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    Abstract  

  Endophytes are the microorganisms which colonize the internal tissue of 
host plants without causing any damage to the colonized plant. The benefi -
cial role of endophytic organisms has dramatically documented world-
wide in recent years. Endophytes promote plant growth and yield, remove 
contaminants from soil, and provide soil nutrients via phosphate solubili-
zation/nitrogen fi xation. The capacity of endophytes on abundant produc-
tion of bioactive compounds against array of phytopathogens makes them 
a suitable platform for biocontrol explorations. Endophytes have unique 
interaction with their host plants and play an important role in induced 
systemic resistance or biological control of phytopathogens. This trait also 
benefi ts in promoting plant growth either directly or indirectly. Plant 
growth promotion and biocontrol are the two sturdy areas for sustainable 
agriculture where endophytes are the key players with their broad range of 
benefi cial activities. The coexistence of endophytes and plants has been 
exploited recently in both of these arenas which are explored in this 
chapter.  
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3.1         Introduction 

 Plants have their life in soil and are required for 
soil development. They are naturally associated 
with microbes in various ways. They cannot live 
alone and hence they release signal to interact with 
microbes. Interaction can be of either benefi cial 
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or pathogenic. The pathogenic interaction where 
the bacteria inject the effector protein to suppress 
the host defense response leads to plant diseases. 
Agricultural productivity suffers a heavy loss due 
to this pathogenic interaction. There is an imme-
diate need to fi nd and establish an ideal strategy 
for sustainable agriculture and improvement in 
crop growth. Agriculture being the world’s largest 
economic sector, the demand should be addressed 
seriously. Environmental pollution is the biggest 
problem and a public concern today, and that is 
caused either directly or indirectly by use of fertil-
izers, pesticides, and herbicides. This has turned 
to seek alternative for the established chemical 
strategy to facilitate plant growth in agriculture 
and horticulture (Glick et al.  2007a ). Many 
approaches have been taken to control plant 
pathogens. Several investigations have aimed at 
improving the understanding of plant defense sys-
tems and plant pathogen interactions (Dodds and 
Rathjen  2010 ). For a sustainable agriculture, new 
ways are in line to develop either to control the 
plant diseases or to promote the plant growth. 
Plant growth- promoting rhizobacteria (PGPR) 
plays an important role in sustainable agriculture 
as it functions as both plant growth promotion and 
disease suppression (Shoebitz et al.  2009 ; 
Beneduzi et al.  2012 ).  

3.2     Endophytes: The Origin 
and Dwelling 

 Symbiosis refers to “living together of dissimilar 
organism” (De Bary  1879 ). There are more life 
that lives in symbiotic relation based on macro-
scopic hosts and microscopic creatures. The plant 
root system mainly anchors in nutrient and water 
uptake. Apart from that, it mediates numerous 
underground interactions with benefi cial 
microbes such as rhizobia, mycorrhiza, endo-
phytes, and rhizobacteria. The word endophyte 
came from two Greek words, “endon” means 
within and “phyton” means plant. Endophytes 
are microorganisms that can asymptomatically 
grow within plant tissues without causing any 
damage or eliciting any disease to the host. 
Endophytic bacteria and fungi are ubiquitously 

found in all plant species and evolve with higher 
plants from the day they are derived. Since the 
endophyte may be of both benefi cial and harm-
ful, the changes in the environment might affect 
the host or be neutral to the plant (Lacava et al. 
 2004 ; Ardanov et al.  2012 ). 

 The plant and the endophytic microbes have 
symbiotic relationship where both species benefi t 
from the interaction. The diversity of endophytes 
is surprising as each and every plant species har-
bors one or more endophytes and they are driven 
by symbiotic forces in the ecosystem (Faeth and 
Fagan  2002 ). Woody plants were found to have 
more than one hundred different species of endo-
phytes (Saikkonen et al.  1998 ; Arnold et al. 
 2000 ). They are found to be a promising candi-
date to increase crop yields, remove contami-
nants, inhibit pathogens, and able to also produce 
novel metabolites and fi xed nitrogen. 

 Endophytic colonization occurs in several 
ways in plants. The route of colonization seems 
to be the rhizosphere where the microbes reach 
by chemotaxis and attach to the plant tissues 
either by pili, lipopolysaccharide, or exopolysac-
charide in their cell wall (Lugtenberg and 
Kamilova  2009 ; Malfanova et al.  2013 ). The 
endophytes which are rhizosphere colonizers 
attach to the cell elongation zone or root hair 
zone of the apical roots and enter through a crack 
or damage. Preferably the colonization takes 
place in differentiation zone and intercellular 
spaces in the epidermis (Raven et al.  2009 ). 
When bacteria enter the exodermal barrier, there 
are three places where they can reside, viz., the 
site of entry, deep inside the cortex, and at the 
intercellular space of the cortex. Only few pene-
trate the endodermal barrier and invade xylem 
vessels. They are infl uenced by abiotic and biotic 
factors. But comparative to rhizospheric 
microbes, the endophytes are more protected 
from the abiotic and biotic stresses (Seghers et al. 
 2004 ). The true endophytes should be isolated 
after surface sterilization and confi rmed with 
tagged studies in microscope. The endophytes 
which are validated in microscope are named to 
be putative endophytes. Endophytes mediate 
plant defense by two ways: (i) the innate endo-
phytic community that should contain resistance- 
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competent traits and (ii) reviving of innate 
endophytic bacterial subpopulations by an 
incoming bacterium (e.g., a biocontrol agent) 
(Podolich et al.  2014 ). Endophytes have attracted 
the attention of researchers to evaluate them to be 
a potential and more effective option for use as 
plant growth promotion (PGP)/biological control 
agents in agricultural system. Understanding the 
interactions among endophytic microbes and 
their plant hosts will hopefully prove them to be 
alternative control measures for diseases. Gaining 
knowledge of the way they enter their plant hosts, 
the interactions that occur, and the infl uence that 
can be made for biocontrol purposes all relate to 
control the agricultural diseases. This chapter 
walks in detail over the endophytes and its types 
which would give a new eye on PGP and biocon-
trol agents.  

3.3     Benefi cial Traits 
of Endophytes and Its 
Mechanism 

 On colonization of the microbe in the plant, they 
can positively infl uence the growth and disease 
resistance. Several groups report the mechanism 
of PGP and biocontrol to be similar as rhizobac-
teria, but only few mechanisms have been proven 
to occur  in planta . Still this chapter will review 
on all the expected mechanism for PGP and bio-
control (Fig.  3.1 ).

3.3.1       Plant Growth Promotion 

 PGP can take place by two ways, viz., direct or 
indirect mechanism. Endophytic microbes can 
stimulate the PGP by providing the essential 
nutrients, directly producing phytohormones and 
growth regulators, or regulating phytohormone 
levels. 

3.3.1.1     Nitrogen Fixation 
 Nitrogen is a major limiting nutrient for the 
growth of the plant. Plants uptake nitrogen from 
the atmosphere and make available by the help of 
symbionts in the root nodules of legumes, and the 

process is said to be biological nitrogen fi xation. 
Rhizobia and nitrogen-fi xing bacteria share  nod  
and  nif  genes which encodes for nodulation and 
nitrogen fi xation, respectively (Zehr and Turner 
 2001 ). Studies reveal that endophytes associate 
themselves in the same process in other agricul-
turally important crops. The nitrogen fi xation is 
done by the nitrogenase enzyme produced by the 
bacteria (You et al.  2005 ). Nitrogen fi xation is 
regulated by oxygen concentration and availabil-
ity of nitrogen. Nitrogen-limited condition also 
interferes in plant hormone production, and 
hence some diazotrophs are able to produce phy-
tohormones in addition to nitrogen fi xation.  

