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Abstract 

A chickpea (Cicer arietinum L.) growth and development model (CHIKPGRO) has been developed from the hedgerow- 
version of the groundnut model r'Nt3TCRO. Changes were made in various subroutines determining vegetative and 
reproductive development, crop growth and partitioning of assimilates to component plant organs to simulate chickpea crop 
growth under water-limiting and nonlimiting situations. Using the experimental data of the 1984 and 1986 seasons, the 
model was calibrated for cultivar-specific parameters of cvs. Annigeri and JG 74 and also for soil parameters determining 
water balance of the root-zone. The model was validated against data from the 1985, 1987, 1992 and 1993 seasons. The 
model predicted flowering, pod initiation, beginning of seed growth and physiological maturity within _+ 5 days of the 
observed values, except under extreme wet situations when the actual seed growth and physiological maturity of chickpea 
occurred later than the simulated dates. Leaf area index, total dry matter production (TDM) and its partitioning to various 
plant organs under irrigated and water-stressed conditions were also predicted satisfactorily by the model. Soil moisture 
changes in the rooting-zone of chickpea were also predicted accurately. Predicted TDM and seed yields of cvs. Annigeri and 
JG 74 at harvest were significantly correlated with the observed data (r 2 = 0.89 and RMSE = 0.34 t /ha  for TDM; r 2 = 0.82 
and RMSE = 0.14 t /ha  for seed). These results show that CmKr'GRO can be used to predict potential and water-limited yields 
of chickpea in the Indian plateau. Future work requires inclusion of a soil fertility submodel and model testing over a wide 
range of environments. 
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1. Introduct ion  

Chickpea ( C i c e r  a r i e t i n u m  L.) is grown over a 
wide range of agroclimatic environments. It is tradi- 
tionally grown in the northern hemisphere mostly 
between 20°N and 40°N latitude. Most of the des i  

(with yellow to brown seed testa) chickpea is grown 
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between 20°N and 30°N, while kabul i  (with cream 
colored seed testa) types are grown above 30°N. 
There is a small area under this crop between 10°N 
and 20°N at relatively high elevations in India and 
Ethiopia (Khanna-Chopra and Sinha, 1987). 

In the mediterranean region (30°N to 43°N) both 
temperature and daylength increase (9.4 to 13.4 h) 
from the time of sowing of spring chickpea. Most of 
the rainfall is received in the early part of crop 
growth. Cold temperature, low radiation and wet 
seed beds are the major constraints during the vege- 
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tative period and drought during the reproductive 
period. However, winter-sown chickpea is exposed 
to relatively less favorable thermal and better mois- 
ture regimes than spring-sown chickpea (Saxena, 
1981). In the northern part of the Indian subcontinent 
and Central America (20°N to 30°N) temperature and 
daylength decrease until flowering begins, but in- 
crease during pod development. The crop is grown 
on stored soil moisture, and drought and low temper- 
atures are the primary factors limiting growth. In 
East Africa and the Indian plateau (8°N to 20°N), 
daylength and temperature are relatively constant 
during the season. The crop is raised essentially on 
stored soil moisture from preceding rain. High tem- 
perature and drought are the major constraints to 
chickpea production in these environments 
(Khanna-Chopra and Sinha, 1987). 

The three major physical factors that influence the 
phenology, growth and productivity of chickpea are 
daylength, temperature and water availability, of 
which the latter two are highly variable in these 
environments. To extrapolate the research results of 
field experiments in time and space and to assess the 
potential of new technologies or cultivars in new 
environments, we need to integrate various growth 
and development processes of chickpea to develop a 
chickpea yield simulation model. Sufficient informa- 
tion is available in literature on the response of 
vegetative and reproductive development of chickpea 
to environmental factors (Roberts et al., 1980; Sum- 
merfield et al., 1980; Covell et al., 1986), which can 
be used to develop predictive models of chickpea 
phenology. However, the growth and senescence 
response of chickpea (such as development of canopy 
and root systems, assimilate production and partition- 
ing, and senescence and mobilization of assimilates) 
to environmental factors has not been adequately 
studied and reported in a way which is useful for 
developing response functions needed for the chick- 
pea model. As chickpea and groundnut are legumes, 
they have more similarity than differences in their 
growth and development processes. Therefore, some 
of the parameters and response functions that have 
not been investigated for chickpea could be taken 
from the groundnut model. To accomplish this we 
used the hedgerow version of groundnut model, 
PNUTGRO, which was earlier developed by Boote et 
al. (1987, 1992) at the University of Florida, USA. A 

good feature of the groundnut model is that it has a 
generic soil water balance submodel which can simu- 
late soil water balance of a crop provided the crop- 
specific parameters have been substituted. This model 
also has a hedgerow subroutine to simulate the influ- 
ence of row-spacing and plant population on light 
interception and photosynthesis. PNUTGRO has a mod- 
ular structure, user-friendly interfaces and graphic 
outputs for visual display of simulated and observed 
data, which made it easy to modify the model and 
test its performance. 

This paper describes various soil, climatic, crop 
growth and development processes considered neces- 
sary to develop the chickpea model, hereafter re- 
ferred to as CI-IIKPGRO, and presents the model perfor- 
mance in simulating growth and development of 
chickpea, and soil water dynamics in the root zone 
under irrigated and nonirrigated situations in a semi- 
arid tropical environment of India. 

2. Model description 

To develop the chickpea model, we used the 
source-code of the hedgerow version of PNUTGRO 
(Boote et al., 1992) as much as possible. General 
guidelines developed by Boote and Jones (1988) 
were followed to adapt PNUTGRO to simulate chick- 
pea growth and development. The model does not 
consider biological nitrogen fixation by chickpea and 
assumes soil fertility to be nonlimiting for crop 
growth. It also does not incorporate the effect of 
diseases and pests on crop growth and yield. Various 
soil and plant processes considered and the changes 
made in various subroutines and files of PNUTGRO to 
develop the chickpea model are given in Appendix A 
and described in the following sub-sections. 

2.1. Soil-water balance and root system 

The soil-water subroutine in chickpea model is 
the same as in the PNUTCRO model (Ritchie, 1985). It 
predicts soil water flow and water uptake for each 
soil horizon or set of soil layers within a horizon. 
Root growth is handled similarly as in PNUTGRO. 
Total root length is determined by the carbohydrate 
partitioned to roots and the root length-to-weight 
parameter (RFAC1). Partitioning to roots was 
changed for chickpea, but the same RFAC1 of 4550 
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cm root length/g was used. The distribution of roots 
in the soil zones depends on current root depth, soil 
water in each zone and an empirical weighting func- 
tion (WR(L)) that represents the probability distribu- 
tion of roots growing in each zone late in the season 
if well-watered. This function accounts for horizon 
effects on root growth as well as genetic differences. 
The rate of root-depth increase (RFAC2 = 3.0 
cm/physiological day) continues until a maximum 
soil- and crop-limited rooting depth is reached. 

