean value was 

equal to the midparent value during 1995 and tended towards the resistant parent, 

during 1996. These differences are attributed to the varied behaviour of resistant 

parent (R,) during 1995 and 1996. Also the mean values of the F, in R,xR, cross 

were found different during 1995 and 1996. The F, mean value tended towards the 

resistant parent, (R,), during 1995 while it tended towards moderately resistant 

parent (R,) during 1996. This may be attributed to the inconsistent behaviour of R, 

for FGS during these years. 

Both the parents of S,xR, and S,xR,, crosses scored high FGS and the F, mean 

values were less than that of both parents indicating that the parents may have 

modifier genes for high susceptibility. However, in a resistant (R,) x resistant (R,) 

cross, the FGS means of the parents were low and showed nonsignificant 

differences; however, the F, mean showed higher value than that of both parents, 

presumably because of nonallelic major genes besides minor modifiers contributed 

by the parents. 



The inconsistent inheritance pattern observed over years in different crosses may be 

attributed to the diverse resistance genes that specify different mechanisms of 

resistance to grain mould. 

Frequency distributions: The F, distributions in most of the crosses, in general, 

were bimodal or unimodal with modes in the 2 to 4 range and an extended tail 

towards higher scores with minor peaks indicating a second mode (Figs 4 to 13). 

These distributions reveal that grain mould resistance is determined by both major 

and minor genes. The distributions of F, and F, were skewed towards the resistant 

parent, suggesting that mould resistance is governed by dominant genes; and the 

distributions of BC, and BC, in most of the crosses, imply epistatic interactions 

between genes. Crosses S,xR, and RpR, showed a second mode in the range of 6 

to 8, which was more frequent than the first mode observed at 2 to 4, suggesting 

more than two genes for resistance. The F, distribution, R,xR, cross, showed some 

susceptible segregants with a FGS of 5 to 8, indicating different resistance genes in 

R, and R,. In the F, generation of two crosses, S,xR,, and S,xR,, tested during 

1996, a few segregants with lesser FGS values than the resistant parents were 

observed, indicating transgressive segregation for increased mould resistance 

caused by modifier genes, Inconsistent frequency distributions in different crosses 

for FGS and TGS over two years suggest that a number of major genes in 

conjunction with minor modifiers determine grain mould resistance. 



Segregation pattern: Since most of the frequency distributions in different crosses 

showed strong peaks at FGS 4, plants showing FGS values of 1 to 4 (1 to 15% 

seed with mould) were classified as resistant and remaining plants with FGS of 5 to 

9 were classified as susceptible. Segregation pattern for FGS and TGS calculated 

on this basis are given in Tables 12 and 17. Segregation patterns in F, , BC, and 

BC, for FGS of different crosses are described below. 

1. White susceptible x red resistant (R,) crosses: In S,xR,, S,xR, and S,xR, the F, 

hybrids were resistant and red in colour. The F, segregation ratios of 9 resistant(R) : 

7 susceptible(S) and 1 R:3S ratios observed in BC, indicate duplicate recessive 

epistasis. Obviously, two independently assorting dominant genes are 

complementing with each other in determining resistance. Similar results were 

reported by Esele et a/. (1993) in a cross between red resistant and white 

susceptible parents; they suggested interaction between a pericarp gene and an 

intensifier gene for grain mould resistance. These results amply indicate that grain 

mould resistance in the red resistant (R,) line is governed by two nonallelic genes. 

In one of the white susceptible (S,) x red resistant (R,) crosses, a F, segregation 

ratio of 51 R:13S and BC, ratio of 1 R:1 S were observed, suggesting interaction 

among three nonallelic dominant genes. Apparently, the resistant parent (R,) has 

two major dominant genes that act in an additive fashion in determining grain mould 

resistance, while the susceptible parent (S,) contributes a dominant epistatic gene 



that inhibits the expression of only one of the two dominant genes of the resistant 

parent. 

2. White susceptible x brown resistant (R,) crosses: These crosses showed 

modified trigenic ratios with varied gene interactions (Tables 12 and 17). In S,xR,, 

the F, segregation fitted to 39R:25S ratio, indicating interaction among three 

nonallelic gene pairs-one basic, one inhibitory and one anti-inhibitory in action. 

Further BC, ratio of 1 R:3S suggests that the dominant inhibitory gene is contributed 

by the susceptible (S,) parent. 

In SpR,, the F, was resistant and the F, segregation fitted 45R:19S ratio, implying 

interaction among three nonallelic genes. In this cross, the combined action of a 

basic dominant gene with two duplicate complementary genes seem to determine 

grain mould resistance. Also, the BC, segregation ratio of 1 R:1 S suggests that one 

of the dominant duplicate genes is contributed by the susceptible (S,) parent. 

3. Brown resistant (R,) x white resistant (R,) and white susceptible (S,) x brown 

resistant (R,) crosses: The observed F, segregations fitted to the modified trigenic 

ratio of 27R:37S implicating three nonallelic major genes acting in a complementary 

fashion. In these crosses, the F,s were resistant, and the backcrosses generations 

segregated into 1R:7S ratio. Esele et a/. (1993) reported similar results for F, 

segregation in a brown resistant x white susceptible cross. 



