
ORIGINAL PAPER

Effect of plant secondary metabolites on legume pod borer,
Helicoverpa armigera

Abdul Rashid War • Michael Gabriel Paulraj •

Barkat Hussain • Abdul Ahad Buhroo •

Savarimuthu Ignacimuthu • Hari Chand Sharma

Received: 14 November 2012 / Accepted: 22 February 2013 / Published online: 16 March 2013

� Springer-Verlag Berlin Heidelberg 2013

Abstract The effect of various flavonoids, lectins and

phenyl b-D-glucoside on larval survival, weights and the

activities of digestive (total serine protease and trypsin)

and detoxifying [esterase and glutathione-S-transferase]

enzymes of Helicoverpa armigera larvae at 5 and 10 days

after treatment (DAT) was studied through diet incorpo-

ration assay. Flavonoids (quercetin, cinnamic acid, caffeic

acid, chlorogenic acid, catechin, trihydroxyflavone, genti-

sic acid, ferulic acid, protocatechuic acid and umbellifer-

one) were incorporated in artificial diet at 100, 500 and

1000 ppm, lectins: groundnut leaf lectin (GLL), concavalin

(ConA) and phenyl b-D-glucoside at 2.5 and 5 lg mL-1.

Flavonoids such as chlorogenic acid, caffeic acid and

protocatechuic acid at 1,000 ppm were more toxic to H.

armigera larvae at 10 DAT than quercetin, catechin, cin-

namic acid, trihydroxyflavone, gentisic acid, ferulic acid

and umbelliferone. Larval growth and development were

significantly reduced in H. armigera larvae fed on a diet

with GLL and ConA at 5 lg mL-1 compared to the larvae

fed at 2.5 and 1.25 lg mL-1 concentrations. The enzyme

activities of the larvae were significantly reduced in fla-

vonoid-treated diets. The flavonoids such as chlorogenic

acid, caffeic acid, gentisic acid, trihydroxyflavone, catechin

and protocatechuic acid, and lectins, GLL and ConA can be

utilized in insect control programs.

Keywords Secondary metabolites � Flavonoids �
Lectins � Midgut enzymes � Helicoverpa armigera

Introduction

Plants produce a number of defensive secondary metabolites

in response to insect herbivory, pathogen infection and other

stresses. The secondary metabolites do not affect the normal

growth and development of plant, but reduce the palatability

of the plant tissues to the herbivores (Boerjan et al. 2003).

Among the secondary metabolites, plant phenols constitute

one of the most common and widespread groups of defensive

compounds, which play a major role in host plant resistance

against herbivores, including insects (Sharma et al. 2009;

Usha Rani and Jyothsna 2010; Ballhorn et al. 2011). Quali-

tative and quantitative alterations in secondary metabolites

and increase in activities of oxidative enzymes in plants in

response to insect attack is a general phenomenon (Maffei

et al. 2007; Barakat et al. 2010; He et al. 2011; War et al.

2012). Phenols mediate both direct and indirect defenses. The

direct defenses are mediated by their toxic or deterrent activity

against insect pests and the indirect defenses by their effect on

natural enemies of insect pests (Karban and Baldwin 1997;

Heil 2008; Sharma et al. 2009; Barakat et al. 2010; War et al.

2012). Condensed tannins are the potent plant defensive

compounds implicated against insect pests and have been
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reported to reduce the growth and survivorship in many insect

pests (Grayer et al. 1992; Sharma et al. 2009). Flavonoids play

a central role in various facets of plant life, especially in plant–

environment interactions (Treutter 2006). These defend plants

against biotic and abiotic stresses, including ultraviolet radi-

ation, pathogen infection and herbivore damage (Simmonds

2003; Treutter 2006). Flavonoids are divided into various

classes that include anthocyanins, flavones, flavonols, flava-

nones, dihydroflavonols, chalcones, aurones and flavans

(Simmonds 2003; Treutter 2006).

