Plant and Soil 86, 113-125 (1985).

Ms. 6074 © 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht, Printed in the Netherlands

Genotype dependent variation in mycorrhizal colonization and response to inoculation of pearl millet

K. R. KRISHNA, K. G. SHETTY, P. J. DART* and D. J. ANDREWS** International Crop Research Institute for the Semi-Arid Tropics, Patanchera 502 324, Andhra Pradesh, India

Received 30 August 1984. Accepted December 1984

Key words Genetic crosses Genotypes Mycorrhizal colonization Pearl millet Plant effects Response

Summary Genotypes of pearl millet (Pennisetum americanum L. Leeke) were examined for differences in vesicular-arbuscular mycorrhizal (VAM) colonization and response to inoculation. For thirty genotypes tested across three field locations there was a range of mycorrhizal colonization intensity between 25 and 56%. In another experiment with two male-sterile lines, restorer lines and their derived crosses, grown in pots filled with non-sterilized soil there were significant differences between genotypes for colonization by mycorrhiza. This showed hostgenotype dependence for mycorrhizal colonization.

Root growth rates, mycorrhizal root length, percentage root colonization and plant growth and P uptake were studied in ten genotypes. A set of 3 genotypes with similar root lengths varied significantly with regard to mycorrhizal root length and the percentage colonization. This supports the suggestion that VAM colonization and spread is dependent on the host genotype. The growth responses differed significantly between the genotypes and they also differed in their responses to P uptake and VAM inoculation. The utility of host-genotype dependent differences in VAM symbiosis in plant breeding is discussed.

Introduction

Plant growth response (efficiency) to mycorrhizal symbiosis depends on three major components, the plant, the mycorrhizal fungus and the soil environment. An improvement in this efficiency can be made by manipulating any of these three components. Many workers have attempted to identify and select mycorrhizal fungi with improved performance in particular environments14. For example, Carling and Brown⁵ screened various fungal isolates under low and high soil fertility regimes. Soil factors affecting mycorrhizae fungi have also been examined11, but there is little work on plant dependent variation in mycorrhizal symbiosis.

An essential requirement for good host plant response to mycorrhiza is a rapid colonization of roots during the early growth stages of the

^{*} Research School of Biological Sciences, Australian National University, Canberra City, P.O. Box 475, ACT 2601, Australia,

^{**} Department of Agronomy, University of Nebraska, Lincoln, Nebraska 68588, USA. Journal Article No. 453

host plant. Mosse¹⁷ describes variation in colonization between plant species; some were colonized freely, while certain grasses rarely showed 50% colonization. Powell and Sithamparanathan¹⁹ found that when legumes and grasses were inoculated under similar conditions, with three separate VAM fungal species, the legumes averaged 67% root colonization but the grass species had only 30%. There could also be differences in VAM colonization between cultivars of the same crop species².

Genotype dependent variation in nutrient uptake, for example phosphorus*, has been well documented?. Certain genotypes of sorghum are adapted better than others to P deficient conditions and are efficient in the uptake of this element. Reports on genotype differences in P uptake have not examined the VAM status of the plants. It is possible that such adaptations to nutrient stress are mediated by mycorrhiza. Since mycorrhiza are considered to play a role in P uptake, it would be reasonable to expect that genotype differences for mycorrhizal symbiosis and responses might also exist. In this paper we examine the root colonization of several pearl millet genotypes for differences in the extent of root colonization, and plant growth and P uptake response in the glasshouse and field.

Materials and methods

Field trials

In order to examine if VAM colonization was host dependent, thirty genotypes of pearl millet were tested across three Alfisol field locations (A, B and C) at the ICRISAT Center in India. All sites carried a natural population of four mycorrhiza genera (Glomus, Gigaspora, Acadospora and Sclernovists (Table 1).

