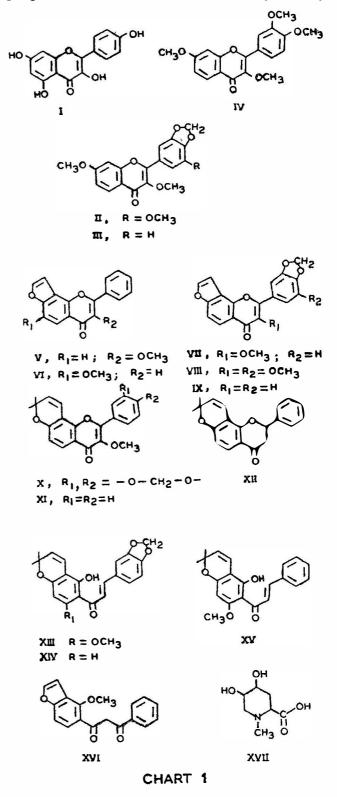
Pongamia glabra: Constituents & Uses*

B. S. PARMAR, K. L. SAHRAWAT & S. K. MUKERJEE

Division of Agricultural Chemicals, Indian Agricultural Research Institute, New Delhi 110012


ONGAMIA GLABRA Vent. (Leguminosae, Papilionaceae), a medium sized glabrous tree, popularly known as karanja, is an important shade tree of India. Considered to be a native of Western Ghats, it is capable of growing under a wide range of agroclimatic conditions and is a common sight around coastal areas, river banks, tidal forests and roadsides. The isolates from the various parts of this tree have been used as a folk remedy since ancient times. The bark and roots are hot, acrid, bitter anthelmintic and alexipharmic and find application in curing diseases of eye, vagina and skin. They also form a useful remedy for tumours, piles, wounds, ulcers, itching troubles, urinary discharges and a number of other diseases. Seeds find use as external application in skin diseases¹ and the juice of leaves is prescribed in flatulence, dyspepsia, diarrhoea, cough, leprosy and gonorrhoea², in addition to the traditional use of leaves as a preservative for books and stored grains. The wood of this tree can also be used as timber, but it is susceptible to attack by insect pests and is not durable.

These uses have generated a lot of scientific interest and karanja is, at present, one of the most extensively chemically investigated plants. A large number of biogenetically related compounds have been isolated and characterized and the industrial uses of some of them established. The present review gives a brief account of the chemistry and uses of these chemical constituents.

Karanjin, the principal furanoflavonoid constituent (approximately 1.25%, oil basis) of the plant, was the first crystalline compound reported as early as 1925 (ref. 3). It was isolated from the seed oil⁴ and roots⁵ and its structure, constitution and synthesis were thoroughly investigated⁶⁻⁸ by several groups of workers. It was followed by the discovery of pongamol⁹, another minor component (0.85\%, oil basis), whose structure remained elusive for a long time. It was finally established¹⁰ to be a novel diketone, by both degradative and synthetic methods¹¹.

With the advent of new physical methods for the structural elucidation of natural products, the other minor chemical constituents of the oil as well as of various other parts of the tree began to be discovered in early 60's. The structures of the various important products isolated so far are shown in Chart 1, while Table 1 lists the sources and the common and generic names of the compounds.

It is obvious from Chart 1 that the various furano and chromeno derivatives of *P. glabra* possess angular orientation of the furan or the chromene ring. Further, most of these are derivatives of resorcinol in so far as ring A is concerned. The methoxylated derivatives as observed in the chromeno chalkones, viz. glabrachromene I and II, and pongachalkone, have been discovered only recently.

^{*}Contribution No. 113 from the Division of Agricultural Chemicals, IARI, New Delhi 110012.

