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Abstract 

Pulse crops are leguminous plants whose grains are used exclusively for food.  In Asia, Africa 

and many developing countries, pulses constitute a major source of dietary protein and extensive 

efforts are being undertaken to improve pulse production.  However, due to global climate 

change, abiotic stresses are increasingly impeding crop production.  Conventional plant breeding 

has contributed tremendously in the development of improved crop varieties, but other 

biotechnological tools are needed to complement breeding efforts to accelerate development of 

pulse crop varieties tolerant to abiotic stresses such as drought, salinity, high and low 

temperatures.  Genomics resources such as molecular markers have started to expedite marker-

assisted breeding and quantitative trait loci (QTL) introgression in chickpea for drought 

tolerance.  Similarly, transcriptomic resources such as expressed-sequence tags, and expression 

profiling such as microarrays also contribute to further understand abiotic stress tolerance in 

pulses and for the development of genic markers.  In pulse crops, development of in vitro 

regeneration techniques and transgenics has been slow and more resources need to be allocated 

to expedite their development.  In vitro regeneration techniques are also useful for embryo rescue 

of wide hybrids.  Transgenics, although controversial, offer a faster means to develop abiotic 

stress tolerant pulse crops.  While enhancement of abiotic stress tolerance in pulse crops implies 

higher returns in the developed countries, in developing countries it will contribute to food and 

nutritional security, and sustainable production.  It is therefore encouraging that ICARDA, 

ICRISAT and CGIAR (Generation Challenge Programme) invest extensively into using new 

technologies for improvement of pulse crops in these regions of low-input farming. 
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Pulse crops – definition, major and minor pulse crops 

A pulse is a leguminous crop harvested solely for the dry seed, excluding the crops that are 

mainly grown for oil extraction (e.g. soybean and peanut).  Being leguminous crops, pulses play 

an important role in crop rotation due to their ability to fix nitrogen.  The major pulses include 

common bean or kidney bean (Phaseolus vulgaris), pea (Pisum sativum), chickpea, bengal gram 

or garbanzo (Cicer arietinum), cowpea (Vigna unguiculata), lentil (Lens culinaris), pigeonpea or 

red gram (Cajanus cajan), mungbean or green gram (Vigna radiata) urdbean or black gram 

(Vigna mungo), lupins (Lupinus spp.), faba bean or broad bean (Vicia faba),  bambara bean or 

bambara groundnut (Vigna subterranea), vetch (Vicia sativa), rice bean (Vigna umbellata), moth 

bean (Vigna acontifolia), tepary bean (Phaseolus acutifolius), adzuki bean (Vigna angularis), 

lima bean (Phaseolus lunatus), and runner bean (Phaseolus coccineus).  The minor pulses 

include lablab or hyacinth bean (Lablab purpureus), jack bean (Canavalia ensiformis), sword 

bean (Canavalia gladiata), winged bean (Psophocarpus teragonolobus), guar bean (Cyamopsis 

tetragonoloba), velvet bean (Mucuna pruriens var. utilis) and yam bean (Pachyrrizus erosus). 

Pulse production – Global and different countries from FAOstat 

During 2008, the pulses were grown in 71.8 million ha, producing 61.5 million tons of dry seeds 

with an average yield of 856 kg per ha [1].  The FAOStat provides individual crop statistics only 

for few pulses and clubs remaining pulses in groups.  The dry bean group of pulses (includes 

common bean, lima bean, adzuki bean, mungbean, urdbean, scarlet runner bean, rice bean, moth 

bean and tepary bean) accounts for one-third of the pulse production.  In the remaining 

production, 16.3% is contributed by pea, 13.8% by chickpea, 9.3% by cowpea, 7.0% by faba 

bean, 6.7% by pigeonpea, 4.6% by lentil, 1.6% by lupins, 1.6% by vetches and 5.7% by minor 

pulses.  During 2008, 170 countries grew pulses, but about 79% of the pulse area was in Asia 

(48.4%) and Africa (30.5%). Americas, Europe and Oceania accounted for 15.2, 3.7 and 2.1% of 

the area, respectively.  The major pulses producing countries include India (23.2%), Canada 

(8.1%), China (8.0%), Myanmar (5.8%), Brazil (5.7%), Nigeria (4.8%), USA (3.1%), Russian 

Federation (3.0), Ethiopia (2.9%) and Australia (2.8%).  Most of the pulses are consumed within 

the producing countries and the international trade is about 16% of the total production.  The 

major pulse importing countries are India (26.3%), Egypt (4.4%), China (4.0%), Pakistan (3.4%), 

UAE (3.2%), USA (2.8%), UK (2.8%), Italy (2.8%), Turkey (2.8%) and Brazil (2.7%), while the 

major pulse exporting countries are Canada (32.3%), USA (11.5%), China (10.7%), Myanmar 

(7.8%), Australia (6.3%) and France (5.1%).  

Abiotic stresses affecting pulse crops 

The improvement of crop production in the face of acute global climate changes has become a 

challenging endeavour.  Besides the environmental impact, in many regions of the world, crop 

production has been limited due to socio-economic and political instability.  However, advances 

in genomics research are expected to contribute greatly to alleviate crop production limitations in 
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many of these regions, where unfortunately, hunger, malnutrition and poverty are widespread.  In 

the western hemisphere, environment and climate change are likely to have the most negative 

consequences on crop production.  Abiotic stress challenges faced by plants include drought, 

salinity, flooding, metal toxicity (heavy metals), mineral nutrient deficiency, high temperature, 

low temperature, freezing temperature, UV stress, photinhibition and anaerobiosis.  All too often 

several of these may affect plants simultaneously, leading breeders to re-think selection 

strategies for abiotic stress tolerance by considering selection under multiple stresses.  While this 

recognized strategy is likely to be valuable, the complexity of selection for a number stress 

tolerance traits can be resource-demanding and time-consuming for a breeding programme.  

