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ABSTRACT 

Studies on pathogenic and genetic diversity, mating types, and inheritance 
of virulence in Sclerospora graminicoia (Sacc.) Schroet., the pearl millet downy 
mildew pathogen were undertaken at International Crops Research Institute for the 
Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India. A total of 21 
isolates from major pearl millet growing areas of India were selected from the 
collections maintained at ICRISAT in the form of oosporic inocula. From these 
oosporic inocula, asexual ~nocula were generated on a universally susceptible host 
genotype, 70428 and were denoted as parental isolates. 

During the establishment of parental isolates, the isolate, Sg 153 recorded 
the highest disease incidence (76.15%) with shortest latent period (6.00 days) and 
the isolate Sg 021 (1.97%) and Sg 004 (2.61%) recorded the lowest disease 
incidence with longest latent period (30.00 days). Isolates collected during 1997 
recorded significantly higher disease incidence than those collected in the previous 
year. 

The 21 parental isolates were e.laluated for pathogenicity on a set of ten 
host differentials and were found highly variable for virulence, disease incidence, 
disease reaction, latent period, virulence index and oospore production potential. 
Among the parental isolates, the isolate Sg 139 was found highly virulent and 
Sg 110 the weakly virulent. Based on disease incidence, the parental isolates were 
classified into seven pathotype groups. A representative isolate from each group 
was identified and ten single-zoospore isolates (SZIs) from each representative 
isolate were established for further studies. 



Considerable variation was found among the SZls of Sg 139 and Sg 110 
for virulence, disease incidence, disease reaction, latent period and virulence index 
on host differentials used. Among the SZIs of Sg 139, the isolate Sg 139-4 was 
found highly virulent while, the isolate of Sg 139-1 was the least virulent. In case 
of SZIs of Sg 110, the isolate Sg 110-3 was found highly virulent and the least 
virulent was Sg 110-9. 

A high level of polymorphism was detected among the parental isolates 
using AFLP analysis with three primer combinations. Presence or absence of few 
unique bands was observed in isolates Sg 004, Sg 025, Sg 026, Sg 139 and Sg 115. 
Based on similarity index, the isolates were classified into eight groups. The 
cluster composition varied for AFLP analysis and virulence analysis, and these two 
were found independent. 

Results of mating type study demonstrated the existence of two mating type 
groups designated as Mat A and Mat B. Of the 70 SZIs evaluated, 62 were found 
self-sterile and 8 self-fertile, indicating the predominant heterothallic nature of the 
fungus with rare occurrence of homothallism. Among the 70 SZls, the overall 
frequency of both the mating types was approximately equal. 

The inheritance of virulence in isolates of S. graminicoln was studied by 
hybridizing the isolates of Sg 139-4 (Mat A) and Sg 110-9 (Mat B), which differed 
extremely in their virulence on a host differential IP 18292. Observations in FI ,  F2 
and backcross generations indicated the dominant nature of avirulence over 
virulence, and the role of single gene pair in governing the virulence in isolates 
Sg 139-4 and Sg 110-9, and resistance in IP 18292. The pattern of segregation of 
virulence on IP 18292 also suggested !he presence of gene-for-gene interaction 
between S. graminicola and Penniserum glaticum (L) R. Br. 
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CH APTER-I 

INTRODUCTION 

Pearl millet (Penniselum glaucum (L.) R. Br.) is one of the important cereal 

crops in the arid and semi-arid tropics of the world, particularly in the Indian 

subcontinent and the Sahelian zone of West Africa. The crop is grown annually on 

37.40 m ha with an annual production of 29.21 m tons in the world (FAO, 2002). 

India and Africa together produce more than 90 per cent of the world output (Yadav, 

1996). In India, it is the fifth most important cereal after rice, wheat, maize and 

sorghum, occupying an area of 9.55 m ha and having an annual production of 8.35 m 

tons (AICPMIP, 2003). 

The crop is grown on sandy marginal soils and under harsh climatic 

conditions where no other crop can successfully be grown. Although the crop is 

quite hardy, it still suffers from various biotic and abiotic stresses. One of the major 

biotic yield-reducing factors is the d i s ~ ~ s e  downy mildew, caused by Sclerospora 

graminicola (Sacc.) Schroet. The disease is of significant economic importance in 

India and elsewhere. 

The downy mildew disease was reported for the first time on pearl millet 

in India during 1907 (Butler, 1907). Since then, it remained as a disease of 

minor importance until 1970. With the introduction of high yielding hybrids 

(HB 1 and HB 3) during late 1960s in India, the disease appeared in an epidemic 

form in 1971 in certain parts of India (Safeeulla, 1977; Singh et a / . ,  1993). 

Subsequent to this epidemic, several resistant cultivars have succumbed to 

downy mildew after being widely cultivated by farmers and havq been 

withdrawn from cultivation (Singh, 1995; Thakur er a/ . ,  1998a). During the last 



three decades, considerable progress has been made in the areas of pathogen 

biology and disease epidemiology, ard in developing management practices, 

particularly host-plant resistance (Singh el a[., 1997). However, the re-occurrence of 

downy mildew in severe form during 1993-96 on few F, commercial hybrids in 

some farmers' fields in Maharashtra (Thakur er ul., 1999) shows that the disease 

will continue to be a major limiting factor to the exploitation of the high yield 

potential of improved cultivars, particularly single cross FI hybrids. 

The pathogen S graminicola is an obligate biotroph, which reproduces 

asexually by means of sporangia that liberate motile zoospores, and sexually through 

oospores. The fungus is mostly heterothallic but homothallism may also exist 

(Michelmore el al., 1982). These characteristics of the fungus make it highly 

variable like its host pearl millet, which is a highly outcrossing crop species. Sexual 

reproduction also provides new genetic recombinations resulting in evolution of 

pathogen populations with greater virulence and parasitic fitness. Under these 

circumstances, utilization of host-plant resistance is the only feasible way to manage 

the disease. Therefore, a thorough understanding of the mechanisms underlying the 

evolution of pathogenic variation in S graminicola and resistance operating in pearl 

millet genotypes are highly essential to develop cultivars with stable and duratiz 

resistance. 

The present investigation was therefore undertaken with the following 

objectives : 

1. Characterization of isolates of S graminicola for pathogenic variability 

2. Characterization of isolates S. graminicola for genetic diversity 

3. Identification of mating types among S graminicola isolates 

4. Determination of inheritance of virulence in S. graminicola 





REVIEW OF LITERATURE 

A brief review of literature relevant to the objectives for the present 

investigation is presented under the following titles : 

2.1 General 

2.2 Pathogenic variability in Sclerospora graminicolo 

2.3 Molecular markers for genetic diversity 

2.4 Sexual compatibility in downy mildews 

2.5 Inheritance of virulence 

2.1 GENERAL 

2.1.1 Pea r l  millet - the  host 

Pearl millet (Pennisetum glaucum) is an important coarse grain cereal 

and forage crop of the arid and semi-arid tropics of the Indian subcontinent 

and several African regions (Khairwal el al., 1999). The crop is thought to be 

originated in Sahelian zone of West Africa and subsequently introduced into 

India (Purseglove, 1976). As a semi-arid crop, it is traditionally a componcct 

of the dryland cropping system. It can withstand high temperatures and severe 

soil- moisture stress, and recover rapidly to exploit periods of more 

favourable conditions (Andrews et al., 1985; Bidinger er al., 1987). No other 

crop has been found equal to or surpassing the dependability of pearl millet as 

a source of food for a large number of subsistence farmers who inhabit the 

semi-arid tropics of Asia and Africa (Cummings, 1975). 



4 
Pearl millet is mainly grown for grain and forage on about 15 m ha in 

Africa and 10 million ha in Asia (De Wit, 1986). In India, it is the fifth most 

important cereal food crop and is chiefly grown in the states of Rajasthan, 

Maharashtra, Gujarat and Haryana (Govila, 1994). It has also been recognised 

as a valuable forage crop, because of its robust and quick growth with high 

fodder yield, in the South-eastern USA and dry areas of Australia (Yadav, 

1996). 

Pearl millet is a naturally outbreeding crop species. For breeders, it is 

an excellent species for genetic research, because of its low chromosome 

number (2n=14), short life cycle (80-90 days), high multiplication ratio (upto 

1:1000), ratooning ability and the ease with which cross pollination can be 

done due to its protogyny flowering nature (Govila, 1994). 

Before the 1970s, pearl mi!i$t local cultivars were predominantly 

grown. Although those cultivars produced some yield under adverse 

conditions, the average yields were low. During this period, some sporadic 

efforts were made to improve these cultivars through simple selection 

methods, but they had limited spread and thus little impact on production 

(Yadav, 1996). 

The discovery of cytoplasmic male-sterile (CMS) lines (Burton, 1958) 

heralded the beginning of a successful breeding programme in India. A CMS 

line Tift 23A, bred at Tifton, Georgia (Burton, 1965). proved to be the most 

successful seed parent with 75-100 per cent increase in yield over the local 

Indian cultivars (Kumar e l  a[., 1983). It was, however, extensively utilised in 

India and five hybrids (HB 1 to HB 5) based on this line were released for 



commercial cultivation from 1965 to 1969 (Dave, 1987). Production increased 

from 3.5 to 8.0 million tons. However, intensive cultivation of hybrids based 

on a single male-sterile (MS) line resulted into cytoplasmic and genetic 

homogeneity leading to a downy mildew epidemic in 1971, and pearl millet 

grain production fell to 3.3 million tons. Thereafter, a series of downy mildew 

resistant hybrids (HB 1, HB 3, BJ 104 and MBH 110) released from time to time 

have succumbed to downy mildew within 5-7 years of their cultivation (Singh et 

al., 1997). This was due, primarily, to the lack of genetic diversity and 

inadequate resistance to downy mildew in MS lines rather than to cytoplasmic 

susceptibility (Yadav et al., 1993). However, much greater efforts are now 

being made to breed for downy mildew resistance and the MS lines currently 

being used are highly resistant (Rai and Singh, 1987; Thakur et al . ,  2001). 

Consequently, the life span of single-cross hybrids produced in recent years is 

longer than for those produced in the 1970s (Yadav, 1996). 

2.1.2 Downy mildew - the disease 

2.1.2.1 Geographical distribution 

Pearl millet downy mildew is widely distributed in the temperate and 

tropical areas of the world and is especially widespread in India (Nene and 

Singh, 1976) and Africa (N'Doye et al., 1986; Chevaugeon, 1952; Saccas, 

1954; Bouriquet, 1963). Saffeeulla (1 976) reported that Sclerosporo 

graminicola had been recorded in more than 20 countries. According to Jeger 

et al. (1998), it was reported from 51 countries of the world, which include 

the continents Asia, Africa, Europe and America. In India, the pathogen is 

present in all the states where pearl millet is cultivated (Singh et al., 1993) 



and appear consistently in the states of Maharashtra, Rajasthan and Gujarat 

with high disease incidence (Thakur el al. ,  2001). 

2.1.2.2 Economic importance 

The magnitude of grain yield reduction largely depends on disease 

severity levels and the stage of crop growth during infection. Total loss may 

occur in plants exhibiting downy mildew infection in seedling stage and 

green-ear infection during earhead formation (Thakur, 1987). The pathogen, 

Sclerospora graminicola, has been reported to cause severe yield loss in many 

regions of the world (Williams, 1984). In Africa, pearl millet downy mildew 

incidence is frequently between 0 and 50 per cent, although crop loss is 

normally in the range of 0-20 per cent (ICRISAT, 1985; Frison and Sadio, 1987; 

Labe et ol., 1987; Werder and Manzo, 1992; Mbwaga er al., 1993; Ouendeba et 

al. ,  1995). During a survey in Niger, the incidence of pearl millet downy 

mildew ranged from 0.8 per cent to over 40 per cent (Gilijamse et al. ,  1997). 

In some reports, the grain losses upto 60 per cent have been reported 

from various African countries (DeCarvalho, 1949; Doggett, 1970; King and 

Webster, 1970). Nene and Singh (1975) reported loss estimates of 6 per cent 

in East China, 45 per cent in India. 60 per cent in Mozambique and 30 per 

cent in high yielding hybrids in India. In one locality in Israel, the disease 

caused an almost complete loss of a 70 ha crop grown for fodder (Kenneth, 

1966). 

It is also reported that the worldwide annual pearl millet grain yield 

losses due to downy mildew do not exceed 20 per cent (Khairwal er al., 1999). 

However, this disease can assume an alarming level when a single genetically 



uniform pearl millet cultivar is repeatedly and extensively grown in a region 

where the pathogen is present (Andrews, 1987; Singh et a[., 1987a). This was 

clearly demonstrated in HB 3,  a popular hybrid in India in the early seventies, 

when pearl millet grain production was reduced from 8.2 million t in 1970-71 

to 3 .3  million t in 1971-72 (AICMIP, 1972). This reduction was to a large 

extent, due to downy mildew epidemic, in which yields in some fields were 

reduced by 60-70 per cent. Subsequent to this epidemic, grain yield losses 

continued to occur quite frequently due to downy mildew epidemics in India 

(Singh er a/. ,  1987b). Thakur et al. (1999) during their surveys recorded a 

disease incidence of 80 to 100 per cent on a few hybrids in states of 

Maharashtra, Rajasthan and Gujarat in India, accounting for a considerable 

yield loss. 

Mayee and Siraskar (1982) found a significant correlation (r = 0.99) 

between the disease incidence and yield loss in pearl millet. It was estimated 

that a disease incidence of 60-80 per cent resulted in grain yield loss of about 

30-40 per cent. Translated into economic terms the loss realised by a farmer 

was substantial, in the tune of Rs. 1500-2000 (US$ 1 = Rs. 42) per ha (Mayee 

and Siraskar, 1982). Clearly, downy mildew is the obvious culprit preventing 

the realisation of increased production of pearl millet in the state, despite 

cultivation of several F,  hybrids with high yield potential. 

2.1.2.3 Symptomatology 

The disease is mainly characterised by two types of symptoms viz., 

downy mildew and green ear. Leaf symptoms begin as chlorosis at the base of 

the leaf lamina, and successively younger leaves show a progression of 



greater coverage of leaf area by symptoms. Under conditions of high relative 

humidity (> 95 %) and moderate temperature (20-2S0C), the affected leaf 

portions support a massive asexual sporulation, generally on the abaxial 

surfaces, giving them a downy appearance. Severely infected plants are 

generally stunted and do not produce panicles (Singh, 1995). Green ear 

symptoms become visible at panicle emergence and appear as transformed 

floral parts into leafy structures, which can be total or partial on panicles. 

These leafy structures are chlorotic, and sometimes produce spores. In latent 

infections, green ear is the only manifestation of the disease (Singh el al.. 1997). 

2.2 P A T H O G E N I C  V A R I A B I L I T Y  IN Sclerospora graminicola 

Variation in plant pathogenic fungi arise largely through sexual 

recombination, heterozygocity and somatic recombination, mutation and 

hybridization (Singh, 1986). Large shifts in pathogenicity occurs due to 

changes in host cultivar and environment. In general, highly variable 

populations are better adapted than those with little variation. Pathogenicity or 

virulence has been used as the genetic marker in all the studies where 

variability has been assessed thrmgh virulence surveys, using host 

differentials having different resistance genes (Wolfe and Knott, 1892). 

Sclerospora graminicola is known for its highly variable nature. The 

variation in pathogenicity can evolve either due to the environmental and 

varietal differences or the selection pressure exerted by a host genotype. 

2.2.1 Var iab i l i ty  d u e  t o  e n v i r o n m e n t a l  a n d  var ie ta l  differences 

The first evidence of pathogenic variation in S. graminicola based on 

pearl millet cultivars was reported in 1973 where HB 3 was found resistant at 



Mysore, but susceptible at some other locations in India (Bhat, 1973). Nene 

and Singh (1976) interpreted this variation as being due to existence of races 

in the pathogen. Several promising pearl millet genotypes which evaluated in 

international multilocational downy mildew nurseries showed environmental 

variation in their downy mildew incidence during 1976 - 1977 (ICRISAT, 

1980). 

Variation in pathogenicity of S, graminicola populations from different 

locations in Africa and India has been demonstrated by several researchers (Ball, 

1983; Ball and Pike, 1983; Ball and Pike, 1984; Ball er a[ . ,  1986). Pathogen 

collections from different geographic regions differ in pathogenicity when 

tested on a set of host cultivars. Populations from sub-sahelian regions of 

West Africa were more pathogenic than the Indian ones on Indian cultivars 

(Ball and Pike, 1984). Similarly, populations form Burkina Faso, Nigeria and 

Niger were generally more aggressive than those from Senegal, Zambia or 

India, but no differences in aggressiveness were found between Indian and 

Zambian populations (Ball et al., 1986). In India, variations in pathogenicity of S. 

graminicola populations were reported from Mysore and Gulbarga on the pearl 

millet cultivar HB 3 (Shetty and Ahmed, 1981); from Patancheru on MBH 110 

and NHB 3 (ICRISAT, 1989) and from Patancheru and Durgapura on NHB 3 

(Singh and Singh, 1987). 