Si No.Common nameChemical nameSourceReferenceFLAVONDES1Kaempferol 2,7,5,7,17methoxy-3,',4'-methylenedioxyflavone (II)Flowers Root, stem, seed 15 (II)12,13 143Desmethoxykanugin 3,7,5,7,4'-tetramethoxyflavone (IV)Stem164Tetra-o-methyl fisetin3,7,3,'4'-tetramethoxyflavone (IV)Stem166Karanjin 66-Methoxyfurano-(2',3'; 7,8)-flavone (V) 3,8, flavone (V)Seeds3-85Karanjin 76-Methoxyfurano-(2',3'; 7,8)-flavone (V) 3,8, flavone (VII) 3,7,8, flavone (VII)Seeds3-8633-Methoxy-3,'4'-methylenedioxyfurano-(2',3'; 0,8)-flavone (VII) 4,8, flavone (VIII)Seeds209Pongaglabrone3,5'.Dimethoxy.3,'4'-methylenedioxyfurano-(2',3'; 0,8)-flavone (VIII)Stem219Pongaglabrone3-Methoxy.3,'4'-methylenedioxyfurano-(2',3'; 7,8)-flavone (VIII)Stem2110Pongachromene 13,'4'-methylenedioxy-2',2'-dime- thylchromeno-(6',5'; 1,3)-flavone (VII) 14Stem2111Karanja chromene (XII)2'-Methylenedioxy-2',2'-dimethyl-flavone (XII)do2513Glabrachromene-I (2'-Hylroxy-6'-methoxy-3,4-methylenedioxy-2',2'-dimethyl- dodo2514Glabrachromene-II (XII)2'-Hylroxy-6'-methoxy-3,4-methylenedioxy-2',2'-dimethyl- dodo2513Glabrachromene-II (XII)2'-Hylroxy-6'-methoxy-3,4'-methylenedioxy-2',2'-dimethyl- dodo2515Pongacha	TABLE 1 — CONSTITUENTS OF Pongamia glabra					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Common name	Chemical name	Source	Reference	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			FLAVONOIDS			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			3,7,5'-Trimethoxy-3',4'-methylenedioxyflavone			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	Desmethoxykanugin	3,7-Dimethoxy-3',4'- methylenedioxyflavone	Root, stem, seed	15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	Tetra-o-methyl fisetin		Stem	16	
6 Kanjone 6-Methoxyfurano-(2",3": 7,8)-flavone (VI) do 17 7 Pongapin 3-Methoxy-3',4'-methylenedioxyfurano-(2",3": do 18 7 Pongapin 3,5'-Dimethoxy-3',4'-methylenedioxyfurano-(2",3": do 18 8 3'-Methoxy-pongapin 3,5'-Dimethoxy-3',4'-methylenedioxyfurano- Leaves 19 9 Pongaglabrone 3',4'-Methylenedioxy furano-(2",3": 7,8)-flavone (VII) 9 9 Pongachromene 3',4'-Methylenedioxy furano-(2",3": 7,8)-flavone (XI 20 10 Pongachromene 3'-Methoxy-3'.4'-methylenedioxy-2",2"-dime- Stem 21 11 Karaja chromene 3-Methoxy-3'.4'-methylenedioxy-2",2"-dime Stem 21 11 Karaja chromene 3-Methoxy-2',2"-dimethylehoremeno-(6",5": 7,8)-flavanone do 23 12 (-)I-solonchocarpin 2",2"-Dimethylehylehoromeno-(6",5": 7,8)-flavanone do 23 13 Glabrachromene-II 2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", 2"-dimethyl- do 25 14 Glabrachromene-II 2'-Hydroxy-6'.methoxy-2',2"-dimethylchro- meno-(5",6": 3',4')-chalkone (XV) Heartwood <td></td> <td></td> <td>FURANO FLAVONOIDS</td> <td></td> <td></td>			FURANO FLAVONOIDS			
8 3'-Methoxy-pongapin 3,5'-Dimethoxy'3',4'-methylenedioxyfurano- (2",3": 7,8)-flavone (VIII) Leaves 19 9 Pongaglabrone 3',4'-Methylenedioxy furano-(2",3": 7,8)-fla- vone (IX) Seed 20 CHROMENOFLAVONES 10 Pongachromene 3-Methoxy-3'-4'-methylenedioxy-2",2"-dime- thylchromeno-(6",5": 7,8)-flavone (X) 21 11 Karanja chromene 3-Methoxy-2',2"-dimethylchromeno-(6",5": 7,8)- flavone (XI) Seed 22 12 (-)I-solonchocarpin 2",2"-Dimethylchromeno-(6",5": 7,8)-flavone (X) Leaves 24 CHROMENOCHALKONES 13 Glabrachromene-I 2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", -dimethylchromeno-(5",6": 3',4')-chalkone (XIII) Leaves 24 14 Glabrachromene-II 2'-Hydroxy-3,4-methylenedioxy-2",2"-dimethyl- do 25 25 15 Pongachalkone 2'-Hydroxy-5-methoxy-2',2"-dimethylchro- meno-(5",6": 3',4')-chalkone (XV) Heartwood 26 MisceLlaneous 16 Pongamol 4-Methoxy-5-(\omega-bencyl acetyl)-coumarone Seeds 9 MisceLlaneous Ifowers 12 MisceLlaneous	6	Kanjone	6-Methoxyfurano-(2",3": 7,8)-flavone (VI) 3-Methoxy-3',4'-methylenedioxyfurano-(2",3":	do	17	