Based upon the ratio of water supply by the roots 
to the water demand as potential transpiration, two 
water stress factors, TURFAC and SWFAC, are 
estimated in the water balance subroutine to influ- 
ence various plant processes (Fig. 1). Turgor factor 
TURFAC is equal to 1.0 when the ratio of supply to 
demand is equal to or greater than 1.5 and decreases 
linearly to 0.0 as the ratio decreases from 1.5 to 0.0. 
Soil water stress factor SWFAC, which is less sensi- 
tive than TURFAC, is used to influence leaf photo- 
synthesis. SWFAC is equal to 1.0 when the ratio of 
water supply to demand is more than or equal to 0.75 
and decreases linearly to 0.0 as this ratio decreases 
from 0.75 to 0.0. The SWFAC response function for 
chickpea was developed by model calibration using 
the data on dry matter production rates under water 
stress. 

2.2. Crop phenology 

The prediction of crop development and ontogeny 
is important because the onset of new organs dictates 

where assimilate is partitioned. The vegetative and 
reproductive stages of chickpea are defined in the 
same manner as for groundnut (Boote, 1982), except 
that chickpea does not have the peg-initiation stage 
as defined for groundnut. Therefore, the reproductive 
stages for chickpea are defined as flowering, pod 
initiation, full-pod, initiation of seed growth, full- 
seed, physiological maturity and harvest maturity. 
The stages of vegetative and reproductive develop- 
ment influence canopy height-width increase, parti- 
tioning among plant parts, pod addition, seed addi- 
tion and beginning of N mobilization. 

The rate of vegetative stage (V-stage) progression 
(increase in the number of nodes on the main stem) 
is assumed to have a linear response to temperature. 
Vegetative development in chickpea has a base tem- 
perature of 0°C (Siddique et al., 1983; Ellis et al., 
1986). The optimum temperature for chickpea devel- 
opment has been variously reported (van der Mae- 
sen, 1972; Covell et al., 1986) and is assumed to 
range between 20 to 32°C in the model. Therefore, 
the rate of V-stage progression in the chickpea model 
is 0.0 at 0°C, linearly increases to 1.0 between 20 
and 32°C and decreases above 32°C to 0.0 at 55°C 
(Fig. 2). 

Unlike groundnut, chickpea is a long-day plant 
(Roberts et al., 1980; Summerfield et al., 1980, 
1981). Other major factors which affect reproductive 
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Fig. 3. Response functions for (a) nightlength effect on flowering 
and (b) water stress effect on reproductive development in chick- 
pea (see Sections 2.2 and 4.2 and Appendix A for the explanation 
of abbreviations). 

development in chickpea are temperature and water 
stress. Reproductive development (flowering, pod 
initiation, beginning of seed growth and maturity) in 
chickpea is assumed to follow a half-sine function 
with a base temperature of 0°C and optimum temper- 
ature of 25°C (Fig. 2). Photoperiod is assumed to 
affect only the emergence-to-flowering phase and 
follows the function depicted in the Fig. 3a. If the 
nightlength is equal to or less than 13 h (VARN1), 
the relative rate of development is maximum, i.e., 
1.0. Above 13 h the relative rate decreases linearly to 
a cultivar-specific minimum value at nightlength of 
20 h (VARN0). Water stress in chickpea hastens 
reproductive development, which is proportional to 
the amount of stress experienced by the crop. 
Water-stress response functions TURF1 and TURF2 
affecting chickpea phenology were related to TUR- 
FAC (Fig. 3b) and added to the crop parameters file. 

TURF2 is used to affect the duration of flowering to 
pod-initiation phase, whereas TURF1 is used to af- 
fect vegetative stage-1 to flowering and pod initia- 
tion to harvest maturity. Cultivar differences in sensi- 
tivity to water stress are achieved by a stress factor 
(STRCON) defined in the genetics file. 

2.3. Biomass production 

2.3.1. Photosynthesis 
Daily photosynthesis by the chickpea model is 

computed as in the hedgerow version of the PNUTGRO 
model (Boote et al., 1989, 1992; Boote and Loomis, 
1991). The approach considers two classes of leaves: 
sunlit and shaded. Hourly leaf photosynthesis of 
sunlit and shaded leaves is computed using the 
asymptotic exponential equation defined by a maxi- 
mum light-saturated rate (PMAX) and quantum effi- 
ciency (QE). Hourly leaf photosynthesis is summed 
over all leaf area in sunlit and shaded classes of 
leaves to compute hourly canopy assimilation. Hourly 
assimilation is accumulated to give daily rates. 

Response to temperature. Photosynthesis response 
to temperature in the chickpea model is computed as 
in PNUTGRO (Boote et al., 1987, 1992). The relative 
response of PMAX to temperature increases from 0.0 
at 5°C to relative rate of 0.9 at 25°C. From 25°C it 
achieves an optimum of 1.0 between 28°C and 34°C 
and declines above 34°C. 

Response to leaf N concentration. The shape of 
the leaf photosynthesis response to leaf N concentra- 
tion is the same as in PNUTGRO. Leaf PMAX re- 
sponse to N is modeled with a half parabola de- 
scribed by a minimum N concentration (Nbase = 
2.2% N) at which photosynthesis is zero and an N 
concentration (Nopt = 5.0% N) at which photosyn- 
thesis is maximum. Leaf N concentrations are based 
on the analysis of chickpea leaves (cv. Annigeri) 
sampled during peak growth prior to pod initiation 
and at physiological maturity. However, data on the 
shape of the photosynthesis response curve was not 
available and is assumed the same as in PNUTGRO. 

Response to soil moisture availability. Soil mois- 
ture availability in the model is computed in the 
water balance subroutine (WATBAL.FOR). Leaf 
photosynthesis is influenced by the soil water stress 
factor SWFAC as described in Section 2.1 (see 
Fig. 1). 
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Response to soil fertility. At present the chickpea 
model does not incorporate the effect of soil fertility 
and symbiotic N fixation on crop growth and devel- 
opment, and assumes that nutrient availability is not 
a limiting factor for crop growth. A growth reduction 
factor, referred to as PHFAC3, is introduced in the 
photosynthesis subroutine to reduce crop growth be- 
cause of poor soil physical condition, suboptimal soil 
fertility, disease or pests present throughout the crop 
growth period. The value of PHFAC3 can be set 
between 0.0 and 1.0 to match the modeled maximum 
crop growth rates with the observed data from the no 
water-stress situation. 

2.3.2. Height-width prediction 
The hedgerow photosynthesis model requires the 

prediction of canopy geometry. Because of the simi- 
larity in the growth habit of chickpea and groundnut, 
the canopy height and width of chickpea in the 
model is computed in the same fashion as in PNUT- 
GRO. The rate of height and width increase is propor- 
tional to the rate of V-stage increase, which in turn is 
dependent on temperature and water deficit. The 
chickpea model uses the same functions as in the 
PNUTGRO model which describe intemode length rela- 
tive to progressive V-stage development. The chick- 
pea model uses the relative height and width (RH1GH 
or RWIDTH) modifiers of PNUTGRO to account for 
the differences in growth habit of chickpea cultivars 
which may affect light interception and photosynthe- 
sis. 

2.3.3. Respiration and cost of tissue synthesis 
Maintenance respiration in chickpea depends upon 

temperature, crop photosynthesis rate and on current 
crop biomass (root + leaf + stem + pod). It is com- 
puted in the same manner as in the PNUTGRO model. 
Growth respiration and the efficiency of conversion 
of glucose to plant tissue is computed using the 
approach of Penning de Vries and van Laar (1982, 
pp. 123-125), assuming that approximate tissue 
composition is known. Leaf, stem, pod wall and 
seeds of chickpea were analyzed for carbohydrate, 
protein, lipid and ash content. This analysis was 
done on plant samples taken prior to active pod-fill 
when most of the vegetative tissue had been pro- 
duced, but before protein mobilization had started. 
Lignin and organic acid content were assumed to be 

the same as for the groundnut tissue (Boote et al., 
1986). Composition of roots was also considered the 
same as for groundnut. 