Werder and Ball (1992) studied ten lines of pearl millet and inoculum 

from four different sources in West Africa, and confirmed variability both in 

the reaction of different host lines and the virulence of different pathogen 



In all the above studies, only the percentage seedling infection was 
110, 

used to measure host-pathogen interactions. Therefore, variation in virulence 

and aggressiveness was not clearly distinguished. Keeping this in view, 

Thakur and Shetty (1993) reported the interactions of 15 single-oospore 

isolates with a set of pearl millet genotypes for various components of 

aggressiveness : latent period, infection efficiency and sporulation rate. They 

also found considerable variation among the isolates tested. Later, the 

existence of variation in pathogen.~ity of single-zoospore isolates of the 

fungus was also demonstrated in the pearl millet downy mildew system 

(Thakur and Shetty, 1993). 

Thakur et al.  (1997) evaluated 61 pearl millet genotypes against six 

pathotypes and observed highly significant effects of host genotypes, 

pathotypes and their interaction on incidence and latent period. 

Recently, a highly significant variability in downy mildew incidence 

across the 46 genetically diverse male qterile lines was reported by Thakur e l  al. 

(2001). The study implied that the variability was due to genetic divergence 

among the lines, the pathotypes and their interaction (Thakur et al . ,  2001). 

2.2.2 Variability d u e  to  host-directed selection 

The emergence of a new pathotype in an asexual population is not 

solely an outcome of genetic recombination, but could be the effect of host 

genotype - directed selection for specific virulence in the pathogen population. 

Thakur et a[. (1992) observed the response of host cultivar directed selection on 

virulence in a population of S. graminicola. In their study, at ICRISAT, 

Patancheru, the collection of pathogen from NHB 3 or 70429, which was less 



virulent on MBH l I0 and 852 B was passed through several asexual generations 

on MBH 110 and 852 B. Within 12 generations of selection on MBH 110 and 5 

generations of selection on 852 B, highly host-specific virulences, comparahle 

to their respective field pathotypes, were identified. These results indicate that 

genetic variation for host genotype specific virulence exists within field 

populations of the pathogen, and that selection through asexual generations 

can rapidly increase the quantitative virulence of the population to the specific 

host genotypes. 

Though the A, cytoplasm of MS lines has been shown not to be 

involved in susceptibility to downy c~i ldew (Kumar et al., 1983; Yadav e ta( . ,  

1993), the genetic uniformity of single-cross F, hybrids provides little or no 

barrier to the pathogen in rapidly adapting to the new cultivar (Talukdar et al., 

1999) and exerts strong selection pressure on the pathogen population for its 

shift to host-specific virulence. With the commercial cultivation of such 

hybrids, emergence of several cultivar-specific virulences have been detected 

(Thakur and Rao, 1997) and popular hybrids, such as HB 1, HB 3, BJ 104, BK 

560 and MBH 110 have succumbed to downy mildew and these have been 

q h d r a w n  from cultivation (Singh et al., 1997). 

The results from the International Pearl Millet Downy Mildew 

Virulence Nursery (IPMDMVN), as determined by disease reaction on a set of 

cultivars after several years of operation at diverse locations in India and West 

Africa clearly indicated the existence of distinct virulences in the pathogen 

populations and provided further evidence for the evolution of several 



pathotypes within and between the countries in Asia and Africa (Thakur, 

1995; IPMDMVN, 1999). 

Thakur et al .  (1998a) determined the pathological identity of a 

population of S graminicola from a pearl millet cultivar Nokha local from 

Jodhpur, Rajasthan and identified it as a new pathotype. Further studies 

suggested that Nokha pathotype was different from the previously described 

pathotypes of S gramrnicola and was the most virulent isolate reported to 

date from India. The results of field surveys and studies conducted by Thakur 

et a1 (1999) provided yet another evidence for the host-directed selection and 

confirmed the emergence of a new virulent pathotype, specific to a widely 

grown hybrid MLBH 104, which caused substantial damage to the crop in 

Maharashtra during the 1993-96 crop seasons. Thus, the downy mildew 

pathogen has evolved rapidly to keep :)ace with the changing cultivars in India 

(Thakur et al. ,  2001). 

2.3 M O L E C U L A R  M A R K E R S  F O R  G E N E T I C  D I V E R S I T Y  

Genetic studies in any organism requires precise and easily scoreable 

heritable characters or markers. Fungi are often microscopic and have few 

phenotypic markers, such as vegetative compatibility, mating types or specific 

virulence (Leslie, 1993; McDonald and McDermot, 1993; Michelmore and 

Hulbert, 1987). Over the past three decades, techniques have been developed 

for the analysis of variants of specific enzymes in animal and plant tissues 

(Tanksley and Orton, 1983). Proteins in crude extracts are electrophoretically 

separated on starch or polyacrylamide gels and the gel is stained to visualise 

the zones containing the specific enzyme activity. Sometimes, the genetic 



interpretation of enzymes that exhibit many bands, such as phosphatases and 

esterases, may be more difficult. However, isozyme polymorphisms have 

provided useful markers for genetic studies in several fungi (Tooley er al . ,  

1985; Tooley et al., 1989; Spielman er al . ,  1990; Linde et a!., 1990; Burdon 

and Roberts, 1995). 

The advent of highly versatile, molecular markers, which are based on 

differences in DNA sequences has made it possible to conduct basic studies 

on population and evolutionary bioiogy in fungi. These techniques include 

DNA hybridization methods, such as endogenous genomic and mitochondria1 

Restriction Fragment Length Polymorphisms (RFLP), DNA fingerprinting and 

PCR-baaed Randomly Amplified Polymorphic DNA (RAPD) markers. These 

techniques have been widely used to estimate the genetic diversity in several 

fungal species of zygomycetes, ascomycetes and deuteromycetes (Weising er 01.. 

1995). 

RFLP probes and RAPD markers have been successfully used to 

estimate the genetic diversity in many fungal pathogens (Anderson and Pryor, 

1992; Milgroom el a[. ,  1992; Guthrie er al., 1992; Levy el al., 1991). Though, 

only the morphological, virulence and mating type markers were most 

commonly used in Phyrophrhora and some downy mildew fungi; RFLP and 

RAPD polymorphisms were used for genetic characterisation of Brernia 

lactucae Regel, the lettuce downy mildew pathogen (Hulbert er al . ,  1988; 

Hulbert and Michelmore, 1988) and Plasmopara halstedii, the sunflower 

downy mildew pathogen (Vick er al.. 1990). In Magnaporthe grisea, the rice 

blast pathogen, genomic repetitive DNA sequences were also used to detect 



polymorphisms (Hammer et 01.. 1989). A RAPD analysis exhibited genetic 

dissimilarities among the isolates of Colletotrichum sublineolum, the causal 

agent of sorghum anthracnose (Thakur el al., 1 9 9 8 ~ ) .  

Genetic variation within and between populations of S, graminicola 

showing different virulence phenotypes were studied using RAPD technique 

(Zahid, 1997). The relatedness of four populations of S, graminicola, from 

Africa and India were assessed using 65 arbitrary oligonucleotide primers and 

all the four populations were found highly variable. Polymorphism was also 

observed among 20 isolates of S. graminicola from different geographic 

locations using 34 primers. The dendrogram plotted for relatedness among the 

isolates revealed two distinct clusters of which one indicated African isolates 

and the other indicated Indian isolates (Zahid, 1997). 

RFLP of mitochondrial DNA (mtDNA) has also detected 

polymorphisms in a number of phytopathogenic fungi, such as Fusarium 

oxysporum f.sp. melonis Snyder & Hansen (Jacobson and Gordon, 1990), 

Pyihium (Martin and Kistler, 1990) and Phytophthora (Forster et al., 1990; 

Forster and Coffey, 1991; Stammler et al., 1993; Lacourt el al., 1994). High 

levels of diversity were evident in Phytophihoro citricola Sawada and P. 

capsici Leonian Distinct subgroups could also be distinguished in P. 

citrophthora (Sm. & Sm.) Leon. whereas mitochondrial RFLP patterns were 

very uniform in P. palmivora Butler (Forster et al., 1990). Some intraspecific 

variability was detected using mitochondrial DNA RFLP among 87 isolates of 

P, parasitica Dast. collected world wide (Lacourt el al., 1994). 



Hypervariable markers, such as mini- and micro-satellite markers are 

also known to show high level of DNA sequence variation (Jeffreys ef a / . ,  

1985). The polymorphisms arise from the variation in the number of repeat 

units present in tandem arrays in the fungal genome. The human minisatellite 

probes 33.6 and 33.15 have been successfully used to distinguish pathotypes of C. 

gloeosporioides (Penz.) Sacc. (Braithwaite and Manners, 1989). Commercially, 

many probes such as minisatellites. M13, PV47 or  simple repetitive 

oligonucleotides, (CA),, (CT),, (CAC),, (GTG),, (GACA), and (GATA), have 

also been used in DNA fingerprinting. DNA fingerprinting using 

oligonucleotides, such as (GATA),, (GTG),, (CA), and (TCC), has been 

reported to detect variation among isolates of Ascochyra rabiei (Weising et 

a / . ,  1991). In case of filamentous fungi, such as Pencillium, Aspergillus and 

Trichoderma, oligonucleotide probes such as (GATA), along with MI3 

minisatellite probe, have revealed informative DNA fingerprinting patterns 

(Meyer et al., 1991). Similarly, microsatellites (GAA),, (GACA), and 

(GATA), showed high levels of DNA polymorphism among the pathotype of 

S. graminicola, the pearl millet downy mildew pathogen (Sastry er a / . ,  1995) 

and four races of Fusarium oxysporum f.sp. ciceri (Padwick) Snyd. & Hans. 

(Barve et al., 2001). 

Of all the molecular methods, the more recent and advanced 

fingerprinting method is Amplified Fragment Length Polymorphism (AFLP), 

which combines the reliability of RFLP with the power of the PCR technique 

(Vos et a / . ,  1995). Though various molecular methods have been used to 

detect and quantify genetic variation in fungi and other plant pathogens, 



AFLP has been used very effectively ro detect genetic variation in several plant 

pathogenic fungi (Majer et a / . ,  1996; Wang et a / . ,  1998). 

Pongam et al. (1999) detected genetic variation among the isolates of 

Leptosphaeria maculans (Desmaz.) Ces. & De Not using AFLP analysis. The 

genetic variability in 36 isolates of Fusarium udum Butler (Sivaramakrishnan 

et al . ,  2002a) and 43 isolates of F. oxysporum f.sp. ciceri (Sivaramakrishnan 

et al . ,  2002b) from different locations in India was also assessed using RAPD 

and AFLP techniques. Though the two molecular markers detected high levels 

of polymorphism among the pathogen isolates, the AFLP technique proved 

better in assessing the genetic diversity among the isolates than RAPDs. The 

AFLP technique was also used to develop a genetic linkage map for P. 

infestans, a plant pathogenic fungus of the class Oomycetes (Vanderlee et al., 

1997). 

2.4 SEXUAL COMPATIBILITY IN DOWNY MILDEWS 

Unlike many fungi, downy mildews are diploid for the majority of their 

life cycle in which sexual reproduction involves fertilization of an oogonium 

by passage of nuclear material from an antheridium, leading to the formation 

of an oospore (Michelmore et al . ,  1988). Oospores are thick-walled survival 

structures of the fungus and act as primary source of infection (Singh et al., 

1993). It is essential to know in detail about the nature and sexuality of the 

pathogen to understand the mechanisms underlying its pathogenic variability. 

Unfortunately, the inconsistency of oospore germination (Michelmore and 

Ingram, 1981) and the erratic rate of recovery of sexual progeny have been 

often a limitation to the studies on sexual reproduction (Shaw, 1983). 



Therefore, at present, studies on this aspect in downy mildews are few and 

limited. 

The existence of sexual reproduction in B. lacrucae was a matter of 

controversy until it was clearly demonstrated by Humphreys-Jones (1971) and 

confirmed by Tommerup er a!. (1974). In these studies, and those of Ingram et al. 

(1975) and Fletcher (1976). oospores were produced in lettuce plants 

unpredictably and in low numbers. However, it was shown in further studies 

that B. lactucae is capable of regular and predictable production of large 

number of oospores in lettuce tissues. Many isolates which are incapable of 

sexual reproduction when cultured alone, produced oospores in large numbers 

when cultured in combination with certain other isolates. This demonstrated 

the existence of heterothallism in B. lactucae. In a survey of 39 isolates only 

two compatibility types were identified and were designated as B, and B,. The 

survey did not reveal any other compatibility types (Michelmore and Ingram, 

1980). 

Michelmore el al. (1982) made a systematic study on sexual system of 

S. graminicola. The results illustrated the heterothallic nature of the fungus. 

The isolates studied could be assigned to one of two sexual compatibility 

types that have been designated G, and G,. Scanning electron micrographs 

showed hyphae of two morphological types, similar to those observed 

preceding the formation of gametangia in the heterothallic B. lacfucae. They 

explained the patterns of asexual and sexual sporulation of S. graminicola in 

terms of differential colonization of the apices of young host plants. In this 

study, a few oospores were found infrequently in plants infected with one of 



the isolates. It could be due to a form of self-fertility or due to the isolate 

being a mixture of the two compatibility type isolates, with one at a low 

frequency. Self-fertility due to secondary homothallism has also been 

observed in B. lacrucae (Michelmore and Ingram, 1982) and in several 

predominantly heterothallic Phytophrhora species (Mortimer et a / . ,  1978). 

The low level of self-fertility in S graminicola may also be a form of 

secondary homothallism as it is similar to that observed with self-fertile 

isolates of B. lacrucae. 

Inter and intra-rontinental sexual compatibility in S. graminicola has 

been reported by ldris and Ball (1984). Oospore collections obtained from 

diverse locations in West Africa and India were tested for sexual 

compatibility, alone and in every possible combination. Oospores were 

produced with some combinations of isolates but not in others indicating the 

presence of two compatibility types, G ,  and G,. These were found in 

approximately equal proportions. Tests for cross-compatibility were made by 

combining isolates of opposite sexual compatibility types from Africa and 

India. Isolates were cross compatible not only within continents but also 

between continents. This study also provided an evidence for existence of 

secondary homothallism in S. graminicola. 

While working with genetics of virulence in Californian populations of 

B, loctucae Ilott el al. (1989) found strong correlation between sexual 

compatibility type and pathotype. Virulence phenotypes and sexud 

compatibility types were determined for 116 Californian populations of B. 

lactucae, collected between 1982 and 1986. All the isolates were grouped into 



one of the three distinct pathotypes on the basis of their virulence phenotypes. 

All pathotype I isolates had the B,  sexual compatibility type, and ail 

pathotypes 11 and 111 isolates had the B, sexual compatibility type. 

To identify the compatible mating types among the isolates of S. 

graminicola Rao et a/.  (1994) inoculated the seedlings of 7042s with six 

isolates (PT 1 through PT 6) of S. graminicola singly and in all possible 

combinations. They observed abundant oospores in a paired inoculation with 

the isolates PT 2 and PT 3 and designated them as Mat 1 and Mat 2, 

respectively. They further evaluated a total of two hundred and one isolates 

of S graminicola collected from various pearl millet genotypes at ICRISAT, 

Patancheru and reported the occurrence of both homohtallism and 

heterothallism in S. graminicola. 

Heterothallic behaviour has also been reported for other Oomycetes 

fungi such as Peronospora eflusa (Inaba and Morinaka, 1984), P. parasitica 

(Kluczewski and Lucas, 1983; Sheriff and Lucas, 1989) and Phytophthora 

infestans (Mont.) de Bary (Gallegly and Galindo, 1958; Shaw et al., 1985; 

Malcolmson, 1985; Tantius et al., 1986) on their respective hosts. 

2.5 INHERITANCE OF VIRULENCE 

Studies on inheritance of virulence in S. graminicola are lacking. 

