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Abstract

The last —30 years have witnessed a continuous evolution of new 
molecular marker systems from restriction fragment length polymor­
phisms, random amplified polymorphic DNAs, and amplified fragment 
length polymorphisms to present-day popular marker systems such 
as simple sequence repeats (SSRs), single nucleotide polymorphisms 
(SNPs), and diversity array technologies. Advent of low-cost and high- 
throughput sequencing technologies, commonly called next-generation 
sequencing (NGS) technologies have increased the speed of SSR and 
SNP discovery. NGS technologies in combination with restriction en­
zymes are now ready for detecting genome-wide polymorphism and 
new marker systems like RAD-tag sequencing, genotyping by sequenc­
ing are becoming popular. It seems that NGS-based marker systems will 
be dominating marker systems in future. These new emerging marker 
systems are expected to facilitate enhanced adoption of modern genet­
ics and breeding approaches like genome-wide association studies and 
genome-wide selection that generally require markers at high-density in 
crop plants.
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Introduction

M olecular m arkers refer to assays that allow  detection of specific se­
quence differences betw een two or m ore individuals o f an organism  
(Langridge and Chalm ers, 2004). D N A -based m olecular m arkers have rev­
olutionized the genetics and m olecular breeding o f crops plants. They pro­
vide m ost pow erful diagnostic tools for the detection o f polym orphism  at 
the level of specific loci and at the w hole-genom e level. D uring the last 
—30 years, new  m olecular m arker system s continuously evolved from  low- 
throughput restriction fragm ent length polym orphism s (RFLPs) in 1980s 
to high-throughput array-based m arkers in  2 0 0 0 s and now  sequencing- 
based  m arker system s in 2010s (Figure 10.1). This continuous evolution of 
m olecular m arker technologies w as m ostly attributed to (i) d ifferent needs 
o f researchers w orking on plant genetics, genom ics, and m olecular breed­
ing (for instance, the challenge of sim ultaneous w hole-genom e screening 
rather than screening for a single locus at a tim e); (ii) desire to cu t dow n 
the cost of m olecular m arker genotyping to m ake their use routine in track­
ing loci and genom ic regions in m olecular breeding program s for crop
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Figure 10.1 Paradigm shift in marker discovery: from hybridization-based RFLPs to NGS*based 
high-throughput markers. Markers have been classified into past, present, and future molecular 
markers. Markers highlighted with blue color are micro-array-based markers, while as those high­
lighted with red color are NGS-based markers. (For a color version of this figure, see color plate 
section.)

im provem ent; and (iii) continuous evolution in autom ation, robotics, and 
nanotechnology.

The im provem ents in screening techniques by  m olecular m arkers have 
been  found im portant in  facilitating the tracking o f agronom ically im por­
tant genes (Langridge and Chalm ers, 2004). H ow ever, the ultim ate ap­
proach of study o f polym orphism  in any crop w ould be  to sequence/ 
resequence the entire genom e (or a part of it) of a large num ber of acces­
sions. This w as unim aginable during 1980s and is even still not very cost- 
effective. Therefore, D N A -based m olecular m arkers including RFLPs, ran­
dom  am plified polym orphic D N A s (RA PD s), am plified fragm ent length 
polym orphism s (A FLPs), and m icrosatellite or sim ple sequence repeats 
(SSRs) w ere em ployed in the past for detecting and utilization genetic vari­
ation (Collard et a l ,  2005; G upta et al., 2002; G upta, Rustgi, and Mir, 2008). 
These m olecular m arkers w ere developed from  random  genom ic DNA li­
braries (RFLPs and SSRs), random  PC R  am plification o f genom ic DN A 
(RA PD s), or both (AFLP). A m ong these m arkers, SSR m arkers have be­
com e the m arkers of choice because o f their various desirable attributes 
(Gupta and Varshney, 2000). A lthough, in  recent years, single nucleotide 
polym orphism s (SN Ps), w hose discovery required sequence inform ation, 
also becam e the popular m arkers (in addition to SSRs) due to their abun­
dance and uniform  distribution throughout the genom es. A dvent o f next- 
generation sequencing (NGS) technologies are m aking SN P discovery 
cheaper (Varshney, Graner, and Sorrells, 2005). These SN Ps, once iden­
tified, can be assayed using low -, high-, or ultra-high-throughput geno- 
typing platform s depending on the need of researchers (D escham ps and 
Cam pbell, 2009; Varshney et al., 2009).
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In addition to SN Ps, som e other recently em erged novel array-based 
m arker system s, including diversity array technology (DA rT) and single 
feature polym orphism s (SFPs), have also been  developed, w here array- 
based  assays have been utilized to provide for the desired ultra-high- 
throughput and low  cost. The developm ent of h igh-throughput array- 
based  m arkers (e.g., DArT) overcom es the problem  of expensive and 
laborious scoring o f m arker panels across target populations in gel-based 
m arker system s. SFPs, on the other hand, have been found very useful for 
detecting the functional polym orphism  associated w ith traits.