The estimated cost to synthesize chickpea seed is 
1.39 g glucose/g seed including N assimilation, and 
0.97 g glucose/g seed where amides are available 
from protein mobilization. Chickpea seeds are much 
less costly to make than the groundnut seeds because 
of smaller lipid content. Estimated costs to synthe- 
size leaf, stem, root and pod wall are 1.36, 1.30, 1.32 
and 1.39 g of glucose/g of tissue, respectively. 

2.4. Partitioning of biomass 

2.4.1. Vegetative growth and partitioning 
Vegetative growth in chickpea consists of leaf, 

stem plus petiole and root growth from emergence 
through maturity. Partitioning of assimilates to these 
tissues depends on the stage of growth but also 
varies with drought stress. New growth of leaves, 
stems and roots are calculated by the equation 

Xi * E(Pg - Rm) 

where Xi represents partitioning factors for leaves, 
stems and roots, E is conversion efficiency for pho- 
tosynthate, Pg is gross photosynthesis rate (g CH20 
day i m - 2 )  and Rm is the maintenance respiration 
rate. Xi values for partitioning to vegetative tissues 
are computed from the proportion of growth that 
goes to vegetative tissue (1 - XPOD) multiplied by 
the fraction of vegetative tissue which is to go to 
leaves (FRLF), stems (FRSTM) and roots (FRRT). 
Values for FRLF, FRSTM and FRRT are input as a 
function of V-stage. After NDLEAF (the day of 
maximum number of V-stage), the relative partition- 
ing among vegetative tissue is constant to maturity. 

Until pod set, all assimilate goes to vegetative 
tissue. As the pods (and seeds) are added, they have 
first priority over the assimilate and progressively 
reduce the amount of growth going to vegetative 
components. To mimic chickpea growth, assimilate 
partitioning to pods (pod wall + seed) was limited to 
a maximum of 0.90 at which point no pods are 
added. Maximum value of partitioning to fruits 
(XFRUIT) is genotype specific. Very little leaf area 
is added in chickpea after pod set is complete and 
seed growth has commenced. 
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Effect of drought on leaf expansion and partition- 
ing. Partitioning between roots and tops (leaves and 
stems) and leaf expansion in chickpea is influenced 
by drought stress. As TURFAC drops below 1.0, a 
certain fraction (ATOP) of assimilate normally parti- 
tioned to leaves and stems is diverted to roots. We 
presently assume that ATOP can be up to 1.0 if 
TURFAC drops to 0.0. In addition to altered parti- 
tioning to root and shoot, TURFAC acts to reduce 
leaf expansion. Since leaf expansion is more sensi- 
tive to water stress in chickpea than in groundnut, 
the relative leaf area expansion factor decreases from 
1.0 to 0.0 as TURFAC decreases from 1.0 to 0.7. 
The effect is to allow leaves to grow in dry weight 
but not as much in leaf area. Thus the leaves thicken 
and specific leaf area (SLA) decreases. 

Changes in specific leaf area during the season. 
Specific leaf area (SLA) is the ratio of leaf area to 
leaf mass. SLA of new-produced leaves is primarily 
a function of phenological stage and secondarily 
dependent on TURFAC. 

2.4.2. Reproductic, e growth and partitioning 
Pod addition and growth. Dry weight accumula- 

tion in flowers is considered negligible in chickpea. 
Pod addition begins after flowering at pod-initiation 
stage. The rates of pod addition and growth are 
computed in the same way as in PNUTGRO. The actual 
number of pods added on a given day (SH) depends 
on maximum rate of pod addition (PODMAX) times 
the ratio of actual to maximum photosynthesis 
(PG/PHTMAX) and the heat units (ACCDAY) ac- 
crued on that day. 

SH(0,t) 

l PODMAX * (PG/PHTMAX)  * ACCDAY 

= Min PGLEFT/ (GRRATI*  AGRSH) 

PGLEFT is the carbohydrate remaining after ex- 
isting seeds and pods grow, after vegetative tissue 
grows its minimum (1 - XFRUIT), and after mainte- 
nance respiration is subtracted. The GRRATI is the 
temperature-limited maximum growth rate of pod 
wall per pod per day and AGRSH is the glucose 
required to make a gram of pod wall. When parti- 
tioning to existing pods (pod wall + seed) exceeds 
XFRUIT (here 0.90), pod addition ceases. 

The pods added each day are grown and aged as 
separate groups. Pod wall of each pod formed on a 
given day grow for LNGSH days (d) during which 
they add weight as limited by GRRATI, temperature 
and available carbohydrate after supplying to seeds 
and maintenance respiration. Water stress in chick- 
pea decreases the number of pods per plant and 
number of seeds per pod (Sivakumar and Singh, 
1987). However, under water stress, vegetative 
growth is suppressed and assimilate partition to pods 
is increased which hastens maturity in chickpea 
(Singh, 1991). 

Seed growth. Seed growth rate is a function of 
available assimilate supply (multiplied by XFRUIT), 
temperature (TMPFAC) and cultivar-specific indi- 
vidual seed growth rates. Cultivar-specific seed and 
pod wall maximum growth rates (SDMAXR and 
SHMAXR) are inputs to the model. The SDMAXR 
and SHMAXR are multiplied by a temperature factor 
(TMPFAC) to determine the potential growth rates 
for seeds and pod walls. The TMPFAC varies from 0 
to 1.0 where the "normalized" shape of the temper- 
ature function is considered the same as for ground- 
nut. If sufficient assimilate is available, seeds will 
grow at their potential rate as set by TMPFAC. 

Protein mobilization from vegetative tissue is sim- 
ulated to begin as soon as seeds are formed. Both the 
mobilized and the newly assimilated protein is used 
to grow chickpea seeds following the same proce- 
dure as in PNUTGRO (Boote et al., 1987). 

Crop maturation. Seed growth continues until 
either of following two events occur. Seed growth 
ceases when the ratio of seed to pod weight reaches 
a cultivar-specific maximum seed/pod fraction. Al- 
ternatively, seed growth can be terminated by the 
loss of photosynthetic capacity caused by disease, 
insects, severe drought and frost. 

2.5. Senescence 

Leaf senescence is caused by crop aging, drought 
stress and protein remobilization. Prior to beginning 
of seed growth, senescence is based on a table of 
cumulative percent senesced leaf weight as a func- 
tion of V-stage for fully irrigated plants. This feature 
is similar to PNUTGRO in that normal leaf senescence 
starts at V-5 and increases linearly to 12% of cumu- 
lative leaf weight by V-14 and 16% by V-30. If 
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drought stress occurs, leaf senescence may exceed 
that described above. The maximum limit on leaf 
senescence due to drought stress (SENMAX) begins 
at 0.0 at V-3, reaches 0.20 at V-5, increases linearly 
to 0.60 by V-10 and can be 0.60 after V-10 to 
maturity. The variable SENDAY determines the 
maximum fraction of existing leaf weight to senesce 
on a severe drought-stress day when TURFAC is 
low. Actual senescence is delayed by 4 days from 
the time of drought stress (lag of 4 days) because 
leaves take time to die and abscise. 