Hence, the more relevant studies in other well studied downy mildew fungus, 

B. lactucae and few other fungi are reviewed hereunder. 

Early studies on the inheritance of virulence were carried out in the 

early 1930s with the fungus Ustilago (Nicolaisen, 1934) and the study 



indicated that the capacity to incite a host and the expression of either a 

susceptible or resistant disease reaction was under Mendalian control. Flor 

(1955) proposed the gene-for-gene hypothesis as the simplest explanation of 

the results of studies on inheritance of pathogenicity in the flax rust fungus, 

Melampsora linl. On the varieties of flax that had one gene for resistance to 

the parent race, F, cultures of the fungus segregated into monofactorial ratios. 

On varieties which had 2, 3 or 4 genes for resistance to the parent race, the F, 

cultures segregated into bi- tri-, or tetra factorial ratio (Flor, 1947). This 

suggested that for each gene that conditioned resistant reaction in the host 

there was a corresponding gene in the pathogen that conditioned 

pathogenicity. Each gene in either member of a host-pathogen system may be 

identified only by its counterpart in the other member of the system. This 

relationship implies that the pathogenicity genotype of a rust culture can be 

established by a study of ~ t s  selfed cultures on differential lines with single 

genes conditioning rust resistance (Flor, 1965). This implication made 

possible the study of hetrozygosity of races from the natural M lini 

population to determine usefulness of host genes. These studies provided 

knowledge of which genes for resistance would be most effective in a 

breeding program and how genes in M lini are inherited (Flor, 1965; Statler, 

1979). Virulence has been conditioned by single recessive genes in most 

inheritance studies of M llni but digenic recessive combinations have been 

reported (Statler and Zimmer, 1976; Statler, 1979). 

Person and Sidhu (1971) reviewed the literature on the genetics of 

pathogenicity and generalized that the virulence/avirulence was usually under 



Mendelian control. They also conducted a study on virulence of Ustilago 

hordei (Pers.) Lagerh, isolates and reported that the virulence was recessive 

and governed by single gene. Such monogenic inheritance of virulence was also 

observed by Lim et al. (1974) in case of Drechslera turcica isolates. 

Blanch (1980) made crosses between isolates of Gaeumannomyces 

graminis var. tritici differing in pathogenicity and reported that the 

pathogenicity was under multiple gene control. 

A hybrid between two biotypes of Ustilago nuda (Jens.) Rostr. 

produced segregating progenies that were used to identify two genes for 

virulence on five cultivars of barley. Gene Unv, was responsible for virulence 

on Warrior, Compana and Valkie, while gene Unv, was responsible for 

virulence on Keystone and Bonanza. The two genes were recessive and 

inherited independently from each other (Thomas, 1982). 

In case of lettuce downy mildew, at least 11 specific resistance factors 

conferring resistance in lettuce to B. lacrucae were identified and the 

extensive genetic studies revealed that many of these resistance factors were 

inherited as  dominant alleles at single loci (Crute and Johnson, 1976; Johnson 

et a / . ,  1977, 1978; Norwood and Crute, 1980). Complementary studies on the 

inheritance of virulence in the pathogen, however, were not possible until B. 

lacrucae was shown to exhibit heterothallism (Michelmore and Ingram, 1980), 

which allowed controlled crosses between isolates of characterized virulence 

phenotype. Preliminary investigations with limited number of F, isolates form 

several crosses indicated that avirulence was dominant to virulence 

(Michelmore and Ingram, 1981; Blok, 1981). 



More detailed studies on inheritance in virulence in B. lactucae was 

conducted by hybridizing two isolates which differed in their virulence on host 

cultivars carrying the resistance factors R,, &, R,, R, and R,,. The results 

demonstrated that the virulence to match resistance factors R,, &, R, and R,,  

each segregated as single loci with avirulence dominant to virulence and the 

inheritance of virulence to R, was complex in which the ratios obtained could not 

readily be interpreted in Mendelian terms (Norwood el al., 1983). There seemed, 

therefore, to be a locus for avimlence/virulence specific and complementary to 

each of the host resistance factors excr?t R, and this corroborated the proposal of 

a gene-for-gene interaction between B. lacrucae and L saliva (Crute and 

Johnson, 1976) of the type first described by Flor (1956). 

Michelmore el al .  (1984) confirmed that the virulence in B. lactucae to 

match the specific resistance genes located in lettuce cultivars is controlled as 

predicted by a gene-for-gene relationship. In B. lactucae, it was suggested that 

the loci controlling virulence to R, and R , ,  were linked (Norwood et al., 1983) 

and linkage was also suggested between loci controlling virulence to R,, R, 

and R,, (Michelmore er a[. ,  1984). Later, Norwood and Crute (1984) provided 

more evidence for these linkage relationships by making crosses involving 12 

heterothallic isolates of the fungus. Much of the evidence was obtained from a 

cross in which virulence segregated simultaneously in the F,  generation for 

eight of the 11 specific resistance factors examined. 

The gene-for-gene hypothesis was again confirmed in lettuce and B. 

lacrucae system by making crosses between heterothallic isolates of the 

pathogen on differential cultivars of the host (Ilott el al., 1989) and was 



shown to apply to many host-parasite interactions (Person and Ebba, 1975; 

Layton and Kuhn, 1988; Thompson and Burdon, 1992; Silue el a!., 1992; Al- 

Kherb e! 0 1 ,  1995). However, detailed studies have often shown that the 

interaction between some genotypes of host and pathogen are more complex 

(Lawrence et al., 1981) and the number of genes involved in pathogenicity 

always depend on the host and the pathogen interaction (Statler, 1990). 

Jaswant S. Kanwar Library 
ICRISAT 
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CHAPTER - 111 

MATERIALS AND METHODS 

The present investigation was carried out at International Crops Research 

Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, India 

during 1998-2001. 

3.1 EXPERIMENTAL MATERIAL 

3.1.1 Pathogen isolates 

More than 200 S graminrcola isolates in the form of oosporic inoculum, 

collected during surveys by pathologis,; from major pearl millet growing areas of 

India and were stored under cold storage (4'C) conditions at ICRISAT, 

Patancheru. Of these, 21 isolates representing eight important states, where pearl 

millet is being cultivated over a sizeable area, were selected for the present study 

(Table 1; Fig. 1). 

3.1.2 Host genotypes 

The near isogenic lines, with identified genes for downy mildew resistance, 

were not available in pearl millet. Therefore, a set of eight inbred lines (IP 5272-1, 

IP 18296, IP 18297, P 536-2, P 1564, P 2895-3, P 3281-1 and 700481-21-8) along 

with one resistant genotype (1P 18292) and one susceptible genotype (70428) were 

selected as host differentials, on the basis of their differential reactions reported in 

a previous study (Thakur et al., 1997). Differential reactions of these ten host 

genotypes to the known six pathotypes of S, graminicola are presented in Table 2. 

Seeds of these genotypes were obtained from genetic stocks maintained by 



Fig.1 : Map showing the colleclion sites of isolates of Sclerosporagrominicolo 
in lndia where pearl millet is cultivated over a sizable area 



Table 1 : Isolates of Sclerosporagraminicola selected for the present investigation from 
collections of ICRISAT, Patancheru, Andhra Pradesh, India 

S.No. Isolate Source of host Year of Site of collection 
designation genotype collection (Location1 District1 State 

I Sg 004 7042s & HB 3 1988 ARSI Durgapurd Jaipurl Rajasthan 

2 SgOl5 70425 1992 HAUl Hisarl Haryana 

3 Sg021 MLBH 104 1993 Gharil Ahmadnagad Maharasthra 

4 Sg025 BK560 1993 Bhadgaonl Jalgaod Maharashtra 

5 Sg026 NATH 4209 1993 Veclad/ Ahmadnagarl Maharasthra 

6 Sg032 HB 3 1993 MPKVI Rahuril Maharasthra 

7 Sg040 BK560 1994 Pachoraf Jalgaonl Maharasthra 

8 Sg 045 MAHYCO Hybrid 1994 PunJ  Punel Maharasthra 

9 Sg 046 EKNATH 201 1994 Bandgaonl Punel Maharasthra 

10 Sg047 BK560 1994 Ranebennurl Dhanvadl Kamataka 

11 Sg048 70425& HB3 1994 Univ.of Mysore1 Mysord Kamataka 

12 SgO88 GK I006 1996 Fatiabadl Aurangabadl Maharashtra 

13 Sg l l 0  CO-3 1996 Illupanathad Kovail Tamilnadu 

14 Sg 115 Hybrid 1996 Kovilpattii Tirunelvelil Tamilnadu 

I5 Sg 139 Nokha Local 1997 Jodhpur1 Jodhpur1 Rajasthan 

16 Sg 140 7042SMB 3 1997 Jamnagad Jamnagarl Gujarat 

17 Sg 149 Local 1997 Gwaliorl Madhya Pradesh 

18 Sg 150 MBH 110 1997 Mahyco Fannl Jalnaf Maharashtra 

19 Sg 151 81A 1997 ARSl Durgapurd Jaipurl Rajasthan 

20 Sg 152 Local 1997 ARSI Durgapural Jaipurl Rajasthan 

2 1 Sg 153 7042s & NHB 3 1997 ICRISATI Patanchcrul MedaW A.P. 





pathologists at ICRISAT, Patancheru. The universally downy mildew susceptible 

genotype 70428 was used for maintenance and increase of isolates in a greenhouse 

whenever necessary. 

3.2 METHODS 

3.2.1 General 

Common methodologies are described under this head. The finer details 

wherever needed are given in the respective heads. Every experiment was repeated 

at least once for confirmation. 

3.2.1.1 Sterilization of potting mixture 

Potting mixture containing Alfisol, farmyard manure and sand in a proportion 

of 3:2:2 (vlvlv) was sterilized in an autoclave at 6.80 kg pressure for 2 hlday on two 

consecutive days. 

3.2.1.2 Surface-sterilization of seed 

Seeds of all the host genotypes were surface-sterilized with 2 per cent 

sodium hypochlorite (NaOCI) for five minutes, washed thoroughly with sterilized 

distilled water and dried at room temperature (approximately 25°C) prior to 

sowing. 

3.2.1.3 Maintenance of isolates 

All the isolates used in the study were maintained on pot-grown seedlings 

of a highly susceptible genotype 70428 through asexual generations. Infected 

plants of each isolate were kept separately in an individual polyacrylic isolation 

chambers (Plate 1) measuring 60cm X 60cm X 90cm in a greenhouse at 25 2OC. 

Each isolate was inoculated onto a fresh set of 70429 seedlings, once a month, 





with sporangia from the previous generation. Plants were kept free from insect 

pests and other diseases and were adequately fertilized and watered. The 

sporangial inocula for experiments were collected from these systemically infected 

plants. 

3.2.1.4 Preparation of inoculum 

Infected leaves from individual isolates were collected, excised into pieces 

and washed in running tap water, using a cotton swab to remove old downy growth 

from the leaf surface. These leaf pieces were wiped dry with tissue paper and 

placed with their abaxial surfaces up in plastic-tray humidity chambers lined with 

moist blotting paper. The humidity chambers were incubated in dark at 20°C for 

6 h. The incubator was programmed in such a way that the temperature was 

reduced to 2OC after 6 h of incubation in order to prevent the release of zoospores 

from mature sporangia until the sporangial collection next day. Sporangia from 

spomlated leaves were harvested into ice-cold (4°C) sterilized distilled water, 

separately for each isolate, using a soft camel hair brush. The sporangial 

suspension was filtered through a double layered muslin cloth to remove 

conidiophores and other particles. The concentration of sporangia was measured 

using a haemocytometer and adjusted to a desired concentration. 

3.2.1.5 Inoculation technique 

Potted seedlings were spray-inoculated with sporangial suspension at the 

coleoptile to first-leaf stage using a hand sprayer in the inoculation chamber and 

covered immediately with moist polyethylene sheet to provide >95% relative 

humidity necessary for infection. Inoculated seedlings were incubated in the dark 



at 20°C for 24 h. The pots were then transferred onto greenhouse bench where 

temperature was maintained at 25 i 2°C (Plate 2). 

3.2.1.6 Preparation of leaf pieces for microscopy 

Necrotic leaf pieces collected form infected plants were surface-sterilized 

with 2 per cent NaOCl and washed thoroughly with sterilized distilled water. These 

Leaf pieces were cleared by incubating at 40°C in 5 per cent NaOH for 12-16 h. 

Cleared leaf pieces were rinsed in distilled water and observed under microscope 

using a 10X objective for the presence of oospores. 

3.2.2 Detection of pathogenic variability among isolates of S. graminicola 

3.2.2.1 Establishment of parental isolates form oosporlc inocula 

Isolates were established from oospores of S. graminicola contained in leaf 

powder samples of pearl millet. Plastic pots of IScm diameter were filled with 

autoclaved potting mixture. The potting mixture in each pot was infested by 

mixing 1 g of oospore-bearing leaf powder in the top 5cm layer of the mix. 

Surface-sterilized seeds of the universally susceptible pearl millet genotype 

7042s were sown @ 25 seeds per pot. Three pots were maintained for each of the 

21 inoculum sources. Pots for each inoculum were kept separately in polyacrylic 

isolation chambers in a greenhouse at 25 i 2OC to avoid any cross contamination, 

Pots were watered regularly and observed daily for infection. One month after 

inoculation, all the infected seedlings were retained and healthy seedlings were 

uprooted. Sporangia from these infected seedlings were bulked and used for 

subsequent inoculation of seedlings for isolate maintenance. Isolates thus 

established from oosporic inocula were denoted as parental isolates. 





Data recording 

Data were recorded for latent period (time in days from inoculation to 

spomlation) and disease incidence (percentage of infected seedlings). For latent 

period, data recording began 6Ih day after inoculation and continued until day 30. 

Number of infected seedlings and total seedlings per pot were recorded 30 days 

after inoculation (DAI) to calculate the per cent disease incidence. 

"Latent period" was expressed as the number of days, when about 50 per 

cent of the infected seedlings showed spomlation (Thakur et al., 1998b). 

3.2.2.2 Evaluation of parental isolates for pathogenicity on host differentials 

Twenty-one parental isolates were evaluated against ten host differentials 

for variation in pathogenicity. Seeds of the ten host differentials sown in lOcm 

diameter plastic pots filled with autoclaved potting mixture. For a single isolate, 

each host genotype was maintained in three replications with 100 seedlings per 

replication. The seedlings were inoculated with the sporangial suspension (5 x 10' 

sporangia mi.') of each isolate as described above. 

Data recording 

Data were recorded for latent period, disease incidence and oospore 

production per unit area. To determine the latent period, seedlings were observed 

daily for infection. Data recording for Latent period began 51h day after inoculation 

and continued until day 11. Number o i  infected seedlings and total seedlings per 

pot were recorded 15 DAI to calculate the per cent disease incidence. To determine 

the oospore production, necrotic leaf portions from five infected seedlings of each 

genotype were collected 30 to 45 DAI. 



To determine the quantitative differences in virulence levels of the isolates, 

virulence index (Thakur and Rao, 1997) was calculated as follows : 

1 

Virulence index = Per cent disease incidence X 

Latent period 

The twenty one parental isolates were classified into seven pathotype 

groups based on similarities in pathogenicity reaction on the 10 host differentials 

and a representative isolate from each group (Sg 048, Sg 149, Sg 021, Sg 110, Sg 

153, Sg 139 and Sg 152) was identified for further studies. 

3.2.2.3 Estimation of oospore production 

Necrotic leaf pieces collected from five infected seedlings of each host 

genotype were dried under shade in brown paper bags, and stored at room 

temperature (approximately 25'C) until observation. Leaf pieces measuring 1 X 1 

cm' were cleared as described earlier and examined under microscope, for the 

presence of oospores. In each replication, for each host genotype 10 leaf pieces 

were observed. Oospore production rating was scored on a modified 1-4 rating 

scale where 1 = N o  oospores, 2 = 1 to 100 oospores/cm2, 3 = 101-1000 oosporedcm2 

and 4 = > 1000 (numerous) oosporesicm2 of leaf area (Thakur and Shetty, 1993). 

3.2.2.4 Establishment of single-zoospore isolates from parental isolates 

Single-zoospore isolates (SZIs) were established form the representative 

isolates of the seven pathotype groups (Sg 048, Sg 149, Sg 021, Sg 110, Sg 153, 

Sg 139 and Sg 152). Inoculum from each isolate was prepared as described earlier. 



The spore suspension thus obtained was diluted and adjusted to a concentration 

having 2-3 sporangia per field of microscope. This diluted suspension was kept at 

25°C for about 30 minutes to allow the release of zoospores from sporangia. A 

small amount (0.5 ml) of zoospore suspension was spread uniformly over the 

surface of sterile water agar medium (1%) in petriplates and the excess suspension 

was drained off. Single, well-isolated zoospores were marked on water agar using 

a dummy objective (10X) under the microscope. Single zoospores were picked up 

with the help of a flat-tipped needle and transferred onto the emerging coleoptile of 

pearl millet seedlings (70428) grown in 5cm diameter pots. Pots were then covered 

with polyethylene bags and incubated overnight at 20°C. Plants were observed 

daily for symptoms. The infected seedlings were immediately kept in polyacrylic 

isolation chambers and the uninfected seedlings were discarded. Likewise, a total 

of 70 SZIs (10 SZIs from each isolate) were established and maintained separately 

under controlled conditions in a greenhouse. 