A bove-m entioned m olecular m arkers have been  extensively used in 
different areas of p lant genetics research and breeding applications, for 
exam ple, genetic characterization/D N A  fingerprinting, genetic integrity, 
genetic m apping, trait m apping, m arker-assisted selection (M A S), and 
m olecular breeding. How ever, in recent years, som e m odem  genetics 
and breeding approaches like genom e-w ide association studies (GW AS), 
genom e-w ide selection (GW S), and so on that generally need  genom e-w ide 
or high-throughput m arker screening of large populations have becom e 
available. This chapter deals w ith  a brief discussion on m olecular m arkers 
that w ere and are being used extensively in the past and present and then 
provides an overview  on the em erging m arker genotyping technologies 
such as genotyping by sequencing (GBS). In addition, tw o m odern breed­
ing approaches nam ely G W S and GW AS have also been  discussed.

Molecular Markers: The Past

Protein-based m arker system s including isoenzym es are the m olecular 
m arkers that were in w ide use long before D N A  m arkers becam e popular 
(M arket and M oller, 1959; B em atzky and Tanksley, 1986; G laszm ann, 1987; 
Ishikaw a et a l ,  1992). These m arkers require protein extraction, w hich is 
labor intensive, not adapted to autom ation, and high-throughput analysis 
for plant m olecular breeding (M cM illin, A llan, and Roberts, 1986; Winzeler, 
W inzeler, and Keller, 1995). Therefore, these m arkers w ere soon replaced 
b y  D N A -based m olecular m arkers such as RFLPs (Botstein et a l ,  1980; 
Tanksley et a l ,  1989), A FLPs (Vos et a l ,  1995), RAPD s (W illiam s et a l ,  1990), 
and m icrosatellites or SSRs (Litt and Lutty, 1989).

RFLP m arkers represent one o f the earliest types o f D N A -based m olec­
ular m arker system s detecting variation in restriction fragm ent length 
(Botstein et a l ,  1980). The sequence variation detected by RFLPs can be 
either due to single nucleotide changes leading to the creation or rem oval 
o f recognition site o f a restriction endonuclease or due to insertions or dele­
tions o f several nucleotides that leads to detectable shift in  fragm ent size. 
How ever, due to the tim e-consum ing m ultistep protocol and the require­
m ent o f radioactivity for detection, RFLPs lost their im portance in plant 
m olecular breeding (M ohler and Schw arz, 2005).
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W ith the discovery of PCR technology, a universal m arker technol­
ogy called  RA PD s m aking use o f single random  oligonucleotide prim er

10-bp long) were discovered in 1990 for the sim ultaneous am plification 
of several discrete DNA fragm ents (W illiam s et al., 1990). The advantages of 
RA PD s being the use o f universal prim ers, thus enabling the cost-effective 
accom plishm ent of various genetic analyses in  a short period of tim e (see 
Tingey and del Tufo, 1993). Subsequently, by taking the advantage o f fea­
tures o f RFLP together w ith PCR technology, a m ultilocus fingerprinting 
technology called A FLPs w as discovered that could be applied to DNA of 
any origin or com plexity (Ehrlich, G elfand, and Sninsky, 1991; Vos et al., 
1995). AFLP has been extensively used for detection o f polym orphism  at 
a larger num ber o f loci sim ultaneously in germ plasm  collection, construc­
tion o f high-density genetic m ap, as w ell as trait m apping in several stud­
ies (Becker et al., 1995; M ackill et a l ,  1996; Pow ell et al., 1996; M ohler and 
Schw arz, 2005).

W hile RFLP, AFLP, and RAPD  m arkers have also been  used for trait m ap­
ping, it is not straightforw ard to use the associated m arker/fragm ent in 
m olecular breeding applications. To overcom e som e o f these problem s, the 
fragm ents of RFLP, AFLP, or R A PD  m arker system s associated w ith  the 
trait w ere also converted into sim ple and robust PCR-based m arkers, for 
exam ple, sequence tagged site (O lsen et al., 1989) or sequence characterized 
am plified regions (Paran and M ichelm ore, 1993).

In addition, several variants w ere derived from  the above m arker sys­
tems. Som e of these include allele-specific-associated prim ers, single­
strand conform ation polym orphism , arbitrarily prim ed PC R (W elsh and 
M cClelland, 1990), D N A  am plification fingerprinting (Caetano-A nolles, 
Bassam , and Gresshoff, 1991), and selectively am plified m icrosatellite poly­
m orphic locus (M organte and Vogel, 1994).

Molecular Markers: The Present

A num ber of m olecular m arkers that becam e available for plant genotyp- 
ing have its ow n advantages and disadvantages. N o single m arker system  
seem s to be  adequate to  address all the concerns in p lant genom e analysis. 
Therefore, a choice in  term s o f selection o f m olecular m arker has to be m ade 
by  a researcher to fulfill h is/her research aim  because each m arker type 
differs from  each other in  term s o f inform ation content, num ber of scorable 
polym orphic loci per reaction, and degree o f autom ation. In addition, the 
choice of m ethod often depends on  the genetic resolution needed as w ell as 
on technological and financial constraints (Langridge and Chalm ers, 2004; 
M ohler and Schw arz, 2005).