Therefore, numerous studies have been undertaken to understand the abiotic stresses challenges 

and how they affect plant performance. 

 Among the abiotic stresses affecting pulse crops, drought is probably one of the major 

concern, especially in the semi-arid tropic (SAT) regions such as Asia and Africa, where it is 

considered one of the most detrimental stress for pulse crop production [2].  Drought-tolerance 

and water-use efficiency are intricately related.  Drought refers to the insufficient availability of 

soil moisture, leading to limitation in the supply of water to a growing plant.  In arid and semi-

arid areas, rainfall patterns tend to be inconsistent, and when combined with high temperatures, 

moisture for crop growth becomes limiting [3].  Therefore, water use efficiency by crops is a 

viable strategy to surmount such conditions and breeding and genomics strategies are being 

developed to maximize this potential [4].  As a result of water deficit and drought, plants are also 

adversely affected by increase in soil salinity which leads to disruption of plant water status [5].  

Salinity and drought combined pose a major problem for normal plant growth in arid and semi-

arid regions [6].  While growing salinity tolerant varieties is useful, it is however important to 

note that tolerance leads to further retention of salinity levels in the soils, affecting subsequently 

planted crops [7].  Salinity tolerance is conferred by plant’s ability to exclude, as opposed to 

partitioning of ions within the plant, without affecting its performance significantly [8, 9].  

Proper management practices are therefore necessary to sustain agricultural production under 

such adverse soil conditions.  Cereals are generally more tolerant to saline conditions than 

legumes [10] and could therefore be used in crop rotations to minimize build up of salt in soils.  

In addition, it has also been suggested that evaluation for salinity tolerance be performed at 

vegetative as well as reproductive stages of growth, since in crops like chickpea salinity affects 

both these stages and sensitivity is more pronounced at podding stage [11]. 

 Soil fertility can also be limiting for crop production and is due to depletion and 

degradation of soil nutrients [12].  Therefore, alternative methods for supplementing soils need 

to be undertaken.  Use of fertilizers can be prohibitive for resource-deprived farmers in 

developing countries and organic supplements are likely to be the best solutions in this situation 

[13, 14].  When availability of nutrients is low, varieties capable of maximum nutrient use 

efficiency would be valuable.  However, in recent years nutrient uptake with relevance to the 
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symbiotic arbuscular mycorrhiza (AM) and their associations to abiotic stresses are being more 

important [15].  There have been extensive studies on the beneficial effects of AM:plant 

associations for sustainable cropping of temperate crops (for reviews see [16, 17] and research 

applications for tropical agriculture are being undertaken.  For example, mycorrhization has been 

shown to help with uptake of phosphorus and other nutrients (for reviews see [13, 15]) and also 

allows plants to tolerate abiotic stresses such as heavy metals [18] and salinity [19].  In Cajanus 

cajan, it has been shown that the AM: root association led to accelerated acquisition of 

phosphorus by a  plant [20].  Similarly, in Glycine max [21] and Cajanus cajan [22] it has been 

shown that nutrient uptake and growth is improved under salinity stress due to associations with 

AM.  Radiant frost, is another common abiotic stress experienced under more temperate climatic 

regimen for cool season pulse crops such as chickpea, lentil, faba bean and field pea [23].   

Mechanisms underlying stress tolerance – a generalized picture   

Plants, being sessile in nature, need to perceive and adjust as needed to abiotic stress challenges.  

However, plants can only withstand a certain level of stress and once the optimum threshold is 

surpassed, cellular and metabolic functions become perturbed leading to sub-optimal 

performance.  For crops, this sub-optimal performance essentially leads to reduced yield.  Plants 

have nonetheless adapted to or have been selected for adaptation to abiotic stresses over time, but 

further tolerance is required to meet the ever-increasing abiotic stress challenges.  Abiotic 

stresses include those adversities perceived by plants when exposed to drought, salinity, cold, 

heat, anaerobiosis, heavy metals, light intensity/UV and nutrient limitations and essentially limit 

crop productivity.  These abiotic stresses in essence disturb the homeostatic equilibrium within 

the plant (for review see [24]).  Prior to the availability of genomics tools, a one-gene approach 

was used to attempt to explain abiotic stress response in a “cause and effect” strategy.  However, 

tolerance to abiotic stresses is complex and in spite of the identification of numerous genes with 

potential roles in abiotic stress responses, further understanding and dissection of the cascades of 

events that lead to the ability to withstand such stresses still need to be understood.    Genome-

wide expression profiling approaches have enabled the elucidation of the roles of many of the 

genes induced in response to abiotic stresses (for review see [25]).  Interestingly, in leguminous 

crops genome-wide studies for abiotic stress tolerance are very few and done on model legumes 

such as alfalfa and soybean (e.g., [26-28]).  Such studies are important to identify and establish 

network(s) involved in stress response pathways, which could eventually be manipulated to 

minimize crop losses due to abiotic stresses [29], especially for pulse crops such as lentil, 

chickpea, pigeon pea and common bean.  Nonetheless, there have been some recent genomics 

studies on some of the major pulse crops for abiotic stress tolerance. 

 Generalized stress responses in plants begin with sensing of a stress by the primary 

sensor, followed by a signaling cascade of events, with calcium being the second messenger.  