Chickpea, unlike groundnut, has a grand senes- 
cence phase, triggered at physiological maturity 
(PM). This occurs even in well-irrigated situations, 
perhaps because the overall N content of the canopy 
is normally very low at PM and many leaves reach 
minimum N level at the same time. At present, the 
leaf senescence factor (SENRT2) is set equal to 0.20, 
i.e., 20% of the leaf weight senesces per day after 
PM. This is based upon the model calibration with 
chickpea cultivar Annigeri. 

Protein mobilization. Protein mobilization in 
chickpea begins as soon as seed growth begins. This 
feature is the same as in PNUTCRO. Mobilization 
increases for several weeks while seed number in- 
creases and thereby increases the total seed-growth 
capacity to use the available amides. New vegetative 
growth continues to add new protein to the protein 
pool even while protein is mobilized from existing 
leaves. The net effect is to reduce the vegetative 
protein composition even while vegetative dry weight 
is increasing. For each g of protein mobilized from 
leaves SENRTE g of leaves are abscised, in addition 
to the weight of protein lost. Since senescence in 
chickpea is more marked than in groundnut, the 
value of SENRTE was increased from 1.0 to 2.0. If 
leaves senesce prior to the start of protein mobiliza- 
tion, or abscise due to drought stress, the mobilizable 
protein in those leaves is also lost from the available 
protein pool. 

The amount of protein available for mobilization 
from leaf, stem, shell and root is computed using 
initial and minimum protein fractions. Initial and 
minimum protein fractions in g / g  of tissue dry 
weight are 0.317 and 0.166 for leaf, 0.148 and 0.042 
for stem, 0.137 and 0.094 for root, and 0.150 and 
0.069 for pod wall. These values are based upon 
analyses of cultivar Annigeri. 

3. Material and methods 

3.1. Field experiments 

Field experiments were conducted during the 1984 
to 1987, 1992 and 1993 post rainy seasons at the 
ICRISAT center (lat. 17°30'N, long. 78°16'E; alt. 
549 m) on a Vertisol to study the influence of 
moisture regimes on phenology, growth, yield and 
water uptake by chickpea. The experimental details 
and the observations taken are described below: 

The 1984 experiment. In 1984 rabi season three 
chickpea cultivars (Annigeri, K 850 and G 130) were 
sown in a split-plot experiment. The main treatments 
were irrigated and nonirrigated treatments. Each 
replication was divided into two blocks (21.6 × 12.0 
m) to which the main treatments were randomly 
assigned. The main treatment plots were further di- 
vided into three equal subplots to which the sub- 
treatments (chickpea cultivars) were randomly as- 
signed. The experiment was replicated three times. 
The field was prepared in ridges and furrows. Each 
ridge had two rows of chickpea such that the spacing 
between rows was 30 cm. Sowing was on 5 Novem- 
ber and seedlings emerged on 15 November 1984. 
Plant population maintained after thinning was 30 
plants/m 2. Fertilizer was applied at the rate of 18 kg 
N / h a  and 20 kg P / h a  as diammonium phosphate at 
sowing. Total rainfall during the crop growth period 
was 8.0 mm. The nonirrigated treatment received 45 
mm irrigation at sowing and no irrigation thereafter. 
The irrigated treatment received nine irrigations dur- 
ing the crop growth period at 7- to 10-day intervals. 
Total irrigation applied was 382 mm to Annigeri, 
362 mm to K 850 and 357 mm to G I30. Irrigation 
was applied using perforated pipes. 

The crop was protected from diseases and pests 
and was harvested on 12 February 1985 in the 
nonirrigated treatment and on 11 March 1985 in the 
irrigated treatment. 

The 1985 experiment. This experiment was con- 
ducted to study the response to various intensities of 
water deficit at different phenophases of chickpea 
using the line-source irrigation technique. The exper- 
iment consisted of 4 main × 3 sub-treatments. The 
main treatments were: T1, gradient irrigation during 
all phenophases; T2, gradient irrigation during emer- 
gence to flowering and uniform irrigation during 
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other phenophases; T3, gradient irrigation from 50% 
flowering to beginning of pod-fill and uniform irriga- 
tion during other phenophases; T4, gradient irriga- 
tion from beginning pod-fill to physiological matu- 
rity and uniform irrigation during other phenophases. 

The field was prepared in ridges and furrows. 
Main plots (9 X 18 m) were laid out on either side of 
the line-source sprinkler pipeline such that the amount 
of irrigation applied decreased away from the sprin- 
kler pipeline. Each main plot was further divided 
into three equal size subplots (9 X 6 m) to define 
three moisture regimes: M1, M2 and M3 in decreas- 
ing order of irrigation amount received. Uniform 
irrigation was given to the crop using perforated 
pipes. Cultivar Annigeri was sown on 5 November 
1985 such that each ridge had two chickpea rows 30 
cm apart. The seedlings emerged on 15 November, 
1985. Plant population was 30 plants/m 2. Fertilizer 
was applied before sowing at the rate of 20 kg N / h a  
and 40 kg P / h a  as diammonium phosphate and 
single super phosphate. The experiment was repli- 
cated three times. Total irrigation given to the 12 
treatments ranged from 45 to 227 mm during the 
crop growth period. Total rainfall received during the 
crop growth period was 105 ram. The crop was 
protected from diseases and pests. Harvesting was 
done on 10 March 1986. 

The 1986 experiment. The 1986 experiment had 
the same treatments (total = 12) and the experimen- 
tal design as the 1985 experiment. Chickpea variety 
JG 74 was sown on 30 October 1986 and emerged on 
7 November 1986. Field preparation, plant popula- 
tion, row-spacing and method of irrigation were the 
same as in 1985. Prior to sowing, fertilizer was 
applied at the rate of 18 kg N / h a  and 20 kg P / h a  as 
diammonium phosphate. Subplot size was 21.6 m 2. 
Amount of irrigation given to the 12 treatments 
ranged from 49 to 313 mm. Total rainfall received 
during the crop growth period was 48 mm. The crop 
was protected from diseases and pests. The crop was 
harvested on 27 March 1987. 

The 1987 experiment. The design and treatments 
were the same as for the 1986 season experiment. 
Cultivar JG74 was sown on 28 October 1987 and 
emerged on 5 November. Subplot size was 14.4 m 2. 

Plant population, row-spacing, rates of fertilizer ap- 
plication, the method of irrigation and the number of 
replications were the same as in 1986. Amount of 

irrigation applied to various treatments ranged from 
25 to 247 mm. Total rainfall received during the crop 
growth period was 241 mm. The crop was harvested 
on 16 February 1988. 