3.3.1.2     Phosphate Solubilization 
 Phosphorus is the next limited compound avail-
able for plants. They play a role in cell metabo-
lism and signaling (Vance et al.  2003 ). Phosphorus 
in H 2 PO 4  −  and HPO 4  2−  can be absorbed by plants, 
but unfortunately they are present in bound form 
with organic or inorganic molecules which are 
unavailable to plants (Smyth  2011 ). Though 
phosphorus is used as a chemical fertilizer, exces-
sive and unmanaged application has a negative 
impact on the environment. Endophytes are 
phosphate-solubilizing bacteria which solubilize 
the bound form thereby making available to 
plants. The production of organic acid like 
gluconic acid is a major factor in the release of 
phosphorus from a bound form (Rodriguez et al. 
 2006 ). In addition, enzymes including phospho-
nates, phytases, and C-P lyases also play a role in 
converting insoluble phosphorus to available 
phosphorus.  

3.3.1.3     Siderophore Formation 
 Iron is a vital nutrient and occurs as Fe 3+  in the 
aerobic environment and forms insoluble 
hydroxides and oxyhydroxides. These insoluble 
forms are not accessible to both plants and 
microbes. Generally, endophytes synthesize low 
molecular weight compounds termed as sidero-
phores that sequester Fe 3+  since they have high 
Fe 3+  affi nity constants and mobilize the irons 
present (Zhang et al.  2008 ; Vendan et al.  2010 ). 
Some endophytes produce hydroxamate type 
and other produce catecholate type of sidero-
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phores (Neilands and Nakamura  1991 ). The sid-
erophores are water soluble and of two types, 
viz., extracellular and intracellular, i.e., secreted 
as iron-free siderophores for cellular iron uptake 
and located within the cell for intracellular iron 
storage, respectively (Johnson et al.  2013 ). 
Specifi c proteins are involved in transport of iron 
siderophore complex in iron-limited conditions. 
PGP and disease suppression are achieved by 
siderophore formation (Hayat et al.  2010 ). Many 
plant species absorb bacterial Fe 3+  siderophore 
complexes, but the role of siderophores in PGP 
is yet to be proved.  

3.3.1.4     Growth Regulators 
 Plants produce hormones such as auxins, cytoki-
nins, gibberellins, ethylene, and abscisic acid. 
Endophytic microbes have the potent to produce 
these hormones which infl uence plant growth 
and development. 

  Auxins     Auxin is the crucial plant hormone and 
fundamental component that modulates plant 
growth and development (Halliday et al.  2009 ; 
Grossmann  2010 ). Indole-3-acetic acid (IAA) is 
a member of auxin family produced by bacteria, 
fungi, and plants. IAA induces lateral root forma-
tion in dicots and adventitious root formation in 
monocots (McSteen  2010 ). IAA combines cam-
bial growth and vascular development. Auxins 
promote secondary wall thickness and increase 
xylem cells (Uggla et al.  1996 ). They are trans-
ported via phloem by forming concentration gra-
dients and accumulate in different tissues (Eklund 
et al.  2010 ; Tromas and Perrot-Rechenmann 
 2010 ). IAA concentrations vary depending on the 
tissues of the plant and organ (Reid et al.  2011 ). 
IAA pathway is a robust network which was 
identifi ed by the enzymes that catalyze each reac-
tion and the intermediates involved in each step 
(Lehmann et al.  2010 ). Several recent studies are 
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  Fig. 3.1    A proposed schematic representation of PGP and defense response by endophytes       
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being proposed with IAA biosynthesis pathway. 
Detailed study of the IAA pathway is reviewed 
by Duca et al. ( 2014 ).  

  Cytokinins     Zeatin is a member of cytokinin fam-
ily. They play a role in division of plant cell in the 
presence of auxin. They involve in callus growth 
(Salome et al.  2001 ). Auxin and cytokinins help 
in root differentiation and shoot differentiation, 
respectively.  

  Gibberellins     Terpenoid groups come under this 
category. They are mainly involved in cell divi-
sion, cell elongation, and internode elongation. 
The mechanism by which plant growth is pro-
moted through gibberellins is still unclear. 
Fulchieri et al. ( 1993 ) reported that they increase 
root hair density in root zones involved in uptake 
of nutrient and water.  

  Abscisic Acid     It is a stress hormone which regu-
lates the plant development and physiological 
process. They play an important role in seed ger-
mination, stromal closure, and abiotic stress tol-
erance (Lee and Luan  2012 ). It is an abiotic 
elicitor for plant biosynthesis of bioactive com-
pounds (Sun et al.  2012 ).  

  ACC Deaminase     Ethylene is produced from 
ACC synthase (Giovanelli et al.  1980 ) which 
inhibits primary root elongation and lateral root 
formation but promotes root hair formation 
(Dodd et al.  2010 ), thus having a positive and 
negative role. Ethylene increases at a higher rate 
when the plant is in stressed conditions (Glick 
 2005 ). Hence, it is also known as stress hormone. 
The enzyme ACC deaminase is produced by 
many endophytes which converts ACC into 
α-ketobutyrate and ammonia (Glick et al.  2007b ). 
Reduction in ACC level reduces ethylene levels 
and thus decreases the plant stress.    

3.3.2     Biocontrol 

 The use of agrochemicals to control plant dis-
eases can be minimized by means of biological 
process such as the use of endophytes which 

inhibit or antagonize the phytopathogens. Though 
the chemical products kill the plant pathogen, 
workers and consumers are at high risk. 
Biocontrol agents communicate with other patho-
gens/organisms through a variety of signal mol-
ecules. These signal molecules play a role in the 
defense against disease. They include jasmonic 
acid, salicylic acid, abscisic acid, etc., which are 
induced during abiotic stress conditions. 

 Defense-related proteins and secondary 
metabolites are produced by induction of jas-
monic acid (Brodersen et al.  2006 ; Balbi and 
Devoto  2008 ). Salicylic acid gets involved in 
fl owering, growth and development, ethylene 
biosynthesis, stromal behavior, etc. Abscisic acid 
in defense signaling is found to promote seed 
dormancy (Asselbergh et al.  2008 ). Mechanisms 
of biocontrol by the endophytes may be either 
one of the following:

    1.    Antibiosis – many bacteria are potent in pro-
ducing antibiotics which are the best known 
class of biocontrol agents. Limitation on using 
antibiotic-producing bacteria might be the 
cross-resistance, and also the genes encoding 
might be transferable (Zhang et al.  1993 ).   

   2.    Predation and parasitism – control agents pro-
duce exoenzymes that can degrade the fungal 
cell and use them as food for their survival.   

   3.    Induced systemic resistance (ISR) – ISR is the 
plant immune response that is activated by 
benefi cial microbes (Kloepper et al.  2004 , Van 
Wees et al.  2008 ). Upon immunization, the 
plant becomes more potent in producing 
infection-induced immune response which 
might result in enhanced protection. ISR is 
also a systemic response which is similar to 
systemic acquired resistance (SAR) and pro-
tects from many pathogens (Van Loon  2007 ). 
They induce innate immunity and use toll-like 
receptors (De Weert et al.  2007 ). The signal 
transduction pathway and the molecular basis 
underlying are different. In SAR, the signals 
include hypersensitive response, salicylic acid 
biosynthesis, or induction of pathogenesis- 
related proteins, whereas the hormone jas-
monic acid and ethylene play a main role in 
ISR (Sena et al.  2013 ). Hence, in any of the 
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above means, the natural microbes, i.e., endo-
phytes, can be potent in controlling diseases 
thereby reducing the usage of chemical 
products.    