The occurrence of a multiplicity of physiological, biochemical and molecular events in response 
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to abiotic stresses is well known, including accumulation of intracellular compounds such as 

nucleic acids, proteins, carbohydrates and amino acids.  The series of events from perception of 

stress to signal transduction to phospho-protein cascades and transcription factor 

activation/suppression leading to induction of stress-responsive genes, and allowing the plant to 

respond to perceived stress either as a defensive or protective reaction, is also well elucidated 

[30].  However, the initial perception and perturbation of cellular function may vary, depending 

on the abiotic stresses, although some of the stress response pathways are common to various 

types of abiotic stress challenges such as drought, salinity, osmotic stress and cold [31-33].  For 

example, drought, salinity, and low, high and freezing temperatures lead to membrane integrity 

disruption, generation of reactive oxygen species (ROS), accumulation of toxic by-products, 

photosynthetic process dampening and nutrient uptake reduction [34].  At the molecular levels 

cross-talks and specificities of signalling pathways also exist in response to abiotic stresses (for 

review see [35]).  In Arabidopsis, for example, a histidine kinase was induced in response to salt 

and considered to be a osmosensor [36].  As a generalized response, elevated levels of calcium in 

response to a number of abiotic stresses as an early signal or second messenger has also been 

well established  (for reviews see [37, 38]).  A number of sensors related to calcium-regulated 

proteins such as calmodulin [39-41], calcium-dependent protein kinases (CDPKs) [42] and 

calcium-regulated phosphatases [43, 44] have also been associated with signal transduction 

pathways in response to different abiotic stresses.  The CDPKs, however, have been shown to be 

stress-specific due to occurrence of many isoforms [45].  Similarly, among the Ca
2+

/phosphatase 

interactions, occurrence of phosphatase isoforms point to stress-specific roles [43].  Thus, due to 

the multiple roles of calcium sensors by way of different isoforms conferring specificity, they are 

also central to cross-talks among various abiotic stresses [35]. 

 Another important component of the signal transduction pathways in response to biotic 

and abiotic stresses and plant hormone signalling and cell division involves the mitogen-

activated protein kinases (MAPK) cascades [46-49].  The MAPK cascades have been extensively 

studied and characterized in higher plants for their roles as signalling molecules [50].  In 

Arabidopsis sequenced genome survey 20 MAPKs, 10 MAPK kinases and 60 MAPK kinase 

kinases were identified [51].  The regulation of activity of proteins by MAPKs can occur in two 

possible scenarios; in the first scenario, an activated MAPK phosphorylates nuclear transcription 

factors, cytoskeletal components and/ or other kinases and in the second scenario other 

regulatory proteins and MAPK components interact physically, irrespective of phosphorylation 

state [49].  Once the signal transduction pathway has served its purpose and the downstream 

response has been elicited, inactivation of MAPKs need to occur and phosphatases reset the 

signalling pathways by dephosphorylating the MAPKs [52].  Furthermore, phosphatases are able 

to hold the MAPKs in the cytoplasm or nucleus [53], effectively terminating the signal [54]. 

 Downstream to the signal transduction pathways, induction of transcription factors is 

invoked, some of which integrate another level on complexity in the cross-talks among different 
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abiotic stresses.  A well-elucidated example of this cross-talk is provided by low temperature, 

drought and abscisic acid induction of genes by these transcription factors [55, 56].  The 

promoters of some of these cold- or drought-induced genes contain the CRT (C-repeat element) 

or DRE (drought-responsive element), respectively, and as characterized in Arabidopsis [56-58] 

are targeted by the DREB1 or CBF transcription factors under low temperature exposure and by 

DREB2 under salt or drought exposure.  The cross-talk among the low temperature, drought and 

salinity signalling pathways has been the subject of many studies using the RD29A gene of 

Arabidopsis, whose promoter contains the C-repeat element [59].  RD29A promoter::GUS fusion 

constructs in Arabidopsis leaf protoplasts were shown to be induced by low temperature and 

drought as a result of over-expression of DREB1 and DREB2, respectively, indicating integration 

of two different signal transduction pathways, leading to the expression of one gene [57].  With 

the use of global transcriptomic profiling approaches mostly in Arabidopsis, it has been clearly 

demonstrated that under any type of stress up to 25% of the genome is differentially regulated 

and that irrespective of the stress applied, a group of 59 genes, 21 of which were transcription 

factors, were induced [60]. 

Strategies to enhance abiotic stress tolerance - Conventional 

The improvement in productivity of pulse crops has had tremendous success over the years due 

to the availability of genetic resources and breeding knowledge [61].  While the combination of 

breeding and diverse germplasms has contributed to yield increments, enhancement to abiotic 

stresses has proven to be more challenging using conventional approaches.  This is mainly due to 

the quantitative nature of inheritance to tolerance against abiotic stresses.  Nonetheless, plant 

breeders have been able to develop varieties tolerant to some extent to abiotic stress challenges 

by using various strategies from conventional breeding methodologies to germplasm collections 

to mutagenic approaches. 

 Breeding 

Plant breeding as an expedited form of evolution has contributed tremendously to the 

development of new improved crop varieties.  It has been viewed as an art in many instances due 

to the breeder’s ability to sometime recognize intuitively certain attributes in breeding lines 

which would make a variety more suitable.  Over time, as emphasis was placed on nutrition, 

adaptation to environments, quality and  economic return, selection became primordial in 

initiating plant breeding programs [62].  It can therefore be stated that early gatherers were in 

effect the first breeders since they intentionally selected for desirable traits such as palatability of 

plant products and ease of harvest during the domestication process of plants, without having 

much of an impact on the general structure of crop plants [63].  Prior to the re-discovery of 

Mendel’s laws of genetics, breeders were deemed to be successful based on their ability to 

carefully observe and identify variations showing improved qualities for further advancing as 

varieties [62].  However, despite advances in areas of genomics, plant breeding will continue to 



In: Improving crop Productivity in Sustainable Agriculture (eds. Tuteja N, Gill SS, Tuteja R) Wiley-VCH 

Verlag & Co. KGaA, Weinheim, Germany, pp 423 – 450.   