4. Red resistant (R,) x brown resistant (R,) cross: The F, segregation in this cross 

fitted to the modified trigenic ratio of 57R:7S indicating complex interaction among 

three nonallelic genes. Apparently, a basic dominant gene for resistance and a pair 

of complementary genes are involved in the inheritance of mould resistance. The 

observed BC, segregation of 3R:lS suggests that one of the dominant genes is 

contributed by the red parent (R,). According to Esele etal. (1 993), the genes which 

governed resistance in a red resistant source were pericarp colour genes and the 

intensifier genes; and in the brown resistant lines, it was pericarp genes and testa 

genes that governed resistance. In such cases, red x brown crosses should give 

monogenic or digenic ratios since the two parents differ in one or two testa genes. 

However, in the present study, a trigenic ratio was observed beside recovery of 

some susceptible plants, indicating that the two parents differed not only in testa 

genes but also for some other gene(s). 

From these segregation patterns of modified dihybrid and trihybrid ratios, observed 

in different crosses, it may be concluded that diverse nonallelic dominant genes are 

governing grain mould resistance. One to two basic dominant genes from the 

resistant parent and one dominant gene contributed by the susceptible parent might 

interact to produce mould resistance. The dominant gene from the susceptible may 

be different in different susceptibles or is modified to behave differently in different 

parents. Similar results were reported by Shivanna et a/. (1994); in a coloured 

resistant x white susceptible cross, it was observed that resistance was governed by 



four genes, two genes with complementary interaction and the other two with 

additive effects. They further reported that resistance was due to four alleles, 

interacting additively, at two loci. Also, the resistant parent contained one of the 

dominant complementary genes, while the susceptible parent contributed the other 

dominant complementary gene. 

Generation mean analysis: Generation mean analysis was conducted on a set of 

transformed square root data. Although this transformation produced a change in 

the scale of the observations, it did not seem to affect the interpretation of the data. 

Estimates of genetic effects on the original scale were comparable with those 

produced on the transformed scale. 

Estimates of genetic effects for FGS and TGS are given in Tables 13, 14, 18 and 19. 

For both the variables, in general, similar results were obtained. Though the R2 

values obtained were very high (up to 99%), the x2 values in some crosses were 

high indicating that the model was not a good fit. Similar results were reported by 

Torres et a/. (1 993); they chose regression analysis method as the most adequate 

test for generations derived from common parents; and discarded the x2 proposed 

by Mather and Jinks (1 971) as the addition of F,, F, etc. mean values inflates the xZ 

value. 



The R2 values obtained in all the crosses were very high (84 to 100%) indicating that 

the model was a good fit for FGS and TGS during 1995 and 1996. In both the years 

additive genetic effects were significant. Though the means of F, and F,, frequency 

distributions and segregation patterns revealed dominance effect to be the most 

important, yet the estimates showed significant additive gene action in all the 

crosses. Some of the genes may have similar but contrasting dominance effects 

which cancel each other (Mansur, 1993). Nelson (1 984) observed the expression of 

additive gene effects by a number of dominant genes when put together. Esele et 

a/. (1993) reported that genes which conferred dominant grain mould resistance 

individually showed additive effects when present together. 

Additive effects were significant in all the crosses except R,xR,, during 1995 and 

1996. Negative dominance effects were found significant in five crosses and were of 

greater magnitude in S,xR,, S,xR, and S,xR, during 1995, and in S,xR, and S,xR,, 

during 1996. Significant negative dominance x dominance interactions were present 

where dominance effects were absent during 1995. Also significant negative 

additive x dominance interactions were found in greater magnitude in S,xR,, S,xR2, 

S,xR, and R2xR, during 1996. Further additive x additive interactions were found 

significant in three and seven crosses during 1995 and 1996, respectively. Murty 

and House (1984) and Kataria et a/, (1990) reported large dominance effects 

besides significant additive effects and additive x additive interaction effects for grain 

mould resistance. In other studies, additive gene action was predominant in the 



inheritance of resistance (Narayana and Prasad, 1983) and both additive and non- 

additive components of variance determined the expression of mould reaction 

(Dabholkar and Baghel, 1983). 

Additive and dominance estimates were of higher magnitude during 1995 and 1996. 

However, negative additive x dominance interactions were of higher magnitude in 

some of the crosses during 1996. In two white susceptible x white resistant crosses, 

S,xR,, and S,xR, additive and additive x additive interactions effects were important 

components of inheritance. A simple recurrent selection or a backcrossing scheme 

should work quite well to concentrate the frequency of resistance genes. 

As the F, was more resistant than both parents in a white susceptible x white 

resistant cross, for FGS, a resistant hybrid can be developed from moderately 

resistant male sterile and restorer lines. In white susceptible x red resistant or in 

white susceptible x brown resistant, additive gene effects were predominant but 

dominance effects were also observed. Although fixable additive gene effects are 

present in almost all the crosses, the presence of dominance and complementary 

epistasis would tend to retard the progress through selection in early generations. 

Thus selection for grain mould resistance would be more effective if dominance and 

epistasis effects were reduced after a few generations of selfing. 



Genotype x Environment (GxE) interactions: Although consistent additive gene 

effects were observed in all crosses during 1995 and 1996, dominance and other 

interactions were also observed during two years (Tables 13, 14, 18 and 19). 

Estimates of genotype (G) x environment (E) interactions from pooled data of 1995 

and 1996 in six different crosses for FGS and TGS, are given in Tables 20 and 21. 

In GxE studies, important additive and dominance gene effects of equal magnitude 

were observed. In R,xR,, S,xR, and R,xR, environmental effects were significant 

but were of lesser magnitude. Also, in R,xR,, R,xR, and S,xR, environment x 

dominance (exh) interactions were found significant. 

From the overall results of family means, frequency distributions, segregation pattern 

and generation mean analysis, it may be concluded that grain mould resistance is 

determined by various major genes which are modulated by several minor modifiers. 

