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Genomic selection (GS) has the potential to revolutionize predictive plant breeding. A
reference population is phenotyped and genotyped to train a statistical model that is used
to perform genome-enabled predictions of new individuals that were only genotyped. In
this vein, deep neural networks, are a type of machine learning model and have been
widely adopted for use in GS studies, as they are not parametric methods, making them
more adept at capturing nonlinear patterns. However, the training process for deep neural
networks is very challenging due to the numerous hyper-parameters that need to be tuned,
especially when imperfect tuning can result in biased predictions. In this paper we propose
a simple method for calibrating (adjusting) the prediction of continuous response variables
resulting from deep learning applications. We evaluated the proposed deep learning
calibration method (DL_M2) using four crop breeding data sets and its performance was
compared with the standard deep learning method (DL_M1), as well as the standard
genomic Best Linear Unbiased Predictor (GBLUP). While the GBLUP was the most
accurate model overall, the proposed deep learning calibration method (DL_M2)
helped increase the genome-enabled prediction performance in all data sets when
compared with the traditional DL method (DL_M1). Taken together, we provide
evidence for extending the use of the proposed calibration method to evaluate its
potential and consistency for predicting performance in the context of GS applied to
plant breeding.
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INTRODUCTION

Genomic selection (GS) exploits dense genome-wide markers for predicting complex traits.
Practically it requires development of a training population (with phenotypic and genotypic
information) with which a statistical machine learning algorithm is trained and used for making
predictions for individuals of a test breeding population with only genotypic information. Genome-
enabled prediction and GS were originally proposed by Meuwissen et al. (2001) as a novel approach
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for predicting complex traits for a selection of candidates using
predicted phenotypic or breeding values. Zhong et al. (2009) and
Heffner et al. (2010) state that GS works given realistic
assumptions of selection accuracies, breeding cycle times and
selection intensities. In simple terms, GS offers tremendous
opportunities to improve rates of genetic gain in plant and
animal breeding, and it has been supported by many research
articles published in the last 20 years (Bhat et al., 2016; Crossa
et al., 2017).

GS is changing the landscape of practical plant breeding, as it is
able to predict breeding values earlier and with greater accuracy
when compared with conventional selection methods such as
mixed models, Ridge regression and Bayesian methods (BayesA,
BayesB, BayesC, Bayesian Lasso, etc). Additionally, time is saved
by using GS because it is no longer necessary to wait for late filial
generations to phenotype complex quantitative traits such as
yield, biotic and abiotic stresses, among others. The genotypic
data can be obtained from the seed of early generations and used
to predict phenotypic performance of later generation individuals
without the need for extensive phenotyping evaluation over years
and environments (Mellers et al., 2020). Furthermore, it
highlights the potential to increase the speed of varietal
development across crop species (Bhat et al., 2016; Crossa
et al., 2017).

Estimating the genetic worth of the individual in GS is based
on a large set of marker information distributed across the whole
genome, which contrasts with the relatively few markers used in
marker assisted selection (MAS) (Varshney R. K. et al., 2021).
Conventional breeding involves hybridization between diverse
parents and subsequent selection over a number of generations to
develop improved crop varieties. This has several limitations,
including the long duration (5–12 years) required to develop a
crop variety, the reliance on time-consuming (and traditionally
low-throughput) phenotypic selection, high environmental noise
and genotype × environment interactions. It is also less effective
for complex and low heritability traits (Tuberosa, 2012). For these
reasons, several studies have shown GS models to be
advantageous for complex quantitative traits like grain yield,
quality, biotic and abiotic stresses, etc. (de los Campos et al.,
2009; Crossa et al., 2010; Burgueño et al., 2012; González-
Camacho et al., 2012; Jannink et al., 2010).

However, there are still numerous opportunities to improve
the selection process of candidate individuals in GS. Some of these
are: 1) to improve the quality and coverage of marker data; 2) to
design optimal training-testing sets; 3) to better identify where in
the breeding program GS could be efficiently applied (Crossa
et al., 2017); 4) to have sufficient numbers of individuals in the
reference (training) population; and 5) to use the most
appropriate statistical machine learning model for each data
set at hand.

