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A B S T R A C T

Chickpea is an important livelihood option and nutritious food source for many subsistence farming commu-
nities in the developing world. Although India is the biggest chickpea producing nation, the demands of its
growing population are not met by domestic production. This study uses a modelling approach to quantify the
region-specific constraints and yield gaps limiting chickpea productivity and evaluates the potential for boosting
production in the major chickpea growing regions of India. Information on bio-geo-physical properties (weather,
soil, crop, management) of these regions was collated and the SSM-iLegume model used to reproduce seasonal
variability and potential yield for the major chickpea producing districts to estimate the yield gap. Further, we
estimated the difference between the yield potential and the currently achieved yields; i.e. yield-gap. The results
showed that India has the capacity to produce 40% more chickpea (i.e. 80% of the achievable yield) than is the
current production status under the standard crop management practices. We also found that chickpea crop
production in rain-fed systems is largely limited by water availability during the season (∼64%) but with large
variability in the drought stress effect on yields between the investigated districts. Observed geo-bio-physical
properties of the districts and simulation results of yield gap analysis were used to cluster chickpea-growing
districts into six distinct units with higher degrees of similarities; i.e. homogeneous system units (HSU). Within
each HSU a similar system response to genotype-by-management (GxM) intervention is expected and the effects
of particular interventions could be further tested using the modelling set-up developed for this study. The
identified HSUs, each with a well-defined set of yield-limiting constraints, are proposed as authentic breeding
units in crop improvement programs (“target population of environments”) and we further discuss the need to
use the HSU-specific breeding strategy to enhance chickpea production in India.

1. Introduction

Due to increasing concerns about the future food and nutrition se-
curity, maximizing crop production remains an important agricultural
research target (Foley et al., 2011). The uncertainty that climate change
brings is a major concern for the agricultural systems already burdened
by adverse climates and many yield limiting factors – e.g. the semi-arid
tropical (SAT) cropping systems.

One of the sensible approaches to dealing with these uncertainties is
to analyze the major constraints of a given cropping system and design
the appropriate interventions to lift up the current yields closer to their
achievable potential, e.g. through introduction of adapted cultivars or
more suitable crop management practices (Soltani et al., 2016; Pradhan
et al., 2015; Chauhan and Rachaputi, 2014). Although testing the

genotype, environment, and management interactions (GxExM) ex-
perimentally in the field ultimately reflects the ground reality, this
approach is usually very limited by the number of seasons, sites, cul-
tivars and management combinations which can be realistically eval-
uated. By contrast, cropping system productivity under dynamic GxExM
scenarios can be reasonably well captured using system-crop modelling
tools (Hall and Richards, 2013; Grassini et al., 2015). Cropping systems
analysis using mechanistic models allows the estimation of production
potential, understand system limits and define the most suitable system
interventions which will result in productivity improvements by testing
GxExM combinations in-silico (van Ittersum et al., 2013; Anderson
et al., 2016).

Yield gap analysis is a methodology which has been developed to
navigate and understand system constraints and to explore ways to
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increase crop production (Hoffmann et al., 2015, 2017; van Ittersum
et al., 2013). A yield gap is the difference (gap) between yield currently
achieved on farms and the yield that can be achieved by using the best
agronomy practices on-station (in-vivo) or simulated (in-silico) (van
Ittersum et al., 2013; Lobell et al., 2009).

Crop models have been shown to be a relevant method to estimate
yield potential under rain-fed and irrigated conditions as crop models
can account for variation in weather, soil, crop and management and
their interactions (Lobell et al., 2009; van Ittersum et al., 2013;
Holzworth et al., 2014; Anderson et al., 2016). In-silico scenario ana-
lysis can further help us to design strategies with the highest probability
to increase the yield per unit of land (i.e sustainable intensification),
especially for countries like India where expansion of agricultural lands
is limited (Alexandratos and Bruinsma, 2012). Sustainable intensifica-
tion may also reduce the rate of agricultural land exploitation in other
cases (van Wart et al., 2013; Bommarco et al., 2013; Foley et al., 2011).

Crop simulations have been used to classify the crop production
regions into a “target populations of environment” suggested by Cooper
et al. (1997), Chapman et al. (2000), Chenu et al. (2011), i.e. homo-
geneous system units with high degree of environment-management-
socioeconomic similarities which allow designing a unique crop-man-
agement intervention (Chauhan and Rachaputi, 2014). To date, yield
gap studies largely focus on cereals, especially wheat, maize and rice
which account for a major part of the human staple diet (e.g. Hochman
et al., 2013; Meng et al., 2013; Lu and Fan, 2013; Schulthess et al.,
2013; Tanaka et al., 2013; Tanaka et al., 2015; Deihimfard et al., 2015;
Liu et al., 2016; Xu et al., 2016).

The sole fact that the yields and production of pulses crops have
been stagnant, especially in semi-arid tropics (SAT; Nedumaran et al.,
2013), calls for more research on legume cropping systems. The limited
yield gap analyses which have been conducted for various pulse crops
in India (Bhatia et al., 2006, 2008) all indicate huge opportunities to
increase production in these systems. It is, therefore, surprising, that a
rigorous study has not been conducted for chickpea in India, despite
India being the largest global producer of pulses (∼30% share) and
consumer of pulses (Nedumaran et al., 2013), with an imperative to
reduce expensive pulse imports (Ali and Gupta, 2012; FAO, 2016,
Anderson et al., 2016). This situation implies that previous system in-
terventions have not resolved the region-specific production constraints
and calls for more appropriate systems interventions for the complex
SAT agro-ecologies (e.g. Pradhan et al., 2015; Mace and Jordan, 2011;
Vadez et al., 2013, Kholová et al., 2014; Chauhan and Rachaputi,
2014).

Therefore, the main objectives of this study were to i) to identify the
main chickpea production systems in India and use the crop modelling
to estimate productivity, ii) characterize and understand the main
production systems limitations using a yield gap analysis approach, iii)
define homogeneous chickpea system units using the geo-bio-physical
and model-outputs indicators generated in i) and ii); and iv) based on
the findings, lay the ground for further analysis of region-specific
constraints and interventions to increase production in these systems.

2. Materials and methods

The main aim of this study was to collect relevant data and develop
sound methodology to segregate the major chickpea production tract in
India into the geo-bio-physically distinct units with high degree of si-
milarities which could be further considered as authentic units in
support of breeding programs (“target population of environments”,
TPEs). To achieve this, we gathered district-wise time-series data of
chickpea area (ha), production (kg) and productivity (kg ha−1). Based
on this information, we defined the major chickpea production tract as
districts encompassing 75% of the total area sown to chickpea. We also
gathered information about common field management practices, cul-
tivar main characteristics and soil information relevant for each district.
To compensate for erratic coverage and low quality of observed

weather information across our focus area, we chose to evaluate and
use a synthetic weather data as a substitutes. This information was
further used to simulate the chickpea yields and compare with observed
records (yield gap analysis). All observed and simulated geo-bio-phy-
sical properties of the districts within the major production region were
finally used to sensibly separate the district into clusters with similar
degrees of homogeneity (“homogeneous chickpea system units”) which
are proposed as authentic breeding units to support the crop improve-
ment programs (“target population of environments”).

2.1. Definition of target chickpea production systems

To define the main chickpea production tract in India we gathered a
time-series (1996–2010) of district-level area (ha/district), production
(kg/district), yield (kg ha−1) and information on proportion and mode
of irrigated area in∼280 districts in India (Ministry of Agriculture and
Farmers Welfare, Govt. of India). The time-series (1996–2010) chosen,
represents the period where records were available for all districts and
were considered to capture the seasonal variability in yields of the re-
cent locally preferred cultivars. Consequently, we sorted the districts
according to the average area under chickpea cultivations and selected
the districts where at least 75% of the total area was under chickpea
cultivation (the district minimum average production area was
45,000 ha in the latest 15 years). This exercise defined the area of our
interest; i.e. major chickpea production tract in India (Fig. 1). To create
a continuous geographical unit we also included few of the adjacent
districts (i.e. 29 adjacent districts) therefore our analyses finally en-
compassed 78 districts covering 82% of total chickpea cropping area
between the base periods (1996–2010).