In general, additive and dominance gene actions were found predominant. 

Environment and environment x dominance interactions, though of lesser 

magnitude, nevertheless influenced various crosses involving IS 25017, a white 

resistant line (R,) as one of the parents. 

5.3 GENETICS OF RELATED MORPHOLOGICAL CHARACTERS IN 

DIFFERENT CROSSES OF SORGHUM 



5.3.1 Days to flowering 

Most improved varietieslhybrids mature earlier than local varieties, resulting in 

increased grain mould susceptibility. Although, low correlations were observed 

between grain moulds and flowering in the present and earlier studies, there is a 

need to develop early-maturing grain mould resistant male-sterile and restorer lines 

for breeding higher yielding resistant hybrids. 

Family means: Means of various families in the crosses for days to flowering 

tested during 1995 and 1996, are given in the Tables 22 and 23. In all crosses 

except in S,xR, and S,xR, the F, mean tended towards the early parent. Also the 

mean value of BC, and F, tended towards the early parent indicating that earliness is 

governed by dominant gene. 

In two crosses, S,xR, and S,xR,, the F, mean was close to the midparent value. The 

means of BC, and F, were less than that of F, mean and tended towards the early 

parent in S,xR,. These results indicate additive gene action in these two crosses. 

Similar results were observed for S,xR,, S,xR,, S,xR, and R,xR, grown during 1995 

and 1996. The F, mean was closer to the midparent value during 1995 and to the 

late parent during 1996. The mean values of the two parents in cross S,xR, were 

not different while the F, mean tended towards the late parent. 



Frequency distributions: F, frequency distributions revealed bimodal to 

pentamodal distributions (Figs 14 to 18) indicating the involvement of more than two 

major genes in the inheritance of days to 50% flowering. In all the crosses, except in 

S,xR, and SlxR, the distributions of F, and BC, overlapped with that of the early 

parent grown during 1995. The frequency distributions in these crosses amply 

indicate the dominance of earliness. In S,xR, and S,xR,, the F, distribution tallied 

with the midparent value. Transgressive segregants for earliness were observed in 

S,xR2, SpR,, S,xR,, S,xR,, S,xR, and S,xR,, indicating that different sets of genes 

were controlling this character. In general, the study shows that the character is 

governed by more than two major genes and that there is dominance for earliness in 

F, hybrids. 

Generation mean analysis: RZ values obtained during 1995 and 1996 were very 

high indicating that the model was a good fit (Tables 24 and 25). However in 

crosses, RlxR2 and S,xR,, R2 values were very low indicating inadequacy of the 

model. During 1995 and 1996, additive gene effects were found to be of prime 

importance. Similar results were reported by Kirby and Atkin (1968), Harer and 

Bapat (1 982), Deshmukh (1 983), Kukadia et a/. (1 983)) Chandrashekharappa 

(1 987), Mallick and Gupta (1 988) and Senthil and Palanasamy (1 994). However, in 

one cross R,xR,, dominant gene action was more important during 1996. Whereas, 

eight and two crosses showed significant additive x additive gene interactions grown 
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during 1995 and 1996, respectively. Likewise, in five crosses, positive additive x 

dominance estimates were found to be important and contributed to lateness. 

Although, additive gene action and its first order interaction are fixable, epistatic 

gene effects cannot be utilised as ?hey operate in opposing directions. It may be 

necessary for selection pressure for duration to be lenient in early selfed generations 

and intensified when homozygosity is approached. Breeding procedures to be 

followed for grain mould resistance and earliness seem to be the same in 

susceptible x resistant crosses. 

5.3.2 Seed colour 

Several authors have reported the importance of seed colour/seed phenols in 

governing resistance to grain mould. In the present study also susceptibility to grain 

moulds showed negative correlation with seed colour. 

Family means: Family means for seed colour in various crosses are given in the 

Table 26. In white x red crosses, the mean values of F,, BC, and F, were greater 

than that of P, (red parent) indicating red to be dominant. In white x brown crosses, 

the F,, BC, and F, mean values tended towards the brown parent indicating brown 

colour to be dominant. 



Frequency distributions: Frequency distribution studies (Figs 19-21) showed a 

similar trend to that of family means. In various crosses, the F, distributions showed 

2-3 peaks giving an impression of bimodal distributions indicating that seed colour is 

governed by two genes. In white x red cross and in red x brown crosses the F, 

distributions showed a peak at score 5 (red colour). In brown x white crosses, the F, 

distributions overlapped with that of P, showing brown to be dominant. Similar 

results were reported by Stephens (1946), Quinby and Martin (1954), and Rooney 

and Miller (1 982). 

Generation mean analysis: In various crosses, R2 values obtained for seed colour 

were very high indicating the adequacy of the model tested. In most of the crosses, 

except in S,xR,, the dominant gene action was found significant and of greater 

magnitude. However, in a few crosses, additive gene action was important. Out of 

the three interactions, (complementary) dominant x dominant interactions were 

found most important. These results indicate that a resistant coloured hybrid is easy 

to produce. 

5.3.3 Glume cover 

The present study indicated the importance of glume cover in grain mould 

resistance. Knowledge of its inheritance pattern would help in breeding resistant 

lines. 



Family means: The mean values of parents in crosses S,xR,, SlxR, and RlxR, 

were not different (Table 28). In most of the crosses the mean value of F, and F, 

were greater than the mean value of both parents showing overdominance for this 

character. In the cross S,xR,, the F, mean tended towards the larger parent 

showing dominance to be important in this cross. 

