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This paper describes two joint linkage–linkage disequilibrium (LD)
mapping approaches: parallel mapping (independent linkage and
LD analysis) and integrated mapping (datasets analyzed in combi-
nation). These approaches were achieved using 2,052 single nucle-
otide polymorphism (SNP) markers, including 659 SNPs developed
from drought-response candidate genes, screened across three
recombinant inbred line (RIL) populations and 305 diverse inbred
lines, with anthesis-silking interval (ASI), an important trait for
maize drought tolerance, as the target trait. Mapping efficiency
was improved significantly due to increased population size and
allele diversity and balanced allele frequencies. Integrated map-
ping identified 18 additional quantitative trait loci (QTL) not
detected by parallel mapping. The use of haplotypes improved
mapping efficiency, with the sum of phenotypic variation
explained (PVE) increasing from 5.4% to 23.3% for single SNP-
based analysis. Integrated mapping with haplotype further im-
proved the mapping efficiency, and the most significant QTL had
a PVE of up to 34.7%. Normal allele frequencies for 113 of 277
(40.8%) SNPs with minor allele frequency (<5%) in 305 lines were
recovered in three RIL populations, three of which were signifi-
cantly associated with ASI. The candidate genes identified by two
significant haplotype loci included one for a SET domain protein
involved in the control of flowering time and the other encoding
aldo/keto reductase associated with detoxification pathways that
contribute to cellular damage due to environmental stress. Joint
linkage–LD mapping is a powerful approach for detecting QTL un-
derlying complex traits, including drought tolerance.

anthesis-silking interval | drought resistance | haplotype loci | integrated
quantitative trait locus mapping

Quantitative trait loci (QTL) for complex traits in plants
generally have been mapped through biparental population–

based linkage analysis or diverse germplasm–based linkage dis-
equilibrium (LD) analysis (1, 2). LD studies have significant
potential to identify the genes responsible for a particular phe-
notype, and, unlike biparental populations, have the power to si-
multaneously evaluate the varying effects of many alleles (3). In
maize, due to the rather low level of LD, only polymorphisms
separated from a locus responsible for the phenotypic effect by
a few hundred bases are likely to be significantly associated with
variation for a trait in a randomlymated population. On one hand,
a linkage approach is powerful for detecting genetic effects at
loci involved in the expression of target traits. On the other hand,
LD mapping offers the ability to exploit all recombination events
that have occurred in the evolutionary history of a sample set of
germplasm, allowing for increased mapping resolution.
One of the key limiting factors of LD mapping is the effect of

genetic relatedness in the population under study, which often
causes the identification of spurious associations (4, 5). Exclud-

ing these effects from the LD analysis (6, 7) can be commonly
achieved using the STRUCTURE program (8, 9), principal
component analysis (10), or random molecular markers to esti-
mate pairwise relatedness among all individuals via a mixed
linear model (5). The mixed linear model method has been
successfully applied in LD mapping of many crops, including
maize (5, 11, 12). Another limitation of LD mapping is related to
rare alleles that severely limit the power of QTL detection. Low-
frequency functional alleles are among the likely culprits for the
major missing components of the heritable variation in humans
(13). Given that most alleles are rare in a large proportion of
accessions from diverse germplasm collections, it would be dif-
ficult to account for most of the phenotypic variation in a target
trait using LD mapping.
Joint linkage–LD mapping is an alternative approach to

overcoming some of the inherent limitations of both linkage and
LD methods (1). Several statistical techniques have been de-
veloped for this purpose (14–16). Following that rationale, the
maize community has developed the nested association mapping
population (17), in which the use of controlled crosses reduces
the confounding effects of population structure, whereas the
large numbers of progeny derived from the 25 crosses allows for
linkage mapping with substantial statistical power. The number
of founder lines required to capture the desired amount of ge-
netic variation remains unclear, however. The use of a large
number of inbred lines combined with several biparental pop-
ulations could be considered as an alternative. We explore this
alternative in the present work.
Drought at any stage of plant development affects grain pro-

duction, but causes maximum damage in maize when it occurs
around the time of flowering (18). A commonly used secondary
trait for drought tolerance in maize is the asynchrony between
silk emergence and pollen shedding. Under water-limited con-
ditions, this asynchrony, termed the anthesis-silking interval
(ASI), is highly correlated with grain yield (19), which has been
extensively studied through linkage analysis (20).
The present study was conducted to investigate opportunities

for resolving some limiting factors for linkage and LD mapping
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through joint linkage–LD mapping and candidate gene-based
approach using three RIL populations and one inbred line
population. The target trait ASI was scored under both well-
watered (WW) and water-stressed (WS) conditions. The results
indicate that joint linkage–LD mapping combined with the use
of candidate genes is a powerful approach to detecting QTL
underlying complex traits.

