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Abstract
Chickpea plays a major role in food and nutritional security worldwide. Its
productivity is severely affected by various biotic and abiotic stresses;
hence development of stress resilience varieties that can yield higher under
stress environment remains the call of the hour. Conventional breeding
approaches clubbed with the genome information, commonly known as
genomic-assisted breeding (GAB) have the potential to accelerate the crop
improvement efforts. In order to deploy the GAB for crop improvement in
chickpea, there was need to convert an orphan crop chickpea into the
genomic resource-rich crop. Advent of sequencing technology has
resulted in reduction of cost and led to development of huge genomic
resources in chickpea. A variety of markers have been developed, used for
various mapping studies including linkage mapping and association
mapping and finally deployed for developing the superior varieties using
GAB approached such as marker assisted backcrossing and genomic
selection. The chapter reviews the journey of chickpea status from orphan
crop with almost no marker resources to a genome resource-rich crop,
which are being used for achieving the genetic gains at a momentum.

6.1 Introduction

Chickpea (Cicer arietinum L.) is the second most
important food legume with 13.98 million hec-
tares under cultivation across 55 different coun-
tries worldwide (FAO 2014). Chickpea is a
self-pollinated diploid (2n = 16) annual crop
with genome size of *740 Mbp (Varshney et al.
2013a). It is commonly known as gram, Bengal
gram or garbanzo bean, mostly grown in arid and
semiarid regions, predominantly in developing
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countries (90% of its cultivated area) (Croser
et al. 2003). Chickpea is a valuable source for
many important proteins, minerals, and vitamins
among legumes and contributes as an important
source for protein for vegetarian diet. Chickpea
has one of the most balanced nutritional com-
positions, and its protein digestibility is the best
among the cool season food legumes. Apart from
human consumption, chickpea also has economic
importance in animal feed as well as in herbal
medicine.

Ecologically, chickpea is known as an effi-
cient N2-fixing system due to its capability of
symbiotic nitrogen fixation and, therefore, fits
well in crop rotation programs. Nearly, 90% of
the crop is cultivated under rainfed condition,
mostly surviving on receding soil moisture.
Current global yield average of chickpea is
0.9 t/ha (FAO 2014), much lower than its esti-
mated potential of 6 t/ha under optimum growing
conditions (Singh 1985). Chickpea productivity
is adversely affected by various biotic and abiotic
stresses like Ascochyta blight (AB caused by
Ascochyta rabiei), Fusarium wilt (FW caused by
Fusarium oxysporum f. sp. ciceris), pod borer
(Helicoverpa armigera), Botrytis gray mold
(BGM), drought, and cold (Ruelland et al. 2002).
Three major abiotic stresses responsible for
reduction in seed yield in chickpea include
drought, heat, and cold (Singh 1985; Singh et al.
1997). However, drought stands to be the major
challenge in chickpea growing regions, causing a
40–50% reduction in yield globally (Ahmad
et al. 2005).

Like every extensively cultivated crop,
chickpea is also facing the consequences of the
continuously deteriorating environmental condi-
tions, i.e., more rigorous temperature regimes
and dry soils (abiotic stress). Many physiological
processes associated with crop growth and
development are reported to be influenced by
water deficits (Turner and Begg 1978). To
counter this global phenomenon, extensive arti-
ficial irrigation is required to achieve acceptable
harvest yield in many of the chickpea cultivating
regions (Bakht et al. 2006). However, in the long
term this practice results in increased soil salin-
ization and therefore contributing toward

declining productivity. Considering the effect of
various stresses on yield, it is very important to
initiate serious efforts in the direction of devel-
oping improved varieties or alternate strategies
that allow sustainable chickpea production under
adverse environmental conditions. Application of
available approaches to improve crop produc-
tivity under adverse environmental conditions
requires a better understanding of the mecha-
nisms involved in crop’s response to such stres-
ses. Plant stress responses are generally
controlled by a network of specialized genes
through intricate regulation by specific tran-
scription factors (Chen and Zhu 2004). Thus, the
application of a holistic approach combining
genomics with breeding and physiology, termed
as genomics-assisted breeding (GAB) (Varshney
et al. 2005), provides strategies for improving
component traits of drought tolerance that should
prove more effective and efficient than the con-
ventional methods (Mir et al. 2012).