Evidence suggests the role of flavonoids in plant defense

against insect pests (Mallikarjuna et al. 2004; Treutter 2006;

Salvador et al. 2010; Atteyat et al. 2012). Isoflavonoids

(judaicin, judaicin-7-O-glucoside, 2-methoxyjudaicin, and

maackiain) isolated from the wild relatives of chickpea act as

antifeedants against H. armigera at 100 ppm (Simmonds and

Stevenson 2001). The flavonoids, quercetin dehydrate, rutin

hydrate and naringine at 1,000 ppm showed the mortality of

85, 93 and 86 %, respectively, in Eriosoma lanigerum

(Haus.) in a twig dip assay (Atteyat et al. 2012). In addition,

flavonoids scavenge the free radicals in plants, including

reactive oxygen species (ROS), and reduce their formation

by chelating metals (Treutter 2006). However, some flavo-

noids have been found to act as feeding stimulants (van Loon

et al. 2002). Lectins are carbohydrate-binding (glyco) pro-

teins and are involved in plant defense against a range of

insect pests (Saha et al. 2006; Chakraborti et al. 2009;

Vandenborre et al. 2011). The strong insecticidal potential of

lectins is attributed to their binding to the membrane glycosyl

groups lining the digestive tract of the herbivores (Chak-

raborti et al. 2009; Vandenborre et al. 2011). The b-gluco-

sides are the important toxic compounds involved in plant

defense against insect pests (Zagrobelny et al. 2004).

Helicoverpa armigera (Hub.) is one of the most

important polyphagous pests, which attacks more than 200

plant species throughout the world, and has developed high

levels of resistance to most of the chemical insecticides

(Sharma et al. 2005). The objective of the present inves-

tigation was to study the effect of some flavonoids, lectins

and phenyl b-D-glucoside on the growth and development

and midgut enzyme activities of pod borer, H. armigera, to

be used as a component of integrated pest management

(IPM) for this polyphagous pest. This will give us an

insight into the mechanism of toxicity of flavonoids and

related compounds on insect pests.

Materials and methods

Chemicals

The chemicals used in this study were of analytical grade.

Ethylene diamine tetra acetic acid (EDTA), sodium dodecyl

sulphate (SDS), azocasein, N-a-benzoyl-DL-arginyl-p-

nitroanilide (BApNA), glycine, sodium hydroxide (NaOH),

naphthyl acetate, fast blue B, Concavalin A (ConA) reduced

glutathione (GSH), phenyl b-D-glucoside, disodium hydro-

gen phosphate and sodium dihydrogen phosphate were

obtained from Sigma Aldrich, USA. Trichloroacetic acid

(TCA) was obtained from Sisco Research Lab., Mumbai,

India. 1-chloro-2,4-dinitrobenzene (CDNB) was obtained

from HiMedia Pvt. Ltd., Mumbai, India. Acetic acid was

obtained from Qualigens Fine Chemicals, Mumbai, India.

Flavonoids were obtained from APIN Chemical Ltd., UK.

The biochemical assays were carried out on UV-spec-

trophotometer Hitachi U-2900 (Hitachi, Japan).

Helicoverpa armigera culture

Newly emerged first instar larvae were obtained from the

laboratory culture at International Crops Research Institute

for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra

Pradesh, India.

Bioassay

The effect of flavonoids on insect growth and development

was studied by feeding the larvae on flavonoids incorpo-

rated artificial diet. Ten flavonoids: quercitin, cinnamic

acid, caffeic acid, chlorogenic acid, catechin, trihydroxyf-

lavone, gentisic acid, ferulic acid, protocatechuic acid and

umbelliferone were bioassayed using diet incorporation

assay (Narayanamma et al. 2008). The flavonoids were

weighed and mixed with the diet (mg mL-1) just after its

preparation. Neonates of H. armigera were released on the

diet containing three concentrations of each flavonoid (100,

500 and 1000 ppm). One larva was released in each cell

well in a 20-well plastic plate. Four replications were

maintained for each treatment with ten larvae in each

replication. Larvae fed on untreated diet were maintained

as a control. After 5 and 10 days of treatment, larval

weights were recorded, while larval survival was computed

at 10 days after treatment(DAT). The larvae after 10 days

of treatment were used to study the effect of flavonoids on

gut enzyme activities such as serine protease, trypsin,

esterase (EST) and glutathione-S-transferase (GST).

Groundnut leaf lectin (GLL) and ConA and phenyl b-D-

glucoside were also incorporated into the artificial diet to

study their effects on biology of H. armigera. The con-

centrations used were 1.25, 2.5 and 5 lg mL-1 of diet.

Four replications were maintained for each treatment and

ten larvae placed individually in cell wells in each repli-

cation. The larvae fed on untreated diet were maintained as

a control. At 5 and 10 DAT, larval weights were recorded.

Larval survival was recorded at 10 DAT only. At 10 DAT ,
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the larvae were used to study insect gut enzymes (EST,

GST, trypsin, and serine protease).