2.2. Environment (Soil and weather data)

Soil data were compiled from the National Bureau of Soil Survey
and Land Use Planning (NBSS & LUP) in Bangalore, the International
Soil Reference and Information Centre (ISRIC) and the main soils
overview could be found at http://droppr.org/data/map/hc27. In the
main chickpea production tract in India, as defined above, there were
five most prevalent soil types with different effective soil depth and
these were chosen to represent the region. At the whole India scale, we
assumed these five dominant soil types sensibly represented the soil
heterogeneity across major chickpea tract and so these were allotted to
each simulation unit; Chromic Luvisol, Calcaric Arenosol, Eutric
Cambisol, Vertic Cambisol and Ferric Luvisol.

As there is a general lack of quality weather information accessible
in India (refer to Fig. 1) we chose to evaluate two synthetic weather
data information in order to increase the coverage of major chickpea
production system. For this exercise, two sets of synthetic weather data
including MarkSim (Jones and Thornton, 2000; Jones et al., 2002) and
AgMERRA (Ruane et al., 2015) were compared with available observed
weather data (Tmin, Tmax, rainfall quantity and distribution, chickpea
yield simulated based on this information) from 23 weather stations
(similarly in Van Wart et al. (2015) Fig. 1). Solar radiation was esti-
mated using algorithm based on information of sunshine hours and
extraterrestrial radiation (Soltani and Hoogenboom, 2003a, 2003b;
Soltani and Sinclair, 2012b).

The suitability of the synthetic weather records were compared
according to i) their correlation with observed Tmax and Tmin and sum of
rainfall and ii) the kernel density plots expressing both the pattern and
amount of each rainfall during the growing season of chickpea using
SAS software (v.9.3). iii) Finally, to assess the integrated effect of
synthetic data (AgMERRA or MarkSim) on simulations, the mean si-
mulated yields using observed weather data were compared against
yields using synthetic weather data belonging to the same locations.
The correlation coefficient and the root mean square of error (RMSE)
was computed to evaluate the degree of agreement between these data
sources (Fig. 3a and b). Based on these three criteria, we continued the
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Fig. 1. This map shows 75% of chickpea production area which is highlighted in green and 23 weather stations with available weather records across India.
Highlighted area encompasses 49 districts with ∼5M ha of cultivated chickpea area with average yields of 800 kg ha−1. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Comparison of temperature from the
synthetic AgMERRA weather dataset with ob-
served temperature (a) and rainfall from the
synthetic AgMERRA weather dataset with ob-
served rainfall (b). Tmax and Tmin have shown
with red and blue color circles, respectively.
Rainfall amount is the monthly average for five
months of growing season of chickpea (Oct-
Feb). Red line is 1:1 line and the black lines
showed 30% upper and downer of red one.
(For interpretation of the references to colour
in this figure legend, the reader is referred to
the web version of this article.)
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work with gridded data of AgMERRA (Figs. 2 and 3, Suppl. Figs. 1–23;
refer to result section).

2.3. The crop model

For generating simulated yields, we chose to use a chickpea module
of SSM-iLegume-Chickpea model (Soltani and Sinclair, 2011, 2012a)
which is a simple mechanistic model earlier used in yield gap analysis
of chickpea (Soltani et al., 2016, van Ittersum et al., 2013). SSM-iLe-
gume-Chickpea simulates phenological development, leaf development
and senescence, dry matter production and partitioning, plant nitrogen
balance, yield formation and soil water balance. This model can capture
separate genotypes and their biological responsiveness to environ-
mental factors; solar radiation, photoperiod, temperature, nitrogen and
water availability. The model uses a daily time steps to arbitrate the
crop, weather and soil information and have the flexibility to simulate
management practices (details in Soltani and Sinclair, 2012a). Since far,
the model doesn’t have capacity to simulate the soil-crop phosphorus
dynamics or the effects of pest and diseases. Despite, SSM-iLegume
model has been shown highly reliable in studies encompassing the wide
range of environments for various legume species including chickpea
(Vadez et al., 2012; Vadez et al., 2013; Soltani et al., 2006; Soltani and
Sinclair, 2011; Amiri-Deh-Ahmadi et al., 2014), soybean (Sinclair et al.,
2014), bean (Marrou et al., 2014), lentil (Ghanem et al., 2015) and
groundnut (Vadez et al., 2017).

The necessary model inputs are: i) daily weather information ii) soil
information iii) crop management practices and iv) genotype-specific
coefficients defining the key biological processes. At the harvest, the
grain water content of chickpea is usually around 12%, therefore, the
simulated grain yields presented here were also adjusted for this per-
centage of moisture content (Soltani et al., 2016).

2.4. Simulation set-up and yield gap analysis

Rather than capturing the diversity in of the on-farm crop man-
agement practices, the purpose of this modelling exercise was to si-
mulate a broadly valid baseline that reflect the major dynamic char-
acteristics of the chickpea systems. We chose to set such baseline
simulation analysis using the recommended chickpea cultivation prac-
tices collated from Trivedi (2009), Vittal et al. (2005), and from expert
consultation (Table 1). We assumed the soil moisture profile at sowing
time was fully charged after the rainy season and also reflecting the
common practice of pre-sowing (Trivedi, 2009). Being capable of fixing
atmospheric nitrogen through rhizobial symbiosis, chickpea crop re-
quires only a small amount of basal N application for establishment
prior to the formation of nodules. This requirement is accounted for by
the recommended basal fertilizer dose ∼20 kg ha−1 of di-ammonium
phosphate (Trivedi, 2009; H(NH4)2PO4; 18% N content) which equals
to initial soil nitrogen content of 2.11 g Nm−2 as the SSM-iLegume

model input.
The common sowing window of chickpea in India is conditioned by

the harvest of the rainy season (Kharif) crop starting from the early
October in the south and later sowing until the last week of November
in the northern regions. Late sowing in the north is also necessary to
avoid cold temperatures during the flowering time. Therefore, after the
discussion with experts, four different sowing dates spanning from 5th
October to 15th November were used to reflect the prevailing chickpea
cropping systems across the latitudes covered in this study. In general,
chickpea cultivated in the northern latitudes is characterized by a long
growing cycle which gradually decreases towards the southern regions.
To reflect this variability, three different sets of phenology parameters
were used across the main production tract (Table 2). These phenology
parameters were synthetized and re-iterated from Vadez et al. (2013):

Fig. 3. Comparison of yield by running model
with observed weather data versus running
model with synthetic data of AgMERRA (a) and
MarkSim (b). Four points in the right figure
belong to North India stations. The point with
high yield is a station in the coastal area of
Andhra Pradesh province with high rainfall
during chickpea growing season. Red line re-
presents 1:1 line and the black lines harbor
30% upper and lower percentile of 1:1 one.
(For interpretation of the references to colour
in this figure legend, the reader is referred to
the web version of this article.)

Table 1
The range of characteristics used for simulations of the main chickpea pro-
duction region in India.

Management and soil inputs Conditions

Sowing window 5 October–15 November
Plant density 33 plants m−2

Soil drained upper limit 0.09–0.41 cm cm−1

Soil saturation limit 0.35–0.49 cm cm−1

Volumetric extractable water content 0.10–0.13 cm cm−1

Soil albedo 0.13–0.14
Curve numbera 73–82
Soil depth 75–180 cm
Initial soil nitrogen 2.11 gr Nm−2

a Daily runoff (RUNOF, mm) is calculated using a simplified curve number
procedure developed by scientists at USDA-Soil Conservation Service (SCS). In
the curve number method, daily surface runoff is calculated as a function of
daily rainfall (RAIN, mm) and a soil retention parameter (From Soltani and
Sinclair, 2012b).

