MECHANISM AND GENETICS OF GRAIN MOLD RESISTANCE IN SORGHUM

THESIS

Submitted to the

Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola in partial fulfillment of the requirement for the degree of

DOGTOR OF PHILOSOPHY IN AGRIGULTURE (PLANT PATHOLOGY)

BY

GULAB DAULATRAO AGARKAR

DEPARTMENT OF PLANT PATHOLOGY POST GRADUATE INSTITUTE,

Dr. PANJABRAO DESHMUKH KRISHI VIDYAPEETH, AKOLA (M. S.) INDIA

Enrolment No. AGNG/1/78/69

1999

DECLARATION OF STUDENT

I hereby declare that the experimental work and its interpretation of thesis entitled "Mechanism and genetics of grain mold resistance in sorghum" or part there of has not been submitted for any other degree or diploma of any University nor the data have been derived from any thesis/ publication of any University or Scientific Organization. The sources of materials used and all assistance received during the course of investigation have been duly acknowledged.

Akola

Synchol .

G.D. AGARKAR Enrolment No. AGNG/1/78/69

Dated :

CERTIFICATE

This is to certify that the thesis entitled "Mechanism and genetics of grain mold resistance in sorghum' submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ph. D.) in Agriculture of Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola is a record of bonafide research work carried out by Shri. Gulab Daulatrao Agarkar, under my guidance and supervision. The subject of the thesis has been approved by the Students Advisory Committee.

Akola :

Date: 30/06/99

Dr R B Somani

Chairman, Adivosry Committee

Courtersigned

Kitiwa a wak Associate Dean, Post Graduate Institute Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola

THESIS APPROVED BY THE STUDENTS ADVISORY COMMITTEE INCLUDING EXTERNAL EXAMINER (AFTER VWA-VOCE)

Chairman	(Dr. R. B. Somani)
Co-chairman	(Dr. R. P. Thakur)
Member	(Dr. K. B. Gahukar)
Member	(Dr. V. B. Shekar)
Member	(Dr. Umaid Singh)
External Member	(Dr.K.H.iAnnhasuk)

-Converie
N. Thaining
Hone
Un Augh.
S.V. anary

ACKNOWLEDGEMENT

I feel immense pleasure for having this opportunity to express my sincere, humbly and deepest sense of gratitude to Dr. R.B. Somani, Ph.D., Asso. Professor of Plant Pathology and Head, Agro-Products Development Research Centre, Dr. PDKV Akola and Chairman of the Advisory Committee for suggesting the outline of this research work, keen interest, valuable guidance, constructive criticism and constant encouragement during the course of investigation.

I wish to express my profound sense of gratitude and sincere thanks to Dr. R.P. Thakur, Sr. Scientist (Pathology), Genetic Resources and Enhancement Program, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh, Co-chairman of Advisory Committee for suggesting the collaborative research project between Dr. PDKV, Akola and ICRISAT Patancheru, and for his valuable guidance, constructive criticism and rendering all types of help and facilities provided during the course of investigation.

I am indebted to Dr. K.B. Gahukar, Ex. Associate Dean, PGI and Dean, Faculty of Agriculture, Dr. PDKV, Akola and member of my Advisory Committee for providing necessary guidance and help during the tenure of the present investigation.

I hereby expressing my whole hearted sense of gratitude to Dr. V.B. Shekar, Associate Dean, College of Agriculture, Akola and Director of Research and member of Advisory Committee for providing valuable guidance in the course of this investigation.

I express my sincere thanks to Dr. Umaid Singh, Ex. Sr. Scientist, Crop Quality Unit, ICRISAT, Patancheru, Andhra Pradesh and presently Head, Nutrition Department, College of Home Science, C.S.S. University of Agricultural and Technology, Hissar, Harayana and Advisory Committee member for rendering help during biochemical analysis at Crop Quality Unit ICRISAT Patancheru.

I am thankful to Dr. N.L. Peshney, Head, University Department of Plant Pathology, Dr. PDKV, Akola for rendering all types of help and facilities during the course of investigation.

- iv

I wish to express my sincere and heartfelt thanks to Dr. S.B. Atale, Senior Research Scientist (Sorghum), Sorghum Research Unit, Dr. PDKV, Akola, for his valuable guidance, constructive criticisms during the preparation of manuscripts and providing laboratory and field facilities for carrying out the research project.

I acknowledge my special thanks to Dr. S.G. Thote, Associate Professor and Incharge Computer Centre for guidance in Statistical Analysis of the data. Further I am obliged to Prof. S.B. Sakhare, Assistant Professor of Agriculture Botany, Dr. PDKV, Akola for assisting in carrying out diallel analysis.

I am obliged to all staff members of Cereals Pathology and Crop Quality Unit ICRISAT, Patancheru, Andhra Pradesh, worth mentioning Dr. S.D. Singh, Sr. Scientist, Dr. R. Bandyopadhyay, Sr. Scientist, Shri. V. Panduranga Rao, Shri S.S. Navi, P.J. Mohan Rao, P.V. Rao, G. Venkateswara Rao, G. Soma Raju for extending their full co-operation during the course of my study at ICRISAT and S.M. Ahmed, for his untiring efforts in helping with typing and other help.

Special thanks to Director ICRISAT for approving the collaborative research programme, funding of project and providing an opportunity to utilize facilities at ICRISAT.

I shall ever be grateful to Hon'ble Vice-Chancellor, Dr. PDKV, Akola for granting the study leaves during the Ph.D. course work without which I could not have complete the studies.

I am thankful to all staff members of Department of Plant Pathology Dr. PDKV, Akola, Dr. N.K. Raut, Dr. K.N. Sapkal, Dr. K.B Kale and Dr. R.W. Ingle, for extending their full co-operation during the course investigation.

I am also thankful to all staff members of Sorghum Research Unit, Dr. PDKV, Akola, Dr. R.S. Wadhokar, Dr. S.K. Jilani, Sorghum Breeder, Shri H. G. Kandalkar, Sorghum Entomologist, Shri S.S. Wanjari, Sorghum Agronomist, Shri P.W. Deshmukh, Jr. Sorghum Breeder, Shri N.R. Potdukhe, Asstt. Cotton Breeder, Ms. Manjusha Ghodki, and Ms. Kavita More, JRA for their full co-operation till the completion of this project. I am also thankful to Shri A.D. Pore, Adesh Computer for solution typing and other services render for preparation of manuscript. Last but not the least I wish to record my affection and love for my family member Mrs. Rajani Agarkar, my wife, dear daughter Ku. Smita Agarkar, beloved sons Mr. Anup Agarkar and Amol Agarkar, whose encouragement and well wishes have helped me to attain this goal. My gratitude and obligation towards them shall be ever lasting and never ending.

Place : Akola Dated :

(G.D. AGARKAR)

Enrolment No.AGNG/1/78/69

TABLE OF CONTENTS

	CHAPTER	Page No
I)	INTRODUCTION	1
II)	REVIEW OF LITERATURE	6
111)	MATERIALS AND METHODS	40
IV)	RESULTS	60
V)	DISCUSSION	129
VI)	SUMMARY	145
	LITERATURE CITED	152
	APPENDICES I TO XI	167
	VITA	301
	THESIS ABSTRACT	302

LIST OF TABLES

Table	Title	Annex.No.	Page No.
No.			
	APPENDIX - I		
1	Weekly weather data for year 1995 and 1996 recorded at Agro-meteorological laboratory, Akola	I. – 1	167
	APPENDIX – II		
2.	Analysis of variance (Pooled F1) for physical, agronomic and pathological traits Akola and Patancheru 1996.	II. – 1	168
3.	Analysis of variance (Pooled F_2) for physical agronomic and pathological traits Akola and Patancheru 1996	II. – 2	169
4.	Analysis of variance for biochemical characters of parental lines and F_1 crosses at Akola, 1995.	II. – 3	170
	APPENDIX – III		
5.	Mean values of parents and F ₁ crosses for different characters in 10 x 10 diallel of sorghum ,Akola and Patancheru 1996 (100 grain weight, Grain hardness, Endosperm texture, Electrical conductivity and DTF)	III. 1 – 2	171
6.	Mean values of parents and F_1 crosses for different characters in 10 x 10 diallel of sorghum, Akola and Patancheru 1996 (Plant height, Cob length, Glume covering, Mesocarp thickness and TGMR.	III. 3 – 4	173
7.	Mean values of parents and F_1 crosses for different characters in 10 x 10 diallel of sorghum, Akola and Patancheru, 1996(Germination, F. moniliforme F. pallidoroseum, C. lunata and other fungi	III. 5 – 6	175
8.	Mean values of F_2 progenies for different characters in 10 x 10 diallel of sorghum, Akola and Patancheru, 1996(Grain hardness, Electrical conductivity, Plant height and Cob length	III. 7 – 8	177
9.	Mean values of F_2 progenies for different characters in 10 x 10 diallel of sorghum, Akola and Patancheru 1996 (Glume covering, TGMR and Germination)	111. 9 – 10	179
10	Mean infection % of F ₂ progenies for pathological characters in 10 x 10 diallel of sorghum, Akola and Patancheru, 1996 (F. moniliforme, F. pallidoroseum, C. lunata and other fungi)	III. 11 – 12	181

1 1.	Mean values of parents and F_1 crosses for biochemical characters in 10 x 10 diallel of sorghum Akola 1995	Ш. 13 – 14	183
12.	Heterosis (H ₁) and Heterobeltiosis (H ₂) in % for F ₁ crosses in 10 x 10 diallel of sorghum (Pooled) Akola and Patancheru, 1996 (100 grain weight, Grain hardness, Endosperm texture, Electrical conductivity and DTF.)	III. 15 – 16	185
13.	Heterosis (H ₁) and Heterobettiosis (H ₂) in % for F ₁ crosses in 10 x 10 diallel of sorghum (Pooled) Akola and Patancheru, 1996 (Plant height Cob length, Glume covering, Mesocarp thickness and TGMR)	III. 17 – 18	187
14.	Heterosis (H ₁) and Heterobeltiosis (H ₂) in % for F_1 crosses in 10 x 10 diallel of sorghum (Pooled) Akola and Patancheru, (Germination, F. moniliforme, F. pallidoroseum, C. lunata and other fungi)	III. 17 – 18	189
15.	Heterosis (H_1) and Heterobeltiosis (H_2) in % for F_2 progenies for 10 x 10 diallel (Pooled) Akola and Patancheru, 1996 (Grain hardness, Electrical conductivity, Plant height, Cob length, Glume covering and TGMR	III. 21 – 22	191
16.	Heterosis (H_1) and heterobettiosis (H_2) in % for F_2 progenies in 10 x 10 diallel (Pooled) Akola and Patancheru, 1996 (Germination, F. moniliforme F. pallidoroseum, C. lunata and Other fungi)	III. 23 – 24	193
17.	Heterosis (H ₁) and Heterobettiosis (H ₂) in % for 10 x 10 diallel of sorghum biochemical characters, Akola 1995	III. 25 – 26	199
18	Mean values of parents and F ₁ crosses for different characters in 10 x 10 diallel of sorghum Akola 1995 and 1996. (100 grain weight, Grain hardness, Endosperm texture, Electrical conductivity and DTF)	III. 27 – 28	197
19	Mean values of parents and F ₁ crosses for different characters in 10 x 10 diallel of sorghum Akola 1995 and 1996 (Plant height, Cob length, TGMR, Germination)	III. 29 – 30	199
20	Mean infection % of parents and F_1 crosses for Pathological characters in 10 x 10 diallel of sorghum Akola 1995 and 1996 (F. moniliforme, F. pallidoroseum, C. lunata and Other fungi)	III. 31 – 32	201
	APPENDIX – IV		
21.	Analysis of variance for combing ability of F ₁ crosses in 10 x 10 diallel of sorghum, (Pooled)Akola and Patancheru, 1996	IV. – 1	203

2 2.	Analysis of variance for combing ability of F ₂ progenies in 10 x 10 diallel of sorghum (Pooled) Akola and Patancheru, 1996	IV. – 2	204
2 3.	Analysis of variance for combing ability of F ₁ crosses in 10 x 10 diallel of sorghum for biochemical characters Akola 1995	IV 3	205
	APPENDIX – V		
24.	Estimates of general combing ability effects for parents from F1 crosses (Pooled) Akola and Patancheru, 1996	V . – 1	206
2 5.	Estimates and general combing ability effects for parents from F_2 progenies (Pooled) Akola and Patancheru, 1996	V. – 2	207
2 6.	Estimates of general combining ability effects of parents from F ₁ crosses in 10 x 10 diallel of sorghum, biochemical characters Akola 1995	V 3	208
	APPENDIX – VI		
27.	Estimates of specific combing ability effects for F ₁ crosses in 10 x 10 diallel (Pooled) Akola and Patancheru, 1996 (100 grain weight, Grain hardness, Endosperm texture, Electrical conductivity, DTF, Plant height, Cob length and Glume covering.)	VI. 1 – 2	209
28.	Estimates of specific combing ability effects for F ₁ crosses in 10 x 10 diallel of sorghum (Pooled) Akola and Patancheru, 1996 (Mesocarp thickness, TGMR, Germination, F. moniliforme, F. pallidoroseum, C. lunata and Other fungi)	VI. 3 – 4	211
29.	Estimate of specific combining ability effect for F_2 progenies in 10 x 10 diallel (Pooled) Akola and Patancheru, 1996 (Grain hardness, Electrical conductivity, Plant height, Cob length, Glume covering, TGMR, Germination, F. moniliforme, F. pallidoroseum, C. lunata and Other fungi)	VI. 5 – 6	213
30	Estimates and specific combining ability effects for F1 crosses in 10 x 10 diallel of sorghum, biochemical character 1995	VI. 7 – 8	215
	APPENDIX – VII		
31.	Protein fractions in % of parents and F_1 crosses Akola, 1995,	VIII I	217
32.	Observation on glume color, grain color and testa	VII 2	218

APPENDIX - VIII

3 3.	Effect of pre-treatment on germination of (%)parents and F_1 crosses at Akola and Patancheru, 1996.	VIII. 1 – 2	219
34 .	Effect of pre-treatment on F. moniliforme (%)(GS) of parents and F_1 crosses at Akola and Patancheru, 1996	VIII. 3 – 4	221
3 5.	Effect of pre-treatment on F. pallidoroseum (%)(GS) of parents and F ₁ crosses at Akola and Patancheru, 1996	VIII. 5 – 6	223
3 6.	Effect of pre-treatment on C. lunata (%) (GS) of parents and F_1 crosses at Akola and Patancheru, 1996	VIII. 7 – 8	225
3 7.	Effect of pre-treatment on Other fungi (%) (GS) of parents and F_1 crosses at Akola and Patancheru, 1996	VIII. 9 - 10	227
38.	Effect of pre-treatment on Score (GS) of parents and F_1 crosses at Akola and Patancheru, 1996	VIII. 11 – 12	229
39	Effect of pre-treatment on Ungerminated seed (%) of parents and F_1 crosses at Akola and Patancheru, 1996	VIII. 13 – 14	231
40	Effect of pre-treatment on F. moniliforme (%) (UGS) of parents and F ₁ crosses at Akola and Patancheru, 1996	VIII. 15 –1 6	233
41.	Effect of pre-treatment on F. pallidoroseum (%) (UGS) of parents and F ₁ crosses at Akola and Patancheru, 1996	VIII. 17 – 18	235
42.	Effect of pre-treatment on C. lunata (%) (UGS) of parents and F_1 crosses at Akola and Patancheru, 1996	VIII. 19 – 20	237
43.	Effect of pre-treatment on Other fungi (%) (UGS) of parents and F_1 crosses at Akola and Patancheru, 1996	VIII. 21 - 22	239
44.	Effect of pre-treatment on Score (UGS) of parents and F_1 crosses at Akola and Patancheru, 1996	VIII. 23 – 24	241
45	Effect of pre-treatment on germination (%) of parents and F_2 progenies, Akola and Patancheru, 1996	VIII. 25 – 26	243
4 6.	Effect of pre-treatment on F moniliforme (%) (GS) of parents and F_2 progenies, Akola and Patancheru, 1996.	VIII. 27 – 28	245
47.	Effect of pre-treatment on F. pallidoroseum (%) (GS) of parents and F ₂ progenies, Akola and Patancheru, 1996.	VIII. 29 – 30	247
48.	Effect of pre-treatment on C. lunata (%) (GS) of parents and F_2 progenies, Akola and Patancheru, 1996.	VIII. 31- 32	249
49.	Effect of pre-treatment on Other fungi $(\%)$ (GS) of parents and F ₂ progenies, Akola and Patancheru, 1996.	VIII. 33-34	251
50.	Effect of pre-treatment on Score (GS) of parents and F_2 progenies, Akola and Patancheru, 1996.	VIII. 35 – 36	253

5 1.	Effect of pre-treatments on ungerminated (%) seed of parents and F ₂ progenies Akola and Patancheru, 1996	VIII. 37 – 38	255
5 2.	Effect of pre-treatments on F. moniliforme (%) (UGS) seed of parent and F_2 progenies Akola and Patancheru, 1996	V111. 39 - 40	257
5 3.	Effect of pre-treatments on F. pallidoroseum (%) (UGS) seed of parent and F_2 progenies Akola and Patancheru, 1996	VIII. 41 – 42	259
54.	Effect of pre-treatments on C. lunata (%)(UGS) seed of parent and F ₂ progenies Akola and Patancheru, 1996	VIII. 43 - 44	261
5 5.	Effect of pre-treatments on Other fungi (%)(UGS) seed of parent and F_2 progenies Akola and Patancheru, 1996	VIII. 45–46	263
5 6.	Effect of pre-treatments on Score (UGS) seed of parent and F_2 progenies Akola and Patancheru, 1996	VIII. 47 – 48	265
5 7.	Effect of pre-treatment on germination (%) of parents and F_1 crosses Akola 1995 and 1996.	VIII. 49 – 50	267
58 .	Effect of pre-treatment on F. moniliforme (%)(GS) of parents and F ₁ crosses Akola 1995 and 1996	VIII. 51 – 52	269
59.	Effect of pre-treatment on F. pallidoroseum (%)(GS) of parents and F ₁ crosses Akola 1995 and 1996	VIII. 53 – 54	271
60	Effect of pre-treatment on C. lunata (%)(GS) of parents and F_1 crosses Akola 1995 and 1996	VIII. 55 – 56	273
61.	Effect of pre-treatment on Other fungi (%)(GS) of parents and F_1 crosses Akola 1995 and 1996	VIII. 57 – 58	275
62 .	Effect of pre-treatment on Score (GS) of parents and F_1 crosses Akola 1995 and 1996	VIII. 59 - 60	277
63.	Effect of pre-treatment on ungerminated (%) seed of parents and F_1 crosses Akola 1995 and 1996	VIII. 61 – 62	279
64.	Effect of pre-treatment on F. moniliforme (%)(UGS) seed of parents and F1 crosses Akola 1995 and 1996	VIII. 63 - 64	281
65.	Effect of pre-treatment on F. pallidoroseum (%)(UGS) seed of parents and F ₁ crosses Akola 1995 and 1996	VIII. 65 - 66	283
66.	Effect of pre-treatment on C. lunata (%) (UGS) seed of parents and F ₁ crosses Akola 1995 and 1996	VIII. 67 – 68	285
67.	Effect of pre-treatment on Other fungi (%) (UGS) seed of parents and F1 crosses Akola 1995 and 1996	VIII. 69 - 70	287
68 .	Effect of pre-treatment on Score (UGS) seed of parents and $F_1\ \mbox{crosses}$ Akola 1995 and 1996	VIII. 71 – 72	289

6 9.	Correlation coefficient between fungal load of germinated and ungerminated seed (Untreated) Akola and Patancheru, 1996.	IX. – 1	291
7 0.	Correlation coefficient between fungal load of germinated and ungerminated seed (Treated) Akola and Patancheru, 1996.	IX. – 2	293
71.	Correlation coefficient between physical character Akola and Patancheru, 1996	IX 3	293
72.	Correlation coefficient between biochemical character, Akola and Patancheru, 1996	IX. – 4	294
73.	Correlation coefficient between protein fractions and physical characters, Akola and Patancheru, 1996	IX. – 5	295
	APPENDIX – X		
74.	GCA effect in parents of 10 x 10 diallel of F_1 crosses and F_2 progenies	X. – 1	296
75.	Superior combination showing significant sca effects for germination (%) with their desirable sca effects for various components	X. – 2	297
76.	Gene action governing inheritance of characters	X. – 3	298
77.	Heterotic crosses for germination (%) showing heterosis and heterobeltiosis for other characters	X. – 4	299
	APPENDIX – XI		
78.	Composition of stains	XI. – 1	300

	LIST	OF	PLATES
--	------	----	--------

Plate No.	Title	After page
1.	Experimental field at Patancheru	42
2.	A) Glume covering	43
	B) Infected earhead by different mold fungi	43
	C) Infected seed by different mold fungi	43
	D) Glume color	43
l.	Comeous, intermediate and floury endosperm texture	64
	Mesocarp thickness	69
i.	Median longitudinal section of sorghum grain showing	116
	its parts.	
	Infection by F. monliforme at different stages of	117
	host maturity.	
	Infection by F. pallidoroseum at different stages of	117
	host maturity.	
	Infection by C. hunata at different stages of host maturity.	118
	Infection by F. monthforme and C. hunata	118
	(Fluorescene microphoto).	

LIST OF FIGURES

Figure No.	Title	After page
1	Grain hardness of parents and F_1 crosses. Akola and	62
	Patancheru, 1996	
2	Electrical conductivity of parents and F_1 crosses, Akola	64
	and Patancheru, 1996	
3	Flavan-4-ols of parents and F_1 crosses, Akola, 1995	78
4	Prolamin and cross-link prolamin of parents and F_1	100
	crosses, Akola, 1996	

1 2 AFP Antifungal protein am Ante meridian CD Criticle difference CE Catechin equivalent C1 Curvularia lunata cm Centimeter(s) cv(s) Cultivars dSm ⁻¹ desi Simen DAA Days after anthesis DAF Days after flowering ed. editor(s) c.g. for example et al. and others °C Degree centigrade Fi First filial generation f.sp Formae specialis FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea gemetal combining ability ha hectare
amAnte meridianCDCriticle differenceCECatechin equivalentCICurvularia lunatacmCentimeter(s)cv(s)CultivarsdSm ⁻¹ desi SimenDAADays after anthesisDAFDays after floweringed.editor(s)c.g.,for exampleet al.and others°CDegree centigradeF1First filial generationf.sp.Formalin Acetic-acid AlcoholF.p.Fusarium pallidoroseumggram(s)geageneral combining abilityhahectarc
CD Criticle difference CE Catochin equivalent C1 Curvularia lunata cm Centimeter(s) cv(s) Cultivars dSm ⁻¹ desi Simen DAA Days after nowering ed. editor(s) c.g. for example et al. and others °C Degree centigrade F1 First filial generation f.sp. Formalin Accitic-acid Alcohol F.p. Fusarium pallidoroseum g grant(s) gsa grant(s) gsa general combining ability ha hectarc
CE Catechin equivalent C1 Curvularia lunata cm Centimeter(s) cv(s) Cultivars ddm ¹¹ desi Simen DAA Days after anthesis DAF Days after flowering ed. editor(s) e.g. for example et al. and others °C Degree centigrade F ₁ First flial generation f.sp. Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectarc
C1Curvularia lunatacmCentimeter(s) $cv(s)$ CultivarsdSm ⁻¹ desi SimenDAADays after anthesisDAFDays after floweringed.editor(s)e.g.for exampleet al.and others°CDegree centigradeF1First flial generationf2Second filial generationf3.p.Formae specialisFAAFormalin Acetic-acid AlcoholF.p.Fusarium pallidoroseumggram(s)geageneral combining abilityhahectarc
Centimeter(s) Cv(s) Cultivars dSm ⁻¹ desi Simen DAA Days after anthesis DAF Days after flowering ed. editor(s) c.g., for example et al. and others °C Degree centigrade F1 First flial generation f.sp. Formac specialis FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gca general combining ability ha hectarc
cv(s) Cultivars dSm ⁻¹ desi Simen DAA Days after anthesis DAF Days after flowering ed. editor(s) c.g., for example et al. and others "C Degree centigrade F1 First filial generation F2 Second filial generation F3A Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectarc
dSm ⁻¹ desi Simen DAA Days after anthesis DAF Days after flowering ed. editor(s) e.g. for example et al. and others °C Degree centigrade F ₁ First filial generation f.sp. Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectarc
DAA Days after anthesis DAF Days after flowering ed. editor(s) e.g. for example et al. and others °C Degree centigrade Fi First filial generation f.sp. Formas specialis FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectarc
DAA Days after anthesis DAF Days after flowering ed. editor(s) e.g. for example et al. and others °C Degree centigrade Fi First filial generation f.sp. Formas specialis FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectarc
ed. editor(s) e.g., for example et al. and others °C Degree centigrade Fi First filial generation F2 Second filial generation F.p. Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectare
c.g., for example et al. and others °C Degree centigrade F1 First filial generation F2 Second filial generation FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectarc
et al. and others °C Degree centigrade Fi First filial generation f.sp. Forma specialis FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectarc
°C Degree centigrade F1 First filial generation F2 Second filial generation fsp Formac specialis FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gca general combining ability ha hectarc
Fi First filial generation F2 Second filial generation f.sp. Formae specialis FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gca general combining ability ha hectare
F2 Second filial generation f.sp. Formae specialis FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gca general combining ability ha hectare
f.sp. Formae specialis FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectarc
FAA Formalin Acetic-acid Alcohol F.p. Fusarium pallidoroseum g gram(s) gea general combining ability ha hectarc
F.p. Fusarium pallidoroseum g gram(s) gca general combining ability ha hectare
g gram(s) gca general combining ability ha hectare
gca general combining ability ha hectare
ha hectare
h hour(s)
pH H ion conc.
H ₁ Heterosis (over mid parent)
H ₂ Heterobeltiosis (over better parent)
i.c. that is
in vitro in glass
kg/cm ⁻² Kilogram per centimeter square
L Linicus
l litre
min minutes
mol wt molecular weight
max maximum
min minimum
M molar
ml millilitre
mg milligram
µm micrometer
nm nanometer (10 ⁻⁹ meter)

ABBREVIATIONS USED

1	2
	····
N	normal
no	number
PA	Phenolic acid
PC	Phenolic compound
p.m.	post meridian
%	Percent
SCB	specific combining ability
SE	standard error
spp.	species plural
vol	volume
v/v	volume/volume
Var	variety
wt	weight
vivavoce	orally
V S .	against
viz.	Namely
%	per cent
+	plus minus
<	is less than
2	is more than or equal than
-	is equal to plus or minus
×	is multiplied by

XVii

CHAPTER - I

INTRODUCTION

PAGES : 1 - 5

CHAPTER-I

INTRODUCTION

Sorghum (Sorghum bicolor (L.) Moench) is the fifth major cereal crop in the world after wheat (Triticum spp.), rice (Oryzae spp.), maize (Zea mays) and barley (Hordeum vulgre). It is cultivated widely throughout tropical, sub-tropical and temperate regions within latitudes of 45°N and 45°S and mainly in Africa, Asia, North and South America.

The countries of Semi Arid Tropics (SAT) accounts 83% (about 36 million ha) of the total world area sown (43 million ha) under sorghum. In India the crop is grown on 12.5 million ha which accounts for 35% of the sorghum area in the SAT. The SAT countries produce on an average about 63% of world sorghum, of which Indian contribution accounts for 21% (FAO, 1995).

In India, sorghum is grown in areas receiving 500 to 1000 mm annual precipitation with temperature ranging between 26 and 32° C. Plain and plateau below 1000 m clevation offer excellent scope for successful cultivation of the crop in two seasons viz., '*Kharij*^o (June to October) as rainfed crop and '*Rabi*' (October to February) with protective irrigation constituting 60 and 40 percent cultivation respectively. The main areas of sorghum cultivation in India are in states of Maharashtra, Karnataka, Madhya Pradesh, Andhra Pradesh, and Rajasthan. It is mostly used as staple food, feed and forage in the states of Maharashtra, Northerm Karnataka and part of Madhya Pradesh.

Sorghums in the tropics, have to sustain a hostile environment where unreliable rainfall, poor soils, pests, diseases and parasitic weeds all constantly exert a harsh selection pressure. The traditional cultivars are photo-sensitive and when rains cease earlier, there is poor grain filling which results in low yields. Therefore, to have cultivars of short duration, photo in-sensitive and good grain filling and drought tolerant is the primary objective of breeders. Several early maturing and high yielding hybrids have been developed which have replaced the traditional varieties to a large extent. However, these cultivars, lack the inherent grain mold escape mechanism of the local sorghums and the grains that mature during the wet weather are always vulnerable to infection by several fungi. The grain mold problem has achieved a greater significance and because of this, control of grain mold has become a major activity in many sorghum improvement programs.

Definitions of 'grain mold' (GM) found in recent literature appear to fit into one of the two general concepts of fungal- related grain deterioration. The first concept describes a condition resulting from fungal infection and colonization of grain, occurring any time between anthesis and harvest. Here GM can be broadly defined as a fungal component of pre-harvest grain deterioration, involving numerous fungal species interacting in different ways with the plant (i.e. parasitically and/or saprophytically).

The second concept restricts the definition of GM to a condition caused by infection and colonization of spikelet tissues prior to grain maturity. In this limited definition, few fungi are thought to be involved. The magnitude of field fungi that colonize grain after physiological maturity are not part of GM *per-se*, but rather constitute a component of weathering, or general post harvest grain deterioration.

On practical level, the two concepts are similar. Early and late infections in first concept can be seen as analogous to the GM and weathering of second concept (Forbes *et al.*, 1992). Various terms (e.g. grain molds, seed molds, grain deterioration, grain weathering, head molds and head blight) have been used in literature to describe the association between deteriorated grain of sorghum and numerous fungal species (Castor, 1981; Williams and Rao, 1981). Fungal related grain deterioration, whether occurring before or after grain maturity, can cause economic losses in several ways viz, a) moldy and discolored pericarp, b) a soft and chalky endosperm, c) decreased grain filling and size (low yields), d) reduced germination, e) presence of mycotoxins, f) decreased dry matter, density and test weight, g) altered composition of grain, h) low storability, i) low nutritive value, j) low acceptability by the consumers and farmers and k) low market price.

The mold may develop in sorghum inflorescence at any stage from the young inflorescence to the mature head, provided that climatic conditions are suitably

2

humid. Generally, it seems that wet weather following flowering is necessary for grain mold development and longer the wet period greater the mold development (Rao and Williams, 1977). Dry weather during flowering and grain development followed by wet weather near maturity will not promote such serious mold as when the wet weather occurs from the time of flowering onward.

Few fungi infect sorghum spikelet tissues during early stages of grain development. These are (in approximate order of importance) Fusarium moniliforme Sheld., Curvularia lunata (Wakker) Boedijn, Fusarium pallidoroseum (Cooke) Sacc. (F. semitectum Berg., and Rave.), and Phoma sorghina (Sacc.). F. moniliforme and C. lunata, and they are significant worldwide (Castor, 1981; Frederiksen et al. 1982; Williams and Rao, 1981; Bandyopadhyay, 1986). Several fungi belonging to about 21 genera have been reported so far with sorghum grain by various workers.

In Vidarbha region of Maharashtra, the most common grain mold fungi in relative order of frequencies are C. lunata (40-60%), F. moniliforme (15-20%), F. pallidoroseum, Drechslera spp., Phoma sorghina, Alternaria spp. and Aspergillus spp. (5-30%) (Anon., 1984).

C. lunata and F. moniliforme secrete amylases, cellulases and pectinases resulting in disintegration of endosperm and germ tissue. These fungi also interfere with carbohydrate transloction to developing kernels causing reduction in size and weight of the kernels, causing physical, physiological and chemical changes. Endosperm of molded grain appears chalky because of partial hydrolysis of starch and protein. Molded grain may be contaminated with mycotoxins and present health hazards to consumers (Castor and Frederiksen, 1980).

In general, avoidance and/or sowing GM resistant cultivars are the only practical and economical methods for control of GM in sorghum. Chemical control of GM is usually impractical and too costly.

Several characteristics contribute resistance to field deterioration of grain viz, loose heads, seed completely enclosed in glumes (Murty, 1975), colored grain with high tannins and presence of pigmented testa (Harris and Burns, 1973). However, some white-grained varieties and relatively small glumes and even a cultivar with compact panicle have been reported to be less susceptible (Williams and Rao, 1978). Thin mesocarp, rate of water absorption and conductivity of seed leachates (Glueck et al., 1977), hardness of seed (Rana et al., 1978), endosperm texture, pericarp thickness, surface wax and grain integrity (Glueck and Rooney, 1977), flavan-4-ols and hardness of grain (Jambunathan et al., 1991) and phenolic acid (Hahn and Rooney, 1986) are known to influence GM resistance. Presence of phenolic compounds (PC) and phenolic acid (PA) in mature caryopsis of sorghum in wet or dry environment (Waniska et al., 1989), stele layer and its thickness and electrical conductivity of grain leachates (Somani, 1992) are also reported to play roles in resistance. It is apparent that several factors, independently or in combination, contribute to GM resistance. The most important are tannins, flavan-4-ols, and phenolic acids, type of proteins and grain hardness.

The recently improved early-maturing cultivars have higher harvest index and give stable and high yields under favorable environment, but when they flower fill grains and often mature in wet weather, it results in:

- increased susceptibility to parasitic and saprophytic fungi that destroy the grain,
- ii) loss of seed viability and sprouting on the panicle, and
- iii) poor food quality.

Since farmers preferences depend upon the consumption value of the grain and its market price, grain deterioration problem becomes crucial for the extension and adoption of high yielding cultivars.

The high yielding, white-grained cultivars developed recently do not possess sufficient levels of resistance to grain molds. Colored-grained sorghum germplasm lines with high level of mold resistance have been used for developing white-grained genotypes with good levels of resistance in elite materials (varieties) of good grain quality and yield. Mold resistance in white-grained types is associated with grain hardness, while that of brown-grained types with either high tannins or flavan-4-ols or grain hardness. Cultivars with a combination of these factors are highly resistant. It appears that flavan-4-ols is not produced in white-grained types, either mold-resistant or mold-susceptible. At present the only factor known to be responsible for mold resistance in white-grained cultivars is grain hardness. Intensification of efforts to breed mold resistance into high-yielding cultivars is in order, so that farmers can efficiently grow mold-free sorghums (Mukuru, 1992). Due to grain mold problem, seed production of the hybrids that are grown in Maharashtra state is being taken up in southern States. The Maharashtra State Government is thus emphasizing priority to grain mold research in the state.

In view of the above, and the recommendations made at the International workshop held at Harare, Zimbabwe in March, 1988 grain mold has been identified as number one problem of sorghum in India. The present investigation, undertaken at Sorghum Research Unit, Dr. Panjabrao Deshmukh Krishi Vidyapeeth (Dr PDKV), Akola (M.S.) during 1994-1997 and at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Andhra Pradesh during 1995-1997 had the following objectives.

- To determine the infection sites and colonization of F.moniliforme, F. pallidorseum and C. lunata at different stages of host maturity.
- To understand mold resistance heritability using a simple 10 x 10 diallel among resistant and susceptible lines.
- To study the physical characters viz. ghume color, glume covering, grain hardness, electrical conductivity of grain leachates, endosperm texture, pericarp color and thickness, presence of testa layer in relation to mechanisms of resistance to grain mold.
- 4. To study the biochemical parameters viz, i) proteins ii) soluble sugar iii) tannins iv) flavan-4-ols v) protein fractions viz, albumin and globulin, prolamin, cross-link prolamin, glutelin-like, glutelin and residues in relation to biochemical mechanism of host resistance.

CHAPTER - II

REVIEW OF LITERATURE

PAGES : 6 - 39

CHAPTER II

REVIEW OF LITERATURE

2.1 Predisposition

It is well recognized that predisposition of sorghum panicles to wet and humid weather from flowering to grain maturity period favors infection by grain mold fungi. (Tarr ,1962; Balasubramanian, 1977; Gray *et al.* 1971; Koteswara Rao and Poornachandrudu, 1977; Williams and Rao, 1978; Gangadharan et al., 1978) reported that the wet weather and heavy rainfall stimulate the development of molds at all the stages from the emergence of ears to the ripening of grains, wet weather conditions have a greater bearing on the extent of moldiness. A highly significant correlation exist between the percent of mold grains in carhead and rainfall.

Siddiqui and Khan (1973) reported that grain maturity and not the flowering stage, must coincide with rains for grain mold development, other factors being normal. Under favorable high moisture conditions mature sorghum grains are invaded by *Alternaria*, *Cladosporium*, *Phoma* and *Fusarium semitectum* (Seitz et al., 1975).

Dry weather during flowering and grain development followed by wet weather at maturity does not promote serious mold of wet weather that continues from the time of flowering onwards (Williams and Rao, 1978).

Screening of sorghum lines for grain mold resistance under field conditions has successfully been done by spraying panicles with water (Anahosur, 1983; Deshmukh, 1989) or by providing sprinkler irrigation on rainfree days (Butler and Bandyopadhyay, 1990).

A good level of grain mold development was recorded at Hyderabad, Coimbatore, Dharwad and Baraut in years when rainfall was high during flowering to grain maturity period (Indira et al., 1991). Somani (1992) also highlighted the importance of rainfall in grain mold development.

2.2 Screening/Identification of grain mold resistance

Screening methods used by different workers and sources of resistant/tolerant to grain mold are summarised below:

Reference	Lines	Remarks	
1	2	3	
Kulkarni et al. (1975)	Selections H-142, H-143, and H-145	-	
	from a cross CSV-4 (resistant) x		
	H-112 (susceptible)		
Glueck (1977)	E-35-1, IS-2327 and IS-2328	relatively	
	(less susceptible)	small glumes	
Gangadharan et al. (1976)	K-3 (resistant), CSV-4 (CS-3541),	-	
	CO-21, CO-22, SPV-34, SPV-181		
	and IS-3880 (moderately resistant)		
Anahosur and Patil (1982)	IS-14332, IS-3443 and IS-2328		
Rao and Rao (1982)	IS(s)-14332 (completely free), 2328,	-	
	E-35-1, M(s)-38776,6090,90324,61743,		
	62467,62522 and 64083 (resistant),		
	SPV-104 and CSH-1 (susceptible).		
	SPV-126, M-90894, E-35-1, SPV(s)-	Field	
	315,312,371 and 311 (resistant), 138,	& labora-	
	SPV-247, CS-3541, CSV-8R, and	tary ratings	
	M-90253 (moderately resistant)		

Contd..

1	2	3
Rao et al. (1984)	CS-3541 (resistant)	ICRISAT
	CSV-5, SPV(s)-35,81,102,126,141	genetic
	and 249 (moderately resistant)	stock
	IS(s)-3927,9327,9333	
	and IS-9530 (resistant)	
Chandrasekaran et al. (1985)	SPV(s)-126,346,544,617 and 679	TGMR,
	and IS(s) 6265, 8283 and 14332	disease
	(promising)	intensity and
		germination
Shrotria et al. (1986)	IS(s) 4006, 5959,6047,6335,7237,	Field and
	8131,2930,13798,13804,13598	laboratory
	and PAB-105	test.
Stenhouse et al. (1990)	IS(s)-9470,15119 (moderately	Male
	resistant)	sterility
	IS(s)9470, 25077,23585,1815,10696,	
	10942 and 20884 (resistant)	
Anahosur (1992)	SPV(s)-126,312,346,351,386,472,	Screening
	2219B,DMS-1B,MR(s)-750,849,	methods,
	IS(s)-3443,3547,14332,10892,	field grade,
	14372,14380,22995, and 24996	TGMR, ger-
	(resistant)	mination, no
		loss in 100
		grain mass

Contd..

8

Contd..

1	2	3
	IS(s)-14375,14380,24995, 24996 and 108922	Brown sorghums
Rao et al. (1995)	IS(s)-7173,23773,23783 and	in vitro with
	34219 (resistant)	F.monili- forme
		C.lunata
		F.pallido-
		roseum

2.3 Effect of grain mold on seed weight

Infection by *F. moniliforme* and *C. lunata* has been reported to interfere with carbohydrate translocation to developing kernels, and thus causing reduction in size and weight of seed (Bhatnagar, 1971; Gray *et al.*, 1971; Mathur *et al.*, 1975; Castor and Frederiksen, 1977).

Significant grain weight losses (40-70%) due to infection by several grain mold fungi have been reported (Gray et al., 1971; Sundaram et al., 1972; Glueck and Rooney, 1976; Castor, 1977; Singh and Agrawal, 1989).

Forbes, et al. (1989) compared severity with loss in grain weight, the standard deviation of grain weight, grain density, electrolyte leachate, percentage germination and visual appraisal of moldy, off colored or smaller grain. Grain density and grain weight were less closely associated with severity.

9

Somani (1992) recorded reduction in test weight by 53,51,24 and 9% in combine inoculations (*F. moniliforme and C. lunata*), 46,40,20 and 8% due to *C. lunata* and 42,25,7 and 5% due to *F. moniliforme* when inoculated at 10,20,30 and 40 DAF in 296-B cultivar. Martinez *et al.* (1994) reported decrease in test weight and percentage of seed germination and molding was higher in the white cultivars than in red or brown ones.

2.4 Effect of grain hardness on mold development

Plant breeders and technologists have used the terms "hardness" or "vitreousness" to describe the endosperm textural characteristics of sorghum grain. Although a substantial number of reports have dealt with techniques to measure hardness of wheat grains (Obuchowski and Bushuk, 1980) only limited data available on hardness of sorghum grain (Rooney and Sullins, 1969; Maxson et al., 1971).

Grainhardness in sorghum is contributed by several factors, such as grain shape and size, thickness of pericarp, the adherence of pericarp to endosperm and starch-protein interactions (Greenwell and Schofield, 1986). Abedelrahman and Hoseney (1984) reported that cross-link prolamin may be advantageous as it confers hardness to grain.

Rana et al. (1977) reported that tan plant type having grains with lower water absorption capacity and higher grain hardness could contribute to mold resistant cultivars. Glueck and Rooney (1980) opined that comeous endosperm texture and more epicuticular wax contributed to increased weathering resistance. Rana et al. (1984) reported hardness and rate of absorption of water are predominant additive character offering resistance to grain deterioration.

Mukuru (1988,1992) reported that mold resistance in the white-grain advanced selection was associated with grain hardness. Resistance in red-grain types was associated with flavan-4-ols and grain hardness, while that of brown grain types was associated with either high tannins or flavan-4-ols or grain hardness. Cultivars with combination of these factors are highly resistant. At present the only factor known to be responsible for mold resistance in white-grained cultivars is grain hardness. In white sorghum without test, grain hardness contributes positively to mold resistance (Bandyopadhyay, 1988; Stenhouse et al., 1990).

Ratios of hardness to grain mass in white-red and brown grained sorghums suggested, that resistance in white and red grains might be due to hardness. Correlations between hardness, grain mass and threshed grain mold ratings (TGMR) generally supported the conclusions (Reddy *et al.* 1991). It was further pointed out that, the flavan-4-ols and hardness were inherited as dominant traits and these together were responsible for resistance in red grained hybrids. Mold resistance in white grained sorghum genotypes without testa could be attributed to their having harder grains than mold susceptible genotypes. Association of both flavan-4-ols and grain hardness with resistance to grain mold is reported. Grain hardness is governed by prolamin content.

Kumari *et al.* (1992) reported that hard grains showed less incidence of grain molds than soft grains during development. Microscopic examination showed more intense deposition of protein bodies in hard than in the soft grains. The presence of fungal hyphae in the endosperm of soft grains and pitted starch granules was clearly visible microscopically. Extract of immature and mature hard and soft endosperm were inhibitory to *F. moniliforme* growth. These inhibitors were heat labile and non-dialyzable indicating that protein factors may be involved. The activities of inhibitors to serene proteases were comparatively higher in endosperm of hard grain during development. The endosperm of hard grain contained more protein and prolamin than that of soft grains.

Mukuru (1992) suggests that for sorghum lines to be mold-resistant their grain must remain hard and vitreous in the field under wet and warm conditions the ideal environment for grain mold development. Sorghum grains with hard and vitreous endosperm are also known to be least susceptible to storage weevils. However, it was reported that grains with a harder, more vitreous endosperm were less digestible than those having soft endosperm.

11

2.5 Endosperm texture in relation to grain mold

The relative proportion of the corneous to floury endosperm within a sorghum kernel is often referred to as endosperm texture. Texture can be determined by a visual examination of longitudinal half kernel. The rating ranges from 1 to 5, where 1 means very little floury endosperm (<20%) almost completely corneous and 5 rating means essentially all floury (>80%) endosperm. Munck (1981) reported that determination of percent of soft (or 'floury') portion in kernels of sorghum is another measure of hardness.

Kirleis *et al.* (1984) developed a method for measuring endosperm texture by quantitatively determining the corneous and floury areas of sectioned sorghum grain using a light microscope. The corneous endosperm characteristics are not necessary for resistance to weathering; however, if all other things were equal, a line with more corneous grain would resist deterioration more than a floury endosperm line, because of the more dense structure and organization (Clark *et al.*, 1973; Ellis, 1972, 1975; Garud, 1992).

Glueck et al. (1977) and Glueck and Rooney (1980) used several lines that had consistently ranked high among the most resistant to weathering at all locations in several years of testing, and concluded that grains with more corneous endosperms were more likely to resist deterioration than floury endosperm lines. However, Mansuetus (1990) reported that endosperm texture had no effect on grain mold score, but in all cases the presence of the testa decreased mold incidence.

Somani (1992) reported that corneousness of endosperm contributes towards resistance in white grain genotypes. He used iodine vaporization method. Hardness grades were attributed on the basis of lower absorption corneous endosperm do not take much color.

2.6 Electrical conductivity of grain leachates and grain mold development Glueck *et al.* (1977) suggest several possible mechanisms for resistance to grain deterioration, including rate of water absorption and conductivity of seed leachates and these tests may be useful as preliminary screening method. Glueck and Rooney (1980) reported that cultivars with rapid rate of water uptake exhibited less resistance to weathering. Composition of leachates from these cultivars was richer in nutrients. A thicker mesocarp and softer endosperm texture usually corresponded to increased water absorption and richer leachates. Forbes (1986) reported that automatic measuring of seed leachates and its correlation with seed germination could become fin efficient technique for studying the effect of GM severity on viability. Grain mold severity, caused by *F. moniliforme* was positively correlated with electrolyte leachates (Forbes et al., 1989).

Somani (1992) also reported that electrical conductivity of seed leachates was more in susceptible cultivars.

2.7 Glume color and glume covering

Murty (1975) noticed *Curvularia*² infection on the portion of seed not covered by glume and concluded that open heads with seeds completely enclosed in long papery glumes are relatively resistant to field deterioration. Gangadharan *et al.* (1978) noticed that fully enclosed grain by glume and loose heads are the factors associated with resistance. Glueck and Rooney (1980) reported that panicle shape, glume characters, wet season avoidance, seed size contribute to increased resistance to grain molding. Longer glumes are considered protective to the grain, but only if the glumes do not trap water. Narayana and Prasad (1980) suggested besides permeability of grain, hard grain, papery pericarp as reported by various workers, the glume characters, viz. glume permeability, tight/loose attachment of glume to seed were also other possible factors and structural and chemical composition of seed also contribute to resistance. Studies of Mansuetus, *et al.* (1988) showed that disease incidence was negatively associated with glume cover (r=-0.56), glume length (-0.56) and glume area (-0.62) at the boot stage. Somani (1992) also reported that covered kernel with compact glumes showed less grain molds.

2.8 Pericarp/Mesocarp

Swanson and Hunter (1936) pointed out that the great discrepancy between laboratory and field germination of better known sorghum varieties was due to the relative thickness of starchy layer of cells located in mesocarp. When seeds soaked in water for 2 hours, the varieties having thick mesocarp (70-80 µm) absorbed about 33% more

moisture than the varieties which had thin mesocaro (20-50 um). Glueck and Rooney (1977) found that water enters through the pericarp, especially through hilum area. Long enveloping glumes does not necessarily protect the grain from weathering, open glume types are probably more vulnerable to sprouting on the head, pigmentation in pericarp and glume is not necessary related to resistance, though it may impart slight degree of resistance. They also reported that thin mesocaro sorghum withstand weathering better than those with thick mesocarp and that quantity of surface wax was probably not a factor since the most susceptible lines had adequate or greater quantities of surface wax when compared to resistant lines. However, alteration in the distribution of wax on the surface of pericarp may affect water uptake by the grain. A thin pericarp on sorghum caryopsis normally corresponds to less weathering. Glueck and Rooney (1980) reported that at physiological maturity, colonies of fungi was observed in starchy mesocarp and the cross and tube cells of the pericarp in all cultivars. Since fungal colonies were observed inside the pericarp are readily hydrolyzed by saprophytic fungi. Hence, a thick mesocarp that contains starch and protein support more fungal colonies than sorghum with thin mesocarp. The mesocarp is thin when the Z gene is dominant (Z-) and thick when the gene is recessive (zz). Also most of free phenolic compounds are located in pericarp and the adjoining testa layer. These apparently bioactive compounds would be diluted with starch etc. in a thick pericarp.

Narayana and Prasad (1980) suggested besides permeability of grain, hard grain, papery pericarp as reported by various workers, the glume characters, viz. glume permeability, tight / loose attachment of glume to seed were also other possible factors and structural and chemical composition of seed also contribute to resistance.

Castor (1981) from his histopathological studies reported that mesocarp provides an ideal environment for early colonization and a jumping – off point for fungi to continue the deterioration on the grain after the infection has taken place. Miller (1981) noticed that thick mesocarp types are susceptible to grain mold. Bandyopadhyay *et al.* (1988) when screened 26564 selected accessions from the world collection of sorghum germplasm in field during the 1980-85 rainy seasons found that all resistant accessions except one, had colored pericarp. Waniska et al. (1992) observed that sorghum cultivars that exhibit some resistance to deterioration have thin pericarp besides corneous endosperm and specific phenolics. The red pericarp trait also conferred grain mold resistance to certain extent. The effect of a red pericarp was enhanced by the presence of a intensifier gene. The effect of both pigmented testa and red pericarp were additive. Mesocarp thickness did not play a significant role in grain mold resistance.

2.9 Loss of seed viability and germination

Tarr (1962) reported that Aspergillus, Fusarium and Rhizoctonia species were responsible for poor emergence of sorghum seedlings, since these fungi destroy starchy endosperm of seed and thus deprive young seedling of it's food. Arif and Ahmed (1969) found that Fusarium spp. were the most harmful, followed by Aspergillus, Penicillium and Helminthosporium in reducing germination. Narasimhan and Rangaswamy (1969) found a viability reduction of 40 to 80% when healthy sorghum seeds were treated with mold isolates. Bhatnagar (1971) and Castor (1977) noticed that fungus infected seeds often exhibited a reduction in germination and emergence, which caused poor stand in the farmers fields.

Tripathi (1974) obtained 56% germination with moldy sorghum grains, whereas apparently clean grains gave 76% germination. Further, they reported reduced germination by (42%) due to Colletotrichum graminicola followed by C. lunata (40%), F. moniliforme (37%), Phoma insidiosa (26%), Penicillium spp. (23%) and Aspergillus flavus (18%). Castor (1977) reported reduction of germination from 95 to 77% with grain harvested from Fusarium spp. inoculated heads. Rao and Williams (1977) obtained viability loss upto 100% in sorghum grains with severe Fusarium and Curvularia infection. Denis and Girard (1977) and Castor and Frederiksen (1980) considered, loss in viability to be so important part of grain mold, that they recommend a germination test as part of standard evaluation for identification of grain mold resistance. Munghate (1980) recorded 0.75 to 25.25% and 0.75 to 5.30% loss in germination due to C. lunata and F. moniliforme, respectively. Bhale and Khare (1982) observed pre- and post-emergence mortality due to seed borne C. lunata and

F. moniliforme in water agar seedling symptom test method. Vidyasekaran (1983) and Granja and Zambolim (1984) recorded low germination of sorghum seeds due to severe infection of F. moniliforme.