Until last decade, chickpea was known as an
“orphan crop” due to availability of limited
genomic resources and hence inclination was
much more toward conventional breeding
approaches to increase yield (Varshney et al.
2012a). In order to generate genomic resources
and deploy them for developing superior chickpea
varieties using modern breeding approaches,
efforts were initiated and significant progress has
been made in the recent past. Using the advent of
next generation sequencing (NGS) technologies,
large-scale molecular markers have been devel-
oped recently. These resources have been used for
constructing dense genetic maps and identification
of variousmarkers associated with traits of interest
(Varshney et al. 2012b, 2015; Varshney 2016).

The chapter describes about the efforts to
develop the genomic resources and deployment
of these resources in breeding for enhancing the
rate of genetic gain in chickpea.

6.2 Genomic Resources

Efforts to improve chickpea productivity using
conventional approaches were able to enhance
the yield but could not achieve the desired results
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due to narrow genetic base in cultivated chick-
pea. Efforts at international platform were initi-
ated to develop genomic resources. ICRISAT
along with its partners accelerated the develop-
ment of these genomic resources during the last
few years (Fig. 6.1). These genomic resources
have also been deployed in breeding using GAB
and have already started to make an impact on
chickpea improvement (Pandey et al. 2016).
A brief update on development of different type
of markers has been given below:

Isozyme markers: Isozymes are multiple
forms of enzyme that differ in amino acid
sequence but control different chemical reaction
based on different kinetic parameters or regula-
tory properties. Isozymes are the form of
biochemical/molecular markers that are based on
the staining of proteins with identical functions
with different electrophoretic movement. In the
case of chickpea, isozyme markers were devel-
oped and their segregation was observed in the
F2 population derived from interspecific crosses
of Cicer arietinum L. with C. reticulatum Lad.
and C. echinospermum (Gaur and Slinkard
1990a, b). Based on isozyme profile of nine
annual and one perennial species of chickpea,
Kazan and Muehlbauer (1991) classified the
species into four groups which was later sup-
ported by several studies (Ahmad et al. 1992;
Labdi et al. 1996; Tayyar and Waines 1996).
Kazan et al. (1993) with application of morpho-
logical and isozyme markers on several F2

families supported similar mode of inheritance as
obtained using morphological markers in previ-
ous studies. Low level of polymorphism was
observed in most of the isozymes-based studies
in the cultivated chickpea (Oram et al. 1987;
Gaur and Slinkard 1990b; Ahmad et al. 1992;
Kusmenoglu et al. 1992; Van Rheenen 1992;
Labdi et al. 1996; Tayyar and Waines 1996).

Restriction Fragment Length Polymorphism
(RFLP) and Randomly Amplified Polymor-
phic DNA (RAPD) markers: RFLP uses differ-
ence in homologous DNA sequences that can be
detected by the presence of fragments of different
lengths after digestion of the DNA samples.
RFLP includes digestion of DNA sample using
restriction enzymes and separation of restriction
fragments by gel electrophoresis and then
hybridization with genomic DNA/cDNA probes.
Subsequently, hybridization pattern is observed
on x-ray film and polymorphism obtained in
different banding patterns due to change in the
restriction enzyme recognition site. RAPD
includes differential PCR amplification of a
fragment of DNAs from short oligonucleotide
sequences. RAPD does not require prior
sequence information, and random identical
10-mer primers are used to amplify a segment of
DNA, depending on positions that are comple-
mentary to the primers’ sequence.

In order to assess the polymorphism existing
between desi- and kabuli-type chickpea culti-
vars, RFLP markers were used (Udupa et al.

Fig. 6.1 Account of the significant accomplishments made in the field of development of genomic resources and their
deployment in chickpea crop improvement

6 Advances in Chickpea Genomic Resources for Accelerating … 55



1993). In another study, RFLP analysis on cul-
tivated chickpea accessions from 11 different
countries indicated three major center of diver-
sity Pakistan-Afghanistan, Iraq-Turkey and
Lebanon, and India being known as secondary
center of genetic diversity previously showed
lower diversity than above (Serret et al. 1997).