Table 2
Main phenology parameters used in simulation. Reiterated phenology para-
meters estimates which represent cultivars typically grown in Northern lati-
tudes (“Hisar” cultivar), in Central and some Southern regions (“ICRISAT”
cultivar) and JG-11 in the remaining Southern parts were used.

Cultivar Phenology

EMR1a R5R7b

Hisar 56.3 43.8
ICRISAT 38.9 30.3
JG-11 36.5 35.0

a EMR1, Biological days required between plant emergence and flower ap-
pearance (R1).

b R5R7, Biological days required between first seed (R5) and physiological
maturity (R7).
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The “ICRISAT”/“Hisar” cultivars encompass the parameters of popular
cultivars grown in Central and some Southern/Northern latitudes
(Table 2). For the specific Southern parts of the chickpea production
tract, the popular JG-11 cultivar (Gumma et al., 2016) coefficients were
re-calculated from the JG-11 specific coefficients existing in DSSAT
(Singh et al., 2014). Consequently, the model was run for 30 years of
AgMERRA synthetic data to cover the major chickpea cropping area.
The simulations provided an estimate of:

1) Potential yield (Yp); the maximum yield of a crop cultivar grown in
optimal water and nutrient supply without biotic stress (Lobell
et al., 2009; van Ittersum et al., 2013).

2) Water-limited potential yield (Yw); reflects the rain-fed cropping
conditions when crop is raised without any supplementary irrigation
(van Ittersum et al., 2013).

3) Partially-irrigated yield potential (Ypi); represent the records on the
irrigation access across the regions in India and is designed to mimic
the most probable region-specific irrigation scheme practiced by
farmers – in this case one supplementary irrigation (60mm) at
flowering stage (Trivedi, 2009). This system is broadly re-
presentative of farmer practice across the regions.

For estimating the yield gap (Yg), the weighted potential yield (Ywp)
was calculated according to the information on proportion of irrigated
and rain-fed area of each district:

Ywp,i = [(Yw,i ×Arainfed,i)+ (Ypi,i ×Airrigated,i)] (1)

Where, Ywp,i is the weighted potential yield in district i, Yw,i is the
water-limited potential yield in district i, Ypi is partially-irrigated yield
potential, Arainfed,i is the total rain-fed area of cultivated chickpea in
district i and Airrigated,i is the total irrigated area of cultivated chickpea
in district i.

Consequently, Yg is the difference between weighted potential yield
(Ywp, equation 1) and average farmers yield (actual observed yield; Ya):

Yg,i = Ywp,i− Ya,i (2)

The difference in yield between water limited and water non-limited
condition; i.e. the proportion of yield which is lost due to the effect of
water deficit was estimated for each district:

(Yp–Yw)/Yp×100 [%] (3)

The effect of one supplementary irrigation at flowering stage on
yield was also calculated as below:

(Ypi− Yw)/Ypi× 100 [%] (4)

2.5. Identification of homogeneous system units (HSU) across production
environments

Observed and simulated geo-bio-physical properties of each district
described above were used to define the homogeneous system units; i.e.
latitude, climate (temperature, rain, ET), soil (WHC, depth), actual yield,
crop characteristics (Max LAI, duration of chickpea growing season), si-
mulated yields (Yp and Yw), yield gap (Yg), effect of water deficit and
supplementary irrigation and proportion of irrigation. To evaluate the
degree of similarities between the districts this information was analyzed
by principal component analysis (PCA; R software v.3.2). PCA output
indicated the loadings of first 4 components explained majority of the
variability existing in the dataset (>85%). Therefore these 4 loadings
specific for each simulation unit were used to further separate these si-
mulation units into 6 clusters. We have confirmed the significant differ-
ences between separate clusters using one-way ANOVA. Each of these 6
clusters, therefore, encompassed the districts with comparatively higher
similarities in the loaded geo-bio-physical properties (HSUs) and the re-
sults were visualized using ArcGIS software v.9.3.

3. Results

3.1. Main chickpea production systems and actual yield (Ya)

Chickpea is cultivated in about 280 districts across India (around
8M ha producing 7.5M tons or ∼0.9 t of grain/ha in the recent
decade). However, among this large number of districts, 78 districts
encompassed 82% of the total chickpea cropping area (around 5M ha in
recent decades) in the country and so defined the focal area of our study
(Fig. 1). Analyzing a 15 years timespan of chickpea cultivation records
for this focal area was considered a reasonable base period across which
to describe the major production tract in India (van Ittersum et al.,
2013). The average Ya of these 78 districts was 802 kg ha−1 with the
highest Ya recorded at the costal districts of Andhra Pradesh (Praksam
with 1570 kg ha−1) and the lowest yields were generally attained in
Rajasthan districts (Churu with 328 kg ha−1).

3.2. Covering the main production systems with reliable weather
information

The suitability of the synthetic meteorological information
(AgMERRA/MarkSim) for this particular exercise was assessed by
comparing this data with observed meteorological records and by
comparing simulated yield outputs of synthetic vs observed meteor-
ological information – i.e. using the virtual plant as a weather data
quality indicator (Fig. 3a and b). We found that yield predictions based
on observed weather information was best correlated to the simulation
that used AgMERRA data (RMSE=159 kg ha−1; Fig. 3a), compared to
those generated with MarkSim data (RMSE=342 kg ha−1; Fig. 3). The
larger RMSE of MarkSim data was mainly caused by inability of
MarkSIM data to capture variation in T and rainfall especially in
northern latitudes which resulted in overall yield underestimation in
these geographies (Fig. 3b). For these reasons we carried out the further
modelling analyses with synthetic AgMERRA data.

3.3. Crop production potential and its limitations

Across the diverse environments, the mean of simulated potential
yield (Yp) was 2965 kg ha−1 (minimum of 2254 kg ha−1 in Fatehpur
and maximum of 4432 kg ha−1 in Sikar and Hamirpur). Comparatively
lower was the mean of simulated water-limited potential yield
(Yw)= 1013 kg ha−1 (minimum of 727 kg ha−1 in Ajmer and max-
imum of 1913 kg ha−1 in Prakasam). These two estimates (Yp and Yw)
were used to assess the potential magnitude of yield losses in rain-fed
systems specific for particular districts; i.e. yield reduction due to
drought reflecting the situation where farmers don’t use irrigation
(Fig. 4; the difference between blue proportion of the circles (Yp) and
white proportion of the circles (Yw). In average, 64% (min 25%; max
82%) of Yp was lost due to water deficit in the absence of supplemen-
tary irrigation. Here, the lowest risk of water deficit was associated with
three districts in Andhra Pradesh state, which had generally sufficient
in-crop rain and crop was raised on deep soils (Prakasam, Cuddapah
and Anantapur, with 24, 36 and 43% water deficit yield loss) whereas
over the three quarters of yield potential could be lost due to water
deficit in Rajasthan characterized by low in-crop rain and poor sandy
soil (Ajmer, Tonk and Sawai Madhopur, with 82, 81 and 79% respec-
tively). Furthermore, we quantified the effect of the common farmer’s
practice when the irrigation could be accessed, i.e. one supplementary
irrigation at flowering stage. The estimated yield with such irrigation
practice (Ypi) was 1872 kg ha−1 on average (maximum of 2317 kg ha−1

in Praksam and minimum of 1361 kg ha−1 in Ajmer) which means that
a considerable proportion (up to 55% in some districts) of yield gap
caused by drought (Yp− Yw) could be potentially bridged with one
supplementary irrigation (Ypi− Yw).