Forbes (1986) stated that severity appears to be more closely associated with seed viability than with yield, two measures of severity (ergosterol concentration and propagules of *F. moniliforme* g-1 seed tissue) were highly correlated with percent germination than with seed mass or grain density. Automatic measuring of seed leachates and correlation with germination could become an efficient technique for studying the effect of GM severity on viability. Deshmukh (1989) reported that *C. lunata*, *F. moniliforme* and *Exserohilum halodes* caused considerable reduction in germination. Singh and Agrawal (1989) noted that seedling from infected seeds were less vigourous than those from healthy seeds. Wu and Cheng (1990) reported that the incidence of *C. lunata* in blotter test was negatively correlated with seed vigour. The incidence of three pathogens (*C. lunata*, *F. moniliforme* and *P. sorghina*) in blotter test was significantly correlated with abnormal seedlings in seedling evaluation, seedling growth and accelerated aging tests.

2.10 Seed mycoflora

Seed mycoflora of sorghum varies from region to region. Frequently occurring fungi associated with moldy sorghum grain mold complex reported by different workers throughout the world is summarised below:

		Infection	
Location	Fungi detected	frequency(%)	Reference
1	2	3	4
Georgia	Colletotrichum graminicola,	-	Luttrell
			(1950)
	Curvularia spp., Fusarium spp.,		
	and Penicillium spp.		

Contd..

17

Contd..

1	2	3	4
Kansas,USA	Alternaria tenuis, Curvularia	-	Swarup (1955)
	spp., Fusarium spp, and		
	Aspergillus spp.		
India	Curvularia spp., F. moniliforme,	-	Mathur
	and F. oxysporum,		ct al. (1967)
Edembergh	Ascochyta sorghi	-	Noble and
	F. moniliforme,		Richardson
	C. lunata, C. graminicola,		(1968)
	Drechslera spp., and		
	Peronosclerospora sorghi.		
Maharashtra	Aspergillus niger, C. lunata,	-	Bhagwat and
	F. moniliforme,		Pedgaonkar
	F. semitectum, Helminsthosporium		(1973)
	rostratum and H. tetramera		
	F. moniliforme	-	Bhagwat and
			Datar (1974)
	C. lunata	42%	Tripathi
			(1974)
	F. moniliforme	19%	
	A. flavus -	15%	
	Phoma insidiosa	13%	

Contd..

Contd..

1	2	3	4
India	F. moniliforme and	•	Mathur et al
	F. semitectum		(1975)
	C. lunata	35%	Khare et al.
	A.tenuis	31.2%	(1976)
	F. moniliforme	10.0%	
	F. roseum	12.5%	
	A.niger	3.1%	
	F. cxysporum	2.5%	
Madhya	C. lunata, Alternaria spp.,	-	Sharma et al
Pradesh	Fusarium spp. and Verticillium spp.		(1976)
USA	Fusarium and Curvularia	•	Castor 7)
USA	C. lunata and F. moniliforme	-	Castor and
			Frederiksen
			(1977)
India	Curvularia, Fusarium and Phoma		Reddy and
			Reddy(1977
USA	Alternaria spp., C. lunata	-	Castor and
			Frederiksen
			(1980)
	F. moniliforme, Fusarium spp.,		
	H. tetramera and Phoma spp.		
	Curvularia spp and Fusarium spp.	-	Williams and
			Rao (1978)
			Contd

Contd..

1	2	3	4
Brazil	Alternaria alternata and	-	Pinherio et
	Curvularia spp.		al. (1979)
Karna taka	A. alternata, C. lunata	-	Anahosur
	Drechslera specifera, F.		and Hegde
	moniliforme, F. semitectum,		(1980)
	Phoma sorghina and Trichothecium i	roseum	
USA	Gibberella fujikuroi	-	Castor and
			Frederiksen
			(1981)
India	Curvularia spp and Fusarium spp.		Williams and
			Rao (1981)
Mad hya Pradesh	C. lunata	2-49%	Bhale and
			Khare (1982
	F. moniliforme	4-30%	
	P. insidiosa	2-5%	
Phili ppines	F. moniliforme and C. lunata	-	Dayan and
			Dalmacio
			(1982)
Faiw an	F. moniliforme, C. lunata,	-	Wu (1983)
	and Phoma sorghina		
india	F. moniliforme, F. oxysporum,	-	Gopinath and
			Shetty (1985)
	F. semitectum and F. solani		

Contd..

Contd.

1	2	3	4
India	C. lunata	27.7%	Singh and
			Agrawal
			(1987)
	F. moniliforme	9.4%	
	P. sorghina	8.4%	
	C. lunata, Drechslera sorghicola	-	Gupta and
			Singh (1988)
	F. moniliforme and Phoma spp.	-	
China	F. moniliforme and F. oxysporum		Liang and
			Bai (1988)
V ida rbha	C. lunata	62%	Deshmukh
			(1989)
	F. moniliforme	26%	
Inida	C. lunata, F. moniliforme and		Singh and
			Agrawal
			(1989)
	Phoma sorghina		
aiwan	C. lunata, Drechslera maydis		Wu and
	and F. moniliforme		Cheng(1990)
T hail and	C. lunata, Fusarium spp.,	•	Boon-Long
			(1992)
	Colletotrichum spp. and		
			Contd

Contd..

Contd..

1	2	3	4
	Phoma spp .		
Central America	F. moniliforme and C. lunata	-	Wall and
Carribean			Meckenstock
Basin			(1992)
V idar bha	C. lunata and	44.6%	Somani
	F. moniliforme	40.8%	(1992)

Biochemical parameters

2.11 Proteins (protein fractions)

Sorghum proteins varied in their properties and amino acid composition. It has also been reported that protein content has been negatively related to lysine content. (Virupaksha and Sastry, 1968). Deosthale *et al.* (1972) reported that sorghum genotypes, growing environment and nitrogen fertilization influenced the protein content in sorghum. Gupta and Gupta (1974) suggested that the quality of protein depends on amino acid composition and proportion of various classes of proteins. They also observed that in sorghum levels of prolamin and glutelin progressively increased from early milky stage to maturity stage. There was progressive increase in the fraction IV (glutelin like) from 7 to 35 days of maturity period, which then stabilized until maturity. Insoluble protein contents in the residues were high during the first 7 days and decreased until 21 days, with very little change thereafter.

Jambunathan et al. (1975) and Guiragossian et al. (1978) reported distribution of nitrogen in different fractions of proteins from the grains of IS-11167 and IS-11758. Glueck et al. (1977) reported that the proteins are hydrolyzed and partially used in the synthesis of fungal protein and remain in the moldy grain. Guiragossian et al. (1978) observed that mutation in P-721 sorghum decreased quantity of kafirin (Prolamin) with an increase in the albumin-globulin fraction. Rooney and Miller (1982) reported that the

21

matrix protein is comprised mainly of glutelins (alkali-soluble proteins) and prolamins. (alcohol-soluble protein). The prolamin, exists in small spheres called protein bodies. Physical and chemical characteristics of the grain from different sorghum varieties influenced solubility's and chemical scores of protein fractions (Neucere and Sumrell, 1979). Nwasike *et al.* (1979) observed that, in general cross-link prolamin is high in sorghum, as compared to pearl millet and corn. Jambunathan *et al.* (1983) reported that protein content in 146 grain samples obtained from the ICRISAT breeding program, lysine, normal sorghum grains and their progenies, ranged from 7.1 to 19.1%.

Subramanian et al. (1983) reported 8.8 to 13.2% with mean value 10.56% protein content in 18 brown sorghum genotypes. They also reported protein content in 8 grain samples comprising land races, hybrids and local cultivars, ranged from 6.8 to 19.6%. Also observed that protein content of developing grain was high 7 and 14 days after anthesis, and a decline was observed towards maturity. Cross link prolamin may be advantageous as it confers hardness to the grain (Abdelrahman and Hoseney, 1984). Subramanian and Jambunathan (1984) estimated protein content in sorghum germplasm accessions that varied from 4.4% to 21.1% with mean value of 11.4%. Van Scoyoc et al. (1988) reported that the percentage distribution of fraction L expressed as percent of total nitrogen, declined rapidly and steadily in developing sorghum grain. However, when expressed as N content/ endosperm, the patterns of nitrogen per endosperm for fraction I were very different from those expressed as a percentage of total protein. Prolamin synthesis was low during first seven days after anthesis (DAA), reached to its maximum from 14 to 28 days and declined thereafter. Synthesis of cross-linked prolamin steadily increased until maturity. This suggests that prolamin was synthesized in different proportion during different stages of grain development. Onset of active synthesis of glutelin was observed from 21 days after anthesis, with little change until maturity.

Subramania et al. (1990) studied the distribution of protein fractions in grains revealed that, fraction I, comprising albumin – globulin including non-protein nitrogen, and fraction V (glutelin) together constitute about 41.55% of the protein in eight sorghum cultivars. Variation in fraction II (prolamin) fraction III (cross-linked prolamin) contents was observed among the cultivars. To elucidate the pattern of synthesis of protein fraction in grain, studies were made at different grain maturity periods, using one cultivar. Fraction I, synthesis was initiated at seven DAA. Prolamin increased from 14 to 28 days and declined toward maturity. Glutelin did not change beyond 14 days and declined toward maturity. Glutelin did not change beyond 14 day after anthesis until maturity.

Indira *et al.* (1991) noticed that grain hardness is generally governed by prolamin content. Desai *et al.* (1994) reported grain protein content from 8.94% to 12.38%, averaging 10.63% in 13 sorghum cultivars comprises of land race hybrids, local cultivars. Kumari and Chandrashekar (1992) reported the endosperm of hard grains contained more protein and prolamin than that of soft grains. Somani *et al.* (1993) in analysis of grain revealed that the crude protein content was slightly reduced in the discolored grain. The amino acid spectrum was also changed in these grains and it is suggested that this may be due by hydrolysis of weakened protein matrix.

Sectharaman *et al.* (1994) reported the presence of antifungal proteins in several sorghum cultivars using antibodies raised against zeamatin, barley chitinase and bean chitinase. Seetharaman *et al.* (1996) reported changes in sorghum caryopsis antifungal proteins (AFP) in different tissues and during development imbibition, and germination, Somatin, chitinase and glucanase levels increased during caryopsis development and $\frac{1}{2}$ (1996) reported changes in sorghum caryopsis antifungal proteins (AFP) in different tissues and during development imbibition, and germination, Somatin, chitinase and glucanase levels increased during caryopsis development and $\frac{1}{2}$ (1995) at physiological maturity (30 DAA). Ribosome inactivating protein levels were higher at 15 DAA and decreased subsequently. Somatin and chitinase levels were significantly different between sorghum cultivars. Somatin content at physiological maturity correlated with mold rating (R(2) = 0.65). Seed AFPs were present in endosperm and migrated toward the extension of caryopsis upon imbibition. AFPs leached out of immature seeds but were retained in the pericarp of mature seeds. Levels of these proteins also changed significantly during seed germination and were present in the shoots of germinating caryopsis.

2.12 Soluble sugars

Edwards and Curtis (1943) analysed 26 sorghum samples for soluble sugars and the content varied from 0.81 to 1.59%. Sorghum seed with sugary endosperms have been reported to contain at least twice the quantity of sugars that normal seed contain (Karper and Quinby, 1963).

Glueck *et al.* (1977) reported that in deteriorated grain the soluble carbohydrates are usually decreased as they are used to provide energy for the growth and development of the fungi. Neucere and Sumrell (1980) reported that free sugar content in five varieties of sorghum varied from 2.34 to 6.01%. Subramanian *et al.* (1980) reported the total sugar content of the 10 sorghum cultivars varied from 1.30 to 5.19%. The high lysine Ethiopian lines, IS-11163 and IS-11758 had higher sugar content i.e. 5.19 and 4.43 % respectively. They also estimated that sucrose is the predominant sugar in the sorghum grain. The proportion of sucrose ranged from 68.7 to 82.7% of soluble sugars in the sorghum cultivars. Subramanian *et al.* (1983) reported the soluble sugar content of the 18 brown sorghum genotypes range $\frac{1}{5}$ from 1.1. to 2.5%

2.13 Tannins and Flavan-4-ols

Swain and Bate-Smith (1962) defined tannins as phenolic compounds (PC) having molecular weights between 500 and 3000. Depending on their molecular structure, tannins are customarily divided into hydrolyzable and condensed tannins. Hydrolyzable tannins are complex molecules containing ester type linkages, which yield on hydrolysis, a sugar and phenol residue consisting ester type linkages. These consist of either gallic or ellagic acid, which is dimer of the former. Condensed tannins are formed by the polymerization of molecular units having the general structure of flavanoids, the most important of which are flavan-3-ols (catechin) and flavan-3, 4-diols (leucoanthocyanidins). Relatively little is known about the occurrence and distribution of proanthocyanidins and leucoanthocyanidins in sorghum tissues. As a result of injury or physiological stress, sorghum leaf tissue frequently develop red coloration due to anthocyanidins. Leucoanthocyanidins could be precursors of these pigments. Harris (1969) reported that brown-seeded hybrids have higher tannins levels than red or yellow seeded hybrids. Weinges et al. (1969) and Watterson and Butler (1983) noticed that certain monomeric flavanols, such as flavan-3,4-diols and flavan-4-ols can give rise to anthocyanidins and therefore these can be distinguished from the oligomeric flavan-3ols by the name "leucoanthocyanidins".

Maxson et al. (1972) stated that kernels with a testa or a coloured pericarp should be tested for tannins and those with values lower than 0.05 catechin equivalents/g of sorghum be selected. McMillan *et al.* (1972) mentioned that tannins present in the grains of certain varieties resist bird depredation. Bullard and Elias (1980) reported that resistance to bird depredation is a complex phenomenon that may be associated with non-tannin polyphenols, as well as tannins.

Harris and Burns (1973) reported that sorghum seed tannins content was strongly and negatively correlated with pre harvested seed molding indices. Brown seed with high tannin contents and the presence of pigmented testa are relatively resistant to field deterioration (Ellis, 1972; Murty, 1975). High tannin sorghums tend to be less digestible and nutritionally inferior to sorghums in which tannin is absent or present at low levels (Maxson et al., 1973; Jambunathan and Mertz, 1973; Mabbayard and Tipton, 1975) reported that pericarp color may not be a reliable indicator fastannin concentration.

Price *et al.* (1979) and Hagerman and Butler (1981) noticed that tannins binds certain proteins very strongly and thereby diminish the digestibility and nutritional value of high tannin sorghum grains. Most cultivars with pigmented testa containing polymer of flavan-3-ols (tannins) resist weathering. (Glueck and Rooney, 1980; Hahn *et al.*, 1983; Bandyopadhyay *et al.*, 1988). Hagerman and Butler (1980) noticed tannin associated proteins consists of three major components, two of which are high molecular weight prolamins and one of these was quite rich in proline. Butler (1981,1982) reported that the most important factor controlling the affinity $\overset{of}{a}_{-4}$ protein for sorghum tannin, was the amount of proline that it contains. The affinity of protein for tannin can be predicated with reasonable accuracy from its proline content. Also reported that flavan-4-ols monomers may contribute to bird repellency of high-tannin sorghums. Rooney and Miller (1981) pointed that phenolic compounds in sorghum caryopsis improve resistance to birds, insects and molds as well as pre harvest germination.

Hahn et al. (1983) separated PA and identified eight acids from sorghum extracts by HPLC, their concentration and whether bound or free differed with cultivar. Sorghum grain resistant to fungal attack contained both a greater variety and larger amounts of identified PA and unidentified compounds. Resistant cultivars had more PA in free form. Subramanian et al. (1983) reported tannin content (catechin equivalents) in 18 brown sorghum genotypes which ranged from 0.13 to 7.22 CE %. They reported that variation in min content was much larger than variation in the other constituents. Detailed polyphenol analysis on selected genotypes indicated that some lines had insignificant levels of condensed tannins, that none of them was a group II sorghum and that the levels of flavan-4-ols were

relatively high. Cultivars with red pericarp (with or without pigmented testa) containing significant levels of flavan-4-ols exhibit resistance to weathering. Mukuru (1992) found that cultivars with white pericarp without pigmented testa do not contain significant levels of flavan-4-ols, yet some of these cultivars exhibit resistance to weathering. Apparently, flavan-4-ols and related compounds are involved in some way with resistance to grain weathering. Hahn et al. (1984) concluded that phenolic compounds i.e. phenolic acids, flavanoides, anthocyanidins and tannins are located primarily in the pericarp and testa layers of the sorghum caryopsis. Ring (1984) detected phenolic compounds in leaves and glumes of sorghum. Jambunathan et al. (1986) analysed polyphenol concentrations in grain, leaf and callus tissues of mold susceptible and mold resistant sorghum cultivars and reported that the level of flavan-4-ols were two to three-fold higher in mold-resistant cultivars than in moldsusceptible cultivars. Doherty et al. (1987) and Forbes (1986) reported that free PC and tannin contents in caryopses increase significantly during development, reaching maximum levels 7-18 DAA. At maximum, the levels of free PC and tannins were two to eight times higher than those observed in mature grain. PC and tannins are apparently being bound to cellular tissues, and therefore are not extractable for analysis. The high level of free PC and tannins occurred during the period of early invasion and colonization of fungi of the caryopsis. Hence, it is likely that these compounds are involved in the resistant mechanisms of grain weathering. Bandyopadhyay et al. (1988) reported 24 grain mold resistant accessions with colored pericarp had negligible amounts of tannin (less than 1.0 CE%) and 14 of the 24 lacked the testa layer. The range of tannin content in the resistant accessions was 0.1-10.7 CE%. Mansuetus et al. (1988) observed that resistant cultivars had higher free PC content in their glumes and mature cayopses, and showed greater increase in these compounds in response to infection than susceptible cultivars. Measurements of parahydroxybenzoic, coumaric, vanillic and gentisic acid contents indicated that phenolic-bound acids provide the plant with back-up defence to F. moniliforme when free PA have been depleted from the caryopses.

Forbes et al. (1989) reported that resistant cultivars also respond more quickly to fungal invasion via increased levels of PC and pigmentation of spikelet tissues than do susceptible cultivars. Waniska et al. (1989) quantified PC and PA in mature caryopses of sorghum grown in wet or dry environments. Seventeen cultivars varying in pericarp color and presence of pigmented testa exhibited different degree of resistance to molding in wet environment. Sorghum caryopses with white pericarp had lower free PC contents (14 micro g/ carvopses) than those with red pericary (41 micro g / carvopses) when grown in the dry environment. This difference diminished under humid conditions Cultivars with a pigmented testa were more resistant to grain mold, had higher free PC content (151 micro g/ caryopses), and had softer endosperm texture than cultivars without a pigmented testa. In cultivars without pigmented testa, higher free PC and free PA contents especially free P-coumaric, ferulic and caffeic acids, were observed in mold susceptible cultivars. A scatter plot of free PC vs. free P-cournaric acids indicated that mold susceptibility was related to higher levels of P-coumaric acid, regardless of environment. Jambunathan et al. (1990) analysed methanol and acidified-methanol extracts of grains harvested at different developmental stages for flavan-4-ols and reported that the concentration of flavan-4-ols in mold-resistant grains were at least 2-fold higher than in mold-susceptible grains in both extract at or after 30 days flowering (DAF). Concentration of flavan-4-ols in mature grains could, therefore, be an indicator of their potential resistance or susceptibility to grain mold, and this method could be an important tool in screening sorghum cultivars for such characteristics.

Jambunathan and Kherdekar (1991) reported that methanol and acidified methanol extract of leaves of mold resistant accessions contained at least 3-fold higher concentrations of flavan-4-ols than susceptible accessions at 56,63 and 70 DAF. The concentration of flavan-4-ols was monitored in the flag leaves of mold resistant accession that had no testa at 77,84 91 and 98 DAF, and it decreased sharply at or after 70 DAF. The estimation of concentration of flavan-4-ols in sorghum leaves, therefore offer scope for screening sorghum accessions for their grain mold resistance. Jambunathan *et al.* (1991) reported that ergosterol concentration increased with increasing DAF in the mold susceptible accessions and was 10-fold higher in grains collected at 50 DAF than in the corresponding mold-resistant accessions. It is suggested that ergosterol concentration could be used to assess the magnitude of mold damage in sorghum grains. The correlation coefficient between ergosterol and flavan-4-ols concentration was significant (P < 0.01) and negative in colored mold-susceptible and mold-resistant accessions that did not have testa, but no significant correlation was observed in white mold resistant and mold-susceptible sorghum. It was concluded that there could be another genetic factor or mechanism besides flavan-4-ols associated with mold resistance in white grained sorghums. Mukuru (1992) reported mold resistance in the white-grained types was associated with grain hardness, while that of browngrained types was associated with either high-tannin or flavan-4-ols or grain hardness. and also reported that flavan-4-ols is not produced in white-grained types, either mold-resistant or mold-susceptible.

Resistant cultivars respond more quickly than the susceptible cultivars to fungal invasion via increased levels of phenolic compounds in glume tissues. Extensive deterioration does not occur before physiological maturity because the developing grain contains 3 to 10 times the level of specific phenolic compounds of mature grain. In sorghum grown under wet conditions, grain of resistant cultivars contains lower levels of free phenolic compounds at maturity compared with grain of susceptible cultivars, hence phenolic compounds content in grain is a predictor of the sorghum cultivars level of resistance to grain molding Waniska et al. (1992). Martinez et al. (1994) evaluated 9 sorghum cultivars for resistance to F. moniliforme [G. fujikuroi] in field experiment in Argentina. Three cultivars (SC-630-11E, MF-5107 an MF-5097) were resistant: these cultivars had a higher concentration of flavan-4-ols than the white pericarp cultivars (BTX623, ICSB-34, BArg 34 and Bvar) and less tannin than the control brown pericarp cultivars (B-1509 and MF-5194). Melakeberhan et al. (1996) evaluated 10 sorghum genotypes with differences in phenolic compound concentration and grain mold resistant over three crop seasons (1989, 1990 and 1992) to assess changes in phenolic compounds during seed development and how these changes influence grain molding. Flavan-4-ols concentration were high and similar for both the mold resistant and mold-susceptible genotypes at early stages of seed development. In susceptible genotypes, the flavan-4-ols concentration dropped by 67% between third and last sampling dates compared with a 20% decline for the resistant genotypes in the same period. The results also showed that highest incidence of seed infection by fungi occurred between 25

and 35 days after anthesis. Alternaria, Fusarium (especially F. moniliforme) Cladosporium, and Epicoccum species were the major fungi isolated from the seeds. Menkir et al. (1996) identified sorghum accessions with high level of grain mold resistance, originating from diverse geographical areas and belonging to different botanical races. Resistance to grain mold in these sorghums was strongly associated with high concentration of phenolic compounds (apigeninidin, flavan-4-ols and tannin), kernel hardness and pericarp color. Each of these kernel properties contributed to grain mold resistance differently in white, red and brown pericarp sorghum accessions, respectively.

2.14 Presence of testa layer and resistance to grain mold

Ellis (1972) studied the morphological characters indicating grain mold resistance and reported that pigmented testa was the most influential seed characteristic affecting weathering resistance in the field. Furthermore, within a given genetic background and when the pigmented testa was absent, lines with red or lemon yellow were more resistant than lines with white pericarp to grain mold. The ability of pigmented testa to resist grain mold development is attributed to its high tannin content.

Maxson *et al.* (1972) described the level of tannins and their effect on nutritional value as related to the presence or absence of the testa and spreader in sorghum. Cummings and Axtell (1973) proposed a scheme to classify sorghum in groups 1,11 and 111 based on chemical analysis and redefined by Price and Butler (1977). Group I does not have testa, group II has a testa (B1-B2-SS), and group III has a testa and spreader (B1-B2-S-). Harris and Burns (1973) and Murty (1975) reported that brown seed with high tannin content and the presence of pigmented testa are resistant to field deterioration. Glueck and Rooney (1980) identified that sorghum lines high in tannin content and having testa layer were more resistant to grain mold fungi. The presence or absence of testa layer is controlled by the B1 and B2 genes. When the complementary B1 and B2 genes are dominant (B1-B2-), testa pigmentation is present and when either or both genes are homozygous recessive (B₁-b₂b₂, $b_1b_1 B_2$ -, or $b_1b_1b_2b_1$, pigmented testa is controlled by another gene (Tp) in which brown is dominant to purple. The spreader gene (S) allows the brown colour of pigmented testa to be **present** in epicarp (S-). Bandyopadhyay (1986) pointed out that IS-14384 has no testa and no tannin and is promising against grain mold (ICRISAT, 1986). Cultivars with red pericarp (with or without a pigmented testa) containing significant level of flavan-4-ols exhibit resistance to weathering (Jambunathan *et al.*, 1986; Mukuru, 1992).

Jimnez and Valleja (1986) reported that tolerant entries to C. *lunata* were those which had a pigmented testa and floury endosperm. In the presence of testa, texture was not an important trait but in the absence of testa comeousness or floury endosperm showed maximum tolerance than those with intermediate texture. Waniska *et al.* (1989) reported that, PC and PA were quantified in mature caryopses of sorghum grown in wet or dry environments. Seventeen cultivars varying in pericarp color and presence of a pigmented testa exhibited different degree of resistance to molding in the wet environment. Mansuetus (1990) correlated mold incidence with the presence of testa. Eighty percent of the selection were brown grained with testa and with TGMR of 2 or less. Twelve percent were red or white without testa and TGMR of 3 or less indicating the importance of testa in imparting grain mold resistance (Stenhouse *et al.*, 1990). The effect of both pigmented testa and a red pericarp were additive, mesocarp thickness did not play significant role in grain mold resistance.

2.15 Artificial inoculation of sorghum with fungi at different stages of grain development

Castor (1977) inoculated F. moniliforme, F. semitectum, C. lunata C. protruberata, Alternaria **spp.** and Helminthosporium spp. at various times after flowering. The Fusarium and **Curvularia** isolates were the principal pathogens causing discoloration and reduction in seed **viability**. Seeds from the heads inoculated with Fusarium at flowering had the highest **proportion** of split pericarps. Rao and Williams (1977) reported high levels of grain mold in **sorghum**, when heads inoculated at anthesis with conidial and mycelial suspensions of F. **moniliforme**, F. semitectum and C. lunata. Castor and Frederiksen (1980) reported that **inoculation** (2.2x10³ conidia/ml) at anthesis or within 2 to 3 days of anthesis resulted in **greatest** damage, suggesting that floral tissues (glumes, stigmas, styles etc.) are most **susceptible** at flowering and becomes less susceptible thereafter. They inoculated sorghum **lines** with C. lunata at anthesis and noticed that infection occurs in glumes, lemma, palea and lodicules in 5 days after anthesis. Colonization of pedicel tissues resulted in kernel abortion or in reduced kernel filling. Narayana and Prasad (1982) inoculated F. moniliforme and C. hunata singly and in combination in equal proportion at preflowering and post flowering periods. F. moniliforme was observed to be more infective at flowering and C. lunata at soft dough stage. Combine inoculation was more effective from anthesis to dough stage. Deshpande et al. (1985) noticed that artificial inoculation with C. lunata not only reduced seed germination and seedling vigour index but increased abnormal seed germination than with Fusarium. Bandyopadhyay and Mughogho (1988a) inoculated F. moniliforme, F. pallidoroseum and C. lunata on flowering panicles of six genotypes which were watered with sprinkler on the days of no rainfall from flowering to grain maturity and harvest. They reported that TGMR of susceptible and resistant genotypes were significantly greater and germination of susceptible genotypes lower in plot with sprinkler irrigation than in plot receiving only rainfall.

Singh et al. (1993) inoculated with a mixed spore suspension of F. moniliforme, F. pallidoroseum and C. lunata at 50% anthesis on 14 accessions. Genotypes IS 7173, IS 23773, IS 23783 and IS 34219 were completely resistant to mold upto 55 days after $(\Im^{-1}_{3}342, \Im^{-1}_{3}44, \Im^{-1}_{3}5, \Im^{-1}_{3}15, \Im^{-1}_{3}15, \Im^{-1}_{3}24, \Im^{-1}_{3}15, \Im^{-1}_{3}15,$

Somani (1992) inoculated F.moniliforme and C. lunata at 10, 20,30 and 40 DAF and observed that if the infection takes place at flowering, no grain development takes place and germination increases linearly with the advancement of grain development. F.moniliforme infection is usually at or earlier to soft dough stage where as that of C. lunata is from dough stage onwards.

2.16 Histopathology of infection by molding fungi

Mathur, et al. (1975) noticed embryonic infection by F. moniliforme and F. semitectum. They could locate deep seated infection of Alternaria tenuis, C. lunata and Drechslera sorghicola.

Castor (1977) observed that the scutellum was often partially degraded in seed from *Fusarium* inoculated heads and suggested that the fungus could destroy the embryo indirectly by interfering with translocation from the endosperm to the embryo during germination. All the grain from susceptible *Fusarium* – inoculated heads contained *Fusarium* in the endosperm and 78% of grain from *Curvularia* – inoculated heads had that fungus in the

endosperm. Rao and Williams (1977) noticed that inoculations at anthesis or within 2-3 days of anthesis resulted in invasion in greatest tissues. That indicates that floral tissues (Glumes, stigmas style etc.) are most susceptible at flowering and becomes less susceptible there after. Abdullah and Dadhum (1978) observed embryonic infection by Aspergillus fumigatus and Gibberella fuikuroi in sorghum, Castor and Frederiksen (1980) compared seeds from heads inoculated with F. moniliforme, F. semitectum and C. lunata and observed that F. semitectum produced minimum discoloration and no degradation of endosperm and germ tissues. C. lunata resulted in partial degradation of the endosperm and appeared to progress slowly inward from the pericarp. F. moniliforme appeared to colonize the region where hilum, scutellum and endosperm fuses. They also reported that there are some evidences suggesting that F. moniliforme growth over the kernel surface occurs after complete colonization of the endosperm tissues. F. moniliforme was found initially beneath the glume, around the germ and hilum where as Curvularia produced mold on portions of the seed not covered by glumes. Blakely and Castor (1979) reported that fungi enter through hylar and stylar ends and they further stated that the embryo region which is under the hylar areas was damaged the most implying that the hylar area is the most readily accessible to fungi. Castor (1979) isolated fungi from different grain components and noticed that embryo contain less fungi than any other tissue.

Castor (1981) studied histopathology of grain mold and provided that infection take place by relatively few species of fungi during anthesis. Also a number of different tissues appear to be involved in resistance to colonization. Since the infection takes place at such an early stage the presence of a testa probably has little effect on initial colonization. Mesocarp provide an ideal environment for early colonization. Spikelet tissues, including sterile lemma, palea, lodicules, anthers, and filaments are sites of infection at anthesis with C. *lunata* and F. moniliforme. The ovary which develops into kernel, is not colonized until it expands between 5 and 10 days after anthesis. Forbes (1986) and Bandyopadhyay (1986) noticed initial infection by F. moniliforme on a susceptible cultivar at the apical end on spikelet tissues; lemma, palea, glumes, filaments and senescing styles. Fungus mycelium advances basipetally, either by colonizing spikelet tissues or by growing in voids between these tissue. Early colonization of glumes (3-4 days following inoculation) was found to be very heavy and caused little cellular disruption or pigmentation in the host. Within 5 days of inoculation, mycelium can be seen in all parts of spikelets, with the denser growth around the ovary base. Lodicules appears to be severe as an important source and always surrounded by dense fungal growth, but extensive colonization of lodicule tissue *per se* has been questioned.

In the next stages of invasion, a dense mycelial mat progresses acropetally between the aleurone layer and the pericarp. Subsequent invasion of the endosperm, embryonic tissues and pericarp originates from this peripheral mat. When environmental conditions are favourable, mycelial growth pushes through the pericarp, producting a white or pink fungal mass which can completely cover the grain.

Infection by C. lunata differs from that of F. moniliforme, C. lunata can infect the apical part of the ovary wall from the colonized lemma, palea, lodicules, filaments, pollen grains and decaying styles, within 5-10 days mycelium penetrates the pericarp and ramifies through the cross and tube cells. Colonization does not usually continue directly into the endosperm, but rather through the placental sac, which can also lead to invasion of the embryo. Gopinath et al. (1987) noticed 43% embryonic infection of F. moniliforme, while F. semitectum and F. solani colonized the embryonic tissue in 8 and 5% seed, respectiv-ely.

Singh et al. (1988) could detect infection by F. moniliforme and C. lunata after anthesis, while that of *Phoma sorghina*, 8 DAA. Singh and Agarwal (1989) detected C. lunata and F. moniliforme infection in embryonic tissue and *Phoma sorghina* in the aleurone layer only.

Deshmukh and Raut (1993) microscopically examined the seeds infected by C. *lunata (Cochobolus lunatus*) showed a clear distribution of pathogen in pericarp, seed-coat, aleurone layer, endosperm and embryo. The scutellum showed heavy colonization by mycelium and mycelia were also present in coleoptile, coleorrhiza, and embryonic axis.

2.17 Inheritance/Genetics of resistance

The grain mold problem is so complex that it is almost certain that grain mold resistance is the results of the additive effects of many genes affecting several plant characteristics (Murty et al., 1980). Rana et al. (1978) found that water absorption capacity and seed hardness, two factors that have an effect on susceptibility are governed by additive genes. Glueck and

Rooney (1980) reported the inheritance of testa is controlled by complementary B₁ and B₂ testa genes. Dabholkar and Baghel (1980) made 7×7 diallel cross amongst sorghum lines resistant and susceptible to grain mold caused by *Curvularia* and observed both gca and sca components of variance were significant for reaction to grain mold. However, gca was larger in magnitude suggesting predominance of additive genetic variance. Dabholkar and Baghel (1982) reported additive gene action to be predominant in the inheritance of tannins in grain. Dabholkar and Baghel (1983) crossed two varieties of sorghum highly susceptible to grain mold, two moderately resistance and three less susceptible in a diallel fashion excluding reciprocals. Grain mold was developed by artificially inoculating earhead with spore suspension of *C. lunata*. Both additive and non-additive genetic components of variance determined the expression of mold reaction. Genes for resistance were recessive to genes for susceptibility. SPV-29 and 2219 B appeared to posses dominant genes for resistance. Narayana and Prasad (1983) studied a diallel set of crosses involving resistant and susceptible lines to mold for heterosis, combining ability and genetic variation. Additive gene action was found to be predominant in the inheritance of *Fusarium* molds.

Kataria et al. (1990) studied mode of resistance to grain molds, largely caused by C. lunata (Cochlobolus lunatus) and F. moniliforme (Gibberella fujikurot) in F_1 , F_2 and backcross generations from 3 crosses involving 2 resistant and 2 susceptible lines. Analysis of the results indicated that additive effects were significant in all crosses except IS402 x IS 10892, but were generally smaller in magnitude than the dominance effects. Duplicate type interaction were also important in most crosses.

Escle *et al.* (1993) used four parental cultivars with distinct characteristics and gene markers for caryopsis traits as a base population to generate F_1 , F_2 and BC_1 populations. These populations were evaluated for resistance to grain mold. The presence of pigmented testa (B₁-B₂-), a red pericarp (R-Y-) a thin mesocarp (Z-) and an intensifier gene (I-) were all dominantly inherited. A pigmented testa was the single most important trait conferring grain mold resistance. The effect of red pericarp was enhanced by the presence of the intensifier gene. The effect of both a pigmented testa and a red pericarp were additive. Mesocarp thickness did not play a significant role in grain mold resistance. Shivana *et al.* (1994) indicated that the genetic constitution of the susceptible genotypes is identical, while the reaistant genotypes differ in their genetic constitution. Inheritance of grain mold resistance was governed by 4 independently segregating genes, 2 with complementary interactions and the other 2 with additive interactions. Ghorade (1995) reported predominant additive gene action for characters like 100 seed weight, hardness, grain density, water absorption rate, conductivity of grain leachate, germination, fungal load of *Fusarium* spp., *Curvularia* spp. and other mold spp. in F_1 and F_2 diallel progenies.

2.18 Heterosis

Hybrid vigour was first noticed by Kolreuter (1763) in the interspecies crosses of *Nicotiana* and was studied thereafter by numerous workers. The first clear approach to the concept of heterosis was made by Shull (1994) and he coined the term "Heterosis" to denote the increased vigour, size, fruit fullness, speed of development, resistance to disease and insectpests or to the climatic adversities. Heterosis (H₁) is expressed over the mid parent value and heterobeltiosis (H₂) is expressed over the superior parents. Heterosis could also serve more practical purpose in providing the breeders a mean of increasing disease resistance in resistance breeding programs.

The terms "heterosis" and "hybrid vigour" are synonymous and it has been suggested by Whaley (1952) that a more precise usage would be to term the superiority of the hybrids as hybrid vigour and to refer the mechanisms by which the superiority is developed as heterosis. Heterosis is the genetic expression of the beneficial effects of hydridization. The presence of heterosis in sorghum has been reported by many workers (A gikar and Chavan, 1957; Quinby, 1963; Kambal and Webster, 1966; Rao, 1970a; Tripathi *et al.* 1976; Goyal and Jothi, 1976; Laosuwan and Atkins, 1977).

Giriraj and Goud (1981) studied the diallel analysis of eight varieties and reported **heterosis** to the extent of 28.08% for total plant height. Saradaman (1981) studied the **heterosis** and found that, in general, all hybrids showed heterosis for plant height and panicle **length**.

Kanaka (1982) found that heterosis for grain yield ranged from -11.36 to 74.72% and 1000 grain weight from -16.47 to 69.25%. Kulkarni and Shinde (1983) studied the F₁ generation of seven variety diallel of sorghum and heterosis was found to be very high (65.5%) for grain yield, high for plant height (40.4%) and low for days to 50% bloom (8.0%). Swamlata and Rana (1988) studied six newly developed ms lines and crossed with few restores and they reported that heterosis over ms line varied from 109 to 147% for yield characters. Over restorers, heterosis was 84% for grain yield and 12% for biological yield.

Ghorade (1995) studied 11x11 diallel cross excluding reciprocals and observed highest estimates of percentage of heterobeltiosis upto - 10.38% for days to 50 % flowering, 64.70% for plant weight, -41.02% for glume coverage, 19.61% for 100 grain weight, 6.29% for grain hardness, 2.76% for germination, -5.44% for conductivity of grain leachates, -5.69% for fungal load of *Fusarium* spp., -12.88% for *Curuvularia* spp. and -8.91 for other fungal spp.

2.19 Combining ability

Combining ability can be defined as the relative ability of a biotype to transmit desirable performance to its crosses. It provides a means of understanding the nature of gene action in yield heterosis and is desirable tool to study and compare the performance of a line in hybrid combinations.

According to Sprague and Tatum (1942) the general combining ability denotes the average performance of line in a hybrid combination, while specific combining ability designates those cases in which certain combinations do relatively better or worst than would be expected on the basis of average performance of the lines involved. Srihari and Nagur (1980) observed that the variance due to general combining ability (gca) and specific combining ability (sca) were almost equal with respect to the character like grain weight of ear indicating the presence of both additive and non additive genetic variance of this character. Highest heterosis (121.34%) has been shown by combination (Swarna x CS-3541) associated with highest sca effects (26.38) even though its parents recorded low gca effects for grain weight of ear, indicating that non additive gene action is operating predominantly for expression of this character. Sanghi and Monapora (1981) observed very high gca under rainfed condition. Indi and Goud (1981) found predominance of additive genetic effects for plant height and dominance effects predominated for most of the traits. Similarly, over dominance was observed for grain yield and panicle weight. Patidar and Dabholkar (1981) found influence of additive gene effects in inheritance of 1000 seed weight and grain yield in sorghum. However, sca effects were significant for grain yield and number of grains/ear.

Borikar and Bhale (1982) reported more pronounced estimates of sca variances for all characters indicating the preponderance of non additive gene action for yield and yield components. The gca was also considerable for days to flowering and plant height. Kanaka (1982) observed predominance of additive gene action for plant height. He also reported additive and non additive gene actions for days to 50% flowering and panicle length. Karale et al. (1984) recorded highly significant gca and sca values for all the characters in *Kharif* and *Rabi* seasons. The gca values were of higher magnitudes than sca variances for days to flowering, plant height, panicle length and 1000 seed weight indicating the importance of additive and additive x additive gene action.

Palaniswamy and Subramanian (1986) reported additive gene action for plant height, grain yield, whereas, non additive gene action for days to bloom and peduncle length. Patil and Thombre (1986) reported the characters plant height, days to 50% flowering, 1000 seed weight under the control of additive gene effects while panicle weight and grain yield under non additive gene action. Chandrashekharappa (1987) reported predominance of additive gene action for plant height, days to 50% flowering (DTF) while non additive gene action for 1000 seed weight. Nimbalkar and Bapat (1987) noticed additive and non additive gene action for DTF and plant height. Shekar *et al.* (1987) recorded 1000 grain weight, days to 50% flowering and plant height predominantly under the control of additive whereas grain yield under non additive gene action. Hugar *et al.* (1988) reported non additive gene action more important for DTF, plant height, grain yield and 1000 grain weight. Patil (1990) reported that the sca effects were more stable than gea for grain yield and 1000 seed weight. Amsalu and Bapat (1990) recorded the additive gene action for DTF.

2.20 Correlation studies

It is a known fact that some plant and grain characters are associated with yield and grain deterioration. If the association is assessed, it is possible to select plants based on yield and grain mold resistance traits. Several workers have found out the characters association in sorghum. Hardness and density correlated inversely with milling yield, and the endosperm texture was negatively correlated with hardness, test weight and kernel density (Maxson *et al.*, 1971). Gangadharan *et al.* (1978) reported a highly significant correlation between the per cent of mold grain in ear head and rainfall. Patel *et al.* (1980) observed positive significant correlation between DTF with 1000 seed weight. Similar results were found by Patil and Thombre (1985). They also observed that the plant height and DTF expressed positive strong correlation. However, Reddy and Nagur (1981) recorded negative correlation. The percentage for kernel floating was correlated with percentage vitreousness, grain hardness determined as a work required for grinding, breaking strength at individual kernel (Hallgren and Murty, 1983). Mansuetus *et al.* (1988) observed that disease incidence was negatively associated with glume cover, glume length and glume area at boot stage.

Forbes *et al.* (1989) reported highly significant correlation (r=0.94) amongst two estimates of severity (Ergosterol concentration and colony forming units of *F. moniliforme*). Also reported colony forming units of *F. moniliforme* was positively associated with electrolyte leachate (r=0.98), visual assessment as percentage of kernels moldy (r=0.93), negative associated with percent germination (r=-0.98) and negative association between electrolyte leachate and percentage germination (r=-0.95). Indira *et al.* (1991) reported high correlation (r=0.88) between September rainfall and mean disease score at four locations. Jambunathan *et al.* (1991) reported significant (P<0.01) correlation coefficient between ergosterol and flavan-4-ols concentration and negative in coloured mold-susceptible and mold-resistant accessions that did not have testa, but no significant correlation in white moldresistant and mold susceptible sorghum. Jambunathan *et al.* (1992) reported negative correlation with ergosterol concentration and grain hardness (Stenvert method). Mukuru (1992) reported significant correlation (r=-0.66, P = 0.01) between flavan-4-ols and mold resistance. Ghorade (1995) reported that grain hardness exhibited significant positive **B**sociation with grain density, germination, grain yield, 100 seed weight, and negative **association** with water absorption rate and fungal load of all types of fungi. Also reported that **germination** exhibited positive significant association with 100 grain weight, grain hardness, **grain** density and negative significant association with conductivity of grain leachate, water **absorption** rate and all three types of fungal load.

CHAPTER - III

MATERIALS AND METHODS

PAGES : 40 - 59

CHAPTER III

MATERIALS AND METHODS

3.1 Materials

The experimental materials comprised of 10 parental lines of sorghum (Sorghum bicolor (L.) Moench) with different characteristic viz., good grain quality, earliness, adaptation, yield, varying mold reactions, presence of testa, mesocarp thickness and grain hardness. These included three resistant (IS-2284, IS-6335 and IS-9471); five moderately resistant elite (SPV-946, SPV-1201, SRT-26B, GJ-35-15-15 and ICSB-101 B), and two susceptible (SPV-104 and AKms-14B) lines. The pedigree and characteristics of these lines are summarised below:

		Characteristics					
			Pl. ht			Seed hardnes	s
Line	Pedigree	DTF	cm	TGMR	Testa	kg/cm²	Source
- SPV-1201	DVIZ 400 10 2442 10		244	20		0.47	
	PVK-400×IS-3443-12	73	244	3.0	A	8.67	Dr.PDKV
CSB-101B	(Ind.Syn.89-1×RS/R 20-682)-5-1-3	72	167	3.0	A	6.94	ICRISAT
Akms-14B	(MR-807×BTX-678) ×AKms-2B	66	140	4.5	A	6.95	Dr.PDKV
\$R T-26B	(M-211×ICSB-27)	70	179	3.0	А	6.56	Dr.PDKV
G J-35-15-15	(2077A×M-25)×	78	237	3.0	A	8.11	Dr.PDKV
	Marvan						
SP V-946	(SPV-475×SPV-462)	77	264	3.0	A	7.25	Dr.PDKV
SPV-104	(SPV-148×SPV-512)	80	179	4.5	А	6.08	Dr.PDKV
IS- 2284	(Haak Doorn) Q-2-2-37	70	283	2.0	Р	5.91	ICRISAT
S- 6335	(purbi gooseneck banwar)	66	255	2.0	Р	6.68	ICRISAT
, IS- 9471	(South Africa)	72	286	2.0	P	6.10	ICRISAT

A = absent, P = present.

憲

3.2. Methods

3.2.1 Location

The experiments were conducted at two locations viz., Sorghum Research Unit, Dr. PDKV, Akola, latitude 20° 42' N and longitude 77° 02' E with an altitude of 281 m, soil vertisol medium to deep black and ICRISAT, Patancheru. latitude 17°32' N and longitude 78° 16' E with and altitude of 545 m soil-vertisol medium to deep black, 26 km northwest of Hyderabad.

3.2.2 Predisposition

The meteorological data on precipitation number of rainy days, relative humidity and temperature during rainy season 1995, 1996, were collected from Sorghum Research Unit, Dr. PDKV, Akola (Table 1). Since testing at ICRISAT was done under controlled conditions, the meteorological data were been considered Data from 23rd meteorological week to 45 meteorological week the period from flowering to maturity of sorghum crop at both the centres was taken in to consideration

3.2.3 Experimental layout

The experiments were conducted in a completely randomized block design with two replications. Fifty-five treatments (45 test crosses + 10 parents) were included in the experiment. The plot size was double row 3-m long, with row spaced at 45 cm and plants at 10 cm. The trial was sown on 27^{th} June 1995 at Akola and harvested on 26^{th} October 1995.

The experiment was repeated at Akola during the rainy season, 1996. It was sown on 22^{ad} July and harvested on 20^{th} November.

The experiment was also conducted at ICRISAT during the rainy season 1996. It was sown on 17th June and harvested on 21 Oct. The plot size was at double row 4 m long, row spaced at 75 cm and plants within row at 10 cm. At this location overhead sprinkler irrigation was provided from the onset of flowering to grain maturity i.e. black layer formation, to harvest about 2 week after physiological snaturity. The plots were sprinkled for 1 hr in the morning if it did not rain the previous night and the same morning and for an additional 1 hr in the evening if it did not rain throughout day. Experimental field with sprinkler irrigation and aerial view of the experimental field at Patancheru (Plate 1). The seeds of all these trials were used for studying physical, pathological and biochemical characters.

3.2.4 Data recording

Five plants were randomly selected from each replication of a treatment for recording data in F_1 crosses and parents. Fifteen plants were randomly selected per replication in each treatment for recording data in F_2 progenies. Data were recorded on agronomic traits, physical, pathological and biochemical characters. All above characteristics of the kernel of parents and crosses obtained from 1995 trial at Akola and 1996 trials at both locations, whereas, biochemical characteristics could only be studied for 1995 harvest at Akola. All characters were studied using 10 × 10 diallel analysis, except protein fractions, grain color, glume color pre-treatment of seed and presence of testa.

3.2.4.1 100-seed weight

Hundred kernels weight (g) of each line under various experiments was always recorded after compositing the threshed grain and sun-drying to about 12% moisture, using 'ADCO' precision electronic balance (model AD 200 C) unless specifically mentioned otherwise. All the values reported are means of two observations.

3.2.4.2 Grain hardness

A manually operated 'Kiya' hardness tester (Kiya Seisakusho Ltd., Japan) with bartype probe (0.5 cm diameter) was used with a maximum permissible load of 20 kg for the determination of hardness of single grain.

Grains were equilibrated to a moisture content 6.5 \pm 1.0% before **ba**rdness determination was made. Twenty randomly selected grains from each replications were tested for hardness, mean was calculated and expressed in kg/cm².

3.2.4.3 Endosperm texture

Endosperm texture was determined by visual examination of longitudinal cut half kernels. The rating ranged from 1 to 5 (1=0-20% almost completely corneous and 5 = **\$1**-100% floury). Ten seeds were soaked in water overnight and were cut into two halves to the long axis from the hilar region and endosperm texture was determined

Plate 1 : Experimental field at Patancheru

- A. Sprinkler irrigation
- B. Aerival view of experimental field

A. Sprinkler irrigation

B. Aerial view of experimental field Plate 1.Experimental field at Patancheru

using hand lens. The observations were recorded for each replication and mean was calculated.

3.2.4.4 Electrical conductivity of grain leachates

Electrical conductivity of grain leachates was measured using the method of Hendricks and Taylorson (1976) with some modification. Three g seed sample of each line were washed twice with glass distilled water (gdw) and placed in clean 'Corning', glass test tubes and 12 ml of gdw was dispensed to each tube. After four hr of soaking at 25°C the supernatants were used for measuring the electrical conductivity separately. 'YSI model 32' conductance meter of scientific division, Yellow Spring Instrument Co. INC., was used. The electrical conductivity was expressed in dSm⁻¹. The test was run twice.

3.2.4.5 Day's to 50% flowering

The number of days required for flowering of 50% of the plants in a plot from the date of sowing was recorded.

3.2.4.6 Plant height

Plant height (cm) was measured from the ground to the tip of ear head at physiological maturity.

3.2.4.7 Cob length

Cob length (cm) was measured from base to the tip of ear head.

3.2.4.8 Glume (grain) covering

Observation on grain covering i.e. amount of grain covered by the glume for all the lines under study were recorded. The characters were described as follows and shown in (Plate 2A):

- 1=0 % grain covered
- 2=25% grain covered
- 3=50% grain covered
- 4 = 75% grain covered
- 5=Grain fully covered
- 6=Glume longer than grain.

Plate 2 : A. Glume covering

- 1 0% grain covering
- 2 25% grain covering
- 3 50% grain covering4 75% grain covering
- 5 100% grain covering
- 6 > 100% grain covering

Plate 2 : B. Infected earheads

- 1 F. moniliforme
- 2. 1. pallidoroseum
- 3 C. hunata
- 4. Phoma sorghina

Plate 2 : C. Infected seeds

- 1. F. moniliforme
- 2. F. pallidoroseum
- 3 C. lunata

Plate 2 : D. Glume color

- 1 Tan
- 2 Red
- 3 Purple

Plate 2. Glume covering, infected earhead, infected seed and glume color

3.2.4.9 Pericarp (Mesocarp)

Kemels were soaked in sterile water for 16 hr. The kernels were then removed and surfaces blot-dried. Free hand sections along the short axis with a new razor blade were taken. The sections of each line were selected and placed on clean glass slide separately. Two drop of stain (Mac Grunwald's) used by Scheuring and Rooney (1979) were placed over the sections. After 1 min, when the stain was evaporated the alide was held in slanting position and few drop of ethyl alcohol (95%) were added with the help of dropper for removing excess stain. After the evaporation of ethyl alcohol, the sections were mounted in glycerol with coverslip.

'Filar micrometer' was calibrated using slide micrometer. Sections were observed under low power (10 x objectives and 15 x Filar micrometer) and with help of screw drum, measurement of thickness, in micrometer (µm) of the pericarps were taken and the average of five observations was recorded. Observations for the presence of testa layer (dark brown/red layer adjacent to aleurone layer) were also recorded to confirm the results of bleach test.

3.2.4.10 Threshed grain mold rating (TGMR)

Panicles were harvested 14 days after physiological maturity, threshed and bulked was evaluated for grain mold severity. This is an estimate of the percentage of molded grain surface area and was recorded on a 1-5 scale, where :

- 1= no mold visible on grain surface,
- 2 = scant superficial mold growth and 1-10% grain surface covered by mold,
- 3= moderate mold growth and 11-25% of grain surface molded,
- 4= considerable mold growth and 26-50% of grain surface molded, and
- 5= extensive mold growth and >50% grain surface molded.