The first trial (Allisol A) was conducted during the rainy season (June to October) of 1982 with no irrigation and the other two during the summer (Jun to May) of 1983 with furrow irrigation as required. The experimental area was divided into 4 blocks of 30 plots each of two 3 m rows, spaced 75 cm² apart. Treatments (genotypes) were arranged in a randomized block design. Seeds were hand sown 3 – 5 seeds per hill with a datance of 10 cm between hills. Thinning to one platti per hill was carried out 21 days after planting. Urea at the rate of 20 kg Nha was top dressed as a band placement 25 days after energence for all trials. Roots were sampled at 60 days after planting. Five plants were selected and the shoot portion was cut off at the collar zone close to the soil surface. Roots from each plant were carefully dug up to a depth of 30 cm taking care to avoid roots from the neighbouring plants. Sampled roots were placed in plastic bags and taken to the laboratory, where they were cut to 3 cm lengths and mixed throughly. Four random sub-samples (2 - 2 § fresh sample) for each plant were transferred into 30 ml screwcap Bijou bottles and processed for the determination of preventage colonization."

Pot trials

General method. The VAM (ungus Gigaspora ealospora Nicol. and Gerd. was maintained on Cenchrus ciliaris. L. Link., a perennial host, grown in a sterilized sand: alfisol soil mixture (1:1 v/v) for a minimum period of 90 days. For VAM inoculation, 50 ml sand: soil mixture containing ca. 2000 extramatrical chlamydospores were distributed uniformly into the soil

			NaHCO,			VAM flora	
Location	Soil type	Total N (%)	extractable P (ppm)	рH	Previous crop	Genera*	Spores/ 25 ml soil
Ā	Alfisol	0.03	3.5	6.2	Fallow	G, Gig, A, Sc	105
В	Alfisol	0.04	5.0	6.7	Arachis hypogaea	G. Gig. A. Sc	263
	Altisol	0.07	20.0	7.0	Arachis hypogaea	G, Gig, A. Sc	560

Table 1. Soil characteristics of the three Alfisol field locations

meant for each pot by mixing in a sealed plastic bag. Spore washings were given to the uninocuted control treatments. Plants were grown in afficials soil, partially sterilized by steaming or I him a Lindig soil sterilizing apparatus or non-sterilized, in 20 cm ports filled with 5 kg soil. Three seeds were centrally sown and two weeks later seedlings were thinned to one per pot. Posts were weighed and watered regularly to 80% of the field capacity, Nitrogen, as urea, at the rate of 60 kg N/ha (275 mg urea/pot) and phosphorus, as triple super phosphate, at the rate of 5 kg P/ha (175 mg triple super phosphate/pot) was incorporated into the soil, prior to sowing. The experiments were conducted in a glasshouse with temperatures ranging from 26 to 35 c. Pots were arranged on tables as randomized blocks. The position of the replicates was retarded every week among the benches in the glasshouse to reduce any positional effects within the glasshouse. Shoot and root dry weights were recorded after drying in a hot-air oven at 60°C for 72 h.

Roots from each plant were washed free of adhering soil on a sieve, and cut into 3 cm segments and mixed thoroughly. Four sub-samples containing between 3-5 g roots were removed, pooled, and transferred into bottles, 10° KOH added and the tissue cleared by steaming in a steam sterilizer at 100°C for 5 min. Followed by staining with 0.08° trypan blue!* The percentage VAM colonization, the total mycorthizal root length and the total root length were estimated using a grid-line intersect method!* Phosphorus in the plant tissue was estimated according to Jackson!*, nitrogen by the macro-kjoladali method* and the mycorthizal dependencies were calculated according to the method of Menge, Johnson and Platt!*.

Parent, pragenty: comparison. We compared the VAM colonitation of two selected male terile (female parent) lines (5141A and 111A), 5 R lines (restorer lines, the male parents) and their derived crosses. Plants were grown in an alfsol soil, with plf 6.0 and 4.0 ppm NalfCO Atractable P: and they were harvested 60 days after planting. Pots were arranged in a ran-lomized block design with 3 replications.

Growth response variation. The second pot experiment used ten pearl millet genotypes selected from the 30 used in the field trials to examine if genotypes varied with respect to VAM colonization and whether they responded to inoculation. For each genotype, there were 3 treatments: 1) uninoculated control in sterilized soil, 2) inoculated with Gigaspone colonpone cloned from a single spore isolate, and 3) non-terilized soil representing the natural VAM flora. The soil had a pH of 6.0 and contained 1.5 ppm NaHCO-extractable phosphorus. Plants were harvested 60 days after planting. Pots were arranged in a randomized block design with 6 replications.