Furthermore, using RFLP, isozyme, and
RAPD markers, an integrated genetic linkage
map consisting 27 isozyme, 10 RFLP, and 45
RAPD marker loci covering 550 cM was devel-
oped in chickpea using interspecific crosses of
cultivated chickpea and a closely related wild
species (C. reticulatum) (Simon and Muehibauer
1997). In another study, RFLP and RAPD
markers were used to assess the polymorphism in
chickpea accessions including some of the
mutants (Banerjee et al. 1999). RAPD markers
were also used to identify the markers associated
with fusarium resistance against race 1 and 4
using C 104 � WR 315 cross (Tullu et al. 1998).
Another study using RAPD and oligonucleotide
probes to assess genetic diversity among 29 elite
Indian chickpea cultivars indicated narrow
genetic base in chickpea (Sant et al. 1999).
Similarly, genetic diversity and phylogenetic
analysis across 75 chickpea accessions using 12
RAPD primer resulted in 234 polymorphic
fragments (Iruela et al. 2002). Another study
from Singh et al. (2003), where of 78 RAPD
primers, 20 primers were found polymorphic,
continues to uphold the previous hypothesis
about narrow genetic base.

Amplified Fragment Length Polymorphis
(AFLP): AFLP marker system effectively com-
bines principles of both RFLP and RAPD in
order to produce reproducible results (Vos et al.
1995). Genomic fragmented generated as a result
of restriction digestion is ligated with
primer-recognition sequences (adaptors). Selec-
tive PCR amplification of these restriction frag-
ments using a limited set of labeled primers is
separated on gel/capillaries electrophoresis.
AFLP markers were utilized in assessing the
genetic diversity, delineating the phylogeny of
chickpea germplasm (Nguyen et al. 2004;
Sudupak et al. 2004; Shan et al. 2005; Talebi

et al. 2008) and construction of genetic linkage
map (Winter et al. 2000).

Simple Sequence Repeat (SSR) and SNP
markers: SSR (microsatellite) markers being
multi-allelic and codominant in nature and SNPs
owing to their greater abundance in the genome
and their amenability for high-throughput gen-
ome analysis are extensively used for several
genomics applications (See Varshney et al.
2007a; Singh et al. 2008; Pandey et al. 2016).

In the case of chickpea, microsatellite markers
developed to date employed one of the following
approaches: (i) probing the genomic libraries with
oligonucleotide repeats, (ii) sequencing of
microsatellite-enriched libraries, and (iii) se-
quencing of bacterial artificial chromosome
(BAC) clones. Initially, 16 SSRs were reported by
screening small insert genomic libraries with di-,
tri-, and tetra oligonucleotide repeat probes to
identify SSR repeats (Hüttel et al. 1999) and
subsequently 174 SSRs were reported by screen-
ing size select genomic DNA libraries (Winter
et al. 1999). In subsequent years, both BAC and
BIBAC libraries were used for developing SSR
markers by Lichtenzveig et al. (2005). In addition,
as a result of concerted efforts at ICRISAT, a large
number of SSR markers were developed from
microsatellite-enriched libraries and bacterial
artificial chromosome (BAC) clones ICC 4958 to
report 311 novel SSRs (Nayak et al. 2010).
Another effort by Thudi et al. (2011) sequenced
55,680 BAC clones and identified 6845 SSR
motifs and designed primers for 1344 SSRs.

Further, during recent years efforts were also
made to understand the transcriptomes, gene
expression profiles in various stressed plant tis-
sues and stress responsive expressed sequence
tags (ESTs) were used for candidate gene iden-
tification and develop functional markers for
breeding applications. For instance, initial efforts
to develop functional markers from expressed
sequence tags, were made in 2005 (Buhariwalla
et al. 2005). Drought and salinity responsive
ESTs were used to develop 177 new EST-SSRs
(Varshney et al. 2009). Similarly, several studies
provided the insights into global view of tran-
scriptome dynamics of different stress responsive
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tissues (Hiremath et al. 2011; Garg et al. 2011a,
b; Singh et al. 2013; Afonso-Grunz et al. 2014;
Kudapa et al. 2014). Consequently, shift to study
transcriptomics led to sequencing of EST librar-
ies and resulted in flooding of EST sequences in
public domains. In order to utilize the generated
data efficiently and develop functional markers,
screening of genic data for SSRs led to devel-
opment of EST-SSR markers (Kottapalli et al.
2009; Gupta et al. 2015; Khajuria et al. 2015).