3.2.4.11 Seed germination

The Ragdoll's (rolled paper towel) method (ISTA, 1966) and standard blotter plate method of (ISTA, 1976) were used for germination studies. In rolled paper towel, 100 seeds were placed at equidistant on two layers of moist paper towel (48x25 cm; 55-58 sheet/kg). Seeded paper towel were incubated for 10 days at room temperature (i.e. $27^{\circ}C \pm 2^{\circ}C$). The rolled paper were then unrolled after removing rubber bands gently

upper cover paper was removed and germinated seeds was counted. Unless otherwise mentioned the test was based on 400 seeds/genotypes.

In standard blotter plate method grain germination was determined by incubating 100 grains from each genotypes in nine cm diameter Petri-plates (25 grains per dish) lined with wet filter paper for four days at $27^{\circ}C \pm 2$.

3.2.4.12 Detection of grain mold fungi

To detect seed borne mycoflora, standard blotter plate method (SBM) of ISTA (1976) was used throughout the study. Twenty five seeds of each line was placed at equidistant on sterile three layer blotting paper discs presoaked in sterile water in each plate. The seeded plates were kept for incubation at $27^{\circ}C \pm 2^{\circ}C$ under diurnal cycle for seven days. Fungi on incubated seeds were detected by stereoscopic binocular microscope with side illumination system. Research microscope was used for detailed observations species were identified by comparing the descriptions given in IMI description plates of fungi and bacteria and from book "Dematiaceous hyphomycetes" by Ellis (1971). Infected earhead and seeds by different mold fungi are shown in (Plate 2B and C).

Observations on colony count of Fusarium monliforme, Fusarium pallidoroseum and Curvularia lunata separately and for other fungi were recorded in each plate on germinated and ungerminated seeds. The infection score were recorded on a 1-5 scale where:

- 1 = no infection
- 2 = up to 10% seed covered by fungal colony.
- 3 = up to 25% seed covered by fungal colony
- $4 \approx$ up to 50% seed covered by fungal colony.
- 5 = 50 % seed covered by fungal colony.

3.2.5 Biochemical characters

3.2.5.1 Proteins and protein fractions

Fifty five grain samples (10 parents and 45 F_1) grown during rainy season 1995 at **Akola** were used in the study. The grain samples were dried at 37°C for 48 hr and ground in Udy cyclone mill (UD Corporation, Boulder, Co.) to pass through a 0.4 mm

The meal was defatted in Soxhlet apparatus, using n-hexane and used for further analysis, All values reported are means of duplicate analysis.

3.2.5.1.1 Protein

The total nitrogen in the meal was determined by using Technicon auto analyser (TAA) described by Singh and Jambunathan (1980), which involves the conversion of organic nitrogen into ammonia by digesting the sample with sulphuric acid using block digestor (BD 40). Ammonical nitrogen reacts with sodium phenate in the presence of sodium hypochlorite to form indo-phenol blue complex. This color complex is measured at 660 nm.

Reagents :-

Acid mixture. Five parts (v/v) orthophosporic acid in 100 parts of sulphuric acid.

Kjel tabs auto. Each tablet contains 1.5 g K₂SO₄ and 7.5 mg selenium.

Alkaline sodium potassium tartrate. Dissolve 75 g sodium hydroxide and 50g sodium potassium tartrate in about 900ml distilled water, cool dilute to 11.

Alkaline phenol. Mixed 138 ml of phenol (88%) with 500ml of 5N NaOH in an ice bath; dilute to 11 with distilled water.

Sodium hypothlorite (NaOCI). Dilute, if necessary, commercially available bleach to get 5% NaOCI.

Ammonium sulphate standards. Dissolve 4.717g oven dried ammonium sulphate in 1000 ml distilled water (1000 ppm N stock solution). Take stock solution to give 10,20,30,40 and 50 ppm N into a 1000 ml volumetric flask and dilute to 11 by adding 4% sulphuric acid.

One hundred mg defatted flour was transferred to a Technicon digestion tube (75ml). In each set of 40 tubes one blank, one check, two random samples selected from preceding set, and 36 regular (unknown) samples were taken and 3 ml of acid mixture and 1 Kjel tab to each tube were added. Then the set was heated in Block digestor at 375°C, and maintained for 1 to 1.5 hr for digestion, digest were cooled and dissolved with minimum amount of water. Volume was made up to 75 ml, and the solution was mixed thoroughly after putting the stopper. The aliquot from each tube were transferred in to Technicon sample cup and analysed it using TAA.

Nitrogen in % was calculated by using formula

Where, 5 is the made up volume and 1.8 is the net division on chart paper for 10 ppm N. The crude protein was calculated by using the factor (N% \times 6.25).

3.2.5.1.2 Protein fractionation

Protein fractionation of all the parents (10) and F_1 crosses (20) obtained at Akola during 1995 season was carried out. For protein fractionation, crosses were selected in such a way that each cross had one resistant (IS-9471), one elite (SPV-946) and one susceptible (SPV-104) line. Landry and Moreaux (1970) method was used to obtain fractions of protein. The residue after fraction V was treated with 0.1 N sodium hydroxide solution and protein soluble in the alkali was referred to as fraction VI or residual protein. The detailed protein fractions I-VI were as follows :

Fraction	Protein class	Solvent system (reagents)	Extraction time (min)
I	Albumin, globulin free peptide	0.5 M NaCl	60,30,30
п	Prolamin	70% isopropanol	30,30
Ш	Cross link prolamin	70% isopropanol with 0.6% 2 ME ⁴	30,30
IV	Glutelinlike	Borate buffer (pH ¹⁰)	30,30,15
v	Glutelin	Borate buffer (pH ¹⁰) 06% 2ME [®] with 0.5% SDS ^b	30,3015,
VI	Residual protein	0.1 N NaOH	30,30,15

a = 2 Mercapto-ethanol b = Sodium dodecyl sulphate.

Reagents :

0.5M Nacl , Dissolve 29.2 g Sodium chloride in water and make upto 11, 70% isopropanol, Mix 700 ml isopropanol with 300 ml water, Isopropanol-2-mercaptoethanol, Mix 700 ml isopropanol and 6 ml 2-mercaptoethanol with 294 ml of water, Borate buffer (pH ¹⁶), Dissolve 6.2 g boric acid, 29.2 g sodium chloride and 6 ml 2 mercapto ethanol in water, Adjust pH to 10.0 and finally make up to 11, Detergentborate buffer (pH¹⁶), Dissolve 62. g boric acid 29.2 g sodium chloride, 6 ml 2 – mercapto ethanol and 5 g sodium dedocyl sulphate in water. Adjust pH to 10 and make to 1 1 with water, 0 1 N NaOH, Dissolve 4 g NaOH in water make up to 1 1 with water.

Extraction

- Defatted flour (1g) was put in to 50 ml screw cap centrifuge tube to which 20 ml 0.5 m sodium chloride solution were added and shaken for 1 hr. After centrifuge at 2500 rpm for 15 min the clear supernatant were collected in to 50 ml volumetric flask. Extraction repeated twice with 15 and 10 ml of the solvent for 30 min each, the aliquots were pooled and made upto 50 ml and tiltered through Whatman No.1 filter paper (Fraction I). The extract were stored at 4°C.
- To the residue 20 ml 70% isopropanol were added and shaken for 30 min, the contents centrifuged, the extraction repeated twice of the residue with 15 and 10 ml solvent. The aliquots were pooled and made upto 50 ml and filter (Fraction II).
- Proceed similarly with the residue by using 70% isopropanol containing 0.6% ME (Fraction III).
- To the residue 20 ml borate buffer were added and shaken for 30 min, the contents centrifuged, and supernatant collected. Re-extracted the residue twice with borate buffer for 30 and 15 min and pooled the supernatant and volume were made upto 50 ml with borate buffer (Fraction IV).

- The residue were extracted with 20ml borate buffer containing 0.5% sodium dodecyl sulphate for 30 min and re-extracted twice referred above. The extract were pooled and volume made to 50 ml with borate buffer containing SDS (Fraction V).
- The residue were treated with 20 ml. 0.1 N sodium hydroxide solution (Fraction VI).

Estimation :

Ten ml of fraction (I to VI) were pipetted out in to Technicon digestion tube and few boiling chips were added to it. One hundred mg original flour (taken for protein fractionation) were added into Technicon digestion tube and 3 ml concentration sulphuric acid containing 5% orthophosphoric acid, digestion tablet containing 1.5g potassium sulphate and 7.5 mg selenium were added into each tube. Both flour sample and fractions were digested separately at 380°C for 1 hr. The digest were cooled for 5 min, then dissolved it in water (minimum quantity) and made upto 75 ml and mixed well.

Estimated N content as given in protein. Calculated mg nitrogen N in the 10 ml aliquot and expressed the 'N' at each fraction as % of the flour 'N'.

Nitrogen in the fraction =	mg N in 50 ml	100%
	of the fraction	mg N present in flour

3.2.5.2 Soluble sugars

Soluble sugars were extracted with hot aqueous – ethyl alcohol and the sugars on treatment with phenol sulphuric acid produces a stable and sensitive golden yellow color (Dubois, *et al.*, 1956).

- 80% ethyl alcohol (ethanol). 800 ml of ethanol in 1 l. volumetric flask and volume was make with distilled water.
- 5% phenol. Dissolved 5 g phenol in water and made up to 100 ml with water.

96% sulphuric acid (v/v). Use 96% sulphuric acid, specific gravity 1.84, diluted according to the purity.

Glucose (w/v) standard. (Stock = 1000 mg/ 1000 ml.) Dissolved 1000 mg of glucose in water and made up to 1 l.

Working standard. Pipette out 10 ml of stock standard in to a 100 ml volumetric flask and made up volume to 100 ml (the final concentration will be 100 µg/ml)

Defatted flour (100 mg) was placed in to a boiling tube to which 30 ml of **hot** 80% ethanol was added and shaken on a vortex mixture. After settling the material **for** 20-30 min, the supernatant was filtered through Whatman No. 41 filter paper in a **beaker**. For complete extraction of sugars the above step was repeated for 3-4 times. The extract was then placed on hot sand bath until the ethanol is evaporated.

Ten ml water were added to dissolve the contents and transferred in to a 100 ml volumetric flask, the contents in the beaker were washed 2-3 times and added to volumetric flask and volume was made to 100 ml with water one ml aliquot and 1 ml water as blank were taken into test tubes separately and 1 ml 5% phenol was added in each tube and shaken, then 5 ml 96% sulphuric acid was added and shaken vigorously on a vortex mixture and then test tubes were cooled in water.

The absorbance of the golden yellow were read at 490 nm against the blank. The standard were run with different concentration (i.e. 10,20, 30, 40 and 50 μ g of glucose standard) from the working standard, keeping the volume to 1 ml with water, added reagents 1 ml 5% phenol and 5 ml 96% sulphuric acid.

Total soluble sugar (%)=

3.2.5.3 Tannins

Price et al. (1978) Vanillin – HCL method was used for estimating tannins. Vanillin with tannin on acid catalyzation results in formation of an color complex which absorbs maximally at 500 nm. The reaction is specific for leucoanthocyanidins and catechins although, anthocynidin and dihydrochlones may interfere to some extent, expressed as catechin equivalents (CE).

Reagents

- 8% hydrochloric acid in methanol (v/v). Mixed 8 ml. conc. HCL in methanol and made upto 100 ml.
- 1% Vanillin. Dissolved 1 g vanillin (Sigma) in methanol and made upto 100 ml.
- Vanillin Hydrochloric acid reagent. Mixed equal volume solution 1 and solution 2 before use.
- Hydrochloric acid in methanol (4%) (v/v). Mixed 4 ml conc. HCL in 100 ml. methanol.
- 1% Hydrochloric acid in methanol (v/v). Mixed 1 ml conc. HCL, with 99 ml. methanol.
- Standard solution. Stock solution, 1 mg/ml of catechin (Sigma) in methanol (0.1 ml) is equivalent to 10 µg catechin/ml). (stock solution can be stored for long time in stopper bottles in cold). Pipette out 0.1, 0.2, 0.4, 0.6, 0.8 and 1 ml. of catechin standard and made up the volume to 1 ml with methanol.

Extraction

Defatted flour (0.5g) was taken in centrifuge tube to which 10 ml acid methanol (1%) was added in each tube and shaken for 20 min in shaker and centrifuged for 10 min and aliquot was transferred to 20 ml volumetric flask. Again 5 ml acid methanol (1%) was added and shaken for 20 min and centrifuged for 10 min and aliquot was added to first extraction and the volume was made to 20 ml, and mixed well.

Estimation

One ml of extract was pipetted out in to test tubes, to which 5 ml freshly prepared Vanillin-HCL reagent was added slowly to the extract and to the catechin standard of **different** concentrations. Individual samples blank were prepared by adding 5 ml of 4% HCl in methanol to 1 ml aliquot. The absorbance were read at 500 nm against **reagent** blank.

Catechin equivalent (CE) in % were calculated by using formula.

CE %= (mg catechin/ml) × Vol. made up (20 ml) × 100 vol. of extract taken (1ml) wt. of sample (500 mg)

3.2.5.4 Flavan-4-ols

The anthocyanidins are determined by ionizing the middle ring of flavonoides by acid, yielding a pink color. The intensity of pink color is directly proportional to the concentration of flavan-4-ols. In case of catechin – like compounds the cyanidins are first obtained by boiling, which consequently get ionized to give pink color.

Grain samples were extracted with methanol and the phenolic compounds were then adsorbed in polyvinyl phyrrolidone (PVP) layers. The PVP was **subsequently** cleaned and treated with acid to ionize the flavanoid ring, if any. The results in all cases were expressed as $A_{350}g^{-1}$, (Butler, 1982).

Reagents

Butanol, Hydrochloric acid, Acetic acid, 0.1 N acetic acid, Diluted 5.71 ml acetic acid to 1 l with water, 300 ml butanol were taken in a 500 ml separating funnel to which 150 ml water were added shaken vigorously and kept overnight on stand. The top layer removed (water saturated butanol) and mixed with HCl in a bottle in 70 : 30 ratio, Water saturated butanol were mixed with methanol and N/10 acetic acid in ratio70:15:15, which is to be used for sample blank, Methanol, Methanol –HCL 1% : Mixed 1 ml concentrated HCL in methanol and make upto 100 ml with methanol.

Extraction

Defatted flour (200 mg) was taken in screw cap test tubes to which five ml methanol was added, then tubes were placed in Staurt tube rotator (TR-2) and mixed for 1 hr. **The** mix was centrifuged and the supernatant was collected in a vial. The above steps ware repeated using the residue and all the extracts was pulled in the above vial. This is referred to as Methanol extract. To the above residue five ml methanol HCL (reagent 8) was added and above steps were repeated; again residue was re-extracted with additional five ml. of methanol HCL and pool the extract which was used for the estimation of Acid methanol extract.

0.5 ml methanol and acid methanol extract was separately taken in test tubes to which seven ml (reagent, 5) water saturated butanol with HCL was added. Blank was prepared by using (reagent 6). All the test tubes were placed in tube rotator for one hr and absorbency was read at 550 nm. All the results were calculated as A $_{399}^{p-1}$ dry weight.

3.2.6.1 Glume color

Glume is the outer most protective covering of the developing kernels. Glume colors were described as below and shown in (Plate 2D).

W =white, S = sienna (yellow), M = mahogany (brown), R = red, P = purple, B = black, G = grey, O = other.

3.2.6.2 Grain color

Parental lines and F_1 crosses were screened for grain color. Which was visually **assessed** and designated as

W =white, Y=yellow, R=red, Br=brown, Bu= buff and O=other

3.2.6.3 Presence of testa layer

Bleach test. For studying presence of testa layer Kofoid *et al.* (1976) method was followed. Parental lines and hybrids (F_1 's) were screened for the presence of testa.

Fifty kernels of individual line were placed separately in test tube to which 10 ml of reagent solution containing one part of KOH pellets and five parts of 6% sodium hypochlorite (a house hold bleach) was added. The tubes were swirled for few minutes and then placed on water bath maintained at 70°C for 10 min and shaken occasionally. After 10 min of bleaching the contents of the tubes were poured on to the strainer and rinsed thoroughly with running tap water separately. Excess of water was taken off and the sample damped in 2-3 folds of a paper towel. When the bulk of water was absorbed, kernels were transferred to fresh towel and examined. Kernels with testa layer turned black while without testa layer, remained light in color.

3.2.7 Pre-treatment of seed

Seed were pre-treated with 0.1% mercuric chloride solution for two min followed by washings in three changes of sterile water. Then these surface sterilized seeds were plated on pre-moistened three layered blotting paper in sterile petri-plates for detection of internally seed borne fungi. Pre-treated seeds were also tested for germination following the method described earlier.

Twenty five seeds pre-treated with 0.1% mercuric chloride were placed in each petri-plates, replicated three times and incubated at $27^{9}C \pm 2^{9}C$ under diurnal cycle for seven days, for two replications and for two centres. Observations on fungal counts, infection score on germinated and ungerminated seeds were recorded as per method described earlier.

	count in treated - count in untreated		
Increased(%)	= count in treated	x 100	
Reduction(%)	count in untreated - count in treated count in untreated	x 100	
Imageneed areas	·		

 Increased over
 maximum mean value- minimum mean value
 x 100

 location(%)
 minimum mean value
 x 100

3.2.8 Histopathology of infection

Histopathology of infection and colonization of major molding fungi *F. moniliforme*, *R. pallidoroseum* and *C. lunata*, at different stages of host maturity i.e. at anthesis, **10,20,30** and 40 DAF were investigated. An experiment was conducted during the rainy season 1996 at Akola.

Two susceptible lines AKms-14B and SPV-104 were selected for the **purpose**. Five plots (2.75 x 3 m) for each genotypes were randomly distributed. All **recommended** package of practices were followed.

The inoculum were separately multiplied on autoclave sorghum grains in 250 ml Erlenmeyer flasks incubated for 7-10 days at 30° C. Grain showing profuse sporulation of the pathogen were removed from the flasks, washed in a glass jar with distilled water, and strained through double layered cheese cloth. Spores and the mycelial fragments (cfu) in the resulting suspension were counted with a haemocytometer and appropriately diluted with distilled water so as to obtain 1×10^{6} cfu/ml.

Thirty cobs of each genotypes were selected randomly from individual plot at flowering of which 10 cobs were sprayed with inoculum of three major mold fungi, separately. Spraying was done carefully to cover the entire panicle to runoff taking due care to protect other cobs from spray. Inoculated cobs were tagged and covered with brown paper bags individually. The other plots were sprayed with fungicidal mixture of Thiram 0.2% + Carbendazim 0.07%.

Similarly, cobs were selected from 2^{nd} set and plots of these lines and inoculations were done following the methodology described above at 10 DAF. The inoculated cobs were covered with brown paper bags and the bags of previously inoculated cobs were replaced with perforated paper bags. Unbagged, uninoculated and other plots were sprayed with Thiram 0.2% + Carbendazim 0.07%. This way 3^{rd} , 4^{th} and 5^{th} set of plots were inoculated at 20,30, and 40 DAF, respectively.

Randomly 15 artificially inoculated kernels of each set for each pathogen were picked up and preserved in FAA (Formalin-acetic acid-alcohol) solution. Microtomy and microscopy were taken up at ICRISAT in 1997 to study the process of infection and histopathology.

3.2.9 Microtomy and microscopy

For microtomy of paraffin wax sectioning method described by Gopinath *et al.* (1987) was used on slight modifications. Different steps are as under.

Killing, Fixing and Hardening, Dehydration, Clearing, Embedding/section cutting, Staining.

Procedure

- As the samples were preserved in FAA solution, killing of host (grain) tissue is not necessary.
- Samples preserved in FAA were removed, thoroughly washed with water and soaked in water for 3-4 hr.
- The seeds were softened by boiling in water for 5 min and fixed in acetic acidalcohol (1:3) solution for 24 hr. Then the seeds were washed in running water for 30 min-1 h before next procedure.
- All the samples were dehydrated with series of tertiary butyl alcohol i.e. 30,50, 60, 70,80,90 and 100% concentrations, for 30-45 min in each concentration
- The samples were then placed in xylene, a solvent of paraflin wax for 1 hr called clearing (dealcoholization).
- After clearing, the seed samples were infiltrated with paraffin wax, till it become free from xylene. This step was repeated 2-3 times, till all the xylene was removed from melted paraffin wax, Thereafter all the paraffin wax was replaced with fresh paraffin and kept for 24 hr at 57°C in oven. At this stage samples becomes ready for embedding.
- The samples were then embedded in paraffin wax in plastic mould, oriented as desired and labeled.
- The embedded blocks were removed from plastic mould and put in ice cold water for fine crystal texture and softened by immersing the blocks in 1% aqueous solution of sodium lauryl sulphate for 24 h.
- Then blocks were washed with water and transferred to a mixture of glycerin and acetic acid (1:1) for 7 days.
- Serial microtome sections were cut (15-20 µm thick), dewaxed and stained in Piancze III b stain (Dhinara and Sinclair, 1995) and finally mounted in DPX mountant for observation under compound microscope.
- For fluorescence microscopy the sections were stained with fungiflour/celluliflour after dewaxing and observed under fluorescence microscope.

3.2.10 Statistical analyses

The data were analysed as per standard method suggested by Panse and Sukhatme (1954). For 10x10 diallel, two sets of diallel viz. parents + F_1 crosses and parents + F_2 progenies were analysed for all characters as per the method 2, model 1 of Griffings (1956 b) as further extended by Singh (1973a, 1973 b).

3.2.10.1 Heterosis

Heterosis (H_1) expressed over mid parental values, heterobeltiosis (H_2) expressed over better parent; were estimated by using the following method of Laosuwan and Atkins (1977).

Heterosis (H ₁)	$\frac{\overline{F_1}}{MP}$ 100	
Where, MP	$\frac{\overline{\mathbf{p}}_1}{2}$	
eterobeltiosis (H ₂)	F ₁ —BP 100 BP	
$\overline{P_1}$ Mean of $\overline{P_2}$ Mean of \overline{MP} = Mid par \overline{BP} = Mean of	$\frac{F_1}{P_1} = Mean of hybrid (F_1)$ $\frac{F_1}{P_2} = Mean of parent 1$ $\frac{MP}{P_2} = Mican of parent 2$ $\frac{MP}{P_2} = Mican of better parent$ (Better parent changes as per the characters)	

Test of significance, however, were calculated for the numerators of the expression i.e. $H_1 = F_1 + \overline{MPandH_2} = \overline{F_1} - \overline{BP}$.

57

3.2.10.2 Combining ability analysis

Combining ability analysis was based on plot means. It was carried out for all the **characters**, using method 2 model 1 of Griffings (1956 b) and further extended by **Singh** (1973 a, 1973 b).

The mathematical model for combining ability analysis (Model - 1) was assumed as :

Xij ~µ+gi+gj+Sij÷eijk ij =1-----p k=1-----b

Where,

p- number of parents,

b =number of replications,

µ=population mean,

g=gea effect of i th parent,

gj - gca effect of j th parent,

Sij - sca effect of cross between i th and j th parents.

eijk mean error effect.

The restrictions imposed to the model are :

$$\sum_{I}^{\Sigma} gi = 0$$

and
$$\sum_{j}^{\Sigma} Sij + Sii = 0 \quad (for each i)$$

Computation of gca and sca effects

The various effects were estimated as follows :

Population mean $\mu = \frac{2}{p(p-1)} X$.. **gca effects** of i th parent =

 $\hat{\mathbf{gi}} = \frac{1}{P+2} [(Xi. + Xii.) - \frac{2}{p} X..]$ and aca effects of ii th cross =

$$\begin{array}{l} \overset{\bullet}{\mathbf{X}} = \mathbf{x}ij \cdot \frac{1}{\mathbf{p}+2} \quad (Xii + Xij + Xij) \quad + \frac{2}{(\mathbf{p}+1)(\mathbf{p}+2)} \cdot X \\ \overset{\bullet}{\mathbf{y}} \\ \overset{\bullet}{\mathbf{Where,}} \\ \mathbf{p=number of parents,} \\ \overset{\bullet}{\mathbf{Xi}} = \text{total of erray involving i th parent,} \\ \overset{\bullet}{\mathbf{Xi}} = \text{mean of i th parent,} \\ \overset{\bullet}{\mathbf{Xij}} = \text{mean value of i j th cross,} \\ \overset{\bullet}{\mathbf{X}.} = \text{total of all the treatments in the table without} \\ \end{array}$$

reciprocals i.e. $\sum_{i \in j} \sum_{j \in j} X_{ij}$ such that $i \leq j$

3.2.10.3 Correlation coefficient

.

In order to study the degree of association between different characters contributing to grain mold development, simple correlation coefficients were worked out from the respective variances and co-variances as per the formulae suggested by Hays *et al.* (1955).

covariance of ij Correlation between ij -:

variance of ix variance of j

Significance of correlation coefficient was determined from table of correlation coefficient of 5 and 1% level of significance (Fisher, 1958). The 'r' values were compared against n-2 degree of freedom.

HAPTER – IV

RESULTS

PAGES : 60 - 128

CHAPTER - IV RESULTS

4.1 Analysis of variance

4.1.1 Analysis of variance (Pooled F₁) for physical, agronomic, and pathological traits, Akola and Patancheru, 1996

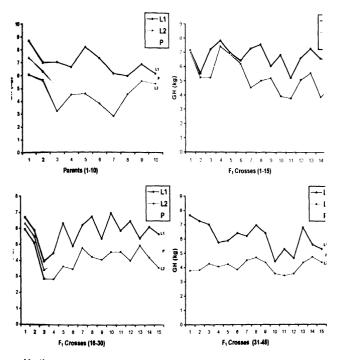
The pooled analysis of variance over two locations for parents and F_1 crosses is **presented** in (Table 2). Data revealed that the two locations, were significantly **different** from each other for all the characters, except plant height and mesocarp **thickness**. This is indicative of the fact that the two locations were eco-edapically **different** and genotypes were tested under sufficiently diverse environments.

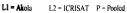
The variance due to treatments-parents, crosses and parents vs crosses were highly significant for all the 15 characters studied, except infection by F. *pallidoroseum* and other fungi in parents and glume covering, and infection by F. *pallidoroseum* in parents vs. crosses. However, variances due to treatments × locations, parents ~ locations and crosses ~ locations interactions were significant for all characters except cob length and glume covering in treatments × locations, endosperm texture, cob length, glume covering, and infection by F. *moniliforme*, F. *pallidoroseum*, *C*. *lunata* and other fungi. in parents x locations and grain hardness, cob length and glume covering in treatments. Variance due to parents vs crosses × locations interaction. Variance due to parents vs crosses × locations interaction was observed to be significant for the trait grain hardness, electrical conductivity, DTF, TGMR and germination.

4.1.2 Analysis of variance (Pooled F₂), for physical, agronomic and pathological traits, Akola and Patancheru, 1996

The pooled analysis of variance over two locations for parents and F_2 progenies for **11 characters** is presented in (Table 3). Data revealed that the two locations **significantly** differ from each other for all the characters except cob length and glume **covering**. The variance due to treatments, parents, crosses and parents vs. crosses were highly significant for all the 11 characters studied, except infection by F. pallidoroseum and other fungi for treatments, parents and crosses and plant height in parents vs. crosses. However variance due to treatments × locations interactions were significant for all characters except glume covering and infection by F. moniliforme. For parents × (locations) interactions only grain hardness, electrical conductivity $q_{n,v}$ TGMR were significant and for progenies x locations interactions grain hardness, electrical conductivity, plant height, cob length, TGMR and germination were significant. However, for parents vs progenies × locations interactions significantly differed from each other for all the characters except glume covering, and infection by F. moniliforme and C. lunata.

4.1.3 Analysis of variance for biochemical characters of parental lines and F_1 at Akola, 1995


For biochemical characters viz. protein, soluble sugars, tannins and flavan-4-ols were studied from the samples collected at Akola (rainy season, 1995). The analysis of variance is presented in (Table 4).


The treatment differences were highly significant for all the traits studied. Further partitioning of treatment variance into components viz., parents, crosses and parents vs. crosses revealed that all the three components differed significantly among themselves for all the characters. Replication differences were non-significant for all the traits studied.

It may thus be concluded that the parental lines included in this investigation possessed sufficient variability for the characters studied.

Mean performance, heterosis and heterobeltiosis, Akola and Patancheru, 1996

The mean performance of parental lines, F_1 crosses, F_2 progenies, heterosis (H₁) and heterobeltiosis (H₂) were computed as per the procedure given in chapter III. The character wise results are presented in (Tables 5 to 20).

SPV-1201	1 SPV-1201 x ICSB-101B	16 [CSB-101B x IS-6335	31 GJ-35-15-15 x SPV-946
1 IC8B-101B	2 SPV-1201 x AKms-14B	17 [CSB-101B x IS-947]	32 GJ-35-15-15 x SPV-104
AKma-MB	3 SPV-1201 x SRT-26B	18 AKms-14B x SRT-26B	33 GJ-35-15-15 x 18-2284
SRT-368	4 SPV-1201 x GJ-35-15-15	19 AKms-14B x GJ-35-15-15	34 GJ-35-15-15 x 18-6335
0135-15-15	5 SPV-1201 x SPV-946	20 AKms-14B x SPV-946	35 GJ-35-15-15 x 18-9471
SPV-946	6 SPV-1201 x SPV-104	21 AKms-14B x SPV-104	36 SPV-946 x SPV-104
SPV-104	7 SPV-1201 x IS-2284	22 AKms-14B x IS-2284	37 SPV-946 x IS-2284
18-2284	8 SPV-1201 x IS-6335	23 AKms-14B x IS-6335	38 SPV-946 x IS-6335
18-6335	9 SPV-1201 x IS-9471	24 AKms-14B x IS-9471	39 SPV-946 x IS-9471
18-9471	10 ICSB-101B x AKms-14B	25 SRT-26B x GJ-35-15-15	40 SPV-104 x IS-2284
	11 ICSB-101B x SRT-26B	26 SRT-26B x SPV-946	41 SPV-104 x 18-6335
	12 ICSB-101B x GJ-35-15-15	27 SRT-26B x SPV-104	42 SPV-104 x IS-9471
	13 ICSB-101B x SPV-946	28 SRT-26B x IS-2284	43 IS-2284 x IS-6335
	14 ICSB-101B x SPV-104	29 SRT-26B x IS-6335	44 IS-2284 x IS-9471
	15 .ICSB-101B x IS-2284	30 SRT-26B x IS-9471	45 IS-6335 x IS-9471

4.2.1 100-grain weight

Data presented in (Table 5) revealed that for parental lines, the range of variation for 100-grain weight was from 1.69 to 2.90 g at Akola, whereas it was from 1.36 to 2.54 g at Patancheru. However, for crosses the range was from 1.76 to 3.41g and 1.52 to 2.98 g at Akola and Patancheru, respectively. Among the parental lines, SPV-104 recorded the highest 100-grain weight both at Akola (2.9 g) and Patancheru (2.54 g). Among the crosses, the highest grain weight at Akola and in pooled data exhibited by the cross SPV-1201 × SPV-104 (3.41 g) and (2.94 g), respectively, whereas at Patancheru ICSB-101B × SPV-104 (2.58 g) recorded the highest 100 grain weight. Among the crosses, SPV-1201 × SPV-104 was significantly superior at Akola. Across the two locations, SPV-104 recorded the highest 100-grain weight (2.72 g), followed by SPV-1201 (2.66 g) and ICSB-101 B(2.06 g).

Out of 45 crosses four exhibited significant positive heterosis (Table 12). The positive heterosis of highest magnitude (23.72%) was observed in AKms-14B \times IS-6335 followed by SRT 26B \times IS-6335 (22.94%) and AKms- 14 B \times IS-9471 (20.95%)

As regards heterobeltiosis none of the crosses exhibited significant positive heterobeltiosis, however, the positive heterobeltiosis ranged between 18.75 (SRT-26B × IS-6335) to 0.18 % (ICSB 101B × SPV-104). Promising crosses exhibiting positive heterobeltiosis appear were SRT-26B × IS 6335 (18.35%). SRT-26B × IS-9471 (18.29%) and AKms-14B × IS-9471 (16.41%).

4.2.2 Grain hardness

That the range of variation for grain hardness for parental lines was from 5.91 to 8.67 kg/cm² at Akola, and 2.78 to 6.03 kg/cm² at Patancheru (Table 5, Fig. 1). However, in pooled data the range of variation was 4.43 to 7.35 kg/cm². The parental line SPV-1201 recorded the highest grain hardness at Akola 8.67 kg/cm² and Patancheru 6.03 kg/cm² as well as in pooled data 7.35 kg/cm². For crosses the range was from 3.96 to 8.71 kg/cm² and 2.82 to 7.43 kg/cm² at Akola and Patancheru, respectively. The

highest (7.85, 7.43 and 7.64 kg/cm²) grain hardness was recorded for cross SPV-1201 \times GJ-35-15-15 at both locations and in pooled data, respectively.

In F₂ progenies (Table 8) the range of variation for grain hardness was from 3.25 to 7.31 kg/cm² and 2.13 to 6.26 kg/cm² at Akola and Patancheru, respectively. However, when pooled over locations, the grain hardness ranged between 3.26 and 5-93 kg/cm². Maximum grain hardness was recorded in F₂ progenies of SPV-1201 × IS 9471 (7.31kg/cm²) at Akola, whereas F₂ progenies of SPV 946 × IS 2284 (6.26 kg/cm²) and 5.93 kg/cm² exhibited maximum grain hardness at Patancheru and pooled data, respectively.

In F_1 diallel set, heterosis ranged from 0.40 to 11.84% over mid parental value (Table 12). The cross SPV 1201 × GJ 35-15-15 (11.84 %) recorded the highest heterosis, but the least heterosis was recorded in SPV 946 × IS 2284 (0.40%). None of the crosses exhibited significant positive heterosis, however, three crosses recorded significant negative heterosis.

Four crosses exhibited positive heterobeltiosis but it was not significant. The highest positive heterobeltiosis was exhibited in AKms-1201 × IS 2284 (5.49%) followed by SPV-1201 × GJ-35-15-15 (395%).

In F_2 diallel set only one F_2 progeny SPV-946 × IS-2284 (7.98 %) exhibited positive heterosis but, it was non-significant (Table 15).

4.2.3 Endosperm texture

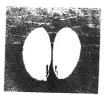
It is seen from the (Table 5), that for parental lines the range of variation for endosperm texture was from 22.40 to 56.95 % at Akola, whereas, at Patancheru the same ranged between 25.90 to 59.15%. However, for crosses the range was from 21.15 to 74.00% and 25.55 to 66.60% at Akola and Patancheru respectively. The corneous endosperm texture at both locations and average over locations was exhibited by parental line GJ 35-15-15 (22.40, 25.9 and 24.15%), respectively. Among crosses corneous endosperm texture at Akola was exhibited by the cross SPV-1201 × GJ 35-15-15 (21.15 %), whereas, at Patancheru location ICSB-101 B × GJ 35-15-15 (25.55%) exhibited the corneous endosperm texture. Cross SPV-1201 × GJ 3515-15 (25.13%) exhibited lowest endosperm texture when pooled over locations. Comeus, intermediate and floury endosperm textures are depicted in Plate 3.

In F₁ diallel only three crosses exhibited negative heterosis (Table 12). Highest negative heterosis was noted by cross SPV-1201 \times GJ 35-15-15 (-6.07%) followed by IS-2284 \times IS-6335 (-3.07%). Sixteen crosses exhibited significant positive heterosis. Highest significant positive heterosis was recorded in cross AKms-14 B \times SPV-946 (63.01%) followed by AKms-14B \times SRT-26B (52.31%).

Whereas, 21 crosses indicated negative heterobeltiosis, none of them is significant. Highest negative heterobeltiosis was indicated by crosses SPV-946 \times IS 6335 (-19.63%) followed by cross SPV-946 \times IS 2284 (-19.43%). Only four crosses recorded significant positive heterobeltiosis. Cross AKms-14B \times SPV-946 recorded highest significant positive heterobeltiosis (58.01%).

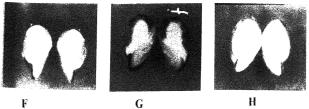
4.2.4 Electrical conductivity

It is observed from the (Table 5, Fig. 2) the range of variation for electrical conductivity for parental line was from 105.0 to 300.50 dSm⁻¹ at Akola and 214.00 to 846.50 dSm⁻¹ at Patancheru. However, in pooled data the range of variation was 167.25 to 553.25 dSm⁻¹. The parental line IS-9471 (105.00 dSm⁻¹) exhibited lowest electrical conductivity at Akola and IS-6335 (214.00 dSm⁻¹) at Patancheru, while in pooled data parental line IS-2284 (167.25 dSm⁻¹) exhibited lowest value. For crosses the range was 90.00 to 237.50 dSm⁻¹ and 82.00 to 485 dSm⁻¹at Akola and Patancheru, respectively. Among crosses lowest electrical conductivity at Akola was exhibited by the cross IS-6335 × IS 9471 (90.00 dSm⁻¹) and at Patancheru and pooled over locations SPV 946 × IS 9471 exhibited lowest electrical conductivity (82.00 and 102.25 dSm⁻¹, respectively).


In F₂ progenies (Table 8) the mean values ranged from 155.00 dSm⁻¹ (IS 6335 × IS-9471) to 553.00 dSm⁻¹ (SRT-26B × SPV-104) at Akola; whereas, it was 158.00 dSm⁻¹ (SRT-26B × IS -9471) to 685.00 dSm⁻¹ (SPV-1201 × GJ 35-15-15) at Patancheru. However, when pooled over locations, the electrical conductivity ranged Plate : 3 Endosperm texture of sorghum midian longitudinal half kernels of sorghum showing corneous, intermediate and floury endosperm

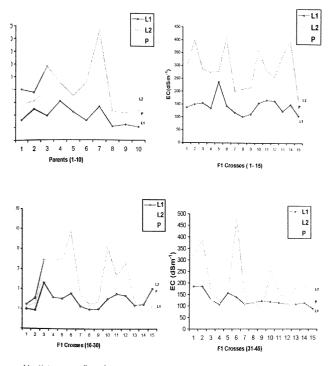
The rating for the kernels are

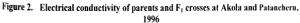
A-1,B-2,C-3,D-3,E-3,F-4,G-5 and H-5 (3 3X)


B

Corneous

C


D Intermediate E


G Floury

Н

Plate 3. Endosperm texture

L1 = Akola L2 = Patancheru, P = Pooled

PV-1201	1 SPV-1201 x ICSB-101B	16 ICSB-101B x IS-6335	31 GJ-35-15-J5 x SPV-946
`SB-101B	2 SPV-1201 x AKms-14B	17 ICSB-101B x IS-9471	32 GJ-35-15-15 x SPV-104
Kms-14B	3 SPV-1201 x SRT-26B	18 AKms-14B x SRT-26B	33 GJ-35-15-15 x IS-2284
RT-26B	4 SPV-1201 x GI-35-15-15	19 AKms-14B x GJ-35-15-15	34 GJ-35-15-15 x IS-6335
J-35-15-15	5 SPV-1201 x SPV-946	20 AKms-14B x SPV-946	35 GJ-35-15-15 x IS-9471
2V-946 2V-104 -2284 -6335 -9471	6 SPV-1201 x SPV-104 7 SPV-1201 x IS-2284 8 SPV-1201 x IS-6335 9 SPV-1201 x IS-6335 10 ICSB-101B x AKms-14B 11 ICSB-101B x SRT-26B 12 ICSB-101B x GJ-35-15-15	21 AKms-14B x SPV-104 22 AKms-14B x IS-2284 23 AKms-14B x IS-6335 24 AKms-14B x IS-6437 25 SR1-26B x SPV-104 27 SRT-26B x SPV-104	36 SPV-946 x SPV-104 37 SPV-946 x 15-2284 38 SPV-946 x 15-2384 39 SPV-946 x 15-9471 40 SPV-104 x 15-2284 41 SPV-104 x 15-6335 42 SPV-104 x 15-9471
	13 ICSB-101B x SPV-946	28 SRT-26B x IS-2284	43 IS-2284 x IS-6335
	14 ICSB-101B x SPV-104	29 SRT-26B x IS-6335	44 IS-2284 x IS-9471
	15 ICSB-101B x IS-2284	30 SRT-26B x IS-9471	45 IS-6335 x IS-9471

between 165.50 and 589.50 dSm⁻¹ and minimum electrical conductivity recorded in progeny IS-6335 × IS 9471 (165.50 dSm⁻¹)

All 45 crosses indicated negative heterosis out of which 30 crosses exhibited significant negative heterosis (Table 12). Highest significant negative heterosis was recorded by cross SPV-104 \times IS 9471 (-70.69 %) followed by cross SRT-26B \times IS 6335 (-61.63 %).

As regards heterobeltiosis all 45 crosses exhibited negative heterobeltiosis, of which 38 indicated significant negative heterobeltiosis. The range in negative direction varied from -10.55 to -80.89%. The highest significant negative heterobeltiosis was exhibited by cross SPV- $104 \times IS-9471$ (-80.89 %) followed by cross SPV- $104 \times IS$ 6335 (-74.33 %).

In F₂ diallel set (Table 15) nine progenies exhibited negative heterosis, of which three progenies exhibited significant negative heterosis. The highest negative heterosis exhibited by progeny SRT-26B × IS-9471 (-33.09 %) followed by AKms- 14 B × IS-6335 (-30.99 %) and SPV-104 × IS-9471 (-19.68%). Whereas, 29 progenies exhibited negative heterobeltiosis of which 13 progenies exhibited significant negative heterobeltiosis. The highest negative heterobeltiosis was exhibited by SRT- 26B × IS-9471 (-51.44 %) followed by AKms-14 B × IS 6335 (-50.23 %).

4.2.5 Days to 50% flowering

The range for days to 50% flowering, among parental lines was from 66.00 to 80.00 and 59.00 to 79.00 days at Akola and Patancheru, respectively (Table 5). The early flowering was exhibited by IS-6335 (66.00 days) at Akola, (59.00 days) Patancheru and (62.50 days) in pooled data. The crosses ranged between 59.50 and 76.00 days and 59.00 and 85.50 days at Akola and Patancheru, respectively. The earliest flowering crosses was SRT-26B x IS-6335 (59.00 and 59.75 days) at Patancheru and in pooled data, respectively.

The range of desirable heterosis was from -0.17 to 17.59 % (Table 12) 18 out of 45 crosses exhibited significant negative heterosis, highest recorded by

65

cross SPV-104 \times IS 9471 (-17.59 %) followed by SPV-104 \times IS-6335 (-13.32%). Only five crosses exhibited significant positive heterosis.

Heterobeltiosis in desired direction was exhibited by 36 crosses, while positive and significant heterobeltiosis was exhibited by only one cross. The cross SPV-104 \times IS 6335 recorded highest magnitude of heterobeltiosis (-22.04 %) followed by cross SPV-104 \times IS -9471 (-21.41 %). Both crosses were also significantly superior to other crosses for heterosis in negative direction.

4.2.6 Plant height

It is observed from the (Table 6), that the range of variation was from 136 cm to 283 cm at Akola, and 140 cm to 285.50 cm at Patancheru , however, in pooled data the range of variation was 138 cm to 273.75 cm. The parental line AKms-14B exhibited least height (136, 140,138 cm) at Akola, Patancheru and in pooled data, respectively. For cross the dwarfs cross was ICSB-101B \times AKms-14B (183 cm) at both locations and pooled data, however tallest cross was SPV-1201 \times IS-9471 (343m 340 and 341.50 cm) at Akola, Patancheru and in pooled data, respectively.

In F_2 progenies (Table 8) the range was from 157.90 to 260.00 cm at Akola and from 184.15 to 318.25 cm at Patancheru. The least height was exhibited by progeny ICSB-101B × AKms-14 B (157.90, 184.15 and 171.02 cm) at Akola, Patancheru and pooled data, respectively.

Significant positive heterosis was observed in (Table 13) 41 crosses and maximum heterosis (56.81 %) was observed in SPV-1201 \times AKms-14B followed by SPV-1201 \times ICSB 101B (54.40 %). Only three crosses exhibited negative heterosis but, none of the crosses exhibited significant. Highest negative heterosis was observed in SPV-1201 \times SPV-946 (-3.93 %).

Only seven crosses exhibited heterobeltiosis in negative direction and out of them, only three crosses were significant. They were $SRT-26 \times GJ 35-15-15$ (-19.04 %), AKms- 14B × GJ-35-15-15 (-12.02 %) and SPV-1201 × SPV-946 (-10.78 %).

In F₂ diallel set (Table 15) 18 progenies exhibited heterosis in negative direction and none of them was significant. The highest negative heterosis was exhibited by SPV-1201 × SPV-104 (-12.55 %) followed by SPV-1201 × ICSB-101B (-10.06 %).

As regards to heterobeltiosis, 35 progenies exhibited negative heterobeltiosis and seven progenies exhibited significant negative heterobeltiosis. The range was from -23.32 to -1.21 %. The highest negative heterobeltiosis was exhibited in SPV-1201 × ICSB-101B (-23.32 %) followed by SRT $-26B \times GJ$ -35-15-15 (-21.61 %).

4.2.7 Cob length

Mean values for this character varied from 21.20 cm to 26.20 cm and from 17.00 to . 28.90 cm in case of parental lines at Akola and Patancheru, respectively. (Table 6), whereas in pooled data the range was 19.10 cm to 27.55 cm. Parental line ICSB-101B recorded maximum ear head length (26.20, 28.90 and 27.55 cm) at Akola, Patancheru and pooled data, respectively. Among crosses the range was 20.40. (SPV-1201 × SP 104) to 29.70 cm (GJ-35-15-15 × IS-6335) at Akola, 21.00 (AKms-14 B × SRT-26B) to 32.10 cm (ICSB 101B × IS-9471) at Patancheru and 20.95 cm (SPV-1201 × SPV-104) to 30.80 cm (ICSB-101B × IS-9471) in pooled data.

In F₂ progenies (Table 8) mean values ranged from 18.95 (SPV-1201 × SPV-104) to 30.05 cm (ICSB-101 B × AKms-14 B) at Akola, whereas, it was 20.00 (SPV-946 × SPV-104) to 29.85 cm in (SPV-946 × IS-6335) at Patancheru. However, in pooled data, the cob length ranged between 21.25 to 28.90 cm and the maximum sob length recorded in progeny (ICSB -101 B × AKms-14 B).

In F₁ diallel set (Table 13) the estimates for heterosis ranged from 0.10 to 22.40% in positive direction and from -2.42 to -4.23% in negative direction. Five crosses were significant in positive direction. The highest heterosis % in positive direction was recorded by cross SPV-104 × IS-6335 (22.40%) followed by AKms-14B × GJ-35-15-15 (19.79%). Only one cross AKms-14B \times GJ-35-15-15 (19.54%) exhibited significant heterobeltiosis in positive direction. This cross was also significantly superior to other crosses for heterosis in positive direction.

In F_2 diallel set (Table 15) 42 progenies exhibited positive heterosis of which only three progenies exhibited significant positive heterosis, the highest positive heterosis was exhibited in GJ-35-15-15 × IS 2284 (27.54 %) followed by SPV-946 × IS-6335 (17.26%) and GJ-35-15-15 × IS-9471 (14.92%). Whereas, 25 progenies exhibited positive heterobeltiosis, of which only one progeny GJ-35-15-15 × IS-2284 (25.60 %) exhibited significant positive heterobeltiosis.

4.2.8 Glume covering

The range for glume covering for parental lines was exhibited from 50 to 75% at Akola, Patancheru and in pooled data (Table 6). Parental lines ICSB-101B and IS-6335 recorded maximum 75% glume covering at Akola, Patancheru and pooled data. Minimum 50% was recorded by SPV-1201, AKms-14B, SPV-946, SRT-26B at Akola, Patancheru and in pooled data.

Among crosses ICSB-101 B × IS-6375, SPV-104 × IS-6335 and IS-2284 × IS-6335 recorded maximum 75% glume covering at Akola, Patancheru and pooled data. AKms-14B × GJ-35-15-15 and AKms-14B × SPV-946 recorded maximum glume covering at Patancheru.

In F_2 progenies (Table 9) maximum 66.50, 75.00 and 70.75 % glume covering was exhibited in SPV-946 × IS-6335 at Akola, Patancheru and pooled data, respectively. However, minimum 37.50% was recorded in SPV-1201 × SPV-946 and AKms- 14B × IS-946 at Akola. Whereas, SPV-1201 × SPV-104 recorded minimum 37.50 and 41,25% glume covering at Patancheru and in pooled data, respectively.

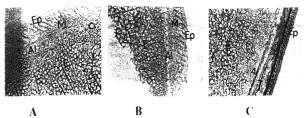
In F_1 diallel set (Table 13) none of the crosses recorded significant positive heterosis. However, 23 crosses recorded positive heterosis, the highest (25%)) exhibited by AKms- 14 B × GJ 35-15-15 and AKms- 14 B × SPV -946. None of crosses exhibited significant positive heterobeltiosis. However, above crosses exhibited highest 25% heterobeltiosis in positive direction. In F₂ diallel set (Table 15) 18 progenies exhibited positive heterosis, but it was not significant. The highest positive heterosis was exhibited in progenies SPV-104 × IS 2284 (20.47%) followed by GJ-35-15-15 × IS 2284 (16.71%). Whereas, 16 progenies exhibited positive heterobeltiosis, the range was 0.00 to 13.78%. The highest positive heterobeltiosis was exhibited in SPV 104 × IS 2284 (13.78%) followed by GJ-35-15-15 × IS-2284 (10.22 %).

4.2.9 Mesocarp thickness

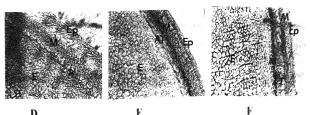
The parental lines ranged was from 45.45 to 97.52 μ m at Akola 59.91 to 96.57 μ m at Patancheru and 54.02 μ m to 97.05 μ m in pooled data. Lowest mesocarp thickness was recorded in parental line SPV-946 (45.45 μ m) at Akola and pooled data and IS-, 9471 (59.91 μ m) at Patancheru. Among crosses the mean values ranged from 32.03 μ m, 31.32 μ m and 31.68 μ m (SPV-104 × IS-6335) to 96.79 μ m, 99.56 μ m and 98.13 μ m (AKms-14B × SRT-26B) at Akola, Patancheru and in pooled data, respectively (Table 6). Mesocarp thickness of susceptible, elite (moderately resistant), resistant parental lines and red and while cross are shown in Plate 4.

The ranged for desirable heterosis was from -3.03 to -61.14% (Table 13). Out of 45 crosses in F_1 generation 29 exhibited significant negative heterosis, the highest (-61.14%) recorded by SPV-104 × IS-6335 followed by SPV-104 × IS-2284 (-57.19%) and ICSB-101 B × IS -6365 (-56.61%).

Heterobeltiosis in desired direction (negative and significant) were exhibited by 32 crosses. The ranged of heterobeltiosis was from 13.74 to -64.39%. The highest heterobeltiosis (-64.39%) was indicated by SPV-104 \times IS-6335 followed by ICSB-101 B \times IS- 6335 (-61.74%). Both crosses were significantly superior to other crosses for heterosis in negative direction.