Another pot trial examined the response of three West African pearl millet lines for dry matter, and phosphorus uptake. Cigaspore coloppore was inoculated in both sterilized affols oil and post without inoculation served as control. The soil had a pH of 6.8 and contained 4.5 ppm NaHCO extractable P, and VAM fungi of the genera Giomus, Gigaspora, Acaulospora and Sciercoystis, at a total population of 135 spores per 150 ml soil. Pots were arranged in a randomized block design with 4 replications.

^{*}G = Glomus; Gig = Gigaspora; A = Acaulospora; Sc = Sclerocystis

Results

The 3 field trials aimed to study the variation between 30 genotypes of pearl millet to mycorrhizal colonization by the indigenous VAM fungi. The mean mycorrhizal colonization of the genotypes, across locations, varied between 26 and 57% (Table 2). The ranges of percentage VAM root colonization for locations A, B and C were 13 to 44, 10 to 59 and 35 to 77 respectively. Overall, the genotypes tended to show similar rankings for VAM colonization. Genotype times location interaction was highly significant ($P \le 0.01$).

In the first pot experiment the male sterile (MS) line, 5141A was more colonized by VAM than the other MS line, 111A (Table 3). Two crosses made using 111A as female parent and 631 P-3 and 733 P-3 and 733 P-3 and resulted in hybrids with more VAM colonization that either of the two parents. A cross between 5141A and 623 P-2 resulted in F1 progeny which had less VAM colonization than either of the parent lines. Colonization of many other crosses derived using different male parent lines was not affected. A single representation of this group (612P-1) has been shown in Table 3.

The relation between root growth (total root length), the total my-corrhizal root length, the percentage VAM colonization of the ten genotypes, and the growth and P uptake response to inoculation were determined in another pot trial with 10 genotypes. Analysis of variance revealed that the genotypes varied significantly ($P \le 0.05$) in VAM colonization by a single inoculum strain and also when grown in non-sterilized soil containing several indigenous VAM fungal species (Table 4). The total root length of the 10 genotypes grown in sterilized soil with Gigaspora calospora was statistically similar, but the total length of mycorrhiza in the roots (mycorrhizal root length) varied significantly ($P \le 0.05$) between genotypes. Similarly, under the unsterilize condition, a group of genotypes (IP 5140, IP 4937 and MBH 110 recorded different amounts of total mycorrhizal root length).

Total root length and the level of mycorrhizal colonization varied between cultivars (Table 4). Generally root growth was doubled by the presence of VAM, presumably because of the better plant nutrition. There was an interaction between cultivars and soil treatment with respect to VAM infection level. Most cultivars had similar lengths of infected root between treatments, but for cv IP 4937 more VAM development occurred in the non-sterilized inoculated soil than in the non-sterile soil. Total root length did not differ between soil treatments.

The plant growth (Plate 1) and dry-matter responses to mycorrhizal inoculation (Gigaspora calospora) of the 10 pearl millet genotypes

Table 2. Genotype dependent variation in the mycorrhizal colonization of pearl millet grown at three different field locations with genotypes ranked according to overall means

4		VAM colonia	zation (%)*		_
Genotype	Country of origin	Alfisol A	Alfisol B	Alfisol C	 Mean
IP 327?	India	15	11	51	25
IP 3476	India	13	20	49	27
IP 5781	Nigeria	16	32	39	29
IP 3595	India	22	10	56	30
IP 5150	Niger	24	30	35	30
IP 4382	India	15	22	56	31
IP 6891	Tanzania	25	32	40	32
IP 6045	Niger	21	33	41	32
IP 6114	Cameroun	25	28	49	34
IP 4807	India	23	28	57	36
IP 5427	Niger	26	27	56	36
IP 5335	Niger	22	33	55	37
WC-C75	India	17	23	73	38
IP 6590	Malawi	33	40	42	38
IF 6139	Cameroun	28	35	53	39
IP 4861	Lebenon	22	25	70	39
ICH 220	India	30	36	52	39
BJ 104	India	27	34	58	40
MBH 110	India	23	30	67	40
IP 5420	Niger	15	42	62	40
IP 3840	India	27	42	52	4 j
IP 3120	India	25	26	77	43
IP 5692	Nigeria	29	33	70	44
P 5306	Niger	22	44	70	45
IP 5009	Nigeria	23	47	74	48
IP 5310	Niger	44	43	61	50
IP 4937	Uganda	30	50	66	48
IP 6538	Maii	33	41	74	50
IP 5140	Niger	37	49	77	54
IP 5921	Senegal	42	59	67	56
	SE (Genotypes)	± 3.1	+ 4.4	± 4.2	± 2.1
	Mean	26	34	57	39
	SE (Location)		± 1.5		
	CV %	24	12	14	18

Alfisol A – Low fertility; not cultivated previous two seasons; 3.5 ppm Olsen's P. Alfisol B – Low fertility; cultivated previous season; 5.0 ppm Olsen's P.