Som e of the m olecular m arkers that have been discovered in recent 
past but are still indispensable include SSRs, SN Ps, and m icro-array- 
based  m arkers like SFPs, D A rT m arkers, and N G S-based high-throughput
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m arkers (Gupta et a l ,  1999; G upta and Varshney, 2000; Langridge and 
C halm ers, 2004; M ohler and Schw arz, 2005; G upta, R ustgi, and Mir, 2008; 
Varshney et a l ,  2009). A m ong these m olecular m arkers, SSRs w ere con­
sidered as the m arkers of choice because o f their abundance in eukary­
otic and prokaryotic genom es, reproducibility, transferability, etc., and are 
still being considered indispensable ow ing to their trem endous potential in 
tracking genes in  m olecular breeding program s (G upta and V arshney 2000; 
M ohler and Schw arz, 2005). How ever, if genom e-w ide high-throughput 
m arkers are required to address a problem , then SN Ps provide the solution. 
In addition, SN P m arkers possess several other desirable attributes includ­
ing (i) their abundance, (ii) uniform  distribution throughout the genom es, 
(iii) h ighest resolution to create haplotypes, (iv) study the association of 
heritable traits w ith underlying genetic variation, and (v) their stability 
over generations. Therefore, SN P m arkers becam e the m arkers of choice 
for w hole-genom e analysis or com plex trait m apping (D escham ps and 
Cam pbell, 2009).

Several other m arkers m aking use o f m icro-arrays including DArTs and 
SFPs are also becom ing popular at present (Gupta, Rustgi, and Mir, 2008). 
D A rT m arkers have been proven useful in  m any plant species w ith  a lim ­
ited expense in  term s of tim e and m oney for a variety o f applications 
such as genetic diversity, population structure, construction o f high-density 
m aps, and quantitative trait locus (Q TL) m apping (Jaccoud et a l ,  2001; 
W enzl, C arling, and Kudrna, 2004, 2007; K ilian  et al., 2005; G upta, Rustgi, 
and M ir, 2008). SFPs on the other hand also becam e available for all the 
m ajor crops including barley (Cui et a l ,  2005; Rostoks et a l ,  2005), rice 
(K um ar et al., 2007), m aize (Kirst et a l ,  2006; Gore et a l ,  2007), w heat (Banks, 
Jordan, and Som ers, 2009), and pigeonpea (Saxena et a l ,  2011) and have 
been used for (i) genetic m apping (Banks, Jordan, and Som ers, 2009) and
(ii) Q TL interval m apping and association m apping leading to detection of 
m ain effect Q TL s and eQ TLs (Potokina et a}., 2008; K im  et a l ,  2006, 2009). 
H ow ever, the problem  w ith array-based m arkers is that they are specific 
to particu lar population in w hich they are developed; therefore, genotyp- 
ing o f new  populations w ill be biased toward alleles present in the original 
survey, w hich can be a serious problem  in studies involving w ild or highly 
divergent populations (Davey et al., 2011).

W hile, at present, SSR  m arkers have becom e available for alm ost all 
m ajor crop plant species, SN P m arkers have already been  developed 
in several p lant species (Cho et a l ,  1999; R afalski, 2002; Z hao et a l ,  
2006; Jones et a l ,  2007, 2009; Yu et al., 2008). SN P discovery, although 
w as expensive earlier because o f involvem ent o f Sanger sequencing, 
has becom e cost-effective w ith the use o f N G S technologies (Varshney 
et a l ,  2009; M etzker, 2010). The NGS technologies that have recently 
becom e available com m ercially included Roche/454 (http://w w w .454 
.com /), Solexa/IUum ina (http://w w w .illum ina.com /), and SO LiD /A BI

http://www.454
http://www.illumina.com/
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(http://w w w .appliedbiosystem s.com /). These technologies are also re­
ferred as second-generation sequencing (SGS) technologies. Very re­
cently, som e other advanced sequencing technologies that are referred as 
third- or next-next-generation sequencing technologies (TG S or N N GS) 
are also ready to becom e com m ercially available. Som e of these tech­
nologies include (i) H eliScope Single M olecule Sequencing by H elicos 
BioSciences (w w w .helicosbio.com ), (ii) Single M olecule Real Time 
(SM RT™ ) Sequencing technology bv Pacific B iosciences (w w w .pacificbio 
sciences.com ), (iii) Ion Personal G enom e M achine (P G M ™ ) Sequenc­
ing (http://w w w .iontorrent.com /), and (iv) Polonator G .007 Sequencing 
(http://w w w .polonator.org/).