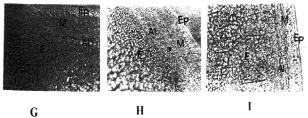

4.2.10 Threshed grain mold rating

At Akola, the range of variation for parental lines was form 2.00 to 4.00, whereas it was 1.50 to 5.00 and 1.75 to 4.50 at Patancheru and in pooled data, respectively. [Table 6). The parental lines IS-9471, IS- 6335 and IS-2284 exhibited lowest (2.0) **I**GMR at Akola, whereas, IS-9471 exhibited (1.5) TGMR at Patancheru and (1.75)


Plate : 4 : Mesocarp thickness (Transverse section, 66.6 X)

1	Parental Lines	
- 4	Akms 14-B	White (S)
В	SPV-946	White (MR)
C	18 9471	Red (R)
п	F ₁ Cross (red)	
D	SPV-104	White (Parental line)
E	18-6335	Red (Parental line)
F	SPV-104 x IS-6335	Red (Cross)
	F1 (Cross (white)	
G	SPV-1201	White (Parental line)
11	ICSB-101B	White (Parental line)
1	SPV-1201 x ICSB-101B	White (Cross)

(Ep Epicarp, M≅Mesocarp, Al-Aleurone layer, E-Endosperm and T-testa)



B 1 Parental lines

D

E II F1 cross (red)

Н III F1 cross (white)

Plate 4. Mesocarp thickness

TGMR in pooled data. Among crosses the range was from (2.0 to 3.50), cross SPV-946 × IS-6335 exhibited the lowest and AKms-14B × SRT-26B exhibited the highest TGMR at Akola, at Patancheru TGMR varied between (1.50 and 5.00) cross GJ 35-15-15 × IS-9471, IS-2284 × IS-6335 and IS-6353 × IS -9471 exhibited lowest (1.50) TGMR and SPV-946 × SPV-104 and SRT 26 B × GJ 35-15-15 exhibited highest (5.0) TGMR. However, in pooled data IS-6335 × IS-9471 and IS 2284 × IS-6335 recorded lowest (1.75) TGMR.

In F₂ diallel (Table 9) lowest TGMR was exhibited by progeny IS-2284 \times IS-9471 (1.70, 2.0 and 1.85) at Akola, Patancheru and pooled data respectively. However highest TGMR was exhibited by AKms-14B \times SPV-104 (3.05) and (3.28) at Akola and pooled data, respectively. Whereas at Patancheru progeny AKms-14B \times SRT-26B (4.00) exhibited highest TGMR.

In F₁ diallel set (Table 13) the range for desirable heterosis was from 2.86 to -46.15% Out of 45 crosses 22 crosses exhibited significant negative heterosis, the highest (-46.15%) recorded by AKms-14 B \leq IS-6335 followed by (44.00 %) by AKms-14 B \leq IS-9471.

Heterobeltiosis in negative direction (negative and significant) were exhibited by 25 crosses. The range of heterobeltiosis was from 5.56 to 61.11°o. The highest heterobeltiosis was exhibited (-61.11 %) in AKms-14B × IS-6335 and AKms-14B × IS-9471 followed by AKms-14 B × IS-2284 (-55.56%). First two crosses were significantly superior to other crosses for heterosis in negative direction.

In F₂ diallel set (Table 15) 44 progenics exhibited negative heterosis, of which 25 exhibited significant negative heterosis, the highest negative heterosis exhibited by AKms-14B × IS-6335 (-30.00%) followed by AKms-14B × GJ 35-15-15 (-29.70%) and AKms-14 B × IS-9471 (-29.60%). Whereas, all 45 progenies exhibited negative heterobeltiosis of which 41 exhibited significant negative heterobeltiosis. The range was from - 51.11% to - 2.50%. The highest negative heterobeltiosis was exhibited in AKms-14B × IS-9471 (-51.11%) followed by KKms-14 B × IS-6335 (-49.44%) and AKms-14B × IS-2284 (-46.67%).

4.2.11 Seed germination

It is seen form the (Table 7), that for parental lines the range of variation for seed germination was from 29.00 to 86.00% at Akola, whereas, at Patancheru it ranged between 2.50 and 61.00%. However, when pooled over locations parental lines ranged between 15.75 to 71.75%. Among crosses the range of variation for germination was from 32.50 to 98.00% at 14.00 to 88.50% at Akola and Patancheru, respectively. Whereas, pooled data the crosses ranged between 25.25 to 90.00%. The highest seed germination at Akola was exhibited by parental line IS 6335 (86.00%), whereas, at Patancheru and pooled data parental line IS-2284 exhibited highest germination 61.00 and 71.75%, respectively.

Among crosses SPV-1201 · IS-2284 exhibited highest 98.00% seed germination at Akola, ICSB-101B < IS-6335 exhibit highest 88.50% germination at Patancheru, whereas, cross ICSB-101B · IS-2284 exhibited highest germination (90.00%) in pooled data.

In F₂ progenies (Table 9) the mean values for germination ranged from 53.00 to 87.90% at Akola 9.75 to 83.50% at Patancheru and 38.00 to 84.70% in pooled data. At Akola progeny IS-2284 \times IS-6335 exhibited highest germination (87.90%) followed by IS-6335 x IS-9471 (86.40%) and SPV-946 \times IS-6335 (86.15%), while progeny IS-2284 \times IS-9471 exhibited highest seed germination (83.50 and 84.70%) at Patancheru and pooled data, respectively.

The range of heterosis in positive direction was from 4.14 to 76.76% (Table 14). All crosses exhibit positive heterosis, however 37 crosses exhibit significant. The highest heterosis (76.76%) was indicated in cross Λ Kms-14B × IS-6335, followed by cross AKms-14 B × IS-9471 (71.44%).

Regarding heterobeltiosis the range was 1.20 to 40 56% in positive direction, whereas, 17 crosses out of 45 exhibits significant positive heterobeltiosis. The highest (40.56%) was indicated by SPV-1201 × SRT-26B followed by ICSB-101B × SPV-946 (33.89%) and ICSB-101B × IS-9471 (33.45%). In F₂ diallel set (Table 16) all the progenies exhibited positive heterosis, of which 23 progenies exhibited significant positive heterosis. The highest positive heterosis was exhibited by progeny ICSB-101B AKms-14B (78.73°o) followed by AKms-14B GJ-35-15-15 (62.84°o) and AKms-14B IS-6335 (57.66%). However, 36 progenies exhibited positive heterobeltiosis, of which only four progenies exhibited significant positive heterobeltiosis. The highest positive heterobeltiosis was exhibited by, ICSB-101B AKms-14B (38.93°o) followed by SPV-1201 SRT-26B (37.20°o).

4.2.12 Infection by F. moniliforme

It is seen from the (Table 7) that, the range of variation for parental lines in F₁ diallel set, was from 5.33 to 38.67% at Akola, whereas, at Patancheru the same ranged between 34.00 to 71.34%. However, in crosses the range was from 5.99 to 35.99 and 21.34 to 70.67% at Akola and Patancheru, respectively. The lowest fungal load of *E. moniliforme* at Akola, Patancheru and in pooled data was exhibited by IS-9471, (5.33, 34.00 and 19.67%), respectively. Among crosses lowest fungal load of *E. moniliforme* at Akola was exhibited by cross SPV-104 \leq IS-6335 (5.99%), whereas, at Patancheru and pooled data, cross ICSB-101B \times IS-6335 exhibited lowest infection by *E. moniliforme* (21.34 and 15.66%), respectively.

In F_2 diallel progenies (Table 10) mean values ranged from 18.50 (ICSB-101B × IS-6335) to 52.52% (SPV-104 × IS-9471) at Akola, where as it was 25.34 (IS-6335 × IS-9471) to 67.50% (AKms-14B × SPV-104) at Patancheru. However, in pooled data infection by *F. moniliforme* ranged between 26.88% to 54.25%, lowest 26.88% *F. moniliforme* load was recorded in progeny (SPV- 946 × IS-6335).

In F_1 diallel set 40 crosses exhibited negative heterosis of which only five crosses exhibited significant. The range was 53.47°_0 to 0.02% in negative direction. However, the highest negative heterosis was in cross ICSB-101B × IS-6335 (-53.47%) followed by AKms-14B × IS-6335 (-50.81%) and SPV-104 × IS-6335 (-48.39%) (Table 14). However, 43 progenies exhibited negative heterobeltiosis of which 13 progenies exhibited significant. The range was -62.41 to -0.83 °o in negative direction. The highest negative heterobeltiosis was observed in AKms-14B × IS-6335 (-62.41%) followed by SPV-104 × IS-6335 (-61.22°o) and ICSB-101B × IS- 6335 (-60.51°6).

In F₂ diallel set (Table 16) only three progenies exhibited negative heterosis, but it was not significant. The highest negative heterosis was exhibited in progenies SRT-26B \times SPV-946 (-12.50%) followed by ICSB-101B \times AKms-14 B (-7.59%) and SRT -26B \times SPV-104 (-1.93%). Three progenies recorded significant positive heterosis.

However, 13 progenies exhibited negative heterobeltiosis, but it was not significant. The range was -17.43 to 0.04%. The highest negative heterobeltiosis exhibited in SRT-26B \times SPV-946 (-17.43%) followed by AKms-14 B \times IS-9471 (-16.13%) and SPV-946 \times IS-6335 (-16.00%), but it was not significant. Only one progeny IS-2284 \times IS-6335 exhibited (104.41%) significant positive heterobeltiosis.

4.2.13 Infection by F. pallidoroseum

The range of variation for parental lines for *F. palludoroseum* was exhibited from 0.71 to 2.67% at Akola, 7.34 to 19.34% at Patancheru and 4.02 to 10.51% in pooled data. Lowest (0.71%) *F. palludoroseum* load was exhibited by parental lines SPV-1201, ICSB-101B, AKms-14B and GJ-35-15-15 at Akola, whereas, AKms-14B exhibited lowest 7.34 and 4.02% *F. palludoroseum* load at Patancheru and in pooled data, respectively. In crosses lowest (0.71, 5.34 and 3.02%) *F. palludoroseum* load was exhibited in cross ICSB-101 B × IS 2284 at Akola, Patancheru and pooled data, respectively (Table 7).

In F₂ progeny lowest (0.77%) fungal load of *F. pallidoroseum* was exhibited in GJ-35-15-15 × SPV-946 at Akola, however, progeny AKms-14B × GJ-;35-15-15 exhibited lowest (1.50 and 1.53%) fungal load at Patancheru and pooled a_{data} , respectively (Table 10). Out of 45 crosses, 13 crosses exhibited negative heterosis out of which only one cross ICSB-101 B \times IS-2284 (-64.85%) exhibited significant heterosis in F₁ diallel set (Table 14).

The range of heterobeltiosis was from -71.25 % to -0.04%, 22 crosses exhibited negative heterobeltiosis, out of which only one cross [CSB-101 B × IS-2284 (-71.25%) exhibited significant heterobeltiosis. The same cross was found significantly superior to other crosses for heterosis in negative direction.

In F_2 diallel 37 progenies exhibited negative heterosis of which only one progeny GJ 35-15-15 × SPV-946 (-74.43%) exhibited significant negative heterosis. The range was -74.43 to -1.71% in negative direction. Thirty eight progenies exhibited heterobeltiosis in negative direction and out of them, only one progeny GJ-35-15-15 × SPV-946 (-79.88%) was significant. The same progeny was found significantly superior to other crosses for heterosis in negative direction (Table16).

4.2.14 Infection by C. lunata

At Akola location, the range of variation for parental lines was from 24 (IS-9471) to 60% (GJ-35-15-15), whereas, at Patancheru and in pooled data the range of variation for parental lines was from 15.33 and 20.67 (IS-6335) to 37.33 and 46.67% (SRT 26B), respectively. Among crosses the range was from 18.00 (SPV-1201 \times IS-6335 and SPV-1201 \times IS-9471) to 68% (ICSB-101B \times SRT-26B) at Akola, whereas, at Patancheru 8.0 (ICSB-101B \times SPV-104) to 37.33% (SPV-1201 \times SPV-104) and in pooled data the range was from 20.33 (ICSB-101B \times IS-6335) to 46.33% (SPV-1201 \times SPV-104) (Table 7).

In F_2 progenies lowest (19.26%) fungal load of *C. lunata* was **exhibited** in IS-6335 × IS-9471 at Akola, whereas, IS 2284 × IS 9471 exhibited lowest **values** (18.50 and 19.71%) at Patancheru and in pooled data, respectively (Table 10).

In F₁ diallel set (Table 14), 36 crosses exhibited negative heterosis, but it was not significant. The range was -36.13 to -0.55%, highest negative heterosis was exhibited in ICSB-101 B × IS-6335 (-36.13 %) followed by SRT- 26B × IS-9471 (-34.29 %) and SPV-1201 × IS-9471 (-33.01 %) The range of heterobeltiosis was from -52.72 to -2.87%, 41 crosses exhibited negative heterobeltiosis, out of which 11 crosses were exhibited significant. The highest negative heterobeltiosis was exhibited by cross ICSB-101 B × IS-6335 (-52.72%) followed by SRT-26B × IS-9471 (-50.71%) and SPV-1201 × IS-9471 (-49.26%).

In F₂ diallel set (Table 16), 34 progenies exhibited negative heterosis The range was from -38.72 (IS-2284 × IS-9471) to 1.17% (SRT-26B × IS-2284), none of them was significant. However, 41 progenies exhibited negative heterobeltiosis but it was not significant. The range was from 45.25 to 3.94° o. Highest negative heterobeltiosis was exhibited in progeny IS-2284 · IS-9471 (-45.25%) followed by IS-2284 × IS-6335 (-41.39%).

4.2.15 Infection by other fungi

At Akola location the range of variation for parental lines was from 9 34 (AKms-14B) to 24 67 % (IS-2284), whereas, at Patancheru the range of variations was from 0 71 (SPV-104) to 6.00% (ICSB-101B), however in poled data the range of variation was from 5.18 (AKms-14B) to 15.00% (IS-2284) Among crosses lowest (12 00, 0.71 and 9.00%) fungal load of other fungi was exhibited in AKms-14B \cdot SPV-104, ICSB-101B \times SPV-104, and AKms-14B \cdot SPV-104 at Akola, Patancheru and pooled data, respectively (Table 7).

In F₂ progenies lowest (27.00 20.52 and 8.45°_{\circ}) fungal load of other fungi was exhibited in ICSB-101 B × SRT-26B, SPV-1201 × IS-2284 and AKms-14B × SRT-26B at Akola, Patancheru and pooled data, respective (1 able 10).

In F_1 diallel four crosses exhibited negative heterosis but it was not significant. The highest negative heterosis exhibited by GJ-35-15-15 × IS-2284 (-15.66%) followed by IS-6335 × IS-9471 (-13.94%) and ICSB 101B × SPV-104 (-5.14%). However, 11 crosses exhibited negative heterobeltiosis, the range was from 0.02 to -22.22%. The highest negative heterobeltiosis exhibited in GJ-35-15-15 < IS 2284 (-22.22%) followed by SRT-26 B \times IS 9471 (-19.52). None of them exhibited significant negative heterobeltiosis (Table 14).

In F₂ diallel set 14 progenies exhibited negative heterosis, but it was not significant. The highest negative heterosis was exhibited in progeny GJ-35-15-15 \propto SPV-104 (-29.64%) followed by SPV-946 \propto SPV-104 (-21.40 %) and AKms-14B x GJ-35-15-15 (-18.18 %), whereas, 20 progenies exhibited negative heterobeltiosis. The range was -40.00 to -4.15%. The highest negative heterobeltiosis exhibited in progeny AKms-14B \times GJ-35-15-15 (-40.00%) followed by GJ-35-15-15 \times SPV-104 (-39.80%). None of the progeny exhibited significant negative heterobeltiosis (Table 16).

Biochemical characters

4.2.16 Proteins

The data relative to mean performance of parental lines and crosses for biochemical parameters is presented in (Table 11).

Data revealed, that the range of variation in parental lines for proteins in sorghum grains varied from 8.93 to 12.94%, however, for crosses the range was 5.23 to 10.56%. The highest proteins was exhibited by parental lines ICSB-101B (12.94%) followed by SRT -26 B (12.41%) and SPV-1201 (12.35%). Among crosses the highest proteins was exhibited by cross SPV-104 × IS-6335 (10.56%) followed by SPV-1201 × IS-9471 (10.11%).

Among 45 crosses none of cross exhibited the heterosis in positive direction, a negative heterosis exhibited in all 45 crosses (Table 17) The highest negative heterosis was exhibited by cross AKms-14B \cdot SRT 26 B (-27.43%), followed by AKms-14 B \times SPV-946 (-27.27%).

Significant heterobeltiosis was reported in all 45 crosses in negative frection, and none of crosses exhibited positive heterobeltiosis The highest interobeltiosis in negative direction was exhibited by cross SRT-26B × IS-9471 (-3.36%) followed by SRT-26 B × IS-2284 (-29.15%).

4.2.17 Soluble sugars

The mean performance of parental lines and crosses for soluble sugars content is presented in (Table 11).

Data revealed that parental lines mean values for this character ranged from 1.2 (SPV-104) to 2.3% (AKms-14B). Among crosses SPV-1201 \times IS-6335 and SRT- 26B \times IS-2284 (1.8%) exhibited highest and SPV-946 \times SPV-104 and SPV-104 \times IS-6335. (0.8%) recorded lowest value.

Among 45 crosses (Table 17), only four exhibited the heterosis in **positive** direction, the highest being 2.53% (GJ- $35-15-15 \times 15-9471$) followed by **2.29%** (SPV-1201 < IS-6335). Negative heterosis exhibited in 41 crosses. The **highest significant** negative heterosis was exhibited by cross AKms-14B · SRT-26B (-**28.67%**).

None of crosses exhibited significant and positive heterobeltiosis. Only one cross SPV-1201 × IS-6335 (2.29%) exhibited positive heterobeltiosis. Significant heterobeltiosis was reported in 34 crosses in negative direction.

4.2.18 Tannins

The mean performance of parental lines and crosses for tannins content is presented in (Table-11).

Parental lines range for tannins content was varied from 0.02 (ICSB-101B) to 5.84 CE % (IS-2284). However, crosses range was varied from 0.01 (ICSB-101B × GJ-35-15-15) to 3.41 CE % (AKms 14B × IS 2284).

Among 45 crosses 20 exhibited positive heterosis (Table 17), of which 16 were significant. Cross (SRT-26B \cdot IS-9471) recorded highest 38.64 CE % followed by (AKms-14B \times IS-9471) 36.84 CE %.

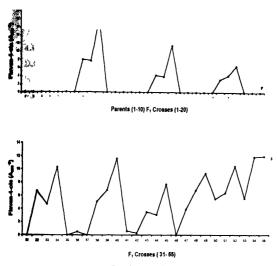
Only one cross (SRT-26B \times SPV-104) exhibited positive heterobeltiosis (0.07%). Twenty seven crosses exhibited significant negative heterobeltiosis.

4.2.19 Flavan-4-ols

The data relative to mean performance on flavan-4-ols both extract (methanol + **H**+/**methanol**) content is presented in (Table 11 and Fig. 3).

The range for parental lines for this characters varied from 0.00 to **18.00** $A_{550/g}$ 1, however, for crosses the range was 0.00 to 12.00 $A_{550/g}$ 1. The highest **flavan-4-**ols content was exhibited by parental lines IS-9471 (18.0) followed by IS-**2284** (7.9) and IS-6335 (7.6 $A_{550/g}$ 1). Among crosses the highest flavan-4-ols content was exhibited by IS-6335 × IS-9471 (12.00) followed by IS-2284 × IS-9471 (11.90 $A_{550/g}$ 1).

Among 45 crosses 25 exhibited positive and significant heterosis, the range was 52.10 to 5.67% in positive direction (Table 17). Cross SR I-26B \times IS-6335 (52.07%). However, only one crosses recorded negative significant heterosis, IS-2284 \times IS-6335 (-14.01%).


Out of 45 crosses 21 crosses exhibited positive heterobeltiosis of which **four were** significant. The highest positive heterobeltiosis was observed in (J-35-15-15 x SPV-946 (48 37 %) followed by SRT-26B × SPV-946 (41 30%)

Mean performance at Akola, 1995 and 1996

4.3.1 100-grain weight

Data presented in (Table 18) revealed that, parental line SPV-1201 exhibited highest **100-grain** weight (3.04, 2.80, and 2.92 g) in both season and in pooled data. However, **lowest** (1.61 g) value was recorded in parental line IS-2284 in Akola 95 season, whereas, parental line IS-6335 exhibited lowest (1.69 and 1.66 g) grain weight in **Akola** 96 season and in pooled data, respectively.

Among crosses maximum 100-grain weight was recorded in SPV-946 **SPV-104** (3.17 g) in Akola 1995. whereas, cross SPV-1201 > SPV-104 recorded **maximum** (3.40 and 3.28 g) grain weight in Akola 1996 and in pooled data, **respectively**. Cross IS-2294 < IS-6335 recorded minimum (1 62, 1.76 and 1 69 g) grain weight in Akola 1995, Akola 1996 and in pooled data, respectively.

F – Flavan-4-ols Figures 3. Flavan-4-ols of parents and F₁ crosses at Akola 1995

1 SPV-1201	11 SPV 1201 xICSB 101B	26 ICSB 10113 v 15-6345	11 GL35 15 15 x SPV 946
2 ICSB-10113	12 SPV 1201 x \Kms 14B	27 ICSB 101B x IS 9471	42 GJ 35 15 15 x SPV 104
3 AKms-14B	13 SPV 1201 x SR1 26B	28 Akms 14B x SR F 26B	43 GJ 35 15 15 x JS 2284
4 SRT-26B	14 SPV 1201 x GJ 35 15 15	29 AKms 14B x GJ 35 15 15	44 GL35 15 15 x 15-6335
5 GJ-35-15-15	15 SPV 1201 x SPV 946	30 Akms 14B x SPV 94	15 GE35 15 15 XES 2471
6 8PV-946	16 SPV 1201 x SPV 104	31 Akms 14B x SPV 104	46 SPV 946 x SPV 104
7 SPV-104	17 SPV 1201 \ IS 2284	32 Akms 14B x 15 2284	17 SPV 946 x 18 2284
8 18-2284	18 SPV 1201 x 15-6335	33 Akms 14B x 15-6335	48 SPV 946 x 18-6435
9 18-6335	19 SPV 1201 x 18 9471	34 Akms 14B x 15 9471	49 SPV 946 x 18 9471
10 13-9471	20 ICSB 101B x Akms 14B	35 SR1 26B CGJ 35 15 15	50 SPV 104 v18 2284
	21 ICSB 101B x SR1 26B	36 SR 1 26B x SPV 946	51 SPV 101 x 18-6335
	22 ICSB 10113 x GJ 15 15 15	37 SR1 26B x SPV 104	52 SPV 104 x1S 9471
	23 ICSB 101B x SPV 946	38 SR I 26B x IS 2284	53 JS 2284 x JS-6335
	24 ICSB 101B x SPV 104	39 SR F 26B x 15-6335	54 IS 2284 x IS 9471
	25 ICSB 101B x IS 2284	40 SR 1 26B x 1S 9471	55 IS-6335 x IS 9471

4.3.2 Grain hardness

Data presented in (Table 18) revealed that parental line SPV-1201 exhibited highest (9.09, 8.67 and 8.88 kg) grain hardness in Akola 1995, Akola 1996 and in pooled data, **respectively**. Cross GJ-35-15-15 × SPV-946 exhibited highest (8.47, 8.70, 8.59 kg) grain hardness in Akola 1995, Akola 1996 and in pooled data, respectively.

4.3.3 Endosperm texture

It is observed from (Table 18), that parental line SPV-946 recorded (24.10 and 22.00%) corneous endosperm texture in Akola 1995 and in pooled data, respectively, however, parental line GJ-35-15-15 exhibited (18.00 %) corneous endosperm texture in Akola 1996. Whereas, floury endosperm texture (66.95 and 61.40%) recorded in parental line IS-6335 in Akola 1995 and in pooled data, respectively, and (56.95%) in IS-2284 in Akola 1996. Cross SPV-1201 < GJ-35-15-15 exhibited (27.25, 21.15 and 24.00%) corneous endosperm texture in Akola 1995, Akola 1996 and in pooled data, respectively, however, cross SPV-104 < IS-9471 recorded (73.85 and 71.20%) floury endosperm texture in Akola 1995 and in pooled data, respectively and in SPV-104 - IS-6335 (74.00%) in Akola 1996.

4.3.4 Electrical conductivity

It is observed from the (Table 18), that lowest electrical conductivity (97.00, 105.00 and 101.00 dSm⁻¹) was exhibited in parental line IS-9471 in Akola 1995, Akola 1996 and in pooled data, respectively. However, highest electrical conductivity was exhibited by parental line SPV-104 (350.00 and 305.00 dSm⁻¹) in Akola 1995 and in pooled data, respectively and SRT-26B (300.50 dSm⁻¹) in Akola 1996.

4.3.5 Days to 50% flowering

It is seen from (Table 18), that parental line IS-6335 exhibited minimum (60.00, 66.00and 63.00 days) flowering and maximum (80.50, 80.00 and 80.25 days) flowering was observed in SPV-104 at Akola 1995, Akola 1996 and in pooled data, respectively. Cross SPV-1201 × SRT-26 indicated maximum value (89.00 and 82.50 days) in Akola 1995 and in pooled data respectively. However, cross SPV-946 · IS-9471 recorded maximum flowering 79 00 days in Akola 1996 season and minimum flowering was
 recorded in ICSB-101B × IS-2284, ICSB-101 B IS-6335, and Vkms-14B × IS-6335
 (\$7 days) in Akola 1995 However, in Akola 1996 and in pooled data cross SR I-26B
 × IS-6335 exhibited minimum (59 50 and 58 7 days) flowering, respectively

4.3.6 Plant height

Data presented in (Table 19) revealed that parental line AKms-14B recorded minimum **plant** height (142 50, 136 00 and 139 25 cm) in both season and in pooled data, **respectively** However, maximum (265 00 cm) was recorded in parental line IS-2284 **in** Akola 1995 and (251 00 and 252 25 cm) in parental line IS-9471 in Akola 1996 and **in** pooled data, respectively Cross ICSB-101B \times SPV-104 recorded minimum (150 50 cm) plant height in Akola 1995, however, cross ICSB-101 B \times Akms-14B **recorded** minimum plant height (183 00 and 171 50 cm) in Akola 1996 and in pooled **data**, respectively

4.3.7 Cob length

It is observed from (Table 19), that parental line ICSB-101B indicated maximum (26.60, 26.20 and 26.40 cm) and cross (r1-35-15-15 IS-6335 recorded maximum (30.90, 30.60 and 30.75 cm) cob length in both seasons and in pooled data, respectively

4.3.8 1GMR

Data presented in (Table 19) revealed that parental line IS 9471 recorded lowest (1 50 2.00 and 1 75) and parent 4Kms-14B recorded highest (4 00 4 00 and 4 00) 1 GMR in both seasons and in pooled data, respectively Among crosses 25 23 and 22 cross recorded minimum (2 00) TGMR at both locations and in pooled data respectively.

4.3.9 Seed germination

In F₁ diallel set (Table 19) the range of variation for parental line was exhibited from **\$1.00** to 97 00, 29 00 to 86 00 and 40 00 to 90 00 $^{\circ}$ in Akola 1995, Akola 1996 and in probled data, respectively Parental line GJ-35-15-15 exhibited highest (97 00 $^{\circ}$ o) seed remainstron in Akola 1995, Akola 1996 and in pooled data, parental line I5-6335 proceeded highest 86 00 and 90 00% germination, respectively Parental line AKms**MB** recorded lowest 51 00, 29 00 and 40 00% seed germination in both seasons and in **pooled** data, respectively

Among crosses, the highest germination was recorded in GJ-35-15-15 \times IS-6335 and SPV-946 \times IS-6335 (93 00%) in Akola 1995 season. In Akola 1996 and in pooled data, cross SPV-1201 \times IS-2284 recorded highest seed germination **98.00** and 94 50%, respectively

4.3.10 Infection by F monuliforme

It is seen from (Table 20), that the range of variation in F_1 diallel set was from 0.21 (IS-2284 and GJ-35-15-15) to 34 45% (SRT-26B) in Akola 1995, whereas, in Akola 1996 the range was 5.33 (IS-9471) to 46 00% (AKms-14B) However, in pooled data the range was 4.51 (IS-9471) to 30 23% (SR1-26B)

Among crosses minimum (3 34, 6 00 and 4 67%) *F-monthforme* load was exhibited in IS-6335 × IS-9471 at both locations and in pooled data, respectively However, maximum (73 50, and 51 08%) load was recorded in cross Akms-14B SRT-26B in Akola 1995 and in pooled data respectively. Whereas cross SPV-1201 SPV-946 indicated maximum (35 99%) load in Akola 96 season

4.3.11 Infection by F pallidoroseum

It is observed from (1able 20) that, all the parental lines in Akola 1995 recorded minimum (0.71°o) load, however, five parents viz SPV-1201, ICSB-101B, Akms-14B, GJ-35-15-15 and SPV-104 recorded minimum load in Akola 1996, and in pooled data.

Among crosses, all the crosses except SPV-1201 IS-2284 recorded minimum (0 71 °o) F palludoroseum load in Akola 1995, 12 crosses each in Akola **1996** and in pooled data

4.3.12 Infection by C lunata

It is observed from (Fable 20), that in Akola 1995 the range of variation for parential lines was from 1.46 (SPV-1201) to 45.55% (SPV-104), whereas in Akola 1996 it was from 24.00 (IS-9471) to 60.00% in (GJ-35-15-15), however in pooled data the range was 15.89 (IS-9471) to 50.66 % (SPV-1201)

Among crosses minimum $(12\ 34^\circ_0)\ C$ lunata load was exhibited in tross SPV-946 × IS-9471 in Akola 1995 season, however, cross SPV-1201 × IS-9471 exhibited minimum (18 00 and 19 00°6) load in Akola 1996 and in pooled data Whereas, cross ICSB-101B × SRT-26B indicated maximum (58 90, 68 00 and \$3,45°6) load in Akola 1995, Akola 1996 and in pooled data, respectively

4.3.13 Infection by other fungi

Data presented in (Table 20) revealed that in Akola 1995 the range of variation for parental lines was from 16 67 (SPV-1201) to 88 89% in (GJ-35-15-15), in Akola 1996, 9 33 (AKms-14B) to 26 00% (SPV-946) and in pooled data 18 55 (SR1-26B) to 55.11% in (GJ-35-15-15) Among crosses the range of variation was from 8 88 (AKms-14B \times SRT-26B) to 46 67% (GJ-35-15-15) SPV-946) in Akola 1995, however, it was from 12 00 (AKms-14B \times SPV-104) to 37 34% (AKms-14B IS-6335) in Akola 1996 and 14 11 (AKms-14B \leq SR1-26B) to 36 66% (ICSB-101B IS-2284) in pooled data

4.4 Combining ability analysis

Combining ability analysis was carried out for 15 characters of Γ_1 and 11 characters of F_2 diallel progenies and results are presented in (Tables 21 and 22) respectively

The variance due to treatments too further partitioned using appropriate expectations of the observed mean squares, into components of variation attributable to general combining ability (gea) variance and specific combining ability (sea) variance. The characteristic results of the above aspects are presented here with 4.4.1 100-grain weight

In F_1 diallel set, significant variance due to gea and sea indicated role of additive as well as non-additive gene action. The ratio of additive to non-additive variance was more (1.936) than unity indicating predominance of additive gene action (1.able 21).

4.4.2 Grain hardness

In F_1 diallel set, variance due to gea and sea were significant indicating that additive **where** as non-additive gene actions were important in expression of this character The ratio of additive to non-additive variance was more (1 700) than unity indicating predominance of additive gene action (Table 21)

Variance due to gca and sca were significant and thus additive as well as non-additive gene action for this character was important in F_2 progenies (lable 22). Lower ratio of δ^2 gca / δ^2 sca than unity (0.378) proved predominance of nonadditive gene action

4.4.4 Electrical conductivity

In F₁ diallel set variance components due to gca and sca were significant indicating **presence** of additive as well as non additive gene action in the inheritance of this **character**. Lower ratio of $\delta^2 \text{gca } \delta^2 \text{sca} (0.728)$ revealed that the character is **predominantly** controlled by non-additive gene action (1able 21).

In F_2 diallel progenies the variance of gua and subproving the importance of additive and non-additive gune action for the control of this character But higher ratio of δ^2 gua / δ^2 sub (1.716) indicated that the additive neuaction is more predominant than non-additive gene action (Table 22)

4.4.5 Days to 50% flowering

Variance due to gea and sea were significant and thus additive as well as non-additive gene action for this character was important in F_1 diallel set (Table 21). I over ratio of δ^2 gea/ δ^2 sea, than unity (0.974) proved predominance of non-additive gene action **4.4.6** Plant height

In F₁ diallel set, variance due to gea and sea were significant indicating that additive and non-additive gene action were important in expression of this character However, lower ratio of δ^2 gea/ δ^2 sea (0.443) indicated that non-additive gene action was important than additive (1able 21)

In F_2 duallel progenies, the variance of gca and sca were significant proving the importance of additive as well as non-additive gene action for the control of this character But higher ratio of $\delta^2 gca/\delta^2 sca$ (1 227) indicated that the additive gene action is more predominant than non additive gene action (1 able 22)

A.7 Cob length

In F_1 diallel analysis, significant variance component for gca and sca indicated **additive** and non-additive gene action Higher ratio of $\delta^2 \text{gca}/\delta^2 \text{sca}$ (1 256) than unity **proved** that the character is primarily governed by additive gene action (1 able 21)

In F_2 diallel set the variance components due to gca and sca were significant. This indicated the existence of additive and non-additive gene action Higher ratio of $\delta^2 gca/\delta^2 sca$ (1967) than unity showed the importance of additive genetic variance than non-additive genetic variance (lable 22)

4.4.8 Glume covering

In \mathbf{F}_1 diallel set variance due to gca was significant, whereas sca was non-significant It is there-fore concluded that the character is predominantly controlled by additive gene action only. This is further proved by higher ratio (1.293) of δ^2 gca/ δ^2 sca (1.able 21).

Variance due to gca and sca were significant in L_1 diallel set (1 ible 22). It is therefore, proved that the character is governed by additive is well is non additive gene action. In inheritance of this character, lower ratio of Seconsect (0.480) revealed that the character is predominantly controlled by non additive gene action

4.4.9 Mesocarp thickness

In F_1 diallel set, significant variance due to gia and sca indicated role of idditive as well as non additive gene action. I ower ratio of $\delta^2 g(a/\delta^2 sca than unit (0.326) proved predominance of non additive gene action. (Table 21)$

4.4.10 Threshed grain mold rating

In F₁ duallel set, significant variance due to gca and sca indicated role of additive and **non-additive** gene action Higher ratio of $\delta^2 gca/\delta^2 sca$ (1.961) than unity proved that **the character** is primary governed by additive gene action (1able 21)

In F_2 diallel progenies the variance of gca and sca were significant proving the importance of additive as well as non-additive gene action for the control of this character But higher ratio of δ^2 gca δ^2 sca (1 187) indicated that the additive pane action is more predominant than non-additive gene action (Table 22)

4.4.11 Seed germination

In F₁ duallel set, variance due to gca and sca were significant indicating presence of **additive** as well as non-additive gene action in inheritance of this character. I ower ratio of δ^2 gca/ δ^2 sca (0 646) revealed that the character is predominantly controlled by **non** additive gene action (Table 21)

In F_2 diallel progenies variance components due to gca and sca were significant. This proved the presence of additive and non-additive gene action for control of germination and there was a lot of useful variability for the character also Similarly from the ratio of δ^2 gca δ^2 sca (0.772) it was clear that additive as well as non-additive gene action was equally operating (Table 22)

4.4.12 Infection by F monuliforme

In F_1 diallel set, variance due to gea and son were observed significant indiciting that additive as well as non-additive gene actions were important in expression of this character. The ratio of additive to non-additive variance was more (1.573) than unity indicating predominance of additive gene action (Table 21)

In F_2 duallel set variance due to gea was significant, whereas sea was **non-significant**. It is therefore concluded that the character is predominantly **control**led by additive gene action only. However, lower ratio (0.725) of ς^2 gea ς^2 sea revealed that the character is predominantly controlled by non-additive gene action **also** (Table 22).

4.4.13 Infection by F pallidoroseum

In F_1 deallet set variance due to gca was non-significant and sca was significant. It is therefore, appears that the character is controlled by non-additive gene action only This is further proved by lower ratio (0 043) of δ 'gca δ ²sca (Table 21) In F_2 diallel set variance due to gia and sia was non-significant **However**, the ratio of $\delta^2 gca/\delta^2 sca$ was observed to be (0.045) which is indicative of **non** additive gene action (Table 22)

4.4 14 Infection by C lunata

The variance due to gca was significant and sca was non-significant in l_1 diallel set (Table 21) It is therefore concluded that the character is prodominantly controlled by additive gene action only. This is further proved by higher ratio (4.068) of $\delta^2 gca/\delta^4$ sca

In F_2 diallel set variance due to gca and sca was significant and non significant, respectively (Table 22). It is therefore concluded that the character is predominantly controlled by additive gene action only. This is further proved by very high ratio (49 780) of δ^2 gca δ^2 sca

4.4.15 Infection by other fungi

In \mathbf{F}_1 dealled set variance due to get was non significant and sea was significant. The ratio of $\delta^3 \text{gea}/\delta^2$ sea was also observed to be less than unity (0.082) which indicated that this character is predominantly governed by non additive gene iction (1 ible 21)

Variance due to gca was significant however set was non significant **in F₂** diallel set (Table 22). The ratio of 8 gca 8²sca was higher (1.845) which indicated **the pre**dominant of additive gene action in the inheritance of this trait. It is therefore **concluded** that the character is predominantly controlled by additive gene action only **Blochemical characters**.

4.4.16 Proteins

In F_1 duallel set significant variance due to gea and set indicated role of idditive as well as non additive gene action in the inheritance of this character. The ratio of additive to non-additive variance was (0.101) lower than unity revealed that the character is predominantly controlled by non additive gene action (1.able 23)

44.17 Soluble sugars

r

Variance due to gca and sca were significant and thus additive as well as non-additive gene action for this trait was important in F_1 diallel set (Table 23) However, ratio of S³gca/ δ^2 sca than unity (0 313) proved predominance of non-additive gene action

4.4.18 Tannins

In F_1 diallel set, variance due to gea and sea were to be significant indicating that, additive as well as non-additive gene actions were important in expression of this character. The ratio of additive to non-additive variance was more (3.192) than unity indicating predominance of additive gene action (Table 23)

4.4.19 Flavan-4-ols

In \mathbf{F}_1 deallel set variance components due to gea and sea were significant indicating **presence** of additive and non-additive gene action in inheritance of this character. But **higher** ratio of $\delta^2 \text{gea}/\delta^2 \text{sea}$ (4.821) indicated that the additive gene action is more **predominant** than non-additive gene action (1 lable 23)

4.5 Estimates of general combining ability effects

The general combining ability effects were calculated for all the 15 characters in 1_{1} and 11 characters in 1_{2} for pooled over locations. The character wise results are presented below

4.5.1 100 grain weight

The data relative to gea effects for 100-grain weight are presented in (Table 24)

Among 10 parental lines in I_1 diallel set only one parental line (rJ-38 15-15 (0.132) exhibited significant gea in positive direction. Remaining parental lines, exhibited either non-significant gea or significant gea in negative direction. Thus, they may not be of any use in breeding program as far as 100-grain weight is concerned.

4.5.2 Grain hardness

Hard grain is a desirable character for grain mold resistance. In L₁ diallel set, five parental lines recorded significant positive gea effects. Parental line IS-9471 exhibited higher (0.843) significant gea estimates, followed by AKms-14B (0.784), SR I-26B

(0.677), IS-6335 (0 464) and GJ-35-15-15(0 429) These parental lines can be said as good general combiners (Table 24)

Rest of parents have exhibited non significant gca or significant gca in **negative** direction and hence, may not be useful in breeding program for this trait

In F_2 (Table 25) progenies all the parental lines showed significant **positive** gca effects SRT-26B recorded highest gca (1 568), followed by IS 9471 (1.388), SPV-1201 (1 301) and IS-6335 (1 295)

4.53 Endosperm texture

Conneous endosperm texture is desirable character for grain mold resistance. **Therefore**, negative and significant gca effects are desirable. It is revealed from the **data** (Table 24) that, all the 10 parental lines exhibited significant negative gca effects. **Higher** significant negative gca effects was exhibited by parental lines. Akmis 14B (**17.316**) followed by SPV-104 (-8 400) SRT 26B (7 858) and GJ-35-15-15 (6 212). **Thus** these parental lines can be identified as best general combiners for endosperm **texture**

4.5.4 Electrical conductivity

Low electrical conductivity is desirable character for grain mold resistance. Therefore negative and significant gca effects are desirable. It is revealed from the data (Table 24), that none of the parental lines exhibited significant negative gca effects in I_1 crosses. However, minimum significant positive effect was observed in GJ 35 15 15 (44.042) and SPV-946 (65.792).

However, in 1₂ diallel (Table 25) seven parents exhibited significant negative gea effects The highest significant negative gea effects exhibited by (rJ 35 15-15 (-121 617) followed by SPV-1201 (-101 451) SPV 946 (78 284) and 15 2284 (-59 117) all are significantly superior to hist parental line SPV 104 (21 992)

4.5.5 Days to 50% flowering

In sorghum breeding program, earliness is one of the objective for selection of **genotypes** and negative gca effects of higher magnitude are always favoured. In F_1 **diallel** set parental line SPV-1201 (-8 375) appeared to be the best general combiner for earliness exhibiting highly significant and negative gca effects (Table 24)

456 Plant height

Dwarf to mid dwarf plant type is a desirable character. Therefore, negative gea effects are appreciated. The gea estimates for plant height for 1_1 diallel set is presented in (Table 24). It is revealed from the data that all the parental lines exhibited significant negative gea effects. The highest significant negative gea effects was exhibited by SPV-1201. (-68.667) followed by ICSB-101B (-66.042). IS 2284 (-59.167) and AKms-14B (-57.167). Thus these parental lines can be identified as the best general combiners for introducing dwarfness. In F₄ diallel set four priental lines SR1 -26.B (41.734), AKms-14.B (-34.722). ICSB-101.B (-15.434) and IS 2284 (-14.005) exhibited significant negative gea effects (Table 25).

457 Coblength

In F_1 diallel set general combining ability effects the ringe for the character coblength was 0.446 to 2.774 in all the parental lines. None of the parental line exhibited significant positive gea effects (Table 24)

In F_2 diallel set (Table 25) only one parental line SPV-1201 (0.072) exhibited positive gea effects while all others recorded significant negative gea effects except SR F-26 B (-0.349)

4.58 Glume covering

Maximum glume covering is a desirable characters for grain mold resistance therefore positive gea effects of higher magnitude are desirable. In I_1 diallel (Table 24) four parental lines exhibited significant positive gea effects the highest being recorded by ICSB-101 B (10 511) followed by IS-2284 (8 428) IS 9471 (7 386) and SPV 1201 (3 220) Thus these parental lines can be identified as best general combiners for glume covering In F_2 diallel set (Table 25) five parental lines recorded significant gea effects in positive direction viz IS-6335 (11 701) SPV-1201 (5 576) IC SB-101 B (4.451) AKms- 14 B (2 742) and SRT 26 B (1 742)

4.5.9 Mesocarp thickness

Thin mesocarp thickness is desirable character for grain mold resistance. Therefore, negative gca effects are appreciated. The gca estimates for mesocarp thickness for F_1 diallel set is presented in (Table 24). It is revealed from the data that, four parental lines exhibited significant negative gca effects SRT = 26 B (-6.767), AKms-14B (-3.499), SPV-946 (-3.475) and SPV-1201 (-2.605). Thus these parental lines can be identified as the best general combiners for introducing thin mesocarp.

4.5.10 Threshed grain mold rating

Low thresh grain mold rating is desirable character, negative gca effect of higher magnitude are desirable. In F_1 diallel (Table 24) none of the parental line exhibited significant negative gca effects. However, parental line SPV-946 exhibited negative gca effects (-0.038). In F_2 diallel set (Table 25) none of parental line exhibited significant negative gca effects.

4.5.11 Seed germination

In F₁ diallel set (Table 24) all the parental lines exhibited significant negative gca effects. The range was from (-3.858) in SPV- 946 to (-17.589) in ICSB-101 B. The maximum significant gca effects was exhibited parental lines by ICSB-101B (-17.589) followed by IS-6335 (-15.505). In F₂ diallel set (Table 25) all the parental lines recorded significant negative gca effects. The range varies from (-5.933) in IS-2284 to (-16.271) in AKms-14 B.

4.5.12 Infection by F. moniliforme

In F_1 diallel set only two parental lines GJ-35-15-15 (-0.934) and SPV 946 (-0.708) exhibited negative gca effects and can be considered as good general combiners for this traits (Table 24).

In F_2 diallel set (Table 25) seven parental lines viz. IS-9471 (-15.954), IS 6335 (-14.268), IS-2284 (-13.818), SPV-104 (-10.343), GJ-35-15-15 (-7.828), SPV-1201 (-3.558) and SPV-946 (-2.989) exhibited negative significant gea effects. Thus these parents can be identified as good general combiners for grain mold resistance against the infection *F. moniliforme*. Parental lines IS-9471 (-15.954), IS- 6335 (-14,268) and IS-2284 (-13.818) exhibited highest significant gca effects proving its significance over other parental lines and hence can be considered as best general combiners for this traits.

4.5.13 Infection by F. pallidoroseum

In F₁ diallel set, five parental lines AKms- 14 B (-3.555), SPV-104 (-2.195), IS-2284) (-1.164), IS-9471 (-1.002) and SPV-946 (-0.985) exhibited significant negative gea estimates and hence can be identified as good general combiners (Table 24). In F₂ diallel set (Table 25) only two parental lines IS-2284 (-0.493) and IS-6335 (-0.329) were the good general combiners giving highest negative gea effects.

4.5.14 Infection by C. lunata

In F_1 diallel set, only one parental line SPV-104 (-2.941) exhibited significant negative sca effects, and hence can be considered as best general combiner for this trait (Table 24). In F_2 diallel set two parental lines SRT -26 B(-1.061) and IS-6335 (-0.505) exhibited negative gea effects, hence can be considered good general combiners for this trait (Table 25).

4.5.15 Infection by other fungi

In F₁ diallel set, nine parental lines exhibited significant negative gca effects. First three higher magnitude parents were SPV-1201 (-6.727), AKms-14B (-6.336) and SRT-26B (-4.896). Thus these can be used for best combines for this trait (Table 24). In F₂ diallel set, among 10 parental lines five ICSB-101B (-5.706), SRT-26B (-3.696), AKms- -14 B (-3.168), SPV-1201 (-2.463) and IS-6335 (-1.619) exhibited negative and significant gca effects and thus can be identified as a best general combiners for this trait (Table 25).

Biochemical characters

The general combining effects estimates were computed for biochemical characters viz proteins, soluble sugars, tannins and flavan-4-ols for Akola 1995 location and are presented in (Table 26).

4.5.16 Protein

It is observed from (Table 26), that all the parental lines exhibited highly significant gca in desirable direction however, parental lines AKms-14B exhibited the highest (0.801) significant gca in desirable direction followed by SRT-26 B (0.787), ICSB-101B (0.637), GJ-35-15-15 (0.619), and SPV-946 (0.616) and thus they can be identified as good general combiners for proteins content.

4.5.17 Soluble sugars

All parental lines except two exhibited highly significant gca in desirable direction however, highest (0.280) significant gca in desirable direction was exhibited by parental lines AKms-14B, followed by SRT-26B (0.197), SPV-104 (0.167), SPV-946 (0.112) and ICSB 101 B (0.109) indicating that they are best general combiners for this character (Table 26).

4.5.18 Tannins

Out of 10 parents only three parental lines IS-2284 (0.815), IS-6335 (0.790), and IS-9471 (0.590) exhibited significant gca in desirable direction, indicating thereby, that they are best general combiners. Remaining parents exhibited significant or non significant gca effects in negative direction. Hence they can be said as poor general combiners (Table 26).

4.5.19 Flavan-4-ols

Out of 10 parental lines, only three parental line viz. IS-9471 (1.851), IS-6335 (0.578) and IS-2284 (0.469), exhibited significant gea effects in desirable direction and hence considered as good combiners. However, all others seven parental lines exhibited significant gea effects in negative direction and hence can be said as poor general combiners (Table 26).

4.6 Estimates of specific combining ability effects

The specific combining effects were calculated for 11 characters in F_1 and seven characters in F_2 for pooled over locations. The character wise results are presented below.

4.6.1 100-grain weight

The relative estimate due to sca effects for 100 grain weight is presented in (Table 27). In F₁ diallel set four crosses exhibited significant positive sca effects for 100-grain weight. The highest significant positive sca effects was exhibited by SPV-1201x SRT-26 B (0.336) followed by AKms-14B x IS-6335 (0.296), ICSB-101B x SPV-104 (0.227) and SPV-1201x SPV-104(0.207) and hence these crosses can be identified as a best specific combinations for 100-grain weight. Negative and significant sca estimates were exhibited by three crosses SPV-1201x SPV-946 (-0.326), ICSB-101 B x AKms-14 B (-0.227) and ICSB-101B x SRT-26B (-0.224) which proved poorer. Rest crosses recorded non significant sca effects.

4.6.2 Grain hardness

Specific combining ability effects with positive and significant values were exhibited by two crosses (Table 27) out of 45 crosses in F_1 diallel set. The highest positive sea effects was observed in SPV-1201 x GJ-35-15-15 (0.948) followed by AKms-14B x IS-2284 (0.760) hence, these two crosses appeared to be best specific combinations for grain hardness. On the contrary three crosses exhibited negative and significant sea effects and hence these are the poorer for grain hardness. In F_2 diallel set (Table 29) only one progeny SPV-946 x IS-2284 (1.098) exhibited significant and positive sea effects, hence can be observed as best specific combination for grain hardness.

4.6.3 Endosperm texture

Corneous endosperm texture is considered as a desirable character for grain mold **resistance**. Significant and negative sea effects are therefore considered for assessing **crosses**. In F₁ diallel set three crosses exhibited significant negative sea effect for **endosperm texture**. The highest significant negative sea effect was exhibited by cross **IS-6335** × **IS-9471** (-7.604) followed by IS-2284 \times IS-6335 (-7.354) and SPV-1201 \times **GJ-35-15-15** (-6.283). These three crosses appeared to be best specific combinations for this trait (Table 27).

4.6.4 Electrical conductivity

Lower electrical conductivity grain leachates is considered as a desirable character for grain mold resistance. Significant and negative sca effects are therefore considered for assessing crosses. In F_1 diallel set 11 crosses exhibited significant and negative sca effects (Table 27). The cross SPV-104 × IS-9471 (-120.063) was found most promising and significantly superior to remaining 10 crosses. Some of these ten showing better combinations were SPV-104 × IS-6335 (-76.813), AKms-14B × IS-6335 (-68.00) AKms-14B × IS-9471 (-68.00), SRT 26-B × SPV-104 (-66.917) and

SRT-26B × **IS-6335** (61.146). Three crosses yielded positive and significant sea effects. Rest of crosses did not show any significance in their sea effects for this trait.

In F₂ diallel set (Table 29) seven crosses exhibited significant and negative sca effects. These crosses were AKms- 14 B × IS-6335 (-76.284), followed by SRT-26 × IS-9471 (-66.722), SRT-26B × GJ-35-15-15 (-50.451), SPV-1201 · IS-6335 (-49.909), SPV-104 × IS-9471 (-46.576), GJ-35-15-15 × IS-2284 (-45.867) and SPV-946 × IS-9471 (-38.347). As against this nine crosses exhibited significant positive sca effects and hence appears poor combinations for this trait.

4.6.5 Days to 50% flowering

Since selection of genotype towards early maturity is desirable in sorghum, negative and significant sca effects are therefore considered for assessing crosses. In F₁ diallel set 11 crosses exhibited significant and negative sca effects (Table 27). The highest significant negative sca effects for first five crosses were exhibited by SPV-104 × IS-9471 (-7.813) followed by SPV-104 × IS-6335 (-4.750), SPV-946 × IS-2284 (-4.646), SPV-946 × IS-9471 (-4.646) and SRT-26-B × IS-6335 (-4.542) hence, these crosses may be good for earliness. Seven crosses exhibited significant and positive sca effects, while remaining crosses exhibited non-significant sca effect.

4.6.6 Plant height

Among 45 crosses, negative and significant sea effects were found in 10 crosses (Table 27) in F_1 diallel set. The highest negative and significant sea effects was exhibited in SPV-1201 × SPV - 946 (-54.208) followed by SRT-26B · GJ-35-15-15 (-34.000) and ICSB-101 B × AKms-14B (-30.359) exhibited significantly superior negative sea effects over seven crosses. Considering higher magnitude of negative sea effects these crosses proved to be best specific combinations.