Finally, according to the specific proportion of irrigated area of each
districts within the major chickpea production region, we defined a
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measure of yield potential attainable with current irrigation practice
(i.e. Ywp ∼1333 kg ha−1 in average which varied between 762 and
1953 kg ha−1). Consequently, we defined the yield gap (Yg) for each
district as a difference between the simulated yield attainable using
current irrigation practices (Ywp) and evaluated yield average during
recent 15 years (Ya); Yg= Ywp− Ya. Yg was found to vary between 204
and 1194 kg ha−1 with an average ∼530 kg ha−1 (i.e. 20–76% of Ywp

with a mean Yg of 40%; Fig. 5). Fig. 5 points out to the Northern dis-
tricts of Rajasthan where farmers hardly reached half of the yield po-
tential (Ywp) with frequent records of seasons with complete yield
failures. In such cases, where a supplementary irrigation did not fill the
yield gap we suggest that other limitations to yield occurred, e.g. pest
and diseases. Accordingly, the highest Yg as percentage of Ywp (76%)
was obtained for Churu, Rajasthan (equal to 1036 kg ha−1). Contrarily,
the lowest Yg was observed in Prakasam district in costal part of Andhra
Pradesh with 20% of Ywp (equal to 383 kg ha−1).

3.4. Homogeneous chickpea production units within the main chickpea
production tract

The above generated information was used to separate the district
into units tangible within the breeding programs. For this, the most
informative, observed and modelled, bio-geo-physical characteristics
(Table 3) for each districts were analyzed using PCA. Such analysis
showed that relations between these characteristics could be described
by four principal components (PCs) explaining> 85% of variability in
this dataset. The loadings for these four main PCs specific for each
district were further clustered into 6 geo-bio-physical units unifying the
districts with higher degree of similarities – i.e. homogeneous chickpea
production system units (HSU, Table 3, Fig. 6); The details of each HSU
are summarized in Table 3, visualized on Fig. 6 and the yield gap of
these units is captured in Fig. 7;

• 14 districts of Northern Rajasthan (pink HSU #1, Northern India,

Fig. 4. Green-highlighted districts encompass 75% of chickpea production area in India. The size of the circles is equivalent to the simulated yield potential (Yp); and
the blue proportion of the circles reflects the water-limited yield potential (Yw). Therefore, the magnitude of yield loss accountable to water deficit is reflected in the
size of the white proportion of the circles within each district. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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23% of investigated area and 20% of production) which experience
the lowest in-season temperatures and solar radiation. In this
HSU#1, the crop production potential in optimal irrigation practice
was found the highest as a result of long growing season and high
cumulative radiation during the season, compared to other HSUs
(below).

• 19 districts of Northern Madhya Pradesh, Uttar Pradesh and North-
East of Rajasthan (green HSU#2, Center-North of India, 25% of
investigated area and 29% of production) with relatively high yields
but the lowest yield potential.

• 22 districts of Madhya Pradesh (yellow HSU #3, Central India, 29%
of investigated area and 32% of production). In this largest HSU#3,
the medium yields are attained with large potential production
losses due to drought effect as in HSUs #1 and 4 (described below).

• 15 districts of Northern Maharastra and Karnatka (red HSU #4,
Central India, 16% of investigated area and 12% of production). The
lowest yields in this HSU#4 could be, at least partially, accountable
to low incidence of in-season rains and poor soil properties (in-
cluding shallow soil with low WHC). This is also why the yield loss

due to drought with this rain-fed agriculture practices was one of the
highest (∼ 69%) across HSUs.

• 5 districts of Southern Andhra Pradesh and Southern Karnataka
(orange HSU #5, Southern India, 5% of investigated area and 5% of
production) with observed yields comparable to HSU#1 and #3 but
far shorter growing season and different geographical location.

• 3 districts of Southern Andhra Pradesh (blue HSU #6, South-East
coastal India, 2% of investigated area and 3% of production). The
highest attained yields in this HSU#6 are likely caused by higher
frequency of rains and because the crop is usually raised on deeper
soils. This might be the reason why farmers of this region irrigate
chickpea crop very rarely.

Fig. 7 shows 80% of modelled yield potential (Ywp) attainable with
current management practice which is usually considered the maximum
yield that can be realized in the field (Lobell et al., 2009; van Ittersum
et al., 2013). In major chickpea production regions of India, closing
yield gaps to 80% of Ywp would mean production increase by 40%
(1.75M tons) across 6 major HSUs (Fig. 7; from 71% in HSU#1

Fig. 5. Green-highlighted districts encompass 75% of chickpea production area in India. The circles indicate the yield gap distribution across the main chickpea
production tract in India. The size of whole circles indicate attainable yield with current irrigation practices (Ywp), which takes into account the common irrigation
practice at the level of districts. The black portion of each circle indicates the yield attained (Ya) and the white portion indicates yield gap (Yg).
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(∼0.62M tons) to 25% in HSU#3 (∼0.37M tons)).

4. Discussion

Food security largely depends on our capacity to develop effective
strategies for sustainable and equitable agricultural systems’ in-
tensification which needs to be clearly focused and the putative agro-
interventions designed accordingly. India, the world leader in chickpea
production, produces approximately 12 times more chickpea compared
to the second-largest producer, Australia (FAO, 2016). Nonetheless, the
demands of a rapidly growing population are not met in India (Ali and
Gupta, 2012), therefore, requires an extra capacity to produce
chickpea. Here we argue that further production improvement could be
achieved only if we characterize the main production systems, quantify
their production limitations and point-out to system-specific interven-
tions. To set the baseline for classification of the crop production re-
gions we used the geo-bio-physical information combined with the
grain yield gap analysis approaches (van Ittersum et al., 2013) which
allowed to separated the main chickpea production areas into authentic
homogeneous environment-management-socio-economic context
(“homogeneous system units”, HSU). Such a framework could be fur-
ther used to predict and quantify the effect of HSU-specific agri-inter-
ventions and recommend the most promising ones for the on-ground
testing (Chenu et al., 2011; Chauhan and Rachaputi, 2014).

4.1. Traditional chickpea production mega-environments and methods used
for their refinement

In India, three main chickpea production “mega-environments” are
usually considered in breeding programs, although these are quite
loosely defined: North, Central, and South as defined by Vittal et al.
(2005), Trivedi, (2009) and personal communication. We argue that the
classification of the main chickpea production tracts in three mega-
units needs to be refined in order to efficiently support crop improve-
ment programs by developing effective agro-interventions for well-de-
fined chickpea productions units.

Being a crop grown on residual moisture (post-rainy season, rabi),
most of the chickpea production area in India is characterized by a late
season water deficit which is usually referred to as the major chickpea
production limiting factor in India and across the world (Soltani et al.,
2016; Singh et al., 2014; Soltani and Sinclair, 2012a; Berger et al.,
2004). In this study, we were able to capture such variability, quantify
the major limiting factor (water stress occurrence) and its effect on
yield by the crop model at the level of districts.

Based on these district level characteristics we defined bio-geo-
physical units with higher degree of homogeneity allowing sensible
targeting of agro-interventions (i.e. single agro-intervention with pre-
sumably similar effect across the unit) using principal component
analysis (PCA; similarly in Chauhan and Rachaputi, 2014). PCA-based
approach proved appropriate since it accounted for the multi-dimen-
sional characters relations and associated these relations into the set of
components which were consequently used for cluster analysis. Ac-
cording to the similarities in the PC-loadings, the districts have been
clustered into 6 significantly different homogeneous system units
(HSUs). Such an information will be particularly valuable to strategi-
cally and efficiently choose the representative breeding material eva-
luation sites (i.e. “multi-location trials”; Chauhan and Rachaputi
(2014)).