Total serine protease assay

The larvae were dissected and midguts extracted in 0.2 M

sodium phosphate buffer (pH 7.5). The midguts were

removed and homogenized in 0.1 M glycine-NaOH buffer

(pH 10), containing 1 mM EDTA. The homogenate was

filtered through three layered cheese cloth and centrifuged

at 10,000 rpm for 20 min at 4 �C. The supernatant was

collected and used as enzyme source for serine protease

and trypsin activity. Serine protease activity of insect

midgut was estimated by following the method of Hegedus

et al. (2003) using azocasein as a substrate. To 0.04 mL of

midgut supernatant, 0.3 mL of 1 % azocasein solution

(prepared in 0.05 M glycine-NaOH buffer, pH 10) was

added. The reaction mixture was incubated at 28 �C for

15 min, and then 0.34 mL of 10 % TCA was added to it.

The reaction mixture was incubated again for 1 h at room

temperature and centrifuged at 12,000 rpm for 10 min. The

supernatant was collected in a separate tube and 0.68 mL

of 1 M NaOH added to it. Absorbance was read at 495 nm.

Total midgut serine protease activity (SP) was calcu-

lated by subtracting the azocasein blank absorbance from

sample absorbance divided by incubation time in minutes

multiplied by 1,000.

SP ¼
AbsðsampleÞ � AbsðblankÞ
Incubation time minð Þ � 1; 000

Units are tryptic activity (mU) per min of incubation per

mg insect body weight (mU min-1 mg-1 protein).

Trypsin assay

Trypsin activity of the insect midgut was determined as per

the method described by Perlmann and Lorand (1970).

Larval midgut extract (0.15 mL) was added to 1 mL of

1 mM BApNA (in 0.2 M glycine–NaOH buffer, pH 10).

The reaction mixture was incubated at 37 �C for 10 min.

The reaction was terminated by adding 0.2 mL of 30 %

acetic acid. Absorbance was read at 410 nm and the

enzyme activity was expressed as lmol min-1 mg-1

protein.

Esterase assay

The larvae were dissected in 0.1 M sodium phosphate

buffer (pH 7.5), then the midguts were removed and

homogenized in 0.1 M sodium phosphate buffer (pH 7.5)

containing 1 mM EDTA. The homogenate was filtered

through three-layered cheese cloth and centrifuged at

12,000 rpm for 15 min at 4 �C. The supernatant was

collected and used as an enzyme source for EST and GST.

The EST activity was determined by the following method.

To 2 mL of 1.5 mM 1-naphthyl acetate solution, 0.1 mL of

diluted enzyme sample (10 times with 0.1 M sodium

phosphate buffer) was added. This mixture was incubated

at 25 �C for 30 min. The reaction was stopped by addition

of Fast Blue B (in 5 % SDS) staining solution. The reaction

mixture was incubated for 15 min and absorbance recorded

at 490 nm. The concentration of hydrolyzed substrate was

determined from the standard curve of 1-naphthol. Specific

activity was expressed as lmol of 1-naphthol formed

min-1 mg-1 protein.

Glutathione-S-transferase assay

GST activity was determined using 1-chloro-2,4-dinitro-

benzene (CDNB) and reduced GSH as substrates according

to Habig et al. (1974) with slight modifications. To 1 mL of

phosphate buffer (pH 7.5), 0.1 mL of CDNB (25 mM) and

1.6 mL of distilled water were added. The reaction was

started by adding 0.1 mL of diluted enzyme solution (the

stock solution was diluted 10 fold with 0.1 M sodium

phosphate buffer, pH 7.5). The reaction mixture was

incubated at 37 �C for 5 min and 0.1 mL of 20 mM GSH

was added. Optical density at 340 nm was recorded at 30 s

intervals for 3 min. The enzyme activity was calculated

with an extinction coefficient of 9.6 mM cm-1 for CDNB.

Specific activity was expressed as nmol of CDNB conju-

gate formed min-1 mg-1 protein.

Statistical analysis

The data were subjected to analysis of variance (ANOVA)

using SPSS v15.1 (SPSS, Inc., Chicago, IL, USA). Tukey’s

test was used to separate the means when the treatment

effects were statistically significant (P B 0.05).