Twenty two crosses exhibited significant and positive sea effects, the highest recorded by SRT-26B \times IS-2284 (49.688) and lowest by SPV-104 \times IS-6335 (14.333). Rest parents have exhibited non-significant sea effects. In F₂ diallel set (Table 29) only two progenies exhibited significant and negative sea effects SRT 26 \times GJ-35-15-15 (-31.463) and SPV-946 \times IS-2284 (-21.617) which proved best specific

combinations. However, eight progenies recorded significant and positive sca effects, which appears poor combinations for this trait. The highest significant positive sca effects was recorded in SPV-946 \times IS-6335 (50.985) and lowest by SPV-1201 \times GJ-35-15-15(20.222).

4.6.7 Cob length

In F₁ diallel set the range for sca effects was from -0.037 (GJ-35-15-15 \times SPV-104) to 2.455 (SPV-104 \times IS-6335). Four crosses exhibited significant and positive sca effects SPV-104 \times IS-6335 (2.455), AKms-14B \times GJ-35-15-15 (2.316), SPV-1201 \times IS-9471 (2.280) and ICSB 101 B \times SRT -26B (2.103) which appeared best specific combinations. Three crosses exhibited significant and negative sca effects GJ-35-15-15 \times SPV-946 (-2.972), IS-2284 \times IS-9471 (-2.166) and SPV-1201 \times ICSB-101B (-2.161), categorised as undesirable for sca effects combinations. Rest of parents have exhibited non significant positive or negative sca effects (Table 27).

In F₂ diallel set (Table 29) three progenies exhibited significant and positive sca effects GJ-35-15-15 × IS-2284 (3.722), SPV-946 + IS-6335 (2.645) and ICSB-101B × AKms-14B, (1.872) all these crosses may be considered as better specific combinations for this trait. Only one progeny exhibited significant and negative sca combination SRT-26B × IS-2284 (-2.628).

4.6.8 Glume covering

Maximum glume covering is considered as desirable character. Significant and positive sca effects. The highest significant positive sca effects was exhibited ICSB-101B × IS-6335 (11.553) followed by AKms- 14 B · SPV-946 (11.032) and AKms-14B × GJ-35-15-15 (10.511) thus these crosses appeared best combinations for glume covering trait. Four crosses exhibited significant negative sca effects. While rest did not exhibited any significant sca effects. (Table 27).

 $\label{eq:2.1} Among 45 \mbox{ progenies in } F_2 \mbox{ diallel set three exhibited significant sea} $$ effects in positive direction. The highest was exhibited by $$ SPV-946 < IS-6335 $$ (11.617) followed by $$ SPV-104 $$ IS-2284 (10.180) and $$ GJ-35-15-15 $$ IS-2284 $$ (8.388). Four progenies recorded significant negative sea effects. (Table 29) $$ (Table 20) $$ (Table 20$

4.6.9 Mesocarp thickness

Thin mesocarp thickness is desirable character for grain mold resistance. Therefore, negative gca effects are appreciated. The sca effects for mesocarp thickness for F_1 diallel set is presented in (Table 28). It is revealed from the data that, 22 crosses exhibited significant and negative sca effects. Few of these higher magnitude crosses were SPV-104 × IS-2284 (-26.604), ICSB-101B × IS-6335 (-22.195), ICSB-101B × IS-2284 (-22.031) and SPV-104 × IS-6335 (-21.485). Thus these crosses appeared best combinations for mesocarp thickness. Twelve crosses exhibited significant and positive sca effects, cross SPV-1201 × AKms--14B exhibited highest (19.318) while, cross GJ-35-15-15 × SPV-104 exhibited lowest (6.334) value. Thus these crosses are of no use for this trait. Rest did not exhibited any significant sca effects.

4.6.10 Threshed grain mold rating

Low TGMR is a desirable character, negative sca effect of higher magnitude are desirable. In F_1 diallel set Among 45 crosses, 11 crosses exhibited significant and negative sca effects which range from -0.913 in (AKms- 14B × IS-6335) to -0.319 (SPV-1201 × GJ-35-15-15). Crosses, AKms-14B · IS-6335 (-0.913), AKms- 14 · IS-9471 (-0.871) and AKms-14B × IS-2284 (-0.767) of higher magnitude appeared best specific combinations for this trait. Eight crosses exhibited significant and positive sca effects which range from 0.733 in (IS-2284 · IS-9471) to 0.420 in (GJ-35-15-15 · SPV-946). Hence these crosses can be grouped under poor specific combinations for this trait (Table 28).

In F_2 diallel set, only four progenics exhibited significant and negative sca effects the highest exhibited by SPV-1201 \times ICSB-101B (-0.388) followed by AKms-14B \times IS-9471(-0.381), ICSB-101 B \times SPV-104 (-0.367) and AKms-14 B \times IS-6335 (-0.346) hence proved to be best specific combinations for this trait (Table 29). Rest all others have exhibited negative and positive non-significant sca effects, hence these progenies appear undesirable.

4.6.11 Seed germination

Positive and significant sca effects for germination percentage was exhibited in 15 crosses in F_1 diallel set (Table 28). The highest being 15.185 (AKms-14B × IS-6335), followed by AKms-14B × IS-9471 (12.769), IS-2284 × IS-6335 (10.839), ICSB-101B × IS-9471 (10.526) and SPV-104 × IS-9471 (10.111) ranked 1st to 5th and exhibited the highest positive and significant sca estimates, hence these crosses can therefore be identified as best specific combinations for improving germination. Negative and significant sca effects were exhibited by four crosses which appear to be poor combinations for this trait.

In F_2 diallel set eight progenies exhibited positive and significant sca effects (Table 29). Highest significant sca effects were exhibited by AKms-14B × IS-6335 (9.286) followed by AKms-14B × GJ-35-15-15 (8.175), SPV-1201 × SRT-26B (8.170), SPV-946 × IS-6335 (8.017), ICSB-101B × AKms-14B (7.184), SPV-946 · SPV-104 (7.053), AKms-14B × IS-9471 (6.604) and SPV-1201 × SPV-104 (6.478). Hence these crosses proved best specific combinations for improving germination. All others have exhibited non significant positive and negative sca effects.

4.6.12 Infection by F. moniliforme

Minimum fungal load is a desirable character for grain mold resistance. Significant and negative sca effects are therefore, considered for assessing crosses.

In F₁ diallel set, four crosses ICSB-101B × IS-6335 (-10.017), SPV-104 × **IS-6335** (-9.795), AKms-14B × IS-6335 (-9.259) and SPV-104 × IS-2284 (-8.392) exhibited significant negative sca effects hence considered as best specific combinations for introducing resistance against *F. monthforme*. Rest crosses exhibited non-significant and negative sca effects or positive sca effects, hence cannot be considered for this trait (Table 28).

In F_2 diallel set sixteen progenies exhibited negative sca effects. Considering higher magnitude of negative sca effects, first three good sca combinations for this trait were SRT-26B \times SPV-104 (-6.582), SRT-26B \times SPV-946 (-6.425) and SPV-1201 \times IS-2284 (-5.028) (Table 29).

4.6.13 Infection by F. pallidoroseum

Negative and significant sca effects are considered for evaluating the crosses in respect of fungal load of *F. pallidoroseum*. In F₁ diallel set, three crosses ICSB-101B × IS-2284, SPV-946 × SPV-104 and GJ-35-15-15 × SPV-946 exhibited negative and significant sca effects, hence these can be considered, good for specific combinations for introducing resistance against *F. pallidoroseum* (Table 28). In F₁ diallel set only one progeny (ICSB-101 B × IS-6335) exhibited negative and significant sca effects (-2.567) and hence this can be considered the best specific combinations (Table 29).

4.6.14 Infection by C. lunata

Thirty crosses exhibited negative sea effect in F₁ diallel set (Table 28) considering higher magnitude of negative sea effects, first three good sea crosses considers for this trait were, ICSB-101B × SPV-104, SPV-946 × IS-2284) and SPV-1201 + IS-9471 (Table 29.) In F₂ diallel set, two progenies SRT-26B + GJ-35-15-15 and AKms-14B × SPV-104 exhibited significant negative sea effects, which can be considered as good sea combinations for introducing resistance against *C. hunata* (Table 29)

4.6.15 Infection by other fungi

Twenty crosses exhibited negative sca effects in F_1 diallel set (Table 28) considering higher magnitude of negative sca effects, first three good combinations for this trait were GJ-35-15-15 × IS-2284, ICSB-101B × SPV-104 and IS-6335 × IS-9471. Three crosses SPV-1201 × SRT-26B, AKms- 14 B × IS-6335 and SPV-1201 × SPV-946 exhibited significant positive sca effects, hence were poor combinations. In F_2 diallel set 21 progenies exhibited negative sca effects. Considering higher magnitude of negative sca effects, first three good combinations for this trait were AKms-14B × SRT-26 B, AKms-14B × GJ-35-15-15 and AKms-14B × SPV-946. One progeny AKms-14B × IS-9471 exhibited significant positive sca effects (Table 29).

Biochemical characters

The specific combining ability effect were calculated for 4 biochemical characters viz. Proteins, soluble sugars, tannins and flavan-4-ols for Akola 1995 location and are presented in (Table 30).

4.6.16 Proteins

Data (Table 30), revealed that the highest positive sea effect was observed in SPV-1201 × IS-9471 whereas, lowest was observed in SPV-1201 × GJ-35-15-15. Among 45 crosses eight crosses exhibited positive and significant sea effect. SPV-1201 × IS-9471 exhibited highest (0.278) sea effect followed by IS-6335 × IS-9471(0.240), SPV-1201 × IS-2284) (0.181), AKms-14B × IS-6335 (0.175), SPV-104 × IS-6335 (0.175), SPV-104 × IS-2284 (0.119), IS-2284 × IS-9471 (0.106) and SPV-946 × SPV-104 (0.070). Therefore these crosses can be identified as best specific combines can be identified as best specific combinations for protein content. On the contrary 31 crosses exhibited negative and significant sea effects, hence these can be treated as poor specific combinations for protein content.

4.6.17 Soluble sugars

Twenty crosses exhibited significant sea effects. Out of which only three exhibited significant positive sea effects (JJ-35-15-15 + SPV-104 (0.095), SPV-1201 + IS-6335 (0.089) and AKms-14B × IS-9471 (0.080), hence these crosses can be identified as good specific combinations for soluble sugars (Table 30). On the contrary 11 crosses exhibited negative and significant sea effects, the highest being observed in AKms-14B × SRT-26B followed by AKms-14B × GJ-35-15-15 and SPV-104 + IS-6335, hence these crosses can be treated as poor specific combinations for soluble sugars content.

4.6.18 Tannins

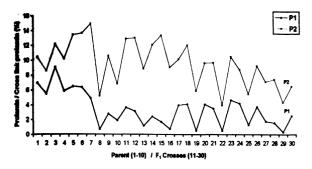
Out of 45 crosses, 20 crosses exhibited significant and positive sca effects and 20 crosses exhibited significant sca effect n negative direction. Crosses IS-2284 - IS-6335 exhibited highest positive and significant sca effects (0.763) followed by AKms-14B × IS-2284 (0.344), SRT-26 - IS-9471 (0.302) SRT-26 - IS-6335 (0.299), AKms-

14B × IS-9471 (0.283), SPV-1201 × IS-9471 (0.244), SPV-104 × IS-6335 (0.234) and SPV-104 × IS-9471 (0.233). Therefore these crosses can be identified as a best specific combinations for tannin content (Table 30). On the other hand out of 20 crosses which exhibited negative and significant sca effects, the highest being observed in IS-2284 × IS-9471 (-0.408) followed by IS-6335 × IS-9471(-0.291). AKms-14B × SRT-26B (-0.146), and SPV-1201 × ICSB-101B (-0.125) can be treated as poor specific combinations for tannins content.

4.6.19 Flavan-4-ols

Significant sca effect in positive direction were exhibited by 17 crosses (Table 30). These crosses exhibited the range of 0.072 to 0.635 sca effects, the highest being exhibited by AKms-14B × IS-2284 (0.635), followed by SRT-26B × IS-6335 (0.596), SPV-946 × IS-6335 (0.586), SPV-104 × IS-6335 (0.530), SPV-104 × IS-9471 (0.426). AKms-14B × IS-9471 (0.405) and SPV-104 × IS-2284 (0.391), hence these crosses can be identified as best specific combinations for flavan-4-ols content.

However, 16 crosses exhibited significant negative scaleffects. These crosses exhibits the range of -0.075 to -0.749 scaleffects, the highest being indicated by IS-2284 × IS-6335 and lowest by ICSB $-101B \rightarrow SPV-104$. Hence these can be treated as poor specific combinations for flavan-4-ols content.


4.7 Protein fractions

4.7.1 Albumin and Globulin

Protein fractionation was carried out for all the parental lines and F_1 crosses (20) of Akola 1995 season. Results are presented in (Table 31). It is observed from the data that, the range of variation for albumin and globulin for parental lines was from 1.81 (IS-2284) to 20.63% in SRT-26B. For crosses, the range was from 7.90 (IS-2284 -IS-9471) to 16.74% (SPV-946 × SPV-104).

4.7.2 Prolamin

It is observed from (Table 31and Fig. 4), that maximum (9.09 %) prolamin was recorded in parental lines AKms-14B followed by SPV-1201 (6.96 %) and GJ-35-15-15 (6.47 %), however, minimum prolamin was observed in IS-2284 (0.70 %).

P1 = Prolamin P2 = Cross link prolamin

Figure 4. Prolamin and Cross link prolamin of parents and F₁ crosses at Akola 1995

SPV-1201	11 SPV-1201 x SPV-946	21 SR1-26B x SPV-104
ICSB-101B	12 SPV-1201 x SPV-104	22 SR 126B x 18 9471
AKms-14B	13 SPV-1201 x 1S-9471	23 GJ-35-15-15 x SPV-946
SRT-26B	14 ICSB-101B x SPV-946	24 GJ-35-15-15 x SPV-104
GJ-35-15-15	15 ICSB-101B x SPV-104	25 GJ-35-15-15 XIS-9471
SPV-946	16 ICSB-101B x 15-9471	26 SPV-946 x SPV-104
SPV-104	17 AKms-14B x SPV-946	27 SPV-946 x IS-9471
18-2284	18 Akms-14B x SPV-104	28 SPV-104 x 15-9471
18-6335	19 Akms-14B x [\$-947]	29 IS-2284 x [S-947]
18-9471	20 SR F-26B x SPV-946	30 IS-6335 x IS-9471
	ICSB-101B AKms-14B SRT-26B GJ-35-15-15 SPV-946 SPV-104 IS-2284 IS-6335	PC3E-101B 12 SPV-1201x SPV-1201x AKma-14B 11 SPV-1201x IS-9471 BKT-26B 14 ICSB-1011x SPV-140 BVP-960 15 ICSB-1011x SPV-140 BVP-960 16 ICSB-1011x SPV-140 BPV-964 17 Akms-141x SPV-96 BF-6335 19 Akm-141x SPV-104

Among crosses, cross (GJ-35-15-15 × SPV-946) exhibited maximum prolamin (4.72 **%)**, however, minimum prolamin was recorded in (IS-2284 × IS-9471) 0.38 %.

4.7.3 Cross-link prolamin

It is observed (Table-31, Fig. 4), that parental lines SPV-104 exhibited maximum (14.92 %) cross-link prolamin followed by SPV-946 (13.62 %) and GJ-35-15-15 (13.39 %), minimum was observed in IS-2284 (5.24 %). Among crosses, maximum (13.09 %) cross-link prolamin was recorded in SPV-1201 \times SPV-104 followed by SPV-1201 \times SPV-946 (12.89 %), minimum (3.99 %) was recorded in SRT-26B \times IS-9471.

4.7.4 Glutelin-like

It is observed (Table 31) that parental lines IS-6335 exhibited maximum (12.69°_{0}) glutelin-like, followed by IS-2284 (12.39°₀), minimum value (2.46°_{0}) was recorded in AKms-14B. Among crosses, maximum (10.88°₀) glutelin-like was indicated in SPV-1201 × IS-9471 and minimum (0.96 °₀) in IS-6335 \times IS-9471.

4.7.5 Glutelin

It is observed form the data (Table 31),that, the range of variation for parental lines was from 27.90 (ICSB-101 B) to 68.27°_{0} (IS-2284). Among crosses, the range of variation was from 26.62 (SRT-26B × IS-104) to 51.96°_{0} (SPV-946 × IS-9471).

4.7.6 Residues

It is indicated (Table 31) that the range of variation for parental lines was from 7.26 (IS-2284) to 11.46% (AKms-14B). Among crosses, the range of variation was from 2.70 (SPV-1201 × SPV-104) to 11.46% (SRT-26B × IS-9471).

4.8 Glume color, grain color and testa

It is observed from data (Table 32) that three parental lines IS-2284, IS-6335 and IS-9471 with colored grain had a testa layer or sub-coat, whereas, seven parental lines with white grain did not show black reaction with bleach test indicating absence of testa. Among F_1 crosses, 24 (crosses with colored parental lines) out of 45 crosses observed colored grain and exhibited black reaction with bleach test indicating presence of testa. Remaining 21 crosses with white grain did not show black reaction with bleach test thus confirm the absence of testa layer. The above observations were confirmed by section cutting, where colored grain observed to have testa layer or subcoat and white grain did not have the testa layer. Observations on glume cover were recorded just to provide additional information to the breeder.

4.9 Fungal load on germinated and ungerminated seeds (pre-treated and untreated)

Effect of seed pre-treatment (0.1% HgCl₂) on germination and seed mycoflora of both germinated and ungerminated seed of parental lines, F₁ crosses and F₂ progenies from Akola and Patancheru centres during 1996 were studied. Comparison of two seasons at Akola centre of parental lines and F₁crosses during 1995 and 1996 were also studied. The details of observations have been narrated under following subheads.

- Fungal load on germinated seeds, Akola and Patancheru, 1996
- Fungal load on ungerminated seeds, Akola and Patancheru, 1996
- Fungal load on germinated seeds, Akola, 1995 and 1996
- Fungal load on ungerminated seeds, Akola, 1995 and 1996
- 4.9.1 Fungal load on germinated seed, Akola and Patancheru, 1996

.4.9.1.1 Seed germination

Higher germination of the seed is the desired trait for the breeders as well as farmers. Grain mold is an important factor in reduction in germination in sorghum. Many molding fungi remain confined to the surface and hence effect of pre-treatment of seed was studied. Method of pre-treatment of seed is described in materials and methods.

Germination percent recorded on standard blotter tests method on treated and untreated seed. In F₁ diallel set (Table 33), the range of variation for parental lines was exhibited from 59.57 to 93.67, 5.00 to 80.67 and 33.00 to 87.00% at Akola, Patancheru and in pooled data, respectively. Parental line IS-9471 exhibited highest 93.67 % germination followed by IS-6335 (93.33%) at Akola location, at Patancheru parental line IS-6335 recorded highest (80.67%) germination followed by IS-2284 (74.33%). In pooled data, parental IS-6335 recorded highest germination (87.00%) followed by IS-9471 (83.83%). Among crosses the highest seed germination was recorded in AKms 14B × IS-6335, IS-6335 × IS-9471 (95.33%) followed by SPV-1201 × IS-6335 (94.67%) at Akola location. At Patancheru cross ICSB-101B × IS-6335 recorded highest seed germination (92.00%) followed by SRT-26B × IS-6335 (91.00%) and ICSB-101B × IS-9471 (89.67%). However, in pooled data ICSB 101B × IS-6335 recorded highest seed germination (91.83%) followed by AKms-14B × IS-6335 (91.67%) and ICSB-101B × IS-9471 (91.34%). Over all, there was significant increase in germination 2.28, 5.51 and 3.64% at Akola, Patancheru and in pooled data, respectively, in treated seed with mercuric chloride over untreated control, and there was 27.39 % increased in germination at Akola over Patancheru.

In F₂ diallel (Table 45) at Akola, progeny IS-2284 + IS-6335 recorded highest germination (92.13%) followed by ICSB-101 B × IS-9471 (91.90%) and IS-6335 × IS-9471 (91.79%). At Patancheru, progeny GJ-35-15-15 + IS-2284 recorded highest seed germination (91.50%) and SPV-946 × IS-6335 (89.50%). However, in pooled data IS-2284 × IS-9471 recorded highest seed germination (90.53%) followed by SPV-946 × IS-6335 (90.45%) and GJ-35-15-15 + IS-2284 (89.35%). Over all, there was significant increase in germination 4.45, 6.56 and 5.35% at Akola. Patancheru and in pooled data, respectively, in treated seed with mercuric chloride over untreated control and there was 24.69% reduction in germination at Patancheru over Akola.

4.9.1.2 Infection by F. moniliforme

In grain mold of sorghum low fungal load is considered as a desirable characters. It is seen from the data (Table-34), that the range of variation for parental lines was exhibited from 3.33 in (IS-9471) to 23.67 9 in (SPV-104) at Akola, 2.67 in (AKms-14B) to 22.33% (IS-6335) at Patancheru and 10.7 (IS-9471) to 17.17 9 (IS-2284) in pooled data. Among crosses the lowest fungal load of *F. monthforme* was noticed in SPV-104 × IS-6335 (3.33 9) followed by IS-6335 × IS-9471 (4.01 9) and IS-2284 × IS-6335 (4.34 9) at Akola, whereas, at Patancheru AKms 14 B × SPV-104 (9.33)

exhibited lowest F. moniliforme load followed by AKms 14 B \times SPV-946 (11.33 °6) in pooled data IS-6335 \times IS-9471 (9.84%) recorded lowest F. moniliforme load.

Over all, there was significant reduction in *F. monthforme* load 14.75, 44.75 and 35.06 % at Akola, Patancheru and in pooled data, respectively in treated seed with mercuric chloride over untreated control and there was 86.28% increased *F. monthforme* load at Patancheru over Akola location.

In F₂ diallel (Table 46) progeny SRT-26B × SPV-946 exhibited (10.93) *F. moniliforme* load followed by ICSB-101 B × IS-6335 (11.43%) at Akola, whereas, at Patancheru IS-6335 × IS-9471 recorded lowest (14.50%) *F. moniliforme* count followed by ICSB-101 B × SPV-104 (15.50%), in pooled data AKms 14 B × SRT-26 B recorded lowest (16.2%) *F. moniliforme* load followed by SRT-26 B × SPV-104 (16.70%).

Over all, there was significant reduction in *F. monilybrime* load 27.10, 17.98 and 22.98% at Akola. Patancheru and in pooled data, respectively in treated seed over untreated control and in general there was 28.32 % increase in load at Patancheru over Akola.

4.9.1.3 Infection by F. pallidoroseum

In F₁ diallel it is observed from data (Table 35), that the range of variation for parental lines was from 0.33% to 3.33% at Akola, 0.0 to 9.00% at Patancheru. However in pooled data the range of variation was 1.33 to 5.50%. Parental line SPV-1201 exhibited lowest *F. pallidoroscum* load at Akola (0.33%) and AKms 14B (1.33%) in pooled data. For crosses the lowest *F. pallidoroscum* load was recorded in cross ICSB 101B × GJ-35-15-15 and SRT-26B · GJ-35-15-15 (0.00%) at Akola and AKms-14 B × SPV-946 (2.67%) at Patancheru. Cross AKms 14 B · SPV-946 (1.50%) also exhibited lowest *F. pallidoroscum* load in pooled data.

Over all, there was significant reduction in *F. pallidoroseum* load 3.64, 36.28 and 21.75% at Akola, Patancheru and in pooled data, respectively in treated seed with mercuric chloride over untreated control and there was 165.27% increase *F. pallidoroseum* load at Patancheru over Akola. In F_2 diallel (Table 47) progeny GJ-35-15-15 \times SPV-946 exhibited lowest *F. pallidoroseum* load (0.34%) followed by SPV-1201 \times SPV-946 and AKms 14 B \times SPV-946 (0.60%) at Akola whereas, at Patancheru AKms 14 B \times SRT 26B exhibited lowest *F. pallidoroseum* load (0.50%) followed by ICSB 101 B \times SPV-104 (0.75%) and AKms 14 B \times GJ-35-15-15 (0.92%). Progeny GJ-35-15-15 \times SPV-946 exhibited lowest *F. pallidoroseum* load (0.80%) followed by SPV-1201 \times AKms-14B (0.99%) and AKms 14 B \times GJ-35-15-15 (1.06%) in pooled data.

Over all, at Akola, Patancheru and pooled data exhibited 4.80, 35.48and 21.30% reduction in fungal load of *F. pallidoroseum*, respectively in treated seed with mercuric chloride over untreated control and in general, there was 36.60°_{\circ} increase in *F. pallidoroseum* load at Patancheru over Akola.

4.9.1.4 Infection by C. lunata

In F₁ diallel set, it is seen from data (Table 36), that the range of variation for *C*. *lunata* in parental lines was exhibited from 18.00 to 45.35% at Akola, whereas, it was 1.33 to 18.00 and 12.00 to 31.17% at Patancheru and in pooled data, respectively. Parental line IS-6335 exhibited lowest *C*. *lunata* load (18.00%) at Akola, however parental line SPV-104 recorded lowest (1.33 and 12.00%) load at Patancheru and in pooled data. Among crosses the lowest *C*. *lunata* load was exhibited by SPV-1201 -IS 6335 (12.67%) and SPV-1201 - IS-9471 (12.68%) at Akola. Crosses AKms-14B -GJ 35-15-15 and AKms-14B - SPV-104 exhibited lowest (8.67%) followed by ICSB-101B × SPV-104 (9.33%) at Patancheru. Whereas, SPV-1201 - IS-9471 exhibited lowest (14.01%) *C*. *lunata* load followed by SPV-1201 - IS-6335 (14.67%) in pooled data.

Over all, there was 20.69 and 7.44% reduction in C. hunata load at Akola and in pooled data, respectively in treated seed with mercuric chloride over untreated control. However, at Patancheru there was 21.73 increased in C. hunata load and there was 108.95% increase in C. hunata load at Akola over Patancheru. In F₂ diallel set (Table 48) the range was from 15.17 to 47.03° a, progeny IS-6335 × IS-9471 exhibited lowest (15.17° a) *C. lunata* load followed by IS-2284 × IS-9471 (17.71%) at Akola. At Patancheru the range varied from 4.00 to 29.76%, lowest (4.00%) *C. lunata* load was exhibited in AKms 14 B × SRT 26B. However, progeny IS-6335 × IS-9471 exhibited lowest *C. lunata* load (15.50 %) in pooled data.

Over all, there was reduction in C. *lunata* load 19.36, 2.44 and 13.81 **% at Akola**, **Patan**cheru and in pooled data, respectively in treated seed over untreated **control and in** general there was 46.43 % increase in C. *lunata* load at Akola over **Patancheru**.

4.9.1.5 Infection by other fungi

In F₁ diallel set it is observed from (Table 37) that the range of variation for parental lines was from 6.33 to 19.33% at Akola, 0.00 to 5.33% at Patancheru and 3.17 to 11.00% in pooled data. Parental line AKms - 14 B recorded lowest other fungi load (6.33, 0.00 and 3.17%) at both locations and in pooled data, respectively. Among crosses lowest other fungi load was exhibited by AKms- 14B + SPV-104(10.33 and 5.83%) at Akola and in pooled data. However, cross ICSB-101B + SPV-104 exhibited lowest (0.00%) followed by AKms 14B + SRT-16B (0.33%) at Patancheru.

Over all, there was significant reduction in other tungi load 39.16. 22.89 and 36.09 % at Akola, Patancheru and in pooled data, respectively in treated seed with mercuric chloride over untreated control, and there was 283.44% increase in other fungi load at Akola over Patancheru. In F₂ diallel (Table 49), progeny IS-6335 × IS- 9471 exhibited lowest other fungi load (9.17%) followed by SPV-104 · IS-9471 (9.73%) and IS- 2284 · IS- 6335 (9.94%) at Akola. Whereas, progeny AKms -14 B × SRT -26B exhibited lowest other fungi load (0.50%) and (6.85%) at Patancheru and in pooled data, respectively. In treated seed with mercuric chloride over untreated control, over all, there was 6.37, 4.91 and 14.44% reduction in other fungi load at Akola, Patancheru and in pooled data, respectively and there was 46.50% reduction in other fungi load at Patancheru over Akola.

4.9.1.6 Score (Germinated seed)

It is observed from data (Table 38), that parental lines IS- 9471 and IS- 6335 recorded minimum (1.00 score) at both locations and in pooled data, however, parental line AKms -14 B exhibited maximum (4.25 and 3.96 score) at Akola and in pooled data and parental lines SPV -1201 and ICSB -101 B (4.00 score) at Patancheru. Thirteen crosses recorded minimum (1.00 score) and seven recorded more than (3.00 score) at Akola, at Patancheru nine crosses recorded minimum (1.00 score) and 19 crosses recorded more than (3.00) score at Patancheru, however in pooled data only four crosses recorded minimum (1.00 score) and more than (3.0 score) recorded in 14 crosses.

Over all, there was reduction in score 13.27, 0.83 and 6.83% at Akola, **Patancheru and** in pooled data, respectively, in treated seed over untreated control, and there was 12.74 % increase in score at Patancheru over Akola.

In F_2 diallel set (Table 50.) 27 progenies recorded more than (3.00 score) maximum (3.70 score) recorded by AKms -14 B + SPV- 104, SRT -26 B + SPV- 104 and SPV- 946 + SPV -104 and progeny IS- 2284 + IS- 9471 exhibited minimum (2.10 score) at Akola, at Patancheru, however 36 progenies exhibited more than (3.00 score), maximum (3.94 score) and minimum (1.75 score) recorded by AKms-14 B + SPV 104 and IS -6335 + IS-9471 at Patancheru, respectively.

Over all, there was reduction in score 17.71, 11.14 and 14.41 % in treated over untreated control at Akola, Patancheru and in pooled data, respectively. However there was 3.63 % increase in score at Patancheru over Akola.

4.9.2 Fungal load on ungerminated seed.

4.9.2.1 Ungerminated Seed

It is observed from data (Table 39) in F_1 diallel for ungerminated seed, the range of variation for parental lines was from 6.33 to 40.33% at Akola, 19.33 to 95.33% at Patancheru and 13.00 to 67.00% in pooled data. Parental line IS-9471 exhibited minimum (6.33%) and SPV-104 exhibited maximum (40.33%) ungerminated seed at Akola. At Patancheru, parental line IS-6335 exhibited minimum (19.33%) and

AKms-14B maximum (95.33 %) ungerminated seed. In pooled data parental line IS-6335 recorded minimum (13.00%) and SPV-104 and AKms-14 B recorded (67%) ungerminated seed.

For crosses the range for ungerminated seed was from (4.67°_{0}) in AKms-14B × IS-6335 and IS-6335 × IS-9471 to (40.00°_{0}) in AKms-14B × SPV-104 at Akola and (8.00°_{0}) in ICSB 101B × IS-9471 to (72.67°_{0}) in Akms-14B × SRT-26 B at Patancheru.

Over all, there was 12.77, 9.06 and 10.09% decrease in ungerminated seed in treated over untreated control at Akola. Patancheru and in pooled data, respectively, and 165.24% increase in ungerminated seed at Patancheru over Akola.

4.9.2.2 Infection by F. moniliforme

In F₁ diallel set, load of *F. monihforme* on ungerminated seed for parental lines ranged from 2.33 to 18.67%, 11.67 to 54.00 and 7.17 to 35.33% at Akola, Patancheru and in pooled data. (Table 40). Parental line (IS-9471) recorded lowest 2.33 and 7.17% fungal load at Akola and in pooled data, however, (IS-6335) recorded lowest 11.67% at Patancheru. Highest fungal load was indicated by (AKms-14B) 18.67% at Akola, whereas, parental line (SPV-104) recorded highest fungal load 54.00 and 35.31% at Akola, whereas parental line (SPV-104) recorded highest fungal load 54.00 and 35.31% at Akola, Patancheru and in pooled data, respectively. Among crosses lowest fungal load was recorded by AKms-14B + IS-6335 and IS-6335 + IS-9471 (1.67%) at Akola, ICSB-101 B × IS-9471 (5.00%) at Patancheru and ICSB = 101B = IS-6335 (4.17%) in pooled data.

Over all, there was reduction in *F. monihforme* load 13.77, 25.66 and 28.05% at Akola, Patancheru and in pooled data, respectively in treated seed with mercuric chloride over untreated control, and 241.04% more *F. monihforme* fungal load was recorded at Patancheru over Akola. In F₂ diallel (Table 52) progeny ICSB-101B × IS-6335 recorded lowest load (2.73%) at Akola, GJ-35-15-15 × IS-2284 (5.50%) at Patancheru and SPV-946 × IS-6335 (5.31%) in pooled data. In treated seed with mercuric chloride over untreated control, over all, there was 18.36, 4.45 and 6.67% reduction in *F. monihforme* load at Akola, Patancheru and in pooled data. respectively. In general 165.56% more F. moniliforme load on ungerminated seed was recorded at Patancheru over Akola.

4.9.2.3 Infection by F. pallidoroseum

In F₁ diallel (Table 41) six parental lines out of 10 parental lines recorded lowest (0.00%) fungal load IS-6335, IS-2284, SPV-946, GJ-35-15-15, SRT-26B and ICSB-101B at Akola. At Patancheru and in pooled data parental lines IS-6335 recorded lowest (2.00 and 1.00%) and SPV-104 recorded highest (10.33 and 7.17%) *F pallidoroseum* load respectively. Among crosses 21 recorded lowest (0.00%) load, at Akola, however only one cross SRT-26B \leq IS-6335 exhibited lowest fungal load (0.00 and 0.17%) at Patancheru and in pooled data, respectively. Over all, there was 58.33% increase, 33.09 and 27.68% significant decrease in fungal load at Akola. Patancheru and in pooled data, respectively in treated seed with mercuric chloride over untreated control, and there was 918.89 % increase in fungal load at Patancheru over Akola.

In F_2 diallel (Table 53) 22 progenies exhibited lowest fungal load (0.00%) at Akola, however, at Patancheru and in pooled data four and three progenies recorded lowest (0.00%) *F. pullidoroseum* load, respectively. Over all, there was 87.50 and 26.52% increase in fungal load at Akola and in pooled data, respectively and 88.15% decrease in fungal load at Patancheru in treated seed with mercuric chloride over untreated control and 882.60% more fungal load was exhibited at Patancheru over Akola.

4.9.2.4 C. lunata

In F₁ diallel (Table 42) at Akola parental lines IS-9471 and IS-6335 exhibited lowest fungal load (3.33%) and highest in AKms-14B and SPV-104 (16.00%). At Patancheru and in pooled data parental line IS-6335 exhibited lowest (5.00 and 4.17%) and parental lines AKms-14B exhibited highest (43.00 and 29.50%) respectively. Among crosses the lowest *C. hunata* load was exhibited by crosses SPV-1201 + IS-6335 (1.67%) at Akola, whereas, at Patancheru and in pooled data cross ICSB-101 B + IS-6335 exhibited lowest fungal load (2.33 and 2.67%), respectively.

Over all, there was 8.27 % reduction in fungal load in treated seed over untreated control at Akola, However, at Patancheru and in pooled data exhibited 43.44 and 21.09% increase in fungal load in treated over untreated control, respectively, Patancheru exhibited 66.91% increase in fungal load over Akola. In F₂ diallel (Table 54) progeny IS-6335 × IS-9471 exhibited lowest (1.68%) *C. lunata* load at Akola, however, IS-2284 × IS-9471 recorded lowest *C. lunata* load (1.75 and 1.76%) at Patancheru and in pooled data. All the treatment exhibited 17.5%, 19.93 and 15.58% reduction in fungal load at Akola. Patancheru and in pooled data, respectively in treated over untreated control and exhibited 27.92% reduction fungal load at Patancheru over Akola.

4.9.2.5 Other fungi

In F₁ diallel (Table 43) parental lines IS-2284 and IS-6335 exhibited lowest other fungi load i.e. 0.00, 0.67 and 0.33% at Akola, Patancheru and in pooled data, respectively. Among crosses AKms-14B · IS-6335 indicated lowest (0.00°_{0}) fungal load at both locations and in pooled data.

Over all, the treatments exhibited 60.00 and 22.30% reduction in fungal load at Akola and in pooled data, respectively, however, at Patancheru location exhibited 26.89% increase in fungal load in treated over untreated control. In general Patancheru exhibited 20.53% increase in fungal load over Akola.

In F_2 diallel (Table 55) progeny ICSB-101B + IS-9471 exhibited lowest fungal load (0.00%) at Akola. GJ-35-15-15 + IS-2284 and SRT 26B + IS-2284 (0.00%) at Patancheru and SPV-946 + IS-6335 and IS-2284 - IS 9471 (0.15%) in pooled data, over all, the treatments exhibited 19.93, 21.05 and 20.62% reduction in other fungi load in treated over untreated control. Patancheru location exhibited 26.78 % more other fungi load over Akola.

4.9.2.6 Score (Ungerminated seed)

In F₁ diallel set. (Table 44) parental lines IS-9471 exhibited minimum 1.17, 2.50 and 1.84 score and AKms-14B exhibited maximum 4.75, 5.00 and 4.88 score at Akola,

Patancheru and in pooled data, respectively. Among crosses the range of variation was from 0.92 to 4.58 at Akola, 1.42 to 5.00 at Patancheru and 1.38 to 4.71 in pooled data

Over all, there was 3.97 and 0.63 % reduction in score at Akola and in **pooled data**, respectively and 3.38 % increase in score at Patancheru in treated over **untreated control** and there was 23.32% increase score at Patancheru over Akola.

In F_2 diallel, (Table 56) all the progenies at Akola and Patancheru except one each IS-2284 × IS-9471 (2.91) and IS-6335 × IS-9471 (2.92), respectively recorded more than 3.00 score. However, all the progenies in pooled data recorded more than 3.00 score. Over all there was, 13.22, 6.96 and 9.72% significant reduction in score at Akola, Patancheru and in pooled data, respectively, in treated seed over untreated control and there was 11.31% increase in score at Patancheru over Akola.

4.9.3 Fungal load on germinated seed, Akola 1995 and 1996

4.9.3.1 Seed germination

Seed germination (°₀) recorded on standard blotter test method on treated and untreated seed were used for study. In F_1 diallel set (Table 57) parental line IS-6335 and IS-9471 exhibited highest germination (97.23°₀) followed by SPV-1201 (96.67 %) and lowest in parental line AKms-14B (53.34°₀) in Akola 1995 and Akola 1996 parental line IS-9471 recorded highest (93.67°₀) and lowest in parent SPV-104 (59.67%) however, in pooled data parental lines IS-9471 recorded highest (95.45°₀) and lowest in AKms-14B (57.33°₀) seed germination.

Among crosses the highest seed germination (^{9}n) were recorded in crosses SPV-946 × IS-2284, SPV-946 × IS-6335 and GI-35-15-15 = IS-6335 $(^{9}7.78)$ %) and lowest in GJ-35-15-15 × SPV-104 $(50.00^{9}n)$ in Akola 1995. In Akola 1996. crosses AKms-14B × IS-6335 and IS-6335 × IS-9471 recorded highest $(95.33^{9}n)$ seed germination and lowest in AKms-14B x SPV-104 $(59.67^{9}n)$, however, in pooled data highest % seed germination was recorded in cross SPV-946 × IS-6335 $(96.06^{9}n)$ followed by IS-6335 × IS-9471 $(95.45^{9}n)$ and lowest in GJ-35-15-15 × SPV-104 and SPV-946 × SPV-104 $(67.33^{9}n)$. Over all, there was significant increase in seed germination 7.07, 2.33 and 4.63% at Akola 1995, Akola 1996 and in pooled data, respectively, in treated seed with mercuric chloride over untreated control and there was 3.52% increase in % germination at Akola 1996 over Akola 1995.

4.9.3.2 Infection by F. moniliforme

In sorghum grain mold low fungal load is considered as desirable characters. In F_1 diallel set, (Table 58) parental lines GJ-35-15-15 and IS-6335 recorded lowest (1.11%) *F. moniliforme* load and highest in ICSB-101B (23.33%) in Akola 1995. In Akola 1996 the lowest load was recorded in IS-9471 (3.33%) and highest in SPV-104 (23.67%), however, in pooled data parental lines IS-9471 recorded lowest (2.50%) and ICSB-101B recorded highest (20.34%) *F. moniliforme* load.

Among crosses lowest load was exhibited by GJ-35-15-15 × IS-6335 (1.11%) followed by ICSB-101 B × IS-9471 (1.67°_{0}) in Akola 1995. In Akola 1996 crosses SPV-104 × IS-9471 (3.33°_{0}) followed by = IS-6335 × IS-9171 (4.01°_{0}), however, crosses ICSB-101B × IS-9471 exhibited lowest (3.34°_{0}) *E. monthparme* load followed by SPV-104 × IS-9471 (3.61°_{0}) in pooled data.

Over all, there was significant reduction in *F. monthforme* load [26:51, 78,49 and 54,87% in Akola 1995]. Akola 1996] and in pooled data, respectively in treated seed over untreated control. However, there was 19/80 % decrease in fungal load in Akola 1996 over Akola 1995.

4.9.3.3 Infection by F. pallidoroseum

There was no occurrence of *F. palluleroscum* at Akola during 1995 in all the entries except one tested (Table 59), hence no conclusion could be drawn.

4.9.3.4 C. lunata

It is observed from (Table 60) that the range of variation for parental lines was from 4.44% (SPV-1201) to 34.45°_0 (SPV-104) in Akola 1995. In Akola 1996 the same was observed to be 18.00% (IS-6335) to 45.35°_0 (SPV-1201), whereas, in pooled data range was 14.73% (IS-9471) to 35.33°_0 (ICSB-101B). Among crosses in Akola 1995 the range was 10.00% in (SPV - 946 + IS-6335) and (SPV-104 + IS-9471) to 38.34°_0

fi (ICSB-101 B × GJ-35-15-15), however in Akola 1996 and in pooled data the range was 12 67% to (SPV-1201 × IS-6335) to 53 33% (ICSB-101B × GI-35-15-15) (Ner all, there was 13 34, 22 36 and 17 82% reduction in fungal load in Akola 1996 in treated over untreated control and 46 85% increase in *C lunata* load Akola 1996 over Akola 1995

4.9.3.5 Infection by other fungi

In F_1 diallel (Table 61) in Akola 1995 season the range for parental line was from 15.00% (SPV-1201) to 64.65% (GJ-35-15-15) in Akola 1996 the range was from 6.33% (AKms-14B) to 19.33% (SPV-1201), however, in pooled data the range was 15.95% (AKms-14B) to 40.89% in (GJ-35-15-15)

Among crosses in Akola 1995 cross AKms-14B SR1-26B recorded lowest (10.00%) other fungi fungal load and highest in SPV-104 IS-2284 (32.78%) in Akola 1996 the lowest fungal load recorded in AKms-14B SPV-104 (10.33%) and highest in SPV-1201 SRT-26 B (27.33%), however, in pooled data cross IC SB-101B × SRT-26B recorded lowest (12.28%) fungal load and highest in SPV-104 IS-2284 (25.89%)

4.9.3.6 Score (GS)

In F₁ diallel (Table 62) it is observed from data that the range of variation for parental lines was from 1.50 (SPV-1201) to 3.83 (ICSB-101B) in Akola 1995 from 1.00 (IS-9471 and IS-6335) to 4.25 (Akms-14B) in Akola 1996 and from 1.50 (IS-9471 and IS-6335) to 3.71 (Akms-14B) in pooled data. Among crosses the range was from 1.25 (SPV-946 IS-6335) to 4.24 (ICSB-101B SPV-104) in Akola 1995 from 1.00 (ICSB-101 B \times IS-6335) to 3.75 (Akms-14B SPV-104) in Akola 1996 and 1.25 (IS-6335 \times IS-9471) to 3.63 (Akms-14B SPV-104) in Akola 1996 and 1.25 (IS-6335 \times IS-9471) to 3.63 (Akms-14B SPV-104) in pooled data. Over all there was 14.26, 13.27 and 13.75% reduction in score in Akola 1995 Akola 1996 and in pooled data, respectively in treated over untreated control and there was 11.84% increase in Score over Akola 1996

4.9.4 Fungal load on ungerminated seed, Akola, 1995 and 1996

4.9.4.1 Ungerminated seed

In parental line minimum ungerminated seed were recorded in 15-9471 (2.22, 6.33, 4.28%) in Akola 1995, Akola 1996 season and in pooled data, respectively. However maximum ungerminated seed were recorded in Akms-14B (45.00°o) in Akola 1995 SPV-104 (40.33°o) in Akola 1996 and Akms-14B (41.83°o) in pooled data (Table 63).

Among crosses minimum ungerminated seed was recorded in SPV- **1201** × GJ-35-15-15 (2.78%) and maximum in ICSB 101 SR1-26B (51.11%) in **Akola 1995** In Akola 1996 minimum ungerminated was recorded in Akms-14B **IS-6335** and IS-6335 × IS-9471 (4.67%) and maximum in SPV-1701 SPV-946 (**30.00%**), however, in pooled data cross IS-6335 = IS-9471 recorded minimum (**4.28%**) and GI-35-15-15 SPV-104 recorded maximum (32.67%) ungerminated **seed**.

Over all there was 28 47–12 83 and 21 71% reduction in ungerminited seed in Akola 1995–1996 and in pooled data respectively in treated seed over untreated control and 16.74% reduction in ungerminated seed in Akola 1996 over Akola 1995.

4.9.4.2 Infection by I' monuliforme

Four parental lines (rI-35-15-15 IS-2284 IS-6335 and IS-9471 recorded lowest (1.11%) and highest in SR1-26B (14 45%) in Akola 1995 (Table 64) however parental lines IS-9471 recorded lowest 2/33 and 1/72% and highest in Akms-14B18/67 and 12.67% *F monilijorme* load at Akola 1996 and in pooled data respectively.

Among crosses four crosses recorded lowest l = n miliferme load (1.11%) in Akola 1995, cross IS-6335 = IS-9471 also recorded lowest load 1.67 and 1.39 % in Akola 1996 season and in pooled data respectively. Highest load was recorded in GJ-35-15-15 = SPV-104 (30.56%) and (17.95%) in Wola 1995 and in pooled data, respectively and SPV-1201 = SPV-946 (17.00%) in Wola 1996 Over all, there was significant decrease *F. moniliforme* load 19.76, **13.64 and** 16.95% in Akola 1995, Akola 1996 and in pooled data, respectively in treated seed over untreated control and 14.88% increase in fungal load in Akola 1995 over Akola 1996.

4.9.4.3 Infection by F. pallidoroseum

The fungal load of F. pallidoroseum in Akola 1995 and Akola 1996 season were recorded nil in most of entries (Table 65), hence conclusion could not be drawn. There was no occurrence of F. pallidoroseum at Akola during 1995. In all the entries and in majority entries tested during 1996 season, hence no conclusion could be drawn (Table 65).

4.9.4.4 Infection by C. lunata

Table 66, revealed that parental line IS-9471 recorded lowest 0,00, 3.33 and 1.67% C. *lunata* load in Akola 1995, Akola 1996 and in pooled data, respectively. SPV-946 recorded highest 16.67% in Akola 1995 and AKms-14B exhibited highest 16.00 and 13.00% load in Akola 1996 and in pooled data, respectively. Among crosses lowest (0.00%) load were recorded in GJ-35-15-15 > IS-6335 and SPV-946 = IS-6335 in Akola 1995 cross SPV-1201 < IS-6335 (1.67%) in Akola 1996 and cross SPV-946 - IS-6335 (1.17%) in pooled data. Over all, there was 27.55, 8.27 and 17.99% reduction in fungal load in Akola 1995, Akola 1996 and in pooled data, respectively in treated over untreated control and 4.26% reduction in *C. lunata* load in Akola 1996 over Akola 1995.

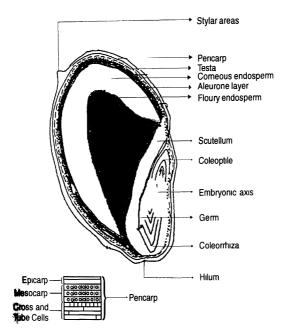
4.9.4.5 Infection by other fungi

Data presented in Table 67 revealed that, the range for parental lines was from 0.00 (SPV-1201) to 26.11% (AKms-14B) in Akola 1995 season however. in Akola 1996 was from 0.00% in (IS-9471 and IS-2284) to 3.67% in (SPV-104) and in pooled data 0.28 % (IS-9471) to 14.72% (AKms-14B).

Among crosses SPV-946 x IS-2284 recorded lowest (0.00%) other fungi load at both locations and in pooled data, however, crosses SPV-946 · SPV-104 recorded highest (7.78%) fungal load in Akola 1995, cross AKms-14B · SRT-26B and SPV-1201 × SPV-104 (3.00 %) on Akola 1996 and cross SPV-1201 × Akms-14B (5.28%) in pooled data, respectively.

Over all, there was 49.52, 60.00 and 52.41°o significant reduction of other fungi load in Akola 1995, Akola 1996 and in pooled data, respectively in treated over untreated control and 64.55% reduction in fungal load in Akola 1996 over Akola 1995.

4.9.4.6 Score


It is observed from data (Table 68), that the score range in parental lines was from 0.83 (SPV-1201) to 4.08 (ICSB-101B) in Akola 1995, from 1.17 (IS-9471) to 4.75 (AKms-14B) in Akola 1996 and from 1.04 (IS-9471) to 4.21 (ICSB-101B) in pooled data. Among crosses the range was from 0.58 (SPV-946 × IS-6335) to 4.75 (AKms-14B × SRT-26B) in Akola 1995 from 0.92 (SPV-1201 × IS-2284) to 4.58 (AKms-14B × SPV-104) in Akola 1996 and from 1.13 (SPV-946 to IS-6335) to 4.54 (AKms-14B SPV-104) in pooled data. AKms-14B × SPV-104 exhibited maximum score in both locations and in pooled data.

4.10. Histopathology of infection of molding fungi (Microtomy)

Histopathology of infection and colonization of major molding fungi viz. *E. moniliforme* and *F. palhdoroseum* and *C. hunata* at different stages of grain **development** i.e., at anthesis, 10, 20,30 and 40 DAF were investigated.

Histologically sorghum seed consist of outer covering pericarp (seed coat), the storage tissue endosperm and embryo (germ). Pericarp is sub-divided into outer epicarp, two to three cells layers, middle mesocarp contains starch granules. usually thickest opposite embryo; innermost layer of pericarp is endocarp consist of cross and tube cells (Plate 5).

Just beneath the pericarp, some sorghum kernels have highly pigmented layer called testa or sub-coat, testa usually thickest at the crown of the kernel and thinnest over embryo. The endosperm of sorghum seed consist of alcurone layer and peripheral (earlier so called stele layer), corneous and floury portions. Alcurone cell layer located beneath the pericarp or testa if it is present, block-like

edian longitudinal section of sorghum grain showing its parts

rectangular cells. The peripheral endosperm is beneath the aleurone layer, consisting of first two to six endosperm cell. The corneous endosperm (hard' horney) located beneath the peripheral endosperm made up of starch and proteins. The floury endosperm area has loose packed endosperm cells. The starch granules are sphericals and they are held together by protein matrix.

Embryo or germ lies at the base of the kernel and consist of scutellum, plumule and radicle, plumule, radicle and a part between is known as embryonic axis. Coleoptile and coleorrhiza are the fused parts around the plumule and radicle toward embryonic leaf and root cap respectively.

4.10.1. Infection by F. moniliforme

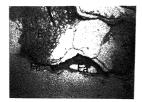
Small size shriveled grains and in some cases no grain formed in the earhead, infection in all parts when the inoculations were made at anthesis (Plate 6A). When the earhead were inoculated at 10 DAF infection observed in all parts except in some parts of endosperm (Plate 6B). The grain from the earhead inoculated 20 DAF colonization observed in endosperm scutellum, embryonic region and at hilar areas (Place 6C). Earhead inoculated at 30 DAF fungus colonizing in embryonic region involving coleoptile, coleorrhiza and embryonic axis (Plate D). When the earhead were inoculated at 40 DAF fungus colonizing in pericarp, aleurone and peripherals region fungus mycelium and spores were observed on pericarp (Plate 6E).