9 Pongaglabrone 3',4'.Methylenedioxy furano-(2",3": 7,8)-fla- vone (IX) Seed 20 CHROMENOFLAVONES 10 Pongachromene 3-Methoxy-3'.4'-methylenedioxy-2",2"-dime- thylchromeno-(6",5": 7,8)-flavone (X) 21 11 Karanja chromene 3-Methoxy-3'.2"-dimethylchromeno-(6",5": 7,8)-flavanone (X) 22 11 Karanja chromene 3-Methoxy-2",2"-dimethylchromeno-(6",5": 7,8)-flavanone do 23 12 (-)I-solonchocarpin 2'.2"-Dimethylchromeno-(6",5": 7,8)-flavanone do 23 CHROMENOCHALKONES 13 Glabrachromene-II 2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", 2"-dimethyl- chromeno-(5",6": 3',4')-chalkone (XIV) do 25 14 Glabrachromene-II 2'-Hydroxy-3,4-methylenedioxy-2",2"-dimethyl- chromeno-(5",6": 3',4')-chalkone (XIV) do 25 15 Pongachalkone 2'-Hydroxy-5-methoxy-2",2"-dimethylchro- meno-(5",6": 3',4')-chalkone (XVV) Heartwood 26 MiscelLaneous MiscelLaneous 16 Pongamol 4-Methoxy-5-(\arboved benzoyl acetyl)-coumarone Seeds 9 MiscelLaneous Interview of the propeolic acid (XVII) do 27, 28	8	3'-Methoxy-pongapin	3,5'-Dimethoxy-3',4'-methylenedioxyfurano-	Leaves	19	
10Pongachromene3-Methoxy-3'.4'-methylenedioxy-2",2"-dime- thylchromeno-(6",5": 7,8)-flavone (X)Stem2111Karanja chromene3-Methoxy-2",2"-dimethylchromeno-(6",5": 7,8)-flavone (X)2212(-)I-solonchocarpin2",2"-Dimethylchromeno-(6",5": 7,8)-flavanone (XII)do2313Glabrachromene-I2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", 2"-dimethyl- (XIII)do2414Glabrachromene-II2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", 2"-dimethyl- dodo2515Pongachalkone2'-Hydroxy-6'-methoxy-2",2"-dimethylchro- (KIII)Heartwood26IFURANO-DIKETONE16Pongamol4-Methoxy-5-(ω-benzoyl acetyl)-coumarone (XVI)Seeds9Miscellaneous17Glabrin T, Sitosterol4,5-Dihydroxy-N-methyl pipecolic acid (XVII) Tdo27, 28 Flowers	9	Pongaglabrone	3',4'-Methylenedioxy furano-(2",3": 7,8)-fla-	Seed	20	
11 Karanja chromene 3-Methoxy-2", 2"-dimethylchromeno-(6", 5": 7,8)-flavone (X) 22 12 (-)I-solonchocarpin 2", 2"-Dimethylchromeno-(6", 5": 7,8)-flavanone do 23 12 (-)I-solonchocarpin 2", 2"-Dimethylchromeno-(6", 5": 7,8)-flavanone do 23 13 Glabrachromene-I 2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", Leaves 24 2"-dimethylchromeno-(5", 6" : 3',4')-chalkone 25 chromeno-(5", 6" : 3',4')-chalkone (XIV) 14 Glabrachromene-II 2'-Hydroxy-3,4-methylenedioxy-2",2"-dimethylchro- Heartwood 26 15 Pongachalkone 2'-Hydroxy-5-(w-benzoyl acetyl)-collacone (XV) FurAno-DikETONE 26 16 Pongamol 4-Methoxy-5-(w-benzoyl acetyl)-collacone Seeds 9 9 17 Glabrin 4,5-Dihydroxy-N-methyl pipecolic acid (XVII) do 27, 28 18 'T-Sitosterol - - Flowers 12			Chromenoflavones			
11 Karanja chromene 3-Methoxy-2", 2"-dimethylchromeno-(6", 5" : 7,8)- Seeds 22 12 (-)I-solonchocarpin 2", 2"-Dimethylchromeno-(6", 5" : 7,8)-flavanone do 23 12 (-)I-solonchocarpin 2", 2"-Dimethylchromeno-(6", 5" : 7,8)-flavanone do 23 13 Glabrachromene-I 2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", Leaves 24 2"-dimethylchromeno-(5", 6" : 3',4')-chalkone 2' 2' 14 Glabrachromene-II 2'-Hydroxy-3,4-methylenedioxy-2",2"-dimethyl- do 25 15 Pongachalkone 2'-Hydroxy-3,4-methylenedioxy-2",2"-dimethylchro- Heartwood 26 FurAno-0.(5",6" : 3',4')-chalkone (XIV) Isogamol 4-Methoxy-5-(\omega-chencoy2",2"-dimethylchro- 16 Pongamol 4-Methoxy-5-(\omega-chencoy1 acetyl)-coumarone Seeds 9 17 Glabrin 4,5-Dihydroxy-N-methyl pipecolic acid (XVII) do 27, 28 18 γ-Sitosterol - - Flowers 12	10	Pongachromene		Stem	21	