Results

Effect on larval growth and development

Among the flavonoids tested, higher larval mortality of H.

armigera at 10 DAT was observed in larvae fed on diet

treated with 1,000 ppm of chlorogenic acid (42.5 %) fol-

lowed by caffeic acid (37.2 %), protocatechuic acid

(34.5 %), quercetin (27.5 %), cinnamic acid (25.8 %),

catechin (25.0 %) and ferulic acid (23.3 %) (Table 1). At

500 ppm, significantly higher mortality was observed in

larvae fed on the diets treated with caffeic acid (26.0 %)

and protocatechuic acid (25.5 %) as compared to the rest of

the treatments. There were no significant effects on larval

mortality at 100 ppm.
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At 5 DAT, the larval weights (mg per five larvae) of H.

armigera fed on diets treated with flavonoids at 100, 500

and 1000 ppm were lower in protocatechuic acid (135.7,

73.3 and 24.4), gentisic acid (103.2, 59.9 and 27.6),

chlorogenic acid (101.5, 76.7 and 30.8), caffeic acid (0.04,

0.07 and 0.13), ferulic acid (132.9, 77.5 and 33.8), and

trihydroxyflavone (0.02, 0.16 and 0.19), respectively

(Table 2). However, at 10 DAT, caffeic acid showed sig-

nificantly greater reduction in larval weight (mg per five

larvae) (483.1, 250.4 and 129.9), followed by proto-

catechuic acid (491.2, 273.6 and 181.4) at 100, 500 and

1000 ppm, respectively, than the rest of the treatments. As

compared to the larvae fed on untreated control diet, larvae

fed on flavonoid-treated diets showed reduced larval

weights.

The semi-synthetic diet containing GLL, ConA and phenyl

b-glucoside did not cause significant larval mortality in H.

armigera (data not shown). However, the larval weights were

reduced when these insects were fed on the treated diets. At 5

DAT, H. armigera larvae fed on the diets treated with GLL,

ConA and phenyl b-glucoside (5 lg mL-1 each) showed

body weight reduction by 4.1-, 3.8- and 2.4-fold, respectively,

as compared to those fed on the control diet (Table 3). At 10

DAT, larval weights were reduced by 4.0-, 2.4- and 2.1-fold

when fed on the diets treated with GLL, ConA and phenyl

b-glucoside (5 lg mL-1 each), respectively.

Effect on midgut enzyme activities

Effect of flavonoids

A considerable effect of flavonoids at 1,000 ppm concen-

tration was observed on the serine protease and trypsin

activities of H. armigera larvae, however, the levels of

significance varied across the treatments. Larvae fed on

flavonoid-treated diets at 1,000 ppm showed significantly

lower levels of serine protease activity in almost all the

treatments except in diets with quercetin and umbelliferone

as compared to those fed at 100 and 500 ppm concentration

of their respective compounds (Fig. 1). Across the treat-

ments, larvae fed on chlorogenic acid, caffeic acid, ferulic

acid, gentisic, protocatechuic acid, trihydroxyflavone, cat-

echin and cinnamic acid at 1,000 ppm showed lower serine

Table 1 Mortality (%) of Helicoverpa armigera larvae fed on diet

incorporated with flavonoids at 10 DAT

Treatment Concentration (ppm)

100 500 1,000

Quercetin 17.5 ± 2.5a 20.3 ± 6.4a,b 27.5 ± 4.7b

Cinnamic acid 12.5 ± 1.4a 22.0 ± 4.5a,b 25.8 ± 4.7b

Caffeic acid 15.0 ± 2.9a 26.0 ± 3.1a 37.2 ± 5.5a

Chlorogenic acid 15.0 ± 4.2a 22.5 ± 2.1a,b 42.5 ± 6.2b

Catechin 15.8 ± 4.6a 20.5 ± 4.5a,b 25.0 ± 3.5b

Trihydroxyflavone 12.5 ± 2.2a 12.5 ± 3.3b,c 15.5 ± 2.7c

Gentisic acid 13.5 ± 2.1a 15.5 ± 2.4b 20.5 ± 3.3c

Ferulic acid 5.5 ± 1.4b 17.4 ± 3.1b 23.3 ± 2.8b

Protocatechuic acid 17.5 ± 1.8a 25.5 ± 2.3a 34.5 ± 3.6a

Umbelliferone 7.5 ± 1.1b 12.5 ± 1.9b,c 17.0 ± 2.5c

Control 2.5 ± 0.9c 2.5 ± 0.9d 2.5 ± 0.9d

Values (mean ± SD) with similar letters within a column do not

differ significantly at P B 0.05 (Tukey’s HSD test)

DAT days after treatment

Table 2 Weights (mg per five larvae) of Helicoverpa armigera larvae fed on flavonoid incorporated diets at 5 and 10 DAT

Treatment 5 DAT 10 DAT

Concentration (ppm)