Results
Allele Diversity and Population Structure. From two SNP chips,
a total of 2,052 high-quality SNPs were selected using 522 maize
lines included in this study (305 inbred lines and 217 RILs from
three populations). There was an even distribution of minor al-
lele frequency across the 2,052 SNPs (Fig. 1A), and 11.3% (232)
of SNP markers had a minor allele frequency of >5% across all
tested lines, with a slightly higher percentage in the inbred line
set (n = 305; Fig. 1B). Using all SNPs within each 10-kb block,
386 haplotype loci were identified, each containing 2–12 SNPs
and 2–23 alleles per haplotype locus (Table S1). Dataset S1 and
Table S2 provide distributions of haplotypes on the genome and
summary information for each chromosome. Polymorphic in-
formation content for the 386 haplotypic loci varied dramati-
cally, from 0.015 to 0.828 (average, 0.434). Five groups within
the entire line set were identified by principal component analy-
sis, with well-separated temperate and tropical maize lines
(Fig. S1A). For the inbred line set (n = 305), three genetically
distinct groups were identified (Fig. S1B). In conclusion, structure
analysis separated clearly biparent-derived populations from
the inbred population, and thus the structure-related confound-
ing effect on marker–trait association analysis should be
largely removed.

QTL Identified by Linkage Mapping. Of the 2,052 SNPs selected,
1,991 were mapped in silico to the maize physical map and used
for QTL linkage mapping using phenotypic extremes from each
of the three RIL populations, C5, C6, and XB. The total length
of the linkage maps was 1,652 cM for C5, 1,629 cM for C6, and
1,668 cM for XB, with respective average distances between
markers of 3.89, 3.44, and 2.34 cM.
Both single-marker analysis and composite interval mapping

(CIM) were used for QTL mapping with each RIL population.
Single-marker analysis identified one QTL for ASI-WW condi-
tion and four QTL for the ASI-WS condition, including 17 single
SNP markers (Table S3). Eight QTL for ASI were identified
across the two water regimes using CIM (Table S4). One, four,
and three QTL were identified using the C5, C6, and XB pop-
ulations, respectively (Fig. S2). Parental lines Ac7643, CML444,
and B73 had alleles with a negative effect (i.e., reducing ASI) at
one, three, and two QTL, respectively. Conversely, both
CML444 and B73 had positive alleles (i.e., increasing ASI) at
one QTL.
Some QTL for different water regimes were identified in the

same or neighboring chromosome regions (Fig. S3). Single-
marker analysis showed good agreement with CIM, with four
QTL (one on chromosome 2, two on chromosome 4, and one on
chromosome 9) identified by both methods. For the other four
QTL identified by CIM, associated markers had relatively high
LOD scores in single-marker analysis. We note that the relatively
small population sizes used in linkage mapping via selective
genotyping might have underestimated QTL numbers but over-
estimated the sum of phenotypic variation explained (PVE).

QTL Identified by LD Mapping Using Single SNP and Haplotype Data.
LD mapping was performed with a mixed linear model by in-
tegrating population structure and family relatedness within
populations using both 2,052 SNPs and 386 haplotype loci with
rare alleles excluded. To correct for multiple comparisons,
a Bonferroni-corrected threshold probability based on individual
tests (21) was calculated. Using single SNP–based LD mapping,
no significant marker was identified at the Bonferroni-corrected
threshold (−log P > 5.31 for 2,052 SNPs), and thus associations
are presented at the suggestive level of significance (P < 0.001;
−log P > 3.00). Using the 305-line set, three markers were
identified for WW and one marker was identified for WS,
whereas using the 522-line set, four markers were identified for
WW and three markers were identified for WS (Tables S5 and
S6). Only one marker for WW (PZA03109.1) was shared be-
tween the 522- and 305-line sets.
Using the 305-line set, haplotype-based LD mapping identified