SNP markers have also become popular
because of their genome-wide abundance and
possibility of cost-effective high-throughput
genotyping. Using in silico approaches, 184
putative SNPs were identified in 19 contigs
constructed with 1499 ESTs generated from
different Cicer species available in public domain
(Varshney et al. 2007b). In addition, recent
advances in NGS technologies enabled the gen-
eration of huge amount of sequencing data in
very less time at very low cost (Thudi et al.
2012). In the case of chickpea, using Sanger
sequencing technology more than 20,000
expressed sequence tags (ESTs) were generated
from drought and salinity stress-challenged tis-
sues (Varshney et al. 2009). In addition to these
ESTs, NGS technologies were used for generat-
ing additional sequencing data on >20 tissues
representing different developmental stages
(Hiremath et al. 2011). Combined data analysis
using Sanger ESTs and NGS transcripts led to
generation of first transcript assembly with
103,215 tentative unique sequences (TUSs)
(Hiremath et al. 2011). Analysis of these ESTs
and transcript assemblies led to identification of
few thousand SNPs. In addition, other sequenc-
ing approaches including Illumina sequencing of
parental lines of chickpea mapping populations
have identified several thousand SNPs (Hiremath
et al. 2011). Similarly, allele-specific sequencing
on chickpea genotypes has led to identification of
*2000 SNPs (Gujaria et al. 2011; Roorkiwal
et al. 2014a). Deokar et al. (2014) have also
reported 51,632 genic SNPs identified by 454
transcriptome sequencing of C. arietinum and C.
reticulatum genotypes. Using genomic and

transcriptomic SNPs, Gaur et al. (2015) mapped
6698 SNPs on eight linkage group spanning
1083.93 cM for interspecific RIL population.
Verma et al. (2015) used genotyping by
sequencing (GBS) for genotyping of intraspecific
RIL population contrasting for seed traits.

Diversity Array Technology (DArT) markers:
In addition to SSRs and SNPs, another marker
system, DArT, has been widely used for con-
struction of genetic maps and diversity analysis.
DArT markers were marker of choice in the
absence of enough genomic resources for con-
structing dense genetic maps and were widely
used for Triticeae species (Neumann et al. 2011).
Therefore, ICRISAT in collaboration with DArT
Pty Ltd developed the DArT arrays with 15,360
clones (Thudi et al. 2011). Similar to other
marker systems, DArT arrays also showed nar-
row genetic diversity in cultivated gene pool as
compared to wild species (Roorkiwal et al.
2014b). By combining genotyping, data gener-
ated using DArTseq platform for 3000 poly-
morphic markers for a set of 320 chickpea lines,
with multilocation phenotyping data Roorkiwal
et al. (2016), estimated prediction accuracies and
hence made the first attempt toward genomic
selection (GS) studies.

Sequencing-based marker systems: NGS
technologies offer the ability to produce huge
sequence data sets at relatively low cost in less
time. Availability of these low-cost sequencing
technologies has enabled to map the target traits
at sequencing level and replacing the traditional
trait mapping approaches by sequence-based
trait mapping. Sequencing technologies such as
GBS, skim sequencing, and whole genome
re-sequencing (WGRS) provide genome-wide
large-scale marker information for high-
resolution trait mapping (Pandey et al. 2016).
In the case of chickpea, GBS has been used for
refining the “QTL-hotspot” identified an
intraspecific cross (ICC 4958 � ICC 1882)
(Jaganathan et al. 2015). Similarly, Kale et al.
(2015) used skim sequencing approach to
genotype RIL population (ICC 4958 � ICC
1882) and led to identification of 84,963 SNPs,
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out of which 76.01% were distributed over the 8
pseudomolecules. Similarly, Kujur et al. (2015)
and Bajaj et al. (2015) identified >40,000 and
>80,000 high-quality genome-wide SNPs using
integrated reference genome- and de novo-based
GBS approach from 93 wild and culti-
vated chickpea accessions, respectively. With
the availability of large-scale SNP marker
information, one of the major challenges was to
use these markers routinely in breeding pro-
grams. Utilization of any marker system in
breeding application is largely affected by the
possibility of automation, time for data turn-
around, and cost. Different approaches for
deploying markers in breeding require variable
number of markers, and therefore a range of
genotyping platforms/systems are required. In
the case of chickpea, different SNP genotyping
platforms were developed to meet all needs. For
instance, GoldenGate and VeraCode assays were
developed in chickpea for genotyping reference
set consisting of 288 of genotype with 96 SNPs
(Roorkiwal et al. 2013). However, in many
breeding applications, only few SNPs are
required to genotype large population where
GoldenGate and VeraCode assays may not be
cost effective. For such applications, more than
2000 KASP markers were developed for chick-
pea (Hiremath et al. 2012).