Frequency distributions: In crosses, S,,Rl, S,xR, and S,xRl, the F, distributions 

were bimodal (Figs 22-24), implying involvement of two genes for this character. On 

the other hand, in seven crosses F, distributions showed normal symmetrical 

distributions indicating polygenic nature of the character in these crosses. Singh 

(1987) reported that the open and closed glume character expression indicated its 

dominance and recessiveness, respectively. Kullaiswamy and Goud (1982) found 

that three pairs of genes were involved for gaping glumes and gaping glumes were 

dominant over normal glumes. However, Khusnetdinova and El'konin (1 989) found 

that long glumes were dominant to short glumes and further reported that different 

number of genes controlled the character in different genotypes. 

Generation mean analysis: In all crosses, except in SlxR,, R' values were very 

high, indicating the model to be a good fit (Table 29). However, in S,xR,, low R2 

value was obtained indicating the presence of higher order interactions or 

environmental interactions. In various crosses, additive gene action was found but 

dominance gene action was more important and of higher magnitude. Also, 
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dominance x dominance and additive x dominance interactions were important. 

However dominance and dominance x dominance effects were in opposite 

directions showing duplicate epistasis. 

The dominance effects may be utilised in hybrid breeding programme or selection 

pressure can be lenient in early selfed generations and intensified later when 

homozygosity is approached. 

5.3.4 Preharvest sprouting 

Preharvest sprouting leads to reduced seed viability and enhances the development 

of grain moulds (Castor and Frederiksen, 1977). Resistance to preharvest sprouting 

may also result in resistance to grain moulds. 

Family means: In all six families, sprouting was noted only in S,xR, (Table 30). 

The means of the F, and BC, were greater than the P, and F, and BC, mean was 

towards P, showing overdominance for this character. 

Generation mean analysis: While in all crosses, except in cross S,xR, dominance 

interaction was important; additive x dominance interaction was significant. Out of 

four crosses, two showed negative dominance effects. The results were 

inconsistent and interpretations were difficult (Table 31). 



5.3.5 Glume colour 

In the present study glume colour was observed to be one of the most important 

characters to be associated with grain moulds. The inheritance pattern of this 

character could be useful in a resistance breeding programme. 

Family means: The means of F, and F, in the cross studied (S,xR,), tended 

towards the midparent value (Table 32). BC, and BC, means tended towards their 

recurrent parent indicating additive gene action. 

Frequency distributions: Bimodal distributions with four peaks were observed in 

F, distributions showing involvement of more than two genes (Fig. 25). F, 

distribution was intermediate indicating additive nature of glume colour. Shivanna 

and Patil (1988), found digenic interactions while crossing black-glumed with straw- 

glumed lines, and Jayaramaiah and Goud (1982) reported trigenic ratios for this 

character. On other hand, Mani (1986) and Rao and Rana (1 989) found monogenic 

inheritance and reddish-purple glume to be dominant over blackish-purple glumes. 

Generation mean analysis: R2 value obtained in the cross S,xR, was very high 

showing the model to be a good fit (Table 32). Significant additive gene action was 

the most important. Dominant and additive x additive interactions were 



nonsignificant. Simple recurrent selection should work quite well to achieve 

desirable glume colour. 

High grain mould resistance can be incorporated into coloured hybrids by a judicious 

manipulation of seed colour and glume cover genes in hybrid breeding 

programmes. To get improved inbred lines for resistance is difficult and time 

consuming, due to the presence of dominance and epistatis for resistance to grain 

moulds as well as for the characters associated with resistance. It may be 

necessary for selection pressure to be lenient in earlier selfed generations and 

intensified later when homozygosity is approached. 

5 . 4  GENERATION MEAN ANALYSIS FOR GRAIN YIELD AND YIELD 

COMPONENTS IN SUSCEPTIBLE x RESISTANT CROSSES OF 

SORGHUM. 

A better understanding of the inheritance pattern and magnitude of various types of 

gene action governing different agronomic traits can help in achieving high yielding 

grain mould resistant genotypes. Hence the present study investigated the genetics 

of grain yield and yield components in two susceptible x resistant crosses. 

5,4.1 Plant height 



Family means and generation mean analysis: The means of F,, BC, and F, 

tended towards the higher parent, P, showing dominance for tallness (Table 33). 

Plant height is governed by four genes (Quinby and Martin, 1954). Generation 

mean analysis studies showed significant additive gene effects were common in 

both crosses (Table 34). In cross S,xR,, dominance and dominance x dominance 

interactions were more important. Similar results were reported by Kulkarni and 

Shinde (1 987), Nimbalkar and Bapat (1 987), and Mallick and Gupta (1 988). On the 

contrary Harer and Bapat (1 982), Deshmukh (1 983) , Palanisamy and Subramanian 

(1986), Chandrashekharappa (1987), Yang (1991) and Senthil and Palanasamy 

(1 994) reported that only additive gene action was important. 

5.4.2 Panicle length 

Family means and generation mean analysis: Mean value of F, tended towards 

the larger parent in cross S,xR,, while the mean value of F, in S,xR,, was greater 

than both the parents (Table 33). The results indicated that the character was 

dominant. Partial dominance was reported for this trait (Anonymous, 1976). 

Nayeem (1 991) reported involvement of 2-5 genes in inheritance of this character. 