two haplotype loci (HP153 and HP312) associated with ASI-
WW at P < 0.001, with 3.66% and 4.21% of PVE, respectively
(Table 1 and Table S5). Using the 522-line set, three haplotype
loci (two for ASI-WW and one for ASI-WS) were identified.
Relatively high −log P and R2 values were obtained for 305-line
set at the locations where a suggested significance was detected
for the 522-line set, or vice versa (Table 1). Each of two large-
effect haplotypes, HP71 for ASI-WW on chromosome 2 and
HP322 for ASI-WS on chromosome 8, had >20% of PVE (Table
1) and were significant at the Bonferroni-corrected level. The
locus HP322 included two closely linked SNPs, neither of which
was significant in terms of linkage or LD mapping; however, one
of the markers (PZA00142.4) had a relatively high −log P value
(1.30). Another haplotype locus (HP71), including 10 SNPs from
two genes, detected 11 alleles in the 522-line set, with 22.70% of
PVE for ASI-WW. Significant differences in ASI (3.07–6.25)
were found among these 11 allelic classes (Table 2).
In conclusion, haplotypes combining two or more SNPs had

a higher PVE, whereas each single SNP had a lower PVE.
Considering all markers that were significant at either the sug-
gested or Bonferroni-corrected level, the average PVE increased

Fig. 1. Distribution of minor allele frequencies for 522 lines (A) and 305
lines (B) at 2,052 SNP loci and distribution of allele frequency for B73 alleles
at the 93 SNP loci with minor allele frequency <0.05 in 305 maize lines (C).
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from 1.54% for single SNP–based LD mapping to 17.00% for
haplotype-based LD mapping with the 522-line set, whereas the
sum of PVE increased from 5.38% to 23.25% and −log P in-
creased from 3.24 to 7.12 (Table S5). Improved LD mapping
efficiency using haplotypes is shown by quantile–quantile (Q–Q)
plots (Fig. 2), in which observed and expected probability dis-
tributions are compared by plotting their quantiles against each
other (22) and a marker–trait association is indicated by the
deviation of SNP–trait data points from the null hypothesis (1:1
diagonal line). For single SNP–based analysis, no association
with a P value deviated noticeably from the null hypothesis to
reach the Bonferroni-corrected threshold (−log P > 5.31 for
2,052 SNPs), although seven data points (four for ASI-WW and
three for ASI-WS) were significant at the suggested level (−log
P > 3.00) (Fig. 2A). For haplotype-based analysis, however,
HP71-ASI-WW and HP322-ASI-WS had P values that deviated
significantly from the diagonal line and were much higher than
the horizontal line (−log P = 4.59 for 386 haplotype loci) (Fig.
2B). The plots in Fig. 2B also show that the mixed model was
quite effective in accounting for population structure and rela-
tive kinship, as indicated by the majority of marker–trait data
points close to the 1:1 line for Pobserved versus Pexpected.

QTL Identified by Integrated Linkage–LD Mapping. Integrated
mapping, in which datasets from the three RIL populations and
one inbred-line population were merged for a single analysis, was
implemented to identify the best of the eight genetic models (all

possible combinations of QTL allele effects in these four pop-
ulations) using both single markers and haplotypes. For single
SNP–based integrated mapping, no significant association was
found for any model at the Bonferroni-corrected threshold
(Table S6). At the suggested level, 21 markers were identified, 18
of which only by integrated mapping.
The identification of 18 additional potentially significant

markers by integrated mapping can be attributed mainly to ge-
netic effects, background effects, or both, contributed by the RIL
populations (Dataset S2A and Table S6). For example, of the 10
of 21 markers with an apparent genetic effect contributed by one
RIL population (R2 >1%), seven had the same allele effect as
the inbred population, whereas three had different allele effects.
The 18 additional markers also could be partially attributed to
the genetic effect contributed by the 305-line set, as indicated by
their relatively large −log P and R2 values. For the five markers,
one from each QTL region identified by single marker–based
linkage analysis (Tables S3 and S6), relatively high −log P values
were revealed by integrated mapping with specific genetic
models. In four of the five cases, −log P values (1.44–2.03) were
increased significantly compared with the LD mapping with 305
lines (0.21–1.37) (Table S6).
For the 11 markers identified by integrated mapping for ASI-