These N G S technologies have b een  found valuable for the discovery, val­
idation, and assessm ent o f genetic m arkers in populations (Varshney et a l ,  
2009; D avey et a l ,  2011). These technologies have been  used for SN P discov­
ery in both types of species w here reference genom e is available as w ell as 
not available. In case reference genom e sequence is available (e.g., in  Ara- 
bidopsis, M edicago, m aize, rice, poplar, grapevine, and papaya), resequenc­
ing o f som e genotypes/lines is follow ed by  m apping o f short sequence 
reads or tags on the reference genom e. The alignm ent o f short reads to 
a reference sequence allow s the discovery o f d ifferent types of sequence 
variations, including SN Ps, short insertion/deletions (indels), and copy 
num ber variants. For instance, in case o f m aize, resequencing o f six elite 
m aize inbred lines leads to the discovery o f 1 000 000 SN Ps and 30 000 in­
dels (Lai et a l ,  2010). How ever, in case reference genom e is not available, 
m any crop com m unities have developed transcriptom e assem bly (TA) and 
the generated transcript reads from  a num ber of individuals have been 
aligned w ith TA for identification of SN Ps. This approach has been  used 
in m any plant species such as chickpea (Garg et al., 2011; H irem ath et a l ,  
2011), p igeonpea (D ubey et a l ,  2011), carrot (Torizzo et a l ,  2011), and lentil 
(Kaur et a l ,  2001). O nce these SN Ps are identified , there is a  range of geno- 
typing platform s that can be used to assay SN Ps in desirable num bers 
(Ragoussis, 2009). Som e of these platform s include (i) Illim inas GoldenGate 
platform  (Syvanen, 2005; Fan, Chee, and G underson, 2006), (ii) lllum ina’s 
Bead C hip™  based Infinium  platform  (Steem ers and G underson, 2007),
(iii) TaqM an by Life Technologies (Livak, 2003), and (iv) C om petitive Allele 
Specific PC R  (KA SPar) by K Biosciences (http://w w w .kbioscience.co.uk/ 
index.htm l).

Molecular Markers: The Future

N G S platform s, as m entioned above, have revolutionized genom ics ap­
proaches to biology and have drastically increased the speed  at w hich DN A 
sequence can be acquired w hile reducing the costs by several orders of 
m agnitude. N G S m ethods for genom e-w ide genetic m arker developm ent

http://www.appliedbiosystems.com/
http://www.helicosbio.com
http://www.pacificbio
http://www.iontorrent.com/
http://www.polonator.org/
http://www.kbioscience.co.uk/
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and genotyping are now  m aking use o f restriction enzym e digestion of tar­
get genom es to reduce the com plexity of the target. N G S o f reduced repre­
sentations is proving useful in the rapid and robust identification o f SNPs 
and sm all indels in  a range of p lant species even w ith  com plex genom es 
(D escham ps and Cam pbell, 2009). The use o f restriction enzym es for high- 
throughput genetic m arker discovery and genotyping have several advan­
tages (see below ) and are becom ing the m ethods o f choice for m arker dis­
covery in near future. O ne o f the advantages o f these m ethods being their 
suitability for both  m odel organism s w ith high-quality reference genom e 
sequences and also to nonm odel species w ith  no available genom ic data 
(see D avey et a l ,  2011). Therefore, it is anticipated that these em erging tech­
nologies w ill answ er m any com plex biological questions w ith high accu­
racy. For instance, these m ethods m ay help us in identifying recom bination 
breakpoints for linkage m apping or Q TL m apping, locating differentially 
expressed genom ic regions betw een populations for quantitative genetics 
studies, genotyping large num ber o f progenies for M A S, or resolving the 
phylogeography of tens o f w ild populations.

The innovative and em erging m ethods o f m arker discovery m aking use 
of N G S and restriction enzym es involve the follow ing key steps: (i) d iges­
tion o f m ultiple sam ples o f genom ic DN A (from  individuals or popula­
tions) w ith  one or m ore restriction enzym es, (ii) selection or reduction of 
the resulting restriction fragm ents, and (iii) N G S o f the final set o f frag­
m ents suitable for current N G S platform s (< 1  kb in size). O nce these steps 
are through, the polym orphism s in the resulting sequenced fragm ents can 
be treated as genetic m arkers. All these em erging m ethods can be grouped 
into three broad classes: (i) reduced-representation sequencing, including 
reduced-representation libraries (RRLs) and com plexity reduction o f poly­
m orphic sequences (CRoPS); (ii) restriction site-associated D N A  (RAD)- 
seq; and (iii) low  coverage genotyping, including m ultiplexed shotgun 
genotyping (M SG) and genotyping by sequencing (GBS). D epending on 
the need, one o f the above class can be selected. For instance, for the study 
of crop plants, w here no reference genom e is yet available, a large num ber 
of m arkers need  to be scored accurately in m ost individuals to  ensure pre­
cise population param eters estim ation, RA D -seq or reduced-representation 
m ethods are m ost appropriate. How ever, for genotyping applications in 
Q TL m apping and M AS, where parental genotypes are w ell know n and 
progenies w ith  lim ited polym orphism  are to be  sequenced, low -coverage 
genotyping is considered sufficient for linkage to be  inferred, provided that 
a reference genom e is available. A  brief account on these em erging m eth­
ods is given below  and a com parison has been  provided in Table 10.1.

Reduced-Representation Sequencing (CRoPS and RRLs)

A lthough w hole-genom e resequencing of populations w ill soon becom e af­
fordable, one can believe that reduced-representation m ethods w ill be still
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Table 10.1 Comparison of various NGS-based high-throughput marker discovery methods.