Intensive research has explored different statistical machine
learning methods for GS (Varshney R. K. et al., 2021). For
example, some of the models/methods used in GS are: 1)
linear mixed models and their Bayesian counterpart that
includes the so-called Bayesian alphabet [BayesA, BayesB,
BayesC, Genomic Best Linear Unbiased Predictor (GBLUP),
and Bayesian Lasso]; 2) Random forest for predicting binary,

categorical and continuous traits (Montesinos-López et al.,
2021a); 3) support vector machine (Montesinos-López et al.,
2019a); 4) gradient boosting machine and 5) deep learning
algorithms (Montesinos-López A. et al., 2018; Montesinos-
López, 2018b; Montesinos-López et al., 2019a; Montesinos-
López et al., 2021c). These statistical machine learning
methods have been adopted for GS because they can help
improve genome-enabled prediction accuracy as they use
machine learning advances for analysis, interpretation,
prediction and decision-making. One explanation of why
many statistical machine learning methods have been
implemented in GS is the fact that there is no universal best
prediction model that can be used under all circumstances (No
free lunch theorem; Wolpert, 1996).

Deep learning (DL) methods are one of the most recent
adoptions of statistical machine learning methods used for GS
(Varshney RK. et al., 2021). There is mounting evidence
suggesting that these methods outperform conventional
methods in terms of predictive power, as well as other
advantages (Montesinos-López et al., 2021c). Some of these
advantages are: 1) power in capturing complex patterns in the
data caused by the inclusion of many neurons communicated in
complex ways and via multiple nonlinear transformations
through hidden layers (Montesinos-López et al., 2019b;
Montesinos-López et al., 2021c); 2) support for raw (not
preprocessed) inputs, which is impossible with most statistical
machine-learning methods (Montesinos-López et al., 2021c); 3)
support for a variety of different inputs that can accommodate
pedigree, genomic, environmental and other forms of omics data
(e.g., metabolomics, microbiomics, phenomics, proteomics,
transcriptomics, etc.) (Montesinos-López et al., 2021c); 4)
greater efficiency for handling large and complex data sets
compared with most statistical machine-learning methods
(Montesinos-López et al., 2021a,c); and 5) a very flexible
network architecture permitting a “Lego-like” construction of
new models, while an unlimited number of neural network
models can be constructed using elements of the core
architectural building blocks of existing DL models
(Montesinos-López et al., 2021a, c).

While DL methods offer many advantages, their training
process is very challenging, especially considering hyper-
parameter selection. The correct selection of hyper-parameters
are time consuming and complicated to implement largely due to
the absence of a unique and efficient optimized methodology.
This means that the implementation of DL methods for genome-
enabled prediction is not straightforward. Furthermore, DL
methods are inefficient when used with small data sets or with
simple linear patterns, and as such, research is underway to
facilitate the training process of DL methods so that they can
be used in these contexts.

One way of improving the training process of DL models is to
use a calibration based on a model that is already trained and
applied via a post-processing operation. However, in the context
of machine learning methods (including DL), calibration
methods have only been proposed for binary and categorical
response variables, where the predicted probabilities that do not
match the expected distribution of the observed probabilities of
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the response variable in the data are adjusted (calibrated) to
increase this match and the prediction accuracy in the testing set.
This is very important in classification problems because the
estimated class probabilities reflect the true underlying
probability of the sample. For this reason, the predicted class
needs to be well-calibrated, which means the probabilities must
effectively reflect the true likelihood of the event of interest. This
discrepancy between the distribution of observed and predicted
values is also very commonly found in continuous response
variables, and yet no solution has been proposed. In other
words, this means that despite all efforts taken during the
training process of the deep neural network, often times, there
will still be bias in the predictions. Consequently, methods for
calibrating continuous and categorical response variables are of
paramount importance to increase the accuracy of your
prediction machine.

Based on the previous considerations, the main objective of
this study is to present a method that facilitates the calibration of
DL outputs in the context of genomic-based prediction in GS. In
this vein, we propose a calibration method for continuous
response variables that significantly improves the training
process for DL methods. We used four existing data sets to
compare the prediction accuracy in terms of Mean Squared Error
Prediction (MSE) of the popular Genomic Best Linear Unbiased
Predictor (GBLUP), for the standard DL method (DL_M1) and
the new proposed calibration method (DL_M2). GBLUP was
used for comparison, as it is the most used model in genome-
enabled prediction. The genome-enabled prediction models and
methods were also compared in the absence and presence of
genotype × environment interaction.