In the present study, additive gene action was predominant in both crosses (Table 

34). Similar results were obtained by Patidar and Dabholkar (1981), Harer and 

Bapat (1 982), Nagabasaiah (1 982), Thombre et a/. (1 985), Palanisamy and 

Subramanian (1986), Chandrashekharappa (1987) and Senthil and Palanasamy 



(1994). In contrast, others reported that dominant gene action was important. In the 

cross S,xR,, in the present study, dominance x dominance gene action was 

important, whereas significant additive x additive gene interaction was reported by 

Karale etal. (1984), Patil and Thombre (1985), and Thombre etal. (1985). 

5.4.3 Panicle weight 

Family means and generation mean analysis: The mean values of the F,, BC, 

and BC, in both crosses were greater than both the parents indicating heterosis for 

this character (Table 33). 

R2 value for generation mean analysis for the cross S,xR, was very low indicating 

that the model was not a good fit and that higher order interactions were involved for 

this cross (Table 34). In the cross S,xR,, (R2 value was high) the dominance and 

dominance x dominance interactions were important. These estimates were in 

opposite directions implying the importance of duplicate type of epistasis. Similar 

results were reported by Harer and Bapat (1982), Patil et al. (1982), Deshmukh 

(1983), Thombre etal. (1 985), Chhina and Phul (1 988), Nimbalkar et a/. (1 988) and 

Rao et a/. (1994). On the other hand, other workers reported additive and 

nonadditive effects to be important components for this character. 



5.4.4 Primary branches 

Famlly means and generation mean analysis: The mean values of F,, BC, and 

BC, were greater than both parents, indicating heterosis for this character (Table 

33). This shows overdominance to be important for this character. In S,xR, cross, 

the RZ value was very high while in S,xR,, it was very low indicating that the model 

was not a good fit for the latter cross (Table 34). Like panicle weight, dominance 

and dominance x dominance gene action was important in determining number of 

primary branches. The estimates were in same directions showing the importance 

of complementary epistasis. Harer and Bapat (1 982), Patil eta/. (1982), Deshmukh 

(1 983), Thombre et a/. (1 985), Chhina and Phul (1 988), Nimbalkar et a/. (1 988), and 

Rao eta/. (1 994) reported similar results. 

5.4.5 Grain yield per plant 

Famlly means and generation mean analysis: The mean values of F,, BC, and 

BC, were greater than that of both the parents indicating heterosis for this trait (Table 

33). The mean value of F, was on par with that of parents. This may be attributed to 

the fewer number of plants scored in other generations. 

RZ values obtained in both the crosses, S,xR, and SlxR2, were high indicating that 

the model was adequate (Table 34). Also, dominance gene action was important in 



these crosses. Similar results were reported by Harer and Bapat (1982), Kide eta/, 

(1982), Nagabasaiah (1 982), Patil et a/. (1982), Kukadia et a/. (1983), Berenji 

(1988), Chhina and Phul (1988), Yang (1991) and Gao (1993). In contrast, additive 

gene effects were reported for grain yield by Beil and Atkins (1967), Rao et a/. 

(1 968), Deshmukh (1 983), Rao (1 970), Patidar and Dabholkar (1 981), Giriraj and 

Goud, (1 982), Chandak and Nandanwankar (1 983), Thombre et a/. (1 985), Shinde 

and Jagadeshwar (1 986), Kulkarni and Shinde (1 987), Mallick and Gupta (1988), 

and Spivakov (1 988). 

In this study additive x additive interaction effects and dominance x dominance 

effects were found important in both the crosses. Dominance x dominance 

interactions were reported by lndi and Goud (1 981 a and 1981 b), Desai et a/. (1985) 

and Patil and Thombre (1985). However, Rao et a/. (1994) reported that all three 

epistatic interactions to be significant in the crosses. 

In conclusion, among susceptible x resistant crosses, additive gene action was 

predominant for plant height and panicle length. Simple recurrent selection should 

work quite well to achieve desirable panicle length. The other characters, panicle 

weight, primary branches and yield per plant, showed dominance and duplicate 

type of gene action. It is difficult to fix such gene effects in inbred lines and is a time 

consuming process. The presence of dominance and duplicate epistasis would tend 

to retard the pace of progress through selection in early generations. Thus selection 



for these characters would be more effective if the dominance and epistatic effects 

were reduced after a few generations of selfing. 

In the present study, IS 14375, a red resistant (R,) genotype and IS 14387, a brown 

resistant (R,) genotype, showed consistent resistance over three years. In these 

genotypes, high resistance to grain mould is determined by both major and minor 

genes. The line, IS 14375, may contribute resistance to grain mould through major 

genes determining glume colour, high flavan 4-01s and phenols in seed besides 

minor genes for glurne cover and seed hardness. On the other hand, IS 14387 has 

coloured glumes, high seed phenols, glume cover and hard seed contributing to 

grain mould resistance. Also, in the cross between IS 14375 (R,) x IS 14387 (R,), 

the F,and the backcross segregations indicated the involvement of at least three 

major nonallelic resistance genes besides minor modifiers. As such, these lines 

may be utilised as gene sources in the breeding programmes aimed at stable and 

long lasting resistance to grain moulds. Further, these resistant sources may be 

readily exploited in the breeding of coloured sorghum hybrids for industrial and 

export purpose. 

Two white resistant sources, IS 25017, and IS 24495, showed inconsistent 

resistance over the years; and in these genotypes, resistance is governed 

predominantly by polygenes. Whereas, IS 25017 has coloured glume with high 

phenols and is hard seeded, IS 24495 has only hard seeds. Two moderately 



resistant lines, GM 15018 and SP 33316, were also found inconsistent over the 

years. Segregation pattern and frequency distributions indicate that one of the 

dominant genes was contributed by the susceptible parents. Further, susceptible 

genotypes such as MS 4228 and SP 33316, contributed positively towards 

resistance and thus may be utilised in improving grain mould resistance. It seems 

feasible to develop white hybrids with enhanced grain mould resistance from 

moderately resistant male steriles and restorer lines. Since additive gene effects 

were predominant, a simple recurrent selection might help in designing inbred lines 

with stable resistance. During this study, 20 agronomically elite advanced lines with 

white seeds and moderate grain mould resistance were obtained. 