Alfisol C - High fertility; under long term cultivation; 20.0 ppm Olsen's P.

each value is a mean of 20 observations made from each of 4 replicate plots of 2 rows and 3 m in length.

Table 3. Mycorrhizal colonization of parent genotypes and some selected crosses of pearl millet grown in natural field soil under greenhouse condition

	.
Genotype	Percentage
Female parent	
5141A	51
HIA	37
Crosses and male parent	
4141A × 631 P-3	51
111A × 631 P-3	57 *
631 P-3	37
5141A × 733 P-1	41
111A × 733 P-1	54 ^a
733 P-1	38
5141A × 612 P-3	50
111A × 612 P-3	5() ^a
612 P-3	65
5141A × 623 P-2	44ª
6231-2	56
5141A × 612 P-1	66
111A × 612 P-1	54
612 P-1	63

CV (2) 15

grown in sterilized soil varied significantly (Table 5). IP 5921 gave maximum response to inoculation and recorded very low dry matter without mycorrhiza. There was little difference between the growth of genotypes in sterilized soil with a single VAM isolate and the growth in non sterilized soil. ICH 220 and IP 4382 produced more plant dry matter after inoculation in sterilized soil, than in non-sterilized soil. Analysis of variance showed that phosphorus uptake of the ten genotypes inoculated with single VAM isolate in sterilized soil or due to indigenous VAM flora in non-sterilized soil also differed significantly ($P \le 0.05$) (Table 5). There was also a significant ($P \le 0.05$) difference between genotypes in P uptake for all 3 inoculation regimes.

Total mycorrhizal root length and the percentage colonization were correlated ($P \le 0.01$ df 28) with total root length, shoot and total plant dry matter, and total phosphorus uptake (Table 6). Root dry weight was not correlated with total mycorrhizal root length. The tissue phosphorus concentration was not related to mycorrhizal colonization of roots. This is presumably because genotypes vary in their strategy for coping with low P availability in the non-mycorrhizal state.

^a Crosses showing significantly higher/lower colonization compared with either of the parents $(P \le 0.05)$ using Duncan's multiple range test.

b Values are means from 3 replicate pots with one plant each.

Table 4. Genotype dependent variation in percentage VAM colonization, total mycorrhizal root length and total root length as influenced by mycorrhizal inoculation

	VAM col	VAM colonization*			Total my	Total mycorrhizal root length* (m/plant)	ot length*	(m/plant)	Total ro	Total root length (m/plant)	plant	
Genotype	Sterile Inoc.	Non- sterilized	Mean	Sterile Non-Inoc.	Sterile Inoc.	Non sterilized Mean	Mean	Sterile Non. Inoc.	Sterile Inoc.	Non- sterilized	Sterik Inoc.	Mean
IP 5921	\$	36	14	0	63	70	67	0	132	162	39	801
IP 4937	81	44	31	0	34	95	-5	c	187	221	137	182
IP 5140	61	30	24	0	15	23	. 59	0	78	76	31	62
MBH 110	26	53	42	0	82	53	\$4	0	239	104	63	<u>3</u>
WC C75	32	47	39	0	74	7.2	73	0	207	157	76	147
ICH 220	18	25	22	0	44	63	70	0	239	232	94	189
1P 4861	22	26	25	9	30	30	20	0	34	011	94	Ξ
BJ 104	12	7.	21	0	70	19	31	c	115	7.5	78	96
IP 4382	53	23	26	c	89	63	9	•	200	229	89	991
IP 4807	35	30	33	0	39	15	28	9	112	47	103	148
SE (Geno × Inoc.)	± 3.2	•	. 2.3		± 17.4		12.3			₹ 58.6	*	33.8
Means	7.7	33			47	80			182	1+2	32	
SE (Inoc.)	=	_			± 5.5					± 18.5		
Q (%)		81				11				15		

Statistical analysis performed without considering sterile non-inoculated treatment since all the values were zeros.