MATERIALS AND METHODS

Data sets used in previous studies were employed here for
assessing the performance of the new calibration methods
applied to DL.

Dataset 1. Maize Grain Yield Prediction
As previously reported by Montesinos-López et al., 2016 this
dataset consists of a sample of 309 maize lines evaluated for three
traits: anthesis-silking interval, plant height and grain yield (GY).
Each trait was evaluated in three optimal environments (denoted
Env1, Env2 and Env3). It is important to point out that each line
was evaluated once in each environment, and as such, each lines
has three replications. Additionally, it should be highlighted that
we have genotypic information for the 309 lines and phenotypic
information for the 927 (309 × 3) observations, which were all
collected in the same year. The field design in each of the three
environments was a lattice incomplete block design with two
replications. Data were pre-adjusted using estimates of block and
environmental effects derived from a linear model that accounted
for the incomplete block design within environments and for
environmental effects. The lines were genotyped with 681,257
single nucleotide polymorphisms (SNPs). Markers with more
than 20% missing values and with minimum allele frequency
(MAF) of 0.05 were removed. The remaining missing markers

were imputed using observed allelic frequencies resulting in
158,281 SNPs available for further analyses. In the present
study, we compared genome-enabled prediction performance
for GY.

Dataset 2. Groundnut Seed Yield per Plant
(SYPP) Prediction
The phenotypic dataset reported by Pandey et al. (2020) contains
information on the phenotypic performance for various traits in
four environments. In the present study we assessed predictions
using the trait seed yield per plant (SYPP) for 318 lines in four
environments denotes as Environment1 (ENV1): Aliyarnagar_Rainy
2015; Environment2 (ENV2):Jalgoan_Rainy 2015; Environment3
(ENV3):ICRISAT_Rainy 2015; Environment4 (ENV4):ICRISAT
Post-Rainy 2015.

The dataset is balanced, giving a total of 1272(318 × 4)
assessments (phenotypic values) with each line included once
in each environment (four replications of each line), which were
all measured in the same year. Marker data were available for all
lines and 8,268 SNP markers remained after quality control (each
marker was coded with 0, 1 and 2); however, the makers were
obtained only for the 318 lines.

Dataset 3. Chickpea Biomass Prediction
The phenotypic dataset reported by Roorkiwal et al. (2018)
contains information for 315 lines evaluated in six
environments (denoted as 1, 2, 4, 5, 6, 7) for biomass. The
dataset is balanced with all lines assessed in all environments
(that is, four replications of each line), giving a complete
phenotypic dataset with 315 × 4 � 1890 observations. Marker
data were available for all 315 lines, with 35,527 SNP markers
available following quality control, where each marker was coded
with 0, 1 and 2, and all information was collected in the same year.

Dataset 4. Spring Wheat Grain Yield
Prediction
Spring wheat data was available from the Global Wheat Program
(GWP) at the International Maize and Wheat Improvement
Center (CIMMYT) from elite yield trials (EYT) evaluated in
four selection environments (denoted Bed5IR, EHT, Flat5IR,
FlatDrip). The dataset included the performance data from the
2016-2017 cycle from a total of 980 lines assessed in the four
environments, giving 3920(980 × 4) observations since each line
was repeated four times, once in each environment. The
experimental design was an alpha-lattice with the lines sown
in 39 sets, each including 28 lines and two checks in six blocks
with three replications. Four performance traits were assessed:
days to heading (number of days from germination to 50% spike
emergence); days to maturity (number of days from germination
to 50% physiological maturity or the loss of green color in 50% of
the spikes); plant height (measured from the ground to the top of
the spike, in centimeters); and grain yield (GY). Genome-wide
SNP markers were generated for the 980 lines using genotyping-
by-sequencing (GBS; Elshire et al., 2011; Poland et al., 2012) at
Kansas State University using an Illumina HiSeq2500. After
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filtering, 2,038 markers remained. Imputation of missing marker
data was done using LinkImpute (Money et al., 2015)
implemented in TASSEL V5 (Bradbury et al., 2007). In the
current study we assessed predictions using GY.