WW at the suggested level, 64 metahaplotype alleles (across all
significant loci, including those with physical distances >10 kb or
located in different chromosomes) were identified with 18.27%
of PVE (−log P = 3.10). Although each single SNP had only
a small PVE (1.37–2.12%), the allele combination had a much
higher PVE.
Haplotype-based integrated mapping confirmed the two hap-

lotype loci revealed by LD mapping. For HP71, all of the RIL
populations had opposite allele effects to those in the inbred set,
resulting in an increase in R2 from 22.7% to 34.7%. For HP322,
the populations C5 and C6 had the opposite allele effect to those
in the inbred set, resulting in an increase in R2 from 21.5%
to 28.8% (Table 1).
Several clusters of significant SNP markers were identified by

both linkage and LD mapping (Fig. S3). For example, a region
on chromosome 2 spanning 16.2 cM included two QTL for ASI-
WS identified by CIM and LD mapping and one QTL for ASI-
WW identified by LD mapping. The three chromosome maps
also included five SNPs identified by integrated mapping, four
of which were for ASI-WW (Fig. S3). Nine QTL were com-
mon across both water regimes and more than one QTL map-
ping approach.
A total of 277 SNPs were excluded from LD analysis due to

minor allele frequency of <5% in the 305-line set (Fig. 1B). Of
these 277 SNPs, 93 were polymorphic in the XB population with
normal allele frequencies recovered (Fig. 1C). One of these

Table 1. Haplotype loci significantly associated with ASI under WW and WS regimes as revealed by LD mapping using 522 and 305
maize lines and integrated linkage–LD mapping using 522 lines

Trait Locus Chr Bin
No. of
SNPs

No. of
alleles

LD mapping
Integrated
mapping

SNPs includedPopulation −Log P R2, % −Log P R2, %

ASI-WW HP71 2 2.03 10 11 522, 305 8.71, 1.66 22.70, 7.30 12.12 34.69 PZA03747.7, PZA03747.4,
PZA03747.2, PZA03747.1,
PZA03748.2, PZA03748.3,
PZA03748.1, PZA03701.1,
PZA03700.2, PZA03699.1

HP153 4 4.02 2 4 522, 305 3.18, 4.14 2.30, 3.66 3.18 2.30 PZA00136.2, PZA03109.1
HP312 8 8.06 2 3 522, 305 1.79, 3.64 1.28, 4.21 2.85 2.04 PZB01385.3, PZB01385.2

ASI-WS HP322 8 8.06 2 3 522, 305 8.30, 1.16 21.50, 4.42 22.06 28.81 PZA00142.3, PZA00142.4

R2, explained phenotypic variance. The threshold for multiple tests is −log P > 4.59, for 386 haplotype loci.

Table 2. Phenotypic differences for ASI-WW contributed by the
haploptye locus HP71 in haplotype-based LD mapping using 522
maize lines

Haplotype* n ASI, mean ± SD

1 AAGAAAGGGA 15 3.07 ± 3.15
2 GAGAGAGGGC 8 3.14 ± 3.35
3 AAAAGGGGGA 6 3.92 ± 2.31
4 AAAAGGGAGA 12 4.22 ± 3.89
5 ATGAGGGAGC 27 4.33 ± 4.79
6 ATGAGAGGGA 9 4.50 ± 1.81
7 AAGGGAGAGC 57 4.65 ± 4.89
8 AAGGGAAAGA 85 5.16 ± 3.64
9 GAGAGAGAGA 30 5.33 ± 4.42
10 ATGAGAGAGA 4 5.88 ± 5.11
11 AAGAGAGAAA 6 6.25 ± 1.70

*From left to right, each character represents a nucleotide from a SNP
marker: PZA03747.7, PZA03747.4, PZA03747.2, PZA03747.1, PZA03748.2,
PZA03748.3, PZA03748.1, PZA03701.1, PZA03700.2, and PZA03699.1. The
explained phenotypic variance for ASI-WW is 22.70%. Nucleotides in bold
type and underscored have a negative effect on ASI.
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polymorphic markers (umc13.1 on chromosome 1) was found to
be associated with ASI-WS by single marker–based linkage
analysis, and two markers, PZA00344.10 and PAZ00545.26
(chromosomes 4 and 5), were associated with two QTL for ASI-
WW and one QTL for ASI-WS by CIM.