Parameter CROPS RRLs RAD-seq GBS MGS

DNA required 300 ng/sample 25 |xg 
pooled

300 ng/sample 100 ng/sample 10 ng/sample

Restriction 
enzyme used

Frequent cutter Frequent
cutter

Both frequent 
and rare cutter

Frequent cutter Frequent
cutter

PCR needed - - V v/ -

SNP discovery in 
populations without 
reference genome

V V V Yes but 
challenging

Yes but 
challenging

Suitability for large 
repetitive genome 
fractions or higher 
ploidy levels

X X ■J V V

Polymorphism
detection

** * * * * ** ** **

Suitability for QTL 
mapping and MAS

* * ** * * * * * *

* * * , high; **, moderate; *, low; y , yes; x , not suitable; no information.

preferable as m any biological problem s can be answ ered w ith  a sm all set of 
m arkers and thus do not require every base o f the genom e to be sequenced. 
This approach w ill also save cost and tim e and has been  earlier used to re­
duce the sequencing w ork by  m ethylation filtration or Cot-fractionation in 
m aize (Em berton et a l ,  2005).

R RLs and C RoPS are tw o such m ethods, w here only a subset o f ge­
nom ic regions instead of w hole genom e is sequenced (see D avey et a l., 
2011). Both these m ethods are suitable for populations w ith low  levels of 
polym orphism , since they involve use of an  enzym e with a higher cutting 
frequency to produce sufficient polym orphic m arkers. O ne of the disad­
vantages o f these m ethods is that they are not suitable for genom es w ith a 
large repetitive genom e fractions or high ploidy levels, e.g., w heat. W hen 
a high-quality reference genom e is available, the reads from  RRL sequenc­
ing can be m apped to the reference genom e and SN Ps can be called for 
w hole-genom e resequencing projects (Li et al., 2009; N ielsen, Albrechtsen, 
and Song, 2011). How ever, if a reference genom e is not available, long reads 
from  the R oche G enom e Sequencer platform  or reads from  both ends of 
the library fragm ents from  any N G S platform  (paired-end reads) can be 
used to assem ble the fragm ents de novo before calling SN Ps. Paired-end 
reads also facilitate the calling of structural variations in RRLs (Kerstens 
et a l ,  2 0 1 1 ).

RRLs were initially used for preparation of an SN P m ap o f the hum an 
genom e using capillary sequencing (A ltshuler et a l ,  2000). In plants, RRLs
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approach in com bination of N G S has been  used  recen tly  fo r identification 
of thousands to m illions o f candidate SN Ps in  m aize (G o re  et a l ,  2009), soy­
bean (H yten et a l ,  2010a), com m on bean (H yten et a l ,  2 0 1 0 b ), and jointed 
goatgrass (You et a l ,  2011). R RLs have usually b een  u se d  to  sequence pools 
o f DN A sam ples from  m ultip le individuals, thus a llo w in g  the detection of 
polym orphism s w ith in  a population bu t not for each  ind ivid u al.

In contrast to RRLs, C R oPS can be  em ployed to id en tify  polym orphism s 
in individual sam ples by  incorporating short b arcod e id en tifier sequences 
[designated as m ultiplex identifier sequences (M ID s) o n  the R oche G enom e 
Sequencer platform ] into the ligated adaptors and u sin g  an  adaptor con­
taining a unique barcode for each D N A  sam ple. T h e  barcod es can be 
used to separate sequence reads for different sam p les com putationally , and 
enable population studies to  be  carried out using  N G S sequ encing plat- 
form (s). C RoPS has also been  used to discover m ore th an  1000 SN Ps in 
m aize (van O rsouw  et a l ,  2007; M am m adov et a l ,  2010).

RAD-Tag Sequencing (RAD-seq)
R A D -seq m ethod provides a reliable m eans for genom e com plexity reduc­
tion (M iller et al., 2007) and is based on obtain ing the seq u en ce adjacent to 
a set o f particular restriction enzym e recognition sites. T h e  application of 
high-throughput sequencing technology has allow ed  significant progress 
in  developing a RA D  genotyping platform . The value o f sequencing restric­
tion site-associated genom ic D N A  (i.e., R A D  tags) fo r h igh-density  SNP 
discovery and genotyping w as first dem onstrated  b y  Baird  et a l  (2008). 
This involves digestion o f genom ic D N A  w ith a six  to  eight base-cutter re­
striction enzym e, and a barcoded adapter is ligated  to com patible sticky 
ends. Before sequencing, D N A  sam ples each w ith  a d ifferent barcode are 
pooled, random ly sheared to a length suitable for the sequencing platform  
(300-700  bp), and a second adapter is ligated after polish ing  and filling 

ends (Elshire et a l ,  2011).
R A D -tag sequencing has been  found very effective for the rapid and 

large discovery o f m olecular m arkers, even in a species w ith  low  polym or­
phism . For instance, in  case o f eggplant (Solarium m elongena), R A D -tag se­
quencing has resulted in the developm ent o f > 10 000  SN P s, 1600 indels and 
1800 putative SSRs (Barchi et a l ,  2011). These m arkers w ill prove useful for 
rapid  saturation o f the best available intraspecific genetic m ap in eggplant 
and for the study o f com parative genom ic analyses w ith in  the Solanaceae 
family. In addition, R A D -seq has been used very  recently  for the construc­
tion o f linkage m aps in barley (C hutim anitsakun ct a l ,  2011) and ryegrass 

(Pfender et a l ,  2011).