GBLUP Model
The model assumed for the response variable was

Yij � μ + Loci + gj + gLij + εij (1.1)

where Loci are the fixed effects of locations, gj, j � 1, . . . , J, are
the random effects of lines, gLij are the random effects of
location-line interaction, and εij are random error components
assumed to be independent normal random variables with mean
0 and variance σ2. Furthermore, it is assumed that
g � (g1, . . . , gJ)T ∼ NJ(0, σ2gG),
gL � (gL11, . . . , gL1J, . . . , gLIJ)T ∼ NIJ(0, σ2gL(I ⊗ G)), where
G is the genomic relationship-matrix as computed by
VanRaden (2008) and ⊗ denotes the Kronecker product. The
implementation of this model was done in the BGLR library of
Pérez and de los Campos, 2014.

Conventional Deep Learning (DL_M1)
We implemented the most popular deep neural network
architecture called densely connected networks (multilayer
perceptron) (Chollet and Allaire, 2017). This network does not
assume a specific structure in the input features. In general, the
basic structure of a densely connected network consists of an
input layer, one output layer (for uni-trait modeling) and
multiple hidden layers between both layers. This type of
neural network is also known as a feedforward deep neural

network (See Figure 1). The implementation of this deep
neural network is challenging because it requires many hyper-
parameters, like number of units, number of layers, number of
epochs, type of regularization method and type of activation
function. Based on available literature, we used the rectified linear
activation unit (ReLU) as the activation function in the hidden
layers, the linear activation function in the output layer and the
dropout type of regularization method for training the models
(Chollet and Allaire, 2017).

The dataset was divided into training (80%) and testing (20%).
Then each training set was divided into inner-training
(80 × 0.8 � 64%) and validation set (80 × 0.2 � 16%). With
the inner-training, we trained the 8 resulting models (grid of
eight values) by combining the following hyper-parameters: two
neurons (1.5 × Number of independent variables of each dataset,
3 × Number of independent variables of each dataset), two values
of hidden layers (with 1 and 4), two values of dropout (0.15 and
0.3), one learning rate equal to 0.001, and one value of epoch that
was fixed at 1,000. From these eight combinations, we selected the
best hyper-parameter combination in terms of prediction
performance (with mean square error or prediction (MSE) in
the validation set. Then, with the best hyper-parameter
combination obtained from the validation set, a model was
refitted with the whole information of the training (inner-
training + validation) set. Then with this refitted model,
predictions of the corresponding testing set were made.
Finally, the average of the five folds in terms of MSE was
reported as prediction performance of the conventional deep
learning method (DL_M1). This model was evaluated with (GE)
and without (NO GE) the genotype × environment interaction.
When the GE was taken into consideration, the predictor

FIGURE 1 | A feedforward deep neural network with one input layer, three hidden layers and one output layer (Montesinos-López, et al., 2021d). There are eight
neurons in the input layer that correspond to the input information and four neurons in each of three hidden layers, with only one neuron in the output layer that
corresponds to the count trait that will be predicted (Intercepts � biases not shown in this figure).
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contained the design matrix of environments (XE), genotypes (
XG; this matrix contains the raw design matrix of genotypes post
multiplied by the Cholesky decomposition of the genomic
relationship matrix) and the design matrix of the GE
interaction (XGE; this matrix was built by combining matrices
XE and XG), that is, the predictor contained the following
concatenated information: predictor�(XE, XG, XGE).
Conversely, when the GE was ignored (NO GE), the predictor
only took into account the design matrices of XE and XG, that is,
predictor�(XE, XG). However, it is important to point out that
because deep neural networks apply more than one hidden layer,
with many units (neurons) and with nonlinear transformations
(activation functions) without explicitly giving the interaction
term, XGE, they can capture complex interactions due to the way
neurons interact with each other (See Figure 1).

Calibration Method for Outputs of Deep
Learning (DL_M2)
Next, we implemented the proposed new calibration method
(DL-M2) for continuous outcomes. This involved eight steps, as
follows. First, the data was divided into training (80%) and testing
(20%) sets, as previously mentioned. Then the training data was
divided into 1) an inner-training (80 × 0.8 � 64%) set and 2) a
validation (80 × 0.2 � 16%) set. Following this, the inner-training
was divided into inner-inner-training (64 × 0.8 � 51.2%) and
inner-validation (64 × 0.2 � 12.8%). With the inner-inner-
training we trained the 8 resulting models (grid of eight
values) of combining the following hyper-parameters: two
neurons (1.5 × Number of independent variables of each data
set, 3 × Number of independent variables of each data set), two
values of hidden layers (with 1 and 4), two values of dropout (0.15
and 0.3), one learning rate equal to 0.001, and one value of epoch
that was fixed at 1,000.