3.4        Bacterial Endophytes 

 The origination of bacterial endophytes is of 120 
years older where they were initially identifi ed 
from seeds and surrounding environment. 
Endophytic bacteria are reported to be present in 
roots, stems, leaves, seeds, fruits, tubers, ovules, 
and also inside legume nodules (Compant et al. 
 2011 ) in which more preferably in roots 
(Rosenblueth and Martinez-Romero  2006 ). The 
endophytic population varies depending on the 
bacteria and the host, host developmental stage, 
inoculum density, and environmental conditions 
(Tan et al.  2006 ). The endophytes that are domi-
nating in the plants are intensively reviewed in 
many reports (Rosenblueth and Martinez- Romero 
 2006 ). Though, the community composition is 
non-determinable but can be determined by colo-
nization process. Factors such as nature and stage 
of the host, physiological status, type of plant tis-
sue, soil conditions, and agriculture practices 
determine colonization (Hardoim et al.  2008 ). 

 Endophytes are host specifi c, for example, a 
group of clostridia is found to be only in grass 
species, i.e.,  Miscanthus sinensis , but not in the 
soil (Miyamoto et al.  2004 ). Endophytic bacteria 
are seen in legume nodules as co-occupants 
(Benhizia et al.  2004 ). They are reported to be 
isolated from different vascular and nonvascular 
plants denoting the wide spectrum of endophytic 
bacteria (Hardoim et al.  2012 ; Rosenblueth and 
Martinez-Romero  2006 ). Metagenomic approach 
is the recent hot spots in endophytes due to the 
unculturable nature of certain groups of endo-
phytes (Manter et al.  2010 ; Sessitsch et al.  2012 ; 
Bulgarelli et al.  2012 ; Bodenhausen et al.  2013 ). 
This approach exploits a deeper understanding of 
the functions of the endophytes and the mecha-
nism used to reside inside the endosphere. 

 Based on the lifestyle, they are classifi ed as 
obligate and facultative endophytes. Obligate 

endophytes depend on the host plant for their 
growth and survival and transmit to other vertical 
plants or through vectors, whereas facultative 
bacteria exist outside of the plant for a part of its 
lifetime, and for the rest, they dwell inside the 
plants. Bacterial phytopathogens also can be con-
sidered as facultative endophytes because they 
are present in avirulent forms.  Ralstonia sola-
nacearum  can survive in water and occurs as an 
endophyte in tomato plants as avirulent bacteria 
(Van Overbeek et al.  2004 ). Endophytes include 
both Gram-positive and Gram-negative bacteria, 
and they are classifi ed as  Alpha- ,  Beta- , and 
 Gammaproteobacteria ,  Bacteroidetes , 
 Actinobacteria , and  Firmicutes  (Lodewyckx 
et al.  2002 ; Bacon and Hinton  2006 ). The higher 
percentage of rhizosphere community is 
 Acidobacteria  (31 %) and  Alphaproteobacteria  
(30 %), whereas most endophytes were associ-
ated to  Gammaproteobacteria  (54 %) and 
 Alphaproteobacteria  (23 %) (Gottel et al.  2011 ). 

3.4.1     Role in PGP and Biocontrol 

 PGP can be induced at higher rate by the bacteria. 
Most mechanistic pathway of either direct or 
induced PGP is more or less similar to rhizo-
sphere bacteria. Direct PGP is caused by the 
inducing availability of nutrients or by hormone 
production. Indirect PGP might be taken place at 
three conditions: (1) in the presence of a patho-
gen, the benefi cial bacteria inactivate/kill the 
pathogen; (2) when a remediation occurs, the 
bacterium inactivates a pollutant which stops the 
growth of the plant; (3) during stress conditions’ 
excess of ethylene, heavy metal, drought, etc., 
ACC deaminase is produced which can tolerate 
stress conditions. 

 Bacterial endophytes are reported to produce 
auxins (Vendan et al.  2010 , Shcherbakov et al. 
 2013 ) using tryptophan as a precursor 
(Rosenblueth and Martinez-Romero  2006 ), 
whereas gibberellins are reported to be produced 
by rhizosphere bacteria. IAA production by  P. 
putida  CR 3  and  Rahnella aquatilis  HC 2   stimulates 
growth in cereals and radish (Malfanova  2013 ). 
 Bacillus subtilis  HC-8 induced plant growth by 
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gibberellin production. Ethylene is a stress hor-
mone for which ACC is the precursor. The bacte-
ria convert ACC into α-ketobutyrate and ammonia 
which can tolerate the stress conditions caused 
by ethylene, salination, and heavy metals 
(Malfanova et al.  2011 ). A total of 174 endo-
phytes isolated from interior tissues of tomato 
plants were collected from various countries in 
the world. The bacteria that are able to utilize 
ACC as sole carbon source were selected further 
and tested for IAA synthesis, siderophore forma-
tion, phosphate solubilization, optimal growth 
temperature, salt tolerance, and antibiotic sensi-
tivity. Of the 174 endophytes, 25 isolates were 
potent in all the parameters tested, and they were 
found to be the genera of  Pseudomonas  spp., 
 Microbacterium  spp.,  Agrobacterium  spp., 
 Bacillus  spp., and few unculturables (Rashid 
et al.  2012 ). Plants which prefer the endophytes 
with high ACC deaminase activity will confer 
benefi ts for both plant and bacteria (Hardoim 
et al.  2008 ). 

 Nitrogen fi xation is involved in growth stimu-
lation (Iniguez et al.  2004 ). Some endophytic 
bacteria are able to fi x atmospheric nitrogen and 
convert them into ammonia which can be taken 
by the plant (Krause et al.  2006 ; Vendan et al. 
 2010 ; Shcherbakov et al.  2013 ). Endophytes such 
as  A. diazotrophicus  PA15 and  Herbaspirillum  
sp. B5D when inoculated on sugarcane and rice, 
respectively, enhanced 0.6 % and 0.14 % total 
nitrogen in 24 h (Sevilla et al.  2001 ; Wu et al. 
 2009 ). Bacteria producing enzymes that can solu-
bilize the phosphorus are agriculturally impor-
tant. Some endophytic bacteria which cannot 
enter the interior layers of the plant cell are found 
to be potent in mobilizing the phosphorus (Sturz 
et al.  2000 ). Endophytic bacteria are potent 
antagonist in controlling the fungal pathogens. 
 Pseudomonas  species as an endophyte was 
reported to be an antagonist for different phyto-
pathogens on various hosts (Adhikari et al.  2001 ; 
Grosch et al.  2005 ; Prieto et al.  2009 ). Similarly, 
plant defense mechanism is also activated by 
ISR. This ISR can be done by various metabo-
lites, molecules, or volatiles produced by the bac-
teria inside plant tissues. For instance,  B. 
amyloliquefaciens ,  B. subtilis ,  P. fl uorescens , and 

 Serratia marcescens  were reported to induce ISR 
(Kloepper and Ryu  2006 ). Reiter et al. ( 2002 ) 
demonstrated many genera of endophytic bacte-
ria such as  P. fl uorescens ,  P. alcaligenes ,  P. 
putida ,  Flavobacterium  spp., and  B. megaterium  
inhibiting plant pathogens. Other endophytes that 
inhibit pathogens include  Alcaligenes  spp., 
 Kluyvera  sp.,  Microbacterium  sp., and 
 Curtobacterium  sp. (Zinniel et al.  2002 ). Ramesh 
et al. ( 2009 ) reported 28 isolates of endophytic 
bacteria inhibiting bacterial wilt pathogen 
 Ralstonia solanacearum . 