4.2. Main production limitations within homogeneous system units (HSUs)
and future perspectives

Our study encompassing major chickpea production tract in India
confirmed that the potential yield losses due to water deficit in rain-fed
areas were, indeed, severe (64% in average) but the range of losses
largely varied regions (HSUs; ∼35–80%). Therefore, to design effective

interventions one has to have the necessary insight into whether a
particular bio-geo-physical system where the crop production takes
place should be focused on agricultural intensification practices (e.g.
increasing planting densities, fertilization) or rather on drought alle-
viation interventions (e.g. developing adapted cultivars, specific man-
agement). Our study, clearly disaggregated between the HSUs wherein
the rain-fed agricultural practices call for conservation interventions
and HSUs where the production potential is altogether the main factor
limiting the production;

Under the rain-fed agricultural practice in HSUs 1, 3 and 4, the
potential yields (∼950 kg ha−1) and potential yield losses due to
drought were estimated to be more severe (∼70%) compared to re-
maining HSUs. Likely for this reason, the one supplementary irrigation
was practiced more often (∼40% of area) and could rescue ∼45% of
yields (∼450 kg ha−1) in these HSUs 1, 3, 4. The proportional yield
losses due to drought (∼60%) and the water-limited potential yields in
HSU 5 were comparable to HSU 2 (∼1100 kg ha−1), nevertheless, only
a small proportion of HSU 5 areas were under irrigation (< 10%,
0.03M ha) although saving significant proportion of yield (∼43%,
880 kg ha−1). Therefore, altogether in the rain-fed conditions in these
HSUs (1, 3, 4 and 5) the potential effect of drought appears to be more
severe and these should be the frontline focal area likely benefiting
from optimized crop management (e.g. sowing window), improved
water-conservation practices (e. g. using straw mulch of previous crop
to reduce evaporation from soil or using organic manure to increase
WHC of the soil) or introduction of drought adapted cultivars (e.g. short
duration crop; extra-early varieties maturing in 85–100 days at
Patancheru are now available (Gaur et al., 2015), or lines with re-
stricted transpiration under high evaporative demand (Zaman-Allah
et al., 2011)). Production benefits of early maturing cultivars in selected
regions of HSUs 3, 4, 5 were already shown by Berger et al. (2006). The
potential benefits of suggested agri-interventions can be now tested in-
silico and justify further investment into the conservation agricultural
practices for these rain-fed areas.

Compared to rain-fed areas of HSUs 1, 3, 4 and 5 the production
across HSU 6 (i.e. low Yg with low effect of drought and supplementary
irrigation) was clearly limited by the cultivar production potential. This
might be also the case of HSU 2 with the lowest yield potential
(∼2500 kg ha−1) but comparably higher yield realized (Ya; Table 3).
This still means that water stress of rain-fed areas within HSU 2 might
be the problem, although to a lower extent compared to HSUs 1, 3, 4
and 5. Such results may also signify there could be other reasons for
yield losses which we didn’t capture in the model and which might be
common with neighboring HSU 1 where severe biotic stress, early
season cold stress and late seasons heat stress are being frequently re-
ported (Vittal et al., 2005; personal communication with experts). Al-
together, HSU 6, 2 and irrigated areas of remaining HSUs may rather
benefit from agricultural intensification practices (e.g. longer duration,
higher vigor, increased plant population). Berger et al. (2006) already
confirmed that later flowering would be necessary to maximize mass
accumulation and delay pod set until temperatures rise sufficiently to
prevent abortion in Northern regions (HSUs 1, 2).

The model set-ups developed in this work provide the necessary base-
line to enable testing the effects of particular interventions, e.g. whether the
change in crop phenology or crop growth habitus, crop planting densities
and irrigation practices could bring desired yield improvement in, now
well-defined, HSUs. Same modelling framework shall further help to ana-
lyze whether it would be economically viable to develop separate inter-
ventions for rain-fed/irrigated areas within these HSUs.

4.3. Potential draw-backs associated with adapted approaches

Despite the presented work engaged the chickpea production system
experts since the beginning and the results appeared well-aligned with
the on-ground reality, there are potential draw-backs associated with
the adopted approach; i.e. i) We have used the mechanistic crop-model
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SSM-iLegume-Chickpea which proved robust to capture dynamics of
chickpea production systems before (Vadez et al., 2012; Vadez et al.,
2013, Soltani et al., 2006; Soltani and Sinclair, 2011; Amiri-Deh-
Ahmadi et al., 2014) and we adapted some of the model set-ups from
these studies. However, we are aware the model doesn’t simulate pest
and disease outbreaks, plant-phosphorus dynamics and the functions to
capture cold and heat responses are very basic. ii) Also, the purpose of
this work was to set the baseline modelling framework rather than
dissection of granularities in GxM practices used by farmers (which will
be, anyways, the topic for consequent studies). At this level of system
analysis, assumptions have been made and are described in materials
and methods. Therefore, it might be possible that some of the char-
acteristics and tools used to describe chickpea system dynamics were
too generic and might have distorted the consequent analyses. Never-
theless, the laid framework will be available at www.dataverse.org and
www.gems.icrisat.org, open for improvements and its sensibility shall
be practically proof-tested in engagement with breeding programs in
the near future.

Fig. 6. Results of clustering analysis which separated districts within the main production tract in India (highlighted with colors) into six Homogenous System Units
(HSUs) with higher degree of similarities in their observed and modelled bio-geo-physical characteristics. The highlighted districts encompass 82% of chickpea
production area in India.

Fig. 7. Bar chart shows the average of current chickpea production between
1996 and 2010 (dark parts) and percentage of production increase needed to
achieve 80% of Ywp (white parts) within each of the identified Homogeneous
System Unit (HSU).
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5. Conclusions

In this work we aimed to develop the analytical tools and baseline
framework to assist the decision-making process in chickpea crop im-
provement programs. For this purpose, we gathered sensible geo-bio-
physical information on the major chickpea production districts in
India, reconstructed the system dynamics using the SSM-iLegume
model and characterized these regions and their specific production
constraints employing the yield-gap approach. We found that under the
given irrigation availability, India has the capacity to produce straight
40% more chickpea (∼1.75M tons) under the scenario where the re-
commended crop management practices would be implemented. We
also quantified the whole-India potential yield-loss due to drought was
large but there was also a large variability in potential drought-related
yield losses between the investigated districts (∼35–80%). This gath-
ered bio-geo-physical data and modelling outputs enabled rigorous,
data-driven, quantitative re-definition of production environments
showing that the classical partitioning into the three rather intuitive
North-Central-South “mega-environments” was too crude to represent
effective “breeding targets” and couldn’t possibly support the decision-
making processes strategic for crop improvement programs. The results
emphasized that the Indian chickpea tract was much more hetero-
geneous and the effective system interventions will have to be designed
for diverse context of six homogeneous system units (HSUs) identified
in this work but may also consider the specific situation in the regions
with/without irrigation access. The baseline modelling set-up, identi-
fied HSUs and understanding of chickpea production system hetero-
geneity developed in this study is intended to be further proof-tested as
a decisions-making system in support of the chickpea improvement
programs.

Acknowledgment

Special thanks to Department of Crops Physiology, ICRISAT,
Patancheru, India for hosting the first author for his sabbatical period
and Iranian Ministry of Science for financial support of this visit. We are
also grateful to Dr. Alex C. Ruane for providing the synthetic data of
AgMERRA. The CGIAR Research Program for Grain Legumes partially
funded the time of authors Kholová and Vadez. Dr Kesava Rao, and the
late V. Nageswara Rao are acknowledged for their advice on climate
data and definition of the homogeneous system units.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.fcr.2018.03.023.

References

Alexandratos, N., Bruinsma, J., 2012. World agriculture towards 2030/2050: the 2012
Revision, ESA Working Paper No. 12-03. FAO, Rome.