From these eight hyper-parameter combinations, we
selected the best in terms of prediction performance in the
inner-validation set. Then the best hyper-parameter
combination obtained from the inner-validation set was
refitted to a model with the information of the inner-
training (inner-inner-training + inner-validation). We then
used the fitted model with the inner-training set to make
predictions of the validation data set and for the testing
data set. A linear model was then adjusted using the
observed response variable of the validation set as the
response variable and the predicted values (of the validation
set) obtained in the fitting of the inner-training set for the
validation data set as the independent variable. This step fits a
linear model of the observed validation data with the predicted
validation data previously obtained. Finally, we used this fitted
linear model for making adjusted predictions of the testing set
using only the predicted values of the testing set as input. This
step provides adjusted predictions (calibrated) of the testing
set and are the final predictions which are calibrated in this
step. The steps in this process were repeated for each training-
testing partition. In this case, there were five folds, and the
average MSE of the five folds was reported as the prediction
performance.

Applying a Cross-Validation Strategy
To evaluate the predictive performance, we used a 5-fold cross-
validation, with four folds used for training and one for testing.
The average mean square error (MSE), was computed with the
five folds, which was used to assess prediction performance in
each data set under study. For deep learning models (DL_M1 and
DL_M2), a 5-fold cross-validation was also implemented to select
the best combination of hyper-parameters. For the conventional
deep learning model (DL_M1), the 5-fold cross-validation was
implemented with a training set that was divided into inner-
training and validation, while for the proposed calibration
method (DL_M2), the 5-fold cross-validation was
implemented with the inner-training set that was divided into
inner-inner-training and inner-validation. This strategy of cross
validation mimics real applications where some lines are missing
in some environment’s, but are present in at least another
environment. This means that our approach does not mimic
scenarios where we use previous generation to predict next
generations as training. On the other hand, as pointed out by
one reviewer, other metrics can be used for evaluating the
prediction accuracy like the Person´s correlation, even though
in this application only the MSE was used. Furthermore, in this
case since we have available phenotypes (because a 5-fold cross-
validation approach was used), it was not necessary to compare
predictions with parent averages from early generations.

RESULTS

Dataset 1 (Maize Data set)
Analysis of Dataset 1 showed that the best prediction
performance when including genotype × environment (GE)
interaction was observed using GBLUP (Figure 2). Across the
sites, the best predictions were observed under environment KAK
while the worst were observed under environment KTI. When
comparing the conventional deep learning method (DL_M1)
with our proposed method for calibrating deep learning
models (DL_M2), we observed that the proposed calibration
method improved the genome-enabled prediction performance
based onMSE. Ignoring the GE interaction term in environments
EBU, KAK and KTI, DL_M2 reduced the MSE with regard to
DL_M1 by 17.188, 4.273 and 19.469%, respectively. However, the
DL_M2 prediction performance in terms of MSE was worse than
the GBLUP method, which outperformed DL_M2 at all sites by
16.179% (EBU), 18.298% (KAK) and 12.370% (KTI).

When the GE interaction was taken into account, the DL_M2
method reduced the MSE compared to DL_M1 by 8.354, 1.487
and 16.258% in environments EBU, KAK and KTI, respectively.
However, although the improvement of DL_M2 over DL_1 is
significant, the GBLUP method still outperformed DL_M2
method by 15.268, 20.753 and 13.848% in environments EBU,
KAK and KTI, respectively.

Finally, across environments (Figure 3), the best prediction
performance was observed from the GBLUP and the worst from
the DL_M1 method. GBLUP outperformed DL_M2 by 12.296%
andDL_M1 by 37.616%, whilst DL_M2 outperformed DL_M1 by
18.399%. Accounting for the GE interaction, GBLUP
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FIGURE 2 | Dataset 1. Prediction performance in terms of mean square error (MSE) for each environment of the maize dataset under models: DL_M1, DL_M2 and
GBLUP. No GE means that the model ignores the genotype ×environment interaction. GE means that the model takes the genotype × environment interaction into
account.