High-density genotyping arrays: With the
advent of low-cost NGS technologies, large-scale
re-sequencing projects have been initiated and
resulting in availability of millions of SNP
markers in several crop plants. In order to use
these ever expanding genome resources in the
breeding applications, there is a need for
low-cost, high-throughput genotyping platforms.
Recent developments in the arrays technology
have brought down the cost of high-throughput
genotyping, thus making it accessible to most of
the researchers and breeding communities. SNP
genotyping platforms can be used for genetic
diversity studies, fine mapping, association
mapping, GS, and evolutionary studies. In order
to exploit the available millions of SNP markers
in chickpea for breeding application, efforts to
develop a high-throughput SNP genotyping
platform were initiated. As set of 70,463 high

quality non redundant SNPs were selected using
an assortment of the criterion from a pool of
4.9 million SNPs. Based on p-convert score, a
set of 61,174 SNPs was selected of which 50,590
SNPs were tiled on Affymetrix Axiom array
(Roorkiwal et al. 2017). These arrays are being
used for genotyping breeding material and RIL
population for high-resolution genetic mapping
and breeding applications.

6.3 Draft Genome
and Re-sequencing Efforts

Draft genome sequence serves as a base for better
understanding of plants response mechanism and
genetic basis for gene function. In addition, draft
genome also helps for identification of large-scale
markers. Reduced incurring cost of NGS and
huge data output allows researcher to tap the
variation prevailing in whole genome. Consider-
ing the utility of genome sequence, ICRISAT led
International Chickpea Genome Sequencing
Consortium (ICGSC) decoded the chickpea gen-
ome sequence. Illumina sequencing was used to
sequence CDC Frontier, a kabuli chickpea vari-
ety, and *153 Gb raw sequence data was gen-
erated. After the data cleaning, 87.65 Gb
high-quality sequence data was used to assem-
ble 544.73 Mb of genome, representing 74% of
chickpea genome (Varshney et al. 2013a). In
addition to draft genome, ICGSC also undertook
re-sequencing of 90 cultivated and wild chickpea
accessions using NGS-based whole genome
re-sequencing and restriction site-associated
DNA (RAD) technology (Varshney et al. 2013a).

In parallel, another effort to sequence chick-
pea genome targeted ICC 4958, a desi chickpea
genotype for developing the draft chickpea gen-
ome assembly. NGS technology along with
bacterial artificial chromosome end sequencing
was used to assemble *520 Mb of chickpea
genome (Jain et al. 2013). Recently, Gupta et al.
(2016) developed the draft assembly of PI
489777 that resulted in 416Mb draft genome
of wild progenitor and 78% (327 Mb) of this
assembly could be anchored to eight linkage
groups.
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Development of the draft genome assembly
has been followed with efforts to improve the
assemblies. Individual chromosome from both
desi and kabuli varieties was isolated and
sequenced using NGS-based sequencing tech-
nology to validate the desi and kabuli assemblies.
Chromosomal sequencing approach could iden-
tify small misassembled region in kabuli; how-
ever, in desi a large region was found to be
misassembled (Ruperao et al. 2014). In a similar
manner to improve the desi assembly, Parween
et al. (2015) generated additional sequence data
and reported an improved assembly of ICC 4958
with 2.7-fold increase in length of
pseudomolecules.

With an objective to exploit the germplasm
wealth stored in genebank for identification of
novel alleles and genetic variations, large-scale
re-sequencing efforts were initiated. Large-scale
germplasm resources available in genebanks
provide the opportunity to address the issue of
low genetic diversity (McCouch et al. 2013).
Illumina HiSeq 2500 was used for re-sequencing
100 chickpea varieties released across 14 coun-
tries in last five decades. Re-sequencing data on
these 100 elite varieties along with 29 earlier
re-sequenced line was used for understanding the
impact of breeding on genetic diversity and gain
insights into temporal trends in chickpea diver-
sity (Thudi et al. 2016). Re-sequencing data on
100 elite chickpea varieties was used for devel-
oping first-generation HapMap of chickpea. In
parallel, 300 lines from chickpea reference set
were also re-sequenced using whole genome
re-sequencing approach. A total of 1.8 Tb raw
sequence data was generated and used for
aligning against reference chickpea genome to
identify 4.9 million SNPs (unpublished).
Re-sequencing data on 300 chickpea lines from
reference set along with multi-season, multilo-
cation phenotyping data was used for GWAS
analysis for identification of markers associated
with trait of interest. Very recently, ICRISAT has
launched “The 3000 Chickpea Genome
Sequencing Initiative” where 3000 lines from the
global composite collection of chickpea from
genebanks of ICRISAT and ICARDA will be

re-sequenced for identification of novel alleles
(Varshney 2016)”.