 Endophytic bacteria might follow a predation 
and parasitism mechanism. This might be due to 
production of cell wall-degrading enzymes such 
as cellulase, chitinase, and glucanase (Krechel 
et al.  2002 ; Berg and Hallmann  2006 ). They are 
also potent in suppressing the proliferation of 
nematode in host plants (Sturz and Kimpinski 
 2004 ).  Curtobacterium fl accumfaciens , an endo-
phyte isolated from citrus plant, was reported to 
inhibit the pathogen  Xylella fastidiosa  (Araujo 
et al.  2002 ). Similarly, endophytes from potato 
act as antagonist against bacteria and fungi 
(Sessitsch et al.  2004 ; Berg et al.  2005 ). Recent 
interest is on genetically engineered endophytes. 
For instance,  Herbaspirillum seropedicae  and 
 Clavibacter xyli  are genetically engineered endo-
phytes that produce endotoxin of  B. thuringiensis  
in order to control insect pests (Downing et al. 
 2000 ). Another endophyte  Burkholderia cepacia  
has modifi ed to tolerate toluene (Barac et al. 
 2004 ). Hence, with the detailed study of the 
mechanism in colonization, these can be imple-
mented in promoting plant growth and as biocon-
trol agents. Recently studied endophytes with 
plant host are tabulated (Table  3.1 ).

3.5         Fungal Endophytes 

 More than 100 years of research suggests that 
most, if not all, plants in natural ecosystem are 
symbiotic with mycorrhizal fungi. Among all 
endophytes, fungal endophytes are studied more 
till date. Fungal endophytes are of increasing 
interest due to growing list of benefi ts that they 
can confer on their hosts, including both biotic 
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   Table 3.1    PGP and biocontrol properties of bacterial endophytes   

 Endophytes 

 Host plant 

 PGP/biocontrol  References  Common name  Scientifi c name 

  Bacillus megaterium  
LNL6,  Methylobacterium 
oryzae  CBMB 205 

 Rice   Oryza sativa   IAA, ACC deaminase, N 
fi xation 

 Subramanian 
et al. ( 2014 ) 

  Gluconobacter 
diazotrophicus  

 Sugarcane   Saccharum 
offi cinarum  

 Systemic defense  Idogawa et al. 
( 2014 ) 

  Burkholderia , 
 Azospirillum ,  Ideonella , 
 Pseudacidovorax , 
 Bradyrhizobium  

 Potatoes   Solanum tuberosum  
L. 

 N fi xation, phytohormone 
production, biocontrol of 
 Fusarium ,  Koribacter , 
 Pectobacterium  

 Pageni et al. 
( 2014 ) 

  Paenibacillus ,  Bacillus , 
 Microbacterium , 
 Klebsiella  

 Rice cultivars   O. sativa   IAA, P solubilization, 
siderophore 

 Ji et al. ( 2014 ) 

  Burkholderia ,  Klebsiella , 
 Novosphingobium , 
 Sphingomonas  

 Rice   O. sativa   IAA, P solubilization, 
siderophore 

 Rangjaroen et al. 
( 2014 ) 

  Bacillus subtilis  var. 
 amyloliquefaciens  72β24 

 Rice   O. sativa   Biocontrol of  Rhizoctonia 
solani  

 Nagendran et al. 
( 2014 ) 

  Bacillus  sp.,  Enterobacter  
sp. 

 Corn   Zea mays   N fi xation, IAA, 
siderophore 

 Szilagyi-Zecchin 
et al. ( 2014 ) 

  Pantoea dispersa   Cassava   Manihot esculenta 
Crantz  

 P solubilization  Chen et al. 
( 2014 ) 

  Bacillus pumilus   Thulasi   Ocimum sanctum   P solubilization, IAA, 
siderophore, HCN 

 Murugappan 
et al. ( 2013 ) 

  Acinetobacter johnsonii 
strain 3–1  

  Beet    Beta vulgaris   IAA, P solubilization  Yingwu et al. 
( 2011 ) 

  Martelella mediterranea , 
 Hoefl ea alexandrii  

 Japanese rose 
and annual sea 
blite 

  Rosa rugosa , 
 Suaeda maritime  

 P solubilization, IAA, 
nitrate reduction, 
biocontrol of 
 Phytophthora capsici , 
 Pythium ultimum  

 Bibi et al. ( 2012 ) 

  Bacillus thuringiensis  
GDB-1 

  Scots pine    Pinus sylvestris   ACC, IAA, P 
solubilization, 
siderophore 

 Babu et al. 
( 2013 ) 

  Bacillus ,  Paenibacillus , 
 Klebsiella ,  Acinetobacter  

 Wheat   Triticum  spp.  IAA, P solubilization, 
siderophore, biocontrol of 
 Gaeumannomyces 
graminis  

 Duran et al. 
( 2014 ) 

  Enterobacter  sp. strain 
FD17 

 Maize   Z. mays   IAA, ACC,P 
solubilization, 
siderophore 

 Naveed et al. 
( 2014 ) 

  Pseudomonas fl uorescens  
PICF7 

  Olive    Olea europaea   Biocontrol of  Verticillium  
wilt 

 Cabans et al. 
( 2014 ) 

  B. subtilis  NA-108,  B. 
subtilis  NA-120, 
 Enterobacter  sp. EMB-79 

 Strawberry   Fragaria ananassa   IAA, siderophore, N 
fi xation 

 de Melo Pereira 
et al. ( 2012 ) 

  Bacillus  spp.  Rose gum   E. urophylla x E. 
grandis  

 IAA, P solubilization, N 
fi xation 

 Paz et al. ( 2012 ) 

(continued)
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and abiotic. They have the ability to provide 
resistance against herbivores (Brem and 
Leuchtmann  2001 ), pathogens (Gond et al.  2010 ), 
temperature and salinity (Redman et al.  2002 ) 
and also stresses and heavy metals (Li et al. 
 2012 ). Fungal endophytes unlike mycorrhizal 
fungi colonize plant root and grow into rhizo-
sphere. Plant tissue is the residence of the fungal 
endophytes which may grow in all or any part of 
the plants. There are numerous reports docu-
menting the presence of fungal endophytes in 
distinct phyla. Petrini et al. ( 1992 ) reported that 
more than one type of fungal endophytes is found 
in single plant. Kharwar et al. ( 2008 ) evidence 13 
isolates in leaf, stem, and root tissues of 
 Catharanthus roseus . Fungal endophytes are pre-
dominantly found to be present in tropical, sub-
tropical, and terrestrial ecosystems. Kharwar 
et al. ( 2011 ) also reported the isolation of total 
149 fungal endophytic isolates belonging to 17 
fungal genera in leaf, stem, and petiole. Among 
all tissues studied, leaves showed about 72 % 
endomycobiota compared to stem and petiole 
which are 68 % and 25.54 %, respectively. The 
predominant genera include  Cryptosporiopsis 
lunata  (4.18 %),  F. roseum  (4.07 %),  A. niger  
(5.93 %),  Stenella agalis  (5.20 %),  Fusarium 
oxysporum  (5.18 %), and  Aspergillus alternata  
(6.30 %). 