12 (-)I-solonchocarpin 2",2"-Dimethylchromeno-(6",5" : 7,8)-flavanone do (XII) 23 CHROMENOCHALKONES 13 Glabrachromene-I 2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", Leaves 24 24 14 Glabrachromene-II 2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", 2"-dimethyl- do 25 25 15 Pongachalkone 2'-Hydroxy-6'-methoxy-2,2",2"-dimethyl-holakone (XIV) 26 Furano-0(5",6": 3',4')-chalkone (XIV) Furano-DIKETONE 16 Pongamol 4-Methoxy-5-(\omega-benzoyl acetyl)-coumarone Seeds 9 MISCELLANEOUS 17 Glabrin Y-Sitosterol 4,5-Dihydroxy-N-methyl pipecolic acid (XVII) do 27, 28 27, 28 18 Y-Sitosterol - - Flowers 12	11	Karanja chromene	3-Methoxy-2",2"-dimethylchromeno-(6",5": 7,8)-	Seeds	22	
13Glabrachromene-I2'-Hydroxy-6'-methoxy-3,4-methylenedioxy-2", Leaves2414Glabrachromene-II2'-Hydroxy-3,4-methylenedioxy-2",2"-dimethyl- chromeno-(5",6": 3',4')-chalkone (XIV)do2515Pongachalkone2'-Hydroxy-6'-methoxy-2",2"-dimethylchro- meno-(5",6": 3',4')-chalkone (XIV)Heartwood2616Pongamol4-Methoxy-5-(ω-benzoyl acetyl)-coumarone (XVI)Seeds9Miscellaneous17Glabrin Y-Sitosterol4,5-Dihydroxy-N-methyl pipecolic acid (XVII) methyl pipecolic acid (XVII)do27, 28 Flowers	12	(-)I-solonchocarpin	2",2"-Dimethylchromeno-(6",5" : 7,8)-flavanone	do	23	
2"-dimethylchromeno-(5",6" : 3',4')-chalkone (XIII) 14 Glabrachromene-II 2'-Hydroxy-3,4-methylenedioxy-2",2"-dimethyl- chromeno-(5",6" : 3',4')-chalkone (XIV) do 25 15 Pongachalkone 2'-Hydroxy-6'-methoxy-2",2"-dimethylchro- meno-(5",6" : 3',4')-chalkone (XIV) Heartwood 26 15 Pongachalkone 2'-Hydroxy-6'-methoxy-2",2"-dimethylchro- meno-(5",6" : 3',4')-chalkone (XV) Heartwood 26 FURANO-DIKETONE 16 Pongamol 4-Methoxy-5-(ω-benzoyl acetyl)-coumarone (XVI) Seeds 9 MISCELLANEOUS 17 Glabrin 18 4,5-Dihydroxy-N-methyl pipecolic acid (XVII) - do 27, 28 Flowers 27, 28 12			Chromenochalkones			
14 Glabrachromene-II 2'-Hydroxy-3,4-methylenedioxy-2",2"-dimethyl- chromeno-(5",6": 3',4')-chalkone (XIV) do 25 15 Pongachalkone 2'-Hydroxy-6'-methoxy-2",2"-dimethylchro- meno-(5",6": 3',4')-chalkone (XIV) Heartwood 26 16 Pongamol 4-Methoxy-5-(ω-benzoyl acetyl)-coumarone (XVI) Seeds 9 16 Pongamol 4,5-Dihydroxy-N-methyl pipecolic acid (XVII) IS do 27, 28 17 Glabrin 18 4,5-Dihydroxy-N-methyl pipecolic acid (XVII) IS do 27, 28	13	Glabrachromene-I	2"-dimethylchromeno-(5",6" : 3',4')-chalkone	Leaves	24	
15 Pongachalkone 2'-Hydroxy-6'-methoxy-2",2"-dimethylchro- meno-(5",6": 3',4')-chalkone (XV) Heartwood 26 FURANO-DIKETONE 16 Pongamol 4-Methoxy-5-(ω-benzoyl acetyl)-coumarone (XVI) Seeds 9 MISCELLANEOUS 17 Glabrin 18 4,5-Dihydroxy-N-methyl pipecolic acid (XVII) - do 27, 28 18 Y-Sitosterol 12	14	Glabrachromene-II	2'-Hydroxy-3,4-methylenedioxy-2",2"-dimethyl-	do	25	
16Pongamol4-Methoxy-5-(ω-benzoyl acetyl)-coumaroneSeeds9MISCELLANEOUS17Glabrin 184,5-Dihydroxy-N-methyl pipecolic acid (XVII)do Flowers27, 28 12	15	Pongachalkone	2'-Hydroxy-6'-methoxy-2",2"-dimethylchro-	Heartwood	26	
10 10 10 10 10 Miscellaneous 17 Glabrin 4,5-Dihydroxy-N-methyl pipecolic acid (XVII) do 27, 28 18 γ-Sitosterol — Flowers 12			FURANO-DIKETONE			
17Glabrin4,5-Dihydroxy-N-methyl pipecolic acid (XVII)do27, 2818γ-Sitosterol—Flowers12	16	Pongamol		Seeds	9	
18 γ -Sitosterol – Flowers 12			Miscellaneous			
	18	Y-Sitosterol	4,5-Dihydroxy-N-methyl pipecolic acid (XVII) — —	Flowers	12	