7 

 

be the essence of all crop improvement strategies.  Plant breeding essentially involves 

identification of genetic variability and combining this variability to generate plant types with 

desirable attributes.  However, due to the erosion of genetic diversity, there has been a need to 

mine for variability from other sources.  Thus from traditional breeding from the use of 

germplasm resources from wild species, land races and distant relatives, plant breeders have 

created new variability by chemical and physical mutagenesis.  The phenomenon of somaclonal 

variation recognized in plant cell cultures [64] also became potential sources of variation.   

 Application of scientific principles to classical breeding approaches occurred with the re-

discovery of the laws of inheritance [65].  Increasing adaptation of cultivars to specific 

environments were sought by assessing increase in productivity through identification of sources 

of variability in local germplasm resources or through  introduced land races or breeding lines 

from other breeding programs, wild species or genera.  If further variability was needed, plant 

breeders screened for spontaneous mutations or induced mutations physically or chemically.  

Such variant genotypes subsequently became parental lines in hybridization experiments and 

used for qualitative or quantitative trait selections.  Depending on the traits under selection, the 

breeder sets realistic objectives to maximize identification of desired traits in progeny of the 

crosses.  The qualitative and quantitative nature of the traits as well as their heritability needs to 

be taken into consideration.  Thus, plant breeders set objectives in order to determine selection 

criteria, aid in the choice of breeding method and choice of parents and indicate when selection 

must begin.  The objectives of the plant breeder should also reflect the end-user preferences such 

as the consumer and the producer so that quality-enhanced and marketable varieties are 

produced.  The general scheme of breeding outlined above is no different in pulse crops [61].  

Furthermore, breeding programs have drawn from knowledge gained from model legumes such 

as Medicago truncatula, Lotus japonicus, Glycine max and Pisum sativum to breed for quality 

and well as other agronomic traits and biotic and abiotic stresses in more complex and less well-

understood pulse crops such as faba bean [66]. 

 It is estimated that 60% of the worldwide common bean (Phaseolus vulgaris L.) 

production is drought-prone [67].  At the International Center of Tropical Agriculture (CIAT), a 

breeding program was initiated for the development of drought resistant breeding lines.  Drought 

resistant lines had significantly higher yields than commercial varieties under drought [67].  

Similarly in chickpea (Cicer arietinum L.), which is usually grown under rainfed conditions, 

drought accompanied by heat stress is limiting to growth and a study was initiated to select 

genotypes resistant to drought/heat with particular reference to selection criteria [68].   The study 

found that seed weight was least affected by the drought/heat stress conditions and had the 

highest heritability and could possibly be used in early breeding selections [68].  The study also 

indicated that days to the first flowering and maturity to escape terminal drought and heat 

stresses should be evaluated before many other phenological traits [68].  Similar to these studies, 

deeper rooting systems in chickpea have been associated with better coping against drought [69, 
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70].  Root traits such as rooting depth and root biomass have also been shown as ideal traits to 

breed for terminal drought stress tolerance in chickpea [71].  In faba bean (Vicia faba), 

deprivation of water led to increased root growth and root density and both were suggested to be 

adaptive mechanisms to cope with the limited water supply [72].  

 Mining germplasm resources 

Although breeding efforts have generated numerous improved varieties, erosion of genetic 

diversity as well as limited availability of germplasm resources has led to a need for the 

identification of new sources of variability in wild species and land races or by de novo 

generation.  Therefore, plant breeders started to screen for mutations for incorporation into 

breeding programs.  This practice led to coining of the term “mutation breeding” and has been 

practiced for almost a century.  Naturally occurring mutants have indeed heralded The Green 

Revolution due to the use of dwarfing genes found in a Japanese wheat cv. Norin-10.  High 

yielding dwarf rice varieties possessing strong straw were derived from spontaneous semi-dwarf 

mutation phenotype in a rice cv. Dee-geo-woo-gen from Taiwan. 

 In leguminous crops, breeders have sought for variation in land races, wild species and 

wild progenitors.  However, this has led to a narrow genetic base for improvement of legumes as 

these belong to the primary gene pool (GP-1) [73].  The use of the secondary gene pool (GP-2), 

which consists of species that can potentially be crossed with GP-1, has been used for common 

bean improvement, but has been challenging for lentil improvement [74].  The availability of 

large collections of pulse crops germplasm resources around the world such as ICRISAT (India), 

ICARDA (Syria), CIAT (Colombia) and IITA (Nigeria) now offers the possibility of screening 

for many traits of interest [74] from collections within these resources.  While mostly agronomic 

and quality aspects have been the focus of breeding employing germplasm resources from these 

centres, mining for abiotic stress tolerance genes has now become an important component.  In 

an attempt to contribute functional markers for allele mining in chickpea germplasm resources, a 

root expressed sequence tagged (EST) resource was developed and was suggested to be 

potentially useful for candidate gene identification for abiotic stress tolerance [75] 

 Variation creation - Traditional mutagenesis and TILLING 

A significant addition to the tool belt of the plant breeder in the early part of the last century was 

inducible mutagenesis.  Although naturally occurring mutations were identified as early as the 