The 1992 experiment. This was a split-plot experi- 
ment consisting of irrigated and nonirrigated treat- 
ments as the main treatments, which were randomly 
assigned to the two main blocks in a replication. 
Each main-treatment block was further divided into 
six equal subplots to which six cultivars 
(ICCV 88202, Annigeri, ICCC 32, ICCC 42, ICCV 2 
and ICCV 10) were randomly assigned. The experi- 
ment was replicated four times. Each subplot size 
was 60 m 2. The field was prepared to broad beds and 
furrows. Fertilizer at the rate of 18 kg N / h a  and 15 
kg P / h a  was applied as diammonium phosphate at 
sowing. Sowing was done on 3 November 1992. 
Plant population maintained after thinning was 30 
plants/m 2. Row-spacing was 30 cm. Both the irri- 
gated and nonirrigated treatments received 80 mm of 
irrigation at sowing to facilitate germination. Irri- 
gated treatment was watered at 7- to 10-day inter- 
vals. Irrigation was given using perforated pipes and 
the amount of irrigation given was measured using 
catch-cans. Total irrigation given to the irrigated 
treatment was 448 ram. Total rainfall received during 
the crop growth period was 77 mm. The crop was 
intensively protected from diseases and pests. The 
crop was harvested on 4 March 1993. 

The 1993 experiment. During 1993 post rainy 
season six cultivars of chickpea (ICCV88202, An- 
nigeri, ICCC32, ICCC42, ICCV2 and ICCV 10) 
were grown under rainfed conditions after an initial 
irrigation of 55 mrn at sowing to facilitate germina- 
tion. The design of experiment was a randomized 
complete block replicated four times. Plot size was 
48 m 2. The field was prepared to broad beds and 
furrows and fertilizer at the rate of 18 kg N / h a  and 
15 kg P / h a  was applied as diammonium phosphate 
at sowing. Sowing was done on 11 November 1993. 
Row-spacing was 30 cm and plant population main- 
tained after thinning was 30 plants/m 2. Total rain- 
fall received during the crop growth period was 31 
mm. The crop was frequently sprayed against dis- 
eases and pests, however complete control was not 
possible. All cultivars were harvested on 17 Febru- 
ary, except ICCV32 which was harvested on 28 
February 1994. 
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Table 1 
Characteristics of the soils, initial profile water content at sowing and the value of PHFAC3 for various seasons. Abbreviations and units as 
in the text (see Section 4.1) 

Season U SWCON C N  2 TSWL L a TSWDuL b TSWI N c PHFAC3 

1984 6.0 0.70 95 300 475 475 0.775 
1985 6.0 0.70 95 300 475 309 0.775 
1986 6.0 0.70 95 300 475 475 0.775 
1987 6.0 0.70 95 300 475 457 0.775 
1992 6.0 0.40 93 560 820 783 0.99 d 
1993 6.0 0.40 93 560 820 791 0.93 d 

TSWLL = Total soil water content in the rooting zone at the lower limit of water extraction (mm). 
b TSWDuL = Total soil water content in the rooting zone at the upper drained limit (mm). 
c TSW~ N = Initial soil water content in the rooting zone (mm). 
a Pre-sowing NO3-N, P and K contents in the top 30 cm of soil were 64, 48 and 600 kg/ha, respectively, for the 1992 season; and 30, 20 
and 750 kg/ha, respectively, for the 1993 season. 

3.2. Measurements  

Crop phenology. Vegetative stages (V-stages) 

were recorded as the number of  nodes formed on the 

main stem of the chickpea plant. The crop was 

considered to have reached a particular growth stage 

when 50% of the plants had shown that stage of  

development. The reproductive stages observed were, 

flowering, pod initiation, beginning of  seed growth, 

full-seed and physiological maturity. Phenological 

observations were taken on at least 5 plants per plot 

at 4 -5 -day  intervals. 

Growth analysis. Plant samples were taken from 

each plot at 7- to 10-day intervals. Area harvested 

was 0.3 m 2 per plot for the 1984 to 1987 season 

experiments and 0.75 m 2 per plot for 1992 and 1993 

seasons. The number of  replications sampled were at 

least three in all years. To determine leaf area and 

partition of  dry matter, plant components such as 

leaves, stems, pods, seeds and pod walls were sepa- 

rated and oven dried at 60°C for 3 to 4 days and 
weighed. Leaf  area was determined using a leaf area 

meter (LI-191SB; LI-COR Ltd.). 

Soil moisture. Soil moisture was recorded at 

weekly to 10-day intervals using a neutron probe. At 

least one access tube was installed in each plot and 

observations were taken at 15-cm depth intervals 
starting at 30 cm depth to 150 cm. Soil moisture in 

the 0 - 1 0  and 10-22.5 cm layers was determined 
gravimetrically. 

Yields at harvest. Total dry matter, pod and seed 

yields were recorded in all replications of  the experi- 

ments. Area harvested ranged from 9 to 27 m 2 for 

various experiments. Dry weight of  pods, seeds and 

stalks were determined by oven drying either the 

whole harvest of each plot or a sub-sample. Drying 

procedure was the same as for growth analysis. 

Weather data. All the weather data required for 

model execution were obtained from the meteorolog- 

ical observatory situated about half a kilometer away 

from the experimental site. The database manage- 

ment program of the Decision Support System for 

Agrotechnology Transfer (DSSAT) (IBSNAT, 1989) 

was used to create the climate, crop and soil data 

files required for model execution. 

4. Model calibration 

Cultivar Annigeri was sown during the 1984, 

1985, 1992 and 1993 post rainy seasons, whereas 

cultivar J G 7 4  was sown during 1986 and 1987 post 

rainy seasons. In 1984 to 1987 the experiments were 

conducted on a low water-holding capacity Vertisol 

(175 mm extractable water) while in 1992 and 1993 
the experiments were conducted on a high water- 

holding capacity Vertisol (260 mm extractable wa- 

ter) (Table 1). Data obtained in the 1984 and 1986 
seasons were used to calibrate the soil parameters 

and to determine the genetic coefficients of  cvs. 
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Anniger i  and JG 74. Data  o f  the remain ing  seasons 

were  used for  mode l  val idat ion.  The  cal ibrat ion pro-  

cedure  fo l lowed  is descr ibed below.  

4.1. Soil parameters 

Soil  survey data on mechan ica l  compos i t ion  and 

associated parameters  were  col lec ted  f rom the loca- 

tion to create  the soil f i le requi red  by the mode l  

using the soi ls-data-retr ieval  p rogram of  D S S A T  

( I B S N A T ,  1989). The  p rogram est imates  bare soil 

a lbedo,  upper  l imit  o f  stage-1 evapora t ion  (U, mm),  

soil water  dra inage coef f ic ien t  ( S W C O N ,  fract ion 

drained per  day), U S D A - S C S  curve  number  (CN2,  0 

to 100), coeff ic ients  in the steady-state solut ion to 

the radial  f low root  water  uptake equat ion ( S W C O N  1, 
S W C O N 2  and S W C O N 3 ,  all in c m 3 / c m  3) and max-  

i m u m  daily root water  uptake per  unit root  length 

( R W U M X ,  c m 3 / c m / d )  (Jones and Kiniry,  1986). 

The  p rogram also est imates  for each layer  the lower  

l imit  o f  plant extractable  water  (LL, c m 3 / c m 3 ) ,  

drained upper  l imit  of  soil water  content  (DUL,  
c m 3 / c m 3 ) ,  saturated water  content  (SAT,  c m 3 / c m 3 ) ,  

root  distr ibution weight ing  factor  ( W R )  and mois t  

bulk  densi ty o f  soil (BD,  g / c m 3 ) .  The  soil parame-  

ters thus obta ined required cal ibrat ion against  the 

data on soil mois ture  changes  during the season such 

that the observed  soil mois ture  changes  were  close to 

the s imulated data. 