The biogenetic relation between the chromene ring and the furan ring in flavonoids is well known³⁰.

Isolation and identification of the various constituents of *P. glabra* led to attempts to find out their remunerative outlets. Some of the results available on the various aspects of its biological spectrum are enunciated here.

As a Source of Pesticidal and Allied Chemicals

Biocidal activity — Karanja and its isolates have been tested for their piscidal, insecticidal, nematicidal, bactericidal and antitubercular activity by several workers. Rangaswami and Seshadri³¹ were the first to report the piscidal activity.

Against the cockroach (*Periplaneta americana* Linn.) both the oil and karanjin have been found active^{32,33} and against the housefly (*Musca domestica* Linn.), the dorsal application of the oil dissolved

in white oil was more effective than that of the oil dissolved in acetone³². Karanjin, however, does not possess any contact insecticidal activity against the red flour beetle, *Tribolium castaneum* Herbst.³².

Singh³⁴ reported the biological activity of some of the components of karanja seed cake against the mustard aphid (*Lipaphis erysimi* Kalt.). His results (Table 2) indicated that although the alcohol extract as well as some of the purer furanoflavonoids possessed aphicidal activity, karanjin seems to be primarily responsible for it and could be used for this purpose, with advantage.

The nematicidal activity of the water extract of karanja cake has been investigated against second stage larvae of root-knot nematode, *Meloidogyne incognita* and it has been found inferior to neem and mahua cakes³⁵. Karanja cake has been reported to be more effective at low levels of nematization³⁶,

TABLE 2 — ACTIVITIES	OF VARIOUS ISOLATES FROM
Karanja against	Lipaphis erysimi Kalt.

Test fraction	LC50 %
Cold ethanol extract of deoiled cake Hot ethanol extract of deoiled cake Cold ethanol extract of defatted seeds Hot ethanol extract of defatted seeds Karanjin (crude) Karanjin (pure) Pongaglabrone Pongamol	0.06 0.07 0.07 0.06 0.07 0.06 0.10 0.16

but Singh³⁷ observed that in larger dose, the cake completely controlled the root-knot of tomato.

The antibacterial activity of karanja oil seems to be governed by the test technique³⁸; the cup-plate method³⁹ indicates the oil to be active against both gram-positive and gram-negative organisms. Osmani and Naidu³²; however, failed to observe any antibacterial activity against *Bacillus chinensis* of both oil and karanjin. Similarly, the soap prepared from the oil has been found to be devoid of any antibacterial activity⁴⁰. Ramaswamy and Sirsi^{41a} reported that karanjin possesses antitubercular activity at 10⁻⁵ dilution.

Synergistic activity — Karanja oil has been reported to synergize endrin against houseflies^{41b}. Parmar et al.42,43 investigated this property of the oil with pyrethrins as well as chlorinated insecticides. It was found that the oil synergized the knock-down capability of pyrethrins against the housefly, M. domestica Linn. With chlorinated insecticides, this oil synergized the action of lindane, endrin, heptachlor and thiodan, but antagonized BHC and toxaphene against Tribolium castaneum Herbst. Aldrin and dieldrin were antagonized at lower levels, and at higher levels, this antagonism was masked. Parmar⁴⁴ also studied mixtures of karanja oil and piperonyl butoxide as pyrethrum synergists against M. domestica Linn. and found that the use of the mixture was more economical than that of piperonyl butoxide when used alone.