Non-Inoc = No inoculation; Inoc. = Inoculated with a single VAM isolate (Gigaspora calospora); Non sterile = Natural VAM flora ^a Genotypes differed significantly for mean VAM colonization and total mycorrhizal root length (P ≤ 0.05), by ANOVA.

Table 5. Genotype dependent variation in growth response and phosphorus uptake due to VAM inoculation

	Plant dry-matter (g/plant)	ter (g/plant)				Phosphorus uptake (mg/plant)	ke (mg/plant)		
	Sterile	Sterile	Non		Mycorrhizal	Sterile	Sterile	Non	1
Genotype	Non-Inoc.	Inoc.	Sterile	Mean	dependency	Non-Inoc.	Inoc.	Sterile	Mean
IP 5921	6.2	15.2	15.4	12.2	25;	=	28	56	23
IP 4937	14.1	17.2	16.8	16.0	122	10	25	15	11
IP 5140	14.2	15.6	14.7	14.8	110	22	E	1.1	74
MBH 110	13.4	15.4	15.5	14.7	115	9	4	=	92
WC-C 75	15.1	16.4	16.6	16.0	108	=	=	=	=
ICH 220	9.91	18.5	16.8	17.3	112	7	91	15	13
IP 4861	12.6	15.4	13.9	14.0	122	٥	15	ş	80
BJ 104	10.2	13.1	14.7	12.7	128		7	81	13
IP 4382	12.7	16.9	14.3	14.6	133	7	91	12	=
IP 4807	11.2	13.4	14.1	12.9	120	=	15	10	12
SE (Geno x Inoc)	x Inoc)	± 0.81		± 0.47			± 2.8		¥ 1.6
Mean	12.7	15.7	15.3			6	19	13	
SE (Inoc)		± 0.25					÷ 0.9		
CA (%)		12					25		

Non Inoc. = No inoculation; Inoc. = Inoculated with a single VAM isolate Gigaspora calospora; Non Sterile = Natural VAM flora.

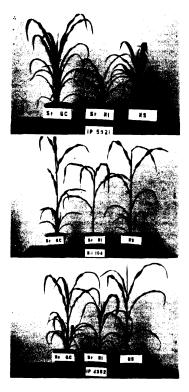


Plate 1. Three pearl millet genotypes showing differential response to inoculation with a single VAM isolate Gigatpora calotypora (St Gc) indigenous VAM flora Le. non-sterilized soil (NS) compared with uninoculated control in sterilized soil (St NI). Note higher growth of IP 5921 when inoculated compared to naturally available VAM fungi.

The response to inoculation with Gigaspora calospora resulted in significant ($P \le 0.05$) increase in dry matter and P uptake by the two West African cultivars, IP 5921 and ZAN but the third cultivar SDL did not respond (Table 7). The cultivar ZAN produced most plant dry matter, and had the largest response to VAM inoculation in both sterilized and non-sterile soil. The cultivar IP 5921 also responded to inoculation in non-sterile soil. Cultivar ZAN was dependent on the presence of VAM for P uptake, and grew poorly without the VAM. In the non-sterile soil plant growth, however varied between inoculated and noninoculated treatments even though they had the same level of mycorrhizal colonization, suggesting that G, calospora was more competitive and efficient fungus that the strains of the indigenous population. The other two cultivars were able to extract sufficient P from the soil for reasonable plant growth in the absence of VAM.

Discussion

This study shows that the genotypes of pearl millet can support different amounts of mycorrhizal colonization when exposed to either a single VAM isolate or a mixture as found in the field or in non-sterilized soil in pots. Comparing host crop species, Mosse¹⁷ reported that certain legumes showed greater levels of colonization than grasses. Root colonization levels vary a great deal between plant species. For pearl millet genotypes grown in the same field colonization can vary from 25 to 56%. Menge¹⁴ believes that rapid and high levels of colonization may be the prime determinant of the efficiency of the symbiosis. Thus, screening and selection of genotypes which allow rapid and high levels of colonization may be a factor to incorporate in crop breeding programs.