Low-Coverage Sequencing for Genotyping (GBS and MSG)

The m ethods described above reduce the proportion o f the genom e tar­
geted for sequencing so that each m arker can be sequenced at high



Future P rospects of Molecular Markers in P lants 179

■ at low  cost and h ig h  accuracy. H ow ever,
coverage across m any m  ^  ^  tQ sequence m any target m arkers at
another alternative P ^  d ecisi0 n  about the nu m ber o f m ark-
low  coverage pei: i n m  ^  genotyped  depend o n  the goal(s)
e r s ,  coverage, and ^  high_quaUty reference sequ ence

of study (D avey e ■, ^  ^  d ifferent individ uals can  b e  seq u enced  at
is available, Se™ ® ‘c arise w hen the reference genom e sequ ence is
low  a v e r a g e  C h ^  assem bied , or d erived  from  a dis-
not available, an a  ^  repetitive genom e. H ow ever,
tantIy related ^  “ ^ ^ e n t e d  in genotyping recom binant 
the m ethod can b  genotypes are either k now n or can  be
populations m w hic h  h as b een  used  to construct genetic
assigned probabil • e  whole-genom e resequencing o f hun-
m aps for rice based  on  ^  2009; X ie et ah . 2 0 1 0 ) and  to
dreds of recom binant * b * d  o n  3 3  m illion SN Ps, u sin g  R e ­
generate a haplotype ™aP ^  w ere cu t w ith  a range of d ifferent
coverage sequencing ot three
restriction enzymes (Gore r t d . ,  2009).

Genotyping by Sequencing
, „ f reducin„  genom e com plexity w ith  restriction  enzym es cou- 

The value o f redu g g h iah_density SN P d iscovery and genotyp- 
pied w ith RA D  tag s (Baird  rt a l ,  2008). G B S
ing w as ° n ^ “ y tion of genom ic D N A  w ith a frequent cutter and 
also involves th<= g  sequencing of a ll resulting restriction
next-generation hig In cage 0 f m aize and barley, m ethylation-
fragm ents (Elshire e « v ^  ^  ^  ^  com plexity and to  se_

sensitive enzym e p ^  m e Q ne of the advantages o f us-

l6Ct G B s T t h T A t  can be applied to  any crop species at a  low  per-sam ple 
m g G BS is hat it for sm all genom es. H ow ever, for species
cost and is fairly s  g enrichm ent or reduction o f genom e com -

w ith com PleX, §en° ^ v' d to ensure sufficient overlap in sequence cover- 
plexity m u st be  e m p - y  ^  ̂  ̂  &ame R A D . se q b u t w ith  feweT

age. The barcodm g Z om pared w ith  the R A D -seq  m ethod, the proce-
sequence phasing err ‘ j  com plicated; generation o f restric-
dure described ^ - " ; ’f dapters is more straightforward; single- 
tion fragm ents w  ^  Q N A  and adapter Ugation  results in  reduced 
w ell digestion o g d n A  purification steps; and fragm ents
sam ple handling, tne

are not size selected.  m ultiplexed approach that m ay lead

C B S is a m arkers fn one experim ent and m ay be
to the discovery o germ plasm  characterization, breeding, and
suitable fElshire et a l ,  2011). T he sequence tag

: 2 c "  n ^ T g erm p la sm  or species without first having to develop



180 Molecular Markers in Plants

any prior m olecular tools, or conservation biologists to determ ine popula­
tion structure w ithout prior know ledge o f the genom e or diversity in the 
species. These exciting new  avenues for applying GBS to breeding, con­
servation, and global species and population surveys are now  poised to 
becom e an indispensable com ponent o f future biology

Multiplexed Shotgun Genotyping

M ultiplexed shotgun genotyping follow s a sim ilar approach as in the case 
o f G BS, except that only a barcoded adaptor is used that is ligated to both 
ends o f each fragm ent, and fragm ents are size selected before sequencing. 
This approach has been used to identify recom bination breakpoints in a 
large num ber o f individuals sim ultaneously at a resolution sufficient for 
m ost m apping purposes including m apping of Q TLs and induced m uta­
tions (A ndolfatto et a l ,  2011). This does not require genotyping o f every 
m arker for every individual, bu t it does require that m arkers are m apped 
to a relatively w ell-assem bled reference genom e (with a m edian scaffold 
size o f > 1 0 0  kb).