Candidate Genes for Drought Tolerance. The candidate genes for
ASI were identified using associated SNP markers detected by
different mapping approaches (Dataset S2A). The identified
genes include those involved in cytochrome P450 (CYP71C1,
CYP71C2, CYP71C3, and CYP90A21), methylation (a gene re-
lated to the methyl-CpG–binding domain, MBD101, and a SET
[Su (var), Enhancer of zeste (E(z)), and Trithorax] domain
protein (SDG140), transcription factors (zmm19, myb42, C2H2-
type zinc finger protein), dehydrins (late embryogenesis-abun-
dant protein and heat-shock proteins as molecular chaperones of
dehydrins), osmotins (trehalose-6-phosphate synthase), oxidor-
educases (aldo/keto reductase), and signal transduction factors
(serine/threonine protein kinase and protein phosphatase 2C).
These genes are frequently associated with abiotic stress, in-
cluding drought (23).
One of the two most significant haplotype loci, HP71, contains

seven linked SNPs derived from one gene (GRMZM2G164400)
with unknown function and three SNPs from a second gene
(SDG140). SDG140 is a SET domain protein in maize that is
generally associated with methyltransferase activity targeted to
specific lysine residues of histone H3 or H4. Regulation of his-
tone methylation by SET domain–containing methyltransferases
is completed by protein–protein interactions through both
intramolecular and intermolecular associations that are impor-
tant in plant developmental processes (24), including two major
component traits of ASI.
The second significant haplotype locus, HP322, includes two

closely linked SNPs from a gene encoding aldo/keto reductase
(AKR). In addition, PZA02792.25, identified by integrated
mapping with 522 lines and LD mapping with 305 lines, is also

located in a gene of the AKR family. AKRs can detoxify lipid
peroxidation products and glycolysis-derived reactive aldehydes
that contribute significantly to cellular damage caused by envi-
ronmental stress (25). The specific members of this NADPH-
dependent AKR superfamily play important roles in the syn-
thesis of sugar alcohols (e.g., sorbitol, mannitol). The products
of these reactions can act as radical scavengers even at low
concentrations, and their accumulation as osmolytes can lead to
osmotic adjustment. AKRs have been reported in many plant
species (26), including maize.

Discussion
In plants, some linkage mapping studies based on small or me-
dium population sizes have resulted in biased conclusions,
detecting a small number of QTL (median, six) with surprisingly
large PVE (≥50%) (27, 28). Different conclusions regarding the
number, magnitude, and distribution of QTL for complex traits
might be drawn if larger populations were evaluated (29, 30).
Comparing LD mapping of 305 lines versus 522 lines demon-
strates the beneficial effect of larger population size in this study
(Table S6).
SNP assay is the test of choice for genomewide genetic anal-

ysis, but unfortunately it usually detects only two alleles at each
locus (31, 32). This biallelic limitation can be overcome by using
haplotypes constructed from multiple SNP markers likely to be
within the same gene or from SNPs within 10 kb, the average size
of LD blocks in maize. The shift to haplotype-based analysis
substantially improved the efficiency of LD mapping. Compared
with single SNP-based analysis, using haplotypes substantially
improved the efficiency, with P value decreasing from 5.8 × 10−4

to 7.59 × 10−8. Similarly, the accumulative PVE increased from
5.38% to 23.25% for the 522-line set. Combining single SNP–
and haplotype-based analyses further increased the sum of PVE
to 28.63% (Table S6). Given the expected >32,000 maize genes,
a haplotype comprising 5–10 SNPs per gene is feasible within

Fig. 2. Q–Q plots for SNP markers significantly associated with ASI under WW and WS conditions using 522 maize lines. (A) Single SNP–based analysis. (B)
Haplotype-based analysis using 386 haplotype loci.
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a single experiment using high-density chips, allowing precise LD
mapping and accelerating gene discovery.
Alleles occurring at low frequency in the mapping population

are a major limiting factor for LD mapping. Even with SNP
markers detecting only two alleles per locus, 277 (13.5%) of the
SNP markers tested in this study had a minor allele frequency
below 5%. Given that the number of individuals with a specific
genotype can be very small, the effect of rare alleles on mapping
could go far beyond the effect of small population sizes. Fortu-
nately, biparental population–based mapping can use alleles that
occur at low frequency in natural populations by designing
crosses to create artificial populations with inflated frequencies
of those alleles. As a result, 113 of the 277 SNP markers (40.8%)
had a roughly equal ratio of both alleles in at least one of the
RIL populations, allowing identification of three additional
markers significantly associated with ASI.
We compared our mapping results with those from previous