100 500 1,000 100 500 1,000

Quercetin 133.7 ± 10.5b 72.3 ± 7.7b,c 54.5 ± 2.3b 512.1 ± 17.7c 371.4 ± 10.2c 261.5 ± 8.8 c,d

Cinnamic acid 156.0 ± 13.3b 91.5 ± 6.9b 71.2 ± 2.9b 621.2 ± 9.9b 492.2 ± 9.3b 321.2 ± 7.4b

Caffeic acid 134.8 ± 9.3b 74.8 ± 6.5b,c 44.9 ± 1.6b,c 483.1 ± 10.4c 250.4 ± 8.0d 129.9 ± 6.8 c,d

Chlorogenic acid 101.5 ± 12.4c 76.7 ± 4.91b,c 30.8 ± 1.8c 451.2 ± 13.2 c,d 314.3 ± 5.6c 190.4 ± 5.7 c,d

Catechin 110.7 ± 10.3b,c 81.4 ± 5.9b 62.6 ± 2.5b 551.7 ± 10.1b,c 402.7 ± 10.5b 242.5 ± 8.9c

Trihydroxyflavone 109.5 ± 9.2b,c 89.0 ± 6.3b 34.7 ± 1.2c 470.3 ± 9.8c 382.3 ± 9.9c 223.4 ± 9.1c

Gentisic acid 103.2 ± 8.6c 59.9 ± 2.4c 27.6 ± 1.5 c,d 412.3 ± 10.3d 295.6 ± 10.1 c,d 195.7 ± 5.3 c,d

Ferulic acid 132.9 ± 11.2b 77.5 ± 2.9b,c 33.8 ± 1.8c 521.9 ± 11.2c 322.3 ± 11.7c 205.7 ± 7.7c

Protocatechuic acid 135.7 ± 8.3b 73.3 ± 3.2b,c 24.4 ± 1.6 c,d 491.2 ± 8.7c 273.6 ± 10.9d 181.4 ± 5.3 c,d

Umbelliferone 105.8 ± 9.8b,c 111.2 ± 7.3b 55.5 ± 1.5b 432.5 ± 7.3 c,d 250.5 ± 11.3d 194.5 ± 7.8 c,d

Control 177.8 ± 12.3a 177.8 ± 12.3a 177.8 ± 12.3a 701.7 ± 12.2a 701.7 ± 12.2a 701.7 ± 12.2a

Values (mean ± SD) with similar letters within a column do not differ significantly at P B 0.05 (Tukey’s HSD test)

DAT days after treatment
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protease activity than those fed on the rest of the treatments,

and the untreated control diet. The trypsin activity of larvae

fed on the flavonoid-treated diet at 1,000 ppm was signifi-

cantly lower than the larvae fed at 100 and 500 ppm of the

respective compounds (Fig. 2). Larvae fed on diets with

1,000 ppm of chlorogenic acid, caffeic acid, ferulic acid,

gentisic acid, protocatechuic acid and trihydroxyflavone

had significantly lower trypsin activity than the larvae fed

on the rest of the treatments, and the untreated diet. The

GST activity of H. armigera larvae was significantly higher

when fed on the diets treated with chlorogenic acid, caffeic

acid, gentisic acid, ferulic acid, protocatechuic acid, tri-

hydroxyflavone, catechin, cinnamic acid and umbelliferone

at 1,000 ppm than at 500 ppm, and the larvae fed on control

diet (Fig. 3). Across the treatments, protocatechuic acids,

trihydroxyflavone, catechin, cinnamic acid and quercetin

induced higher levels than the rest of the treatments at

1,000 ppm. Larvae fed on untreated control diet had lower

levels of GST activity.The H. armigera larvae fed on fla-

vonoid-treated diets showed lower levels of EST activity in

diets with 1,000 ppm of chlorogenic acid, caffeic acid,

ferulic acid, gentisic acid, catechin, cinnamic acid and

umbelliferone than those fed at 500 ppm (Fig. 4). Proto-

catechuic acid, gentisic acid and catechin fed larvae at

1,000 ppm had significantly lower levels of EST activity

than the rest of the treatments.