Novel Approaches or Platforms for Plant Breeding

The advent o f N G S technologies and high-throughput m arker genotyp­
ing platform s offer the possibility to generate high-density genom e-w ide 
m arker profiles in low -cost and high-throughput approach manner. It is 
also im portant to note that there are several genotyping and sequencing 
centers around the w orld that offer utilizing the sequencing and genotyp­
ing facilities. Therefore, it is possible for geneticists and breeders from  de­
veloped as w ell as developing countries to  have access to the high-density 
and genom e-w ide m arker profiling. As a result, the use of not only com ­
m only used genetics and breeding approaches such as linkage m apping, 
m arker assisted backcrossing, m arker assisted recurrent selection, and ad­
vanced backcross Q TL analysis w ill be accelerated, the adoption of new  ap­
proaches such as GW AS m ainly used in hum an disease studies and G W S 
m ainly used in cattle breeding will also be facilitated in p lant genetics and 
breeding applications. A brief account on these tw o approaches has been 
presented as follow ing.

Genome-Wide Association Studies

M ost of the traits in  plants are com plex quantitative in nature, and for 
the genetic dissection o f these traits, tw o m ost im portant approaches in­
cluding linkage analysis and association m apping have been proposed. 
L inkage m apping has been extensively used in the past and has the po­
tential to  localize m ajor genes within 10-20  cM  interval using as few  as
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200 SSR m arkers. How ever, this approach m ay not be effective and pow ­
erful enough to detect large num ber of sm all effect genes/Q TLs {interact­
ing in a com plicated m anner) controlling com plex quantitative traits like 
that o f drought tolerance. In this context, GW A S has potential to  overcom e 
som e o f the disadvantages associated w ith linkage m apping and is there­
fore a preferred approach (see M yles et a l ,  2009; Cham arthi et a l ,  2011; Mir 
et a l ,  2011). GW AS has been initially applied to m ap diseases or genetic 
d isorder in hum an (Ozaki et a l ,  2002; A ltshuler, Daly, and Lander, 2008; 
Donnelly, 2008).

In short, GW AS is the genotyping w ith enough m arkers distributed 
throughout the genom e o f an organism  so as to assure that the functional 
alleles w ill likely be in linkage d isequilibrium  (LD) w ith at least one of 
the genotyped m arkers (M yles et a l ,  2009). The different steps involved 
in GW AS include (i) discovery o f large num ber o f SN Ps segregating in a 
sm all panel o f genotypes, (ii) developm ent of suitable genotyping assays, 
and (iii) genotyping of suitable germ plasm /core/m ini-core collections for 
w hich extensive phenotypic data on the targeted traits are already avail­
able. The num ber of the SN Ps and their density required for genotyping 
the germ plasm  collection will, o f course, depend on  genom e size and LD 
decay in the species and the germ plasm  collections. Therefore, the num ber 
o f m arkers required for undertaking GW AS varied across different species; 
for instance, 140 000 m arkers for A rabidopsis genom e (Kim  et al., 2007), 
m ore than tw o m illion m arkers for grapevine, and 10-15  m illion for diverse 
m aize varieties (M yles et a l ,  2009). G enotyping o f the germ plasm  collec­
tions w ith such a high-density m arkers w as unim aginable in earlier times, 
the new  m arker-genotyping platform s like Infinium  assays or N GS-based 
m arker system s (e.g., RRLs, CroPS, GBS, M SG) m entioned in the article can 
offer such a possibility. For instance, Infinium  assays have becom e avail­
able in som e crops like soybean (Haun et a l ,  2011), m aize (M artin Ganal, 
personal com m unication), and loblolly pine (Eckert et a l ,  2010), and GBS 
approach is being optim ized in m aize and barley (Elshire et a l ,  2011).

In recent years, several GW AS reports have becom e available in plant 
species like A rabidopsis (A ranzana et a l ,  2005; N ordborg and W eigel, 2008), 
m aize (Kum p et a l ,  2011; Tian et a l ,  2011). It is anticipated that w ith the 
pace of advances being m ade in the area o f genom ics and bioinform atics, 
the next few years m ay be an exciting tim e to see GW AS getting under­
w ay in m ajority of the m ajor crop species. W hile deploying the GWAS, 
the plant com m unities need to aw are w ith challenges associated w ith such 
studies that include (i) design and data analysis, (ii) choice o f SN Ps and/or 
sequencing platform s for high-density genotyping, (iii) SN P x SN P in­
teractions in a w hole-genom e scan, and (iv) genotyping errors (Thomas, 
2006). N evertheless, w ith the help o f GW AS, it w ill be possible to uncover 
all the genes/Q TLs responsible for quantitative and com plex traits that are 
o f interest to breeders and then use them  in m olecular breeding for crop 
im provem ent.
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Genome-Wide Selection