FIGURE 3 |Dataset 1. Prediction performance in terms of mean square error (MSE) across environments for the maize data set under models: DL_M1, DL_M2 and
GBLUP. No GE means that the model ignores the genotype ×environment interaction. GE means that the model takes the genotype × environment interaction into
account.
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FIGURE 4 | Dataset 2. Prediction performance in terms of mean square error (MSE) for each environment of the groundnut dataset under models: DL_M1, DL_M2
and GBLUP. No GE means that the model ignores the genotype ×environment interaction. GE means that the model takes the genotype × environment interaction into
account.

FIGURE 5 | Dataset 2. Prediction performance in terms of mean square error (MSE) across environment of the Groundnut dataset under models: DL_M1, DL_M2
and GBLUP. No GE means that the model ignores the genotype × environment interaction. GE means that the model takes the genotype × environment interaction into
account.
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FIGURE 6 | Dataset 3. Prediction performance in terms of mean square error (MSE) across environments for the chickpea dataset under models: DL_M1, DL_M2
and GBLUP. No GE means that the model ignores the genotype × environment interaction. GE means that the model takes the genotype × environment interaction into
account.

FIGURE 7 |Dataset 4. Prediction performance in terms of mean square error (MSE) across environments for the elite wheat yield trial (EYT) year 2016–2017 dataset
under models: DL_M1, DL_M2 and GBLUP. No GEmeans that the model ignores the genotype × environment interaction. GEmeans that the model takes the genotype
× environment interaction into account.
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outperformed both the DL_M1 and DL_M2 by 26.491 and
10.686%, respectively. With GE interaction, DL_M2 reduced
the MSE compared with the DL_M1 by 12.495%.

Dataset 2 (Groundnut Dataset)
Figure 4 displays the genome-enabled prediction performance
(MSE) including (or not) the GE interaction under the GBLUP,
DL_M1 and DL_M2 methods in the four environments. The
proposed method of calibration (DL_M2) improved the prediction
performance of conventional deep learning method (DL_M1). When
ignoring the GE interaction term, the DL_M2 method reduced the
MSE comparedwithDL_M1by 16.591, 10.004, 2.538 and 11.514% in
environments ALIYARNAGAR_R15, ICRISAT_PR15-16,
ICRISAT_R15 and JALGOAN_R15, respectively. The GBLUP
method outperformed the DL_M2 method in three out of the
four environments by 8.80% (ALIYARNAGAR_R15), 12.519%
(ICRISAT_PR15-16) and 1.096% (ICRISAT_R15). The worst
predictions were observed under environments
ALIYARNAGAR_R15 and JALGOAN_R15, while the best were
observed under environments ICRISAT_PR15-16 and
ICRISAT_R15.

Considering GE interaction, the DL_M2 method improved
the prediction performance compared with the DL_M1 method
in environments ALIYARNAGAR_R15, ICRISAT_PR15-16,
ICRISAT_R15 and JALGOAN_R15 by 13.256, 7.766, 6.238
and 11.368%, respectively. The GBLUP method overcame the
DL_M2 method by 13.864, 20.078, 12.763 and 12.423% in
environments ALIYARNAGAR_R15, ICRISAT_PR15-16,
ICRISAT_R15 and JALGOAN_R15, respectively (Figure 5).

When ignoring the GE interaction across environments
(Figure 5), the worst predictions were observed under
the DL_M1 method and the best under the GBLUP method. The
GBLUP outperformed the DL_M2 method by 5.535%, while the
DL_M2 outperformed the DL_M1 by 12.229%; the GBLUPwas also
better than the DL_M1 by 20.045%.When including GE interaction,
results showed that DL_M1 was the worst method and the GBLUP
was the best, but now the GBLUP outperformed the DL_M1 and
DL_M2 methods by 23.116 and 9.929%, respectively. However, for
this dataset, DL_M2 outperformed the DL_M1 by 10.711%.