1900s by de Vries, with their potential for use in breeding [cited in 76], it was only when 

physical mutagenesis by X-rays in Drosophila [77, 78] and in barley [79] were generated that the 

new field of induced mutagenesis research started and quickly became part of the field of plant 

breeding.  To date, 3124 mutant varieties are listed with the FAO/IAEA Mutant Varieties 

Database [80].  Almost 70% of these mutants were advanced over generations and released as 

new varieties, while the remainder were used in crosses with other varieties [81].  The first 
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variety to be derived from mutagenic X-ray irradiation was the tobacco cultivar, Chlorina, which 

was commercially released in 1934 [Tollenaar 1934 cited in 76].  About two decades later, a 

commercial variety of mustard, cv. Primex, was released from X-ray-induced mutation 

treatments.  Of the direct mutant varieties released, radiation was used in about 89% of these and 

75% of the overall mutants in the database were in crops [81].  Mutation breeding for grain 

legumes has also been widely applied, especially in conjunction with the Joint FAO/IAEA 

Division [82, 83].  The FAO/IAEA Mutant Varieties Database lists 202 mutant varieties of pulse 

crops [80] and were generated for mostly agronomic improvement, with a few for abiotic stress 

tolerance such as drought tolerance in Cajanus cajan, cold resistance in Cicer arietinum and 

salinity tolerance in Lens culinaris. 

 Induced mutations gained new impetus in the genomics era, with the specific targeting of 

known genes.  The TILLING (Targeting Induced Local Lesions IN Genomes) [84] strategy has 

become widely applicable for variation mining in crop plants.  The TILLING method enables 

identification of single base pair changes in genes of interest [85].  Seeds are generally 

mutagenized with ethlylmethane sulfonate (EMS).  M1 plants grown from these seeds are selfed, 

planting individual M2 seeds for DNA extraction and cataloguing M3 seeds.  PCR amplification 

for the gene of interest is done on pooled DNA from the M2 plants.  PCR products are denatured 

and upon re-annealing heteroduplexes are formed.  Denaturing-HPLC was originally used to 

analyze heteroduplexes for mutations [84, 86].  Subsequently, treatment of the heteroduplexes 

with an endonuclease, CELI, which specifically cleaves mismatches between mutated and non-

mutated variant heteroduplexes was used [87].  CELI, which was extracted from celery, 

recognizes single base mismatches and cleaves on the 3’-side of the mismatch [88].  

Electrophoretic separation of cleaved heteroduplexes allows identification of mutations.  Mutant 

plant is then identified by screening DNA from individual samples constituting the pool.  EMS 

generally causes G/C to A/T transitions and the randomly distributed G/C to A/T transitions in 

Arabidopsis thaliana account for up to 99.5% of mutations [89].  TILLING populations are 

available for Arabidopsis thaliana [85], Lotus japonica [90], maize [91], barley [92], wheat [93, 

93-96] and oat [97].  In legume crops, TILLING populations have been slow to be created and 

has been restricted to the model legume Lotus japonica [90] and in soybean [98].  However, in 

recent years TILLING populations have been produced for pulse crops including common bean 

[99, 100] and pea [101].  In order to extend our capabilities to mine for abiotic stress tolerance 

genes in other major pulse crops such as lentil, chickpeas, cowpea and pigeonpea, TILLING 

populations need to be developed.  For example, in the Medicago TILLING population, a 

leucine-rich repeat, Srlk mutant gene, was found not to limit root growth in response to salt stress 

[102].  Therefore, TILLING populations for pulse crops will be very valuable to mine for abiotic 

stress genes. 

Strategies to enhance abiotic stress tolerance – Biotechnology and genomics 
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Plant breeding approaches have resulted in the successful development of a number of different 

commercial varieties of crops.  Even today, plant breeding is pivotal in the development of 

improved varieties. However, erosion of naturally occurring genetic variability has limited the 

development of newer cultivars with improved qualities by plant breeders [103].  The toolbox of 

plant breeders has therefore expanded with the use of novel germplasm resources, made 

available from both de novo as well as from induced sources. More recently, the availability of 

TILLING populations in many crops has further generated sources of variability for traits of 

interest, although still rudimentary for pulse crops.  The TILLING approach is likely to expedite 

breeding programs due to the variability of a number of defined mutants for traits of interest.  

Breeding for abiotic stress tolerant crops is a major initiative around the world.  However, the 

quantitative nature of inheritance of abiotic stress tolerance renders this task challenging.  

Genetic mapping strategies are valuable tools for locating genomic regions associated with 

abiotic stress tolerance and quantitative trait loci (QTL) mapping has become an integral part of 

breeding efforts for such complex traits.  Other technology-driven tools for pulse crop 

improvement include in vitro culture systems and the phenomenon of somaclonal variation and 

transgene technology.  Besides, these the functional analysis of genes involved in abiotic stress 

tolerance, including EST resources are important for developing breeding strategies to enhance 

abiotic stress tolerance. 

 Genetic mapping and QTL analysis 

The complex genetic nature of inheritance to abiotic stress tolerance traits such as drought, 

salinity and low temperature and the difficulty of phenotyping for such traits under field 

conditions along with high genotype x environment interactions, were initially daunting [2].  