3.5.1     Classifi cation 

 A detailed study in the classifi cation of the fungal 
endophytes has been reviewed by Rodriguez 
et al. ( 2009 ). Endophytes are broadly classifi ed 
into two groups, viz., clavicipitaceous endo-
phytes (class I) and nonclavicipitaceous endo-
phytes (class II), based on evolution, taxonomy, 
ecology, and nature of the host. Depending upon 
the host range, the way they colonize, the pattern 
of transmission, tissue specifi cities, and symbi-
otically conferred benefi ts, they are of two more 
classes (III, IV). 

3.5.1.1     Class I (Clavicipitaceous) 
Endophytes 

 These endophytes are defensive mutualism of 
host grasses. They include free-living and sym-
biotic species associated with insects and fungi 
( Cordyceps  sp.) or grasses, rushes, and sedges 
( Balansia  sp.,  Epichloe  sp., and  Claviceps  sp.) 
(Bacon and White  2000 ). This class of endo-
phytes is believed to begun from insect-parasitic 
ancestors and diversifi ed through an inter- 
kingdom. The evolution of endophyte is thought 
to have begun with free-living insect parasite 
and then progressed to epibiotic plant gaining 
access to plant nutrients (Spatafora et al.  2007 ; 
Torres et al.  2007 ). These endophytes descend-

Table 3.1 (continued)

 Endophytes 

 Host plant 

 PGP/biocontrol  References  Common name  Scientifi c name 

  Stenotrophomonas 
maltophilia ,  Pseudomonas 
putida ,  S. maltophilia , 
 Achromobacter 
xylosoxidans , 
 Achromobacter  sp .  

 Amaranth, 
tomato, 
calabaza 

  Amaranthus 
hybridus ,  Solanum 
lycopersicum , 
 Cucurbita maxima  

 IAA, P solubilization, 
ammonia 

 Ngoma et al. 
( 2013 ) 

  Escherichia fergusonii , 
 Acinetobacter 
calcoaceticus ,  Salmonella 
enterica  

 Coffee   Coffea arabica ,  C. 
robusta  

 Phosphatase, siderophore, 
IAA 

 Silva et al. 
( 2012 ) 

  Methylobacterium  spp . , 
 Micrococcus luteus , 
 Lysinibacillus fusiformis , 
 Stenotrophomonas 
maltophilia  

 Citrus, 
Ginseng 

  Citrus  sp.,  Ginseng  
sp. 

 Siderophore, IAA, P 
solubilization, N fi xation 

 Vendan et al. 
( 2010 ) 
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ing from insects do not possess enzymes or tox-
ins for killing or degrading plant tissues but 
produce toxins that affect insects and other ani-
mals. The life history states that  Epichloe  spp. 
are endophytes present in grass which is present 
in intercellular spaces of leaf sheaths, rhizomes, 
and surface of leaf blades (Moy et al.  2000 ; 
Tadych et al.  2007 ). During fl owering stage, fun-
gus grows over to form a stroma, where infl ores-
cence primordium remains at arrested stage 
preventing seed development. Some species 
exhibit stromata allowing partial seed produc-
tion and vertical transmission. Inoculation of  E. 
festucae  in turf grasses showed signifi cant resis-
tance over uninoculated turf to two major leaf 
spot pathogens: dollar spot disease caused by 
 Sclerotinia homeocarpa  (Clarke et al.  2006 ) and 
red thread disease caused by  Laetisaria fucifor-
mis  (Bonos et al.  2005 ).  

3.5.1.2     Class II (Nonclavicipitaceous) 
Endophytes 

 They are a single group with diverse fungi and 
can be provisionally classifi ed into at least three 
functional groups on life history, ecological 
intern, and traits. It comprises of diversifi ed spe-
cies, which are a member of Dikarya, most 
belonging to  Ascomycota  and minority of 
 Basidiomycota . These fungi colonize plants via 
infection structures such as sporulation or by 
direct penetration of plant tissue via hyphae 
growth through plant tissue which is dominantly 
intracellular with little or no impact on host 
cells. These fungi rapidly emerge and sporulate 
during host senescence (Weber et al.  2004 ). 
Many endophytes protect host to some extent 
against fungal pathogens. Endophytic isolates 
of  F. oxysporum  and  Cryptosporiopsis  sp. con-
ferred disease resistance against virulent patho-
gens in barley ( Hordeum vulgare ) and larch 
( Larix decidua ), and resistance was correlated 
to an increase concentration of phenolic metab-
olites (Schulz et al.  1999 ). The uniqueness lies 
in the ability of the individual isolates to asymp-
tomatically colonize and confer habitat-adapted 
fi tness benefi ts on genetically distant host spe-
cies representing monocots and eudicots 
(Rodriguez et al.  2009 ).  

3.5.1.3    Class III Endophytes 
 These include the hyperdiverse endophytic fungi 
associated within leaves of tropical trees as well 
as ground tissues of nonvascular plants, seedless 
vascular plants, conifers, woody, and herbaceous 
angiosperm. Fungi with similar life histories of 
class III endophytes also occur with asymptom-
atic lichens and in that case are known as endoli-
chenic fungi (Arnold  2008 ). Members of 
 Basidiomycota  belonging to  Agaricomycotina , 
 Pucciniomycotina , and  Ustilaginomycotina  also 
are class III endophytes. Reproduction is by 
spore formation which is released passively. 
Spores might be sexual or asexual.  

3.5.1.4    Class IV Endophytes 
 The dark pigmented endophytes called as “myce-
lium radicis atrovirens” or dark septate endo-
phytes are grouped as class IV endophytes. They 
are ascomycetous fungi that are either conidial or 
sterile and that form melanized structures such as 
inter- and intracellular hyphae and microsclerotia 
in the roots. These groups are less specifi c toward 
the host and have been reported about 600 plants 
including plants that are non-mycorrhizal, from 
Arctic, Antarctic, alpine, subalpine, tropic zones, 
temperate zones, coastal plains, and lowlands 
(Jumpponen  2001 ).   

3.5.2     Role in PGP and Biocontrol 

 Fungal endophytes are valued more for its PGP 
traits and biocontrol potency (Azevedo and 
Araújo  2007 ; Suryanarayanan et al.  2012 ). 
Several investigations have performed to 
improve the plant growth and protect the plant. 
The endophytic fungi are benefi cial to the host 
plants by inducing higher nutrient uptake 
(Lekberg and Koide  2005 ). Endophytic fungi 
are present right from the seed germination. At 
this stage, they degrade the cellulose of the cuti-
cle and make carbon available for the plant ger-
mination and establishment. They colonize in 
the root of the host and result in promotion of 
growth and higher yield. They produce plant 
growth regulators, thereby promoting seed ger-
mination in crops (Bhagobaty and Joshi  2009 ). 
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Fungi are potent in producing wide variety of 
growth hormones, viz., gibberellins, auxins, and 
abscisic acid (You et al.  2012 ). Many endo-
phytes have reported in vitro production of IAA 
and its effect on PGP (Govindarajan et al.  2008 ). 
IAA production further enhances plant growth 
under salinity, drought, and temperature stress 
(Redman et al.  2011 ). The sand fl ora of Korean 
coastal region showed a majority of 80.7 % 
growth promotion of Waito-C rice, thus indicat-
ing the induction of PGP hormones by fungal 
endophytes (Khan et al.  2012 ). A review by Mei 
and Flinn ( 2010 ) has listed US patents showing 
the signifi cance of fungal and bacterial endo-
phytes for plant growth promotion and stress 
tolerance. 