3.2.2.5 Evaluation of single-zoospore isolates (SZIs) for pathogenicity on host 
differentials 

Instead of testing all the 70 SZIs, 10 SZIs developed from a highly virulent 

parental isolate Sg 139 and another 10 SZIs developed from a weakly virulent 

isolate, Sg 110 were selected for evaluation of their pathogenicity reaction on host 

differentials. The experiment was conducted as described in 3.2.2.2. 

Data recording 

The data were recorded for latent period and disease incidence as 

described in 3.2.2.2. 



3.2.3 Assessment of genetic diversity among isolates of S. gruminicola 

The genetic diversity among 21 parental isolates of S. graminicola was 

assessed using AFLP markers, a more advanced DNA fingerprinting technique 

(Vos ef al., 1995). 

3.2.3.1 DNA extraction 

Due to an unidentified, viscous material co-precipitating with DNA, several 

DNA extraction procedures were tried. Finally, the DNA from 21 parental isolates 

was extracted in pure form by modifying the procedures described by Hulbert and 

Michelmore (1988), Cenis (1992) and Sastry ef a/. (1995). The modified protocol 

was as follows : the sporangia of S graminicola from sporulated leaves were 

harvested into ice-cold sterile distilled water. The sporangial suspension was 

centrifuged in 1.5 ml microfuge tubes at 4"C, at 1000 rpm for 5 minutes to get 

sporangia in pellet form. About 150 mg of sporangial pellet was used to isolate 

genomic DNA. The pellet was washed twice with phosphate saline buffer and 

centrifuged at 500 rpm for 10 minutes. The supernatant was decanted and 600 p1 of 

extraction buffer (0.5 M Tris-HCI, pH 8.0, 0.5 M EDTA, pH 8.0 and 20% SDS) 

and 20 p1 of proteinase K were added to the pellet. The contents were mixed 

gently and incubated at 65'C for 20 minutes. After cooling the contents to room 

temperature, these were centrifuged at 10000 rpm, for 10 minutes. Supernatant 

was transferred to a fresh tube, mixed with 15 p1 of RNase A (10 mglml) and 

incubated at 37OC for 1 hour. An equal volume of phenol-chloroform-isoamyl 

alcohol (25:24:1) was added, mixed gently and centrifuged at 10000 rpm for 5 

minutes. The aqueous layer was removed and the above step was repeated once. 

The aqueous phase was once again removed and extracted with an equal volume of 



chloroform - isoamyl alcohol (24:l) as above. DNA was precipitated by adding 0.1 

volume of 0.3 M sodium acetate and an equal volume of chilled isopropanol. The 

DNA pellet was washed twice with 70% ethanol, dried at room temperature and 

dissolved in T,,E, (10 mM Tris-HCI, pH 8.0, 1 mM EDTA, pH 8.0). 

3.2.3.2 AFLP analysis 

AFLP analysis was performed as described by Vos et a[. (1995). Research 

kit for AFLP of genomic DNA was from Life Technologies, USA and assays were 

carried out as described in the manufacturer's protocol. Although a number of 

primer combinations were tested, the results reported in the present study were 

obtained with three primer combinations. The two EcoRl (E-TG and E-TT) 

primers and three MseI (M-CAT, M-TAG and M-CTA) primers were used in these 

three combinations (E-TGIM-CAT, E-TTiM-TAG and E-TG/M-CTA) for 

amplication. Genomic DNA (200 ng) was incubated with IU EcoRIlMsel mix for 

90 minutes at 37°C with IX Buffer. Digestion was followed by inactivation at 

70°C for 15 minutes, the aliquot was distributed in two equal parts for ligation. 

Solution containing equimolar concentration of Adaptors as given in the kit and T4 

DNA ligase was mixed and incubated at 20°C for 2 hours. The ligated sample was 

diluted to 10-fold and 2 pl was used for pre amplification with 8 p1 pre 

amplification mixture, 1U Taq polymerase (Promega Corporation Wis.) and IX 

buffer. Selective amplification was carried out with 50-fold diluted preamplified 

mix, using [y"P].ATP labeled selectively modified EcoRl primer, selective MseI 

primer containing dNTP mix, 1U Taq polymerase, 1 X Buffer and AFLP grade 

water as described in the protocol. Reaction cycles were carried out on Perkin 

Elmer 9600 Thei-mocycler. The amplified samples were mixed with 98 per Cent 



formamide and xylene cyanol-bromophenol blue dyes, heated at 96'C for 5 

minutes, ice-cooled and loaded on 6 per cent polyacrylamide gel at 80 W according 

to standard method described for DNA sequencing (Sambrook et al., 1989). After 

electrophoresis, autoradiograms were obtained using Kodak X-Omat films. The 

dried gels were placed with the X-ray films in cassettes overnight at room 

temperature. Amplification products were viewed on by autoradiographs and 

scored for polymorphism. Experiment with each primer combination was repeated 

a minimum of 2 times to establish the consistency of the bands. 

3.2.4 Identification of mating types among isolates of S. graminicola 

3.2.4.1 Assay for mating types - 

The 70 SZIs derived from the seven representative isolates of pathotype 

groups were tested for their oospore formation potential when inoculated alone on 

seedlings of cultivar 70428 under greenhouse conditions. Based on oospore 

formation these SZIs were classified broadly into two groups viz., self-sterile and 

self-fertile isolates. Of the self-sterile isolates identified, 10 SZIs (Sg 139-1 

through Sg 139-lo), derived from the highly virulent parental isolate Sg 139, and 

six SZIs (Sg 110-1, Sg 110-3, Sg 110-4, Sg 110-5, Sg 110-8 and Sg 110-10) 

derived from the weakly virulent parent isolate Sg 110, were tested for cross 

compatibility by inoculating the isolates alone (16 isolates) and in all possible 

combinations (10 X 6) on 70428 to determine the mating types. Sporangial inocula 

(5 X 10' sporangia ml ')  from both the isolates were mixed in equal (1:)) 

proportions before inoculation and pairwise inoculations were done among the 16 

selected SZls. For each combination and single isolate inoculations, two pots with 

50 per pot were maintained, and 10 leaf pieces of 1 X 1 cma in size were 



collected randomly from seedlings in each pot and examined microscopically for 

the presence of oospores. All the isolates and isolate combinations were 

maintained separately in isolation chambers to avoid any cross contamination. 

3.2.4.2 Composition, frequency and distribution of mating types 

The 70 SZls, irrespective of their fertility, were cross inoculated with PT2 

(mating type Mat A) and PT3 (mating type Mat B), the two known standard mating 

type isolates of S. graminicola (Rao et al., 1994). Sporangial inocula (5 X 10' 

sporangia ml ')  from two isolates of a combination were mixed in 1:l proportion 

and inoculated on seedlings of cultivar, 70429. For each combination two pots 

with 50 seedlings per pot were maintained and kept separately in isolation 

chambers under greenhouse conditions. Leaf samples were collected as above and 

examined microscopically for the presence of oospores. 

3.2.5 Inheritance of virulence in S. graminicola 

3.2.5.1 Selection of parents and tester host genotype 

The highly virulent SZI, Sg 139-4 (mating type Mat A) and weakly 

virulent SZI (but avirulent on IP 18292), Sg 110-9 (mating type Mat B) were 

selected as parents for the study of inheritance of virulence in S. graminicola. As 

the two selected parents exhibited quite distinct virulence phenotypes on the pearl 

millet genotype, IP 18292 hence, it was selected as a tester host genotype for the 

study. 

3.2.5.2 Hybridization 

A cross was made between Sg 139-4 and Sg 110-9 on pearl millet cultivar 

70428 which is highly susceptible to both the isolates. The seedlings of 70428 



were spray-inoculated with a spuangial suspension (5 X 10' sporangia mil) 

containing inocula of the parents in equal (1:l) propottion. Infected seedlings were 

allowed to produce oospores under greenhouse conditions and 50 pots of 15cm 

diameter with 10 seedlings per pot were maintained to get sufficient F, oospores. 

3.2.5.3 Establishment of F, progeny 

One month after inoculation, necrotic leaves from all the infected plants 

were collected, dried and ground into powder. The leaf powder thus obtained 

contained F,-oospores. These F,-oospores were raised into F,-sporangia through 

soil inoculation. A low frequency of infection from F,-oospores was obtained by 

adding 0.25 g of leaf powder containing oospores to the autocalved soil contained 

in 15cm diameter pots that were sown with 70429. As infected seedlings occurred 

infrequently and rarely, each infected seedling was assumed to have infection from 

an individual oospore. Sporangia from each seedling were maintained separately 

on 70423 as an individual F,-progeny isolate in isolation chambers in a 

greenhouse 

3.2.5.4 Evaluation of F, progeny 

A total of 33 F,-progeny isolates were established and each progeny isolate 

was tested for virulence phenotype (pathogenicity reaction) in terms of disease 

incidence on 100 seedlings of the tester host genotype, IP 18292. Each time a 

group of F, progeny isolates (usually 10 isolates) along with their original parents, 

Sg 139-4 and Sg 110-9 were tested. However, no segregation was found in F, 

generation and all the F,-progeny isolates exhibited only avinrlent reaction. 



3.2.5.5 Establishment of F, progeny 

F,-progeny isolates were allowed to produce oospores on 70425. As all the 

F, progeny isolates exhibited similar type of avirulence on tester host genotype 

IP 18292, the necrotic leaves of 70428 collected from all F, progeny isolates were 

bulked, dried and ground into leaf powder which contained F,-oospores. From 

these F,-oospores, Fa-sporangia were obtained as above on 70423. A total of 230 

single-oospore Fa-progeny isolates were established and maintained separately on 

seedlings of 7042s in isolation chambers. 

3.2.5.6 Evaluation of F, progeny (segregating generation) 

Each F, progeny isolate was tested for its virulence phenotype in terms of 

disease incidence on 100 seedlings of the tester host genotype IP 18292. Based on 

disease incidence (Dl), all F, progeny isolates were classified into two virulence 

phenotype groups viz., virulence reaction type (>lo% Dl) and avirulence reaction 

type ( 4 0 %  DI), and the data obtained was used to assess the segregation pattern. Each 

time the virulence phenotypes of a group of F, progeny isolates (usually ten isolates) 

were tested. The two original parents, Sg 139-4 and Sg 110-9, were also tested to 

serve as checks. 

3.2.5.7 Backcrosses 

Of the 33 F, progeny isolates, two isolates with different compatible mating 

types were identified and crossed with the original parents of complementary mating 

type. ~orty-six progeny isolates from backcross I (F, X Sg 1 10-9) and 62 Progeny 



isolates from backcross 2 (F, X Sg 139-4) were recovered and evaluated for 

virulence phenotype on the tester host genotype, IP 18292. 

A schematic representation of various steps involved in the study of 

inheritance of virulence in S. grarninicola is given in Figure 2. 

3.3 STATISTICAL ANALYSIS 

3.3.1 Pathogenlc variability 

The experiments to detect pathogenic variability among the isolates of 

S graminicola were conducted in factorial completely randomized design under 

greenhouse conditions. The data on latent period, disease incidence, and virulence 

index were subjected to Analysis of Variance (Gomez and Gomez, 1984) using 

GENSTAT statistical package (Rothamsted Experiment Station, Herpenden, Herts 

AL 52 JQ, UK), to determine sign~ficant differences among isolates, host 

genotypes and their interactions. Average Linkage Cluster analysis was done using 

the Euclidian test to determine the similarity among the isolates and to classify 

them to pathotype groups based on per cent disease incidence. A correlation analysis 

was done to determine the relationships among the latent period and disease 

incidence (Gomez and Gomez, 1984). 

3.3.2 Genetic variability 

The relatedness of the 21 parental isolates of S. graminicola was estimated 

by means of scoreable bands form three primer combinations used in AFLP 

analysis. Differences in banding pattern were scored on the basis of presence or 

absence of a band. Similarities between the DNA fingerprints were calculated using 

Nei and Lei's (1979) similarity index, given by the formula S , ,  = 2NJ (-N, + NJ, where 
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N, is the number of shared fragments and N, and Ny are the number of fragments 

in the fingerprints x and y, respectively. Based on similarity index values, a cluster 

analysis was performed using the statistical soRware package SYSTAT 5.1. A 

dendrograrn showing the mean similarities between groups of different isolates 

was generated. 

3.3.3 Compat ib le  mating types 

The goodness-of-fit of ratio of mating types, Mat A and Mat B, was 

subjected to Chi-square analysis (Panse and Sukhatme, 1978). 

3.3.4 Inher i tance  of virulence 

The goodness-of-fit of the segregation ratio of virulence phenotypes to 

theoretical ratio was tested using Chi-square analysis (Panse and Sukhatme, 1978). 





C H A P T E R  - I V  

RESULTS 

Results of the experiments conducted in the present investigation on 

pathogenic variability, genetic diversity, identification of mating types and 

inheritance of virulence in S gramiricola, the incitant of downy mildew in 

pearl millet are presented here under. 

4.1 C H A R A C T E R I Z A T I O N  O F  I S O L A T E S  O F  S, graminicola 
F O R  P A T H O G E N I C  VARIABILITY 

4.1.1 V a r i a t i o n  i n  pathogenicity of  parenta l  isolates 

Data were recorded for disease incidence and latent period while 

generating asexual inocula from oosporic inocula of the 21 parental isolates. 

on the susceptible host genotype 70423 (Table 3). Highly significant 

differences were observed among the isolates for both, disease incidence and 

latent period. Of the 21 parental isolates, the highest disease incidence was 

recorded in isolate Sg 153 (76.15 %) followed by Sg 139 (69.25 %)and Sg 152 

(65.04 %), and the least was recorded in Sg 021 (1.97 %), followed by Sg 004 

(2.61 %) and Sg 026 (8.41 %). No significant difference was observed 

between Sg 021 and Sg 004 for disease incidence. Isolates collected during 

1997 recorded significantly high disease incidence than those collected in the 

previous years, and an increasing trend was observed from the year 1988 to 

1997. Isolates with higher disease incidence recorded shorter latent period and 

vice versa. A high latent period of 30 days was observed in isolates Sg 004 and 

Sg 021, followed by 28 days in Sg 026 and 25 days in Sg 015 while, the least was 

4 5 



Table 3 : Pathogenicity of 21 parental isolates of Sclerosporogrominicolo 
on susceptible host genotype 7042S, while generating 
asexual inocula from oosproric inorula 

Isolates Disease incidence (%)' Latent period (day)' 
Sg 004 2.61 ( 9 . ~ 3 ) ~  30.00 

" Mean of three replications 
b: Figures in parentheses are arcsin transformed values 



observed in isolate Sg 153 (6.00 days), followed by Sg 139 (6.67 days) and 

Sg 152 (8.00 days). However, there was no significant difference between 

isolates Sg 004 and Sg 026, and isolates Sg 153, Sg 139 and Sg 152 for 

latent period (Table 3). 

4.1.2 Evalua t ion  of  parenta l  isolates f o r  pathogenicity o n  hos t  
d i f fe rent ia l s  

The data on per cent disease incidence, disease reaction, latent period, 

virulence index and oospore production of the 21 parental isolates of 

S. graminicola on 10 differential host genotypes are presented in Tables 4-8. 

4.1.2.1 Variation in virulence 

All 21 isolates induced symptoms on host genotypes 70428, P 536-2, 

P 1564, P 2895-3 and 700481-21-8 and therefore were considered virulent 

on these host genotypes. However, majority of isolates failed to cause 

disease on IP 18297 and IP 18292 and so these were considered avirulent on 

these two genotypes, while few isolates exhibited similar avirulent reaction 

on the remaining host genotypes (Table 4). 