However, with the advent of molecular markers and marker-assisted selection (MAS) tools, there 

has been an enhanced ability to more effectively select for traits for incorporation into new 

varieties.  More recently the ability to identify quantitative trait loci (QTLs) markers for 

polygenic traits has expanded marker-assisted breeding.  The repertoire of molecular markers has 

grown considerably over the years from the tedious RFLP types to the more versatile RAPD and 

AFLP type markers.  However, nowadays SSR, SNP and DArT markers have become widely 

accepted for use.  In leguminous crop breeding, these varieties of markers have been employed 

with varying combinations for biotic as well as abiotic stress tolerance selection, more success 

being achieved for biotic stress MAS as in soybean for resistance against cyst nematode [104] or 

for resistance against common bacterial blight in pinto bean [105].  Nonetheless, there have been 

successful reports of MAS for abiotic stress tolerance or towards achieving that goal by way of 

identification of QTL.  For example, selection for drought tolerant common bean genotypes has 

been shown using five RAPD markers with improved performance under stressed conditions 

[106, 107].  In cowpea, QTL associated with drought response phenotypes were identified [108, 

109].  Similarly, root trait QTL for drought-avoidance were identified in chickpea and will likely 

contribute to expedite development of varieties for enhanced drought avoidance [71].  Frost 
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tolerance QTL have been identified for faba bean and suggested to be valuable in future for 

efficient screening of large populations [110].  Several winter-hardiness QTL have also been 

identified in lentil, with one QTL being found to be common to all environments tested [111].  In 

pea, the flowering locus Hr was found to colocalize with a major a winter-frost tolerance QTL, 

thereby making  it ideal for MAS [112].  Similar to drought MAS, limited information is also 

available for MAS for salinity tolerance in pulse crops compared to other legumes such as 

soybean. Salt tolerance QTL identified in wild and cultivated soybean were found to be 

conserved and accounted for a large dominant effect [113].  SSR marker alleles flanking a major 

salt tolerance QTL were also identified in soybean that could be used for MAS for salinity 

tolerance [114], including during seedling growth [115]. 

 One powerful use of MAS has been suggested for gene pyramiding in the development of 

crop plants with tolerance to multiple stresses [116] or for introgression of multiple QTLs for a 

specific abiotic stress [117].  While gene pyramiding and QTL introgression have been shown 

for cereals for both biotic and abiotic stresses, efforts are currently underway for achieving the 

same in pulse crops, particularly for abiotic stress tolerance.  This was mainly due to lack of 

abiotic stress related QTL in pulse crops.  In common bean, resistance to rust and anthracnose 

was developed by using marker-assisted backcrossing [118].  Introgression of multiple QTL for 

root morphological characteristics associated with drought tolerance was shown in rice [119] and 

it is likely that similar approaches will be successful in pulse crops in the near future as 

suggested from chickpea root trait QTL studies for drought tolerance [71].  It is foreseen that in 

the next five years with major QTL being identified for abiotic stresses in pulse crops, the 

relevance of pyramiding and QTL introgression will increase dramatically.  In chickpea, a hot 

spot region that affects several traits (root length density, root biomass, shoot biomass) 

contributing to drought tolerance has been identified from two mapping populations (ICC 4958 × 

ICC 1882; ICC 283 × ICC 8261) segregating for root traits (Gaur et al. unpublished).  This 

region contributes up to 36% phenotypic variation for both root and shoot biomass, and root 

length density.  Terminal drought is the major constraint to chickpea productivity, particularly in 

the semi-arid tropics where it is generally grown rainfed on residual soil moisture after the rainy 

season.  Root traits, particularly rooting depth and root biomass, are known to play an important 

role in drought avoidance through more efficient extraction of available soil moisture.  This 

genomic region flanked by SSR markers TAA 170 and ICCM 0249 has been introgressed into 

three cultivars (JG 11, KAK 2 and Chefe) using marker assisted backcrossing (MABC).  While 

TAA 170 and ICCM 0249 markers were used for foreground selection, eight AFLP primer 

combinations were used for background selection.  BC3F4 progenies are available and will be 

evaluated along with donor and recipient parents in both irrigated and rainfed conditions.  

Marker-assisted breeding for root traits is expected to improve precision and efficiency of 

breeding for drought tolerance in chickpea. 

 Transcriptomic resources 
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Gene expression profiling approaches have had tremendous impact on obtaining global 

snapshots of genes under any particular condition of plant growth, be it spatial, temporal, 

developmental or environmental.  While such expression profiling approaches have been 

routinely conducted for all major crops for abiotic stress challenges, in pulse crops examples are 

now only emerging.  In chickpea, 2800 root-trait and drought-responsive ESTs were developed 

and annotated [120].  More recently, a set of 20162 drought- and salinity-responsive chickpea 

ESTs and gene-based markers have been developed [121].  Similarly, in pigeonpea 9888 

fusarium wilt- and sterility mosaic disease-responsive ESTs were developed [122] and the 

pigeonpea genomics initiative is already starting to provide more resources for pigeonpea 

improvement [123]. 

 Other transcriptomic approaches have included differential display PCR (DDRT-PCR), 

cDNA-AFLP and microarrays, although the latter has been mostly restricted to model legumes 

for abiotic stress transcriptome profiling.  Using DDRT-PCR drought-modulated gene(s) in 

common bean were examined and 8.7% of the 1200 DDRT bands were found to be regulated by 

drought [124].  Similarly, cDNA-AFLP profiling in cowpea during biological nitrogen fixation 

under heat stress revealed 55 transcripts which were up-regulated and nine which were down-

regulated by heat stress [125].  Subsequently, using the transcript-derived fragments as probes 

against a cowpea heat-stressed root nodule cDNA library, it was shown that two of the full 

length clones isolated coded for a small heat shock protein gene and a nodulin gene [126].  

Studies such as the cDNA-AFLP transcriptome analyses are valuable since they allow for gene 

discovery under abiotic stress challenges, as recently reported in wheat, wherein temporal and 

spatial specificity of induced transcripts under low temperature exposure occurred [127].  The 

cDNA-AFLP profiling is a low-cost alternative for gene discovery, especially in laboratories 

with limited resources [103] and will be valuable for pulse crop transcript profiling under abiotic 

stress challenges. 