4.2. Genetic coefficients 

Both  pheno logy  and growth coeff ic ients  of  cvs. 

Anniger i  and J G 7 4  cult ivars were  de termined  by 

Table 2 
Genetic coefficients of cultivars Annigeri and JG 74 obtained by calibration against the 1984 and 1986 seasons data 

Description Annigeri JG 74 

A. Crop phenology 
Physiological days from: 
Sowing to emergence, VARTHR(1) 4.0 
Emergence to vegetative stage 1, VARTHR(2) 6.0 
Vegetative stage 1 to flowering, VARTHR(5) 29.0 
Flowering to beginning of pod growth, VARTHR(6) 8.0 
Beginning of pod growth to beginning of seed growth, LAGSD 20.0 
Flowering to end of node addition, NDLEAF 37.0 
Flowering to physiological maturity, VARTHR(10) 49.0 
Physiological maturity to harvest maturity, VARTHR(11) 5.0 

B. Vegetative growth coefficients 
Number of trifoliates produced per physiological day, TRIFOL 0.60 
Leaf size at nodes 8 to 10, SIZELF (cm2/leaf) 10.0 a 
SLA of new growth during peak vegetative growth, SLAVAR (cmZ/g) 180.0 a 
Fraction of available protein pool mobilized per physiological day, CNMOB 0.036 b 
Maximum leaf photosynthesis rate, PGLF (mg CO 2 m -2 s 1) 1.7 b 
Relative canopy width, RWIDTH 1.0 b 
Relative canopy height, RHIGH 1.0 b 

C. Reproductive growth coefficients 
Number of seeds per pod, SDPDVR 1.2 a 
Maximum seed to pod ratio, THRESH (%) 85.0 a 
Length of the time an individual pod-wall may grow; LNGSH (physiological days) 5.0 
Maximum growth rate per pod-wall, SHVAR (mg/day) 6.5 
Maximum growth rate per seed, SDVAR (mg/day) 5.5 
Maximum pod addition rate, PODVAR (pods/physiological day) 95.0 
Maximum fraction of daily available assimilates allowed to go to pods, XFRUIT 0.90 

D. Miscellaneous 
Water stress sensitivity coefficient, STRCON (unitless) 1.0 

4.0 
6.0 

41.0 
8.0 

20.0 
26.0 
41.0 

5.0 

0.60 
10.0 a 

180.0 a 
0.036 b 
1.7 b 
1.0 b 
1.0 b 

1 . 6  a 

73.0 a 
5.5 

10.5 
10.0 
90.0 

0.90 

2.0 

a Determined from the actual data of these cultivars. 
b Assumed the same as in PNUTGRO. 
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comparing the model predictions against the growth 
and development data of the cultivars (Table 2). Data 
from the irrigated (nonstressed) and nonirrigated 
treatments of the 1984 and 1986 season experiments 
were used for this purpose. The coefficients related 
to the timing of various growth stages were cali- 
brated in a chronological order. These coefficients 
were: VARTHR(1) to adjust days to emergence, 
VARTHR(2) for first leaf appearance, VARTHR(5) 
for flowering, VARTHR(6) for beginning of pod 
growth, LAGSD for beginning of seed growth, 
VARTHR(10) for physiological maturity and 
VARTHR(11) for harvest maturity. Values of these 
coefficients were set for the model to predict various 
growth stages. Cultivar sensitivity to water stress for 
hastening of phenological events (flowering, pod- 
ding, beginning seed and maturity) was set by chang- 
ing STRCON. 

The rate of vegetative progression and specific 
leaf area (SLA) were calibrated by changing values 
of TRIFOL and SLAVAR, respectively. SLAVAR 
was adjusted such that simulated peak SLA matched 
observed SLA values. Rate of pod and seed addition 
were set by altering pod addition rate (PODVAR) 
and number of seeds per pod. 

Pod wall growth was calibrated by adjusting val- 
ues of pod wall growth rate (SHVAR) and the 
duration of pod wall growth (LNGSH). Seed growth 
was calibrated by changing values of seed growth 
rate coefficient (SDVAR). Finally the simulated har- 
vest index was matched with the actual harvest index 
by changing XFRUIT and PODVAR. To calibrate 
the cultivar for photoperiod sensitivity for pod addi- 
tion and pod growth rate, VARN1 and VARN0 were 
set at 13 and 20 h of nightlength, respectively (Fig. 
3a). Decreasing VARTH from 1.0 to a lesser value 

Table 3 
Total rainfall and mean monthly maximum and minimum 
the experiment 

temperatures, solar radiation and open-pan evaporation during various seasons of 

Month Rainfall Maximum temperature Minimum temperature Solar radiation Open-pan evaporation 
(mm) (°C) (°C) (MJ m -2 day- 1) (ram day 1) 

1985 
Nov 
Dec 
Jan 
Feb 
Mar 
1987 
Nov 
Dec 
Jan 
Feb 
Mar 
1992 
Nov 
Dec 
Jan 
Feb 
Mar 
1993 
Nov 
Dec 
Jan 
Feb 
Mar 

0.0 29.0 13.4 17.5 5.5 
8.1 28.6 13.3 15.8 5.1 

53.1 27.0 13.4 16.2 4.9 
43.6 30.3 17.4 19.1 6.6 

0.0 35.1 20.1 22.3 9.4 

77.0 28.5 17.9 15.4 4.5 
0.0 26.8 11.7 17.2 4.0 
0.0 30.2 12.7 17.6 5.1 
0.0 30.9 14.0 20.5 6.7 
0.5 34.5 19.7 21.6 8.7 

0.0 29.1 15.1 18.0 4.8 
29.0 26.2 11.9 15.4 3.6 

1.8 28.6 14.4 16.5 4.3 
5.6 31.5 17.4 19.6 6.4 
0.0 36.8 19.4 22.1 8.5 

240.0 27.5 18.0 13.6 3.6 
0.8 26.9 14.2 15.1 3.8 
0.0 28.4 14.1 16.9 4.6 
4.0 32.0 17.4 17.5 6.1 
0.0 35.0 20.2 20.2 8.4 



52 P. Singh, S.M. Virmani / Field Crops Research 46 (1996) 41-59 

allowed nightlength greater than 13 h to delay pod 
growth and decrease partitioning to the reproductive 
organs and vice-versa. 

5 .  M o d e l  v a l i d a t i o n  

The model was validated against the crop growth, 
phenology and soil moisture data of the 1985, 1987, 
1992 and 1993 seasons. The seasons primarily dif- 
fered in the timing and amount of rainfall received 
during the crop growth period (Table 3). The general 
trend in other climatic elements was similar in all 
seasons. The 1987 data were for cultivar JG74 and 
for other seasons for cv. Annigeri. Soil parameters 
and genetic coefficients determined earlier using the 
1984 and 1986 data were fixed and not changed 
during validation. The soil type during the 1992 and 
1993 seasons was, however, a high water-holding 
capacity Vertisol and of different soil quality. The 
factor PHFAC3 required recalibration and was set at 
0.99 and 0.93 for the 1992 and 1993 seasons, respec- 
tively. Greater value of PHFAC3 for the 1992 season 
is because of better pre-sowing fertility status of the 
soil than during 1993 (Table 1). Data sets of 1992 
and 1993 seasons were useful for additional valida- 
tion of the model to simulate growth and develop- 
ment processes of chickpea. 