Parmar and Gulati³³ compared the synergistic potential of karanjin with piperonyl butoxide and found it to be a significantly inferior pyrethrum synergist against M. domestica Linn. and Periplaneta americana Linn. Attri et al.⁴⁵ observed that both karanja oil and karanjin antagonized pyrethrins against Tribolium castaneum, but pongapin (a methylenedioxy analogue of karanjin) was mildly synergistic.

As a Source of Slow Release Plant Nutrients

Non-edible oilseed cakes, in general, and karanja and neem (*Azadirachta indica*), in particular, have since long been used in Indian agriculture as sources of slow release nutrients. Various aspects relating to the manurial value of these cakes under different conditions have been investigated⁴⁶⁻⁴⁹. The chemical compositions of different oil cakes have been reported by Prakash *et al.*⁵⁰. The results of these workers coupled with the earlier observations recorded with these oil cakes led to the hypothesis that the non-fatty minor constituents of the oilseeds may be responsible for their slow release characteristics. This aspect has been investigated in detail recently.

Singh³⁴, while investigating the ability of various karanja extractives in influencing the efficiency of ammoniacal fertilizers, observed that the addition of crude extractives to ammonium sulphate caused accumulation of ammonia in incubated soils. He also observed stabilization of soil structure by the addition of these extractives. Sahrawat et al.⁵¹ compared the extractives from bark, leaves and seeds of karanja and found the seed extract to be most active in inhibiting nitrification. Bark extract and leaves ranked next in order. The major furanoflavonoid from seeds, viz. karanjin, was therefore investigated extensively⁵². It gives a matching performance to N-serve, a well-established nitrification inhibitor, in both laboratory incubations and greenhouse experiments with rice crop.

As a Source of Non-edible Industrial Oil

India has a potential to produce over one lakh tonnes of karanja seed and 30,000 tonnes of oil; of this hardly one-fourth is presently utilized⁵³. Seed is mainly valued for the oil which can be put to a number of industrial (leather dressing, soap making, lubrication, illumination, etc.) and medicinal uses^{1,2}. The IS: 3492 specifications⁵⁴ for pongam oil are summarized in Table 3.

Karanja oil resembles groundnut oil in composition and its fatty acid composition is: palmitic, $3\cdot7-7\cdot9$; stearic, $2\cdot4-8\cdot9$; arachidic, $2\cdot2-4\cdot7$; behenic, $4\cdot2-5\cdot3$; lignoceric, $1\cdot1-3\cdot5$; oleic, $44\cdot5-71\cdot3$; linolenic, $10\cdot8-18\cdot3$; and eicosenoic, $9\cdot5-12\cdot4\%^2$. The presence of furanoflavonoids caused difficulties in the industrial use (soap making) of this oil. Recently, techniques have been evolved for the removal of these toxic constituents and at present purified karanj oil is extensively used in the manufacture of cheaper quality soap.

As a Source of Cheap Cattle Feed

Singh³⁴ assessed the protein quality of processed seed and cake meals and reported the presence of 16 amino acids, including the 10 essen⁺ial amino acids (Table 4).

Feeding trials on albino rats conducted by the same author established the acceptability of this material to the test animals.

TABLE 3 — SPECIFICATIONS	FOR	Pongam	Oil
--------------------------	-----	--------	-----

Characteristics	Requirement
Moisture and insoluble impurities Colour (Lovibond scale, $Y+5$ R) $d^{30\circ}$ u_p^{40} Acid val. Sap. val. Iodine val. (Wij's) Unsaponifiable matter Titre Filtered sample kept at 30° for 24 hr	 >0·25% >40 0·925-0·940 1·4734-1·4790 >20 185-195 80-90 >3·0% >31° No turbidity

TABLE 4 - AMIN	O ACID	COMPOS	ITION OF	Processed
Karan	ja Seei	AND C	CAKE MEA	L

[Values	ın	parentheses	indicate	amino	acid	(g)	per	100	g
		protein or	per 16	g of nit	trogen]			