 Compared to other crops, microarray-based studies in pulse crops have also been lagging 

behind.  Most microarray studies relating to abiotic stresses have been done in model legumes 

such as Medicago truncatula or soybean.  For example, in Medicago truncatula a time-course 

experiment was conducted for salt stress in roots using the Affymetrix Medicago GeneChip and 

MtED  (Medicago truncatula Expression Database) was suggested to be a useful resource for 

studying abiotic stress in other legumes [128].  A similar experiment for root apex responses to 

salt compared to whole roots response to salt using a 16K+ microarray chip showed that there 

was a 30-fold expression difference in transcription factor genes, suggesting different spatial 

adaptive response within the roots to soil environments [26].  Microarray analysis of aluminium 

stressed root tips of Medicago truncatula revealed novel genes involved in resistance or 

tolerance to Al resistance [129].  Such studies need to be extended to pulse crops, especially 

since EST resources are becoming increasingly available.  
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 Next-generation sequencing (NGS) is the most recent technological addition to 

expediting genome sequencing.  Genomic sequencing information is valuable for different 

purposes such as gene identification and molecular marker development in varieties of interest.  

With the availability of a reference genome as in Medicago [130], single nucleotide 

polymorphism (SNP) markers can be developed for other varieties.  Even if a reference genome 

is not available, NGS can be performed.  For example in chickpea, using Solexa tags of root 

tissues of drought tolerant and drought sensitive genotypes,  5.2 and 3.6 million reads, 

respectively were generated, with the identification of about 500 SNPs [131].  Chickpea 

transcriptome has also been sequenced with short reads on Illumina Genome Analyzer platform 

and will be valuable for marker development and gene identification [132].   

 The role of small RNAs in post-transcriptional regulation of gene expression is now well 

established, including their roles in abiotic stress tolerance (for reviews see [133-135]).  A few 

encouraging reports have recently shown the roles of miRNAs in abiotic stress tolerance in pulse 

crops. For example, cowpea miRNAs have been identified and their potential roles in salinity 

stress tolerance due to differential expression in roots have been shown [136].  Stress-responsive 

miRNAs were also identified in common bean subjected to nutrient deficiency stress and 

manganese toxicity [137].  Another study has identified and validated miRNAs in different 

organs of common bean and under growth conditions such as drought, abscisic acid treatment 

and Rhizobium infection [138].  Recently, eight potential miRNAs from horsegram 

(Macrotyloma uniflorum) were identified by computational mining of EST database at the NCBI 

and shown to be novel plant miRNAs involved in a variety of responses including environmental 

stress [139].  

 Transgenic approaches 

Transgenic approaches, as controversial as they may be, offer perhaps one of our fastest means 

for the development of abiotic stress tolerant pulse crops.  However, the transgenic technology 

can also complement functional genomics studies to validate expression of cloned genes related 

to abiotic stress tolerance.  In pulse crops, both in vitro culture and genetic transformation were 

slow to be developed.  This was mostly because of heightened interest in cereals such as rice and 

wheat, because of their important contributions to the energy supply of human beings.  Although 

cereals were generally considered recalcitrant to in vitro culture and genetic transformation, 

successes were achieved due to tremendous resources which were allocated for the production of 

transgenic cereals.  Similar resources and efforts need to be directed towards pulse crop 

transformation to increase the efficiency and reproducibility of transformation systems for pulse 

crops. 

 Since the first report of Agrobacterium-mediated delivery of genes to produce transgenic 

plants and Mendelian transmission of the transgene in 1983 [140], a number of other gene 

delivery methods have been reported.  Although Agrobacterium- and particle gun-mediated 
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delivery are the most popular methods, other methods have also been successfully used to 

produce transgenic plants for commercial applications and/or basic studies to understand plant 

growth and development.  The availability and versatility of different DNA delivery methods are 

becoming important for pulse crop improvement, since transcriptomic resources are becoming 

increasingly available.  Furthermore, although sequences of known functions in the databases 

can be used for homology-based prediction of gene function of unknown sequences, more 

precise functions of the genes of interest are often difficult to ascertain, except by a transgenic 

approach [141].  Therefore, the availability of high-throughput gene transfer systems for 

economically important pulse crops has become highly necessary for rapidly assessing gene 

function.  Such transformation systems are routine in model systems such as Arabidopsis, but are 

still lacking for many economically important crop plants.  This is particularly critical for pulse 

crops which have been relatively recalcitrant to transformation.  Of particular potential for pulse 

crop transformation, is the in planta transformation system.  Such non-tissue culture 

transformation approaches by Agrobacterium have been reported in some leguminous crops and 

are promising for pulse crops transformation.  For example, pricked peanut embryo axes were 

transformed by inoculating them in Agrobacterium suspension [142].  Seedlings or flowering 

plants of Medicago truncatula were also transformed by vacuum infiltration of Agrobacterium 

[143].  The electroporation-mediated transformation of nodal axillary buds of pea, cowpea and 

lentil and production of transformed plants is encouraging for further refinement of this strategy 

for transforming pulse crops [144]. 