 Fungal endophytes have higher resistance 
toward insect herbivores, nematodes, and plant 
pathogens which is an important factor favoring 
crop protection. The defense against insects is 
enhanced by secreting growth-regulating com-
pounds or metabolites. These in turn infl uence 
plant development and help in crop protection 
(Marina et al.  2011 ). The endophytes against 
crop diseases by fungus were reported by Webber 
( 1981 ) for the fi rst time where  Phomopsis 
oblonga  protects from  Physocnemum brevil-
ineum , a pest of elm trees. Plant hormones that 
act as defense signaling molecule include sali-
cylic acid, jasmonic acid, etc. (Shinozaki and 
Yamaguchi-Shinozaki  2007 ). Endophytic genera 
of  Neotyphodium  and  Fusarium  suppress 
 Triticum  diseases and nematodes, respectively 
(Tunali et al.  2000 ). Several studies demonstrated 
that endophytic fungi can resist the plants against 
 Phytophthora palmivora ,  Moniliophthora roreri , 
and  M. perniciosa  (Mejia et al.  2008 ) in which 
one of the endophytes  Gliocladium catenulatum  
can reduce up to 70 % incidence of witches’ 
broom disease (Rubini et al.  2005 ). 
 Piriformospora indica  induces systemic resis-
tance in  Arabidopsis  against powdery mildew 
pathogen  Golovinomyces orontii  by activating 
the jasmonate signaling pathways (Stein et al. 
 2008 ). More examples of endophytic fungi con-
trolling plant diseases caused by pathogenic 
fungi, nematodes, and bacteria are reviewed by 
Azevedo and Araújo ( 2007 ). 

 Inoculation with  P. indica  isolated from 
 Prosopis julifl ora  and  Ziziphus nummularia  
increased the plant growth in diverse host plants 
(Varma et al.  1999 ). Improved plant nutrition and 
increased tolerance to abiotic and biotic stress 
elucidate the plant growth stimulation mediated 
by endophytes.  Epichloe festucae  is a fungal 
endophyte that increases uptake of phosphorus 
on inoculation with  Festuca rubra , by solubiliz-
ing rock phosphate from soil (Zabalgogeazcoa 
et al.  2006 ). 

 Many endophytes like  F. fujikuroi , 
 Sphaceloma manihoticola ,  Phaeosphaeria  sp., 
 Neurospora crassa ,  Cladosporium  sp., 
 Penicillium  sp.,  Gliomastix murorum ,  Arthrinium 
phaeospermum , and  Aspergillus fumigatus  have 
been reported as growth promoters. Under 
extreme environmental conditions, these phyto-
hormones producing endophytic fungi affect the 
production of several secondary metabolites like 
fl avonoids to help the plant to tolerate/avoid 
stress (Schulz  2002 ; Waller et al.  2005 ; Khan 
et al.  2011 ). Representative fungal endophytes 
with PGP and biocontrol traits were tabulated 
(Table  3.2 ). Today’s interest is toward the endo-
phytic fungi which have residence in root tissues 
and secrete plant growth-regulating compounds 
to increase the crop yield and quality. On con-
trolling the plant diseases and increasing the 
yield, the ideal strategy of sustainable agricul-
ture can be reached. Though the molecular 
mechanism of the endophytic fungi in PGP and 
defense is not clearly known, several studies 
confi rm that they play a key role in the crop pro-
tection and yield enhancement. The culturable 
and unculturable techniques are involved to 
explore still on the endophytes. Fungal endo-
phytes have attracted the researchers and hence 
they are researched globally to combat crisis and 
demands in agriculture (Rai et al.  2014 ).

3.6         Endophytic Actinomycetes 

 Actinomycetes are Gram-positive fi lamentous 
bacteria belonging to the phylum  Actinobacteria  
with 6 classes, 5 subclasses, 25 orders, 14 subor-
ders, 52 families, and 232 genera. It is one of the 
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largest taxonomic groups among the 18 known 
lineages within the bacterial domain 
(Stackebrandt and Schumann  2000 ). They are 
found in the internal tissue of the plant without 
harming the plant either as damage or in morpho-
logical change (Kunoh  2002 ; Hasegawa et al. 
 2006 ). Plant ecosystem is diversifi ed and it is a 

rich reservoir of novel taxa actinomycetes (Inbar 
et al.  2005 ; Zin et al.  2007 ; Qin et al.  2009 ). They 
have wide range of host and found to be residing 
in many plants, viz., barley, rye, oats, and soy-
bean (Sardi et al.  1992 ), rice (Tian et al.  2004 ), 
banana (Cao et al.  2005 ), cowpea (Dimkpa et al. 
 2008 ), medicinal plants (Qin et al.  2009 ), blue 

   Table 3.2    PGP and biocontrol properties of fungal endophytes   

 Host plant 

 Endophytes  Common name  Scientifi c name  PGP/biocontrol  References 

  P. indica   Barley   Hordeum vulgare  
L. 

 Ethylene/phytohormone 
production 

 Schafer et al. 
( 2009 ) 

  P. indica   Arabidopsis   Arabidopsis 
thaliana  

 Cytokinins, abscisic acid, 
gibberellins 

 Vadassery 
et al. ( 2009 ) 

  Cladosporium  sp.  Cucumber   Cucumis sativus   Gibberellins  Hamayun 
et al. ( 2010 ) 

  Scolecobasidium 
humicolas  

 Tomato   Solanum 
lycopersicum  

 N fi xation  Mahmoud 
and Narisawa 
( 2013 ) 

  Penicillium  sp.,  Phoma 
glomerata  

 Cucumber   Cucumis sativus   IAA, gibberellins, jasmonic 
acid 

 Waqas et al. 
( 2012 ) 

  Pestalotiopsis  sp.  Tomato   Solanum 
lycopersicum  

 IAA  Hoffman 
et al. ( 2013 ) 

  Aspergillus fl avipes  
CanS-34A,  Chaetomium 
globosum  CanS-73, 
 Clonostachys rosea  
CanS-43,  Leptosphaeria 
biglobosa  CanS-51 

 Oilseed rape   Brassica napus   Biocontrol of  Sclerotinia 
sclerotiorum ,  Botrytis cinerea  

 Zhang et al. 
( 2014 ) 

  Paraconiothyrium  sp.  Taxus   Taxus baccata   Salicylic acid, benzoic acid  Soliman and 
Raizada 
( 2013 ) 

  Penicillium 
verruculosum  

 Cinquefoils   Potentilla fulgens   IAA  Bhagobaty 
and Joshi 
( 2009 ) 

  Curvularia ,  Fusarium , 
 Pestalotiopsis , 
 Tolypocladium  

 Cacao   Theobroma cacao   Biocontrol of  Phytophthora 
palmivora  

 Hanada et al. 
( 2010 ) 

  Penicillium  sp.  Wheat   Triticum  spp.  P solubilization  Wakelin et al. 
( 2004 ) 

  Fusarium oxysporum   Banana   Musa paradisiaca   ISR against  Radopholus similis   Vu et al. 
( 2006 ) 

  Penicillium copticola   Cannabis   Cannabis sativa  
L. 