To get improved inbred lines with high levels of resistance to grain mould seems 

difficult and time consuming owing to the involvement of several major and minor 

genes. Also, the presence of dominance, epistatis and genotype x environment 

interactions for resistance as well as for other characters associated with grain 

mould resistance make the task complex. Quantitative trait loci (QTL) mapping is a 

highly effective approach for studying genetically complex characters such as grain 

mould resistance. Hopefully, with QTL mapping the role of specific resistance loci 

can be identified, race specificity of partial resistance genes can be assessed, and 

interactions among resistance genes, plant development and environment can be 

analysed. 





Sorghum ( Sorghum bicolor (L.) Moench) is a staple food crop in the semi-arid 

tropical areas of Africa and India. It is also an important feed and forage crop in 

other parts of the world. In India, the development of short-duration and short- 

statured sorghum hybrids resulted in a quantum jcrmp in productivity from 560 kg ha" 

in 1970 to 1020 kg ha" in 1996. However, yield potentials of sorghum hybrids are 

not fully realized as they are highly susceptible to grain moulds, which not only 

cause yield loss but also reduce grain quality and market value. For any effective 

kharif hybrid breeding programme, grain mould resistant male-sterile and restorer 

lines are essential prerequisites. Efficient exploitation of resistant genotypes in 

breeding grain mould resistant parental lines requires knowledge of the number and 

diversity of genes involved and of their mode of action in determining resistance. 

The present investigation was undertaken with the following objectives: (1) To 

screen sorghum genotypes for grain mould resistance; (2) to evaluate sorghum 

genotypes for morphological and biochemical characters associated with mould 

resistance; (3) to estimate correlations between grain mould resistance, 

morphological and biochemical characters; (4) to determine the genetics and 

inheritance pattern of grain mould resistance; (5) to analyse the genetics of 

characters associated with mould resistance; and (6) to determine the genetics of 



grain yield and yield components in grain mould susceptible x grain mould resistant 

crosses. 

Twenty-two sorghum genotypes including released and prereleased varieties, 

restorers and nonrestorers, advanced breeding lines and other germplasm lines 

were evaluated for grain mould resistance under sprinkler irrigation during kharif 

1994. They were also evaluated, in the same trial, for morphological and 

biochemical characters associated with mould resistance. The genotypes IS 14375, 

IS 14387, IS 18144, IS 18528, IS 24495, IS 25017 and 858586 recorded low mean 

field grade score (FGS) of 1.3 to 3.0, low threshed grade score (TGS) of 1.8 to 3.0, 

high germination percentage (83 to 94%) and low ergosterol content of 5 to 45 pg (g 

seed).', and hence were classified as grain mould resistant. Ten genotypes 2968, 

SPV 462, SPV 475, MS 4228, AKMS 148, AKR 150, R 141 3, GM 15373, TNS 30 

and GMRP 13, showed maximum susceptibility to grain mould and recorded high 

mean FGS and TGS (4 to 5), low germination percentage (6 to 52%) and high 

ergosterol content ranging from 70 to 253 pg (g seed)". The remaining five 

genotypes were moderately resistant to grain moulds. 

High phenol contents of 126 to 310 pg (g seed)", in glumes and seed, were 

recorded in genotypes SP 33349, SP 33487, IS 14387, IS 14375, IS 18144, IS 

18528. However, genotypes SP 33316 and GM 15018 recorded high phenols in 

glumes only. Flavan-4-01s in glumes and seed were detected in a few genotypes 



such as IS 14375, IS 181 44, IS 18528 and SP 33349, and in substantial quantity in 

the glumes of SP 33316. Most of the resistant genotypes, viz., IS 14375, IS 

14387, IS 18528, IS 24495, IS 25017, IS 21443, SP 33349 and 858586 were 

relatively hard seeded taking 5 to 6.78 sec to grind in a Stenvert hardness tester. 

Percentage glume cover varied from 25 to 90%. Out of 22 genotypes, 11 had straw- 

coloured glumes, 7 had dark-coloured glumes and 4 had light-coloured glumes. 

Only a few lines, viz., IS 14375, IS 14387, IS 181 44, IS 18528, SP 33349 and 

SP 33487, had coloured seeds. 

Correlations between grain mould resistance and 17 associated characters were 

estimated in the same 22 genotypes. Field grade score (FGS) showed strong 

positive correlation with threshed grade score (r = 0.93) and ergosterol content (r = 

0.78), and strong negative correlation with germination percentage (r = -0.84), seed 

hardness (r = -0.79), glume colour (r = -0.75), and seed colour (r = -0.66). Field 

grade score also showed significant negative correlation with acid-methanol extract 

of glume phenols (r = -0.51), seed phenols (both methanol and acid-methanol 

extracts), flavan-4-01s in glumes, and percentage glume cover. Further, field grade 

score showed significant positive correlation with grain yield per plant and significant 

negative correlation with plant height. 

All the other grain mould measuring variables, viz., threshed grade score (TGS), 

percentage seed germination and ergosterol, in general, showed similar correlations 



to those shown by FGS. Strong negative correlations of FGS and TGS with glume 

colour (r = -0.400 and -0.492, respectively) were also observed in 225 F, progenies 

of a cross between lines with straw (AKMS 148) and purple (IS 14375) glumes. 