 In vitro regeneration and transformation 

Notwithstanding the recalcitrance of pulse crops to tissue culture and transformation, there are 

many successful reports (for review see [145]).  In vitro culture as such, prior to being a target 

for use in transformation, was used for embryo rescue in wide hybridizations and for in vitro 

selection.  For example, inter-specific hybrids of lentil were rescued by embryo culture [146, 

147].  Similarly, hybrid plants from a cross between Phaseolus vulgaris L. and P. lunatus L. 

were obtained by embryo rescue and confirmed by rDNA analysis [148].  In chickpea, although 

limited success for inter-specific hybridization and embryo rescue were initially encountered 

[149], some success has been obtained [150].  Embryo rescue was also used to produce hybrids 

between Cajanus platycarpus × C. cajan [151, 152].  Considering that tolerance to abiotic 

stresses exists in many wild species of pulse crops, hybridization between cultivated species and 

their wild counterparts, followed by embryo rescue is likely to be a strategy worth exploring.  

Several wild species of Cicer have been shown to be tolerant to cold or drought [149, 153, 154].  

One such species, C. pinnatifidum, tolerant to cold and belonging to the tertiary gene pool, was 

crossed with C. arietinum and the hybrid was rescued by embryo culture [150].  Successful 

hybrids have also been produced by embryo rescue in cultivated lentil × wild lentil sp. [155, 

156].  Hybridization among several Vigna sp. and mungbean cultivars, followed by embryo 
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rescue gave successful hybrids with potential for use in improving these Vigna sp. for abiotic 

stress tolerance [157]. 

 In vitro selection for tolerance to biotic and abiotic stresses was also an area of extensive 

research in the seventies and eighties.  Combined with the phenomenon of somaclonal variation 

[64], in vitro selection was deemed to contribute new variation to breeding programmes.  The 

idea that plant cells can be treated as micro-organisms and subjected to selection pressure existed 

for a long time and essentially breeders could perform selection on cultured cells and tissues 

under appropriate selective agent to identify and regenerate plants from tolerant or resistant cell 

lines.  While this approach was widely explored for disease-resistance selection by employing 

fungal toxins or crude culture filtrates from fungal cultures shown to contain fungal toxins in 

tissue culture medium, advances for abiotic stress tolerance selection have also been attempted 

[158].  Abiotic stress was generally applied as NaCl or mixture of salts for salt tolerance 

selection and as polyethylene glycol (PEG) or mannitol for drought tolerance selection.  For 

example, salt tolerant Vigna radiata plants were regenerated by selective NaCl pressure [159, 

160].  As with transgenic studies, in vitro selection studies in pulse crops have equally lagged 

behind and need to be revisited.  Studies on in vitro selection for salt tolerance in other 

leguminous crops such as soybean [161] and alfalfa [162] have been done.  Some studies in 

Vigna have used callus for selection to drought by employing PEG in the culture medium [163], 

but no drought tolerant regenerated plants have been reported to date. 

  As with other biotechnological approaches for pulse crop improvement, genetic 

transformation strategies have likewise been slow to be implemented.  ICRISAT has taken a 

leading role in recent years at improving mandated pulse crops for abiotic stress tolerance, 

especially drought tolerance and include use of genetic transformation technology [164].  

Transgenic chickpea lines over-expressing a mutagenized pyrroline-5-carboxylate synthetase 

(P5CS) gene led to elevated proline levels under water deficit  in the greenhouse, but no 

significant effect on yield was observed, although transpiration efficiency was modestly 

improved [165].  A similar strategy in soybean, but using the L-Δ
1
-pyrroline-5-carboxylate 

reductase (P5CR) gene showed elevated accumulation of proline under stress and the better 

ability to metabolize proline after re-watering [166].  Interestingly, a P5CS gene from Vigna 

aconitifolia, altered by site-directed mutagenesis to prevent feed-back inhibition of proline [167], 

was used to produce transgenic tobacco plants with increased drought tolerance [168].  Such 

studies are encouraging and especially since the P5CS gene was cloned from a pulse crop.  Other 

studies have targeted transcription factors regulating expression of many genes upon abiotic 

stress challenges.  The most extensively studied transcription factors are the dehydration-

responsive element-binding/C-repeat-binding (DREB/CBF) from Arabidopsis and their 

involvement in multiple abiotic stresses [57, 169].  Transgenic peanut plants expressing DREB1A 

from Arabidopsis showed increased transpiration efficiency under limiting water availability 
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[170].  Production of transgenic pulse crops tolerant to abiotic stresses is thus possible, but 

resources need to be allocated to realize this possibility.  

Concluding remarks 

Pulse crop improvement for tolerance to abiotic stresses still needs tremendous resources to be 

invested to cater to world food security and nutrition.  While in the developed countries pulse 

crop improvement for abiotic stresses will lead to profitable returns on production, in developing 

countries it will improve food security, nutrition and sustainable production.  Furthermore, due to 

low-input farming in many developing countries and the occurrence of drought and low soil 

fertility, the need to develop improved pulse crop varieties is urgent.  The Generation Challenge 

Programme (GCP, http://www.generationcp.org) under the umbrella of the Consultative Group 

on International Agricultural Research (CGIAR) is precisely aiming to provide molecular 

biology-based resources for crop improvement in developing countries.  Some of the pulse crops 

targeted for development of molecular markers for stress tolerance include cowpeas, beans and 

chickpeas for the sub-Saharan African and South Asian regions.  Such programmes and those 

undertaken by ICARDA and ICRISAT are likely to provide much required impetus to pulse crop 

improvement for abiotic stress tolerance.  However, there is a need for more international 

partnership, especially from developed countries already extensively researching pulse crop 

improvement.  The accessibility of next-generation sequencing is opening up genomics resources 

hitherto not completely utilized and such resources will be valuable to expedite pulse crop 

improvement.  In the short term, transgene technology needs to be explored and adopted to 

deliver transgenic pulse crops with abiotic stress tolerance. 
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