Effect of GLL, ConA and phenyl b-glucoside

H. armigera larvae fed on the diets containing 5 and

2.5 lg mL-1 GLL showed significantly lower levels of total

serine protease and trypsin activities (F(2,8) = 19.9 and 17.3,

respectively, P \ 0.05) than those fed on diets with

1.25 lg mL-1 GLL (Table 4). Similarly, larvae fed on ConA-

treated diets at 5 and 2.5 lg mL-1 concentration had signif-

icantly reduced total serine protease and trypsin activities

(P \ 0.05). Larvae fed on the phenyl b-glucoside-treated diet

showed reduced serine protease activity at 5 and 2.5 lg mL-1

concentrations (F(2,8) = 11.2, P \ 0.05), but did not exhibit

any significant differences in trypsin activity across

Table 3 Weights (mg per five larvae) of Helicoverpa armigera larvae fed on lectin and phenyl b-glucoside-treated diet

Treatments 5 DAT 10 DAT

Concentration (lg mL-1)

1.25 2.5 5 1.25 2.5 5

Groundnut leaf lectin 72.4 ± 5.8b 54.4 ± 2.3c 39.8 ± 3.5b,c 378.4 ± 8.5c 265.8 ± 9.8c 169.6 ± 5.4c

Concavalin 79.7 ± 7.4b 63.9 ± 4.8c 43.5 ± 2.7b,c 403.6 ± 7.8c 332.7 ± 11.1b 276.8 ± 7.9b

Phenyl b-glucoside 134.2 ± 6.3a,b 106.3 ± 7.52b 67.6 ± 5.5b 478.8 ± 6.1b 368.8 ± 9.7b 309.9 ± 9.6b

Control 166.9 ± 9.7a 166.9 ± 9.7a 166.9 ± 9.7a 678.9 ± 11.8a 678.9 ± 11.8a 678.9 ± 11.8a

Values (mean ± SD) with similar letters within a column do not differ significantly at P B 0.05 (Tukey’s HSD test). In control, the values in all

the columns have been mentioned to facilitate the comparison with other treatments

DAT days after treatment

Fig. 1 Serine protease activity

(mU min-1 mg-1 protein) of

Helicoverpa armigera larvae

fed on flavonoid-treated diet.

Bars (mean ± SD) of same

color with similar letters within

a treatment are not statistically

different at P B 0.05. Asterisk

on bars shows the significant

differences in enzyme activity

across treatments at P B 0.05
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concentrations. Across treatments, larvae fed on a GLL-trea-

ted diet at 5 and 2.5 lg mL-1 concentrations had significantly

reduced serine protease and trypsin activities (P \ 0.05).

The H. armigera larvae fed on GLL showed increased

GST activity at 2.5 and 5 lg mL-1 concentrations as

compared to those fed on a diet with 1.25 lg mL-1 con-

centrations (F(2,8) = 14.5, P \ 0.05) (Table 5). Although

there was an increase in GST activity of the larvae fed on

ConA and phenyl b-glucoside-treated diets, the differences

were not statistically significant (P [ 0.05). Across the

treatments, no significant differences were observed in

GST activity of H. armigera larvae in all the concentra-

tions tested (P [ 0.05).

The H. armigera larvae fed on the GLL and ConA-

treated diets showed reduced EST activity at 5 lg mL-1

concentration (F(2,8) = 7.8 and 9.9, respectively, P \ 0.05)

compared to those fed on diets with 2.5 and 1.25 lg mL-1

concentrations (Table 5). The larvae fed on diets contain-

ing phenyl b-glucoside did not show any significant effect

on EST activity of H. armigera larvae (P [ 0.05). Across

treatments, the larvae fed on the GLL-treated diet at

5 lg mL-1 showed significantly reduced EST activity

(F(3,11) = 23.5, P \ 0.05) as compared to those fed on

ConA and phenyl b-glucoside-treated diets. There were no

significant differences in EST activity of the larvae fed on

diets with 2.5 and 1.25 lg mL-1 (P [ 0.05).

Fig. 2 Trypsin activity

(lmol min-1 mg-1 protein) of

Helicoverpa armigera larvae

fed on flavonoid-treated diet.

Bars (mean ± SD) of same

color with similar asterisks

within a treatment are not

statistically different at

P B 0.05. Asterisks on bars

show the significant differences

in enzyme activity across

treatments at P B 0.05

Fig. 3 Glutathione-S-

transferase (GST) activity

(lmol CDNB min-1 mg-1

protein) of Helicoverpa

armigera larvae fed on

flavonoid-treated diet. Bars

(mean ± SD) of same color

with similar letters within a

treatment are not statistically

different at P B 0.05. Asterisks

on bars show the significant

differences in enzyme activity

across treatments at P B 0.05
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Discussion