Irrespective of the isolate used, symptoms induced on IP 18292 and 

P 1564 are severe stunting of the seedling, dark green foliage and lack of 

sporulation, while those on other host differentials include chlorosis coupled 

with ample sporulation. This suggests that the symptom expression on any 

host genotype by any isolate is host specific but not isolate specific. 
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' f l ~ r e r  ~n vnnthsrct are arcaln m n s f o d  valuer 



4.1.2.2 Variation in aggressiveness 

Considerable variation was found among the isolates of S. grarninicola 

across the host differentials for disease incidence, ranging from 0.17 with 

the isolate Sg 046 on IP 5272-1 to 97.88 with the isolate Sg 150 on 70423 

(Table 4). Among the 21 isolates evaluated, highest mean disease incidence 

was recorded with the isolate Sg 139 (49.48 %), followed by Sg 088 

(45.84 %) and the lowest was observed with the isolate Sg 110 (14.30 %), 

across the host-genotypes. Most of the isolates were found highly aggressive 

on 70428, moderately aggressive on 700481-21-8, P 1564 and P 536-2, and 

least aggressive on 1P 18297. However, on other host genotypes, the disease 

incidence was highly variable within and across the isolate-genotype 

combinations (Table 4). The analysis of variance indicated highly significant 

(P<0.01) effects of isolates, host genotypes and their interactions on disease 

incidence (Appendix I). 

4.1.2.3 Variation in disease reaction 

All isolates showed susceptible reaction on host genotypes 7042s and 

700481-21-8 and resistant reaction on IP 18297 (Table 5). Except isolate Sg 152 

on host genotype P 536-2 and isolate Sg 153 on P 3281-1, all other isolates 

gave differential reactions on these host genotypes. However, isolates had 

clear differential disease reactions on IP 5272-1, IP 18296, P 1564, P 2895-3 

and IP 18292 (Table 5). 



Table 5 : Disease reaction 0121 parental isolates olSc1erospor~gramlnlcolo an ten diNerentill 
host genotypa 

Ditterentl~l host genotypes 
lsolltel 

lP5272-1 I P  18296 I P  18297 P536.1 P 1564 P2895-3 P3281-1 700481-11.8 I P  18292 7042s 

R :Resistant reaction (40% diaease incidence) 
S : Susceptible reaction (210% disease incidence) 



4.1.2.4 Variation in latent period 

The isolates varied significantly for latent period, ranging from 5 to 11 

days in various isolate-genotype combinations (Table 6). Across the isolates, 

the mean latent period was longest on IP 18292 (9.39 days) and shortest on 

7042s (5.90 days), while across the host genotypes it was longest for isolate 

Sg  110 (9.49 days) and shortest for isolate Sg 139 (7.08 days). There were 

significant (P<O.OI) effects of host snotypes,  isolates and their interactions 

on latent period (Appendix 11). A significant negative correlation (r = -0.77 at 

P<0.01) was found between latent period and disease incidence across the 

host genotypes and isolates. 

4.1.2.5 Variation in virulence index 

Virulence index of the 21 parental isolates ranged between 0.02 and 

18.69 (Table 7). Virulence index was generally greater for most isolates on 

70429, moderate on 700481-21-8, P 536-2 and P 1564, and lower on IP 18297. 

Across host genotypes, isolate Sg 139 had greatest virulence index (7.55) and 

Sg 110 the lowest (2.04), while across isolates it was highest on 70423 

(16.09) and lowest on IP 18297 (0.02). F values were highly significant 

(P<0.01) for isolates, host genotypes and their interaction (Appendix 111). 

4.1.2.6 Variation in oospore production 

There was no oospore productidn in host genotypes P 1564 and IP 18292 

with any of the 21 isolates, and it was highest (3.79 on a 1-4 scale) for most of 

the isolates on 70428 (Table 8). However, considerable variation was 





Table 7 : Virulence indexn(per cent disease incidence X latent period.') of 11 parental isolates of  
Sclcrosporagraminico/a on ten dillerential host genotype: 

Isolates DlRennllrl host tno  
115172-1 IP 111196 IP 111197 P536-2 P 1164 P18:-3 ::!.I 700481-216 IP 18291 70425 Me'n 

S.Ed. + CD 1% 

lxllatcs 0 075 1 0 1914 

Host genamc: 0 1016 0 I335 
lnlyaellon 0 4654 06117 

' Mean ofthree reollcat>ons 





observed for oospore production ratings among the isolates on the remaining 

host genotypes, and it ranged between 1.47 and 4.00. Across the isolates, the 

highest mean oospore production rating was recorded on 7042s (3.79) 

followed by 700481-21-8 (3.65) and IP 5272-1 (3 .49 ,  and the lowest was on 

P 1564 and 1P 18292 (1.00). Across the host genotypes, it was highest for 

Sg 153 (3.25), followed by Sg 150 (3.20) and the lowest in Sg 115 (2.02). 

Oospore production was highly influenced by host lines, isolates and their 

interactions (Appendix IV). 

4.1.2.7 Pathotype grouping 

A dendrogram developed from the average linkage cluster analysis 

based on disease incidence classified the 21 parental isolates at the 90 per cent 

similarity level into seven major pathotype groups (Fig. 3). Isolates Sg 004, 

Sg 032, Sg 047, Sg 048, Sg 151, Sg 040 and Sg 140 were in group I; Sg 015 and 

Sg 149 in group 11; Sg 021 and Sg 115 in group 111; Sg 025, Sg 026, Sg 046 and 

Sg 110 in group 1V; Sg 045, Sg 153, Sg 088 and Sg 150 in group V. Two 

isolates, Sg 139 and Sg 152 were not clustered at the 90 per cent similarity 

level and thus formed separate groups, group V1 and group V11. respectively. 

4.1.3 Evalua t ion  of single-zoospore isolates (SZIs) of S g  139, a 
highly v i ru len t  paren ta l  isolate for  pathogenicity o n  host  
d i f fe ren t ia l s  

The data on per cent disease incidence, disease reaction, latent period 

and virulence index of SZI derived from a highly virulent parental isolate 

Sg 139 are presented in Tables 9-12. 



Similarity index 

Fig.3: Dendrogram of 21 parental isolates of Sclerospora 
graminicola, based on cluster analysis of disease 
incidence recorded on 10 differential host genotypes 



4.1.3.1 Variation in virulence 

All 10 SZI of Sg 139 were found virulent on host genotypes IP 5272-1, 

P 536-2, P 1564, P 2895-3, 700481-21-8, IP 18292 and 70429, although they 

induced different levels of disease incidence (Table 9). However, majority of 

the isolates did not produce symptoms on 1P 18297 and thus were avimlent on 

this genotype, Isolates Sg 139-1 and Sg 139-10 on IP 18296 and P 3281-1 

were found avirulent, while the remaining isolates showed virulent reaction on 

these genotypes. 

4.1.3.2 Variation in aggressiveness 

Variation in aggressiveness was clearly evident among the isolates 

across the host genotypes. Downy mildew incidence ranged from 0.66 per 

cent on 1P 18297 with the isolate Sg 139-1 to 100 per cent on P 1564 with 

Sg 139-4 (Table 9). All isolates were highly aggressive on the susceptible 

genotype 70428, relatively highly aggressive on IP 18292, P 1564, P 2895-3 

and IP 5272-1 and moderately aggressive on 700481-21-8, while low to 

moderate aggressiveness was observed for all the isolates on P 536-3, 

IP 18296 and P 3281-1 and low aggressiveness on IP 18297. Among the 

isolates, Sg  139-4 recorded the highest mean disease incidence (64.29 %) 

across the host genotypes. followed by Sg 139-3 (61.68 %), while Sg 139-1 

recorded the lowest (34.57 %) disease incidence (Table 9). The disease 

incidence induced by 10 SZls on 10 host genotypes was quite variable and 

was significantly different (P<0.01) for various isolate-genoty~e 

combinations (Appendix V). 



 able 9: Per  r e n t  d b a t  Incldmce'ol 10 l lngle -zoorporc lralatcs o l S g  139 on ten d l f i n n l l a l  host genotyp, 

1aOlaCI Dlf inntlal  hoat tno  
IP5172.l IP 1.3196 I P  11197 P516.1 P 1564 P1.39: F%.l 7W48l.114 IP  11191 7041S Me'n 

Sg119.1 3033 0 0 0  066 2864 5211 1625 O W  4408 6115 $050 3457 
(13 42)' (OW) (465) (3235) (4621) (1702) (OW) (41 60) (5261) (7205) (11 99) 

Sg119.2 11125 353 O W  1116 7 7 W  8010 661 5526 7423 9330 4.366 
(6742) (1071) (OW) (1951) (61 34) (6151) (14891 (48021 (5949) (7524) (4201) 

Sg119.6 8650 I 5 0 9  O W  650 BPI2 9000 866 7125 W25 9 1 W  5504 
(6845) (21 86) (OW) (1477) (7014) (71 57) (17 11) (5758) (71 81) (7473) (46%) 

Sg 139.8 1744 22 04 0 0 0  5587 W W  82 74 3524 2962 8150 95 I 8  5156 
(17 73) (18 W) (OW) (48 37) (71 62) (65 45) (36 42) (12 98) (69 30) (77 36) (4611) 

Sg 139-9 85 28 155 0 0 0  517 8107 6645 10 16 4825 9215 9541 4963 

(6744) (7 IS) (OW) (13 19) (64 21) (5460) (2668) (44M)) (7438) (7766) (4295) 

Mean 73 16 I 2 6 5  0 4 1  1501 7190 1626 10 16 5561 8071 9398 
(6266) (1746) (1 96) (28 17) (64 17) (62 21) (IS 16) (4857) (6601) (7622) 

S.Ed.i CD 1% 

lsol8tes 0 1610 04198 
Host genotypes 0 1630 04198 
lntcract~on 0 5151 13275 



4.1.3.3 Variation in disease reaction 

Most of the isolate-genotype combinations yielded susceptible reaction 

although they had different levels of disease incidence (Table 10). All isolates 

showed susceptible reaction on host genotypes IP 5272-1, P 1564, P 2895-3, 

700481-21-8, IP 18292 and 70429, while the resistant reaction was observed 

for all isolates on IP 18297, lsolates had clear differential disease reactions on 

host genotypes IP 18296, P 536-2 and P 3281 -1, but not on others (Table lo). 

4.1.3.4 Variation in latent period 

Latent period varied considerably for various isolate-genotype 

combinations and ranged between 5 to 10 days (Table I I). Significantly 

lowest latent period was observed for the isolate Sg 139-4 (6.72 days), and the 

greatest for Sg 139-7 (8.27 days) followed by Sg 139-9 (7.99 days), Sg 139-5 

(7.98 days) and Sg 139-2 (7.94 days), and no significant difference was found 

between isolates Sg 139-9, Sg 139-5 and Sg 139-2. The lowest mean latent 

period (5.43 days) was recorded on the susceptible host genotype 70428, and the 

longest mean latent period on P 3281-1 (8.78 days) and IP 18296 (8.73 days). 

However, mean sum of squares for isolates, host genotypes and their 

interaction were highly significant (P<0.01) (Appendix VI). A significant 

negative correlation (r = -0.55 at P<0.01) was found between latent period and 

disease incidence across the host genotypes and isolates. 

4.1.3.5 Variation in virulence index 

Significant differences were observed in virulence index of the isolates 

across the differential host genotypes (Table 12). Virulence index ranged from 





~ * b b  11: Latent perlod'of ten llngle - zoospore l ro l l l r r  olSg 139 on ten dIRenntln1 ho1t Kenowpa 

S8139.3 650 831 112 712 639 605 IOW 122 616 533 714 

S.Ed. t CD I %  

lalates 0 0145 0 0889 
Horl gcno~pel  0 0145 00889 
lntencl~on 02139 02811 



T tb l r  1 t  Vlrulrncr Index'or ten Single zoolpore Irollter ofSg 139 on I m  dlffcrtntlr l host p o l y p e l  

D l l f ~ n n l l ~ l  horl genotypes 
110llhl 

IP S l l l - I IP  181961P 18191 P 536.1 P 1564 P 1895.3P31111-I 1001111-214 IP I8191 1041S 

S81394 1702 509 OW 367 1715 IOW 2W 1173 1654 1947 1047 

Mean 991  154 005 319 1124 1036 126 743 1116 1740 
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0.16 for isolate Sg 139-5 (on IP 18297) and for Sg 139-9 (on 1P 18296) to 

19.57 for Sg  139-10 (on 7042s). Among the isolates, Sg 139-4 had the highea 

virulence index (10.47) and the isoirte Sg 139-1 had the lowest virulence 

index (4.91). In general, all isolates were found highly virulent on 7042s 

(17.40), followed by IP 18292 (1 1.16) and P 1564 (1 1.24) and least virulent 

on IP 18297 (0.05). No significant difference was found for mean virulence 

index between host genotypes IP 18292 and P 1564. Analysis of variance 

indicated highly significant (P<O.OI) effects of isolates, host genotypes and 

their interaction on virulence index (Appendix VII). 

4.1.3.6 Pathotype grouping 

A dendrograrn developed from the average linkage cluster analysis 

based on mean per cent disease incidence classified the 10 SZIs of Sg 139 at 

83 per cent similarity level into five groups (Fig. 4). Isolates Sg 139-1 and 

Sg 139-7 formed group I; Sg 139-10 group 11; Sg 139-2, Sg 139-6, Sg 139-9 and 

Sg 139-5 group 111; Sg 139-3 and Sg 139-4 group IV and Sg 139-8 group V. 

4.1.4 Evaluation of single-zoospore isolates (SZIs) of Sg  110, a weakly 
virulent parental  isolate for pathogenicity on host differentials 

The data on per cent disease incidence, disease reaction, latent period 

and virulence index of SZIs derived from a weakly virulent parental isolate, 

Sg l I 0  arc presented in Tables 13-16. 

4.1.4.1 Variation in virulence 

All isolates on host genotypes IP 18296 and IP 18292, and majority of 

the isolates on IP 18297 and P 3281-1, with few exceptions, failed to cause 



Similarity index 

Fig.4: Dendrogram of 10 single-zoospore isolates of Sg 139 
based on cluster analysis of disease incidence recorded 
on 10 differential hcst genotypes 



infection and thus were considered avirulent, while all the isolates were 

virulent on the susceptible host genotype 70428 (Table 13). Isolates Sg 110-5 

and Sg 110-3 with low disease incidence were virulent on 1P 18297 and 

P 3281-1 respectively. However, the remaining isolate-genotype combinations 

showed virulent reaction (Table 13). 

4.1.4.2 Variation in aggressiveness 

The aggressiveness of the 10 SZIs of Sg 110 varied significantly 

across the host genotypes with disease incidence ranging between 0.34 and 

96.42 per cent (Table 13). All the isolates were highly aggressive on the 

susceptible host genotype 70428, while most of the isolates showed low to 

moderate aggressiveness on genotypes IP 5272-1, P 536-2 and 700481-21-8, 

and low aggressiveness on P 1564 and P 2895-3. Across the host genotypes, 

isolate Sg  110-3 recorded the highest mean disease incidence (25.71 %) and 

isolate Sg 110-9 the least (9.77 %) (Table 13). The effects of isolates, host 

genotypes and their interaction were highly significant (P<0.01) for disease 

incidence (Appendix VIII). 

4.1.4.3 Variation in disease reaction 

All isolates showed resistant reaction on genotypes IP 18296, 1P 18297, 

P 3281-1 and IP 18292 and susceptible reaction on 70428, and the isolates 

could not be distinguished on these genotypes (Table 14). However, clear 

differential reactions were obtained on the remaining five host genotypes. 