An overview of the means and correlations indicates that seed hardness, glume 

colour, seed phenols, seed flavan-4-01s and glume cover, in association with one 

another, bring about high resistance to grain moulds. Thus manipulation of some of 

these characters may help in breeding resistant genotypes. The tannins in brown 

sorghums are polyphenols, which render the grain astringent and unpalatable. High 

tannin levels result in low digestibility and reduced protein efficiency ratio and thus 

present problems of utilisation of brown-coloured seed. Glumes with intense red 

and purple colour have a tendency to stain the sorghum kernels in humid conditions. 

Threshing is difficult in sorghum lines with long enclosed glumes; in guinea 

sorghums, glumes cover the seed up to physiological maturity and open up only at 

the time of harvest. Very hard seeds have low digestibility and are not suitable for 

some food preparations. Hence it is important to strike a balance between the level 

of grain mould resistance and grain hardness. Thus breeding for light glume colour 

with high levels of glume flavan-4-01s moderate seed hardness, glume cover up to 

30 d after anthesis along with free threshing might result in mould resistant lines with 

desirable grain quality. 



On the basis of evaluation for grain mould resistance during kharif 1994, three 

susceptible and five resistant genotypes were selected for inheritance studies. The 

genotypes AKMS 148, MS 4228 and AKR 150 were consistently susceptible and IS 

14375 and IS 14387 were consistently resistant over the years studied. However, 

white resistant and moderately resistant sources, IS 25017, SP 33316 and GM 

1501 8, were scored resistant/moderately resistant during kharif 1994, susceptible 

during kharif 1995 and moderately resistant during kharif 1996. The post-maturity 

period, i.e., 30 to 50 d after anthesis of IS 25017 (R,) white resistant source, 

coincided with heavy rainfall weeks during 1995 and low rainfall weeks during 1996. 

Accordingly, the mean FGS of R, was high during 1995 and moderate during 1996. 

It appears that the white resistant sources are rather unstable and the FGS reaction 

of such genotypes depends on the level of ambient humidity during the post-maturity 

period. 

Crosses between susceptible x resistant genotypes, their F, and backcross 

generations were evaluated for grain mould resistance and associated characters 

during 1995 and 1996. Genetics of the traits studied was inferred from the family 

means, frequency distributions and generation mean analysis. For grain mould 

resistance, the F, means in most of the crosses between white susceptible x 

coloured resistant lines tended towards the resistant parent. In a white susceptible x 

white resistant cross, the F, mean was equal to midparent value during 1995 and 

tended towards resistant parent during 1996. In a red resistant x brown resistant 



cross, the F, mean was greater than that of both the parents but was still in the 

resistant range, and in a white susceptible x moderately resistant cross the F,s 

exhibited greater resistance than both the parents. All these results indicate the 

dominance of grain mould resistance over susceptibility. The inconsistent 

inheritance pattern observed over years in different crosses may be attributed to the 

diverse resistance genes that specify different mechanisms of resistance to grain 

mould. 

Frequency distributions for FGS and TGS were bimodal or unimodal with small peak 

at the tail giving an indication of a second mode, suggesting that both major and 

minor genes control grain mould resistance. The F, and F, distributions skewed 

towards the resistant parent and those of BC, and BC, overlapped with those of 

recurrent parent, Inconsistent frequency distributions in different crosses for FGS 

and TGS over two years suggest that a number of major genes in conjunction with 

minor modifiers determine grain mould resistance. 

Segregation patterns in three white susceptible x red resistant crosses showed 

resistant F,s and F,s segregated into 9 resistant (R) : 7 susceptible (S) indicating 

digenic inheritance with duplicate recessive epistasis. In three white susceptible x 

brown resistant and one brown resistant x white resistant crosses, the F, hybrids 

were resistant and F,s segregated into modified trigenic ratios of 39R:25S, 45R:19S, 

27R:37S and 27R:37S, respectively. In the red resistant x brown resistant cross, the 



F, segregation fitted 57R:7S trigenic ratio, suggesting the involvement of three major 

nonallelic genes for grain mould resistance. Also, in one white susceptible (S,) x red 

resistant (R,) cross, the F, segregated into 51 R:13S trigenic ratio. 

From these segregation patterns of modified dihybrid and trihybrid ratios, observed 

in different crosses, it may be concluded that diverse nonallelic dominant genes are 

determining grain mould resistance. One to two basic dominant genes from the 

resistant parent and one dominant gene contributed by the susceptible parent might 

interact to produce grain mould resistance. The dominant gene from the susceptible 

may be different in different susceptibles or is modified to behave differently in 

different parents. 

For grain mould resistance, good fit of the genetic model was obtained in generation 

mean analyses of all the crosses, as indicated by the high RZ values (83 to 99%) 

obtained. Additive effects were significant in all the crosses grown during 1995 and 

1996. Negative dominance effects were also observed in five crosses which were 

important in three of these crosses. All the three-gene interactions were found 

important in various crosses. Although fixable additive gene effects were present in 

almost all the crosses, the presence of dominance and complementary epistasis 

would tend to retard the progress through selection in earlier generations. Thus 

selection for grain mould resistance would be more effective if dominance and 

epistasis effects were reduced after a few generations of selfing. 