 Biocontrol of  Botrytis cinerea , 
 Trichothecium roseum  

 Kusari et al. 
( 2013 ) 

  Aureobasidium 
pullulans , 
 Paraconiothyrium 
sporulosum  

 Frailejón   Espeletia 
grandifl ora  and 
 Espeletia 
corymbosa  

 Biocontrol of  Rhizoctonia solani   Miles et al. 
( 2012 ) 

  Paecilomyces formosus   Cucumber   Cucumis sativus   Gibberellin  Khan et al. 
( 2012 ) 

  Trichoderma gamsii    Lentil    Lens esculenta   P solubilization, chitinase, 
ammonia, salicylic acid 

 Rinu et al. 
( 2014 ) 
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lupin (Trujillo et al.  2010 ), tomato (de Oliveira 
et al.  2010 ), chickpea (Misk and Franco  2011 ), 
neem tree (Verma et al.  2011 ), and wheat 
(Sadeghi et al.  2012 ). 

 Among actinomycetes identifi ed as endo-
phytes,  Streptomyces  sp. is the predominant, and 
 Microbispora ,  Micromonospora ,  Nocardioides , 
 Nocardia , and  Streptosporangium  are the com-
mon genera. According to the study performed in 
roots and leaves of maize plants ( Zea mays  L.), 
 Microbispora  sp. was found to be the most com-
mon  Actinobacteria  (De Araujo et al.  2000 ), 
although  Streptomyces  and  Streptosporangium  
spp. were also present. But a number of 619 acti-
nomycetes were isolated from different cultivars 
of tomato, and all of them were  Streptomyces  
spp. (Tan et al.  2006 ). Similarly Taechowisan 
et al. ( 2003 ) isolated 330 strains belonging to 
four different genera ( Streptomyces , 
 Microbispora ,  Nocardia , and  Micromonospora ) 
in 330 medicinal plants. Lee et al. ( 2008 ) reported 
81 endophytic  Actinobacteria  including eight 
genera from Chinese cabbage roots, and 
 Microbispora  spp. were the most common iso-
lates, followed by  Streptomyces  sp. and 
 Micromonospora  sp. Colonization takes place at 
higher rate in roots of the host. To date, more than 
40 new taxa have been found by polyphasic taxo-
nomic approaches, including four new genera, 
 Plantactinospora ,  Actinophytocola , 
 Phytohabitans , and  Jishengella . The greatest 
diversity of endophytes occurs in the tropical and 
temperature regions. Janso and Carter ( 2010 ) 
reported a total of 123 endophytic actinomycetes 
isolated from plants collected from several loca-
tions in Mborokua Island, Papua New Guinea, 
and Solomon Islands. Filamentous  Actinobacteria  
was found to be present in surface-sterilized roots 
of wheat plants (Coombs and Franco  2003 ). Misk 
and Franco ( 2011 ) observed a physiologically 
different endophytic group in legumes such as 
lentil, chickpea, pea, etc. Strobel and Daisy 
( 2003 ) have reported that a great diversity of 
endophytic  Actinobacteria  is found in tropical 
and temperate regions. Taechowisan et al. ( 2003 ) 
isolated about 330 strains from 36 medicinal 
plants in Thailand which showed that the genera 
 Streptomyces ,  Microbispora ,  Micromonospora , 

and  Nocardia  are predominant.  Actinobacteria  
has attracted researchers in recent years where 50 
new taxa have been identifi ed from various plants 
in terrestrial environment. The identifi cation and 
characterization is done by polyphasic approach 
which includes morphological, chemotaxonomi-
cal, and molecular techniques (Brusetti et al. 
 2008 ; Yuan et al.  2008 ). The next-generation 
sequencing, a high-throughput study, is another 
upcoming technique which is used in diversity 
and taxonomy studies (Mardis  2008 , Lauber 
et al.  2010 , Robinson et al.  2010 ). 

3.6.1     Role in PGP and Biocontrol 

 Recently, actinomycetes have attracted the 
researchers’ interest because of its potent biocon-
trol nature and signifi cant role in plant promo-
tion. However, the  Streptomyces  strain had the 
smallest population size (10 2 –10 5  cfu/g) in a 
wheat rhizosphere; they relatively lived for a lon-
ger duration (1 year) than other organisms under 
the conditions tested (Yuan and Crawford  1995 ). 
Several studies have proved that endophytic acti-
nomycetes can control many fungal pathogens 
and plant diseases (Quecine et al.  2008 ). This 
antagonistic ability is due to the production of 
bioactive compounds, cell wall-degrading 
enzymes, and competent in nutrition (El-Tarabily 
and Sivasithamparam  2006 ). They can also trig-
ger ISR. The endophytic strain  S. galbus  R-5 
released cellulose and pectinase and produced 
actinomycin X 2  and fungichromin to induce 
resistance in the rhododendron seedlings and 
triggered plant jasmonate-associated defense 
responses (Shimizu et al.  2005 ). Conn et al. 
( 2008 ) observed that  Streptomyces  sp. EN27 and 
 Micromonospora  sp. strain EN43 led to increased 
resistance in  A. thaliana  leaves against pathogens 
such as  Erwinia carotovora  and  F. oxysporum  
and triggered the expression of defense genes 
related to salicylic acid- or jasmonic acid-/
ethylene- dependent signaling pathways in the 
absence of a pathogen.  Streptomyces  isolated 
from banana plant was found to have antibiosis 
property and was also capable in siderophore 
production (Cao et al.  2004 ). Similarly, 
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 Micromonospora  and  Streptomyces  from man-
grove plants in China were potent to inhibit pro-
tein synthesis with antibiosis property (Hong 
et al.  2009 ). They promote plant growth by 
 inducing the production of phytohormone pro-
duction of siderophores to scavenge ferric iron 
from the environment, solubilization of inorganic 
phosphate, nitrogen fi xation, and suppression of 
stress ethylene in plant by the production of ACC 
deaminase (Dimkpa et al.  2008 ; Kannan and 
Sureendar  2008 ; Trujillo et al.  2010 ; de Oliveira 
et al.  2010 ; Verma et al.  2011 ; Sadeghi et al. 
 2012 ). A wide range of pathogens can be con-
trolled by actinomycetes including  Rhizoctonia 
solani ,  Verticillium dahliae ,  Plectosporium 
tabacinum ,  F. oxysporum ,  Pythium aphanider-
matum , and  Colletotrichum orbiculare  (Krechel 
et al.  2002 ; Shimizu et al.  2009 ). Several endo-
phytic  Actinobacteria  isolated from winter rye 
produced IAA (Merzaeva and Shirokikh  2010 ). 
 Frankia  strains are symbionts in certain nonlegu-
minous plants and can induce N 2 -fi xing root nod-
ules (Benson and Silvester  1993 ). Tomato plants 
from Algerian Sahara were found to have many 
 Streptomyces  genera which were screened for the 
ability of IAA production and also potent in con-
trolling  R. solani  (Goudjal et al.  2013 ,  2014 ). 
Endophytic actinomycetes isolated from various 
plants with PGP and biocontrol properties were 
summarized in Table  3.3 .