2. Infection by F. pallidoroseum

Shriveled grain and infection in all parts when the inoculations were made at anthesis (Plate 7A). Infection in all parts except some parts of endosperm, when the inoculations were made at 10 DAF (Plate 7B). At 20 DAF infection observed in hilar **areas**, embryonic region and pericarp (Plate 7C). Pericarp and embryonic region colonized when inoculations were made at 30 DAF (Plate 7D). At 40 DAF colonization were observed in endosperm, pericarp and aleurone layer (Plate 7E).

4.10.3. Infection by C. lunata

Shriveled grain formed and infection observed in embryonic region when the inoculations were made at anthesis (Plate 8A). At 10 DAF infection noticed in embryonic region, this infection takes place through hilar region (Plate 8B). Infection


Plate : 6 Infection by F. moniliforme

4	Anthesis -	(LS)Shriveled grain Infection in all parts (13.2 x)
в	10 DAA -	(LS) Infection in all parts (13.2 x) Except endosperm
C	20 DAA -	(LS) Hilar, pericarp, embryonic Region (33-3 x-)
D	30 DAA -	(LS) Embryonic infection (66.6 x)
E	40 DAA -	Aleurone layer and pericarp (66.6 x)

(Pe-Pericarp, E-Endosperm, Al-Aleurone layer, Er-Embryonic region, Ea-Embryonic axis, Hi-Hilar F-Fungus mycelium, Fs-Fungus mycelium and spores)

, i

B

¢

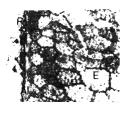
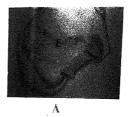
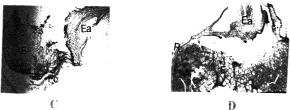



Plate 6. Infection by F. moniliforme

Plate : " Infection by F. pallidoroseum


A: Anthesis	(1.8) Shriveled grain infection in all parts (13.2 x.)
B-10 DAA	(18) Infection in all parts $(33.3 x)$
C-20DAA	(L8) Hilar, pericarp, endosperm and embryonic region (33/3/x/)
D-30 DAA	(TS) Pericarp and embryo (33/3/x)
E-40DAA ~	(1.8) Infection in endosperm and pericarp (66.6 x)

(Pc. Pericarp, E-Endosperm, Er-Embryonic region, Ea Embryonic axis, Al-Aleurone layer, E-fungus mycelium)

B

D

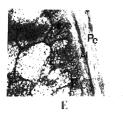


Plate 7. Infection by F. pallidoroseum

was observed in embryonic axis, scutellum near hilar voids, when inoculations were made at 20 DAF (Plate 8C). At 30 DAF, infection were observed in pericarp with spores and mycelium, aleurone layer and endosperm intercellular mycelium was observed (Plate 8D). Infection observed in pericarp and aleurone layer only with spores and mycelium on pericarp when inoculation were made at 40 DAF (Plate 8E).

4.10.4. Infection by different fungi (Fluorescence microscopy)

Shriveled grain was formed when the inoculation were made at anthesis and infection was observed in all region except endosperm (Plate 9A). Infection was observed in hilar areas when the inoculations were made at 10 DAF (Plate 9B). Infection observed in embryonic axis with coleoptile and coleorrhiza infection at 20 DAF (Plate 9C). Infection in pericarp, aleurone layer and endosperm with mycelium. Infection A to D by *F. moniliforme* (Plate 9D). Embryonic infection was observed when the inoculations were made at 20 DAF (Plate 9E). Pericarp infection when inoculated at 40 DAF by *C. hunata* (Plate 9F). E and F infection by *C. hunata*.

4.11 Correlation studies

Correlation describes the inter relationship between the variables. In any biological entity the variables are generally associated with each other. With a view to find out the association between grain molding contributing physical and biochemical characters. Simple correlation coefficient have been worked out on following aspects.

- Correlation between fungal load on germinated and ungerminated F1 seed (Untreated), Akola and Patancheru, 1996
- Correlation between fungal load on germinated and ungerminated F1 seed (Treated), Akola and Patancheru, 1996
- Correlation between physical characters, Akola and Patancheru, 1996
- Correlation between biochemical characters
- Correlation between protein fractions and physical characters

Plate : 8 by C. lunata

4	Anthesis	-	(1.8) Shriveled grain, embryonic region (13.2 x)
ы	10 DAA	-	(LS) Hilar areas and embryo (33.3 \mathbf{x})
C	20DAA	-	(TS) Embryonic axis, scutellum and near hilar viod (33.3 x)
D	30DAA	-	(TS) Pericarp, aleurone layer, endosperm (66.6 x)
E	40 DAA	-	(TS) Pericarp (33.3 x)

(Pc-Pericarp, Al-Aleurone layer, E-Endosperm, Er-Embryonic region, Fa-Embryonic axis, Hv-Hilar void, F-Fungus mycelium, Fs-Fungus mycelium and spores)

Plate : 8 by C. lunata

-1	Anthesis	(1.8) Shriveled grain, embryonic region (13 $2x_0$
в	10 DAA	(1.S) Hilar areas and embryo (33.3 \times)
ι	20DAA	(TS) Embryonic axis, scutellum and near hila viod (33 3 x)
Ð	SODAA	(TS) Pericarp, aleurone layer, endosperm (66.6 v
ŀ	40 DAA	(TS) Pericarp (33.3 x)

(Pc-Pericarp, Al-Aleurone layer, E-Endosperm, Er-Embryonic region, Ea-Embryonic axis, Hv-Hilar void, F-Fungus mycelium, Fs-Fungus mycelium and spores)

B

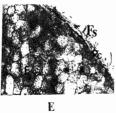


Plate 8. Infection by C. lunata

Plate : 9 Infection by different fungi (fluorescence microphoto)

- A (LS) At anthesis all region except endosperm E. moniliforme (20x)
- B (LS) 10 DAA, Hilar, E moniliforme (100 x)
- C (LS) Embryonic region *F. monilifore* (100 x)
- D (TS) Endosperm (intercellular) I: monilifore (100 x)
- E (LS) Embryonic region C. Iunta (100 x.)
- F (TS) Pericarp, C. lunata (100 x)
- (Pc-Pericarp, E-Endosperm, Ea-Embryonic axis, Hi-Hilar, Cp-Coleoptile, Ch-Coleorrhiza, F-Fungus mycelium, Fs-Fungus mycelium and spores).

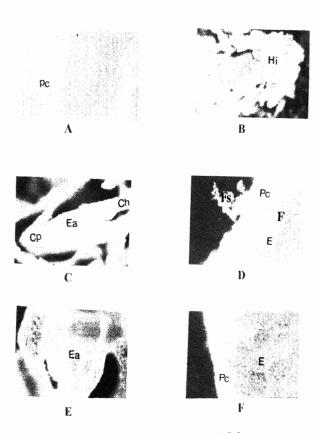


Plate 9. Infection by *F. moniliforme* and *C. lunata* Fluorescence microphoto)

4.11.1 Correlation between fungal load on germinated and ungerminated F₁ seed (Untreated), Akola and Patancheru, 1996

Fungal load viz. F. moniliforme, F. pallidoroseum C. lunata other fungi and their score on germinated (GS) and ungerminated (UGS) (untreated) F_1 seed were recorded at both locations and correlation between them with TGMR as a dependent variable were worked out and results are presented in Table 69.

4.11.1.1 Germinated seed

Out of 12 characters studied, germinated seed had a significant negative correlation with seven characters at both the locations viz. ungerminated seed, score (GS), *F. moniliforme* (UGS), *C. hunata* (UGS), other fungi (UGS), score (UGS), and TGMR, however, *F. moniliforme* (GS) at Akola and *F. pallidoroseum* (UGS) at Patancheru location. Whereas, significant positive correlation exhibited in other fungi (GS) at Akola and *F. pallidoroseum* (GS), *C. hunata* (GS) and other fungi (GS), at Patancheru.

4.11.1.2 Ungerminated seed

Ungerminated seed had a significant positive association with six characters score (GS), *F. moniliforme* (UGS), *C. lunata* (UGS), other fungi (UGS), score (UGS), and TGMR at both the location, and *F. pallidoroseum* (UGS) at Patancheru only. However, significant negative association was exhibited in *F. moniliforme* (GS) and other fungi (GS) at both location and *F. pallidoroseum* (GS), and *C. hunata* (GS) at Patancheru location only.

4.11.1.3 Infection by F. moniliforme (GS)

F. moniliforme (GS) exhibited significant positive correlation with score (GS) (0.76). *F. moniliforme* (UGS) (0.72), score (UGS) (0.71) *C. hunata* (UGS) (0.67), TGMR (0.65), other fungi (UGS) (0.38) and *C. hunata* (GS) (0.28) at Akola location. whereas, with *F. pallidoroseum* (GS) (0.78), *C. hunata* (GS) (0.48), Patancheru. However, significant negative association was exhibited with other fungi (GS) (-0.49) at Akola and *C. hunata* (UGS)(-0.64), *F. moniliforme* (UGS) (-0.52), TGMR (-0.38), *F. pallidoroseum* (UGS) (-0.31), score (UGS) (-0.30)and other fungi at Patancheru.

4.11.1.4 Infection by F. pallidoroseum (GS)

F. pallidoroseum (GS) had a significant positive association with F. pallidoroseum (UGS) (0.55) at Akola and C. hunata (GS) (0.56), other fungi (UG) (0.28) at Patancheru location. However, F. pallidoroseum (GS) exhibited significant a negative association with C. hunata (GS), score (GS), score (UGS), and TGMR at Akola location and score (GS), F. moniliforme (UGS), F. pallidoroseum (UGS), C. hunata (UGS), other fungi (UGS), score UGS, and TGMR at Patancheru location.

4.11.1.5 Infection by C. lunata (GS)

C. Iunata (GS) exhibited significant positive correlation with score (UGS), score (GS), and TGMR at Akola and other fungi (GS) at Patancheru, significant negative correlation was exhibited with all characters except other fungi (GS) at Patancheru.

4.11.1.6 Infection by other fungi (GS)

Other fungi (GS) exhibited significant and negative association with all characters at both locations except *F. pallidoroseum* (UGS) at Akola and score (GS) at Patancheru.

4.11.1.7 Score (GS)

Score (GS) also exhibited significant positive correlation at both locations for all the characters except *F. pallidoroseum* (UGS) at Akola, where, significant negative correlation was noticed.

4.11.1.8 Infection by F. moniliforme (UGS)

F. monliforme (UGS) had a significant positive association with all the characters at both the locations, except F. pallidoroseum (UGS) at Akola.

4.11.1.9 Infection by F. pallidoroseum (UGS)

F. pallidoroseum (UGS) had a significant positive association with all the characters at Patancheru, however TGMR (-0.28) exhibited significant negative association at Akola.

4.11.1.10 Infection by C. lunata (UGS)

C. *Junata* (UGS) exhibited significant positive correlation with all the characters at both the locations.

4.11.1.11 Infection by other fungi (UGS)

Other fungi (UGS) also exhibited significant positive association with all the characters at both the locations.

4.11.1.12 Score (UGS)

Score (UGS) also exhibited highly significant positive correlation with TGMR at both the locations.

4.11. 2 Correlation between fungal load on germinated and

ungerminated F1 seed (Treated), Akola and Patancheru, 1996

Fungal load viz. F. moniliforme, F. pallidoroseum, C. hunata and other fungi and their score on germinated and ungerminated F_1 (Treated) seed were recorded at both locations and correlation between them were worked out and results are presented in Table 70.

4.11.2.1 Germinated Seed

Out of 12 characters studied, germinated seed had a significant negative association with eight characters UGS, score (GS), *F. moniliforme* (UGS), *F. pallidoroseum* (UGS), *C. lunata* (UGS) other fungi (UGS), score (UGS) and TGMR (UGS) at both locations. However, significant negative association was exhibited in *F. moniliforme* (-0.72), *C. lunata* (GS) (-0.40) and *F. pallidoroseum* (GS) (-0.36) at Akola location and significant positive association with *C. lunata* (GS) (0.60), *F. pallidoroseum* (GS) (0.46), *F. moniliforme* (GS) (0.45) and other fungi (GS) (0.43) at Patancheru.

4.11.2.2 Ungerminated seed

Out of 11 characters, ungerminated seed had a significant positive association with seven characters score (GS), *F. moniliforme* (UGS), *F. pallidoroseum* (UGS), *C. hunata* (UGS), other fungi (UGS) score (UGS) and TGMR at both locations. However, significant positive association exhibited with *F. moniliforme* (GS) (0.72). *C. hunata* (GS) (0.40), *F. pallidoroseum* (GS) (0.36) and other fungi (GS) (0.26) at Akola and significant negative association with *C. hunata* (GS) (-0.60). *F. pallidoroseum* (GS) (-0.45) and other fungi (GS) (-0.43) at Patancheru.

4.11.2.3 Infection by F. moniliforme (GS)

F. moniliforme (GS) exhibited significant positive correlation for all characters except other fungi (GS) at Akola location, but only for F. pallidoroseum (GS) (0.60), C. lunata (GS) (0.59) and other fungi (GS) (0.46) at Patancheru. Significant negative correlation with C. lunata (UGS) (-0.52). F. pallidoroseum (UGS) (-0.44), other fungi (UGS) (-0.39) and F. moniliforme (UGS) (-0.32) was exhibited at Patancheru.

4.11.2.4 Infection by F. pallidoroseum (GS)

F. pallidoroseum had a significant positive association with F. moniliforme (UGS) (0.41), other fungi (UGS) (0.36) and F. pallidoroseum (UGS) (0.30) at Akola, and with C. lunata (GS) (0.48) and other fungi (GS) (0.36) at Patancheru. Five characters viz. C. lunata (UGS) (-0.53), other fungi (UGS) (-0.45), F. pallidoroseum (UGS) (-0.41), F. moniliforme (UGS) (-0.34) and TGMR (-0.28) exhibited significant negative correlation at Patancheru. The remaining characters exhibited non-significant positive and negative association at both locations.

4.11.2.5 C. lunata (GS)

All the characters except F. pallidoroseum (UGS) and other fungi (UGS) and only one character i.e. other fungi (GS) have shown significant positive correlation with C. *lunata* (GS) at Akola and Patancheru locations respectively. Seven out of eight characters exhibited negative correlation of which five exhibited significant negative correlation with C. *lunata* (GS).

4.11.2.6 Infection by other fungi (GS)

Other fungi (GS) exhibited significant positive with score (UGS) (0.60), TGMR (0.59), score (GS) (0.56), and *C. lunata* (UGS) (0.31) at Akola location. However, at Patancheru all characters exhibited negative association of which four viz. *F. pallidoroseum* (UGS) (-0.44), *C. lunata* (UGS) (-0.43), other fungi (UGS) (-0.38) and *F. monliforme* (UGS) (-0.36) were significant.

4.11.2.7 Score (GS)

Score (GS) exhibited highly significant positive correlation with all the traits at both the locations.

4.11.2.8 Infection by F. moniliforme (UGS)

 F_{i} moniliforme (UGS) also exhibited significant positive correlation at both the locations for all the traits.

4.11.2.9 Infection by F. pallidoroseum (UGS)

Four characters viz. C. hunata (UGS), other fungi (UGS), score (UGS) and TGMR exhibited significant positive correlation with *F. pallidoroscum* (UGS) at both the locations.

4.11.2.10 Infection by C. lunata (UGS)

C. lunata exhibited highly significant positive correlation with TGMR (0.76, 0.74), score (UGS) (0.70, 0.68) and other fungi (UGS) (0.69, 0.84) at Akola and Patancheru, respectively.

4.11.2.11 Infection by other fungi (UGS)

Other fungi (UGS) exhibited significant positive correlation with TGMR (0.68, 0.66) and score (UGS) (0.54, 0.57) at Akola and Patancheru, respectively.

4.11.2.12 Score (UGS)

Score (UGS) exhibited highly significant positive correlation with TGMR (0.85, 0.85) at both locations.

4.11.3 Correlation between physical characters, Akola and Patancheru, 1996 Twelve characters at both the locations were correlated using germination percent as a dependent variable Table 71.

4.11.3.1 100-grain weight

The study of results revealed that, 100 grain weight had significant and positive correlation with TGMR (0.40) and *F. monihybrane* (0.28) and significant negative correlation with glume covering (-0.26) and *F. palhdoroseum* (-0.26) at Akola

location. however, at Patancheru location none of the characters is having significant positive and negative association.

4.11.3.2 Grain hardness

Grain hardness had a significant positive association with DTF (0.42) and significant negative association with endosperm texture (-0.61) and *F. pallidoroseum* (-0.32) at Akola, whereas, at Patancheru, significant positive association was observed with other fungi (0.50), DTF (0.39), germination (0.30), whereas, significant and negative association was observed with endosperm texture (-0.33) and *F. moniliforme* (-0.26).

4.11.3.3 Endosperm texture

Endosperm texture had a significant and positive correlation with *F. pallidoroseum* (0.41) and significant negative correlation with DTF (-0.54), *C. hunata* (-0.54), electrical conductivity (-0.51), germination (-0.41), mesocarp thickness (-0.39), TGMR (-0.39) and *F. moniliforme* (-0.35) at Akola location, whereas, at Patancheru it had significant and positive correlation with germination (0.52) and significant negative correlation with TGMR (-0.87), *F. moniliforme* (-0.59), mesocarp thickness (-0.55), electrical conductivity (-0.54) and DTF (-0.51).

4.11.3.4 Electrical conductivity

Out of 9 characters studied, 5 characters viz. *F. moniliforme* (0.67, 0.72). TGMR (0.64, 0.82), *C. lunata* (Akola, 0.61), mesocarp thickness (0.56, 0.59) and Days to 50^{96} flowering (0.50, 0.40), exhibited significant positive correlation at Akola and Patancheru respectively. However, germination (-0.66, -0.82), other fungi (-0.44, -0.31) and *F. pallicloroseum* (Akola, -0.33) indicated significant negative correlation at Akola and Patancheru, respectively.

4.11.3.5 Days to 50% flowering

Days to 50% flowering at Akola had significant positive association with mesocarp thickness (0.41), *F. monthforme* (0.37), *C. lunata* (0.37) and TGMR (0.29) whereas, significant negative correlation were established with germination (-0.38), glume covering (-0.33) and *F. pallidoroseum* (-0.32). However, at Patancheru significant positive correlation was exhibited with *C. lunata* (0.46), mesocarp thickness (0.39).

TGMR (0.34), F. moniliforme (0.31) and F. pallidoroseum (0.26) and negative association with germination (-0.20) and glume covering (-0.05).

4.11.3.6 Glume covering

Glume covering had no significant correlation (positive or negative) with most of the variables at both the locations. However positive correlation was noticed with germination at Akola (0.06) and Patancheru (0.11) whereas, negative correlation was exhibited with mesocarp thickness. F. monihforme, C. humata and TGMR at both locations.

4.11.3.7 Mesocarp thickness

Mesocarp thickness at Akola location has a significant positive association with C. *lunata* (0.68), TGMR (0.65) and F. moniliforme (0.51), however, significant negative correlation, was exhibited with germination (-0.57) and F. pallidoroseum (-0.38). At Patancheru TGMR (0.64) and F. moniliforme (0.58) exhibited significant positive association however, significant negative correlation exhibited with germination only (-0.53).

4.11.3.8 Infection by F. moniliforme

F. moniliforme had a significant positive correlation with TGMR (0.68) and *C. lunata* (0.45) and significant negative correlation with germination (-0.82) and other fungi (-0.52) at Akola, however at Patancheru significant positive correlation was exhibited with TGMR (0.77) and *F. pallidoroseum* (0.49) and significant negative in germination (-0.76) and other fungi (-0.50).

4.11.3.9 Infection by F. pallidoroseum

F. pallidoroseum at Akola had exhibited significant negative correlation with TGNR (-0.41) and *C. hunata* (-0.40) and significant positive correlation with germination (0.28), however, at Patancheru germination (-0.19), other fungi (-0.18) and *C. hunata* (-0.17) exhibited negative correlation and TGMR (0.19) indicated positive correlation

4.11.3.10 Infection by C. lunata

C. lunata exhibited significant positive correlation with TGMR (0.73) and significant negative correlation with germination (-0.59) at Akola. Whereas, at Patancheru other

fungi (0.23) and TGMR (0.19) exhibited positive but non significant and germination (-0.23) indicated non significant negative correlation.

4.11.3.11 Infection by other fungi

Other fungi had significant positive association with germination (0.56, 0.41) at Akola and Patancheru respectively. other fungi had a significant negative correlation with TGMR (-0.31) at Akola and non significant negative association (-0.24) at Patancheru.

4.11.3.12 TGMR

TGMR exhibited highly significant negative correlation with germination (-0.78) and (-0.83) at both the locations.

4.11.4 Correlation between biochemical characters

For biochemical characters viz. proteins, soluble sugars, tannins and flavan-4-ols were correlated with grain hardness and TGMR as dependent variable and results are presented in Table 72.

4.11.4.1 Protein

Protein exhibited significant positive correlation grain hardness (0.29), total sugars (0.27), non significant negative correlation with flavan-4-ols (-0.15). Correlation with the remaining characters could not be established.

4.11.4.2 Soluble sugars

Total sugars exhibited significant positive correlation with tannins (0.35) and grain hardness (0.26), significant negative association with TGMR (-0.26) and non-significant positive with flavan-4-ols (0.24).

4.11.4.3 Tannins

Tannins exhibited highly significant positive correlation (0.73) with flavan-4-ols, however grain hardness (-0.37) and TGMR (-0.75) exhibited significant negative correlation.

4.11.4.4 Flavan-4-ols

Flavan-4-ols was found to be negatively associated with grain hardness (-0.59) and TGMR (-0.78).

4.11.4.5 Grain hardness

Grain hardness had a significant positive correlation with TGMR.

4.11.5 Correlation between protein fractions and physical characters

Correlation between six protein fractions viz. Albumin and globulin. prolamin, crosslink prolamin, glutelin like, glutelin, and residues with physical characters viz. mesocarp thickness, endosperm texture, germination and grain hardness were correlated and the results are presented in Table 73.

4.11.5.1 Albumin and globulin.

Out of nine characters only two characters viz prolamin (0.55) and cross link prolamin (0.36) exhibited significant positive correlation, whereas, three characters viz, glutelin-like (-0.73), glutelin (-0.73) and endosperm texture (-0.45) indicated significant negative correlation other characters recorded positive and negative nonsignificant association with albumin and globulin.

4.11.5.2 Prolamin

Prolamin had a highly significant correlation with cross-link prolamin (0.64) and grain hardness (0.63), however significant negative association were exhibited in endosperm texture (-0.73), glutelin like (-0.69), germination (-0.69) and glutelin (-0.66). Other two characters viz. mesocarp thickness (0.35) and residues (0.34) recorded positive non significant association.

4.11.5.3 Cross-link prolamin

Cross-link prolamin exhibited significant positive correlation with grain hardness (0.63) and mesocarp thickness (0.42). However, four characters viz. germination (-0.60), glutelin (-0.59), glutelin-like (-0.58) and endosperm texture (-0.57) exhibited significant negative association. Residues (0.11) exhibited positive but non-significant association.

4.11.5.4 Glutelin-like

Gluletin-like had a significant positive association with glutelin (0.72). endosperm texture (0.62) and germination (0.57), whereas, with grain hardness had a significant negative correlation (-0.47). Mesocarp thickness (-0.20) and residues (-0.18) also reported negative association but non-significant.

4.11.5.5 Glutelin

Glutelin exhibited significant and positive correlation with germination (0.56) and endosperm texture (0.52), whereas, negative significant correlation with grain hardness (-0.42). Mesocarp thickness (-0.34) and residues (-0.07) also reported statistically non significant negative association.

4.11.5.6 Residues

All the characters associated with residues exhibited non-significant positive and negative association. Highest negative association was recorded with germination (-0.32).

4.11.5.7 Mesocarp thickness

Mesocarp thickness exhibited positive and negative significant association with grain hardness (0.41) and germination (-0.48) respectively. Endosperm texture recorded negative association (-0.33) but non-significant.

4.11.5.8 Seed germination

Seed germination exhibited significant negative (-0.38) association with grain hardness.

CHAPTER - V

DISCUSSION

PAGES : 129 - 144

CHAPTER V DISCUSSION

Parental diversity

cienctic divergence of parental lines is an important pre-requisite for obtaining desirable segregants in the progenies. Three red resistant, five white efficient variability for various quantitative traits. The analysis of variance also exhibited significant variation for all the characters except intection by E_{T} of the reserve and other fungi under study which is indicative of their genetic diversity.

Combining ability effects

combining ability is necessary in selection of appropriate parents in hybridization. Since, it gives an idea whether a particular parents combines well in a cross and also denotes specific performance of cross combination against the expectations from the general combining ability of parents.

The results (Table 74) revealed that none of the parental lines was a good general combinet for all the traits under study. However, IS-9471 had desirable gea for nine (F₁) and three (F₂) characters. This line could transmit higher grain hardness, comeous endosperm texture, lower plant height, more glume covering, low fungal infection by -k, *pullidireseum*, more proteins, more soluble, sugars, more tannins and more flavan-4-ols in F₁ crosses and whereas, more grain hardness, lower plant height and low fungal infection by of *F*. *monhtperme* in F₂ progenies. Similarly parental lines SPV-1201, IS-6335, GJ-35-15-15 and IS-284 transmitted favourable genes for various traits to F₁ crosses and F₂ progenies notable among these are the increased grain hardness, corneous endosperm texture, tannins, flavan-4-ols and reduced infection by *F*. *monhtperme* and *F*. *pullidireseum*. In general transmission of fraits in F₁ crosses was more pronounced that those in F₂ progenies.

The results indicated that the first five parents IS-9471, SPV-1201, IS-6335, GJ-35-15-15 and IS-2284 can be categorised as good general combiners for various physical and biochemical characters. Since higher general combining effects correspond with additive and for additive to additive interaction (Griffings, 1956b) and represent the fixable genetic components of variation, these parental lines appear to be worthy of exploitation in a recombination breeding program.

Specific combining ability effects is the indicative of heterosis and also the dominance and epistatic gene action. Denis and Girard (1977) reported loss in viability to be so important part of the grain mold syndrome, that they recommend a germination test as a part of standard evaluation for identification of grain mold resistance.

First cross AKms-14B x IS-6.335 exhibited significant sca effects for germination per cent in both F_1 and F_2 diallel progenies. The same cross exhibited significant desirable sca effects for other component characters viz. 100-grain weight, electrical conductivity, days to 50% flowering, mesocrp thickness, TGMR, *F. monihforme*, protein, tannins, and flavan-4-ols in F_1 diallel, and electrical conductivity and TGMR in F_2 diallel (Table 75). Significant sca effects on germination both in F_1 and F_2 diallel progenies of other crosses were also noted. In addition, significant sca effects were recorded for other important grain mold resistance components, such as TGMR, grain hardness, endosperm texture, infection by *F. monihforme*, and *F. pallidoroseum*.

Among the 10 specific combinations (Table 75) first, second and ninth were most desirable, since these had significant positive sea effects for germination in both F_1 and F_2 progenies. Of the parental lines involved in above three crosses, IS-6335 IS-9471, and SPV-1201 were identified as good general combiners. Therefore one can expect good segregants in turther generation from these crosses. It can therefore, be suggested that biparental mating among the segregants of these crosses may be attempted to evolve line with better grain mold folerance.

Gene action governing inheritance of characters

The gea and sea variances for the traits studied indicate the gene action associated with them. Knowledge gained on the relative magnitude of various types of gene actions is useful in deciding the most appropriate breeding procedures.

In the present investigation the variance due to gea were larger than that of sea for the characters. like 100-grain weight, endosperm texture, tannins and flavan-4-ols in F_1 progenies, and for cob length. TGMR, and infection by *F. moniliforme* and *C. lunata* both in F_1 and F_2 progenies. Therefore, additive gene action was more predominant for these characters. Ghorade (1995) reported the role of additive gene effects for 100-grain weight. Subholkar and Baghel (1982) reported similar results for tannin content. Karale *et al.*, (1984) eported similar results for cob length. No literature is available on inheritance of TGMR. Subholkar and Baghel (1980). Narayana and Prasad (1983), Kataria *et al.* (1990) reported milar results for infection by *Fusarnum* and *Curvularia*.

For grain hardness and glume covering both gea and sea estimates were gnificant. Their ratio of more than 1 demonstrated preponderance of additive type gene tion in F_1 diallel. In F_2 diallel, though both estimates were significant, the ratio of gca/ δ^2 sca works out to be less than 1 indicating predominance of more non-additive gene tion. The role of additive gene action for these traits have been reported by Ghorade (1995) d the role of additive gene action for grain hardness was reported by Rana et al. (1978).

In case of plant height lower ratio of $\delta^2 \text{gca}/\delta^2 \text{sca}$ indicated non-additive gene ion in F₁ diallel. These results are similar to those of Nimabalkar and Bapat (1987) and ger *et al.* (1988). The higher ratio of $\delta^2 \text{gca}/\delta^2 \text{sca}$ indicated predominance of additive gene ion in controlling plant height in F₂ progenies. These findings were in confirmation with the ervation of Patil and Thombre (1986) and Shekar *et al.* (1987).

The results obtained for electrical conductivity and other fungi fungal load were ilar to those of plant height, which is supported by Ghorade (1995) for F_2 diallel, but tradictory to F_1 diallel.

For days to 50% flowering, mesocarp thickness, proteins and soluble sugars, in tiallel, though both the estimates were significant, the ratio of $\delta^2 gca/\delta^2 sca$ works out to be than 1 indicating non-additive gene action. These results are in agreement with Kanaka (2) and Huger *et al.* (1988). For germination and infection by *F. pallidoroseum* though the estimates were significant, the ratio of $\delta^2 gca/\delta^2 sca$ comes out to be less than unity in F₁ F₂ diallel progenies, indicating predominance of non-additive gene action. Contradictory ts were reported by Ghorade (1995) for germination and for *F. pallidoroseum* no ture is available.

In the present investigation, it could be concluded that gca variance were minant for most of the characters studied, i.e., 100-grain weight, grain hardness, perm texture, cob length, glume covering, TGMR, *F. moniliforme*, *C. lunata*, tannins lavan-4-ols. However, sca variance was predominant for electrical conductivity, days to flowering, mesocarp thickness, germination, *F. pallidoroseum*, proteins and soluble

sugars. Studies on gene action governing inheritance of endosperm texture. flavan-4-ols and TGMR have been made for the first time, and thus these are new information.

Heterosis

In the present investigation, of the several agronomic, physical and bio-chemical parameters studied, desirable significant heterosis and heterobolities were observed for 100-grain weight, electrical conductivity, DTF, plant height, cob-length, mesocarp thickness. TGMR, seed germination, infection by *F. monihforme, F. palludoroseum, C. hunata*, tannins and flavan-4-ols (Tables 12-17). These parameters can significantly contribute towards reducing or preventing infection and colonization by mold fungi. Similar results were reported by Kanaka (1982) for 100-grain weight; Ghorade (1995) for electrical conductivity and seed germination, Quinby (1963), Goyal and Joshi (1976) and Saradaman (1981) for cob-length: Naryana and Prasad (1983) and Ghorade (1995) for fungal load.

Biochemical characters

For proteins and soluble sugars none of the crosses exhibited significant desirable heterosis or heterobeltiosis, however, for tannins significant heterosis exhibited from 2 38 to 38.64%, whereas for flavan-4-ols the range for heterosis was from 5.67 to 52.10% and for heterobeltiosis 26.45 to 48.37%. From the data of heterosis and heterobeltiosis for seed germination, it is observed that crosses with high magnitude of heterosis or heterobeltiosis have not necessarily showed better *per se* performance or vice-versa. Hence the selection of superior crosses should necessarily be based not only on magnitude of heterosis but also on actual performance of crosses for germination so that appropriate selection can be made without errors.

On the basis of their *per se* performance for germination and the extent of heterosis and heterobeltiosis, it is concluded that out of 10 crosses, first four crosses i.e. ICSB-101B x IS-2284, ICSB-101 B x IS-6335, ICSB-101B x IS-9471 and SPV-1201 x IS-2284 could be stated as a desirable ones for mold resistance breeding. These crosses need to be exploited n further generations for isolating mold resistance lines

^ohysical characters

Jundred-grain weight of kernels was less in all the entries tested at Patancheru during 1996 inder controlled conditions. Over all 86.25% increase in *F. monthforme* load was recorded at 'atancheru over Akola in the same year. Bhatnagar (1971), Gray *et al.* (1971) and Mathur *et* . (1975) reported that *F. monthforme* and *C. hundra* interfere with carbohydrate translocation developing kernels causing reduction in size and weight of seed. Similar results were also ported by Glueck and Rooney (1976), Castor (1977). Castor and Frederiksen (1980), Singh d Agrawal (1989) and Somani (1992). Seventy per cent loss in grain weight was reported by 'ay et al. (1971) in central Kentucky USA. Sundaram et al. (1972) reported losses up to 50% e to head molds in hybrid sorghum in experimental plots at Coimbatore. Glueck and Rooney (1976) reported test weight loss from 62.2 lb/bu to 47.3 lb/bu under severe weathering inditions at College Station. Texas. Singh and Agrawal (1989) reported that sorghum seed lected with *C. hundra*, *F. monthforme* and *Phome sorghuma* reduced 100-grain weight by 69, and 40% respectively. Significant specific combining ability for 100-grain weight was liced in two F₁ crosses (AKms-14B = 1S-6335 and SPV-1201 = SRT-26B), as well nificant heterosis for grain weight in two crosses (AKms-14B = 1S-6335 and SR1-26B = 6335) out of 10 superior F₁ crosses. Gene action in F₁ diallel was additive for 100-grain ight.

Rana et al. (1984). Bandyopadhyay (1988). Stenhouse et al. (1990) Reddy et (1991), Jambunathan et al. (1992) and Kumari et al. (1992) reported that in white-grained ghums hardness contribute to resistance. Hardness was measured by force required to ak the grain. From the present studies it is observed that, parent SPV-1201 exhibited ximum grain hardness followed by GJ-35-15-15 and ICSB-101 B at both the locations. ereas, cross SPV-1201 x GJ-35-15-15 exhibited highest grain hardness i.e. 7.85 and 7.43 kg ² and (Av. 7.64 kg/cm²) at Akola and Patancheru, respectively. Colored parental lines and ises having more floury endosperm were brittle and required less breaking strength. Over less grain hardness was recorded at Patancheru ihan at Akola during1996, indicating that, trolled conditions cause more deterioration of grain than natural intection. Jambunathan et (1992) reported higher grain hardness in grain grown in post rainy season than in grain vn in rainy season. Mukuru (1992), Jambunathan et .d. (1992) and Somani (1992) also ted that mold resistance in white grain advanced selections was associated with grain lness, whereas, resistance in red-grain types was associated with flavan-4-ols and grain iness. The present results are in confirmation of these results. Grain hardness is governed dditive and non-additive gene action in F1 and F2 diallel, respectively.

In the present investigation, inone 48 tosses, eight crosses, exhibited correcous endosperm, six-crosses, exhibited floury, endosperm, and 31 crosses, indicated intermediate (Table 5). Clark *et i* = (1973) and Elis (1972) noticed that correcous endosperm characteristic is not necessary for resistance to weathering however, if all other things were equal a line with more correcous grain would resists deterior from more than would a floury, endosperm, line because of more dense structure and organization — chucck *et a* = (1977) and clucck and Roonev (1980) noticed that grain with more correcous endosperm were more likely to resist deterioration, than floury endosperm lines. Similar results were reported by (rarud (1992) and Somani (1992). Significant specific combining fibritity was noticed in 1/4 diallel in only one cross (IS-2284 = IS-6335) out of 10, and this character is governed by additive gene retion in F₁ diallel.

Seventeen of the 45 crosses exhibited electrical conductivity less than 150 dSm⁺ and six between 150 and 200 dSm⁺ ind 22 more than 200 dSm⁺ 1 lectrical conductivity on higher sides was recorded at Patanchern than at Akola this might be due to more electrolytes leakage because of more deterioration under controlled conditions at Patanchern. Measuring of seed leachates and correlation with germination could become an efficient techniques for studying the effects of grain mold seventy on seed viability (Forbes 1986). Glueck and Roonev (1980) reported that cultivars with thick mesocarp and floury endosperm texture increased water absorption and richer leachates. Somani (1992) noticed that the electrical conductivity of seed leachates was more in susceptible cultivars. Crosses ICSB-101B. IS-2284 ICSB-101B. IS-6335 and ICSB-101B. IS-9471 selected on the basis of germination indicated lower electrical conductivity. I lectrical conductivity is governed by non-additive and additive gene action in 1 and 1. dalled respectively.

Glumes appear to be plants first detense against fungal invasion and colonization (Waniska *et al.* 1992). But it was also reported that even on completely covered but not compact glumes, mold development was noticed (Somani 1992). It was also reported that except *F. moniliforme* infection of other lungi takes place from uncovered portion of kernels by glumes. Multis (1975) noticed *Curvul a al.* infection on a portion of seed not covered by glume and concluded that open head with sced completely enclosed in long papervision and concluded that tully enclosed grain by glume and look heads are the factors.

associated with resistance. Glueck and Rooney (1980) and Somani (1992) reported similar results. Mansuetus *et al.* (1988) showed that disease incidence was negatively associated with glume cover ($r \approx -0.56$) and glume length ($r \approx -0.56$). Pigmentation in the pericarp and glume may impart some degree of resistance (Waniska *et al.*, 1992). Sorghum contains polyphenols (tannins) in colored pericarp and tannins are deterrents to mold Harris and Burns (1973). In the present study, 11 F₁ crosses showed more than 50% glume covering at Akola, and 21 F₁ crosses at Patancheru. More glume covering was noticed in three crosses of the 10 crosses (Table 77) which exhibited resistant reaction to mold. This character is governed by additive and non-additive gene action in F₁ and F₂ diallel respectively.

With regards to mesocarp thickness, 15 out of 45 crosses at both locations exhibited less than 50 μ m thickness (thin). Thin mesocarp is considered as resistant trait for grain mold. The mesocarp is thin when the gene is dominant (Z-) and thick when the gene is recessive (zz). Ten out of 10 crosses based on germination and grain mold resistance recorded less than 50 μ m mesocarp thickness (Table 77). Glueck and Rooney (1980) reported similar results, and stated further that thin mesocarp sorghum withstand weathering better than those with thick mesocarp, thick mesocarp contains starch and protein which support more fungal colonies than thin mesocarp. Castor (1981) provided additional evidence that infection takes place by relatively few species of fungi during anthesis. Also a number of different tissues appear to be involved in resistance to colonization. Since the infection takes place at such an early stage, the presence or absence of testa has little effect on initial colonization. His work substantiate the fact that mesocarp provide an ideal environment for early colonization. Miller (1981) reported similar results. This trait is governed by non additive gene action in F₁ diallel.

Visual appraisal has been the most common means of quantifying grain mold to date. Visual appraisal involves a complex of factors and can estimate severity, incidence and damage, depending upon the method of assessment. Visual assessment, obviously the quickest and easiest method of disease assessment, is used for screening large number of samples (Bandyopadhyay and Mughogho, 1988 a). According to Frederiksen et al. (1982) comparing threahed grain is the most accurate method of visual assessment of grain mold. Hence TGMR is an important character for evaluation of crosses, less TGMR is considered as favourable for grain mold resistance. As TGMR grade exhibited significant positive association with different types, of fungal load indicated that low TGMR grade is favourable. Forbes (1986) reported stitute associations with visual assessment as percentage of kernels moldy (r = 0.98) with slony forming with of *F. moniliforme*. Additive gene action was exhibited for this trait in F₁ id F₂ diallel.

Poor seed germination is positively correlated with infection level by mold ngi. There was 86.26% more load of F. moniliforme and 165.27% more load of F. *illidoroseum* at Patancheru over Akola in F₁, that may have resulted in lower germination. owever, 108.95% more C. lunata load was recorded at Akola over Patancheru. Germination considered desirable character for mold resistance. Denis and Girard (1977) and Castor and ederiksen (1980) recommended germination test as a part of standard evaluation for entification of grain mold resistance. Many fungi were reported responsible for loss in and Rhizoctonia spp. were rmination Tarr (1962) reported Aspergillus, Fusarium sponsible for poor emergence of sorghum seedlings, since these fungi destroy starchy dosperm of seed and thus deprive young seedling of its food. Tripathi (1974) reported, duced germination by (42%) due to Colletotrichum graminicola followed by C. lunata 0%), F. moniliforme (37%) and Phoma insidiosa (26%). Mathur et al. (1975) reported aximum F. moniliforme and F. semitectum form 70 samples collected from U.P. Guirat and aiasthan (northern India). F. moniliforme affected both germination and seedling growth d was mainly observed in embryos. Castor (1975) reported maximum Fusarium and urvularia as a principal pathogens and caused discoloration and reduction in viability of rghum seed.

Dayan and Dalmacio (1982) reported F. moniliforme and C. lunata as most edominant fungi invading embryo and endosperm thereby reduced seed viability in ullippines. Wu (1983) isolated 16 genera of which F. moniliforme was most prominent gether with C. lunata in Taiwan. Granja and Zambolim (1984) reported low germination in rghurn due to F. moniliforme. Deshmukh (1989) noticed that C. lunata, F. moniliforme and *cserohilum halodes* caused considerable reduction in germination from Vidarbha. Since these ngi destroy starchy endosperm of seed and thus deprive young seedling of its food. In the esent investigation better heterotic crosses for germination showing heterosis and terobeltiosis for other components were: ICSB-101B × IS-2284, ICSB-101B × IS-6335, SB-101B × IS-9471, SPV-1201 × IS-2284, AKms-14B × IS-6335, GJ-35-15-15 × IS-6335, <T-26B × IS 9471, IS-2284 × IS-9471, SRT-26B × IS-6335 and SPV-104 × IS-6335, which chibited 81.75 to 90.00% germination. The significant heterosis exhibited for other proponents characters were electrical conductivity, mesocarp thickness, TGMR, *F. onliforme, C. lunata, F. pallidoroseum*, tannins and flavan-4-ols contributed towards mold sistance in above crosses (Table 77). Germination is governed by non-additive gene action in 1 and F₂ diallel.

Based on *F. pallidoroseum* infestation at two locations it appears that *F. allidoroseum* is comparatively of minor importance in grain mold at Akola, whereas, it is an aportant mold fungus next to *C. lunata* at Patancheru. This variation possibility might be due variations in the ecological conditions. Only one cross ICSB-101B \times IS-2284 out of 10 lected on basis of germination exhibited significant heterosis for this trait. This character is yverned by non-additive gene action in both F₁ and F₂ diallel.

C. lunata is another major fungus associated with grain mold. It is number one ingus in some parts, causing reduction in weight, germination and viability (Bhatnagar, 171; Mathur et al., 1967, Tripathi, 1974; and Khare et al., 1976). C. lunata has been found portant also in Taiwan (Wu and Cheng, 1990), Thailand (Boon-Long, 1992) and also from fferent parts of India (Bhale and Khare, 1982; Deshmukh, 1989; Somani, 1992). At Akola 39 it of 45 crosses recorded more than 31% Curvularia load. However, at Patancheru 35 out of 5 crosses recorded 16-30% C. lunata load and over all, there was 108.95% increase at kola over Patancheru. Significant heterosis was recorded in cross SRT-26 × IS-6335 and terobeltiosis in five crosses (ICSB-101B × IS-6335, ICSB-101B × IS-9471, GJ-35-15-15 × -6335, SRT-26B × IS-9471 and SRT-26B × IS-6335) of the 10 crosses selected on basis of rmination in F₁ diallel. This character is governed by additive gene action in F₁ and F₂ allel.

The protein content of the parental lines ranged in between 8.93 and 12.94% id those of 45, F_1 crosses, it ranged between 5.23 and 10.56%. The cultivars presently under ide cultivation are medium hard with moderate protein content. The results obtained are in neurrence with those of Desai *et al.*, (1992) and Somani (1992). In the present studies, a guificant specific combining ability (sca) was noticed in three F_1 crosses viz., Akms-14B × -6335, SPV-104 × IS-2284 and SPV-104 × IS-6335. It is also revealed that this specific nstituent is governed by non additive gene inheritance in F_1 diallel.

In this investigation soluble sugars content varied form 1.20 to 2.30% in ents and 0.80 to 1.80% in F_1 crosses. Only one cross SPV-104 x IS-6335 exhibited inficant heterotic effects. It is also concluded that this trait is controlled by non additive e. Glueck *et al.*, (1997) reported that in deteriorated grains, soluble carbohydrates are ally decreased as they are used to provide energy for the growth and development of fungi. the contrary Somani (1992) opined that due to enzymolysis soluble sugars increased in dy grains.

In the present investigation the TGMR was 1.75 to 2.50 in colored grain that gest the tannin is deterrent to molding fungi and these observations confirm the findings of ier workers (Ellis, 1972; Murty, 1975; Glueck and Rooney, 1980; Rooney and Miller, 1; Hahn et al., 1984; Bandyopadhyay, 1988; Mansuetus, 1990). Nine of the 10 crosses cted for higher germination (Table 77) exhibited significant heterosis for tannin or flavan-4-or both. These characters is governed by additive gene inheritance in F_1 diallel.

Hagerman and Butler (1981) noticed tannin associated protein consist of three or components, two of which are high molecular weight prolamin and one of these was e rich in proline. Guiragossian *et al.*, (1978) noticed that mutation in P-721 sorghum reased quality of kafirin (prolamin) with and increased albumin and globulin. It suggest the prolamin is inversely correlate with albumin and globulin. Similar trend was noticed in present studies also Subramanian *et al.*, (1990). Similar observations have been noticed for t of crosses in present investigation. However, the percentage of this fraction was on quite ter side i.e. 65.16% in IS-9471 whereas, it was bit less in other colored grain parents.

Prolamin content was maximum in AKms-14B followed by SPV-1201 and GJ-15-15 whereas, crosslink prolamin was maximum in SPV-104 followed by SPV-946 and 35-15-15. All these parental lines have white grain. It is interesting to note that prolamin crosslink prolamin were on quite lower side in all colored grain parental lines and hence stance to grain mold in colored grain cultivars can be attributed to tannins and flavan-4-ols er than grain hardness. Similar trend was noticed in F_1 crosses where colored grained ntal line was used and gene for colored testa was dominant. These finding are in ussance with those of (Gluck and Rooney 1980; Bandyopadhyay 1986; Jambunathan 1986; uru 1992). In white grained sorghum the prolamin and cross-like prolamin were on higher in SPV-946, SPV-104 and AKms-14B all these parental lines have more breaking strength e by indicating that the endosperm is vitreous and prolamin and cross link prolamin ributes for vitreousness. Clark et al., 1973; Ellis 1972, Somani 1992) noticed five to six ; dense layer beneath the aleurone layer was present in tolerant to resistant cultivars. nari and Chandrashekar to had similar observations and reported that, prolamin and crossprolamin are more in the dense layer which contributed to resist deterioration by grain d. The present results are with tolerant cultivars are in concurrence with the results of *e* workers. However, the mold in SPV-104 and AKms-14B was more even though the amin and cross prolamin content are high, this might be due to higher mesocarp thickness hence the infestation was more but restricted mere to pericarp only.

In F_1 crosses prolamin and cross link prolamin content was increased where, in ot parent from white grain had more prolamin and cross link prolamin suggesting that gene his particular traits is dominant.

ct of pre-treatment

rall, there was significant increase in germination in pre-treated over untreated control in ntal lines, F_1 crosses and F_2 progenies at Akola and Patancheru grown during 1996 and ntal lines and F_1 crosses of two seasons at Akola grown during 1995,1996. There was ease in germination at Akola over Patancheru during 1996. There was significant reduction $\overline{\cdot}$ moniliforme load at both locations in pre-treated seeds over untreated control, however all, there were 86.26 and 28.32% increase in *F. moniliforme* infection at Patancheru over la in F_1 and F_2 diallel, respectively. These results are in concurrence with results of other kers (Bhagwat and Datar, 1974; Mathur *et al.*, 1975; Castor and Frederiksen, 1981; /asekaran, 1983; Granja and Zambolim, 1984; Wu, 1983). The variation between two ons at Akola was due to infection of seed due to *F. moniliforme* at the time of anthesis use of continuous rains (Somani 1992). For *F. pallidoroseum* there was a significant ease in load in pre-treated over control whereas, there was an increase of 165.27 and 6% at Patancheru over Akola in F_1 and F_2 diallel on germinated seed. However, two ons Akola 1996 recorded more load over Akola 1995 season.

Significant reduction in ungerminated seed was noticed in pre-treated seed over eated control at both locations and both seasons at Akola. There was significant reduction ngal load of F, moniliforme and F, pallidoroseum: in F_1 and F_2 progenies, however for C. *lunata* there was increase in load was recorded in F_1 crosses at Patancheru. This might be due to more superficial infestation of *C. lunata* at Akola under natural condition, whereas due to deep seated infestation the pre-treatment did not revealed any effect on *C. lunata* at Patancheru.

Histopathology

From the infection and colonization studies it was seen that the Fusarial penetration (both species) usually take place from hilar end and no pericarpal infection was observed. Curvularial infection however, is usually through both kernel ends i.e. stylar and hilar as well directly though the pericarp wall. These findings are similar with those of Castor (1977) and Castor and Frederiksen (1980). Inoculations at anthesis has shown development of Fusaria in developing kernels in all the parts of spikelets and denser growth around the ovary base and progress acropetally between aleurone layer and pericarp subsequently endosperm, embryonic tissue. For *C. lunata* infection was observed on ovary wall, pericarp, endosperm and embryonic tissue. Similar observations were recorded by Forbes (1986) and Bandyopadhyay (1986).

Correlation studies

The knowledge of association of different grain mold contributing components is of significant importance in grain mold resistance breeding programme. This study provides reliable information on nature, extent and effectivity of selection. The simple correlation studies between fungal load of untreated and pre-treated, germinated and ungerminated seeds and contribution of physical and biochemical characters if any, towards resistance have been studied in the present investigation since many researchers had putforth different physical and biochemical characters contributing towards grain mold resistance. The available literature however, revealed that no appropriate correlation between various factors for mechanism and genetics of grain mold resistant had been established.

Germinated seed (untreated) has shown negative association with F. moniliforme, C. lunata, score (GS) and TGMR at Akola location, indicating that with the low fungal load of above fungi there was increased germination and reduced TGMR. Whereas, at Patancheru, fungal load (GS) had significant positive association thereby indicating that, fungal load has no positive effect on germination. However, ungerminated seed had positive **correlation with fungal load of all fungi and score**, indicating that on ungerminated seed the **ngal load of** *F. moniliforme* and *C. lunata* was more that ultimately might have reduced the rmination and increased the TGMR. Wu and Cheng (1990) reported similar results for *C. nata*, *F. moniliforme* and some other fungi.

Positive significant correlation was establish between *F. moniliforme* (GS) and *lunata* (GS) with TGMR at Akola. Forbes *et al.* (1989) too established similar correlation regards to *F. moniliforme* only. However, at Patancheru negative significant association of the fungi with TGMR was noticed. This might be due to continuous congenial condition infection by moldy fungi. Significant association between molding fungi and TGMR was ticed in ungerminated seed, it proved that with increasing fungal load there is decrease in mination and increase in TGMR. Similar observation have been made by Bhatnagar 171), Tripathi (1974), Castor (1977), Rao and Williams (1977), Castor and Frederiksen 180). Vidyasekaran (1982) and Forbes (1986).

Correlation studies of fungal load on germinated and ungerminated (treated) id revealed that, germinated seed had significant negative correlation with F. moniliforme S), F. pallidoroseum (GS) C. lunata (GS), other fungi (GS), and TGMR at Akola that, licates that with the minimum load of these fungi there is improvement in seed germination. wever, significant positive association exhibited with germinated (treated) seed and F. miliforme, F. pallidoroseum, C. lunata and other fungi at Patancheru revealing that the sence of molding fungi did not effect seed germination. It indicates that, there is no effect pre-treatment of seed in impairing germination since controlled conditions at Patancheru ulted in total loss of viability. All molding fungi on germinated seed increased score and reased TGMR at both the locations. Fungal load on ungerminated seed had a significant ociation with all fungi, score and TGMR at both the locations indicating that, presence of re fungal load reduces germination, increase score and TGMR. Forbes et al., (1989) also orted similar results but for F. moniliforme and TGMR.

rrelation between physical characters

ndred grain weight has shown positive correlation with days to 50% flowering at Akola. nilar results were also reported by Patil *et al.* (1980) and Patil and Thombre (1985). wever, no correlation studies between grain hardness and mold contributing characters viz. losperm texture, electrical conductivity, days to 50% flowering, glume covering, mesocarp ess, fungal load of different fungi, disease severity and seed germination has been ed so far. The present studies tried to correlate these factors.