Flavonoids are important plant secondary metabolites

involved in defense against a number of stresses including

herbivory (Stevenson et al. 1993; Treutter 2006; Sharma

et al. 2009). Plants contain more than 5,000 flavonoids,

which play a central role in plant–environment interactions

(Treutter 2006). Flavonoids and isoflavonoids directly

affect the insect behavior, growth and development (Ste-

venson et al. 1993; Simmonds 2003). Summers and Felton

(1994) reported the midgut toxicity in insect pests fed on

diets containing chlorogenic and caffeic acid. Various

flavonoids including isorhamnetin-3-sophoroside-7-gluco-

side and kaempferol-3,7-diglucoside have been reported as

Fig. 4 Esterase (EST) activity

(lmol 1-naphthol min-1 mg-1

protein) of Helicoverpa

armigera larvae fed on

flavonoid-treated diet. Bars

(mean ± SD) of same color

with similar letters within a

treatment are not statistically

different at P B 0.05. Asterisks

on bars show the significant

differences in enzyme activity

across treatments at P B 0.05

Table 4 Total serine protease and trypsin activities of Helicoverpa armigera larvae fed on lectin and phenyl b-glucoside-treated diet at 10 DAT

Treatments Serine protease (mU min-1 mg-1 protein) Trypsin (lmol min-1 mg-1 protein)

Concentration (lg mL-1)

1.25 2.5 5 1.25 2.5 5

Groundnut leaf lectin 1.45 ± 0.02a 1.17 ± 0.01b 1.09 ± 0.02b 0.32 ± 0.001a 0.17 ± 0.001b 0.15 ± 0.001b

Concavalin 1.56 ± 0.04a 1.27 ± 0.02b 1.10 ± 0.04b 0.33 ± 0.006a 0.25 ± 0.004a,b 0.23 ± 0.003a,b

Phenyl b-glucoside 1.68 ± 0.04a 1.32 ± 0.09b 1.21 ± 0.03b 0.29 ± 0.007a,b 0.27 ± 0.001a,b 0.25 ± 0.000a,b

Control 1.63 ± 0.05a 1.63 ± 0.05a 1.63 ± 0.05a 0.35 ± 0.009a 0.35 ± 0.009a 0.35 ± 0.009a

Values (mean ± SD) with similar letters within a column do not differ significantly at P B 0.05 (Tukey’s HSD test). In control, the values in all

the columns have been mentioned to facilitate the comparison with other treatments

DAT days after treatment

Table 5 GST and EST activities of Helicoverpa armigera larvae fed on lectin and phenyl b-glucoside-treated diet at 10 DAT

Treatments GST activity (lmol CDNB min-1 mg-1 protein) EST (lmol 1-naphthol min-1 mg-1 protein)

Concentration (lg mL-1)

1.25 2.5 5 1.25 2.5 5

Groundnut leaf lectin 19.5 ± 1.5ab 25.0 ± 2.6ab 24.9 ± 2.2a 3.7 ± 0.08b 3.8 ± 0.07b 2.8 ± 0.08ab

Concavalin 20.1 ± 4.1a 23.3 ± 1.9a 23.6 ± 2.7a 4.3 ± 0.07b 3.9 ± 0.03b 3.2 ± 0.06b

Phenyl b-glucoside 25.5 ± 2.1a 26.7 ± 3.0a 24.6 ± 1.2a 5.0 ± 0.04a 4.6 ± 0.09ab 4.3 ± 0.04a

Control 20.0 ± 2.3a 20.0 ± 2.3a 20.0 ± 2.3a 5.8 ± 0.02a 5.8 ± 0.02a 5.8 ± 0.02a

Values (mean ± SD) carrying same letter(s) within a column are not significantly different at P B 0.05 (Tukey’s HSD test). In control, the

values in all the columns have been mentioned to facilitate the comparison with other treatments

DAT days after treatment, GST glutathione-S-transferase, EST esterase
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feeding deterrents against Mamestra configurata (Walk.)

(Onyilagha et al. 2004).

The present study revealed that chlorogenic acid, caffeic

acid and protocatechuic acid when incorporated into an

artificial diet at 1,000 ppm were more toxic to H. armigera

larvae at 10 DAT than quercetin, catechin, cinnamic acid,

trihydroxyflavone, gentisic acid, ferulic acid and umbel-

liferone. The weights of the larvae fed on flavonoid-treated

diets were significantly lower as compared to those fed on

the control diet. In addition, total serine protease and

trypsin activities were reduced in H. armigera larvae fed on

diets treated with chlorogenic acid, caffeic acid, ferulic

acid, trihydroxyflavone, gentisic acids and cinnamic acid at

1,000 ppm. The GST activity increased in larvae fed on

diets treated with 1,000 ppm of these compounds. EST

activity showed a reduction in H. armigera larvae fed on

flavonoid-treated diets at 1,000 ppm. However, the levels

of reduction varied across the treatments. Our results are in

line with earlier reports, which have shown a significant

increase in GST activity in larvae fed on natural host plant

diet with prooxidant allelochemicals (Vanhaelen et al.