Genetic Maps and Trait Mapping

In order to use available genomic resources for
modern breeding approaches effectively, first
step is to identify the markers associated with
trait of interest. For identification of markers
associated with trait of interest, mainly two
approaches are used, namely (i) biparental map-
ping population-based linkage mapping and
(ii) germplasm-based genome-wide association
mapping (GWAS). For linkage mapping-based
identification of markers associated with trait of
interest, first step is to develop the genetic maps.

Beginning with the morphological markers to
the next generation of markers that include
DArT, SNPs, etc., wide range of marker systems
have been used to generate genetic map for
chickpea. Most of the genetic maps developed till
date have been described in Table 6.1, and it also
shows the evolution of marker system over the
course of time. Current section describes some of
the recently developed genetic maps briefly.
Thudi et al (2011) reported a high-density
genetic map developed using the interspecific
mapping population (ICC 4958 � PI 489777)
with 1291 loci spanning across a distance of
845.56 cM on eight linkage groups. In parallel,
another effort by Choudhary et al. (2012)
developed an advanced gene-rich map with 406
loci for the same population. In addition, two
intraspecific mapping populations (ICC
4958 � ICC 1882 and ICC 283 � ICC 8261)
segregating for drought tolerance-related root
traits were also used for generation of genetic
maps with comprising 241 loci and 168 loci,
respectively, and a consensus genetic map com-
prising 352 loci was also constructed. Using
extensive phenotyping, data QTL analysis was
performed and 45 robust main-effect QTLs
(M-QTLs) explaining up to 58.20% phenotypic
variation were identified (Varshney et al. 2014a).
In order to fine map these genetic maps,
intraspecific mapping populations ICC 4958 �
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Table 6.1 Various genetic linkage maps generated in chickpea

S.
No.

Population
type

Marker type Markers/loci
mapped

Linkage
groups

Map distance
(cM)

References

1 Intraspecific Morphological and isozyme
markers

29 7 200 Gaur and
Slinkard
(1990a, b)

2 Interspecific Morphological and isozyme
markers

28 8 257 Kazan et al.
(1993)

3 Interspecific Morphological, isozyme, RFLP
and RAPD markers

91 10 550 Simon and
Muehibauer
(1997)

4 Interspecific STMS markers 120 11 613 Winter et al.
(1999)

5 Interspecific RAPD, ISSR, isozyme and
morphological marker

116 9 981.6 Santra et al.
(2000)

6 Interspecific SSR, SAF, AFLP, ISSR, RAPD,
isozyme, cDNA, SCAR and
morphological markers

303 16 2077.9 Winter et al.
(2000)

7 Intraspecific STMS, RAPDs, ISSR and
morphological markers

80 14 297.5 Cho et al.
(2002)

8 Interspecific 55 STMS and 1 RGA markers
integrated to Santra et al. (2000)

167 9 1174.5 Tekeoglu
et al. (2002)

9 Interspecific RAPD, ISSR, STMS and RGA
markers

83 8 570 Collard et al.
(2003)

10 Interspecific 47 R gene-specific markers
integrated to Winter et al. (2000)

296 12 2483.3 Pfaff and
Kahl (2003)

11 Intraspecific STMS, RAPD, ISSR and
morphological markers

125 11 33 Cobos et al.
(2005)52 7 174.4

138 10 427.9

12 Intraspecific RAPD, ISSR, RGA, SSR and
ASAP markers

230 8 739.6 Radhika
et al. (2007)

13 Intraspecific SSR and EST markers 84 10 724.4 Kottapalli
et al. (2009)

14 Interspecific STMS, RAPD, ISSR,
morphological and RGA markers

169 8 751 Palomino
et al. (2009)