Huisman¹² pointed out that percentage colonization, is often, if not always confounded by differential root growth rates between genotypes or species. Our study suggests that 34% (Table 6) of the variation in percentage colonization of pearl millet can be attributed to variation in root length. However, for several genotypes with a similar root length there were large differences in the extent of VAM colonization. Genotype variation in root colonization and response to VAM could be due to an interaction between host genotype and VAM strain preferences¹⁷. The number of infection sites on the root could be a factor^{4,70}. Different levels of colonization between genotypes could arise from differences in the rate of growth of the fungus through the root cortex²⁰ and our present single harvest experiment

Table 6. Correlation matrix showing relationships between VAM, plant growth and phosphorus uptake parameters (second pot experiment)

Parameter	Coefficient				
Percentage colonization	© Colonization 1.000	Mycorrhizal root length			
Total mycorrhizal root length	0.991**	1.00			
Total root length	0.584**	0.640**			
Shoot dry weight	0.500**	0.520**			
Root dry weight	0.331*	0.250			
Plant dry weight	0.560**	0.585**			
Percentage P in tissue	0.170	0.207			
Total phosphorus uptake	0.444*	0.460**			

Significance: *P < 0.05, **P < 0.05.

Table 7. Influence of mycorrhizal inoculation on the growth and phosphorus uptake of three West African pearl millet genotypes

		Shoot d (g/plant	ry weight)	Phospho (mg/plar	rus uptake it)	VAM co (%)	olonization
Soil	Genotype	М	NM	М	NM	М	NM
	IP 5921	6.91	4.74	16.3	13.0	48°	0
Sterilized	SDL	4.96	4.20	16.3	13.8	14ª	0
	ZAN	7.83	2.93	19.3	8.3	31 ^b	0
	IP 5921	5.23	4.73	15.2	14.3	78 ^d	44bc
Non-sterilized	SDL	4.91	3.92	11.7	10.2	46 ^{bc}	35bc
	ZAN	5.47	4,03	12.7	11.0	53 ^{cd}	52 ^{ed}
SE (Genotype x inoculation)		± 0.334 ± 0.81					
Mean		5.82	4.10	15.25	11.77		
SE (inoculation	1)	± (.162	± 0.620			
CV((%)		2	10	2	0	10	0

Each value is a mean of 8 observations.

IP 5921 = Germplasm line from Senegal; SDL = Sadore local; ZAN = Zanfarwa.

cannot differentiate between the two factors. The latter would be partly related to the balance of inhibitory substances produced in response to the infection such as phenolics, phytoalexins, and promoting substances such as carbohydrates. Root tissue R concentration may also affect the rate of colonization¹⁶.

The VAM colonization level varied between location increasing with VAM spore populations in the soil and soil P level. However, the differences in colonization could also be due to strain variation between sites within the VAM soil inoculum. The location with the

M = Inoculated with mycorrhiza - Gigaspora calospora; NM = Non inoculated.

For VAM colonization, values with similar superscripts are not significantly different at $P \le 0.05$; analysed after Log (x + 1) transformation.

greatest level of VAM colonization had been in continuous cultivation for the past 8 years, given high rates of N and P fertilizer, with rotation between crops of sorghum, groundnut and pearl millet. The pearl millet genotypes grew most rapidly at this site and presumably soluble carbohydrate levels in the roots were also greatest.

The plant growth response to VAM inoculation was also genotype dependent. For example the genotype ZAN, had a large response to inoculation in both sterilized and non-sterile soil. Cultivars of wheat have differed in the dry-matter response to VAM inoculation. There were differences between genotypes in their response to VAM colonization some being much more dependent than others on the VAM (Table 5). The cultivar WC C 75 was unique with no effect of the VAM on plant growth or P uptake.

While there was a significant correlation between the extent of mycorrhizal root length and plant dry weight, this accounted for only 34% (Table 6) of the variation in plant dry weight. Mycorrhizal infection can affect the biochemical and physiological activities of plants^{6,9}, and this response is likely to be genotype dependent. Pearl millet showed differences between genotypes in P uptake in response to VAM infection. Thus the VAM activity with regard to P uptake and translocation may be under the control of host genetic constitution and the physiological need for this element. A VAM fungus identified as highly efficient for P uptake on one host, perhaps even a genotype within a crop species, may not perform efficiently when tested on another host.