Table 13: Per cent dlrersc incidtnce' of t tn  jingle. zoospore lbolattr of Sg 110 on ttn d l f i r t n l l ~ l  hastlenohjpr 

SgllO-l 1 4 0  OW 000 2599 711 846 OW 2246 OW 9106 1607 
(1063f (OW) (OW) (10651 (1571) (1691) (OW) (2829) (OW) (7472) (1769) 

Sg110.2 OM) OW OW 511 OW OW OW I151 OW 8871 1076 

(OW) (OW) (OW) (11 39) (OW) (OW) [OW) (21 56) (OW) (7037) (1053) 

SgllO.1 4071 OW OW 6241 1463 OW 067 4114 OW 9549 2571 
(19 67) (0 W) (OM)) (52 191 (22 49) (OW) (4 691 (41 061 (0 W) (77 76) (21 78) 

Sg110-4 OW OW OW 2250 255 OW OW 831 OW 9466 1280 
(OW) (OW1 ( 0 0 )  (28 12) (9 19) (000) (OW1 (16751 (OW) (7665) (1109) 

S g I I O J  1700 OW 261 1075 152 407 OW 1114 OW 9497 2041 
(3747) (OW) (934 (1168) (1081) (11 61) (OW) (11 92) (OW) (7704) (21 39) 

s g l l o a  6 3 1  O W  O W  1825 O W  I I W  O W  2644 O W  8972 1517 
(14 57) (OW) (OW1 (25 291 (OW) (1911) (OW) (1095) (OW) (71 10) (16 15) 

Sgl lo-7  1308 OW OW 45W 229 2012 OW 850 OW 9381 1888 

(21 20) (OW) (OW) (42 13) (870) (1013) (OW) (1695) (OW) (75611 (1953) 

SgllO.8 2287 OW OW 2615 157 563 OW 2099 OW 9129 1701 

(28 57) (OW) (0 W) (1089) (720) (11 73) (OW) (2727) (000) (74 98) (1826) 

Sg110.9 OW OW OW 034 OW OW OW 156 OW 9176 977 
(OW) (OW) (OW) (3 12) (000) (OW) (OW) (1161) (OW) (1132) (9031 

Sg110.10 IS5 OW 000 2812 000 OW OW 081 OW 9642 1269 
(7 16) (OW) (OW) (1101) (0 WI (0 WI (OW1 (5 ll) (OW) (19091 (12 14) 

Mean 1250 OW 026 2651 319 553 007 1809 OW 9119 
(1593) (OW) (091) (29 19) (741) (9241 (047) (11551 (OW) (7508) 

S.Ed.* CD 1% 

11011tes 00123 0 1347 

HMI Cnolyps 0 0511 0 I341 
Inancuon 0 1614 04260 

' Mun ollhrn npllcallonr 
Rgum In prenthmr Irrarcs,n n~nrfonncd values 



T a b l e  11: Dlsense nnct lon  of l t n  single-zoosport irolrter of Sg 110 o n  ten differtntlal  host genotypes 

R Resistant reaction ( 4 0 %  dlreaso ~ncidcnce) 

S Suwcptiblc reaction (~10%d1seass ~nc~dencel 



4.1.4.4 Variation in latent period 

The s i n g l e - z ~ ~ s ~ o r e  isolates of Sg 110 varied significantly for latent 

period ranging from 5.33 to 10.75 days (Table 15). The maximum mean latent 

period was observed on host genotype P 3281-1 (10.00 days), followed by 

P 1564 (9.63 days), while that of the minimum was observed on the susceptible 

genotype 70428 (5.79 days). Across the host genotypes, isolate Sg 110-3 had 

the shortest latent period (8.00 days), while the longest was observed for 

isolate Sg  110-7 (8.96 days) and 110-4 (8.92 days), and there was no 

significant difference between Sg 110-7 and Sg 110-4 (Table 15). Highly 

significant (P<0.01) effects of isolates, host genotypes and their interaction on 

latent period were observed (Appendix IX). A significant negative correlation 

(r = -0.92 at P<0.01) was found between latent period and disease incidence 

across host genotypes and isolates. 

4.1.4.5 Variation in virulence index 

Significant differences were ohewed in virulence index of the isolates 

across the host differentials and it ranged from 0.03 to 17.93 (Table 16). Among the 

isolates, Sg 110-3 had the highest mean virulence index (3.89, while Sg 110-9 had 

the lowest (1.57) across the host genotypes. Among the host genotypes, the highest 

virulence index was recorded on 70428 (16.17), followed by P 536-2 (3.18) and the 

lowest on p 3282-1 (0.01). The virulence index was highly influenced by isolates, 

host lines and their interaction (Appendix X). 



Table 15: Latent perlod'of tan single~looapora lsolrka olSg 110 on fen differential hoslgtnolyp 

Mean 877 . 800 875 963 922 IOW 918 . 579 

lxllalcs 0 0456 01174 

Host gcno~nx,  0 0891 0 1174 

lnlemcbon 0 2825 03713 

' Mean of three apl~csuonr 
90 qmploms observcd 



Table 16: Virulence Indtr' of ten singlt - zoos[~orc isolates of ~g 110 on ten difltrenllal host Btnoryp, 

id ate^ Ditftrcnlial host mo I 

IP5212.11P 182961P18297 PS36.2 P 1564 P 2 8 9 : J ~ ~ I - I  700481.21.8 [p 1092 ,042~ 

Mcsn 161 0 0 0  003 118 034 060 001 206 O W  1617 

S.Ed.+ CD 1% 

b l e c :  00646 01661 

Host genolypr 0 1266 0 1663 

Intenct~on 04002 0 5 2 a  



4.1.4.6 Pathotype grouping 

A dendrogram developed from the average linkage cluster analysis 

based on mean per cent disease incidence classified the 10 SZIs of Sg 110 at 

9 0  per cent similarity level into four groups (Fig. 5). Isolates Sg 110-1, 

Sg  110-6, Sg 110-8, Sg 110-2, Sg 110-9, Sg 110-4 and Sg 110-10 were in 

group I; isolates Sg 110-7, Sg 110-3 and Sg 110-5 were not clustered at the 

9 0  per cent similarity level and formed separate groups, group 11, group I11 

and group IV, respectively. 

4.2 ASSESSMENT OF GENETIC VARUBILITY AMONG PARENTAL 
ISOLATES O F  S. graminicola USING AFLP MARKERS 

A high level of polymorphism was obtained with AFLP analysis using 

three primer combinations (E-TGIM-CAT, E-TTIM-TAG and E-TGIM-CTA) 

among the 20 parental isolates of S. graminicola. (Due to some unknown 

reason, the genomic DNA of isolate Sg 032 did not give any fingerprint 

pattern on autoradiograms and therefore, it was eliminated while counting the 

bands for calculation of similarity index). The details of number of bands 

observed and number of polymorphic and monomorphic bands is presented in 

Table 17. A total of 185 bands were scored for the three primer combinations, 

of which about 80 per cent was found polymorphic. 

With the primer combination E-TGIM-CAT, the bands designated 'a' 

and 'd' were specific to isolate Sg 026 and bands designated 'c' and 'e' were 

specific to isolate Sg 151, while the bands designated 'b', 'f and 'g', which 

were found in all isolates were absent in isolates Sg 025, Sg 139 and Sg 151, 

respectively (Plate 3). Likewise, with the primer combination E-TTIM-TAG, 



Similarity index 

Fig.5: Dendrogram of 10 single-zoospore isolates of Sg 110 based 
on cluster analysis of disease incidence recorded on 
differential host genotypes 



Table 17: Number of bands observed and number of polymorphic and monomorphic 
bands obtained in three primer combinations of AFLP analysis 

Primer Number of Number of Number of 
bands polymorphic monomorphic combination observed bands bands 

Total 185 149 36 
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the bands designated 'a', b' and 'g' were specific to isolate Sg 004 and the 

band designated 'e' was specific to isolate Sg 151, whereas the bands 

designated 'c', 'd' and 'f found in all the isolates were absent in isolates 

Sg 026, Sg  139 and Sg 151, respectively (Plate 4). Similarly, with the primer 

combination E-TGIM-CTA, the bands designated 'a' and 'd' were specific to 

isolates Sg  026 and the band designated 'e' was specific to isolate Sg 139, 

while the bands designated 'b' and 'c' found in all the isolates were absent in 

isolate Sg  139 (Plate 5). 

Cluster analysis of the similarity index data classified the 20 isolates 

into eight groups at 70 per cent similarity level and the classification is 

presented as dendrogram (Fig. 6). Isolates Sg 015, Sg 046, Sg 047, Sg 149, 

Sg  045, Sg 048, Sg  088 and Sg 040 were in group I; Sg 021, Sg 115 and 

Sg 153 in group 11; Sg 110, Sg 150, Sg 152, and Sg 140 in group 111. The 

isolates Sg  004, Sg  026, Sg 025, Sg 139 and Sg 151 were not clustered at the 

70 per cent similarity level and thus formed separate groups, group IV, V, VI, 

VII and VIII, respectively. 

4.3 IDENTIFICATION OF MATING TYPES AMONG THE 
ISOLATES OF S.graminicola 

4.3.1 Determination of mating types 

Of the 70 SZIs when inoculated alone, no oospores were produced in 

62 isolates and oospores in fewer numbers (<50 oospores/cm2 leaf area) were 

observed in 8 isolates. The oospore production per unit leaf area in these 

8 isolates is given in Table 18. Isolates in which oospore production was not 
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r n ~ 1 m ~ ) V )  V 1 m W w m  w m c n w m w m  w m v ,  

Plate 5: An autoradiogram of AFLP profiles of 20 parental isolates 
of Sclerospora grnminicola using the primer conlbination 
E-TGIM-CTA 

Note: a, d and e = specific bands present; b and c = specific bands absent 



Similarity index 

Fig.(\: Dcndrngram nf 20 parental isnhtcs of ,'?/~~rospnro 
gp"mj,rjco/n hitset1 nn cluster analysis of AF1,I' d;ttit 

with three primcr combinations 



Table 18 : Oospore production in eight self-fertile single-zoospore isolates 
when inoculated alone 

S.No. Single-zoospore No. of oospores produced in 
isolates unit leaf nreaa 

I SgO21-5 15 

2 SgO21-8 46 

3 Sg 021-9 14 

4 Sg 149-8 22 

5 Sg 1 10-3 13 

6 Sg 110-5 25 

7 Sg 110-6 3 1 

8 Sg 110-8 18 

": Mean of 20 leaf samples 
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observed were referred as  self-sterile isolates and those supported oospore 

production referred as  self-fertile isolates. 

The  16 self-sterile SZls used to determine mating types fell into two 

groups, when inoculated in all possible paired combinations (Table 19). Isolates 

Sg 139-1. Sg  139-3. Sg 139-5. Sg 139-6. Sg 139-7. Sg 139-10 and Sg 110-9 

belonged to one group and isolates Sg 139-2. Sg 139-4, Sg 139-8. Sg 139-9. 

Sg 110-1, S g  110-4, Sg 110-7 and Sg 110-10 belonged to the other group 

(Table 19). Oospores were produccd in abundance when any one of the 

isolates o f  one group was paired with any one of the isolates of the other 

group and vice versa. inoculations with isolates of the same group in all 

paired combinations did not result in the production of oospores. The isolate 

S g  110-2 failed to produce oaspores with any one of the ~solates  tested and 

behaved unique of its kind. The t h o  lllating type groups identified were 

designated. Mat A and Mat B. 

4.3.2 Composition, f r e q u e n c y  a n d  d i s t r ibu t ion  of m a t i n g  types 

TO know the composition, frequency and distribution of mating types 

among the isolates of S pnn?inicola. the 70 SZls derived from the seven parental 

isolates were tested for oospore production by pairing with the two standard 

mating type isolates PT 2 and PT 3 and the results obtained are presented in table 

30. Arbitrarily, the isolates that produced oospores with the isolate PT 3 were 

placed in group Mat A (PT2 type) whereas those that produced oospores with the 

isolate PT 2 were placed in group Mat B (PT 3 type). OosPore production was 

abundant in matings involving self-ster:le isolates whereas it was found sparse in 

matings involving self-fertile isolates (Table 20). 





l ab le  1 U  : UOSPOre Productton In I U  single-zoospore Isolates when palred 
w i th  the hvo standard mating type isolates PTZ and p ~ 3  

s.N~. single- zoospore isolates Oo~pore ~roduction' when paired with 
PT2 PT3 

1 Sg 048-1 > 1000' b 

2 Sg 048-2 > 1000 
3 Sg 048-3 > 1000 
4 Sg 048-4 > 1000 
5 Sg 048-5 862 
6 Sg 048-6 >I000 
7 Sg 048-7 > 1000 
8 Sg 048-8 >I000 
9 Sg 048-9 740 
10 Sg 048-1 0 > 1000 
I I SgO21-1 954 
12 Sg 021-2 >I000 
13 Sg 02 1-3 >I000 
14 SgO21-4 > 1000 
15 Sg 021.5' 460 215 

16 Sg 02 1-6 > 1000 

17 Sg 021-7 > 1000 
18 Sg 02 1-8' 522 i X6 

19 Sg 02 1 -9* 175 44 1 

20 SgO21-10 > 1000 

21 Sg 149- I 92 1 

22 Sg 149-2 >I  000 
23 Sg 149-3 >I000 
24 Sg 149-4 >I000 

25 Sg 149-5 > 1000 
26 Sg 149-6 >I000 

27 Sg 149-7 > 1000 
28 Sy 149-8' 213 584 

29 Sg 149-9 
> 1000 

Sg 149-10 > 1000 30 
3 1 Sg 110-1 

>I000 

32 Sg 110-2 
33 Sg 110.3' 432 432 

34 Sg 110-4 
833 

Sg 1 10-5' 126 
472 

3 5 
Sg 1 10-6' 137 

556 
36 > 1000 
37 Sg 110-7 

Sg 110-8' 396 
487 

38 
> 1000 

39 Sg 110-9 > 1000 
40 Sg 110-10 

Contd. 



S.No. Single- zoospore isolates OOspOre productil 

a : Mean of 20 leaf samples 

: No oospores 

' :Numerous oospores 
* : Self-fertile isolates 



Of the 70 analysed 28 (40.00%) behaved as Mat A. 33 (47.14%) 

a s  Mat B and 8 (1 1.43%) behaved as both Mat A and Mat B, while 1 (1.43%) 

behaved differently without producing oospores with either of the mating type 

isolates (Table 21). The 28 isolates, which produced oospores only with PT3 

and the 33 isolates, which produced oospores only with PT 2 were self-sterile 

and the 8 isolates which produced oospores with hoth these isolates were self- 

fertile. Among the 8 self-fertile isolates. 5 produced more oospores with the 

isolate PT 3 than with the isolate 1'T 2,  two isolates produced niorc oospores 

with isolate PT 2 than with PT  3. and one isolate produced oospores equally 

with both the isolates. 

The  ratio 28 Mat A: 33 Mat B do not differ significantly from a 1:l 

ratio (x' 1:l = 0.40, P> 0.01) and the results suggests the occurrence of Mat A 

and Mat B mating types in equal frequencies among the seven selected 

parental isolates of S, gruniinicoiu. Though the overall frequencies of both the 

mating types was found to be in equal proportions, their distribution within 

the individual parental isolates was not uniform, especially in isolates Sg 149 

(6 Mat A : 3 Mat B). Sg 110 (4 Mat A : I Mat R) and Sg I52 (2 Mat A :8 Mat B). 

In these isolates. the frequency of occurrence of one mating type was found 

higher than the other (Table 21). 

4.4 INHERITANCE OF VIRULENCE INS. grominicolo 

The F,,  F,. BC,  and BC! progeny isolates were evaluated for virulence 

phenotype on the tester host genotype IP 18292 and the results obtained are 

presented in Tables 2 2  and 23. All the 33 F ,  progeny isolates produced as a 



Table 21 : Composition, frequency and distribution of mating types within and behveen 
the Isohter of Sclerospora graminico/a 

Parental M n t A  M e t B  M s t A >  M a t B >  Met A -  Noneof 
Isolates only only Mat B Mat A Mat B these 

Total 

Sg048 4 6 0 0 0 0 I0 

Sg149 6 3 I 0 0 0 10 

Sg 153 5 5 0 0 0 0 10 

Sg139 4 6 0 0 0 0 10 

SglS2 2 8 o o 0 0 I D  

Total 28 33 5 2 I i 70 

Mat A only :Produced oospores only with PT3 ] Slcsteriie i s h i s  
Mat B only :Produced oospores only with PT2 

Mat A> Mat B : Produced more oospores wit11 :he isolate PT 
than with the isolate PT2 

Mat B>Mat A : Produced more oospores with the isolate PT 
than with the isolate PT3 

Mat A-Mat B : Produced oospores equally with both the 
isolates 

None of these : N o  oospore production with either ofthe - Self-sterile isolate 

isolates 



result of hybridization between the highly virulent parent, sg 139-4 and !he 

avirulent Parent, Sg  110-9 showed avirulent reaction (-), and no segregation 

was observed (Table 22). Among the 230 F, progeny isolates evaluated, 

177 were found avirulent (-1 and 53 virulent (+), and a segregation ratio of 

177:53 did not differ significantly from the ratio 3:l (XI 3:l = 0.46, p> 0.01) 

(Table 23). This segregation pattern of F, generation was supported by the 

segregation ratios obtained in BC, and BC, generations. The 46 backcross 

progeny isolates obtained from the backcross of F, with the avirulent parent 

(Sg 110-9) did not segregate and entire progeny was avirulent (Table 22). 

While, backcross of the F,  with the virulent parent (Sg 130-4) segregated in the 

ratio, 28 avirulent : 34 virulent and the ratio of 28:34 is a good fit to a l : l  ratio 

( ~ 1  1:l = 0.58, P>0.01) (Table 23). A schematic representation of inheritance of 

virulence study in S, graminicola is shown in Figure 7.  