Ali, M., Gupta, S., 2012. Carrying capacity of Indian agriculture: pulse crops. Curr. Sci.
102, 874–881.

Amiri-Deh-Ahmadi, S.R., Parsa, M., Bannayan Aval, M., Nassiri Mahallati, M.,
Deihimfard, R., 2014. Yield gap analysis of chickpea under semi-arid conditions: a
simulation study. Int. J. Plant Prod. 8, 531–548.

Anderson, W., Johansen, C., Siddique, K.H.M., 2016. Addressing the yield gap in rainfed
crops: a review. Agron. Sustainable Dev. 36, 1–13. http://dx.doi.org/10.1007/
s13593-015-0341-y.

Berger, J.D., Turner, N.C., Siddique, K.H.M., Knights, E.J., Brinsmead, R.B., Mock, I.,
Edmondson, C., Khan, T.N., 2004. Genotype by environment studies across Australia
reveal the importance of phenology for chickpea (Cicer arietinum L.) improvement.
Aus. J. Agric. Res. 55, 1071–1084.

Berger, J.D., Ali, M., Basu, P.S., Chaudhary, B.D., Chaturvedi, S.K., Deshmukh, P.S.,
Dharmaraj, P.S., Dwivedi, S.K., Gangadhar, G.C., Gaur, P.M., Kumar, J., Pannu, R.K.,
Siddique, K.H.M., Singh, D.N., Singh, D.P., Singh, S.J., Turner, N.C., Yadava, H.S.,
Yadav, S.S., 2006. Genotype by environment studies demonstrate the critical role of
phenology in adaptation of chickpea (Cicer arietinum L.) to high and low yielding
environments of India. Field Crops Res. 98, 230–244. http://dx.doi.org/10.1016/j.
fcr.2006.02.007.

Bhatia, V., Singh, P., Wani, S., Rao, A.K., Srinivas, K., 2006. Yield Gap Analysis of

Soybean, Groundnut, Pigeonpea and Chickpea in India Using Simulation Modeling:
Global Theme on Agroecosystems Report No. 31. http://dx.doi.org/10.1016/j.
agrformet.2008.03.004.

Bhatia, V.S., Singh, P., Wani, S.P., Chauhan, G.S., Rao, A.V.R.K., Mishra, A.K., Srinivas, K.,
2008. Analysis of potential yields and yield gaps of rainfed soybean in India using
CROPGRO-Soybean model. Agric. Forest Meteorol. 148, 1252–1265.

Bommarco, R., Kleijn, D., Potts, S.G., 2013. Ecological intensification: harnessing eco-
system services for food security. Trends Ecol. Evol. 28, 230–238. http://dx.doi.org/
10.1016/j.tree.2012.10.012.

Chapman, S.C., Hammer, G.L., Butler, D.G., Cooper, M., 2000. Genotype by environment
interactions affecting grain sorghum. III. Temporal sequences and spatial patterns in
the target population of environments. Aus. J. Agric. Res. 51, 223–233. http://dx.doi.
org/10.1071/AR99022.

Chauhan, Y.S., Rachaputi, R.C.N., 2014. Defining agro-ecological regions for field crops in
variable target production environments: a case study on mungbean in the northern
grains region of Australia. Agric. Forest Meteorol. 194, 207–217. http://dx.doi.org/
10.1016/j.agrformet.2014.04.007.

Chenu, K., Cooper, M., Hammer, G.L., Mathews, K.L., Dreccer, M.F., Chapman, S.C., 2011.
Environment characterization as an aid to wheat improvement: interpreting geno-
type-environment interactions by modelling water-deficit patterns in North-Eastern
Australia. J. Exp. Bot. 62, 1743–1755. http://dx.doi.org/10.1093/jxb/erq459.

Cooper, M., Stucker, R.E., DeLacy, I.H., Harch, B.D., 1997. Wheat breeding nurseries,
target environments, and indirect selection for grain yield. Crop Sci. 37, 1168–1176.

Deihimfard, R., Mahallati, M.N., Koocheki, A., 2015. Yield gap analysis in major wheat
growing areas of Khorasan province, Iran, through crop modelling. Field Crops Res.
184, 28–38. http://dx.doi.org/10.1016/j.fcr.2015.09.002.

FAO, 2016. Faostat – Trade/Crops and Livestock Products. Available in http://faostat3.
fao.org/browse/T/TP/E [15 April 2016].

Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M.,
Mueller, N.D., O/'Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M.,
Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstrom, J., Sheehan, J., Siebert,
S., Tilman, D., Zaks, D.P.M., 2011. Solutions for a cultivated planet. Nature 478,
337–342. http://dx.doi.org/10.1038/nature10452.

Gaur, P.M., Krishnamurthy, L., Kashiwagi, J., 2015. Improving drought-Avoidance root
traits in chickpea (Cicer arietinum L.) – current status of research at ICRISAT. Plant
Prod. Sci. 11, 3–11. http://dx.doi.org/10.1626/pps.11.3.

Ghanem, M.E., Marrou, H., Biradar, C., Sinclair, T.R., 2015. Production potential of lentil
(Lens culinaris medik.) in east africa. Agric. Syst. 137, 24–38. http://dx.doi.org/10.
1016/j.agsy.2015.03.005.

Grassini, P., van Bussel, L.G.J., Van Wart, J., Wolf, J., Claessens, L., Yang, H., Boogaard,
H., de Groot, H., van Ittersum, M.K., Cassman, K.G., 2015. How good is good enough?
Data requirements for reliable crop yield simulations and yield-gap analysis. Field
Crops Res. 177, 49–63. http://dx.doi.org/10.1016/j.fcr.2015.03.004.

Gumma, M.K., Charyulu Deevi, K., Mohammed, I.A., Varshney, R.K., Gaur, P., Whitbread,
A.M., 2016. Satellite imagery and household survey for tracking chickpea adoption in
Andhra Pradesh, India. Int. J. Remote Sens. 37, 1955–1972. http://dx.doi.org/10.
1080/01431161.2016.1165889.

Hall, A.J., Richards, R.A., 2013. Prognosis for genetic improvement of yield potential and
water-limited yield of major grain crops. Field Crops Res. 143, 18–33. http://dx.doi.
org/10.1016/j.fcr.2012.05.014.

Hochman, Z., Gobbett, D., Holzworth, D., McClelland, T., van Rees, H., Marinoni, O.,
Garcia, J.N., Horan, H., 2013. Reprint of Quantifying yield gaps in rainfed cropping
systems: a case study of wheat in Australia. Field Crops Res. 143, 65–75. http://dx.
doi.org/10.1016/j.fcr.2013.02.001.

Hoffmann, M.P., Jacobs, A., Whitbread, A.M., 2015. Crop modelling based analysis of
site-specific production limitations of winter oilseed rape in northern Germany. Field
Crops Res. 178, 49–62.

Hoffmann, M.P., Llewellyn, R., Davoren, B., Whitbread, A.M., 2017. Assessing the po-
tential for zone-specific management of cereals in low rainfall south-eastern
Australia: combining on-farm results and simulation analysis. J. Agron. Crop Sci.
http://dx.doi.org/10.1111/jac.12159.

Holzworth, D.P., Huth, N.I., deVoil, P.G., Zurcher, E.J., Herrmann, N.I., McLean, G.,
Chenu, K., van Oosterom, E., Snow, V.O., Murphy, C., Moore, A.D., Brown, H.E.,
Whish, J.P.M., Verrall, S., Fainges, J., Bell, L.W., Peake, A.S., Poulton, P.L., Hochman,
Z., Thorburn, P.J., Gaydon, D.S., Dalgliesh, N.P., Rodriguez, D., Cox, H., Chapman, S.,
Doherty, A., Teixeira, E., Sharp, J., Cichota, R., Vogeler, I., Li, F.Y., Wang, E.,
Hammer, G.L., Robertson, M.J., Dimes, J., Whitbread, A.M., Hunt, J., van Rees, H.,
McClelland, T., Carberry, P.S., Hargreaves, J.N.G., MacLeod, N., McDonald, C.,
Harsdorf, J., Wedgwood, S., Keating, B.A., 2014. APSIM – Evolution towards a new
generation of agricultural systems simulation. Environ. Modell. Software 62,
327–350.