reports using the same RIL populations but tested in multiple
seasons (33, 34). A total of 11 QTL were identified in nine ge-
nomic regions in a previous report using C5 (33). We confirmed
the QTL for WW at bin 2.08 by linkage analysis. Around two of
the regions (bins 5.06 and 8.03), we identified one QTL for WS
(bin 5.07) and one QTL for WW (bin 8.02) by linkage mapping
with the XB population. Using C6, a previous study identified
a total of eight QTL in six genomic regions (34). One of the
regions (bin 4.10) was confirmed by linkage analysis in the
present study. QTL for WW were identified in the XB pop-
ulation in two of these regions (bins 1.02 and 8.02). Interestingly,
for six of the nine regions that were not identified in the present
study by linkage mapping with any of the RIL populations,
a QTL at the same or a flanking bin has been identified by LD,
integrated mapping, or both.
This study provides an example of joint linkage-LD mapping

in maize. Parallel mapping, in which results were merged after
independent linkage and LD analyses, provided complementary
results by identifying common and specific QTL, whereas in-
tegrated mapping allowed simultaneous estimation of several
genetic parameters. Linkage mapping of three RIL populations
identified nine QTL, LD mapping with 305 lines identified only
four QTL, and together the two methods (i.e., parallel mapping)
identified 12 unique QTL. However, integrated mapping iden-
tified 18 additional QTL that were not identified by either
linkage or LD mapping (Table S6). Integrated mapping also
substantially improved the tests’ statistical significance level,
resulting in identification of two haplotype loci that contributed
significantly to ASI. It could be even more efficient if multiple
panels of mapping materials, including both biparental and
natural populations, were collated. Using more inbred lines
combined with different sets of biparental populations would be
a particularly good scenario.
Plant breeding based on phenotypic selection under drought

stress has resulted in substantial genetic gain (18), but this pro-
cess has been slow, time-consuming, and erratic. The development
of effective markers for drought resistance offers the promise of
increasing the selective gain while also ensuring sustainable tar-
geted breeding progress (35). A large-scale drought stress QTL
mapping program conducted at the International Maize and
Wheat Improvement Center (CIMMYT) over the last 12 years
has identified >1,000 QTL associated with nine component
traits, including ASI (20). However, no individual QTL was
found to account for more than 20% of PVE, and most ranged
from 4% to 10% of PVE. Thus, it has been widely concluded that
no large-effect QTL existed for drought resistance or tolerance
in maize. In this study, the identified genetic effect has been
larger compared with results obtained in the linkage approach,
and haplotype-based LD mapping allowed identification of sin-
gle QTL with PVE up to 22.7%, whereas integrated mapping
using haplotypes increased QTL PVE up to 34.7%. The sub-

stantial improvement seen after the shift to haplotypes was
contributed by the multiple SNPs contained in the haplotype,
which independently contributed only a small effect but collec-
tively conferred a large effect.
As demonstrated by the present study, joint linkage–LD

mapping (both parallel and integrated mapping) can overcome
some constraints of genetic mapping methods and simulta-
neously open up opportunities to identify markers useful for
breeding. This approach can be implemented in virtually all
crops. Meanwhile, combining these analytical approaches with
the use of haplotypes has allowed us to identify large-effect QTL
for ASI in maize. The use of SNP haplotypes is likely to sub-
stantially improve QTL mapping power in many crops and also
to facilitate large-scale allele mining in breeding programs.

Materials and Methods
Plant Materials. A total of 522 maize lines were used in this study (Dataset S3).
The materials used for linkage mapping and for joint linkage–LD mapping
included selections from three RIL populations: XB (X178 × B73; n = 186), C5
(Ac7643 × Ac7729/TZSRW; n = 234), and C6 (CML444 × Malawi; n = 236). B73,
Ac7643, and CML444 are drought-tolerant lines. Based on phenotypic data
collected in a previous season, between 30 and 39 lines with extreme ASI
phenotypes were chosen for selective genotyping, resulting in a total of 71
RILs from XB, 69 RILs from C5, and 77 RILs from C6 used for linkage mapping.
The marker density, RIL population sizes, and tail population sizes (the
individuals chosen from each tail) have been shown to have a 95% proba-
bility of detecting QTL with relatively small effects (5–10% of PVE) (36).