It is evident from the results (Tables 22 and 23) that the specific 

virulence in pathogen isolates Sg 139-4 and Sg 110-9 to match the resistance 

in IP 18292, seems to be determined by a pair of alleles (A/a) at a single locus 

with avirulence dominant to virulence. The segregation pattern would also 

suggest that, the parents are homozygous and F,s are heterozygous at this 

locus. Based on data obtained (Table 22), the avirulent parent Sg 110-9 and the 

virulent parent Sg 139-4 are assumed to have homozygous dominant alleles for 

avirulence (AA) and homozygous recessive alleles for virulence ( a d ,  

respectively, to the tester host genotype IP 18292. The assumed genotypes of 

parents, F,, F,, BC, and BC, generation isolates are given in Table 23. 









Sg 1 3 9 4  X Sg 110-9 - 
(Virulent Parent) (Avimlent patent) I 

FI Progeny isolates (33) - 

11 Bsckcross 1 (BCd 

i (S~ngle-oospore rnfec 

F1 X SglIO-9 4 (Aimlent parent) 

F, Progeny rsolates (230) 

All found av~nrlent 

vrmlence phenotype on 
tester host genotype 
lP 18292 

- 
)ns) 

nrulent ratio obtained 

vimlence phenolype on 
tester host genotqpe 
if' 18292. 

4 ,Single-oospore infect~ons) 

,411 found avtmlent on 
tester host genotype 

Ill Backcross 2 (BC2) 
Fl X Sg 139-4 

I iVimlmt parent) 

BCr Oospores r--l 
28 avirulent: 34 vlmlent 
ratio obtained ~+l,en tested 
for vlrulerlce phenotype 
on IP 18292. 

Fig.? : &hemane rrpreeatation of inheritance of virulence 5ddy in 
Sc l emspo~  graminicol4 





DISCUSSION 

Results of the experiments conducted in the present investigation were 

critically examined and are discussed below. 

5.1 C H A R A C T E R I Z A T I O N  O F  ISOLATES O F  S. grnminicoln F O R  
P A T H O G E N I C  VARIABILlTY 

V a r i a t i o n  a m o n g  p a r e n t a l  isolates 

Significant variation in pathogenicity on a universally susceptible host 

genotype 7042s  was recorded among the 21 parental isolates of S, graminicoia. 

The highest disease incidence (76.15%) and shortest latent period (6.00 days) 

were recorded with the isolate Sg 153, and the lowest disease incidence (1.97% 

and 2.61%) and longest latent period (30 days) were recorded with the isolates 

S g  021 and Sg 004 (Table 3) .  Generally, isolates collected during the crop 

season 1997 recorded significantly higher disease incidence than those 

collected in previous years and this could be attributed to the decreased 

viability and infectivity of oospore: with the increasing shelf life. These 

results a re  in agreement with the earlier findings on survival, viability and 

infectivity of oospores of S, grnminicoln (Satyanarayana, 1963; Safeeulla, 1975; 

Thakur, 198 1). 

After the establishment of parental isolates, they were evaluated for 

pathogenicity on  a set of ten differential host genotypes. The results indicated 

differential interactions for virulence, aggressiveness. disease reaction, latent 

period, virulence index and oospore production among the 21 parental isolates. 

Significant host x pathogen interaction (Appendix 1) indicated existence 



specificity in the Pearl millet-downy mildew pathosystem as hypothesised by 

Van der plank (1984). These results further support the findings on pathogenic 

variation among the sporangial (Thakur and Rao, 1997) and oospore (Thakur 

and Shetty, 1993) isolates of S. praminicola. All isolates were highly 

aggressive and virulent on the susceptible host genotype 70428. However, 

majority of the isolates were avimlent on IP 18297; less aggressive on P 3281-1, 

IP 18296 and IP 18292; and moderately aggressive on 70048 1-21 -8, P 2895-3, 

p 1564, P 536-2 and IP 5272-1 (Table 4)  indicating the presence of a range of 

resistance genes in the host genotypes to the corresponding virulence genes in 

isolates. The host genotype IP 18292, which was included in the study as a 

resistant genotype, unexpectedly showed differential reaction to isolates 

evaluated with disease incidence rangiq  between zero and 89.55 per cent. This 

suggests the evolution of virulence factor(s) specific to host resistance factor(s) 

in pearl millet-downy mildew system. Evidences from this study and 

earlier  f indings (Appadurai e l  al., 1975; Ball, 1983; Bal and Pike, 1984; 

King e l  a[ . ,  1989; Thakur e l  ai., 1992; Thakur and Shetty, 1993) indicated the 

high degree of genetic divergence for virulence in S. graminicola populations 

that enable them to match resistant genes rapidly in the host genotypes 

Shorter latent periods were generally observed with the more aggressive 

isolate on highly susceptible host genotypes (Table 6). However, the isolates 

varied greatly for latent period (7.13-10.00 days) even on host genotype 

IP 18297, which recorded the lowest mean disease incidence (0.13%). Isolate 

S g  140 produced disease incidence of 0.36 per cent on this genotype with a 

latent period 7.13 days which is relatively low. A host genotype, such as 

IP 18297, having fewer infected plants with shorter latent period could 
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contribute more towards disease spread than those having a greater number of 

infected plants with longer latent period. It was suggested that, the lower 

disease incidence alone can not be taken as a true measure of resistance in a 

highly variable pearl millet-downy mildew system (Thakur er a/., 1997). 

However, highly significant negative correlations between disease incidence 

and latent period provided a reasonable basis of understanding stability of 

resistance in the host genotypes 

In the present study, virulence index has been used to, indicate [he 

relative potential of individual isolates by combining the two independent 

pathogenicity Parameters, disease incidence and latent period, 11 is quite 

variable among the isolates, across the host genotypes indicating the presence 

of different virulence genes in the pathogen populations to the corresponding 

resistance genes in the host differentials, Generally, all the isolates had highest 

virulence index values on 70429. lowest on IP 18297 and P 3281-1. and 

variable on the remaining host genotypes (Table 9; Fig.8). Host genotypes 03 

which the virulence index was lower across a number of isolates would 

probably be more stable than those with higher virulence index values. Of the 

21 isolates evaluated, isolate Sg 139 had the highest virulence index (7.55) 

across the host genotypes indicating the highly virulent nature of the isolate. 

Isolate sg 110, the least aggressive isolate had the lowest virulence index (2,04) 

suggesting that, such isolates being less fit could eventually be eliminated 

the populations in the successive generations of the pathogen. 

Except host genotypes P 1564 and 1P 18292, all other compatible 

isolate-genotype combinations supported oospore production (Table 8). In 

addition, these two genotypes developed similar disease symptoms, which 





94 include dark green foliage with severe stunttng and no asexual sporulation on 

leaf lamina. The inability to suppon oospore production and expression of 

stunting reaction by these two genotypes indicate that they probably have a 

common resistance gene(s). The higher oospore production observed with some 

isolates (Sg 046, Sg 047, Sg 048, sg  088, sg 139, sg 150 and Sg 

irrespective of  their virulence levels, could be attributed to the existence of 

differential mating types, Mat A and Mat B in equal proponions and it was 

proved in case of isolates v i z ,  Sg 048, Sg 139 and Sg 153 in which the 

frequency and distribution of mating types were demonstrated (Table 21). 

These findings are in conformity with the observations made by Michelmore 

and lngram (1980) who obtained maximum oospore production when conidia of 

two mating types of 8. lacrucae were used in equal proportions. On the other 

hand, the host genotype, IP 18297 that showed resistant reaction (0.13% 

disease incidence) to all the isolates surprisingly supported relatively more 

oospore production. This observation indicates that, the oospore production 

potential may not be only pathogen-specific, but also host.specific in nature. 

Based on disease incidence. 21 parental isolates were classified into 

seven distinct pathotype groups indicating significant variability among the 

~Opula t ions  of  S, graminicola. No significant geographical distribution of 

isolates was  found and isolates of the same state were assigned to different 

clusters. However, virulence analysis based on pathogenicity using differential 

host lines seems useful than molecular analysis in determining race structures 

of plant pathogens (Casela and Ferreira. 1995). AS isolates from 
pearl millet 

growing areas of the country were included in the present study, screening 

breeding material against the represen:itive isolates of these pathotype groups 



would provide stable resistance for a successful plant breeding programme i n  

India. 

V a r i a t i o n  a m o n g  single-zoospore isolates (SZls) 

The  SZIs of S gpaminrcolu deilved from two parental isolates, sg 139 

(highly virulent) and Sg 110 (weakly virulent) differed significantly for disease 

incidence, latent period and virulence index on differential hosts. These results 

indicate great genetic variability potential within the populations of S. 

grarninicola. Similar findings of intra-population variation in pathogenicity have 

also been reported by Caten and Jinks (1968) in Phytophthora infestans, 

Mathur e t  a l .  (1997) in Colle~orrichum sublineolum and Thakur et a/. (1998b) 

in S. graminicola.  All the SZls evaluated were highly aggressive on 70423, 

either avirulent or weakly aggressive 011 IP 18297 and had variable reactions on 

the remaining host differentials. Among the SZls of Sg 139, the isolate Sg 139-4 

was highly aggressive and the isolate Sg 139-1 the least aggressive across the 

host genotypes (Table 9) whereas, among the SZls of Sg 110 the isolate Sg 

110-3 was highly aggressive and Sg 110-9 the least aggressive across the host 

genotypes (Table 13). Though significant variation was found among the SZls 

o f  both the parental isolates, the degree of variation was more in case of Sg 139 

than that of  Sg 110. It is also evident from the results that certain SZIS showed 

high aggressiveness than their parental isolates on certain host genotypes. This 

indicates the evolution of progenies in a pathogen ~ o ~ u l a t i o n  with higher 

aggressiveness through sexual recombination. Similar findings have been 

npofled in some populations of Bremia iactucae (Dixon and Wright, 1976; 

Lcbeda, 1979; Gustafsson et 01..  1985). 



T h e  SZIs  also varied greatly for latent period across the host genotypes 

similar t o  the parental isolates. This reflects the availability o f a n  array ofgenes 

for resistance in host genotypes to the corresponding virulence genes in 

pathogen populations. The analysis of variance indicated significant differences 

for latent period in isolates, genotypes and their interactions, and this was 

attributed more to the isolates than to genotypes or isolate-genotype 

interactions. In contrast, Rao el al. (1998) found that the variation in latent 

period in isolates of Colletotrich~rm graminicola was attributed more to the host 

genotypes than to genotype or isolate- genotype interactions. 

Though significant differences for virulence index were observed for 

most  o f  the SZls  across the host genotypes, it is evident from the data that the 

differences for  virulence index among the SZls of Sg 139 were relatively more 

than those o f  S g  110 (Tables 12 and 16; Figs. 9 and 10). This showed more 

diverse nature o f  the SZls of Sg 139 than those of Sg 110, which could be due 

to the  uniform distribution of mating types within the population of Sg 139 

against erratic distribution of mating types in Sg 110 (Table 21). In a pathogen 

like S graminicola distribution of mating types plays an important role in 

sexual reproduction which ultimately affect the evolution of new variants with 

matching virulence genes to the existing R-genes in the host cultivars 

(McDonald and Linde, 2002). These results also indicate the potential of 

development o f  more virulent isolates, which may have implications in 

epidemiology of disease and resistance stability in pearl millet. However, 

evidences exist for evolution of cultivar-specific virulences in populations of 

P graminjcoh ( m a h u r  ., 01,. 1992) and severai promising cdtivars such as 

H B I ,  H B ~ ,  ~ ~ 1 0 4  and MBH 110 have succumbed to d o m y  mildew and have 
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been withdrawn from cultivation (Singh el a [ . ,  1997; Thakur, 1999).  i id^^^^^ 

also exist for evolution of intra-population variation in pathogenicity between 

sister conidial lines from single lesion and monoconidial cultures in 

 ath hog ens, including C sublineolum (Mathur ef  a[.. 1997), Fusari~rm spp. 

(Sutton, 1980) and Pyrlcularia oryzae (Ou and Ayad, 1968). 

Based on the disease incidence, the SZls of Sg 139 were classified into five 

pathotype groups and those of Sg 11 0 into four pathotype groups with some variations 

within a group. Similar observations were made by Thakur el 01. (1998b) who 

identified five pathotype groups while working with SZls of S, graminicola 

derived from a parental isolate. 

5.2 ASSESSMENT OF GENETIC DIVERSITY AMONG T H E  
I S O L A T E S  OF S. grnminicoln 

Based o n  DNA polymorphism from AFLP analysis the 20 parental 

isolates o f  S graminicola were classified into eight distinct groups. 

Fingerprinting pattern from AFLP analysis showed more diversity than 

virulence analysis based on pathogenicity using host differentials. The cluster 

composition also varied for virulence analysis and AFLP analysis. This is 

expected because gene(s) controlling a particular character is most likely to 

present in a small fraction across the genome, whereas the molecular banding 

pattern obtained from the total DNA reflects diversity within the entire 

genome (Andebrhan and Furtek, 1994). Similar observations were made 

Chen  el a[.  (1993) who found a high degree of molecular p o l ~ m 0 ~ ~ ~ ~ ~ ~  

the isolates of  plrcf inja  striiformis that had the same virulence phenotype and 

concluded that the molecular polymorphism observed was largely independent 

o f  virulence po[ymorphi$m, 
the present study the DNA pol~mor~his"' 



100 
did not reflect the geographical distribution of isolates. similar observations 

have been reported by Ouellct and Seifert (1993) in case of ,rusarilrm 

graminearurn, Casela el al. (1992 and 1995) in CoNerorrichum grominico(a, 

and Sivaramakrishnan et al. (2002a) in Fusarium udum, though in some cases 

importance of geographical regions weie correlated (Guthrie el GI. ,  1992). 

The inability of  isolates Sg 004, Sg 025, Sg 026, s g  139 and sg 151 to 

form into clusters could be due to the presence or absence of few unique bands 

in these isolates (Plates 3-51, Separation of Sg 139 from other clusters in hoth, 

pathogenic and genetic analyses might be an indication of its highly virulent 

nature. The banding pattern obtained for this isolate can be used in future 

studies to develop Sequence Tagged Sites (STS) markers which enable the 

identification o f  virulent isolates of X graminicola by using simple PCR 

technique which is rapid and also less expensive. 

5.3 lDENTIFICATlON OF MATING TYPES AMONG THE ISOLATES 
OF S. grominicola 

Of the 70 single-zoospore isolates evaluated 62 were self-sterile and 

eight self-fertile (Table 18). These results indicate the predominant occurrence 

o f  self-sterility with the exception of few self-fertile isolates in populations of 

S. graminicola. The pattern of production of oospores by pairwise inoculations 

o f  16 self-sterile isolates of s grominicola suggested the existence of two 

distinct mating type groups, Mar A and Mat B. Crosses within each group were 

sterile, whereas those between them were fertile (Table 19), These observations 

confin the findings of Michelmore et 01. (1982) and 
lhe 

heterothal]jc nature of the fungus, S. graminicole In addition, the results 

that the fpequency of the mating types. Mat A md Mat 5 in Q ~ P ~ ~ " ~ ~ ~ ~  
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S. graminicola was approximately equal (Tables 20 and 21; ~ i ~ , l l ) ,  In other 

heterothallic OomYcetes also, only two sexual compatibility types have been 

identified in an  approximate 1:1 ratio (Savage et a/., 1968; Brasier, 1969; pratt 

a n d  Green, 1973; Michelmore and Ingram, 1980). Since both the mating types 

were found approximately in equal proportion in India, it indicates that the 

sexual stage plays an important part in evolution of new genetic recombinants 

and thus development of new virulent pathotypes, and also helps in longterm 

o f  S, graminicola in the country. 

The  fungus is also known to have cross-compatibility between the 

isolates from geographically diverse locations in West Africa and India (Idris 

and  Ball, 1984). This outbreeding capacity of S, graminicola is indicative of 

evolut ion for  potential new races and high adaptability to different ecosystems 

(McDonald and Linde, 2002). Under these circumstances if oospores were 

inadvertently transported from one continent to the other, the pearl millet crop 

would b e  at  risk. Pathogen isolates previously absent might proliferate rapidly 

in the absence of  appropriate resistance factors in the hast and may cause 

complete  devastation o f  the crop. 

Though the fungus was found primarily heterothallic in nature, the 

sparse oospore production by eight of SZls when inoculated alone suggests the 

rare occunence of self-fertility in populations of S. graminicola Michelmore and 

Ingram (1982) demonstrated this self-fertility in B. lacfucae as a form 

s.condaV homothalliim and not as a mixture of hetenlhallic isolates of 

oooosilr oomDal i~ i~ i ty  types, such self-fertile isolates have been 
'Or 

. . 
other  helerothallie members of the peronasporales : ph~lophthora 'PP. 