Jones, P.G., Thornton, P.K., 2000. MarkSim: software to generate daily weather data for
Latin America and Africa. Agron. J. 92, 445–453.

Jones, P., Thornton, P., Diaz, W., Wilkens, P., Jones, A., 2002. MarkSim: A Computer Tool
That Generates Simulated Weather Data for Crop Modeling and Risk Assessment.
Centro Internacional de Agricultura Tropical, Cali, Colombia.

Kholová, J., Murugesan, T., Kaliamoorthy, S., Malayee, S., Baddam, R., Hammer, G.L.,
McLean, G., Deshpande, S., Hash, C.T., Craufurd, P.Q., Vadez, V., 2014. Modelling
the effect of plant water use traits on yield and stay-green expression in sorghum.
Funct. Plant Biol. 41, 1019. http://dx.doi.org/10.1071/fp13355.

Liu, Z., Yang, X., Lin, X., Hubbard, K.G., Lv, S., Wang, J., 2016. Maize yield gaps caused
by non-controllable, agronomic, and socioeconomic factors in a changing climate of
Northeast China. Sci. Total Environ. 541, 756–764. http://dx.doi.org/10.1016/j.
scitotenv.2015.08.145.

Lobell, D.B., Cassman, K.G., Field, C.B., 2009. Crop yield gaps: their importance, mag-
nitudes, and causes. Annu. Rev. Environ. Resour. 34, 179–204. http://dx.doi.org/10.

A. Hajjarpoor et al. Field Crops Research 223 (2018) 93–104

103

https://doi.org/10.1016/j.fcr.2018.03.023
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0005
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0005
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0010
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0010
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0015
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0015
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0015
http://dx.doi.org/10.1007/s13593-015-0341-y
http://dx.doi.org/10.1007/s13593-015-0341-y
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0025
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0025
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0025
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0025
http://dx.doi.org/10.1016/j.fcr.2006.02.007
http://dx.doi.org/10.1016/j.fcr.2006.02.007
http://dx.doi.org/10.1016/j.agrformet.2008.03.004
http://dx.doi.org/10.1016/j.agrformet.2008.03.004
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0040
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0040
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0040
http://dx.doi.org/10.1016/j.tree.2012.10.012
http://dx.doi.org/10.1016/j.tree.2012.10.012
http://dx.doi.org/10.1071/AR99022
http://dx.doi.org/10.1071/AR99022
http://dx.doi.org/10.1016/j.agrformet.2014.04.007
http://dx.doi.org/10.1016/j.agrformet.2014.04.007
http://dx.doi.org/10.1093/jxb/erq459
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0065
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0065
http://dx.doi.org/10.1016/j.fcr.2015.09.002
http://faostat3.fao.org/browse/T/TP/E
http://faostat3.fao.org/browse/T/TP/E
http://dx.doi.org/10.1038/nature10452
http://dx.doi.org/10.1626/pps.11.3
http://dx.doi.org/10.1016/j.agsy.2015.03.005
http://dx.doi.org/10.1016/j.agsy.2015.03.005
http://dx.doi.org/10.1016/j.fcr.2015.03.004
http://dx.doi.org/10.1080/01431161.2016.1165889
http://dx.doi.org/10.1080/01431161.2016.1165889
http://dx.doi.org/10.1016/j.fcr.2012.05.014
http://dx.doi.org/10.1016/j.fcr.2012.05.014
http://dx.doi.org/10.1016/j.fcr.2013.02.001
http://dx.doi.org/10.1016/j.fcr.2013.02.001
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0115
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0115
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0115
http://dx.doi.org/10.1111/jac.12159
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0125
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0130
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0130
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0135
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0135
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0135
http://dx.doi.org/10.1071/fp13355
http://dx.doi.org/10.1016/j.scitotenv.2015.08.145
http://dx.doi.org/10.1016/j.scitotenv.2015.08.145
http://dx.doi.org/10.1146/annurev.environ.041008.093740


1146/annurev.environ.041008.093740.
Lu, C., Fan, L., 2013. Winter wheat yield potentials and yield gaps in the North China

Plain. Field Crops Res. 143, 98–105. http://dx.doi.org/10.1016/j.fcr.2012.09.015.
Mace, E.S., Jordan, D.R., 2011. Integrating sorghum whole genome sequence information

with a compendium of sorghum QTL studies reveals uneven distribution of QTL and
of gene-rich regions with significant implications for crop improvement. Theor. Appl.
Genet. 123, 169–191. http://dx.doi.org/10.1007/s00122-011-1575-y.

Marrou, H., Sinclair, T.R., Metral, R., 2014. Assessment of irrigation scenarios to improve
performances of Lingot bean (Phaseolus vulgaris) in southwest France. Eur. J. Agron.
59, 22–28. http://dx.doi.org/10.1016/j.eja.2014.05.006.

Meng, Q., Hou, P., Wu, L., Chen, X., Cui, Z., Zhang, F., 2013. Understanding production
potentials and yield gaps in intensive maize production in China. Field Crops Res.
143, 91–97. http://dx.doi.org/10.1016/j.fcr.2012.09.023.

Nedumaran, S., Abinaya, P., Shraavya, B., Rao, P., Bantilan, M., 2013. Grain Legumes
Production, Consumption and Trade Trends in Developing Countries-An Assessment
and Synthesis, Socioeconomics Discussion Paper Series Number 3. International
Crops Research Institute for the Semi-arid tropics, Patancheru 502324, Telangana,
India pp. 64.

Pradhan, P., Fischer, G., van Velthuizen, H., Reusser, D.E., Kropp, J.P., 2015. Closing
yield gaps: how sustainable can we be? PLoS One 10, e0129487. http://dx.doi.org/
10.1371/journal.pone.0129487.

Ruane, A.C., Goldberg, R., Chryssanthacopoulos, J., 2015. Climate forcing datasets for
agricultural modeling: merged products for gap-filling and historical climate series
estimation. Agric. Forest Meteorol. 200, 233–248. http://dx.doi.org/10.1016/j.
agrformet.2014.09.016.

Schulthess, U., Timsina, J., Herrera, J.M., McDonald, A., 2013. Mapping field-scale yield
gaps for maize: an example from Bangladesh. Field Crops Res. 143, 151–156. http://
dx.doi.org/10.1016/j.fcr.2012.11.004.

Sinclair, T.R., Marrou, H., Soltani, A., Vadez, V., Chandolu, K.C., 2014. Soybean pro-
duction potential in Africa. Global Food Security 3, 31–40. http://dx.doi.org/10.
1016/j.gfs.2013.12.001.

Singh, P., Nedumaran, S., Boote, K.J., Gaur, P.M., Srinivas, K., Bantilan, M.C.S., 2014.
Climate change impacts and potential benefits of drought and heat tolerance in
chickpea in South Asia and East Africa. Eur. J. Agron. 52 (Part B), 123–137. http://
dx.doi.org/10.1016/j.eja.2013.09.018.

Soltani, A., Hoogenboom, G., 2003a. A statistical comparison of the stochastic weather
generators WGEN and SIMMETEO. Climate Res. 24, 215–230.

Soltani, A., Hoogenboom, G., 2003b. Minimum data requirements for parameter esti-
mation of stochastic weather generators. Climate Res. 25, 109–119.

Soltani, A., Sinclair, T.R., 2011. A simple model for chickpea development, growth and
yield. Field Crops Res. 124, 252–260. http://dx.doi.org/10.1016/j.fcr.2011.06.021.