15 Intraspecific STMS markers 33 8 471.1 Bharadwaj
et al. (2011)

16 Interspecific STMS and cross-genome markers 555 8 652.67 Millan et al.
(2010)229 8 426.96

17 Interspecific 52 ICCM, 46 H-series SSR loci, 71
gene-based and 357 legacy
markers

521 8 2602.1 Nayak et al.
(2010)

18 Intraspecific STMS markers 138 8 630.9 Gaur et al.
(2011)

19 Interspecific SSR, CISR, CAPS, COS-SNP,
DArT, legacy markers

1291 845.56 Thudi et al.
(2011)

(continued)

60 M. Roorkiwal et al.



Table 6.1 (continued)

S.
No.

Population
type

Marker type Markers/loci
mapped

Linkage
groups

Map distance
(cM)

References

20 Interspecific EST-SSR, ITP, ESTP, MtEST,
gSSR and STMS markers

406 8 1497.7 Choudhary
et al. (2012)

21 Interspecific CKAM, TOG-SNP, GMM,
H-series, ICCM, CAM, SSR,
ISSR, SNaPshot assay-based SNP,
CAPS, DArT and RAPD markers

1328 8 788.6 Hiremath
et al. (2012)

22 Intraspecific STMS, RAPD and ISSR markers 57 8 379.47 Jamalabadi
et al. (2013)

23 Intraspecific SSR and SNP markers 464 Nine
LGs and
three
satellites

658.7 Stephens
et al. (2013)

408 Seven
LGs and
three
satellites

752

24 Intraspecific SSRs, GMMs and DArT markers 241 8 621.51 Varshney
et al.
(2014a, b, c)

168 8 533.06

352 8 771.39

25 Intraspecific SSR markers 23 4 690 Jingade and
Ravikumar
(2015)

26 Interspecific SNP markers 6698 8 1083.93 Gaur et al.
(2015)

27 Intraspecific EST-SSR, ITP, ESTP, and
genomic SSR markers

131 8 1140.54 Gupta et al.
(2015)

28 Intraspecific SNP markers 1007 8 727.29 Jaganathan
et al. (2015)

29 Intraspecific RAPD, URP, STMS and
morphological markers

33 7 285.3 Karami et al.
(2015)

30 Interspecific Genic and genomic SSR, ITP and
SNP markers

1697 8 1061.16 Khajuria
et al. (2015)

31 Intraspecific SNP markers 3368 8 1006.98 Verma et al.
(2015)

32 Interspecific InDel markers 1059 8 978.21 Srivastava
et al. (2016)594 8 603.26

1479 8 978.61
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ICC 1882 were genotyped using GBS approach
and a high-density genetic map with 1007 marker
loci spanning a distance of 727.29 cM was
developed (Jaganathan et al. 2015). In another
effort for fine mapping, these two populations
were genotyped using high-density
Affymetrix SNP arrays “Axiom®CicerSNP
array” and dense genetic maps with more than
13,000 and 7000 markers have been generated
(Roorkiwal et al. 2017). Further, two candidate
genomic regions responsible for salinity toler-
ance have been reported using ICCV 2 � JG 11
derived RIL population (Pushpavalli et al. 2015).

In addition, two additional intraspecific map-
ping populations (C 214 � WR 315 and C
214 � ILC 3279) segregating for FW and AB
were developed and used for QTL analysis. Two
novel QTLs explaining 10.4–18.8% phenotypic
variation for FW and six QTLs explaining up to
31.9% of phenotypic variation for AB were
identified (Sabbavarapu et al. 2013).

Further, several transcript maps have also
been developed in chickpea. A transcript map
with genic molecular markers including SNP,
SSR, and intron spanning region (ISR) markers
has been developed on an interspecific mapping
population (ICC 4958 � PI 489777) (Gujaria
et al 2011). In another effort to develop a
second-generation transcript map, Hiremath et al.
(2012) developed a genetic map comprising 1328
marker loci including 625 novel CKAMs, 314
TOG-SNPs, and 389 published marker loci with
an average inter-marker distance of 0.59 cM.

A physical map based on finger printing of
more than 70 K clones was developed for the
reference genotype ICC 4958 (Varshney et al.
2014b). In addition to linkage mapping
approach, efforts to map the markers using
GWAS were able to identify several markers
associated with traits of interest. Recently, Thudi
et al. (2014) undertook a comprehensive associ-
ation mapping analysis using whole genome
scanning and candidate gene-based approach,
which led to identification of 312 markers sig-
nificantly associated with drought and heat
response in chickpea. Another effort to map the
markers using GWAS used the WGRS data on
300 lines from chickpea reference set and

multi-season, multilocation phenotyping data for
identification of several markers associated with
yield and yield-related traits (unpublished). In
summary, in addition to genetic maps for dis-
secting the complex traits, the integrated physical
map with genome maps can be utilized for QTL
cloning.