Vegetative development.  T h e  m o d e l  w a s  t e s t e d  

a g a i n s t  t h e  1 9 9 2  a n d  1993  d a t a  f o r  cv .  A n n i g e r i .  T h e  

r a t e  o f  V - s t a g e  p r o g r e s s i o n  w a s  a c c u r a t e l y  p r e d i c t e d  
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Fig. 4. Simulated (lines) and observed (data points) V-stage 
progression during (a) 1992 season in the irrigated (Q-solid line) 
and nonirrigated (O-broken line) treatments and (b) during 1993 
season in the nonirrigated treatment. Vertical bars are twice the 
standard error of mean. 

Table 4 
Observed (O) and simulated minus observed (S - O) days to flowering, pod initiation, beginning of seed growth and physiological maturity 
of chickpea cultivars in the irrigated (IR) and nonirrigated (NI) treatments during various seasons 

Season Treatment Cultivar Flowering Pod initiation Beginning seed Physiological maturity 

O S - O  O S - O  O S - O  O S - O  

1985 IR Annigeri 42 
NI 42 

1987 IR JG 74 50 
NI 50 

1992 IR Annigeri 39 
NI 38 

1993 NI Annigeri 46 
Root mean square error ( + ) 

0 46 2 67 - 9 114 
- 1 45  3 60  - 5  99 

1 57  1 72  - 4  110 
0 52 3 63 2 92 

- 1 4 4  0 71 - 1 8  111 
0 44 0 48 3 89 

- 3 52  - 2 55  1 89 
1.3 2.0 8.1 

- 1 0  
- 6  
--3 
- 5  
- 6  

1 

3 
5.5 
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by the model for both the irrigated and water-stressed 
situations, however, the number of V-stages finally 
achieved in the irrigated treatment was underesti- 
mated (Fig. 4a and b). This discrepancy may be 
attributed to the error in predicting the beginning and 
rate of seed growth (Table 4). These results indicate 
that the functions used to predict V-stage develop- 
ment are satisfactory, i.e., 0.60 nodes are produced 
per physiological day using the base temperature of 
0°C and optimum range of 20 to 32°C. 

Reproductive development. Days to flowering and 
pod initiation were predicted within + 3  days of 
observed values for the cultivars Annigeri and JG 74 
(Table 4). However, the error was more in predicting 
initiation of seed growth and physiological maturity 
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Fig. 5. Simulated (lines) and observed (data points) leaf area index 
in the irrigated (O-solid line) and water-stressed (O-broken line) 
treatments during (a) 1985 and (b) 1987 seasons. Vertical bars are 
twice the standard error of mean. 
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Fig. 6. Simulated (lines) and observed (data points) leaf are index 
during (a) 1992 season in the irrigated (Q-solid line) and nonirri- 
gated (O-broken line) treatments and during (b) 1993 season in 
the nonirrigated treatment. Vertical bars are twice the standard 
error of mean. 

especially in the irrigated situation. This is a charac- 
teristic of the chickpea crop that under wetter condi- 
tions, pod-filling and maturity are delayed. This may 
be attributed to some microclimatic factors that are 
influenced by irrigation and not considered in the 
model. The data obtained at Patancheru were not 
suitable to test the model for the influence of pho- 
toperiod on reproductive development. Khanna- 
Chopra and Sinha (1987) reported that low tempera- 
ture, high humidity, overcast sky and wet seed beds 
delay the initiation of pods in the north Indian 
conditions. Because of the lack of these response 
functions it was not possible to test the chickpea 
response to such weather conditions. Accurate pre- 
diction of reproductive stages by the model indicates 
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that temperature and water-stress functions used to 
predict reproductive phenology are satisfactory. The 
model may need recalibration for photoperiodic sen- 
sitivity coefficients at higher latitudes where pho- 
toperiod during the season is less than optimum. 

Canopy deuelopment. Prediction of canopy devel- 
opment (leaf area index) and its decay due to crop 
maturity and water stress was fairly accurate during 
the 1985 and 1987 seasons under irrigated and wa- 
ter-stress situations (Fig. 5). Discrepancy between 
observed and simulated LAI for these two seasons 
may be attributed to the variation in soil fertility 
between the seasons. Predictions of LAI were better 
for the 1992 and 1993 seasons after the adjustments 
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Fig. 7. Simulated (lines) and observed (data points) total dry 
matter (TDM), pod and seed weights during the 1985 season in 
the (a) irrigated and (b) nonirrigated treatments. Vertical bars are 
twice the standard error of mean. 
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Fig. 8, Simulated (lines) and observed (data points) total dry 
matter (TDM), pod and seed weights in the (a) irrigated, and (b) 
nonirrigated treatments during the 1987 season. Vertical bars are 
twice the standard error of mean. 

had been made for the factor PHFAC3 (Fig. 6). 
These results show that the model is accurate in 
predicting LAI under irrigated and water-stressed 
situations, indicating that various processes involved 
in canopy development (V-stage development, parti- 
tion of dry matter to leaves, specific leaf area) and 
senescence (loss of leaves caused by nitrogen mobi- 
lization and water stress) were accurately predicted 
by the model. 

Dry matter production and its partitioning. Dur- 
ing 1985 the model accurately predicted total dry 
matter production (TDM) and partitioning to pods 
and seeds of cv. Annigeri at various times during the 
season in the irrigated treatment (Fig. 7a). However, 
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the prediction of TDM for the water-stressed treat- 
ment was overestimated (Fig. 7b). This could be 
attributed to decreased uptake of nutrients caused by 
less nitrogen fixation and low availability of nutrients 
in the soil under water stress. These processes are 
not considered in the model at present. Partitioning 
of biomass to pods and seeds was within the variabil- 
ity observed in the measured values. During 1987, 
TDM production by cv. JG 74 was overestimated in 
both the irrigated and water-stressed treatments (Fig. 
8a and b). This overestimation may be due to differ- 
ences in soil fertility between seasons. Dry matter 
partition to pods and seeds in the irrigated treatment 
was close to the observed data but was underesti- 
mated and slightly delayed in the stressed treatment. 
Total dry matter and seed yields of cvs. Annigeri and 
JG 74 at final harvest were significantly correlated 
( r  2 = 0.89 for TDM and r 2 = 0.82 for seed) with the 
observed data (Fig. 9). The slopes of the regression 
lines did not differ from 1.0 and the intercepts did 
not differ from zero indicating satisfactory pre- 
dictability by the model for yields at harvest. 
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RMSE = 0.138, 

0.5 

0.4 

0.3 

0.2 

0.1 

(a) 

0 

°~E 0.5- 
(b) 

0.4 i--,, .© 

~ '"'"'(5 ...... • 
o b " - b - - o  • 
E 0.3 ~ r 
0 

0 . 5 ~  

0.41 "~ '  

O O 
I 

0.31 , , , 

0'5~(d) t ; ; ~ - • 

0.4 - 
0 30 60 90 120 

Days after sowing 

Fig, 10. Simulated (lines) and observed (data points) changes in 
soil moisture in the (a) 0-18 cm, (b) 18-36 cm, (c) 36-58 cm and 
(d) 58-91 cm soil layers in the irrigated (Q-solid line) and 
nonirrigated (O-broken line) treatments of the 1992 post rainy 
s e a s o n .  