(Monimer a,., 1978). Py(hi"m $ylvo!ic~m (Pratt and gXen* "") and 
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Fig. I I : Composition, frequency and distribution of mating types among 
the isolates of Sclerospora graminicola 



Peronospora 

studies have  

1 0 3  
parasirica (Sheriff and LucaS, 1989). However, the most ,jetailed 

been made with P. drechsieri (Mortimei er a / . ,  1978; sansome, 

1980)  and  5. laclucae (Michelmore and Ingram, 1982) ,,,here genetic and 

cytological experiments have indicated that the self-fertile isolates are trisomic 

for the determinants of compatibility type following numerical non.disjunction 

a t  meiosis.  The  self-fertility observed in the present investigation in some 

populations o f  S. graminicoia may therefore be a similar form of secondary 

homothallism as  described in B lacftrcoe (Michelmore and Ingram, 1982) 

Among the 70 single-zoospore isolates analyzed for mating type behaviour, 28 

(40.00%) were of mating type Mat A anti 33 (47.14%) of Mat 9, and eight (1 1.43%) 

apparently behaved as both Mat A and Mat B while one (1.43%) behaved unique of 

its kind (Tables 20 and 21; Fig.] I). Ail isolates, except Sg 110-2, were capable of 

sexual reproduction when paired either with isolate PTZ or PT3. Only isolates which 

were capable o f  reproducing sexually when inoculated alone produced oospores with 

both, PT2 or PT3. Similar results were also obtained with B. lacrucae (Michelmore 

and Ingrain, 1982). However, further experimentation using large number of isolates 

of S grorninicola from even more dnerse locations, especially fom West Africq is 

needed to determine whether the incapability of oospore production of Sg 110-2 with 

either of the mating type isolates is due to the existence of some other mating t p e s  in 

nature. 

5.4 INHERITANCE OF V I R U L E N C E  I N  S. graminicolo 

Inheritance o f  virulence in S graminicola was studied by hybridizing 

t w o  heterothal]ic isolates which differed in their virulence On a differential 

genotype, 1p 18292. This is the first systematic a" ~ f m ~ r ~ ~ ~ ~ ~ ~ ~ ~  repoT' Of 

such a study in gromjnjcoia and no published data exist on this 
The 
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results (Tables 22 and 23) indicated the segregation of virulence of S. graminicola 

t o  resistance present in IP 18292. Virulence to match this specific resistance in 

IP 18292 did not segregate in the F, and BC, generations, but in the BC, 

generation there was a I:] segregation, and in the F, generation a 3:) ratio of 

avirulence to virulence was found. Spc~if ic  virulence to resistance in IP 18292, 

therefore, appears to he determined by a single pair of alleles (A/a) at a single 

locus with avirulence being dominant to virulence. These results are in broad 

agreement with earlier studies which have shown that specific avirulence in 

specialized biotrophic pathogens is usually controlled by single dominant genes 

(Day, 1974; Ellingboe, 1981). Similar observations on dominance of avirulence 

over virulence have also been reported for the inheritance of specific virulence 

in B. lacrucae (Norwood ef 01.. 1983; Michelmore el d., 1984). 

The segregation pattern also suggest that the virulence to resistance in 

IP 18292 segregated in clear Mendelian ratio, and the parents differed in 

respect o f  single gene pair. The monogenic ratio of 3 avirulent : 1 virulent, thus 

obtained indicates the dominant nature of genes for avirulencel virulence in the 

pathogen, isolates Sg 139-4 and Sg 110-9 to resistanceisusceptibility in the 

tester host genotype IP 18292. This is a clear and strong evidence in support of 

a true gene-for-gene relationship between S. graminicolu and P g/uucum. 

These findings are in conformity with the earlier reports of gene-fot-gene 

relationship in several host-parasite associations, such as that between B iactucde 

Ph~fo~hthora in/Pstons and pornto (Al-Kherb el ul., 1995) and Melampsora lini 

a" flax (Flor, 1965; Statler, 1990). In contrast to a major R-gene in IP 18292, 

* V m l  qumtitative trait loci (QTL) for resistance against diverse pathotypes 



1 0 5  ot' 8. graminicola in different pearl millet genotypes have been identified 

(Jones el a / . ,  2002). 

A gene-for-gene relationship between host cultivars and pathogen 

isolates has  been proposed as the determinant of specificity in more than 30 

host-pathogen associations (Crute. 1985). In its simplest form, the gene-for. 

gene  theory proposed by Flor (1956) states that each locus conditioning specific 

host  resistance or  susceptibility is matched by a complementary locus 

controlling specific avirulence or virulence in the pathogen. In the interaction 

between flax and flax rust studied by Flor, an incompatible interaction 

phenotype occurred when any one host resistance allele was matched by the 

corresponding pathogen avirulence allele. Resistance and avirulence were 

nearly always dominant. These general observations apply to other host- 

parasite associations for which gene-for-gene relationships have been 

demonstrated 

T h e  results (Table 23) also provide further genetical, rather than 

cytological, evidence (Tommerup et a/. ,  1974; Michelmore and Sansome, 1982) 

that S. graminicola is diploid in the vegetative phase rather than haploid or 

polyploid and the genetic evidence to suggest that the fungus is diploid in its 

vegetative phase comes form the lack of segregation for virulence in the F, 

generation. These findings are supported by the observations made 

Michelmorc et o/. (1984) in case of B laclucae and by TommerUP (I9*') in 

several  other  Oomycetes also 



CONCLUSIONS AND FUTURE STRATEGIES 

T h e  diversity of  pathogenicity and DNA polymorphism observed in the 

present investigation emphasizes the variability in 8, gramjn,cola, B~~~~~~ of 

its highly variable nature and rapid adaptation ability, several promising 

cultivars have  succumbed to the disease during the past 20 years in India and 

t h e  process  continues. Therefore, a well-planned strategy to monitor virulence 

~ h a n g e s  in  the pathogen and resistance breakdown in host cultivars, and 

identification and incorporalion of novel resislance genes, will help in reducing 

the  chances  of epidemics and losses from downy mildew in pearl millet. 

For  a successful plant breeding programme in the country, the breeding 

material should  undergo thorough screening using all available potential 

pa thotypes  o f  S graminrcola. To identify such pathotypes at r~ght  time, in a 

right way, it is essential to develop a series of good near-isogenic lines 

conta in ing different down) mildew resistance genes (R genes) which seems to 

be  a prerequisite for identification of new virulences in S graminicola 

popula t ions  

The mat ing type behaviour and rare occurrence of self-fertility in 

S g r ~ m i n j c o l a  populations observed in the present investigadon indicate the 

h igh potential o f  the pathogen to provide new genetic recombinants to 

challenge t h e  resistan1 genes of  the host Such studies. should be conducted 

involving larger number of isolates sampled from geographically diverse 

a n d  wnc,ically diver$. host cul t inr r  to understand the changes in lhe mating 

type  bchaviout o f  the pathogen, 



The gene-for-gene hypothesis observed in the present study appears to 

be an adequate genetic description of most differential interactions in pearl 

millet - downy mildew pathosystem. However, there may be complexities such 

as inhibitor and modifier genes superimposed on the one-to-one 

complementarity of host and pathogen genes and such deviations can be 

revealed by making more number of crosses between all possible virulence 

phenotypes. 





CHAPTER-VI 

SUMMARY 

In the present investigation, studies pertaining to pathogenic and genetic 

diversity, mating types and inheritance of virulence in S. graminicola the causal 

agent of downy mildew of pearl millet were carried out. All the experiments were 

conducted at ICRISAT, Patanchem, Andhra Pradesh, India. The results obtained are 

summarized below. 

A total of 21 isolates representing all important pearl millet growing areas of 

India were selected from the collections maintained at ICRISAT. The isolates were 

established on universally susceptible host genotype 70428, in the form of asexual 

inocula from the oosporic inocula and were denoted as parental isolates. 

Considerable variation was found among the isolates for disease incidence 

and latent period during the establishment of parental isolates. Of the 21 parental 

isolates, the isolate Sg 153 recorded highest disease incidence (76.15%) with 

shortest latent period (6.00 days), while the isolate Sg 004 (2.61%) and Sg 021 

(1.97%) recorded lowest disease incidence with longest latent period (30.00 days). 

Isolates collected during 1997 recorded significantly high disease incidence than 

those collected in the previous years. 

Twenty one parental isolates were evaluated for pathogenecity on a set of ten 

host differentials consisting viz., 1P 5272-1, IP 18296, P 536-2, P 1564, P 2895-3, P 

3281-1, 700481-21-8, 1P 18292 and 7042s. Isolates varied greatly for virulence, 

disease incidence, disease reaction, latent period, virulence index and oospore 

production potential. Among the parental isolates, the isolate Sg 139 was highly 

virulent with highest mean virulence index (7.55) and the isolate Sg 110 weakly 
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virulent with lowest mean virulence Index (2.04). However, the oospore production 

rating was maximum in case of isolate Sg 153 (3.25) and the minimum for isolate Sg 

I 15 (2.02). 

Based on disease incidence, the parental isolates were classified into seven 

pathotype groups. A representative isolate from each group (Sg 048, Sg 149, Sg 021, 

Sg 110, Sg 153, Sg 139 and Sg 152) were selected. From each representative isolate, 

ten single-zoospore isolates (SZls) were established for conducting further studies. 

The SZIs derived from the highly virulent parental isolate, Sg 139 and the 

weakly virulent parental isolate, Sg 110 were evaluated for pathogenicity on host 

differentials to detect variability within the isolates of S, graminicolu. Ail the SZIs 

varied significantly for virulence, disease incidence, disease reaction. latent period 

and virulence index. Among the SZIs of Sg 139, the isolate Sg 139-4 was found 

highly virulent (virulence index 10.47) and the least virulent was the isolate Sg 139- 

1 (virulence index 4.91), whereas Sg 110-3 was the highly virulent (virulence index 

3.85) and Sg 110-9 was the least virulent (virulence index 1.57) among the SZIs of 

Sg 110. Based on the disease incidence, SZIs of Sg 139 were classified into five 

groups and those of Sg 110 into four groups. 

The parental isolates, when subjected to AFLP analysis using three primer 

combinations (E-TGN-CAT, E-TTN-TAG and E-TGN-CTA) showed a high 

degree of polymorphism at DNA level. The fingerprint pattern of AFLP analysis 

showed more diversity than virulence analysis. Based on similarity index, the 

isolates were clustered into eight groups. The cluster composition of AFLP analysis 

did not match with that of the virulence analysis, and these two were found 

independent. The classification of isolates by either of the analysis also did not show 

any lineage with the geographical distribution of the isolates. 



Of the 70 SZls tested for fertility, 62 were found self-sterile and 8 were self- 

fertile. From the 62 self-sterile isolates, 10 SZIs of Sg 139 and six SZIs of Sg 110 

were used to detect mating types by inoculating them singly and in all possible 

paired combinations on the susceptible host genotype 70429. The results indicated 

the existence of two mating types designated, Mat A and Mat 9. 

All SZls were tested for their oospsore production potential by pairing with 

the two standard mating type isolates PT2 (Mat A) and PT 3 (Mat 9 )  to determine 

the composition, frequency, and distribution of mating types among the isolates. Of 

the 70 SZIs tested, 28 (40.00%) were of Mat A, 33 (47.14%) of Mat B, eight 

(1 1.43%) of both Mat A and Mat B, and one (1.43%) behaved unique of its kind. 

The frequency of both the mating types among the isolates of S. graminicola found 

approximately in equal proportions. However, their distribution within the isolates 

of Sg 149, Sg 1 I0  and Sg 152 was not uniform. 

To determine the inheritance of virulence in S, graminicola a cross was made 

between the highly virulent SZI, Sg 139-4 (Mat A) and the weakly virulent SZI 

(avirulent on 1P 18292), Sg 110-9 (Mat B) which differed in their virulence on host 

differential IP 18292. FI, F2 and backcross progenies were evaluated for their 

virulence phenotype on the tester host genotype. Avirulence was found dominant 

over virulence. Further, monogenic ratio (3 avirulent : 1 virulent) observed in F2 

generation indicated the role of single gene pair in governing the virulence in 

isolates Sg 139-4 and Sg 110-9 and resistance in IP 18292. The segregation pattern 

obtained also suggested a true gene-for-gene relationship between S. graminicola 

and P. glaucum. 
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Appendices 



APPENDIX l 

Analysis of variance for per cent disease Incidence of21 parental isolates 
of Sclerospora graminicola on ten differential host genotypes 

Source of variation df Mean sum of F-value 
squares 

Isolates (I) 20 1997.62 1698.27" 

Host genotypes (H) 9 30494.49 25924.85** 

I X H  180 451.54 383.87** 

Residual 420 1.18 

* *  Significant at (P<0.01) 

APPENDIX 11 

Analysis of variance for latent period of 21 parental isolates of Sclerospora 
grnminicoln on ten differential host genotypes 

Source of variation 
df Mean sum of 

sauares F-value 

Isolates (I) 20 28.37 600.35" 

Host genotypes (H) 9 231.18 4892.67** 

I X H  180 22.48 475.69" 

Residual 420 0.05 

* *  Significant at (P<0.01) 



APPENDIX I11 

Analysis of variance for virulence index of 21 parental isolates of 
Sclerosporn graminicola on ten differential host genotypes 

Source of variation df Mean sum Of F-value 
squares 

Isolates (I) 20 70.46 833.16"' 

Host genotypes (H) 9 1364.30 16132.19** 

I X H  180 15.07 178.201* 

Residual 420 0.08 

** Significant at (P<0.01) 

APPENDIX IV 

Analysis of variance for oosporc production ratings of 21 parental isolates of 
Sclerospora graminicola on ten differential host genotypes 

df Mean sum of F-va,ue Source of variation sauares 

Isolates (I) 20 6.05 1150.16** 

Host genotypes (H) 9 83.53 15893.09** 

I X H 180 2.05 390.95** 

Residual 420 0.005 

** Significant at (P<0.01) 



APPENDIX V 

Analysis of variance for per cent disease incidence of ten single-zoospore isolates 
of Sg 139 on ten differential host genotypes 

Q ,,....As .-.c.,..-:..':~.. n r  Mean sum of n ..-I..- 
U V Y I  &= V. .a, I I I I I V I I  U I  r - v a 1 u c  

squares 

Isolates (I) 9 1517.74 3809.97** 

Host genotypes (H) 9 20324.99 51021.74** 

I X H  8 1 308.40 774.18** 

Residual 200 0.40 

* *  Significant at (P<0.01) 

APPENDIX VI 

Analysis of variance for latent period of ten single-zoospore 
isolates of Sg 139 on ten differential host genotypes 

Source of variation 
df Mean sum of F-value squares 

- - - 

Isolates (1) 9 18.48 1035.07** 

Host genotypes (H) 9 90.54 5070.00** 

I X H  81 14.09 788.87.' 

Residual 200 0.02 

**  Significant at (P<0.01) 



APPENDIX VII 

Analysis of variance for virulence index of ten single-zoospore 
isolates of Sg 139 on ten differential host genotypes 

Source of variation df Mean sum of F-value 
squares 

Isolates (I) 9 82.88 1606.34*+ 

Host genotypes (H) 9 957.89 18565.02*+ 

I X H 81 16.95 328.59+' 

Residual 200 0.05 

+' Significant at (P<0.01) 

APPENDIX VlII 

Analysis of variance for per cent disease incidence of ten single-zoospore isolates 
of Sg 110 on ten differential host genotypes 

df Mean sum of 
Source of variation sauares F-value 

Isolates (I) 9 700.40 17076.35++ 

Host genotypes (H) 9 16071.15 391 830.00++ 

I X H  81 165.09 4024.97** 

Residual 200 0.04 

' Significant at (P<0.01) 



APPENDIX R 

Analysis of variance for latent period of ten single-zoospore isolates of Sg 
110 on ten differential host genotypes 

Source of variation df Mean sum of F-value 
squares 

Isolates (I) 9 36.91 1184.42** 

Host genotypes (H) 9 370.56 1 1892.46** 

I X H  8 1 24.15 775.08** 

Residual 200 0.03 

* *  Significant at (P<0.01) 

APPENDIX X 

Analysis of variance for virulence index of ten single-zoospore 
isolates of Sg 110 on ten differential host genotypes 

df Mean sum Source of vnriation F-value of squares 
--ppppppp-pppp-pp.p----- ~~ 

Isolates (I) 9 14.15 226.21 ** 

Host genotypes (H) 9 737.59 11 793.64** 

I X H  81 3.32 53.15** 

Residual 200 0.06 

** Significant at (P<0.01) 
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