6.4 Molecular Breeding

With the availability of large-scale genomic
resources and markers associated with trait of
interest, next step is to use this information for
accelerating the crop improvement program to
enhance the rate of genetic gain. In chickpea
efforts to use the markers in breeding have been
focused on marker-assisted backcrossing
(MABC) and now being shifted to GS. MABC
has been successful for addressing the simple
traits, while for addressing the complex traits
where trait is controlled by several small effect
QTLs, MABC is not that effective. GS approach
using genome-wide marker profile has been
suggested as a potential breeding approach for
developing superior lines to address such com-
plex traits (Meuwissen et al. 2001).

In chickpea, MABC efforts focused on intro-
gression of QTL(s)/genomic region(s) responsi-
ble for yield under rainfed condition and disease
resistance. As part of trait mapping, a genomic
region on LG04 was identified as “QTL-hotspot”
explaining up to 58% phenotypic variation for
several root traits that control the yield under
rainfed condition. Efforts to introgress this
genomic region into elite chickpea genotype JG
11 were initiated using MABC approach as
described by Varshney et al. (2013b). Introgres-
sion lines generated after three backcross and two
rounds of selfing (BC3F3) showed improved
performance with 12% (under rainfed) to 24%
(under irrigated) higher yield. After multilocation
field evaluation, 10 introgression lines have been
identified as superior and are being sent for
AICRP trial for release in India. Inspired by
success of JG11+, efforts have already been ini-
tiated to introgress this genomic region in several
other elite chickpea varieties. In addition, similar
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efforts to introgress the genomic region were also
initiated by Indian Agricultural Research Insti-
tute (IARI, New Delhi) and Indian Institute of
Pulse Research (IIPR, Kanpur) and their intro-
gression lines are under field evaluation. Similar
efforts were also undertaken for introgressing the
FW and AB resistance in elite chickpea cultivar
C 214 using MABC. Introgression lines devel-
oped in the background of C 214 have shown
enhanced resistance for FW and AB (Varshney
et al. 2014c). Currently, efforts are underway to
pyramid FW and AB resistance in same genotype
of C 214 background through intercrossing of
introgression lines.

In addition to MABC, ICRISAT also initiated
efforts to deploy the GS in the chickpea breeding
program. For this, a set of 320 elite chickpea
lines was selected and genotyped using DArT
markers. This set was phenotyped at Patancheru
and New Delhi for two seasons for yield and
yield-related traits. Phenotyping data along with
genome-wide marker profile data was used with
six statistical GS models to estimate the predic-
tion accuracies (Roorkiwal et al. 2016).

6.5 Conclusion

Chickpea was earlier known as “orphan crop”
because of limited availability of genomic
resources, but recent efforts have transformed it to
a genomic resource-rich crop. Last decade has
witnessed tremendous growth in establishment of
genomic resources for chickpea and utilization of
these genomic resources in enhancing the chick-
pea productivity. Focus has never been limited to
developing genomic resource, but to deployment
of developed genetic resources in crop improve-
ment programs leading to enhancement of
chickpea production. Availability of whole gen-
ome sequence and different re-sequencing efforts
has allowed the development of high-throughput
genotyping platform, one such being Axiom®
CicerSNP array (Roorkiwal et al. 2017). In order
to deploy these genomic resources in chickpea
breeding, MABC is being routinely used for
developing superior varieties by targeting simple

traits. Recently, GS has also gained momentum
with its capability to target complex traits and
ICRISAT has initiated deployment of GS in
chickpea. As mentioned above, narrow genetic
diversity is one of the major factors, restraining
the efforts for enhancing the chickpea productiv-
ity. ICRISAT has also started toward developing
the multi-parent advanced generation intercross
(MAGIC) population for addressing the issue of
narrow genetic diversity. Similarly, nested asso-
ciation mapping (NAM) population are also being
developed. In summary, chickpea crop improve-
ment is moving toward integrating modern
genomics approach with existing breeding pro-
grams for enhancing chickpea yield.
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