As anticipated the endosperm texture has negative significant correlation with hardness, because the grain hardness is usually exhibited by vitreous endosperm. Similar vation was also reported by Maxson *et al.* (1971). As regards to correlation with ical conductivity, it is observed that there was positive correlation at one location, where ing was done under natural conditions, even when there was good mold development, ver, a negative correlation was established at another location i.e., Patancheru which be due to totally controlled conditions i.e., due to providing more favourable condition fection, establishment and deterioration by molding fungi at Patancheru.

Grain hardness exhibited significant positive correlation at both locations with indicating that late maturing crosses escape mold attack and exhibited more grain ess. Grain hardness has shown significant positive correlation with germination at cheru, thereby confirm the finding of Ghorade (1995). As regard to endosperm texture, increasing corneousness of endosperm there is decrease in electrical conductivity, ity period, mesocarp thickness, *F. moniliforme, C. lunata*, TGMR and germination. :k et al. (1977), Głueck and Rooney (1980), Garud (1992), Kumari et al. (1992) and ni (1992) recorded similar observation for TGMR.

As regard to electrical conductivity, with the increased maturity period, carp thickness, F. moniliforme, C. lunata load and TGMR there was increase in electrical uctivity. Whereas, fully covered grain, other fungi and germination exhibited negative ilation with electrical conductivity. Glueck and Rooney (1980) reported similar vation for mesocarp thickness. Forbes (1989) reported similar observations for F. liforme, TGMR and germination while Ghorade (1995) reported similar trend for ination, F. moniliforme and C. lunata. As regard to glume covering, increase in glume ring decrease fungal load of all fungi and TGMR and increase in germination was ed. Similar observations were made by Murty (1975) Gangadharan et al. (1978), Glueck Rooney (1980), Mansuetus (1988) and Somani (1992) for TGMR; and Narayana and Id (1980) for TGMR. With the increase mesocarp thickness there is increase in fungal of F. moniliforme, C. lunata and TGMR and decrease germination. Glueck and Rooney 0), Castor (1981) and Miller (1981) also reported similar observations. Increase in tungal load of *F. moniliforme* increases IGMR and seed nation at both locations. These results are in accordance with those of Rao and Williams), Denis and Girard (1977), Vidyasekaran (1983), Forbes (1986), Deshmukh (1989) for R and germination. With the increase in fungal load of *C. lunata, there is* increase in R and decrease in germination. Similar observations were reported by Tripathi (1974) ao and Williams (1977).

elation between biochemical characters

ns exhibited positive significant correlation with flavan-4-ols indicating that, with the ise in tannins there is corresponding rise in flavan-4-ols. However, tannins and flavan-4id negative significant correlation with grain hardness and TGMR indicating that grain iess is not an important contributing character for grain mold resistance if tannins and 1-4-ols are present. However, tannins and flavan-4-ols are highly correlated with mold ance (Mukuru, 1992).

In the present investigation grain hardness and soluble sugars are significantly ive correlated with protein, it indicates that increase in grain hardness is correlated with ase in protein and it might be due to some protein fractions contributing towards hardness.

Tannin is commonly present in the pigmented pericarp and testa layer in uum. Condensed tannin are formed by polymerisation of molecular units, of flavanoids as flavan-3-ols (catechin) and flavan-3,4-diols (leucoanthocyanidins). Flavan-3-ols give o anthocyanidins Swain and Bate-Smith (1962), Harris (1969), Weinges *et al.* (1969) and erson and Butler (1983), Ellis (1972), Harris and Burns (1973), Murty (1975) and unathan *et al.* (1986) reported that sorghum seed tannin content is strongly and negatively lated with seed molding indices.

The present study confirms the finding of above researchers that flavan-4-ols detected only in coloured grained crosses, and mold infestation was also less and there by ins exhibited positive significant correlation with flavan-4-ols and mold resistance. .uru (1992) also reported similar finding.

relation between protein fractions and physical characters

indicated from the present study that albumin and globulin has shown significant positive elation with prolamin and cross-link prolamin, however, highly negative significant ciation was established with glutelin, glutelin-like, endosperm texture and germination. Kumari et al. (1992) noticed intense deposition of protein in hard grain than in in. Indira et al. (1991) and Kumari and Chandrashekar (1992) reported that prolamin is ontributing to hardness of grain and comeousness (vitreous) endosperm contains higher in and such grains are less deteriorated due to grain mold fungi. Glueck and Rooney Mukuru (1982), Bandyopadhyay (1988) and Somani (1992) noticed that non pigment inpact cell layer beneath the aleurone layer was present in resistant cultivars. Kumari et 1992) noticed more prolamin in these 5-6 compact layer. Similarly Abdelrahman and y (1984) reported role of cross-link prolamin in grain mold resistance.

It is observed from the present study that glutelin-like and glutelin has ant positive correlation with endosperm texture and germination and negative ant association with grain hardness. It is seen that with more floury endosperm, there is on in grain hardness and increase in germination. CHAPTER - VI

SUMMARY

PAGES : 145 - 151

CHAPTER VI

SUMMARY

Grain mold is a major production constraint of early maturing, high yielding sorghum cultivars, in Vidarbha region of Maharashtra There are number of fungal species involved in the grain mold complex, but the important pathogenic fungi are: *Fusarium moniliforme*, *F. pallidoroseum*, and *C lunata*

The present investigation was carried out to determine the mechanism of host resistance, including physical, agronomic and biochemical parameters, and understand genetics and heritability of various parameters imparting resistance to grain mold in selected sorghum lines.

For incorporation of mold resistance into elite material of good grain quality, following aspects were investigated after performing 10×10 diallel, excluding reciprocals, viz, amount of heterosis and heterobeltiosis, the general and specific combing ability for selection of potential parents and crosses, and to ascertain the inheritance of some important quantitative (physical, biochemical) characters associated with grain mold resistance

The experimental material was selected from germplasm collection of Sorghum Research Unit, Dr. PDKV, Akola and ICRISAT, Patancheru, India, comprised of 10 parental lines, SPV-1201, ICSB-101B, SPV-946, GJ-35-15-15, SRT-26B, (elite), SPV-04, AKma-14B (susceptible), IS-2284, IS-6335 and IS-9471 (resistant), havingwide range of ariability. During the *Kharif* 1994-95 and 1995-96 these parents were crossed to make half iallel (excluding reciprocals) to obtain 45 crosses. An experiment was conducted during *harif* 1995 at Akola (10 parents + 45 crosses) to study the mold reaction under natural midition besides agronomic traits, plant characters and to obtain F_1 seed. Another periments was carried out during *Kharif* 1996 at both locations, Akola under natural miditions and at Patancheru under controlled condition using 10 parents, 45 F_1 crosses and F_2 progenies in a randomize block design.

Data were recorded on plant height, days to 50% flowering, cob length, thresh in mold rating (TGMR), 100-grain weight, glume color, glume covering, grain hardness, issperm texture, pericarp mesocarp thickness, presence of testa layer and electrical interval of grain leachates. Biochemical characters, such as proteins, proteins fractions (albumin and globulin, prolamin, cross-link prolamin, glutelin-like, glutelin and residues) soluble sugars, tannins and flavan-4-ols were also studied.

Data were also recorded on grain infection and colonization by of F. nonliforme, F. pallidoroseum, C. lunata and other fungi, on pre-treated and untreated reminated and ungerminated seed of parents and F_1 grown at Akola, *Kharif* 1995 and arents, F_1 and F_2 grown both at Akola and Patancheru, *Kharif* 1996. Seed germination was scorded using Ragdoll's (rolled paper towel) method and standard blotter plate method of STA (1976). Observations were recorded on five plants from F_1 and 15 plants from F_2 rogenies in each replication. Arithmetic averages of scores were used for further mputation. Data were analysed as per Griffings (1956 b) method 2 model 1 as further :tended by Singh (1973 a, 1973 b) and standard method suggested by Panse and Sukhatme 954). The salient features of the results pertaining to mean performance, heterosis, mbining ability, physical, agronomic, biochemical traits effect of pre-treatment on fungal id, histopathology of infection and correlation are summarized below :

Significant gca in positive direction for 100-grain weight indicated that parent -35-15-15 and sca for crosses, SPV-1201 \times SRT-26B and AKms-14B \times IS-6335 were ring high value for this character along with superior performance for many other waters. Similarly for germination sca effects for crosses AKms-14B \times IS-6335, AKms-3 \times IS-9471 and SPV-1201 \times SRT-26B were found to posses high germination percentage 1 were resistant to grain mold with many other grain mold resistance contributing factors in und F₂ diallel.

Heterosis and heterobeltiosis were studied for all the characters. The highest mates of heterobeltiosis were up to 18.75% for 100-grain weight, 5.49% for grain lness, -19.63% for endosperm texture, -80.89% for electrical conductivity, -22.04% for it to 50% flowering, -19.04% for plant height, 19.54% for cob length, 25.00% for glume ring, -64.39% for mesocarp thickness, -61.11% for TGMR, -62.41% for *F. moniliforme*, 25% for *F. pallidoroseum*, -52.72% for *C. lunata*, -22.22% for other fungi, 2.29% for ble sugars, 0.07% for tannins and 48.37% for flavan-4-ols. Crosses having significant ive heterobeltiosis for germination was recorded in 17 and first four were SPV-1201 × 26B, SPV-1201 × ICSB-101B, ICSB-101B × SPV-946 and ICSB-101B × IS-9471. arly, 37 crosses exhibited significant positive heterosis for germination, first four higher

itude crosses were AKms-14B × IS-6335, AKms-14B × IS-9471, ICSB-101B × AKmsand ICSB-101B × IS-9471.

The mean squares due to genotypes were significant which indicated the mean squares due to genotypes were significant which indicated the mean of substantial degree of diversity for all the characters studied. Variance due to gea sca were significant for almost all the characters. This indicates the importance of tive as well as non-additive type of gene action in the expression of these characters. But er magnitude of variance due to gea revealed that additive gene action was predominant characters like cob length, TGMR, F. monilyforme and C. lunata in F₁ crosses and F₂ el progenies. Additive gene action was also predominant for the characters like 100-grain ght, grain hardness, endosperm texture, glume covering, tannins and flavan-4-ols in F₁ ses. For germination and F. pallidoroseum the variance due to gea was lower than sca cating non additive gene inheritance in F₁ and F₂ progenies; electrical conductivity, DTF, it height, mesocarp thickness other fungi, proteins and soluble sugars indicated non itive gene action in F₁ crosses and grain hardness, glume covering in F₂ progenies.

Germination test is a standard evaluation method of grain mold resistance. ed on this, the crosses having significantly high specific combing ability effects for mination percentage are considered useful for the purpose of resistance to grain mold. itive and significant sca effect for germination percentage was obtained in 15 crosses of F_1 llel set. The sca effects of AKms-14B × IS-6335 and AKms-14B × IS-9471 crosses were higher magnitude exhibiting significant superiority over other crosses. The next better up of crosses included five crosses ICSB-101B × IS-9471, IS-2284 × IS-6335, SPV-104 × 9471, SPV-104 × IS-2284, IS-101B × IS-2284, SPV-104 × IS-6335 and SPV-1201 × T-26B. Only eight progenies exhibited significant positive sca effects for germination ventage of F_2 diallel of which first four higher magnitude progenies were AKms-14B × 6335, SPV-1201 × SRT-26B, AKms-14B × GJ-35-15-15 and SPV-946 × IS-6335.

On the basis of average over two locations the highest 100-grain weight, in urents was recorded in SPV-104 (2.72 g) and (2.66 g), however, cross SPV-1201 \times SPV-14 (2.94 g) exhibited highest grain weight in F₁ diallel. Hundred grain weight was less in 1 the entries tested at Patancheru during 1996, under controlled condition. Maximum grain hardness was exhibited in parents SPV-1201 (7.35 kg/cm²) 1088 SPV-1201 \times GJ-35-15-15 (7.64 kg/cm²) . Colored parents and crosses hibited less breaking strength as compared to white. Over all, less breaking strength was recorded at Patancheru than at Akola. In general, parental line GJ-35-15-15 (24.15%) and F₁ cross SPV-1201 \times GJ-35-15-15 (25-13%) recorded corneous endosperm texture. Corneous endosperm contribute toward resistance in white grain type.

In general, more electrical conductivity was recorded at Patancheru over Akola, because grain deterioration was more under controlled condition. Five crosses viz, ICSB-101B \times IS-6335, AKms-14B \times IS-6335, GJ-35-15-15 \times IS-6335, SRT-26B \times IS-6335 and SPV-104 \times IS-6335 exhibited earliness. More glume covering was recorded in six of 10 crosses viz, AKms-14B \times IS-6335, GJ-35-15-15 \times IS-6335, SRT-26B \times IS-6335, ICSB-101 \times IS-2284, ICSB-101B \times IS-6335 and SPV-104 \times IS-6335, which indicated resistant reaction o mold.

Mesocarp thickness is an important character for grain mold resistance. Thin nesocarp less than (50 μ m) was observed in all crosses selected on basis of germination, hese are ICSB-101 B IS-2284, ICSB-101B IS-6335, ICSB-101B IS-9471, AKms-14B IS-6335, GJ-35-15-15 \times IS-6335 and SPV-104 \times IS-6335.

Thresh grain mold rating is an important character for evaluating of cross. ne out of 10 crosses selected on basis of germination exhibited 2.00 or less than 2.00 3MR grade indicating resistance to grain mold.

Thirty and nine crosses exhibited more than 75% germination at Akola and tancheru, respectively. On pooled basis 24 crosses recorded germination more than 75% ich had only two white crosses viz. SPV-1201 \times SRT-26B (77.25%) and SPV-1201 \times SB-101B (75.50%) exhibited tolerant reaction to mold on germination basis. In general, 39% decrease germination and 86.26 % increase *F. monulyforme* load at Patancheru was orded.

F. moniliforme is a major grain mold fungus which interfere with bohydrate translocation causing reduction in kernel size, seed viability and germination. Patancheru location 86.26% and 28.32% more F. moniliforme load was observed over ola in F_1 and F_2 diallel. Five out of 10 crosses viz., ICSB-101B × IS-6335, ICSB-101B × 171, AKms-14B × IS-6335, SRT-26B x IS-9471, and SPV-104 × IS-6335 exhibited less oniliforme load over better parents and are resistant to grain mold. Over all there was 27 and 36.60% increase in *F. pallidoroseum* load in F_1 and F_2 progenies at Patancheru Akola. It is comparatively of minor importance in grain molding at Akola, whereas, it is portant molding fungus next to *C. lunata* at Patancheru.

C. lunata was observed a major molding fungus at Akola recording 108.95 and 1% more load in F₁ and F₂ progenies over Patancheru. Five out of 10 cross viz., ICSB-B × IS-6335, ICSB-101B × IS-9471 GJ-35-15-15 × IS-6335, SRT-26B × IS-9471 and -26B × IS-6335 estimated less C. lunata load over better parents and are resistant to grain . C. lunata was observed a major mold fungus at Akola 108.95 and 46.34% more load Patancheru. Positive heterosis of highest magnitude was exhibited in cross ICSB-101B × 335, however, significant heterobeltiosis was exhibited in five out of 10 crosses viz., 1-101 B × IS-6335, ICSB-101B × IS-9471 GJ-35-15-15 × IS-6335, SRT-26B × IS-9471 SRT-26B × IS-6335. In general at Akola 283.44 and 46.50 % more other fungi load was bited in F₁ and F₂ progenies, respectively over Patancheru.

As regards to biochemicals characters, protein fractions albumin and globulin, min, cross-link prolamin, glutelin-like, glutelin and residual protein, soluble sugars, ns and flavan-4-ols was investigated from Akola 1995 seed samples. Tannins ranged een 0.02 and 5.84 CE% in parents and F_1 crosses and flavan-4-ols between 0.00 and) A_{570g}^{-1} . Tannins and flavan-4-ols were positively correlated with colored pericarp and layer. In colored grain TGMR scores of 1.75 to 2.50 suggest that tannin is deterrent to 1 fungi. Nine out of the 10 crosses selected on the basis of germination percent exhibited ficant heterosis and heterobeltiosis for tannin or flavan-4-ols or both.

In white grained sorghum the prolamin and cross-link prolamin were higher in SPV-SPV-104 and AKms 14B and all these parental lines had greater seed hardness there by ating that the endosperm is vitreous and prolamin and cross link prolamin contribute ousness. It is interesting to note that prolamin and cross link prolamin were quite lower I the colored grain parents and crosses, hence resistant to grain mold in colored grain vars can be attributed to tannins and flavan-4-ols rather than grain hardness.

In present investigation effect of $(0.1\% \text{ Hg Cl}_2)$ on germination and mycoflora oth germinated and ungerminated seed was studied. Over all there was significant ncrease in germination in pre-treated over untreated control was observed at both locations. Iowever, there was 27.39% in F_1 crosses and 24.69% in F_2 progenies increased in germination at Akola over Patancheru 1996. For *F. moniliforme* there was significant eduction in load at both locations in pre-treated seeds over untreated control. In general, nere was 86.26 and 28.32% increase load of *F. moniliforme* was observed at Patancheru over ukola in F_1 and F_2 diallel, respectively. There was 165.27 and 36.36% increase load of *F. allidoroseum* was recorded at Patancheru over Akola in F_1 and F_2 respectively. At Akola, igher load was recorded during 1996 than in 1995. For *C. lunata* on germinated seed 0.69% reduction in load was recorded at Akola, however, there was 21.73% increase in load Patancheru in pre-treated over untreated control. Over all, there was 108.95% and 46.43% crease in *C. lunata* load at Akola over Patancheru in F_1 and F_2 diallel respectively. For her fungi more load was recorded at Akola than Patancheru. In F_1 crosses reduction in ngal load was recorded on ungerminated pre-treatment seed particularly of *F. moniliforme*, wever significant increase in load of *C. lunata* was recorded at Patancheru.

Germinated seed had negative correlation with fungal load of all fungi and 3MR at Akola, whereas at Patancheru significant positive correlation was noticed in preated and untreated seed. Hundred-grain weight had significant positive correlation with 3MR and *F. moniliforme* and significant negative with glume covering and *F. lindoroseum* at Akola. Grain hardness recorded significant positive association with DTF, pificant negative with endosperm texture and *F. pallidoroseum* at Akola. Grain hardness proved negative association with endosperm texture (-0.61) and (-0.33) at both locations. dosperm texture had significant negative correlation with DTF (-0.52), *C. lunata* (-0.54), ctrical conductivity (-0.51) germination (-0.41), mesocarp thickness (-0.39), TGMR(-0.39) at Akola, similar trend was exhibited at Patancheru. Electrical iductivity had positive correlation with *F. moniliforme*, TGMR, *C. lunata* (Akola), socarp thickness and days to 50% flowering at both locations, however significant ative with *F. pallidoroseum* at Akola.

Days to 50% flowering had significant positive correlation with mesocarp kness, F. moniliforme, C. lunata and TGMR, F. moniliforme exhibited significant ative association with germination and positive association with TGMR at both locations. lunata also exhibited positive correlation with TGMR and negative with germination at cola. TGMR has shown highly significant negative correlation with germination (-0.78) d (-0.83) at Akola and Patancheru, respectively.

Protein content had positive correlation with grain hardness (0.29). Total gars exhibited significant correlation with tannins (0.35); tannins and flavan-4-ols had hly significant negative correlation with grain hardness and TGMR. Prolamin and crossk prolamin exhibited positive correlation with grain hardness (0.63, 0.55), respectively, vever negative with germination, glutelin, glutelin-like and endosperm texture. Glutelin-; and glutelin exhibited significant positive association with germination, endosperm ture, whereas, negative with grain hardness, and mesocarp thickness.

Some physical and biochemical characteristics contribute to resistance to grain ds. In white grained sorghum greater grain hardness, low electrical conductivity, thin ocarp, more glume covering are some of the desired traits besides more of prolamin and amin-like protein fraction and for some of the characters respective gene (s) are dominant have additive action. However, in red grains, condensed tannins, flavan-4-ols and ence of testa layer are some of the biochemical characters contributing towards resistance e, Indian sorghums are white grained sorghum, some additive desirable gene can be rporated in white back ground source. Histopathological studies, however, confirmed the er results of various workers. The study has clearly established the genetics, inheritance physical and biochemical traits for resistance.

Implication of these findings for genetic improvement of mold resistance in uum is considered and the following suggestions are offered on breeding methodology for r utilization of the experimental material.

arental lines IS-9471, SPV-1201, IS-6335, GJ-35-15-15 and IS-2284 with high gca effect r most of the characters contributing towards resistance to grain mold may be utilized in ybrid on breeding program.

he crosses: Akms $14B \times IS 6335$, ICSB-101 B $\times IS-9471$, ICSB-101B $\times IS-2284$, SPV-)4 $\times IS-6335$, GJ-35-15-15 $\times IS-6335$ and SPV-1201 \times SRT-26B exhibited high gea fects, desirable heterosis for most of the characters and additive gene action for uportant traits (agronomic, physical and biochemical) related to grain mold resistance. herefore it is suggested that these crosses and their progenies may be utilized to generate tter tolerance to grain mold infection.

uportant traits imparting resistance to grain mold fungi are: low electrical conductivity, in mesocarp, low, TGMR, grain hardness, more glume covering, more tannins, more

151

LITERATURE CITED

PAGES : 152 - 166

LITERATURE CITED

- .bdelrahman, A.A. and R.C. Hoseney (1984). Basis for hardness in pearl millet, grain sorghum and corn. Cereal Chem. 61: 232-235
- .bdullah, B.K. and S.A. Dadhum (1978). Seed mycoflora of Sorghum bicolor in Iraq. Arab. Gulf Sci. Res. 5 (3): 401-404
- msalu, A. and D.R. Bapat (1990). Heterosis studies in sorghum. J. Maharashtra Agric. Univ. 15(3):299-302.
- nahosur, K.H. and R.K. Hegde (1980). Head mold of sorghum their effect on germination and *In vitro* evaluation of fungicides. *Mysore J. Agric. Sci.* 14: 60-63.
- nahosur, K.H. and S.H. Patil (1982). Some promising sources of resistance to grain molds of sorghum. Sorghum Newsletter. 25: 109.
- nahosur, K.H. (1983). Assessment of the techniques used in identifying sorghum resistant to grain molds. Sorghum Newsletter. 26: 119.
- nahosur, K.H. (1992). Assessment of the techniques used in identifying sorghum resistant to grain mold. Sorghum Newsletter. 26:109
- nonymous, (1984). Proc. Jt. Agresco Research Committee meeting of Maharashtra Agril. Univ. held at Rahuri.
- Agrikar, G.P. and V.M. Chavan (1957). A study of heterosis in sorghum. Indian J. Genet. 17: 65-72.
- vrif, A.G. and M. Ahmed (1969). Some studies on the fungi associated with sorghum seeds and sorghum soils and their control. 1. Flora of sorghum seeds and seed treatment, W. Pakistan, J. Agril. Res. 7 (4): 102-117.
- 3alsubramanian, K.A. (1977). Diseases of sorghum and their control. Seed & Farm. 3 (12): 84-85.
- Jandyopadhyay, R. (1986). Grain mold. In Compendium of Sorghum Diseases. (Frederiksen, R.A., ed.) St. Paul, MN, USA : The American Phytopathological Society, pp 36-38.
- Jandyopadhyay, R. (1988). "Sorghum grain molds" Talk delivered at sorghum Field Day, ICRISAT, Patancheru, India.
- Jandyopadhyay, R., and L.K. Mughogho (1988a). Evaluation of field screening techniques for resistance to sorghum grain molds. *Plant Dis.* 72 (6): 500-503.
- Jandyopadhysy, R., L.K.Mughogho and K.E. Prasada Rao (1988). Sources of resistance to sorghum grain molds. *Plant Dis.* 72 (6): 504-508
- Shagwat, V.Y. and S.M. Pedgaonkar (1973). Studies on head mold of jawar. Effect of individual fungues on seed viability during storage. Sorghum Newsletter. 16: 65-66.

- agwat, V.Y. and V.V. Datar (1974). Pink mold on grain sorghum. Sorghum Newsletter 17: 60-61.
- ale, M.S. and M.N. Khare (1982). Seed-borne fungi of sorghum in Madhya Pradesh and their significance. Indian Phytopath. 35 (4): 676-678.
- atnagar, G.C. (1971). Discoloration of great millet grains in earheads due to Curvularia lunata. Rajasthan J. Agric. Sci. 2: 113-115.
- apure, U.R., B.J.S. Gouda, and J.V. Goud (1980). Evaluation of newly developed ms lines and pollinators in line x tester analysis in grain sorghum. *Mysore J. Agric.* Sci. 15: 56-60.
- ikely, M.E. and L.L. Castor (1979). Studies of the infection of sorghum kernels with Curvularia lunata. Sorghum Newsletter. 22: 127.
- on-Long, T. (1992). "Sorghum Diseases in Thailand" In Sorghum and Millets Diseases A Second World Review. (de. Milliano, W.A.J., Frederiksen, R.A. and Bengston, G.D. eds.), ICRISAT, Patancheru, India, pp 41-43.
- rikar, S.T. and N.L. Bhale (1982). Line x Tester analysis for yield and yield components in winter sorghum. Sorghum Newsletter. 25:13.
- Iard, R.W. and D.J. Elias (1980). "Sorghum Polyphenols and bird resistance" In, Proc. Symp. on Polyphenols in Cereals and Legumes, 36th Annual Meeting of Inst. of Food Technologist., 10-13 June, 1979. St. Louis, Missouri, USA pp 43-49.
- .ler, L.G. (1981). "Polyphenols and their effects on Sorghum quality." In Proc. Int. Symp. Sorghum Grain Qual., 28-31, Oct., 1981. ICRISAT, Patancheru, India pp 294-311.
- ler, L.G. (1982). Relative degree of polymerization of sorghum tannin during seed development and maturation J. Agric. Food Chem. 30: 1090-1094.
- ler, D.R. and R. Bandyopadhyay (1990). Evaluation of sprinkler irrigation and misting to produce grain molds, In "Cereals program", ICRISAT Annual Report, 1990 pp 22-23.
- tor, L.L. (1977). Seed molding of grain sorghum. Development of high yielding, disease-and insect-resistance sorghum cultivars. Annual Progress Report, TAES-USAID Contract ta-c-1092 Texas, College Station, Agri. Expt. Stn. Texas.
- tor, L.L. and R.A. Frederiksen (1977). Seed molding of grain sorghum caused by Fusarium and Curvularia species. Proc. Amer. Phytopath. Soc. 4:151.
- tor. L.L. (1979). "Seed molding of grain Sorghum". In Third progress report on development of high yielding sorghum cultivars with disease and insect resistance. College Station, Texas, U.S.A. Texas Agril. Expl. Stn.
- tor, L.L., and R.A. Frederiksen (1980). Fusarium and Curvularia grain mold in Texas. In Sorghum Diseases A World Review: Proc. of the Int. Workshop on Sorghum Diseases 11 to 15 Dec. 1978. ICRISAT, Hyderabad, India, pp 93-102.

- astor, L.L. and R.A. Frederiksen (1981). Fusarium head blight occurrence and effects on sorghum yields and grain characteristics in Texas. *Plant Dis.* 64: 1017-1019.
- astor, I..L. (1981). Grain mold histopathology, damage, assessment and resistance screening within Sorghum bicolor (L.) Moench. lines. Ph.D. thesis, Texas A & M. Univ. College Station, Tx, USA. 192 pp.
- handrasekharan, A., S. Palanisamy and M.N. Prasad (1985). Breeding for disease resistance against grain mold. Sorghum Newsletter 28.: 84.
- handrashekarappa, K. (1987). Heterosis and line x tester studies on analysis in combining ability in grain and forage sorghum crosses. *Mysore J. Agric. Sci.* 19: 21-22.
- Iark, L.E., E.B. Ellis and J.W. Johnson (1973). Evaluation of selected sorghum lines for weathering resistance. *In* Proc. 8th Biennial grain sorghum research and utilization conference, Lubbock, Texas, U.S.A, pp 66-69.
- ummings, D.P. and J.D. Axtell (1973). Inheritance and improvement of protein quality and content of sorghum. In Res. Prog. Rept. Deptt. of Agronomy, Purdue Uni. Indiana, USA, pp. 112-122.
- abholkar, A.R. and S.S. Baghel (1978). Breeding for grain mold resistance. In Proc. 8th AICSIP, workshop, April, 1978. Dharwar, India.
- abholkar, A.R. and S.S. Baghel (1980). Inheritance of resistance to grain mold of sorghum. Indian J. Genet. 40 (2): 472-475.
- abholkar, A.R. and S.S. Baghel (1982). Inheritance of tannin in grain of sorghum *Indian J. Genet.* 42 (2): 204-207.
- abholkar, A.R. and S.S. Baghel (1983). Diallel analysis of grain mold resistance in sorghum. Genetica Agraria. 37 (3-4): 327-334.
- Iyan, M.P. and S.C. Dalmacio (1982). Sorghum grain mold : Identification, incidence and pathogenicity. Philippine Phytopath. 18 (1-2) : 68-77.
- costhale, Y.G., V. Nagarajan and K. Visweswar Rao (1972). Some factors influencing the nutrient composition of sorghum grain. Indian. J. Agric. Sci. 42: 100-108.
- nis, J.C. and J.C. Girard (1977). Sorghum grain mold in Senegal : methods used for identifying resistant varieties. *In* Int. Sorghum Workshop, 6-13 Mar, 1977. ICRISAT, Hyderabad, India.
- :sai, B.B., D.G. Inamdar, U.D. Chavan and R.M. Naik (1992). Proximate composition and protein fractions of some promising sorghum cultivars. J. Maharashtra Agric. Univ. 17 (2): 307-308.
- shmukh, R.N. (1989). Seed borne fungi of sorghum and their control. Ph.D. Thesis, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola.
- shmukh, R.N. and J.G. Raut (1993). Site of infection of C. lunata infection in sorghum seed. Indian Phytopath. 46: 251-252.

- ^F shpande, G.D., P. T. Salve and S.B. Choulwar (1985). Determination of time of infection of *C. lunata* and *F. moniliforme* with artificial inoculations. Sorghum Newsletter 28: 88-89.
 - oherty, C.A., R.D. Waniska, L.W. Rooney, C.F. Earp and J.II. Poe (1987). Free phenolics compounds and tannins in sorghum caryopsis and glumes during development Cereal Chem. 64 (1): 42-46.
 - ubois, M., K.A. Gills, J.K. Hamilton, P.A. Rabors and F. Smith (1956). Calorimetric method for determination of sugars and related substances. *Anal. Chem.* 28: 350-356.
 - hingra, O.D. and J.B. Sinclair (1995). Basic Plant Pathology Methods : Histological techniques. CRC Press Inc. BOCA Raton, Florida , 18 pp.
 - twards, W.M. and J. Curtis (1943). Grain sorghums, their products and uses. ACE 193, NM-229. Northern Regional Research Lab., U.S. Dept. Agric. Peoria.
 - lis, M.B. (1971) "Dematiaceous Hyphomycetes". Commonwealth Mycological Institute, Kew, Surrey.
 - lis, E.B. (1972). Morphological characteristics in relation to seed deterioration in sorghum, M.S. Thesis, Texas A & M University, College Station, Texas, 51 pp.
 - lis, E.B., (1975). The effects of endosperm characteristics in relation to seed deterioration in sorghum. M.S. Thesis, Texas, A & M University, College Station, Texas, 51 pp.
 - ele, J.P., R.A. Frederiksen and F.R. Miller (1993). The association of gene controlling caryopsis traits with grain mold resistance in sorghum. *Phytopathology* 83 (5): 490-495.
 - 10 (1996). Quarterly bulletin of statistics. Food and Agricultural Organization of the United Nations. Rome, Italy, 9: 25.
 - sher, R.A. (1958). Statistical method for research workers, XIII edn. Oliver and Boyd. Ltd. Eemberg. pp 34
 - rbes, G.A. (1986). Characterizationof grain mold resistance in sorghum (Sorghum bicolor L. Moench). Ph.D. thesis, Texas A &M University, College Station, TX, USA. 75 pp.
 - rbes, G.A., R.A. Frederiksen and L.M. Seitz (1989). Assessment of sorghum grain mold: disease intensity and disease loss. Seed Sci. & Technol., 17:297-307.
 - rbes, G.A., R. Bandyopadhyay and G. Garicia (1992). A review of Sorghum Grain Mold. In Sorghum and Millets Diseases, a Second World Review, (de Milliano, W.A.J., Frederiksen, R.A. and Bengston, G.D. eds.) Patancheru, India pp 253-264.
 - :deriksen, R.A., L.L. Castor and D.T. Rosenow (1982). Grain mold, small seed and head blight : the *Fusarium* connection in sorghum. Proc. 37th Ann. Corn and Sorghum Industry Res. Conf. 37 : 26-36.
 - ngadharan, K., B. RamaRaj, M.N. Prasad and S. Palanisamy (1978). Studies on head molds of sorghum in Tamil-Nadu. Sorghum Newsletter 21: 70-71.

- Igadharan, K., M.N. Prasad, S. Palanisamy and B. RamaRaj (1978). Artificial screening of sorghum for head molds. Sorghum Newsletter 21: 117.
- ud, T.B. (1992). Resistance sources, mechanism and resistance screening techniques for grain molds *In* Proc. of XXII Annual Sorghum Workshop, Surat, Gujrat, India, pp26.
- ud, T.B., B.N. Aglave and S.S. Ambekar. (1994), Integrated approach to tackle the grain mold problem in Maharashtra. International Sorghum and Millet Newsletter 35: 101-102.
- rade, R.B. (1995). Studies on genetics of grain mold resistance in sorghum. (Sorghum bicolor (L.) Moench Ph.D. Thesis Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola.
- aj, K. and J.V. Goud, (1981). Heterosis for vegetative characters in grain sorghum. Indian J. Heredity 13: 9-13.
- ck, J.A. and L.W. Rooney (1976). Physical and chemical characterization of sorghum lines with resistance to grain deterioration. *Cereal Food World*. 21:436-437.
- ck, J.A., (1977). "Field deterioration of sorghum : differences among sorghum lines and the relationship to characteristics of grain" *In Proc. Sorghum Disease and Insect Resistance Workshop*, 6-9 July, 1977. Corpus Christii, Texas, USA. Misc. Publ. Texas Agric. Expt Stn. No. 1373 pp 69-74.
- ck, J.A., and L.W. Rooney (1977). The relationship between kernel structure, water uptake and water movement in sorghum. Cereal Foods World 22: 472.
- :k, J.A., L.W. Rooney, D.T. Rosenow and F.R. Miller (1977). Physical and structural properties of field deteriorated sorghum grain. In 3rd Ann. Progr. Rep. Texas A & M. Univ., College Station, Texas, USA, pp 102-112.
- k, J.A. and L.W. Rooney (1980). Chemistry and structure of grain in relation to mold resistance. In, Sorghum Diseases-A World Review, Proc. Int. Workshop on Sorghum Diseases, 11-15 Dec. 1978. ICRISAT, Hyderabad, India, pp 119-140.
- 1ath, A. and H.S. Shetty (1985). Occurrence and location of Fusarium species in Indian sorghum seed. Seed Sci. & Technol. 13: 521-528.
- ath, A, H. Shekar Shetty and H.S. Prakash (1987). Colonization of Fusarium species in sorghum seeds and their significans. Indian Phytopath. 40 (2): 181-185.
- , S.N. and P. Joshi (1976). Heterosis and inbreeding depression in sorghum. Indian J. Genel. 36: 96-101.
- v, E.M. and L. Zambolim (1984). The incidence of phytopathogenic fungi on sorghum seeds. Revista Ceres. 31:115-119.
- E., G.D. Lacefield and J.A. Lowe (1971). Head mold on grain sorghum. Plant Dis. Reptr. 55: 337-339

- (well, P. and J.D. Schofield (1986). A starch granules protein associated with endosperm softness in wheat. Cereal Chem. 63: 379-380.
- ngs, B. (1956b). Concept of general and specific combining ability in relation to diallel crossing system. *Aust J. Biol. Sci.* 9 : 463-493.
- A.K. and Y.P. Gupta (1974). Distribution of amino acids and protein fractions in the developing grain of Sorghum vulgare Pers. Indian J. Agric, Res. 8: 162-164.
- 4 A and D. Singh (1988). Effect of fungicidal treatments on long storage pathogens and viability of sorghum seeds. *Indian Phytopath.* **41** (1): 110.
- gossian, V., B.A.K. Chibber, S. Van Scovo, R. Jambunathan, E.T. Mertz and J.D. Axtell (1978). Characteristics of proteins from normal high lysine and high tannin sorghums. J. Agric. Food Chem. 26 : 219-223.
- man. A.E. and L.G. Butler (1981). The specificity of proathocyanidin protein interaction J. Btol. Chem. 25 (6): 4494-4497.
- D.H., L.W. Rooney and J.M. Faubion (1983). Sorghum phenolic acids, their HPLC separation and their relation to fungal resistance. *Cereal Chem*, 60 (4): 255-259.
- D., L.W. Rooney and C.F. Earp (1984). Tannins and Phenols of Sorghum. Cereal Foods World 29: 776-779.
- D.H. and L.W. Rooney (1986). Effect of genotype on tannins and phenols in sorghum. Cereal Chem. 63(1):4-8.
- en, L. and D.S. Murty (1983). A screening test for grain hardness in sorghum employing density grading in sodium nitrate solution. J. Cereal Sci. 1 (4): 265-276.
- 5. H.B. (1969). Proceedings of 24th Annual Corn, Sorghum, Research Conference, pp. 113-122.
- 4. H.B. and R.E. Burns (1973). Relationship between tannin content of sorghum grain and preharvest seed molding *Agro. J.* 65 : 957-959.
- , H.K., F.R. Immer and D.C.Smith (1955). Methods of plant breeding, McGrow Hill Book Company, New York.
- icks, S.B. and R.B. Taylorson (1976). Variation in germination and amino acid leakage of seeds with temperature related to membrane phase change. *Plant. Physiol.* **58** (1): 7-11.
- 5. G.B., Paramaswarappa and J.V. Goud (1988). Genetic evaluation on new male sterile lines in sorghum. *Mysore J. Agric. Sci.* 20: 262-265.
- AT (1986). Annual Progress Report International Crop Research Institute for Semi-Arid Tropics, Patancheru, India, pp-12.
- 3.K. and J.Y. Goud (1981). Genetic analysis of quantitative characters in an intercross of sorghum. *Mysore J. Agric. Sci.* 15:6-11.

J. Mohan and B.S. Rana (1991). Genotype x Environmental interaction for in mold resistance and seed weight in sorghum. *Indian Phytopath.* 44 (4): 3-525.

1966). International Rules for seed testing, Proc. Int. Seed Testing Assn. 31: 52.

1976). International Rules for seed testing. Seed Sci. & Technol. 4: 3-49.

1 an, R. and E.T. Mertz (1973). Relationship between tannin levels, rat growth 3 distribution of proteins in sorghum. J. Agric. Food Chem. 21 : 692-696.

nan, R., E.T. Mertz and J.D. Axtell (1975). Fractionation of soluble proteins of the lysine and normal sorghum grain. Cereal Chem. 52: 119-121.

han, R., N.S.Rao and S. Gutru (1983). Rapid methods for estimating protein and sine in sorghum. Sorghum bicolor (L.) Moench. Cereal Chem. 60 (3): 192-14.

han, R., L.G. Butler, R. Bandyopadhyay and L.K. Mughogho (1986). hyphenol concentration in grain, leaf and callus tissue of mold susceptible and old resistant sorghum cultivars. J. Agric Food Chem. 34 (3): 425-429.

than, R., M.S. Kherdekar and R. Bandyopadhyay (1990). Flavan-4-ols incentration in mold-susceptible and mold-resistant sorghum at different stages figrain development. J. Agric. Food Chem. 38: 545-548.

than, R. and M.S. Kherdekar (1991). Flavan-4-ols concentration in leaf tissues of rain mold-susceptible and mold-resistant sorghum plants at different stages of raf development. J. Agric. Food Chem. 39 (6): 1163-1165.

than, R., M.S. Kherdekar and P. Vaidya (1991). Ergosterol concentration in old susceptible and mold resistant sorghum at different stages of grain evelopment and its relationship to flavan-4-ols. J. Agric. Food Chem. 39 (10): 866-1870.

than, R., M.S. Khedekar and J.W. Stenhouse (1992). Sorghum grain hardness nd its relationship to mold susceptibility and mold resistance. J. Agric Food Chem. 40 (8): 1403-1408.

E.S. and A.B. Valleja (1986). Agronomic traits in sorghum which determines esistance to grain molds in the coastal area of Mexico. *Sorghum Newsletter.* 29: 36.

H.U., D.R. Bapat and P.H. Dhande (1984). Combining ability studies in sorghum. Sorghum Newsletter, 27: 29-30.

4. A.E. and O.J. Webster (1966). Manifestation of hybrid vigour in grain sorghum and relation among the components of yields, weight per branchlet and height. *Crop Sci.*, 6: 513-515 inaka, S.K. (1982). Genetic analysis of ten quantitative characters in sorghum. Thesis abstract. 8 (1): 72-73.

159

- urper, R.W. and J.R. Quinby (1963). Sugary endosperm in sorghum. J. Heredity 54 : 121.
- staria, S.K., R. Singh and P.K. Shrotria. (1990). Inheritance of resistance to grain mold fungi in three Sorghum bicolor crosses. Envir. and Ecol. 8 (4): 111-113.
- 1are, A.D., S.H. Kshirsagar, A.R. Ghanekar, M.S. Ketkar, V.S. Khandel and R.N. Prabhune (1976). Sorghum Research in 1975-76 at the Nimbkar Agri. Res. Insti., Phaltan. Sorghum Newsletter. 19: 42-43.
- rleis, A.W., K.D. Crosby and T.L. Housley (1984). A method for quantitatively measuring vitreous endosperm area in sectioned sorghum grain. Cereal Chem. 61 : 556-558.
- plreuter D.J.G., (1763). In Cytogenetics and Plant Breeding, Chandrashekharan and Parthasarathy. page : 351.
- ofoid, K.D., J.W. Maraville and W.M. Ross (1976). A test for determining the presence of testa in sorghum. Univ. of Nebraska, Lincoln. Publ. No. 77846.
- oteswara Rao, G. and P. Poornachandrudu (1977). Testing of agronomically important varieties for their reaction to head molds. Sorghum Newsletter. 14: 43-44.
- ulkarni, V. and V.K. Shinde. (1985). Heterosis and inbreeding depression in grain sorghum. Indian J. Agric. Sci. 55: 505-509.
- ulkarni, N., K.N. Murty and S.K. Hussain (1975). Breeding for grain mold resistance. Sorghum Newsletter, 18:19.
- umari, S.R., A. Chandrashekar and H.S. Shetty (1992). Proteins in developing sorghum endosperm that may be involved in resistance to grain molds. J. Sci. Food Agric. 60 (3) : 275-282.
- umari, S.R. and A. Chandrashekar (1994). Relationship between grain hardness and the content of prolamin and three antifungal protein in sorghum J. Cereal Sci. 20 (1) : 93-99.
- aosuwan, P. and R. E. Atkins (1977). Estimates of combining ability and heterosis in converted exotic sorghum. Crop Sci. 17: 47-50.
- andry, J. and T. Moreaux (1970). Heterogeneite of the glutelins of maize grain : selection extraction and comparison in amino acids of the three fractions isolated (in French). Bull. Soc. Chim. Bio. 52: 1021-1037.
- iang. J. Y. and J.K. Baj (1988). Studies on fungi causing sorghum grain decaying. J. Shenyang Agril. Univ. 19(1): 27-34.
- uttrell, E.S. (1950). Grain sorghum diseases in Georgia in 1949. Plant Dis. Reptr. 34(2) : 45-52.

43-32. Tomning concentration and In vitro dop matter disappearers of seeds of birds

- nsuetus, A.S.B., R.A. Frederiksen, R.D. Waniska, G.N. Odvody, J. Craig, and D.T. Rosenow (1988). The effects of glume caryopses characteristics of sorghum on infection by *F. moniliforme* Shel. Sorghum Newsletter 31:100.
- nsuctus, A.S.B. (1990) The role of glumes of sorghum in resistance to grain mold Res. & Training Newsletter. 5 (4): 18-19.
- rtinez, M.J., L.M. Giorda and M. Balzarini (1994). Relationship between resistance to grain mold and concentration of flavan-4-ols of sorghum grain. International Sorghum and Millets Newsletter. 35: 96-97.
- uhur, S.B., R. Sharma and L.M. Joshi (1967). Moldy heads disease of sorghum, isolations of associated fungi on blotter and agar. Proc. Int. Seed. Test. Assn. 32 (3): 639-645.
- thur, S.K., S.B. Mathur and P. Neergaard (1975). Detection of seed-borne fungi in sorghum and location of Fusarium moniliforme in the seed. Seed Sci. & Technol. 3: 683-690.
- uxson, E.D., W.B. Fryar, L.W. Rooney and M.N. Krishna-Prasad (1971). Milling properties of sorghum grain with different proportions of corneous to floury endosperm. *Cereal Chem.* 48: 478-490.
- Ixson, E.D., L.E. Clark, L.W. Rooney and J.W. Johnson (1972). Factors affecting the tannin content of sorghum grain as determined by two methods of tannin analysis. *Crop. Sci.* 12: 233-235.
- axson, E.D., L.W. Rooney, R.W. Lewis, L.E. Clark and J.W. Johnson (1973). The relationship between tannin content, enzyme inhibition, rat performance and characteristics of sorghum grain. *Nutrn. Report Interl.* 8: 145-152.
- 2 Millan, W.W., B.R. Wiseman, R.E. Burns, H.B. Harris and G.L. Greene, (1972). Bird resistance in diverse germplasm of sorghum. Agron. J. 64: 821-822.
- elakeberhan, A., L.G. Butler, G. Ejeta and A. Menkir (1996). Grain mold resistance and polyphenol accumulation in sorghum J. Agric, Food Chem. 44 (8): 2428-2434.
- enkir, A., G. Ejeta, L.G. Butler, A. Melakeberhan, H.L. Warren (1996). Fungal invasion of kernels and grain mold damage assessment in diverse sorghum germplasm. *Plant Dis.* 80 (2):1399-1402.
- iller, F.R. (1981). Genetic and environmental response characteristics of sorghum: In sorghum in eighties. Proc. Int. Symp. on sorghum, 2-7 Nov., 1981, ICRISAT, Patancheru. pp 393-402.
- ukuru, S.Z. (1988). Breeding for grain resistance. In Proceedings of the sixth EARSAM Regional Workshop on sorghum and millet Improvement in Eastern Africa, Mogadisheu, Somalia, pp 445-460.
- ukuru, S.Z. (1992). Breeding for grain mold resistance: In Sorghum and Millets Diseases A Second World Review (de Milliano, W.A.J., Frederiksen, R.A. and Bengston, G.D. eds) ICRISAT Patancheru, India, pp 273-285.

- unghate, A.G. (1980). Detection and elimination of seed borne fungi of sorghum. M.Sc. (Agri.) Thesis, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola.
- JICK, L.(1981). Personal communication. Carlsberg Research Laboratory, Department of Biotechnology, Copenhagenvally, Denmark.
- urty, D.S. (1975). Breeding for early mold-resistant sorghum. ICRISAT Sorghum consultants Meeting 15-17 Apr., 1975 ICRISAT, Hyderabad, India.
- arty, D.S., K.N. Rao and L.R. House (1980). Breeding for grain mold-resistant sorghum at ICRISAT. *in* Sorghum Diseases, A World Review, Proceedings of the International Workshop on Sorghum Diseases, ICRISAT, Patancheru, India, pp154-162.
- rayana, D. and M.N. Prasad (1980). Studies on grain mold resistance. Presented at 10th Ann. Sorghum Workshop. AICSIP, at TNAU, Coimbatore, May 13, 1980.
- rayana, D. and M.N. Prasad (1982). Complications in identification of resistance source to grain molds in sorghum. Sorghum Newsletter. 25: 108-109.
- Irayana, D. and M.N. Prasad (1983). Inheritance of resistance to Fusarium grain mold in sorghum. In abstract of contributed papers of the 15th International Congress of Genetics 12-21 December, 1983, New Delhi, India pp. 2 : 727.
- ursimhan, K.S. and G. Rangaswami (1969). Influence of mold isolates from sorghum grain on viability of the seed. Curr. Sci. 38: 389-390.
- sucere, N.J. and G. Sumrell (1979). Protein tractions from five varieties of grain sorghum : Amino acid composition and solubility properties. J. Agric. Food Chem. 27 (4): 809-812.
- :ucere, N.J. and G. Sumrell (1980). Chemical composition of different varieties of grain sorghum J. Agric Food Chem. 28: 19.
- mbalkar, V.S. and D.R. Bapat (1987). Studies in vegetative characters in sorghum. Current Res. Report (M.P.A.U.) 3: 1-4.
- ble, M. and M.J. Richardson (1968). An annotated list of seed borne diseases Proc. Int. Seed Test. Assm. 33: 1-191.
- vasike, C.C., E.T. Mertz, R.C. Pickett, D.V. Glover, B.A.K. Chibber and S.V. Van Scoyoc (1979). Lysine level in solvent fraction of pearl millet. J. Agric. Food Chem. 27: 1329-1331.
- suchowski, W. and W. Bushuk (1980). Wheat hardness Comparison of methods and its evaluation. Cereal Chem. 57: 421.
- laniswamy, S. and A. Subramanian (1986). Genetics analysis of yield and yield components in sorghum. *Madras Agric. J.* 73: 541-544.
- nse, V.G. and P.V. Sukhatme (1954). Statistical methods for agriculture workers. ICAR Publication, New Delhi. PP 200

H. and A.R. Dabholkar (1981). Gene effects for grain size yield of sorghum. ndian J. Genet. 41: 259-263.

.H., K.B. Desai, K.R.V. Raju and R.K. Parikh (1980). Estimates of heritability ind other genetic parameters in F_2 population of sorghum. Sorghum Newsletter 23:22-23.

UC. and M.V. Thombre (1985). Yield components and their application for n in sorghum. J. Maharashtra Agric, Univ. 10: 262-264.

.C. and M.V. Thombre (1986). Genetic analysis of grain yield and its components in sorghum. J. Maharashtra Agric, Univ. 11 (1): 17-19.

LC. (1990). Inheritance of grain yield and its components in grain sorghum. J. Maharashtra Agric, Univ. 15(1); 54-57.

o, J.M., J.P. Neto and C. da (1979). Identification of Sorghum bicolor (L.) Moench seed in Rio Grande do sul. Agronima Sulrid Gran. 15 (1): 127-131.

M.L. and L.G. Butler (1977). Rapid visual estimation and spectrophotometric determination of tannin content of the sorghum grain. J. Agric. Food Chem. 25: 1268-1273.

M.L., S. Van Scoyoc and L.G. Butler (1978a). A critical examination of the vanillin reaction as an assay for tannin in sorghum grain. J. Agric. Food Chem. 26:1214-1218.

M.L., A.M. Stromberg and L.G. Butler (1979). Tannin content as a function of grain maturity and drying conditions in several varieties of Sorghum bicolor (L). Moench. J. Agric. Food Chem. 27 (6): 1270-1274.

y, J.R. (1963). Manifestation of hybrid vigour in sorghum. Crop Sci. 3: 288-291.

B.S., V.J. M. Rao, D.P. Tripathi and N.G.P. Rao (1977). Genetic analysis of some exotic x Indian crosses in sorghum. XVII Resistance to grain deterioration. *Indian J. Genet. Plant Breed.* **37** (3): 480-487.

B.S., V.J.M. Rao, D.P. Tripathi and N.G.P. Rao (1978). Genetic analysis of some exotic x Indian crosses in sorghum. XVIII Breeding for resistance to grain deterioration. *Indian J. Genet. Plant Breed.* 38: 322-332.