   Recently, our research group at ICRISAT has 
isolated from various rhizospheric soil and col-
lected about 1500 microbes (bacteria and actino-
mycetes) in which many have documented 
agriculturally favorable traits. Actinomycetes 
such as  Streptomyces  spp.,  S. griseorubens ,  S. 
caviscabies , and  S. globisporus  subsp.  cauca-
sicus  isolates have potency in in vitro PGP traits 
with upregulation of PGP genes such as IAA and 
siderophore-producing genes (Gopalakrishnan 
et al.  2012 ,  2013 ,  2014a ). Apart from the PGP 
traits, they also have the capacity to act as bio-
control agents. The PGP actinomycetes were 
found to have inhibitory activity against  Fusarium 
oxysporum  f. sp.  ciceri  (FOC) and  Sclerotium 
rolfsii  Sacc., which causes  Fusarium  wilt and 
collar rot in chickpea, respectively 
(Gopalakrishnan et al.  2011a ), and also against 

 Macrophomina phaseolina , which causes char-
coal rot in sorghum (Gopalakrishnan et al. 
 2011b ). PGP bacteria such as  B. megaterium ,  B. 
subtilis ,  Serratia marcescens , and  Pseudomonas 
geniculata  (Gopalakrishan et al.  2014b ), a fungus 
 Metarhizium anisopliae , and actinomycetes such 
as  S. cavourensis  sup sp.  cavourensis ,  S. cyaneo-
fuscatus ,  S.bacillaris ,  S. antibioticus ,  S. albolon-
gus ,  S. hydrogenans , and  S. carpaticus  were 
found to have broad-spectrum insecticide against 
lepidopteran pests such as  Helicoverpa armigera , 
 Spodoptera litura , and  Chilo partellus  
(Gopalakrishnan et al.  2011c ; Vijayabharathi 
et al.  2014 ). Recently, fi ve strains of  Streptomyces  
sp. isolated from chickpea have been found to 
inhibit charcoal rot of sorghum and induce PGP 
of sorghum and rice. They have been found to 
have IAA and siderophore-producing genes 
(Gopalakrishnan et al.  2015 ). All these bacteria 
and actinomycetes with PGP and biocontrol abil-
ity need to be further evaluated for its endophytic 
ability by addressing the query of survival inside 
the endodermal layer. Plant growth-promoting 
properties of endophytic  Actinobacteria  and the 
recent increased understanding of some of the 
mechanisms suggest that this promising source 
merits further investigations for potential appli-
cation in agriculture.   

3.7     Future Prospects 

 The endophytic population is the gut population 
of the plants. They might be of bacteria, fungi, or 
actinomycetes. Majority of these are not identi-
fi ed yet. Endophytes make a renaissance in using 
microbes for biological control of plant patho-
gens for a sustainable agriculture where the 
emphasis mainly is on hazards associated with 
chemical pesticides and transgenic plants. They 
colonize inside and outside the host tissues and 
make a long-term friendship, actually a lifelong 
relation without making any harm to the host 
(Rodriguez et al.  2009 ). Though several decades 
of research has underwent in the fi eld of symbio-
sis and their associations, there is a gap to know 
about the things needed for association and the 
way they maintain the association. The future 
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   Table 3.3    PGP and biocontrol properties of actinomycete endophytes   

 Host plant 

 Endophytes  Common name  Scientifi c name  PGP/biocontrol  References 

  Streptomyces albosporus  
R13 

 Rice   O. sativa   Siderophore  Gangwar et al. 
( 2012 ) 

  S. griseus   Wheat   Triticum  spp.  IAA  Hamdali et al. 
( 2008 ) 

  S. olivochromogenes , 
 Microbispora rosea  subsp. 
 rosea  

 Chinese cabbage   Brassica rapa   Biocontrol of 
 Plasmodiophora 
brassicae  

 Lee et al. 
( 2008 ) 

  Streptomyces  MBR-5, 
AOK-30 

 Alpenrose   Rhododendron 
ferrugineum  

  Phytophthora 
cinnamomi ,  Rhizoctonia  
sp. 

 Hasegawa 
et al. ( 2006 ) 

  Streptomyces  sp. EN27 
and EN28, 
 Micromonospora  sp. 
EN43,  Nocardioides albus  
EN46 

 Arabidopsis   Arabidopsis thaliana   Systemic acquired 
resistance 

 Conn et al. 
( 2008 ) 

  Streptomyces  sp .  
MBCu-56 

 Cucumber   Cucumis sativus    Colletotrichum 
orbiculare  

 Shimizu et al. 
( 2009 ) 

  Micromonospora  sp., 
 Streptomyces  sp., 
 Actinoplanes  sp. 

 Lucerne   Medicago sativa   N fi xation  Solans et al. 
( 2009 ) 

  Streptomyces  sp.  Neem   Azadirachta indica   IAA, siderophore, 
biocontrol of  Alternaria 
alternata  

 Verma et al. 
( 2011 ) 

  Streptomyces  sp., 
 Nonomuraea  sp., 
 Actinomadura  sp., 
 Nocardia  sp. 

 Eaglewood   Aquilaria 
malaccensis  

 IAA, ammonia  Nimnoi et al. 
( 2010 ) 

  S. griseorubiginosus   Banana   Musa paradisiaca   Biocontrol of  F. 
oxysporum  f. sp. 
 cubense  

 Cao et al. 
( 2005 ) 

  Streptomyces  sp. PT2  Spiderfl ower   Cleome arabica   Biocontrol of 
 Rhizoctonia solani  

 Goudjal et al. 
( 2013 ) 

  Streptomyces  sp.  Wheat   Triticum  spp .   P solubilization, IAA, 
phytase, chitinase, 
siderophore 

 Jog et al. 
( 2014 ) 

  Streptomyces  sp. En-1  Chinese yew   Taxus chinensis   IAA  Lin and Xu 
( 2013 ) 

  Streptomyces  sp., 
 Nocardia  sp., 
 Nocardiopsis  sp . , 
 Spirillospora  sp., 
 Microbispora  sp., 
 Micromonospora  sp .  

 Mandarin   Citrus reticulata   IAA  Shutsrirung 
et al. ( 2013 ) 

  Streptomyces  sp .  BSA25, 
 Streptomyces  sp .  WRA1 

 Wheat, Faba 
bean 

  Triticum  spp.,  Vicia 
faba  

 Siderophore, biocontrol 
of  Phytophthora 
medicaginis  

 Misk and 
Franco ( 2011 ) 

  Streptomyces  sp.  Maize   Z. mays   Biocontrol of  Pythium 
aphanidermatum  

 Costa et al. 
( 2013 ) 
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studies are queries lying in line to be solved. 
These include genomics of endophytes, signaling 
and dwelling in the same host, nutrient availabil-
ity and sharing, etc. The diversity of the 
 endophytes is very vast (Klitgord and Segre 
 2010 ), and with this nature assessing the com-
mon attribute in each and every endophyte is not 
possible. This complex environment in turn  limits 
the uses of the endophytes. Next is that the use of 
the endophytes in vitro and in vivo has some lim-
itations. Many metabolites are produced by these 
endophytes which sometimes are novel com-
pounds also (Yu et al.  2010 ). These compounds 
are not the same when produced in vitro condi-
tion. High-throughput studies are carried to con-
duct screening strategies for increased production. 
In such cases with cultural modifi cations, the 
genetic and molecular level modifi cations are 
performed. The challenge here is picking out the 
specifi c genes that make such modifi cation. 
Using the endophytes  in planta  is another big 
challenge where it should address the mechanism 
of action for protection and PGP which has not 
developed with higher success rate till date. 
Overall, isolating the unculturables and identify-
ing them has brought molecular approaches and 
next-generation sequencing into the fi eld (Draper 
et al.  2011 ). Thus, it is expected that many more 
endophytes will be identifi ed, analyzed, and uti-
lized. The future challenges are dependent on 
identifying, delineating, dissecting, and defi ning 
the mechanisms of the relation they have. A 
basement- level success in this research which is 
reached and further answers the above challenges 
might ensure the present and future successful 
technological applications of microbial endo-
phytes mainly in growth promotion and in con-
trol of plant diseases.     
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