Estimates of genotype x environment interaction for grain mould resistance, from 

pooled data of 1995 and 1996, in six crosses were obtained by the weighted least 

squares method. Important additive and dominance gene effects of approximately 

equal magnitude were observed. Environmental effects were significant but of 

lesser magnitude and environment x dominance (ExH) interactions were also 

significant in white susceptible x white resistant, brown resistant x white resistant 

and red resistant x brown resistant crosses. 

From the overall results of family means, frequency distributions, segregation pattern 

and generation mean analysis, it may be concluded that grain mould resistance is 

governed by various major genes which are modulated by several minor modifiers. 

In general, additive and dominance gene actions were found predominant. 

Environment and environment x dominance interactions, though of lesser 

magnitude, nevertheless influenced various crosses involving IS 25017, a white 

resistant line (R,) as one of the parents. 

For days to 50% flowering, the F, mean value tended towards the early parent in all 

but 2 of the 18 crosses studied, indicating dominance of earliness. The mean values 

of BC, and F, tended towards the early parent confirming dominance of earliness. 

Frequency distributions in F, for days to flower showed bimodal to pentamodal 

distributions indicating the involvement of more than two genes. Generation mean 

analysis showed high R2 values in all the crosses grown during 1995 and 1996, and 



additive gene effects were of prime importance in both the years. Also, positive 

additive x dominance interactions were observed. Although, additive gene action 

and its first order interaction are fixable, epistatic gene effects cannot be utilised as 

they operate in opposing directions. It may be necessary for selection pressure to 

be lenient in earlier selfed generations and intensified later when homozygosity is 

approached. Breeding procedures to be followed for grain mould resistance and 

earliness seem to be the same in susceptible x resistant crosses. 

For seed colour, in all white x red crosses the F, mean value was greater than that 

of the red parent. In the red x brown cross, the F, mean was greater than that of 

both the parents and in the white x brown crosses the F, mean tended towards the 

brown parents. The frequency distributions of F, showed 2 to 3 peaks giving an 

impression of bimodal distribution. Generation mean analysis showed that 

dominance gene action was the most ~mportant gene effect. Dominance x 

dominance interactions were also found important for seed colour. These results 

indicate that a resistant coloured hybrid is easy to produce. 

For glume cover, the mean values of F, and F, were greater than the mean value of 

both parents in most of the crosses. The frequency distributions for glume cover in 

three crosses were bimodal, suggesting the involvement of major genes. In other 

crosses, normal symmetrical distributions were observed indicating polygenic 

inheritance. R2 values for all crosses, except one, were very high ranging from 81 to 



99%. Dominant gene action was found most important and significant. Additive 

gene action was also found in all the crosses but was of lesser magnitude. 

Dominance x dominance and additive x dominance interactions were important but 

lesser in magnitude than dominance gene effects in determining glume cover. The 

dominance effects may be utilised in hybrid breeding programme, and to obtain 

inbred line, selection pressure can be relaxed in early selfed generations and 

intensified later when homozygosity is approached. 

For glume colour, the means of F, and F, of a cross between straw coloured x 

purple glumed lines tended towards the midparent value. F, distribution showed four 

modes, suggesting the involvment of major genes. Additive gene action was the 

most important significant gene action observed. Simple recurrent selection should 

work quite well to achieve desirable glume colour. 

Generation mean analysis studies were also conducted for grain yield and yield 

components in two susceptible x resistant crosses. Additive gene action was 

predominant for plant height and panicle length; hence recurrent selection should 

work quite well to achieve desirable panicle length. Dominance and dominance x 

dominance interactions were found important for panicle weight, primary branches 

and grain yield per plant. It is difficult to fix such gene effects in inbred lines and is a 

time consuming process. The presence of dominance and duplicate epistasis would 

tend to retard the pace of progress through selection in early generations. Thus 



selection for such characters would be more effective if the dominance and epistatic 

effects were reduced after a few generations of selfing. 

In the present study, IS 14375, a red resistant (R,) genotype and IS 14387, a brown 

resistant (R,) genotype, showed consistent resistance over three years. In these 

genotypes, high resistance to grain mould is determined by both major and minor 

genes. The line IS 14375 may contribute resistance to grain mould through major 

genes determining glume colour, high flavan-4-01s and phenols in seed besides 

minor genes for glume cover and seed hardness. On the other hand, IS 14387 

has coloured glumes, high seed phenols, glume cover and hard seed contributing to 

grain mould resistance. Also, in the cross between IS 14375 (R,) x IS 14387 (R,), 

the F, and the backcross segregations indicated the involvement of at least three 

major nonallelic resistance genes besides minor modifiers. As such, these lines 

may be utilised as gene sources in the breeding programmes aimed at stable and 

long lasting resistance to grain moulds. Further, these resistant sources may be 

readily exploited in the breeding of coloured sorghum hybrids for industrial and 

export purpose. 

Two white resistant sources, IS 25017 and IS 24495, showed inconsistent 

resistance over the years; and in these genotypes, resistance is governed 

predominantly by polygenes. Whereas IS 25017 has coloured glume with high 

phenols and is hard seeded, IS 24495 has only hard seed. Two moderately 



resistant lines, GM 15018 and SP 33316, were also found inconsistent over the 

years. Segregation pattern and frequency distributions indicate that one of the 

dominant genes was contributed by the susceptible parents. Further, susceptible 

genotypes such as MS 4228 and SP 33316, contributed positively towards 

resistance and thus may be utilised in improving grain mould resistance. It seems 

feasible to develop white sorghum hybrids with enhanced grain mould resistance 

from moderately resistant male-steriles and restorer lines. Since additive gene 

effects were predominant, simple recurrent selection might help in developing 

inbred lines with stable grain mould resistance. 
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