A total of 305 inbred lines were used for LD and joint linkage–LDmapping.
This total included 105 introgression lines from the Chinese Academy of
Agricultural Sciences that were developed via between two and four back-
crosses with five recurrent parents and 30 donor parents, followed by one to
three rounds of selfing (37).

Field Experiment and Phenotyping. All plant materials were tested under two
water regimes (WW and WS) using an alpha (0, 1) lattice field design during
the dry winter season (November 2007–April 2008) at the CIMMYT. The field
design included two replications of each treatment. Each plot consisted of
a 5-m row of 26 plants. All of the plants received the first three irrigations at
1, 18, and 41 d after planting. In the WW regime, irrigation was provided
every 2 wk thererafter, but in the WS regime, irrigation was provided only at
65 d after planting, with no further irrigation until 50% anthesis occurred
(at ∼101 d after planting). ASI was scored as the difference (in days) between
male and female flowering times. Selection of phenotypic extremes based
on the ASI data collected in a previous season resulted in significant phe-
notypic difference but continuous variation in each RIL population.

SNP Genotyping and Data Scoring. Leaf samples were harvested from 15
plants of each line and bulked for extraction of total genomic DNA. All lines
were genotyped using two 1,536-SNP chips via a GoldenGate assay (38). One
chip was designed based on random candidate genes (RA chip), which were
chosen with no prior knowledge or consideration of the function of the
proteins (or RNAs) that they encode. This provides a random sample of genes
across the genome for background control. The other chip (DT chip) was
designed based on genes of known or suspected function that are likely
involved in the control of drought response (39). The two chips provided
2,052 informative SNP markers of high quality (Dataset S1). Our sequence
annotation analysis based on a Filtered Gene Set of maizesequence (http://
www.maizesequence.org) indicated that there were 901 intragenic SNPs
involving 781 genes among the 1,035 SNPs from the RA chip. Gene Ontology
analysis and a literature review for the 1,017 SNPs from the DT chip iden-
tified 659 SNPs developed from 413 candidate genes that are likely involved
in the pathways related to drought response (Dataset S2B). The DT chip
allows candidate gene–based LD mapping for drought resistance. SNPs that
were within 10-kb blocks were assigned as different alleles of a single
haplotype locus.

Data Analysis. The maize germplasm used in this study was arranged into two
line sets for analysis of population size effect and comparative mapping: the
entire line set (n = 522) and an inbred line set (n = 305). PowerMarker version
3.25 (40) was used to calculate allele frequency and polymorphic in-
formation content. For each set of germplasm, principal component analysis
was conducted to visualize the genetic structure, and pairwise relatedness
coefficients (kinship matrix) were calculated using TASSEL 2.1 (5, 41).
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QTL linkage mapping was implemented for each RIL population using
WinQTL Cartographer version 2.5. For CIM, empirical thresholds for de-
claring significant QTL at P < 0.05 were determined by performing 1,000
permutations.

LD mapping was performed using mixed-linear model implemented with
Tassel 2.1. The first five principal components derived from analysis of the n =
522 and n = 305 populations screened with the 1,035 RA chip markers were
included in the mixed linear model analysis in place of the population
structure (Q matrix). Both principal component and K matrices were used, to
minimize spurious associations.

The efficiency of integrated mapping was determined by the change in P
values when eight genetic models were applied to the entire line set (n =
522). In model A, the SNP allele has the same effect on ASI in three RIL
populations and one inbred population. In model B, the allele effect in the
three RIL populations is opposite to that in the inbred population. In models
C, D, and E, the allele effect in one of the three RIL populations is opposite to
that in the inbred population. In models F, G and H, the allele effect in two
of the three RIL populations is opposite to that in the inbred population.
Model A is equivalent to the LD mapping using the entire line set.

For both LD mapping and integrated linkage–LD mapping, the threshold
for multiple tests to declare associations was determined by the Bonferroni

correction (21). When performing n tests, if the significance level for the
entire series of tests is α, then each of the tests should have probability
P = α/n. When the numbers of haplotype loci, markers, and markers by ge-
netic models are 386, 2,052 and 2,052 × 8, respectively, at α = 0.01, the
Bonferroni-corrected thresholds for the P value should be 2.59 × 10−5, 4.87 ×
10−6, and 6.09 × 10−7, with corresponding −log P values of 4.59, 5.31, and
6.22. A suggested level of significance was declared when SNP–trait associ-
ations were detected at P < 0.001 or −log P > 3.
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