Soltani, A., Sinclair, T.R., 2012a. Optimizing chickpea phenology to available water under
current and future climates. Eur. J. Agron. 38, 22–31. http://dx.doi.org/10.1016/j.
eja.2011.11.010.

Soltani, A., Sinclair, T.R., 2012b. Modeling Physiology of Crop Development, Growth and
Yield. CABI (322 p).

Soltani, A., Hammer, G.L., Torabi, B., Robertson, M.J., Zeinali, E., 2006. Modeling
chickpea growth and development: phenological development. Field Crops Res. 99,
1–13. http://dx.doi.org/10.1016/j.fcr.2006.02.004.

Soltani, A., Hajjarpour, A., Vadez, V., 2016. Analysis of chickpea yield gap and water-
limited potential yield in Iran. Field Crops Res. 185, 21–30. http://dx.doi.org/10.
1016/j.fcr.2015.10.015.

Tanaka, A., Saito, K., Azoma, K., Kobayashi, K., 2013. Factors affecting variation in farm
yields of irrigated lowland rice in southern-central Benin. Eur. J. Agron. 44, 46–53.
http://dx.doi.org/10.1016/j.eja.2012.08.002.

Tanaka, A., Diagne, M., Saito, K., 2015. Causes of yield stagnation in irrigated lowland
rice systems in the Senegal River Valley: application of dichotomous decision tree
analysis. Field Crops Res. 176, 99–107. http://dx.doi.org/10.1016/j.fcr.2015.02.020.

Trivedi, T.P., 2009. Handbook of Agriculture. Directorate of Information and Publications
of Agriculture, Indian Council of Agricultural Research, New Delhi, India.

Vadez, V., Soltani, A., Sinclair, T.R., 2012. Modelling possible benefits of root related
traits to enhance terminal drought adaptation of chickpea. Field Crops Res. 137,
108–115. http://dx.doi.org/10.1016/j.fcr.2012.07.022.

Vadez, V., Soltani, A., Sinclair, T.R., 2013. Crop simulation analysis of phenological
adaptation of chickpea to different latitudes of India. Field Crops Res. 146, 1–9.
http://dx.doi.org/10.1016/j.fcr.2013.03.005.

Vadez, V., Halilou, O., Hissene, H.M., Sibiry-Traore, P., Sinclair, T.R., Soltani, A., 2017.
Mapping water stress incidence and intensity, optimal plant populations, and cultivar
duration for african groundnut productivity enhancement. Front. Plant Sci. 8, 432.
http://dx.doi.org/10.3389/fpls.2017.00432.

Van Wart, J., Grassini, P., Yang, H., Claessens, L., Jarvis, A., Cassman, K.G., 2015.
Creating long-term weather data from thin air for crop simulation modeling. Agric.
Forest Meteorol. 209–210, 49–58. http://dx.doi.org/10.1016/j.agrformet.2015.02.
020.

Vittal, K., Ali, M., Chary, G.R., Sankar, G.M., Srijaya, T., Bhanu, M.U., Ramakrishna, Y.,
Samra, J., 2005. Districtwise promising technologies for rainfed chickpea based
production system in India, All India Co-ordinated Research Project for Dryland
Agriculture. Central Research Institute for Dryland Agriculture, Indian Council of
Agricultural Research, Hyderabad, pp. 119.

Xu, X., He, P., Zhao, S., Qiu, S., Johnston, A.M., Zhou, W., 2016. Quantification of yield
gap and nutrient use efficiency of irrigated rice in China. Field Crops Res. 186, 58–65.
http://dx.doi.org/10.1016/j.fcr.2015.11.011.

Zaman-Allah, M., Jenkinson, D.M., Vadez, V., 2011. A conservative pattern of water use,
rather than deep or profuse rooting, is critical for the terminal drought tolerance of
chickpea. J. Exp. Bot. 62, 4239–4252. http://dx.doi.org/10.1093/jxb/err139.

van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z., 2013.
Yield gap analysis with local to global relevance – a review. Field Crops Res. 143,
4–17. http://dx.doi.org/10.1016/j.fcr.2012.09.009.

van Wart, J., van Bussel, L.G.J., Wolf, J., Licker, R., Grassini, P., Nelson, A., Boogaard, H.,
Gerber, J., Mueller, N.D., Claessens, L., van Ittersum, M.K., Cassman, K.G., 2013. Use
of agro-climatic zones to upscale simulated crop yield potential. Field Crops Res. 143,
44–55. http://dx.doi.org/10.1016/j.fcr.2012.11.023.

A. Hajjarpoor et al. Field Crops Research 223 (2018) 93–104

104

http://dx.doi.org/10.1146/annurev.environ.041008.093740
http://dx.doi.org/10.1016/j.fcr.2012.09.015
http://dx.doi.org/10.1007/s00122-011-1575-y
http://dx.doi.org/10.1016/j.eja.2014.05.006
http://dx.doi.org/10.1016/j.fcr.2012.09.023
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0175
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0175
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0175
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0175
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0175
http://dx.doi.org/10.1371/journal.pone.0129487
http://dx.doi.org/10.1371/journal.pone.0129487
http://dx.doi.org/10.1016/j.agrformet.2014.09.016
http://dx.doi.org/10.1016/j.agrformet.2014.09.016
http://dx.doi.org/10.1016/j.fcr.2012.11.004
http://dx.doi.org/10.1016/j.fcr.2012.11.004
http://dx.doi.org/10.1016/j.gfs.2013.12.001
http://dx.doi.org/10.1016/j.gfs.2013.12.001
http://dx.doi.org/10.1016/j.eja.2013.09.018
http://dx.doi.org/10.1016/j.eja.2013.09.018
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0205
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0205
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0210
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0210
http://dx.doi.org/10.1016/j.fcr.2011.06.021
http://dx.doi.org/10.1016/j.eja.2011.11.010
http://dx.doi.org/10.1016/j.eja.2011.11.010
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0225
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0225
http://dx.doi.org/10.1016/j.fcr.2006.02.004
http://dx.doi.org/10.1016/j.fcr.2015.10.015
http://dx.doi.org/10.1016/j.fcr.2015.10.015
http://dx.doi.org/10.1016/j.eja.2012.08.002
http://dx.doi.org/10.1016/j.fcr.2015.02.020
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0250
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0250
http://dx.doi.org/10.1016/j.fcr.2012.07.022
http://dx.doi.org/10.1016/j.fcr.2013.03.005
http://dx.doi.org/10.3389/fpls.2017.00432
http://dx.doi.org/10.1016/j.agrformet.2015.02.020
http://dx.doi.org/10.1016/j.agrformet.2015.02.020
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0275
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0275
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0275
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0275
http://refhub.elsevier.com/S0378-4290(17)31224-8/sbref0275
http://dx.doi.org/10.1016/j.fcr.2015.11.011
http://dx.doi.org/10.1093/jxb/err139
http://dx.doi.org/10.1016/j.fcr.2012.09.009
http://dx.doi.org/10.1016/j.fcr.2012.11.023

	Characterization of the main chickpea cropping systems in India using a yield gap analysis approach
	Introduction
	Materials and methods
	Definition of target chickpea production systems
	Environment (Soil and weather data)
	The crop model
	Simulation set-up and yield gap analysis
	Identification of homogeneous system units (HSU) across production environments

	Results
	Main chickpea production systems and actual yield (Ya)
	Covering the main production systems with reliable weather information
	Crop production potential and its limitations
	Homogeneous chickpea production units within the main chickpea production tract

	Discussion
	Traditional chickpea production mega-environments and methods used for their refinement
	Main production limitations within homogeneous system units (HSUs) and future perspectives
	Potential draw-backs associated with adapted approaches

	Conclusions
	Acknowledgment
	Supplementary data
	References