Amino acid	Amino acid (%) in			
	Seed meal	Cake meal		
Leucine Lysme Methionine Arginine Valine Tryptophan Histidine Isoleucine Threonine Phenyl alanine Aspartic acid Serine Glutamic acid Glycine Alanine Tyrosine	$\begin{array}{c} 2.70 & (8.99) \\ 2 & 65 & (8.82) \\ 2.02 & (6.73) \\ 1.90 & (6.33) \\ 1.85 & (6.17) \\ 1 & 67 & (5 & 57) \\ 1 & 52 & (5 & 06) \\ 1 & 03 & (3.43) \\ 0 & 98 & (3 & 27) \\ 0 & 70 & (2 & 33) \\ 2.75 & (9.16) \\ 1 & 72 & (5.73) \\ 4 & 45 & (14 & 80) \\ 1.50 & (5 & 00) \\ 1 & 40 & (4 & 70) \\ 1.75 & (5.83) \end{array}$	$\begin{array}{c} 2 \ 85 \ (9 \ 49) \\ 2 \cdot 81 \ (9 \ 36) \\ 2 \ 05 \ (6 \ 83) \\ 1 \ 87 \ (6 \ 23) \\ 1 \cdot 14 \ (3 \cdot 78) \\ \hline \\ \hline \\ 1 \cdot 74 \ (5 \ 79) \\ 1 \cdot 50 \ (5 \ 00) \\ 1 \cdot 00 \ (3 \ 33) \\ 0 \ 76 \ (2 \ 53) \\ 3 \cdot 18 \ (10 \cdot 59) \\ 2 \cdot 05 \ (6 \ 83) \\ 4 \ 62 \ (15 \cdot 38) \\ 1 \ 66 \ (5 \ 53) \\ 1 \ 22 \ (4 \cdot 06) \\ 1 \ 82 \ (6 \ 06) \end{array}$		
	anter so reason as	and a second		

Summary

The literature on karanja is evaluated critically. As with any other material, there is still a vast area of research remaining uncovered but the present information does point out areas where seeds and oil available in a large amount in the country can be utilized. To mention some of the uses, the use of karanjin as a nitrification inhibitor and karanja oil as a synergist-cum-solvent for chlorinated insecticides might consume considerable amounts of these materials. Similarly, karanja cake meal can be processed and used as a cheap cattle feed. The oil is already finding considerable use in soap making. Besides, it is a potential source of fatty acids.

References

- 1. KIRTIKAR, K R & BASU, B. D, Indian medicinal plants, I, 830 (Prabası Press, Allahabad), 1918.
- 2. The Wealth of India Raw materials, Vol 8 (Council of Scientific & Industrial Research, New Delhi), 1969, 206
- LIMAYE, D. B., Abstracts of proceedings of Indian Science Congress 1925, 118; 1926, 151.
 BEAL, G. D. & KATTI, M. C. T., J. Am. pharm. Ass., 14 (1926), 1086; Chem. Zentr., II (1926), 596
- MANJUNATH, B L, SEETHARAMIAH, A. & SIDDAPA, S, Chem Ber, 72 (1939), 93, 97.
 SESHADRI, T. R. & VENKATARASWARLU, V, Proc Indian
- Acad. Sci, 13A (1941), 414; 17A (1943), 16 7. Aneja, R. Mukerjee, S. K. & Seshadri, T R, Tetra-
- hedron, 2 (1958), 203. 8 RAIZADA, K S, SARIN, P. S. & SESHADRI, T R, J.
- scient. ind. Res, 19B (1960), 76 9. RANGASWAMI, S & SESHADRI, T. R., Curr. Sci, 9 (1940),
- 179.
- NARAYANSWAMI, S., RANGASWAMI, S. & SESHADRI, T R, J. chem Soc, (1954), 1871
 MUKERJEE, S. K. & SESHADRI, T. R, J chem. Soc,
- (1955), 2048.
- 12. MURTI, P. B R & SESHADRI, T R, Proc Indian Acad Sci., 20A (1944), 279
- 13. PANKAJAMANI, K. S, Ph D. thesis, Delhi University, 1953, 35.
- 14. RANGASWAMI, S, RAO, J V. & SESHADRI, T. R, Proc Indian Acad Sci, 16A (1942), 319.
- 15. MITTAL, O. P. & SESHADRI, T R, J chem Soc, (1956), 2176.