2003; Krishnan and Kodrı́k 2006) and/or fed on the arti-

ficial diet containing plant allelochemicals (Morimoto et al.

2000; Atteyat et al. 2012). Leaf discs treated with various

flavonoids also reduce larval growth and development of

Trichoplusia ni (Hub.) (Sharma and Norris 1991). A con-

siderable effect of flavonoids such as quercetin, chloro-

genic acid and rutin from Arachis spp. on larval, pupal and

moth deformities of Spodoptera litura Fab. has been

observed earlier by Mallikarjuna et al. (2004). Caffeic and

chlorogenic acids are highly toxic to insect pests and have

been reported to cause gut toxicity due to protein oxidation

and free ion release (Summers and Felton 1994). Chloro-

genic acid reduces the nutritional quality of plant tissues by

decreasing their digestibility due to the binding of chloro-

genoquinone, an oxidative product of chlorogenic acid, to

free amino acids and proteins (Felton et al. 1992), and

reduces the growth and development of many insect pests

including T. ni (Beninger et al. 2004), Heliothis zea (Bod.)

(Isman and Duffey 1982; Felton and Duffey 1990), leaf

beetles, leaf hoppers and aphids (Ikonen et al. 2002; Jassbi

2003). Sharma and Norris (1991) have reported the anti-

feedant and antibiotic effects of daidzein, glyceollins, so-

jagol and coumestrol in soybean against T. ni.

Lectins are regarded as potent plant defensive proteins

that bind to soluble carbohydrates or to carbohydrate of the

glycoproteins, and limit their availability to insects

(Peumans and Vandamme 1995), thus depriving the insects

from essential nutrients and resulting in reduced growth and

development. There are a number of reports that have shown

the deleterious effects of lectins on insect pests (Murdock

et al. 1990; Czapla and Lang 1990; Zhu-Salzman et al. 1998;

Gatehouse et al. 1999; Arora et al. 2004; Shukla et al. 2005).

Lectins are also induced in plants in response to herbivory

and/or elicitor application and play an important role in

signaling the transduction pathways in plants (Van Damme

et al. 2003; Lannoo et al. 2006). Our results showed that

larval growth and development were significantly reduced in

H. armigera larvae fed on a diet with GLL and ConA at

5 lg mL-1 compared to the larvae fed at 2.5 and

1.25 lg mL-1 concentrations. Larvae fed on lectin-treated

diets exhibited lower larval weights at 5 DAT; however, at 10

DAT, weights of the larvae fed on phenyl b-glucoside were

on par with those fed on the lectin-treated diets. Moreover,

there was a considerable reduction in the total serine protease

and trypsin activities of H. armigera larvae fed on GLL,

ConA and phenyl b-glucoside-treated diets at 5 lg mL-1.

However, reduction in trypsin activity was greater in larvae

fed on the GLL-treated diet than the larvae fed on the ConA

and phenyl b-glucoside-treated diets at 5 lg mL-1. The

GST and EST activities were also altered significantly.

Significant inhibitory activity on insect growth has been

observed in Callosobruchus maculatus (F.) fed on a diet

treated with Maclura pomifera (Raf.) Schneid., derived

lectin and galactose-binding peanut lectin (Murdock et al.

1990). Jacalin and M. pomifera lectin reduced the larval

growth of Diabrotica undecimpunctata Barber (Czapla and

Lang 1990). ConA lectin, when incorporated in the artificial

diet, resulted in 90 % larval mortality of tomato moth,

Lacanobia oleracea (L.), and also reduced the size of

M. persicae by about 30 %. Expression of ConA in potato

plants reduced the larval weight by 45 % (Gatehouse et al.

1999). Phenolic glucosides have been reported as important

defensive components against insect pests in Populus

(Bryant et al. 1987; Boeckler et al. 2011). This study shows

that flavonoids such as chlorogenic acid, caffeic acid, gen-

tisic acid, trihydroxyflavone, catechin and protocatechuic

acid, and lectins, GLL and ConA, are highly toxic to

H. armigera and can form an important component of insect

pest management against H. armigera.
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