G W S or genom ic selection is one o f the recently em erged m olecular breed­
ing approaches for im proving quantitative traits in  large plant breeding 
populations using genom e-w ide m arker profiles (M euw issen, Hayes, and 
G oddard, 2001; Bernardo and Yu, 2007; Jannink, Lorenz, and Iw ata, 2010). 
In G W S approach, genom ic predictions are m ade for a possible perfor­
m ance o f an individual in a given population, w hich basically rely on 
LD  betw een genetic m arkers and QTL. G W S uses tw o types of datasets: 
a training population and a validation population (Rutkoski, Heffner, and 
Sorrells, 2010). The training set is the reference population com prising the 
breeding lines used in the breeding program . In general, one o f the fol­
low ing inform ation is available or generated on this training population: 
(i) phenotypic data over a range o f environm ental conditions; (ii) genom e- 
w ide m arker profiling data; or (iii) pedigree inform ation or kinship. These 
datasets are used w ith  certain statistical m ethods to incorporate this infor­
m ation. Subsequently, based only on  the m arker effects, the genetic values 
of new  genotypes, popularly called the genom ic estim ated breeding val­
ues (GEBVs), are predicted. The validation set contains the selection candi­
dates (derived from  the reference population) that have been genotyped 
(but not phenotyped) and selected based on G EBV s in the training set. 
Subsequently, selected candidates are used for the crossing and the desir­
able progenies can be selected further by using the sam e m odel m entioned 
above (Jannink et al., 2010).

In brief, G W S com bines pow erful statistical m ethods w ith  new  marker- 
genotyping approach, as m entioned in this article, to select untested 
germ plasm  lines based on predicted perform ance. It reduces the expense 
and years involved in field testing, thereby greatly cutting the tim e needed 
to com plete p lant breeding cycles and bring new  varieties to  m arket. In 
addition, p lant breeders can select for the ability of particular varieties to 
thrive under other agronom ic stresses faced by  sm allholder farm ers, like 
drought or nitrogen-depleted soil.

G W S differs from  the traditional breeding (TB) and M A S approaches. 
For instance, TB program s rely m ainly on phenotypes being evaluated in 
several environm ents; selection and recom bination are based  solely on the 
resulting data plus pedigree inform ation, w hen available. M A S approach 
uses m olecular m arkers in LD  w ith Q TL and a progeny line is selected 
based  on  the m arker allele associated w ith the trait o f interest. In case of 
GW S, prediction o f a breeding line is m ade after com bining genom e-w ide 
m arker profile data w ith phenotypic and pedigree data (w hen available). 
As a result, G W S increases the accuracy o f the prediction o f breeding and 
genotypic values. Furtherm ore, in a TB program , the crop breeding cycle 
is about 5 -7  years that can be reduced to about 3 years by  using M AS. In 
contrast, G W S shortens it to as little as 1 year.

A lthough the potential o f G W S has been dem onstrated in the case 
o f H ybro-broilers (Euribrid; http://w w w .thepigsite.com /sw inenew s/

http://www.thepigsite.com/swinenews/
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12912/first-use-of-com m ercial-genom ic-selection) in chicken, its potential 
is yet to be  seen in the case of the crop breeding. As required tools and tech­
nologies for im plem enting G W S are now  available in  at least som e crops 
such as m aize and w heat, som e efforts to d ep loy  them  have been  initiated 
in these crops (Jean-Luc Jannink, personal com m unication) A n im portant 
challenge in im plem enting G W S in crop species is d ifficulty in calculating 
the G EBVs based  on phenotyping data on  d ifferent set o f the populations. 
In such cases, G BV s could be predicted w ith  m ultip le w ithin-population 
evaluations or w ith one across-population evaluation  in w hich the training 
set com prises individuals from  all populations. C om bining populations in 
a training set m ay be advantageous becau se the effects o f the m arkers can 
be estim ated from  a larger num ber o f phenotypes. This is particularly of 
interest w hen the training set for one o f the populations is too sm all for 
a proper w ithin-population evaluation. O n the other hand, it is expected 
that som e m arkers m ay be in high LD  w ith  a Q TL in one population but 
not in the other population, especially w hen these m arkers are m ore distant 
from  the Q TL or w hen the populations have diverged for m any generations 
(A ndreescu et al., 2007; G autier et a l ,  2007).

In sum m ary  besides accelerating the selection cycles, genom ic selec­
tion offers the opportunity to increase the selection  gains per unit o f time. 
Therefore, it is believed that alternating progeny field testing w ith selec­
tion based only on m arkers should increase the genetic gains per unit of 
tim e. How ever, unresolved questions such  as how  m uch (if any) genetic 
diversity  w ill be  dim inished by  this com bination o f phenotypic and GW S 
rem ains. As m entioned in this article, generating genom e-w ide m arker pro­
filing data has becom e cheaper as com pared w ith  undertaking phenotyp­
ing on larger populations; G W S holds good potential to be used in breeding 
program s in com ing future.

Conclusions

A continuous evolution in m olecular m arker technologies has resulted in 
the developm ent o f ultra-high-throughput genotyping platform s. H ow ­
ever, low -throughput m olecular m arkers such  as SSRs are still indispens­
able for tracking specific genom ic regions in  m olecular breeding program s. 
SN P m arkers are m ost preferable for developm ent o f high-throughput 
genotypic platform s for genom e-w ide m arker screening. It seem s that the 
recently em erged N G S-based m olecular m arker system  m ay replace the 
array-based high-throughput m arker system s in com ing future, especially 
w hen costs is decreasing and throughput is increasing for the N G S tech­
nologies. These future m arker system s m ay prove very useful for en­
hancing deploym ent of m odem  genetics and breeding approaches such 
as GW AS and G W S that are still in  infancy in p lant system s for crop 
im provem ent.
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