Soil moisture. Soil moisture data collected from 
the irrigated and nonirrigated treatments of the 1992 
season experiment were used to illustrate the ability 
of the model to simulate soil moisture content of the 
root zone. The model was able to accurately simulate 
the soil moisture changes (Fig. 10) in the root-zone 
of the chickpea crop, indicating accurate estimations 
of root growth and extension and water extraction 
processes by the model. These results indicate that 
the model by Ritchie (1985) can accurately predict 
water balance of the chickpea crop provided soil and 
crop parameters have been calibrated for a site. 



56 P. Singh, S.M. Virmani / Field Crops Research 46 (1996) 41-59 

6. Conclusions 

It is concluded from this study that the PNUTGRO 
model provided a good adaptable framework to pre- 
dict chickpea growth and development. However, 
some changes in the model and crop parameters file 
were required to incorporate chickpea crop-specific 
processes. The resultant model (CHIKPGRO) predicted 
chickpea phenology, canopy growth, dry matter pro- 
duction and its partitioning, and yields at harvest 
accurately under water-limiting and nonlimifing situ- 
ations. Soil moisture changes in the rooting zone 
were also predicted satisfactorily. The model needs 
further testing and validation in a wide range of 
environments before it can he considered fully vali- 
dated. The present version of the model does not 
incorporate soil fertility or biological nitrogen fixa- 
tion, assuming that nutrients are nonlimiting for crop 
growth. Use of the model under conditions of subop- 

timal soil fertility would require adjustment of the 
factor PHFAC3. However the model can be used to 
predict crop growth and yield under water-limiting 
and nonlimiting situations. 
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Appendix A 

Major soil and plant processes, parameter values and the source of data for the chickpea model. 

Soil or plant process Parameter values Source of data 

A Soil water balance - As in PNUTGRO (Ritchie, 
1985) 

B Root growth and extension 
i Root length to weight ratio (RFAC1) 4550 c m / g  
ii Root extension rate (RAFC2) 3.0 cm/physiological day 

iii Other parameters 

C Vegetative development 
i Base temperature (T b) 

Optimum temperature range (T O ) 

iii Ceiling temperature (T c) 
iv Temperature response function 

D Reproductive development 
i Base temperature (T b) 

0°C 

20 to 30°C 

55°C 
Linear 

0°C 

as in PNUTGRO 
Estimated from the water ex- 
traction data of the 1984 sea- 
son 
As in PNUTGRO 

Siddique et al. (1983), Ellis 
et al. (1986) 
van der Maesen (1972), Cov- 
ell et al. (1986) 
As in PNUTGRO 
As in PNUTGRO 

Siddique et al. (1983), Ellis 
et al. (1986) 
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ii Optimum temperature (T o) 
iii Temperature response function 

E 
i 
ii 

G 
i 

25°C 
Half-sine 

Water stress effect on reproductive development 
Water stress function TURF1 
Water stress function TURF2 

Photoperiod response to flowering 
Critical night length for maximum devel- 
opment rate (VARN1) 
Critical night length for minimum devel- 
opment rate (VARN0) 

Canopy growth and expansion of  leaves 
Water deficit function (SWBAR) for leaf 
expansion 

Temperature function (YSLA) 

iii Other functions for estimating canopy 
height and width 

H Photosynthesis 
i Response to temperature 
ii Response to leaf N concentration 

Minimum N in leaves (Nbase) 

iii 

iv 

I 
i 

ii 

TURF1 = (1 - TURFAC) 
If TURFAC < 0.85 
TURF2 = 1.0 
Else TURF2 = (1 - 
TURFAC) /0 .15  

13h  

20 h 

If  TURFAC > 1.0 SWBAR 
= 1.0 
If  TURFAC < 0.7 SWBAR 
= 0.0 
Response function - linear 
If  Temp. > 21.0°C YSLA = 
1.0 
If  Temp. < 0.0 YSLA = 0.0 
Response function - linear 

2.2% 

Optimum N in leaves (Nopt) 5.0% 

Response function 
Response to water deficit 
Water stress factor (SWFAC) 

Other response functions and parameters 

Respiration 
Cost of  tissue synthesis for leaf 
(AGRLF) ,  stem (AGRSTM),  root 
(AGRRT) and pod wall (AGRSD2) 
Cost of  synthesis of  seed, including N 
assimilation (AGRSD1) 

Half parabola 

If  water supply /demand ratio 
> 0.75, SWFAC = 1.0 
Else SWFAC = 
(supply /demand ratio)/0.75 

1.36, 1.30, 1.32 and 1.39 of  
g l u c o s e / g  tissue, respec- 
tively 
1.39 of  g lucose /g  seed 

Calibration 
As in PNUTGRO 

Calibration 
Calibration 

Assumed, to be calibrated 
and tested 
Assumed, to be calibrated 
and tested 

Calibration 

Calibration 

As in PNUTGRO 

As in PNUTGRO 

Based on chemical analysis 
of  leaves 
Based on chemical analysis 
of  leaves 
As in PNUTGRO 

Calibration 

As in PNUTGRO 

As per Penning de Vries and 
van Laar (1982) 

As per Penning de Vries and 
van Laar (1982) 
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Cost of synthesis of seed, when amides 
are available from protein mobilization 
(AGRSD2) 

iv Other parameters 

J Partitioning of biomass to vegetative organs 
i Fractional partition to leaves, stems and 0.3, 0.25 and 0.45 

roots at V-stage zero tively 
ii Fractional partition to leaves, stems and 0.52, 0.35 and 0.13 

roots at V-stage 20 tively 
iii Fractional partition to leaves of vegeta- 0.10 

tive growth after maximum V-stage 
(FRLFF) 

iv Fractional partition to stems of vegeta- 0.40 
tive growth after maximum V-stage 
(FRSTMF) 

v Effect of drought stress on partitioning - 
between root and shoot 

K Partitioning to reproductive organs 
i Pod wall and seed growth parameters - 
ii Temperature response function for pod - 

wall and seed growth 
iii Seed protein content (SDPRO) 0.216 g / g  seed 

0.97 g of glucose/g seed 

respec- 

respec- 

L Protein mobilization 
i Initial protein concentration in leaves 0.317,0.148,0.15 and0.0137 

(PROLFI), stems (PROSTI), pod wall g protein/g tissue, respec- 
(PROSHI) and roots (PRORTI) tively 

ii Final protein concentration in leaves 0.166, 0.042, 0.069 and0.094 
(PROLFF), stems (PROSTF), pod wall g protein/g tissue, respec- 
(PROSHF) and roots (PRORTF) tively 

M Senescence 
i Grams of leaf weight senesced per gram 2.0 

of protein mobilized from leaves 
(SENRTE) 

ii Fraction of leaf weight senesced per day 0.20 
after physiological maturity (SENRT2) 

iii Other leaf senescence parameters 

As per Penning de Vries and 
van Laar (1982) 

As in PNUTGRO 

Gregory (1988), Singh (1991) 
and calibration 
Gregory (1988), Singh (1991) 
and calibration 
Calibration 

Calibration 

As in PNUTGRO 

As in PNUTGRO 
As in PNUTGRO 

Based on chemical analysis 
of seeds 

Based on chemical analysis 
of tissues 

Based on chemical analysis 
of tissues 

Calibration 

Calibration 

As in PNUTGRO 
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