The differences in percentage VAM colonization between parents and progenies suggests that it is a heritable trait and therefore the possibility to breed for increased mycorrhizal colonization exists.

Acknowledgements We thank Drs Sarah Smith, Melvin Daft and Francis Bidinger for comments on the manuscript, Drs S Appa Rao and B S Talukdar for seed material and Ms R Mohan and K G Papavinasa Sundaram for excellent technical help.

References

- Azcon R and Ocampo N A 1980 Factors affecting the vesicular arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol. 87, 677-685.
- 2 Bertheau Y, Gianinazzi-Pearson V and Gianinazzi S 1980 Development et expression de l'association endomycorrhizienne chez le ble I. Mise en evidence d'un effet varietal. ann. Amelior. Plantes. 30, 67-78.
- 3 Bremner J M 1965 Total Nitrogen. In Methods of Soil Analysis (Part 2). Ed. C A Black, Amer. Soc. Agron. Madison, Wisc. pp 1149-1179.

- 4 Buwalda J G, Ross G J S, Stribley D P and Tinker P B 1982 The development of endomycorrhizal root systems IV. The mathematical analysis of effects of phosphorus on the spread of vesicular-arbuscular mycorrhizal infection in root systems. New Phytol, 92, 391-399.
- 5 Carling D E and Brown M F 1980 Relative effects of vesicular arbuscular mycorrhizal fungus on the growth and yield of soybeans. Soil Sci. Soc. of Am. J. 44, 528-532.
- 6 Carling D E and Brown M F 1982 Anatomy and physiology of vesicular arbuscular and non-mycorrhizal roots. Phytopathol. 72, 1108-1114.
- 7 Clark R B 1983 Plant genotype differences in the uptake, translocation, accumulation and use of mineral elements required for plant growth. Plant and Soil 72, 175-196.
- 8 Clark R B, Maranville J W and Gorz H J 1978 Phosphorus efficiency of sorghum grown in limited phosphorus. In Proceedings of the 8th International Colloquim on Plant Analysis and Fertilizer Problems. Eds. A R Ferguson, R L Bieleski and I B Ferguson, pp 93-99, Auckland, New Zeajand.
- 9 Gianinazzi-Pearson V and Gianinazzi S 1983 The physiology of vesicular-arbuscular mycorrhizal roots. Plant and Soil 71, 197-209.
- 10 Giovanneti M and Mosse B 1980 An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489-500.
 - 11 Hayman D S 1983 The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can. J. Bot. 61, 944-963.
- 12 Huismann O C 1982 Interrelations of root growth dynamics to epidemiology of root invading fungi. Ann. Rev. Phytopathol. 20, 303-327.
- 13 Jackson M L 1971 Soil Chemical Analysis. pp 574, Prentice Hall of India (Ltd). New Delhi.
- 14 Menge J A 1983 Utilization of vesicular arbuscular mycorrhizal fungi in agriculture. Can. J. Bot. 61, 1015-1024.
- 15 Menge J A, Johnson E L V and Platt R G 1978 Mycorrhizal dependencey of several citrus cultivars under three nutrient regimes. New Phytol. 81, 553-559.
- 16 Menge J A, Steirle O. Bagyaraj D J, Johnson E L V and Leonard R T 1978 Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol 80, 575-578.
- 17 Mosse B 1980 Vesicular-arbusular mycorrhiza research for Tropical Agriculture. Research Bulletin, Hawaii Institute of Tropical Agriculture and Human Resources 194, 14-15.
- 18 Phillips J M and Hayman D S 1970 Improved procedures for clearing and staining parasitic and vesicular arbusular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158-160.
 Powell C L and Sithamparanathan J 1977 Mycorrhizas in Hill Country soils. IV. Infection
 - Powell C L and Sthamparanathan J 1977 Mycorrhizas in Hill Country soils. IV. Infection rate in grass and legumes species by indigenous mycorrhizal fungi field conditions. N.Z.J. Agric. Res. 20, 489-502.
- 20 Smith S E and Walker N A 1981 A quantitative study of the mycorrhizal infection in Trifolium; separate determination of the rates of inefection and of mycellal growth. New Phytol. 89, 225-240.