Dataset 3 (Chickpea)
Ignoring GE in the across environments case, Figure 6 indicates
that the best predictions were observed under the GBLUP method
and the worst under the DL_M1method. Furthermore, the GBLUP
outperformed the DL_M2 method by 10.082%, while the DL_M2
outperformed the DL_M1 by 4.402% and the GBLUP outperformed
the DL_M1 by 15.152%. Considering the GE interaction, the
GBLUP was the best method and the DL_M1 the worst, where
the GBLUP outperformed the DL_M1 and DL_M2 by 53.679 and
36.616%, respectively. Results show that compared with the DL_M1
method, the DL_M2 reduced the MSE by 11.102%.

Dataset 4 [Elite Wheat Yield Trial (EYT) Year
2016–2017]
Results for across environments are displayed in Figure 7.
When no GE was included, the best predictions were observed

under the DL_M2 method and the worst under the GBLUP
method; the DL_M2 outperformed the GBLUP method by
5.906%, while the DL_M2 outperformed the DL_M1 by
1.519% and the DL_M1 outperformed the GBLUP by
4.454%. When considering the GE interaction, the GBLUP
was the best and the DL_M1 the worst, where GBLUP
outperformed the DL_M1 and DL_M2 by 35.18 and
32.805%, respectively. Compared with the DL_ M1, the
DL_M2 reduced the MSE by 1.757%.

DISCUSSION

Genomic selection helps save significant resources for the early
selection of candidate genotypes because instead of phenotyping
and genotyping all the candidate lines, only a sample of them are
phenotyped and genotyped. For the remaining individuals that
were only genotyped, genome-enabled predictions of the
phenotypic values are performed. This means that the
accuracy of GS is linked to the quality of the predictions, and
the better the predictions, the more accurate the GSmethodology.
Thus, continuing research to improve the quality of the
predictions using GS is of paramount importance. For this
reason, this research proposed a simple and novel calibration
method to improve the predictions resulting from deep learning
methods.

The proposed method was evaluated in four datasets and we
found that in three out of the four datasets, the proposed calibration
method improved the predictions over conventional deep learning
methods. The increase in prediction performance in these four
datasets was between 1.519 and 18.39% across environments,
which empirically reflects that the proposed calibration method
(DL_M2) is quite efficient for improving the prediction power of
deep learning models. However, it is important to point out that we
did not find that the proposed calibration method outperformed the
predictions of the GBLUPmethod, one of themost popular genomic
prediction models. In fact, the GBLUP method outperformed the
proposed calibration method (DL_M2) across environments
between 5.535 and 36.616% in the four data sets.

However, taking into account the standard errors in most of
the scenarios under study no statistical differences were observed
between the proposed DL_M2 and the GBLUP method. Two
reasonable explanations as to why the GBLUP method
outperformed the proposed deep learning method even with
the proposed calibration method could be that the four data
sets are: 1) small and, as pointed out above, the deep learning
methods are data hungry, and 2) they do not have complex
nonlinear patterns. It is also important to highlight that our
results only used markers (not pedigree) information, whereas
some researchers have reported similar results using both
pedigree and markers (Ankamah-Yeboah et al., 2020; Calleja-
Rodriguez, et al., 2020). Furthermore, the training process with
the two deep learning methods (DL_M1 and DL_M2) was
considerable slower than the conventional GBLUP method.

The proposed method is attractive for four reasons: 1) its
implementation is straightforward, 2) it is a post-processing
method, 3) it helps increase the prediction performance of deep
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learning methods and 4) even with a small grid for the tuning
process of the DL model, the proposed calibration method will
provide reasonable predictions. We observed that the proposed DL
method works better with smaller data sets, which is of paramount
importance because the lower the data set, the harder the training
process of deep learning methods become, since it is well
documented that deep learning methods are data hungry (Chollet
and Allaire, 2017; Chollet, 2018). In deep learning methods, the
prediction accuracy is strongly influenced by the sample size, the
heritability, the genetic architecture of the trait of interest, the
genome structure of the species under study (Daetwyler et al.,
2010; Schopp et al., 2017) and the mating design and family
structure of the training set (Hickey et al., 2014). The relatedness
between the training and testing sets also plays an important role
(Habier et al., 2007; Saatchi et al., 2011; Clark et al., 2012; Lorenz and
Nice 2017).