- MUKERJEE, S. K., SARKAR, S. C. & SESHADRI, T. R., Indian J. Chem., 7 (1969), 1275.
 ANEJA, R., KHANNA, R. N. & SESHADRI, T. R., J chem.
- Soc, (1963), 163
- ANEJA, R, MUKERJEE, S K. & SESHADRI, T. R, Tetrahedron, 2 (1958), 203.
 SHARMA, (MISS) P, A study of new flavonoid components
- of the leaves of Pongamia glabra, Ph D. thesis, Delhi University, 1975
- 20 KHANNA, R N. & SESHADRI, T. R., Tetrahedron, 19 (1963), 219
- 21. MUKERJEE, S K, SARKAR, S C & SESHADRI, T. R. Tetrahedron, 25 (1969), 1063 22. NAIKSATAM, P. G & BRINGI, N V, Indian J. Chem, 11
- (1973), 1188
- 23 NAIKSATAM, P G. & BRINGI, N V., Indian J Chem, 11
- (1973), 209 24 MAHEY, S., SHARMA, P., MUKERJEE, S. K. & SESHADRI, T. R., Indian J. Chem., 10 (1972), 585.
- 25. SHARMA, P, MUKERJEE, S. K & SESHADRI, T R, Indian J Chem, 11 (1973), 985
- Chem, II (1975), JOS
 SUBRAMANYAM, K, MADHASUDHANA RAO, J & JAGA-NADHA RAO, K V, Curr Sci, 42 (1973), 129.
 RAO, N. V S & RAO, J V, Proc Indian Acad Sci, 14A
- (1941), 123
- 28 SAMPTHA KUMAR, P. S, MURTI, V V. S. & SESHADRI, T R, Tetrahedron Lett, (1971), 4451.
- 29 SARKAR, S C, MUKERJEE, S. K & SESHADRI, T R, Tetrahedron, 25 (1969), 1063
- 30. Aneja, R, Mukerjee, S. K. & Seshadri, T. R, Tetrahedron, 4 (1958), 256
- 31. RANGASWAMY, S & SESHADRI, T. R., Indian J. Pharm, 3 (1941), 3
- 32 OSMANI, Z H & NAIDU, M B, Sci Cult, 22 (1956), 235
- 33 PARMAR, B S & GULATI, K C, Indian J. Ent., 31 (1969), 239
- 34 SINGH, U V, Studies on better utilization of non-edible orlseed cakes — karanj (Pongamra glabra) seed cake, Ph D thesis, Postgraduate School, IARI, New Delhi, 1966
- 35 MISHRA, S D & PRASAD, S K, Indian J. Ent, 35 (1973). 104
- 36 MISHRA, S D & PRASAD, S K, Indian J. Nematol, (in
- press), personal communication 37 SINGH, R S, Plant Protection Bulletin (FAO), 13
- (1965), 35
 38 BHAT, S G, KANE, J G & SREENIVASAN, A, Indian Oilseeds J, 1 (1957), 298
 39 PATEL, R P. & TRIVEDI, B. M, Indian J. med Res, 50
- (1962), 218
- 40 JAMBOTKAR, D. K., KANE, J G & KHORANA, M. L., Indian J Pharm, 24 (1962), 154 41a. RAMASWAMY, A S. & SIRSI, M, Indian J. Pharm, 22
- (1960), 34.
- 41b Annual report (1966-67), Regional Research Laboratory, Hyderabad, CSIR, New Delhi, 33 (228)
- 42 PARMAR, B S, Investigations relating to synergists for insecticides (pyrethrins), Ph D. thesis, Postgraduate School, IARI, New Delhi, 1969.
- 43 PARMAR, B S, ATTRI, B S, SINGH, R P & MUKERJEE,
- S K, Pesticides, 9 (1975), 29
 PARMAR, B S, Pyr Post, 12 (1974), 121.
 ATTRI, B S, GUPTA, S. C, MUKERJEE, S. K, PARMAR, B S & SINGH, R P, Pyr Post, 12 (1973), 87
 YASHWANT, I, WED, D & PANSE, V. G., J. agric. Sci, 2 (1922) 920
- 3 (1933), 820
- 47. PAL, C. B & RAKSHIT, S C, Proc nat. Inst Sci (India), 33 (1937), 213.
 48 KHAN, A J, Sci. Club (India), 5 (1952), 235.
 49. NAIK, B N, BADHE, N N & BALLAL, D K, The Poona
- Agricultural College Magazine, 51 (1961), 27.
- 50. PARKASH, O, SHARMA, T. R & KHAN, A, J. Proc. Instn Chem, India, 25 (1953), 31. Sahrawat, K L, Parmar, B S & Mukerjee, S. K.,
- 51 Indian J. agric Sci., 44 (1974), in press
- 52. SAHRAWAT, K. L & MUKERJEE, S. K, Plant and Soil, (1977) (accepted for publication)
- 53. Directorate of Non-edible oils and soap industry, Nonedible oils and soap industry, Review 1953-1973, 2, 1974.
- 54. IS 3492 (Indian Standards Institution, New Delhi), 1965.