Note that the results presented in this study are not completely
definitive, as more empirical evidence is required to be able to
claim that the proposed method really helps improve the
prediction performance of deep learning methods. The current
results are attractive since we observed that the proposed
calibration method (DL_M2) helped to more efficiently train
deep learningmodels with an increase in prediction accuracy over
the conventional DL methods (DL_M1) that is not negligible.
Although the conventional GBLUP method behaves as the best
model for the medium to large size data sets included in this
study, there are cases where the DL_M1 and the DL_M2
overcame GBLUP genome-enabled prediction, as in the case
of data set 4 (wheat data set) and provide similar results to
those obtained by Montesinos-Lopez et al. (2019a,b).

DLmethods should be used over conventional linearmodels (like
the GBLUP) when it is suspected that the data contain nonlinear
patterns. In this vein, one important advantage of DL over
conventional methods for genome-enabled prediction is that the
whole genetic merit, including all non-additive effects, can
potentially be predicted without the need to partition all effects
(Zingaretti et al., 2020). It should also be noted that DL consists of a
number of layers of neurons and is a hierarchical information
extraction process, which is exemplified by the classifications of
objects byDLwith images (Lee et al., 2009; Chollet, 2018). In the first
layer, neurons detect simple and basic features of objects; in the
intermediate layers, they detect parts of objects (Chollet and Allaire,
2017; Chollet, 2018); and in the top layers, they code for objects. For
this reason, as pointed out in, DL offers many areas of opportunities
that should be explored in order to take the full advantage of this
technology. Some of these areas of opportunities are:

1) modifying, adapting, or inventing new DL architectures,
activation functions, and tuning strategies for the specific
context of GS;

2) adapting, improving, and developing more user-friendly
software for DL applications in GS;

3) performing greater benchmarking studies to compare the
prediction performance of existing DL methods to those that
are the standard genome-enabled predictions in GS;

4) exploring transfer learning for GS. The goal of transfer
learning is to use the knowledge learned from one specific

set of environments to ease the learning tasks in another
different but similar environment;

5) exploring how to use reinforcement learning in the context
of GS;

6) exploring deep generative models (generative adversarial
networks (GANs) and variational auto-encoder (VAE)
methods to generate new inputs (fictitious markers or
independent variables) that are indistinguishable from the
original training set;

7) training or retraining breeders and people involved in
genomic prediction in these new frameworks for DL, as
exemplified by Keras (Chollet and Allaire, 2017);

8) exploring the deep compression methods in GS to reduce the
computation and storage required by neural networks;

9) increasing our efforts for data sharing in platforms to
create large data sets for each species containing not only
phenotypic and markers data, but also environmental
information and other omics data (Montesinos-López et al.,
2021a,c,d);

10) taking advantage of DL tools to include in the predictor
imaging information that is being collected in plants and to
alsomeasure using computer vision tools phenotypic properties
that are fast, non-invasive and low-cost (Fahlgren et al., 2015).

Nevertheless, researchers and practitioners must be aware that DL
is not always the rightmethod, and for this reason, we need to be open
to trying other models. As pointed out in Montesinos-López et al.
(2021a), there is still not enough empirical evidence that deep learning
methods outperform conventional genomic prediction models or
that DL methods are more computationally demanding.
However, we need to be conscious that deep learning is just
starting to be used in genetics and plant breeding and is not well
researched, especially for its optimal implementation in this
area of research (Varshney R. K. et al., 2021). In this study, we
used a feed-forward deep neural network also known as
multilayer perceptron neural network and, for this reason,
our results are limited to this type of architectures
(topologies). More empirical evaluations are needed to
corroborate that the proposed method is also efficient for
other deep learning architectures.

CONCLUSION

In this paper we proposed a simple calibration method for outputs
from deep learningmethods with continuous response variables.We
found that the proposed calibration methods help to
significantly improve prediction accuracy obtained from deep
learning methods, and even greater improvement in smaller
data sets. The proposed DL method contributes to the training
process in the context of small data sets. However, we suggest
performing more empirical evaluations to accumulate more
evidence of the utility of the proposed calibration method.
Another advantage of the proposed calibration method is
that it is a post-processing method that is very simple to
implement, as it involves only a few and simple steps. In
general, results demonstrated that no unique model/method
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exists for producing the most accurate genome-enabled
predictions.
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