B.S., K.H. Anahosur, V.H.S. Rao, R. Parameswarappa and N.G.P. Rao (1984). Inheritance of field resistance to sorghum grain molds. *Indian J. Genet and Plant Breed.* 44.

- N.G.P. (1970 a). Genetic analysis of some exotic x Indian crosses in sorghum, Heterosis and its interaction with season. *Indian J. Genet.* **30** (2): 347-361.
- K.N. and R.J. Williams (1977). Fungi associated with moldy grains of sorghum. *In*, Proc. Int. sorghum workshop. 6-13 March, 1977, ICRISAT Hyderabad, India.
- G.N. and K.N. Rao (1982). Screening of sorghum varieties against grain molds. Sorghum Newsletter. 25: 112.

⁵ Cherula and T.V.S.R. Mohan Rao (1984). Head molds and grain deterioration Jowar in Andhra Pradesh. Presented at All India Co-ord. Sorghum Improv. oj. Workshop, 3-6 May, 1984, Dharwad.

"P., S.D. Singh and J.W. Stenhouse (1995) Grain mold resistance in guinea righum germplasm. International sorghum and millets Newsletter. 36: 94-95.

A.G.R. and T.V. Reddy (1977). Studies on grain molds of sorghum. Sorghum iewsletter. 20: 10.

K.R.N. and N. Nagur (1981). Correlation studies between yield and yield omponents. Sorghum Newsletter. 24: 18.

B.V.S., L.K. Mughogho and R. Jambunathan (1991). Breeding grain mold esistant seed parents and hybrids. *In* Cereals Program. Ann. Rep. 1991, Page-28 CRISAT Patancheru. India, pp 28.

S. (1984). Total phenol and phenolic acid contents of sorghum tissue from boot tage to post maturity weathering. M.S. Thesis. Texas A and M. Univ. College station, Texas.

L.W. and R.D. Sullins (1969). A laboratory method for milling small samples of sorghum grain. Cereral Chem. 46: 486-490.

L.W. and F.R. Miller (1982). Variation in the structure and kernel characteristics of sorghum. *In* Proc. Int. Symp. Sorghum Grain Qual. 28-31 Dec. ICRISAT, Patancheru, India, pp 143-162.

A.K. and B.A. Monapora (1981) Diallel analysis of forage yield and its components in sorghum. *Madras Agric. J.* 68: 296-300.

nan, M. (1981). Heterosis in sorghum. Sorghum Newsletter. 24: 20-23.

ing. J.F. and L.W. Rooney (1979). A staining procedure to determine the extent of bran removal in pearled sorghum. Cereal Chem. 56 (6): 545-548.

raman, K, R.D. Waniska, and L.W. Rooney (1994). Screening antifungal proteins in sorghum cultivars preliminary results. *International Sorghum and Millet Newsletter* **35**: 136.

raman, K. R.D. Waniska and L.W. Rooney (1996). Physiological changes in sorghum antifungal proteins. J. Agric. Food Chem. 44 (8): 2435-2441.

L.M., D.B. Sauer, H.E. Mohr and R. Burroughs (1975). Weathered grain sorghum: natural occurrence of alternariols and storability of the grain. *Phytopathology*. 65: 1259-1263.

- a H.C., N.K. Jain and R.K. Agrawal (1976). Effect of seed treatment with fungicides alone and in combination with carbofuran on stand and yield of *Sorghum bicolor* (L) Moench. *JNKVV Res. J.* 10: 83-84.
- r, V.B., J.J. Maheswari and R.S. Wadhokar (1987). Heterosis and combining ability in sorghum. *Ann. Plant Physiol.* 1: 101-106.

L, R. Parmeswarappa, S.S. Patil and K. Anahosur (1994). Inheritance of grain d resistance in sorghum. J. Maharashtra Agric. Sci. 19 (2): 257-259.

.K., R. Singh and V.K. Agrawal (1986). Screening for germplasm resistance orghum grain mold. Sorghum Newsletter. 29: 10-12.

A. (1994). Cytogenetics and plant breeding. Chandrashekharan and thasarathy page 353.

M.R. and I.D. Khan (1973). Fungi and factors associated with the elopment of sorghum ear molds. *Trans. Mycol. Soc. Japan* 14 (3): 289-293.

(1973 a). Diallel analysis over different environments I. Indian J. Genet. 33: 1-136.

(1973b). Diallel analysis for combining ability over several environments II. *lian J. Genet.* 33: 469-481.

and K. Jambunathan(1980). Evaluation of rapid methods for the estimation of stein in chickpea (*Cicer arietinum*), J. Sci. Food Agric. 31 : 247-254.

.P. and V.K. Agrawal (1987). Relative susceptibility of different sorghum litvars to grain molds. *Bangladesh J. Bot.* **16** (1): 111-114.

D.P., V.K. Agrawal, and R.K. Khetarpal (1988). Etiology and host pathogen lationship of grain molds of sorghum. *Indian Phytopath.* **41** (3): 389-397.

.P., and V.K. Agrawal (1989). Effect of different degrees of grain molds fection on yield and quality of sorghum seed. *Indian J. Plant Pathol.* 7 (2): 103-18.

.D., K.E.P. Rao. S.S. Navi and M.V. Satyanaranyana (1993). Identification of sistance to grain mold in white grain sorghum. *Sorghum Newsletter*. 34 : 24.

R.B. (1992). Studies on biochemical status of resistant and susceptible *Sorghum icolor* cultivars against grain molds. Ph.D. Thesis, Dr. Panjabrao Deshmukh Irishi Vidyapeeth, Akola.

R.B., R.B. Pandrangi, D.B. Patil and S.G. Wankhade (1993). Amino acid pectra of healthy and moldy grains of hybrid sorghum SPH-388. New lpproaches in Agric. Technol. 3: 57-60.

, C.F. and L.A. Tatum (1942) General and specific combining ability effects in ingle crosses of corn. Agro. J. 34: 923-932.

A. and T. Nagur (1980). Association between yield and yield components and multiple regression analysis in sorghum. *Sorghum Newsletter*.23:10-12.

Ise, J.W., B.V.S. Reddy and R. Bandyopadhyay (1990). Breeding for grain molds resistance in cereals programme. ICRISAT Annual Rep. 1990, ICRISAT, Patancheru, India, pp 19-21.

T. and E.C. Bate-Smith, (1962). New leucoanthocyanidins in grass. In Comparative Biochem Vol. III. Eds. Florkin, A.M. and Mason. H.S., Acad, Press, N.Y.

- anson, A. F. and R. Hunter (1936). Effect of germination and seed size on sorghum stands. J. Amer. Soc. Agron. 28 (2): 997-1004.
- arnlata and R.S. Rana (1988). Combining ability for biological yield and harvest index in sorghum. Indian. J. Genet. 48 (2): 149-153.
- Irup, G. (1955). Fungi associated with sorghum seed. Kansas Dis. Abst. 10: 1710-1711.
- ramanian, V., R. Jambunathan, and S. Suryaprakash (1980). Note on soluble sugars of sorghum. Cereal Chem. 57 (6): 440-441.
- ramanian, V., L.G. Butler, R. Jambunathan and K.E. Prasad Rao (1983). Some agronomic and biochemical characters of brown sorghums and their possible role in bird resistance. J. Agric Food Chem. 31: 1303-1307.
- 'amanian, V. and R. Jambunathan (1984). Chemical composition and food quality of sorghum. In Nutritional and Processing quality of sorghum (Salunke, D.K., Chavan, J.K., and Jadhao, S.J. Eds.) IBA Publication : New Delhi.
- amanian, V., N. Seetharama, R. Jambunathan and P. Venkateswera Rao (1990). Evaluation of protein quality of sorghum (Sorghum bicolor (L.) Moench). J. Agric. Food Chem. 38:1344-1347.
- aram, M.V., L.T. Palmer, K. Nagrajan and J.M. Prescott (1972). Disease survey of sorghum and millets in India. *Plant Dis. Reptr.* 56(9):740-743.
- S.A.J. (1962). Diseases of sorghum, Sudan grass and broom corn. Kew, U.K: Commonwealth Agricultural Bureau 380 pp.
- thi, R.K. (1974). Head fungi of sorghum, phytotoxin and their effect on seed germination. Indian Phytopath. 27 (4): 499-501.
- thi, D.P., B.S. Rana, K.G. Kotaran, and N.G.P. Rao (1976). Genetic analysis of some exotic x Indian crosses in sorghum XVI effects of directional selection on yield and component characters. *Indian J. Genet.* 36 (1): 250-258.
- kcoyoc, S., W.G. Ejeta and J.D. Axtell (1988). Kernel characteristics and protein fraction changes during development of high lysine and normal sorghum. Cereal Chem. 65: 75-80.
- sekaran, P. (1983). Control of F. moniliforme infection in sorghum seed. Seed Sci. and Technol. 11 (2): 435-439.
- Iksha, T.K. and L.V.S. Sastry (1968). Studies on protein content and amino acid composition of some varieties of grain sorghum. J. of Agril. and Food Chem. 16 : 199-203.

3.C. and D.H. Meckenstock (1992). Sorghum diseases in central America and the Caribbean basin *In* Sorghum and Millets Diseases : A Second World Review (de Milliano, W.A.J., Frederiksen, R.A. and Bengston, G.D. eds.) ICRISAT, Patancheru, India, pp 67-73.

a, R.D., J.H. Poe, R. Bandyopadhyay (1989). Effects of weathering on phenolic acids in sorghum caryopses J. Cereal Sci. 10 (3): 217-225.

- Waniska, R.D., G.A. Forbes, R. Bandyopadhyay, R.A. Frederiksen and L.W. Rooney (1992). Cereal chemistry and grain mold resistance. *In Sorghum and Millets Diseases-A Second World Review*, (de Milliano, W.A.J., Frederiksen, R.A. and Bengston, G. D.eds.) ICRISAT, Patancheru, India, pp 265-272.
- Watterson, J. J. and LG. Butler (1983). Occurrence of unusual leucoanthocyanidin and absence of proanthocyanidins in sorghum levels. J. Agric. Food Chem. 31 (1): 4-45.
- Veinges, K.K., W. Bahr, W. Ebert, K. Goritz and H.D. Marx (1969). Konstitution, ensterhung and bedeutung der flavonoid-gerbstoffe, Fortschr. Chem. Org. Natrustoffe. 27: 158-160.
- /haley, W.G. (1952). Physiology of gene action in hybrids. IOWA, State College Press, pp 79-92.
- 'illiams, R.J. and K.N. Rao (1978). A review of sorghum grain molds. In Sorghum Diseases - A World Review, Proc. Int. Workshop on Sorghum Disease, ICRISAT, Hyderabad, India, pp 79-92.
- iilliams, R.J. and K.N. Rao (1981). A review of sorghum grain molds Trop. Pest Mgmt., 27 (2): 200-211.
- u, W.S. (1983). Sorghum diseases in Taiwan and characterization and control of its seed borne pathogens. Pl. Prot. Bull. Taiwn, 25 (1): 1-13.
- u, W.S. and K.C. Cheng (1990). Relationship between seed health, seed vigour and the performance of the sorghum in field. Seed Sci. and Technol. 18 (3): 713-719.

APPENDICES - I TO XI

PAGES : 167 - 300

West			CKET								1996	•			
	Date	Rainfall	Rainy	Temperature (°C)	ure (°C)	Relative humidity	umidity	Week	Date	Rainfall	Rainy	Tempena	furre (°C)	Re lative humidity	humidity
		in (mın)	days			8				in (mm)	days			e	()
				Mux.	Min.							Max.	Min.	Monthing	ā
33	4-10 June	0.0	N	44.30	28.40	63.00	19.00	ผ	4-10 June	0.0	Ī	42.00	26.40	6.8	
ล	11-17	13.20	'n	41.20	27.00	71.00	31.00	র	11-17	0.0	ī	41.50	25.40	6:8.00	
ĸ	18-24	10,00	7	38.90	26.30	73.00	35.00	22	18-24	24.40	-	37.90	24.10	77.00	
R	25-1 July	31,60	e	35.00	23.70	86.00	57.00	8	25-1 July	8.0	ž	33.20	25.50	77.00	
17	2-8 ,	4.40	-	38.20	25.50	80.00	48.00	52	2-8	9.40	2	37.00	25.40	7.9.00	
38	9-15	201.60	ŝ	33.40	22.90	92.00	65.00	8	9-15	4.80	ī	35.60	24.70	£0.03	
53	16-22	63.20	4	29.60	23.00	<u> 00.06</u>	79.00	ล	16-22	32.60	7	34.70	24.40	8.4.8	
8	23-29	54.0	4	30.60	22.80	91.00	68.00	ន	23-29	68.40	9	27.80	22.60	<u>9</u> .19	
31	30-5 Aug.	8.00	7	31.40	23.40	00 .06	64.00	5	30-5 Aug.	25.20	m	30.00	23.10	91.00	
22	6-12	3.60	-	31.80	23.50	83.00	80.09	33	6-12	11.50	-	28.60	27.72	91.8	
R	13-19	0.0	Ы И	33.30	23.00	78.00	49.00	8	13-19	5.60	-	32.20	23.60	89.98 98	57.00
R	20-26	100	Ħ	33.90	23.70	29.00	51.00	*	20-26	74.90	-	31.20	22.90	88°.00	
R	27-2 Seo.	78.30	-	33.40	24.50	85.00	67.00	\$	27-2 Sep.	51.80	e	29.40	22.60	92 8 0	
×	3-9	45.60	-	30,30	21.90	89.00	57.00	ጽ	9-0	133.90	2	31.00	22.80	97. 0 0	
31	10-16	7.50	7	33.60	23.40	91.00	60.09	33	10-16	56.10	n	31.80	23.10	97. 8	
8	17-23	8.70	-	32.40	22.00	85.00	56.00	8	17-23	1.80	٦L	30.90	21.80	88 88	
R	24-30	<u>9</u> .80	•	35.30	21.60	83.00	44.00	ຄ	24-30	20.40	7	34.10	22.90	8,8 8,8	
9	1-7 Oct	000	NIL	36.20	20.80	81.00	33.00	7	1-7 Oct.	51.40	4	31.10	22.30	88	
41	8-14	0.0	NIL	34.30	20.80	82.00	50.00	41	8-14	0.0	Ĩ	32,80	17.60	80. 80	
4	15-21	2.00	Ē	32.90	19.80	<u> 00.06</u>	45.00	42	15-21	0.0 0	Ī	32,60	17.40	1.8	
6	22-28	0000	Ч И	34.00	13.60	76.00	23.00	4	22-28	91.40	ŝ	29.80	20:90	8 8 8	
4	29-4 Nov.	00.00	N	33.50	11.60	81.00	21.00	4	29-4 Nov.	8.50	-	31.00	14.90	79.00	
\$	5-12	0.0	NE	32.30	11.20	80.00	25.00	45	5-12	0.0	ī	31.70	16.80	2.8	

Table: 1 Weekly weather data for year 1995 and 1996 recorded at Agro-meteorological laboratory, Akola Ŀ

					Sou	Sources and degrees of freedom	precs of free	edom			
		Environ	Treat-	Parents	Hybrids	Parents	Treat -	Parents	Hybrids	Parents vs.	Error
źź	Characters	ments	ments			87	ments ×	×Env.	× Env.	Hvbrids ×	
;						hybrids	Env.			Fuv	
		(1)	(54)	6)	(44)	Ξ	(54)	(6)	(44)	ie	(108)
	100 grain weight	170.26**	7.25**	12.03**	6.15**	12.45**	1.91**	2.36*	1.78**	3.32	0.05
	Grain hardness	302.43**	4.77**	4.38**	4.80**	7.04**	1.59**	2.16*	1.37	6.18*	0.60
	Endosperm texture	11.71**	13.26**	18.67**	11.04**	62.38**	1.80**	0.55	2.09**	0.56	37.10
	Elc. conductivity	419.70**	14.69**	27.16**	8.48**	175.73**	6.60**	11.84**	4 44	54.24**	2111.85
	DTF	122.67**	25.55**	18.42**	26.84**	33.16**	5.78**	3.09**	6.11**	15.33**	5 18
	Plant height	0.26	39.60**	45.36**	28.08**	494.63**	2.55**	4.56**	2.11**	3.88	206.43
	Cob length	17.43**	4.49**	4.24**	3.89**	33.02**	0.87	0.99	0.87	0.31	5.37
	Glume covering	19.99**	4.11**	4.86**	4.01**	1.70	1.29	0.95	1.32	2.70	88.80
	Mesocar thickness	0.67	54.57**	28.44**	55.34**	255.80**	1.64*	2.38*	1.49*	1.69	25.46
0	TGMR	192.86**	27.42**	31.12**	26.04**	54.92**	8.27**	7.48**	8.26**	15.64**	0.12
_	Germination	726.47**	25.22**	24.70**	19.40**	285.70**	4.66**	4.40**	4.27**	24.43**	22.87
2	F. moniliforme	637.64**	4.73**	5.60**	4.10**	24.35**	1.65**	66.0	1.82	0.08	76.78
ŝ	F. pallidoroseum	603.45**	1.84**	1.17	1.95**	3.21	1.71**	1.10	1.87**	0.05	10.17
4	C. lunata	333.63**	3.49**	5.00**	3.04**	9.70	2.70**	1.47	3.02**	0.01	68.76
\$	Other fungi	426.93**	1.81**	0.00	1 64*	14 55 41	1 43 **	110	1 604	~~~~	

.... 5 , : . . Table 9 Anthonia Section October 12 Parts

Figures in parenthesis indicate degrees of freedom Significant at 5% Significant at 1%

. :

I - I

	II – 2
Table 3	Analysis of variance (Pooled F_2) for physical, agronomic and pathological traits, Akola and Patancheru, 1996

					Sou	rces and deg	rees of fre	edom			
Sr. No.	Characters	Environ- ments (اورونانه)	Treat- ments	Parents	F ₂ crosses	Parents vs F ₂ crosses	Treat- ments ×Env.	Parents × Env.	F ₂ crosses ×Env.	Parents vs.F ₂ crosses × Env.	Error
		(1)	(54)	(9)	(44)	(1)	(54)	(9)	(44)	(1)	(108)
1	Grain hardness	341.10**	5.42**	4.90**	3.53**	93.71**	3.48**	2.65**	3.55**	7.55**	0.50
2	Ele. conductivity	269.45**	33.45**	39.75**	31.97**	42.06**	9.76**	17.56**	5.01**	148.62**	1443.08
3	Plant height	308.94**	6.80**	18.16**	4.56**	3.24	3.15**	1.59	2.68**	37.70**	458.94
4	Cob length	0.30	5.44**	6.06**	4.86**	25.39**	1.55*	1.47	1.48*	5.72**	3.77
5	Glume covering	0.11	3.37**	6.09**	2.79**	4.81*	0.87	0.85	0.90	0.02	41.04
6	TGMR	140.22**	10.17**	28.31**	4.23**	108.05**	2.36**	5.00**	1.61*	11.23**	11.82
7	Germinaton	215.10**	7.63**	12.40**	4.44**	104.86**	2.57**	1.86	2.08**	30.52**	46.24
8	F. moniliforme	130.25**	1.81**	2.87**	1.13	22.02**	1.01	1.26	0.95	1.15	121.77
9	F. pallidoroseum	101.49**	1.16	1.01	0.97	11.18**	1.41*	1.49	0.50	40.89**	314.27
10	C. lunata	116.39**	2.59**	3.59**	2.35**	4.28*	1.47*	1.80	1.40	1.92	94.42
11	Other fungi	70.46**	1.15	1.16	1.08	4.02*	1.52*	0.80	1.10	26.66**	29.77

 Figures in parenthesis indicate degrees of freedom

 *
 Significant at 5%

 **
 Significant at 1%

169

II - 3 Table. 4 Analysis of variance for biochemical characters of parental lines and F₁ crosses at Akola, 1995. Akola 1995

				Sources and de	grees of freedo	m	
Sr.No.	Characters	Replications	Treatments	Parents	Hybrids	Parents vs. Hybrids	Error
		(1)	(54)	(9)	(44)	(1)	(54)
1	Protein	0.302	211.761**	65.035**	104.552**	6249.488**	0.00103
2	Soluble sugars	0.507	8.629**	9.018**	6.565**	95.940**	0.00324
3	Tannins	3.206	2061.853**	3809.883**	1747.343**	168.055**	0.00028
4	Flavan-4-ols	3.558	\$46.121**	1267.962**	769.066**	439.937**	0.0028

Figures in parenthesis indicate degrees of freedom.

Significant at 5%

** Significant at 1%

	Σ	in Li nu	INT SSC	Culterent .	CITALOCK	A1 10 61		10 1011	1 Immedia	Akola an	d Patanch	en, 1996				
źż	N. Parmus/Crosses	19091	100 gram weight (g)	3	5	Grain hardneas ke/cm ⁻²	8	Bobna	Endosperm texture (%)	ne (%)	Ele. cond	uctivity (m	Ele. conductivity (millimhose)	Durya,	Driys' to 50% floweing	oweng
		3	2	Pooled	3	5	Pooled	=	12	Pooled	1	12	Pooled	=	61	Preled
	2	٣	4	~	•	-	~	٩	9	=	12	=	7	ľ	1	-
	SPV-1201	2.81	2.51	2.66	8.67	6.03	7.35	30.80	27.90	29.35	159.50	95.79E	278 50	8	808	75.60
	ICSB-101B	251	1.61	2.06	6.9	5.58	6.26	26.15	20.2	27.93	242.50	372.00	307.25	22.00	8.0	22
_	AKms-14B	2.57	1.36	1.97	6.95	3.15	5.05	32.80	8.K	33.40	188.50	571.00	37.975	68:50	00.02	69.25
	SRT-26B	2.06	1.47	1.76	6.56	4.4	5.50	32.10	40.55	36.33	300.50	445.00	372.75	69.50	73.50	7150
	GJ-35-15-15	2.24	1.58	1.91	8.11	4.52	6.31	240	25.90	24.15	218.20	342.50	280.25	1.50	00.62	71.25
	SPV-946	2.19	Ŗ	1.96	7.25	3.75	5	35.05	27.65	31.35	151.50	446.50	299.00	77.50	28.00	1175
	SPV-104	2.90	2.54	2.72	6.08	2.78	4.43	46.80	52.25	49.53	260.00	846.50	553.25	80.00	76.50	71.25
"	IS-2284	1.76	1.45	1.60	5.91	4.48	5.20	56.95	56.25	56.60	108.00	26.50	167.25	70.00	76.50	221
•	IS-6335	1.69	1.59	1.64	6.68	5.52	6.10	\$5.85	55.95	55.90	122.00	214.00	168.00	66.00	29.00	62.50
9 :		1.91	Ē	1.82	6.10	5.32	5.72	\$5.30	59.15	57.23	105.00	231.50	168.25	71.50	8.02	2100
=	SPV-1201 x ICSB - 101B	2.62	2.38	2.50	7.14	7.05	7.09	32.10	20,22	30.67	138.00	292.00	215.00	74,50	83.50	7100
1	SPV-1201 x AKms - 14 B	2.61	1.85	223	S.57	5.24	5.40	38.75	36.55	37.65	150.00	05.99 E	274.75	75.00	83.50	7125
n :	SPV-1201 x SRT - 26B	3.25	2.08	2.66	123	5.25	6.24	5.5	40.80	42.03	155.00	287.50	221.25	76.00	85.50	88.75
± :	SPV-1201 x GJ-35-15-15	253	8	217	7.85	7.43	7.64	21.15	29.10	25.13	135.00	275.00	205.00	74.50	85.50	88.00
<u>ກ</u> :	SPV-1201 x SPV - 946	6.7	2.06	202	6.97	6.88	6.92	33.95	35.80	34.8 8	237.50	278.00	257.75	76.00	80.50	71.25
2	SPV-1201 x SPV - 104	3.41	2.47	28	6.46	<u>6</u> 2	6.34	45.05	48.35	46.70	144.00	408.00	276.00	74.50	85.50	88.00
5 9	SPV-1201 x 13 - 2284	2.26	1.7	2.02	7,30	4.55	5.93	48 .00	57.75	52.88	118.00	201.50	259.75	71.00	82.00	76.50
-	SPV-1201 x 15-6335	73	1.7	78	7.60	5.05	6.32	45.35	50.15	47.25	102.50	209.50	156.00	71.50	82.00	7675
<u>م</u>	SPV-1201 x IS - 9471	2.71	2.09	2.40	6.08	5.23	5.65	51.05	26.20	53.63	112.50	217.00	164.75	74.00	80.50	77.25
83	ICSB - 101B x AKma 14 B	8	88	1 .90	6.86	3.95	5.40	45.00	42.95	45.47	156.00	358.50	257.25	68.00)	71.00	69.50
R 1	ICSB - 101B x SRT - 26 B	1.95	1.79	1.87	5.27	3.80	£.5	41.30	35.15	38.22	167.00	284.50	225.75	68.5()	20.00	69.25
11	ICSB - 101B x CJ-35-15-15	1.95	F	1.87	6.64	5.12	5.88	31.10	25.55	28.33	164.00	257.50	210.75	72.00	74.00	1100
88	ICSB - 101B x SPV - 946	2.43	1.82	2.13	7.32	S.60	6.46	35.80	38.35	37.07	124.50	339.50	232.00	70.5()	80.50	75.50
5 2	1CSB - 101B X SPV - 104	2.88	2.58	2.72	9.64	8	2.2	39.75	41.95	40.85	150.50	400.00	275.25	71.00	200	7200
9 2	ICSB - 101B x IS - 2284	2.08	2.2	2.14	4.9	4.61	5.53	46.10	55.15	50.63	106.50	167.00	136.75	69.50	71.00	20.02
R 1	10-26 - 101B X 12 - 0333	R0.7	5	2.06	6.70	5.5	6.32	1 3.55	50.65	47.10	8°.66	122.00	110.50	62.00)	80.09	6100
R A	ICSB - 101B x IS - 9471	2.17	2.17	212	5.88	5.07	5.48	51 .90	53.15	54 .03	8 8	154.00	126.50	66.00	70.50	68.25
8	AKIN6 - 14 B X SKT - 26B	2.11	3	2.03	3.96	2.85	3.40	21.00	52.20	53.10	230.00	343.00	286.50	66.50	70.50	64.50
R :	AKme - 14 B x GJ-35-15-15	£.	1.1	1.70	4.64	2.82	5.5	38.25	44.70	41.47	157.50	342.50	250.00	68.00	70.00	69.25
R	IA B X SPV	2.49	2.06	2.28	6.32	3.63	4.97	55.35	20.50 20	52.78	150.50	347.50	249.00	66.0()	70.50	56,25
ج 1		2.88	22	2.55	4.89	3.45	4.17	26.30	57.20	56.75	177.00	485.00	331.00	68.00	71.50	69.75
2		2.38	1.76	2.07	6.19	F.¥	5.48	\$5.75	66.60	61.17	114.00	17.50	143.25	65.00	71.50	68.50
3;	IABXIS-	2.42	5.05	22	6.72	4	5.47	64.55	63.25	63.90	98.50	122.50	110.50	60.50	59.00	59.75
яl	AKma - 14 B x IS - 9471	2.25	2.32	22	ŝ	4.8	4.70	58.80	62.15	60.48	100.50	134.50	117.50	65.00	8 0.09	62.50

8 4 ¢ -Man Table · S

ıble	5	Condt

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
SRT - 26B x GJ-35-15-15	2.16	1.59	1.88	6.95	4.52	5.74	41.30	33.25	37.28	149.50	407.00	278.25	70.00	73.00	71.50
SRT – 26B x SPV – 946	2.38	2.02	2.20	5.84	4.53	5.18	46.35	41.90	44.13	174.00	267.50	220.75	72:.00	75.00	73.50
SRT – 26B x SPV – 104	2.72	2.13	2.42	6.45	3.99	5.22	52.55	50.65	51.60	166.50	329.00	247.50	66.50	71.50	69.50
SRT – 26B x IS – 2284	2.27	1.81	2.04	5.36	4.92	5.14	46.75	57.70	52.22	119.00	140.00	129.50	60.50	71.50	66.00
SRT – 26B x IS – 6335	2.31	1.87	2.09	6.09	4.18	5.13	59.65	60.15	59.90	123.00	84.50	103.75	59.50	60.00	59.75
SRT - 26B x IS - 9471	2.15	2.15	2.15	5.63	3.53	4.58	34.50	64.00	49.25	201.00	113.00	157.00	70.50	71.00	70.75
GJ-35-15-15 x SPV - 946	2.50	1.72	2.11	7.68	3.77	5.73	36.15	30.45	33.30	184.50	318.50	251.50	76.00	78.50	77.25
GJ-35-15-15 x SPV 104	2.26	2.12	2.19	7.28	3.83	5.55	48.35	41.10	44.72	186.00	387.00	286.50	72.50	74.00	73.25
GJ-35-15-15 x IS - 2284	1.92	1.56	1.74	7.03	4.27	5.65	46.30	59.10	52.70	129.00	168.00	128.50	65.50	77.00	71.25
GJ-35-15-15 x IS - 6335	2.03	1.51	1.77	5.77	4.06	4.91	46.85	61.10	53.97	106.50	120.00	113.25	63.00	67.00	65.00
GJ-35-15-15 x IS - 9471	2.02	1.84	1.93	5.91	4.24	5.07	42.90	61.60	52.25	157.00	172.00	164.50	72.00	71.50	71.25
SPV – 946 x SPV – 104	2.79	2.13	2.46	6.41	3.85	5.13	43.40	44.30	43.85	138.50	475.00	306.75	72.00	78.50	75.25
SPV – 946 x IS – 2284	2.48	1.74	2.11	6.22	4.52	5.37	35.50	55.70	45.60	108.00	115.50	111.75	66.00	71.50	68,75
SPV - 946 x IS - 6335	1.99	1.72	1.85	6.99	4.72	5.86	36.05	53.80	44.92	115.50	126.50	121.00	67.50	93.50	75.50
SPV – 946 x IS 9471	2.04	2.07	2.06	6.42	4.35	5.39	45.75	56.75	51.25	122.50	82.00	102.25	74.50	59.00	66.75
SPV - 104 x IS 2284	2.32	2.03	2.17	4.45	3.58	4.01	72.25	56.35	64.30	118.50	252.50	185.50	68.50	74.00	71.25
SPV - 104 x IS 6335	2.34	1.99	2.16	5.33	3.44	4.38	74.00	64.25	69.13	114.50	169.50	142.00	63.00	59.00	61.00
SPV - 104 x IS 9471	2.71	2.59	2.65	4.69	3.58	4.13	68.55	63.20	65.88	107.50	104.00	105.75	64.00	59.00	61.50
IS 2284 x IS6335	1.76	1.63	1.69	6.83	4.36	5.59	53.20	55.85	54.53	108.00	188.50	148.25	62.00	70.50	66.25
IS 2284 x IS - 9471	1.94	1.76	1.86	5.63	4.75	5.19	53.65	62.05	57.85	114.00	187.00	150.50	70.00	74.00	72.00
IS 6335 x IS 9471	2.19	1.75	1.97	5.32	4.37	4.85	53.40	56.65	55.03	90.00	159.00	124.50	62.0()	59.00	60.50
Parental range	1.69	1.36	1.60	5.91	2.78	4.43	22.40	25.90	24.15	105.00	214.00	167.25	66.00	59.00	62.50
	to	to	to	to	То	to	to	to	to	to	to	to	to	to	to
	2.90	2.54	2.72	8.67	6.03	7.35	56.95	59.15	57.23	300.50	846.50	553.25	80.00	79.00	78.25
Hybrid range	1.76	1.51	1.68	3.96	2.82	3.40	21.15	25.55	25.13	90.00	82.00	102.25	59.50	59.00	59.75
	to	to	to	to	То	to	to	to	to	to	to	to	to	to	to
	3.41	2.58	2.94	7.85	7.43	7.64	74.00	66.60	69.13	237.50	485.00	331.00	76.00	85.50	80.75
SE (m)	0.155	0.090	0.249	0.479	0.549	1.051	2.628	3.402	3.730	17.909	42.758	85,400	0.852	0.639	3.452
CD at 5%	0.442	0.257	0.710	1.367	1.567	3.000	7.502	9.711	10.650	51.110	122.028	243.721	2.433	1.825	9.854

172

L₁ = Akola

L₂ = Patancheru

Ϋ́ Ϋ́	Percentar Crosses	. 1	Plant height (cm)	Ê		Cob length (cm)) H	Glum	Glume covering (%)	g (%)	Menocar	Mesocarp thickness (µn)	(uni) 88		TOMIR	
		3	L2	Pooled	1	5	Pooled	3	2	Pooled	5	1	Pooled	1	61	Douted
-	2	3	4	\$	•	-	~	0	2	=	2	=	TA I	<u>-</u>	s ×	
- 1	SPV-1201	226.00	243.50	234.75	23.10	22.50	21.80	8.8	20.00	<u>\$0.05</u>	61.99	22.22	70.61	001	8	5
61 6	ICSB-101B	164.50	166.50	165.50	26.20	28.90	27.55	75.00	75.00	75.00	97.52	96.57	97.05	8	5	3
m.	AKme-14B	136.00	140.00	138.00	24.10	23.30	23.70	50.00	50.00	<u>\$0.0</u>	72.37	64.67	68.52	4 00	38	5
4 1	SRT-26B	157.00	179.00	168.00	23.10	25.40	24.25	50.00	S0.00	20.05	78.86	86.48	82.67	8		<u> </u>
~	CI-35-15-15	262.00	237.00	249.50	23.30	24,30	23.80	50.00	50.00	50.00	64.86	74.53	12 09	3.5		25
•	SPV-946	283.00	264.00	237.75	23.30	8.8	23.50	50.00	50.00	20.00	45.45	8	3	32	39	5
-	SPV-104	218.00	178,50	198.25	21.20	17.00	19.10	62.50	<u>50.00</u>	56.25	87.50	100		39	2	
~	1S-2284	214.50	282.50	248.50	23.30	22	27.25	50.00	75.00	62.50	92.38	87.78	80.08	88	3 5	ļ
<u>م</u> :	IS-6335	241.50	254.50	248.00	23.20	27.00	25.10	75.00	75.00	75.00	72.33	74.84	74.08	2.00	8 6	3 5
2	12.471	257.00	285.00	271.25	24.90	27.70	26.30	50.00	S 0.00	50.00	66.02	16.65	62.96	2.00	; ;	3 4
= :	SPV-1201 x ICSB - 101B	299.50	318.50	309.00	8.2	24.00	23.85	50.00	S 0.00	50.00	59.07	61 22	60.15	27.0	8	88.0
2:	SPV-1201 x AKms - 14 B	301.00	283.50	292.25	23.30	210	23	37.50	50.00	43.75	20.00	89.22	61 63	8	88	35
23	SPV-1201 x SKT - 26B	269.50	269.00	269.25	21.30	280	20.02	37.50	<u>s</u> 80	43.75	67.67	88.29	89.98	2.75	9	32
1	SPV-1201 x GJ-35-15-15	281.00	313.00	297.00	24.80	26.70	25.75	50.00	50.00	50.00	86.46	84.12	85.28	10	8	18
2:	24V-1201 x 24V - 946	233.50	255.00	244.25	25.80	23.60	24.70	37.50	50.00	43.75	68.14	63.03	65.58	250	8 8	
2 !	101 - AAS X 1021-AAS	280.50	297.50	289.00	20.40	21.50	20.95	<u>50</u> .00	62.50	56.25	82.95	80.88	81.92	3.00	4	
2 9	1872 - SI X 1021 - A.S.	293.00	318.00	305.50	28	24.60	23.75	37.50	62.50	50.00	60.48	63.00	61.74	2.00	200	17.
2	SPV-1201 x 13-6335	340.00	319.00	329.50	26.30	27.60	26.95	62.50	75.00	68.75	43.69	42.97	43.33	2.00	6	
28		343.00	340.00	341.50	27.30	28.60	27.95	37.50	62.50	50.00	40.65	38.59	39.62	2.00	5.00	50
33	IC38 - JUB X AKms 14 B	183.00	183.00	183.00	29.30	30.20	29.75	<u>50.00</u>	20.00	50.00	78.74	81.72	80.23	3.50	5.00	42
18	ICAB - IVIB X SKI - 26 B	00 722	220.00	21.0	28.90	8.0	29.45	62.50	75.00	68.75	87.46	86.81	87.13	3.00	5.00	8
38	ICSB - 101B X (J-35-15-15	266.00	246.00	256.00	8	28.80	28.65	50.00	62.50	56.25	90.76	91.80	91.28	3.00	3.50	3.25
32		00.867	290.00	294.00	87.10	8 ม	26.95	8.0	62.50	56.25	82.34	81.59	81.96	2.75	3.00	2.88
5		00.117	204.00	CL.017	01.10	26.40	222	8.8	8.05	20.00	85.97	8 1. 4	83.71	3.00	8.4	3.50
3 2			20.016	30.50		8.1	21.45	8.8	62.50	S.25	44.26	53.76	49.0I	200	5.00	2.00
3 5		00710	0.02			9.40	10.45	12.00	75.00	75.00	40.50	33.74	37.13	2.00	50	2.00
12		0.00	8.4	2.25	R	32.10	8	8.8	8.08	20.00	52.59	47.II	49.85	2.00	2.00	2.00
1 8		N 92	0.012	3.50	0.1	8.17	20.22	20.00	8.08	<u> 20.00</u>	Р. Х	39.5 6	98.13	3.50	5.00	12
28		8.8	8 12	219.50	21.29	2.2	28.45	8.8	75.00	62.50	63.89	67.13	65.51	3.00	<u>5</u> .00	4.00
2 2		0.087	Z/0.00	00.182	8.92	26.30	26.85	8.05	75.00	62.50	60.09	67.17	63.78	5	<u>د</u> 8	4.25
5 5		00.161	87.792	199.25	8	24.10	2:45	20.0 0	80.08	20.00	60.18	60.36	60.27	3.50	5.00	425
12		0011/2	21.50	276.75	21.80	22	25.05	37.50	50.00	43.75	55.22	60.23	57.72	2.00	2.00	200
22	AKING - 14 B-X IS - 6335	233.50	253.50	8 E.	23.30	27.50	26.40	62.50	62.50	62.50	43.52	49.30	46.31	2.00	1.50	1.75
*	AKma-14 B x IS - 9471	299.00	287.00	293.00	27.80	8 ର	28.40	50.00	37.50	43.75	52.92	52.32	52.62	2.00	1.50	1.75

- 2	64	~	•		`		•	4								
2		,	4	۰	•		•	•	01	=	2	2	7	2	91	1
1	SRT - 26B x GJ-35-15-15	206.50	197.50	202.00	26.70	24.70	25.70	50.00	50.00	<u> 20.00</u>	62.66	64.15	63.40	3.00	5.00	400
ж	SRT – 26B x SPV – 946	253.00	254.00	253.50	23.90	27.50	25.70	50.00	50.00	50.00	85.91	93.56	89.7J	2.75	8	3.38
2	SRT – 26B x SPV – 104	213.50	213.50	213.50	210	24.80	23.45	<u>50.00</u>	50.00	20.00	87.56	36.00	86.78	3.00	5.00	400
*	SRT - 26B x IS - 2284	301.50	307.00	304.25	24.10	27.30	25.70	50.00	50.00	3 0.05	63.61	62.16	62.89	2.50	2.00	225
8	SRT - 26B x IS - 6335	274.50	248.50	261.50	23.40	26.55	24.98	62.50	62.50	62.50	59.67	62.79	61.23	250	500	122
\$	SRT - 26B x IS - 9471	259.50	282.50	271.00	22.80	30.60	26.70	50.00	50.00	20:00	57.32	49.58	53.45	250	8	200
Ŧ	GI-35-15-15 x SPV - 946	275.00	244.50	260.50	23.20	22.20	22.70	30 .00	62.50	36.25	75.72	61.34	68.53	2.50	5.00	3.75
ç	GI-35-15-15 x SPV 104	303.50	255.50	279.50	23.00	24.90	23.95	<u>50.00</u>	50.00	S0.00	67.44	80.61	74.03	22	2.00	363
ç	GI-35-15-15 x IS - 2284	319.50	320.50	300.00	27.60	26.70	27.15	62.50	62.50	62.50	45.97	53.74	49.85	2.00	2.00	200
\$	GI-35-15-15 x IS - 6335	329.00	303.50	316.25	29.70	26.50	28.10	62.50	75.00	68.75	36.55	35.90	36.06	2.00	2.00	200
Ş	GI-35-15-15 x IS - 9471	291.50	308.00	299.75	25.70	31.05	28.38	50.00	50.00	50.00	48.55	33.89	41.22	2.50	8	202
ş	SPV - 946 x SPV - 104	311.50	288.50	300.00	25.10	25.00	25.05	<u> 50.00</u>	75.00	62.50	49.41	68.85	59.13	200	5.00	3.75
ç	SPV - 946 x IS - 2284	279.50	297.50	288.50	21.40	28.20	24.80	20.00	37.50	43.75	56.92	50.69	53.81	2.50	200	22
\$	SPV - 946 x IS - 6335	297.50	322.00	309.25	26.00	27.10	26.55	62.50	75.00	68.75	43.94	38.51	41.22	2.00	2.00	50
Ş	SPV - 946 x IS 9471	328.50	288.00	308.25	26.10	29.20	27.65	62.50	2 0.00	56.25	33.78	35.56	34.67	200	2.00	200
8	SPV 104 x IS 2284	288.50	302.00	295.25	8 2	22.60	22.65	37.50	75.00	56.25	37.09	39.47	38.28	200	3.00	250
5	SPV - 104 x IS 6335	297.50	269.50	293.50	26.50	27.60	27.05	75.00	75.00	75.00	32.03	31.32	31.68	2,00	200	2.00
ផ	SPV - 104 x IS 9471	283.50	26.00 27	269.75	25.30	28.40	26.85	37.50	<u>so.0</u>	43.75	47.26	46.23	46.95	200	2.00	200
R	IS 2284 x IS -6335	280.50	302.50	291.50	25.60	26.30	25.95	75.00	75.00	75.00	61.75	62.57	62.16	2.00	1.50	175
3	IS 2284 x IS - 9471	270.00	301.00	285.50	23.30	25.30	24.30	37.50	37.50	37.50	66.72	6.3	65.73	2,00	2.00	200
2	IS 6335 x IS 9471	287.50	274.00	280.75	29.40	28.55	28.98	<u>50.00</u>	50.00	\$0.00	32.20	33.82	33.01	2.00	1.50	L75
				1	:		1	:								
	Parental range	00.961	140.00	138.00	21.20	17.00	19.10	50.00	20:00	20 .00	45.45	16.62	54.02	50	<u>8</u>	13
		9	2	9	9	9	9	2	9	3	3	9	9	9	3	9
		283.00	285.50	27.ET2	26.20	28.90	27.55	75.00	75.00	75.00	97.52	96.57	97.05	4.0	5.00	4.50
	Hybrid range	183.00	183.00	183.00	20.40	21.00	20.95	37.50	37.50	37.50	32.20	33.82	33.01	2.00	1.50	175
		9	9	9	2	9	9	9	9	9	9	9	9	9	9	3
		343.00	340.00	341.50	29.70	32.10	30.80	75.00	75.00	75.00	% .%	95.66	98.13	3.50	5.00	4 2
	SE (m)	3.708	6.047	11.12	1.634	1.434	1.169	6.306	6.077	5.899	2.926	6.77.9	2.040	0.207	0.252	0.565
	CD at 5%	10.582	17.257	37.713	4.664	4.093	3.338	17.998	17.343	16.835	8.352	066.61	5.822	0.593	0.719	1.614

1/4

		Cellimation (%)		F. 7K	F. montiforme (%)	8	P. P.	P. pallidorosman (%)	2	ن ا	hunda ((%)	400	Other frank (%)
	E	12	Pooled	2	L 2	۵	13	5	4	=	1	4	=	-
2	3	4	\$	•	-	~	~	2	=	2	=	1	i	1
SPV-1201	67.50 (55.25)	30.00 (33.07)	48.75 (44.15)	20.67	54.67	37.67	0.71	12.00	9.9	8	12 12	14.11	1.10	
ICSB-101B	47.00 (43.25)	26.50(30.98)	36.75(37.11)	26.67	52.67	39.67	0.71	12.67	399	8	2			
AKmu-14B	29.00(32.53)	2.50(8.64)	15.75(20.58)	46.00	58.67	52.33	0.71	12	8	14 00	3 2			
SRT-26B	81.50(64.62)	12.00(20.12)	46.75(42.37)	26.01	51.34	38.67	2.36	10.00	1	2	17.11	46.67	5 2	
QJ-35-15-15	72.50(51.40)	29.50(32.89)	51.00(42,15)	18.66	52.67	35.66	1.2.0	2	18					B 1
SPV-946	75.50(60.29)	18.00(25.09)	46.75(42.69)	18.00	62.67	40.74	8	14 67	1.0		2			
SPV-104	50.00(45.00)	6.00(13.98)	28.00(29.49)	38.67	7134	8	12	8	j				88	3
13-2284	82.50(65.03)	61.00(51.36)	71.75(58.19)	20.00	48.00	8	2	10.1						5
13-6335	86.00(68.04)	53.00(46.73)	69.50(57.39)	2.96	47.33	2012	196		5.5		3	2 2		2
15-9471	79.00(63.04)	48.50(44.14)	(85 55/51 59)	5	2		5					10.07	3	ĥ
SPV-1201 x ICSB - 101B	85.00(67.26)	66 00(14.34)	25 50(60 00)					3	2	8		1	8	ň,
SPV-1201 x AKme ~ 14 B	02 50(52 28)	A DOT A SEVEN DE	(30 57/56 87							20.00	2	43.00	24.00	ň
SPV-1201 - SPT - 26B	(C) L2) UU 54	(07 75) 05 US				ς : ς :	7	10.01	8.69	6133	21.34	41.33	25.33	8
21-31-36-10-10C1-VdS			(0070)0711		8	6.0	0.71	10.00	<u>5</u>	50.67	8.8	40.33	94.00	8
		(06.24)00.00	(100-TC)0C-T0		40.00	19.67	1.69	12.00	3	50.67	28.65	38.67	¥E.61	20.65
	(cn.24)00.10	(70-7c)nn-70	(60.00)00.00	52.55	42.00	8	0.71	10.67	5.69	<u>5</u> 0.00	8.8	38.00	16.00	21.33
	/8.00(62.12)	32.00(34.36)	55.00(48.24)	14.67	48.00	31.33	0.71	40.7	4.02	55.33	37.33	46.33	32.67	Ę,
	(\$1.26)00.5%	(59.09)00.07	86.75(71.28)	8.3	5	282	233	16.67	9.51	28.00	32.00	30.00	21.33	8.66
	(/1'ng)nn'/s	(09.94.00)	81.50(67.39)	5	40.00 00	23.67	0.71	16.00	8.35	18.00	1.5	24.67	18.67	10.00
	94.00(76.72)	67.50(55.24)	80.75(65.98)	8.66	9.9 8	17.33	2.0	12.66	50	18.00	28.00	20.02	17.33	10.00
	(07.140)06.00	42.50(40.69)	54.50(47.69)	19.34	8.8	37.67	1.69	14.66	8.18	59.33	16.66	90.98 38.00	19.34	6.9
		(00.38.65)	53.25(46.95)	8	66.67	66.66	0.71	18.67	9.69	68.00	14.00	41.00	21.34	ŝ
	(74-9C)nC-7/	00(49.61)	65.25(54.02)	¥,	55.33	32.33	0.71	16.00	8.36	67.33	79.47	45.00	10.02	6.0
	(c/.10)00.11	(15.25)00.55	70.25(57.16)	14.67	58.00	8.3	3.02	16.66	68 .6	49.33	828	35.67	8.6	2.0
	08.20(49.89)	37.00(37.44)	47.75(43.67)	34.01	70.67	52.34	0.71	21.34	11.02	49.33	8.00	28.67	17.34	6.7
1000 1010 112 - 2284	(11.17)00.04	85.00(67.50)	90.00(72.32)	14.66	32.00	233	0.71	5.2	3.02	38.00	29.02	<u>8</u> .93	33,33	8.67
	(9C7/)m.14	140.00/00.88	89.75(71.55)	8	21.74	15.66	1.02	6.67	3.85	26.66	14.00	20.33	8 .8	7.33
	(M. K))0C.0K	80.00(63.78)	88.25(71.51)	10.68	28	16.67	1.69	8.8	4.84	27.34	21.34	24.33	26.67	8.0
	62.50(52.23)	26.00(30.62)	44.25(41.43)	28.67	54.67	41.67	1.69	11.34	6.51	50.67	24.66	37.67	19.34	ŝ
	(1/14)06764	(MC.35.0C.85	41.50(40.03)	23.32	23.33	38.33	4.0	15.33	9.66	52.67	26.67	7 29.62	19.33	5.3
	64.00(54.93)	24.00(29.01)	41.00(41.97)	17.14	49.33	33.33	0.71	14.67	7.69	59.33	30.66	45.00	23.34	5.3
AKma-14 B x SPV - 104	32.50(34.66)	18.00(25.04)	25.25(29.85)	35.33	54.67	45.00	4.67	18.67	11.67	48.00	8.8	34.00	12.00	8
AKma-14 B x [S - 2284	89.00(70.65)	55.00(47.87)	72.00(59.26)	15.34	36.67	26.8	6.0	13.34	9.67	47.33	1.34	56.95	W LZ	0.01
AKma-14 B x IS - 6335	94.00(76.26)	77.00(61.63)	85.50(68.91)	14.01	25.34	19.67	333	8.67	6.0	30.67	20.00	52.33	1.34	8
AKmi-14 B x IS - 9471	22 00/65 40)	107 10700 12	00 00/02 00			1			ļ				5]

2
್ರ
널
12
Ę
4
밑
8
10
2
ទ
-R
5
ē.
2
_ ≃
륑
0
X
0
- 21
2
Ē
ĕ
2
- 26
Ð
el.
Ð
<u>اق</u>
8
ŝ
E I
تا ت
뫼
a l
욉
뵑
ē.
ō
ğ
2
8
Σ
-

2	B. 50(7080) 11.00(57.44) 38.20(9.93) 38.20(9.93) 38.20(57.57) 38.20(57.57) 22.00(56.10) 22.00(56.10) 88.20(67.21) 88.20(61.13) 89.000(61.13) 89.000(61.13) 89.000(61.13) 89.000(61.13) 89.000(61.13) 89.000(77.21) 89.000(77.21) 80.00(77.21) 80.00(77.21)	37.00(37.46) 44.50(41.56) 44.50(41.56) 64.00(53.27) 7.55(53.14) 7.55(53.14) 7.55(53.23) 7.50(23.23) 7.50(23.23) 7.50(23.23) 7.50(23.23) 7.50(23.23) 84.50(53.25) 84.50(53.25) 84.50(53.25) 84.50(53.25) 84.50(53.25)	67.25(53.82) 57.75(49.64) 51.22(45.74) 78.75(64.22) 82.75(66.22) 82.75(66.23)	12.68 26.01 30.67	67.33 62.67 52.00	10.04 14.13 14.14	0.71 0.71 1.69	16.66 16.66		55.33	12.00	33.67	34.00	69.E	18.84
-26B x SPV - 946 -26B x SPV - 946 -26B x SPV - 104 -26B x IS - 5335 -26B x IS - 6335 -26B x IS - 9471 -1515 x SPV -946 -1515 15 x SPV 104 -1515 x IS - 2284 -1515 x IS - 2284 -1515 x IS - 2284 -1515 x IS - 2335	20(57.44) 20(49.93) 20(49.93) 20(55.27) 20(56.10) 20(64.87) 20(64.87) 20(64.13) 20(64.	44.50(41.83) 44.00(41.56) 44.00(41.56) 73.50(51.46) 73.50(51.46) 73.50(51.46) 73.00(28.31) 73.00(28.31) 73.50(51.73) 88.50(51.74) 88.50(51.24) 88.50(51.24)	57.75(49.64) 51.25(45.74) 78.75(64.23) 82.75(66.35) 82.75(66.35)	26.01 30.67	62.67 52.00	4 133	0.71	16.66 15.34	8.69	54.00	18.67	36.33	20.66	1.39	
-268 x SPV - 104 -268 x S - 2284 -268 x IS - 6335 -268 x IS - 6337 -158 x S - 6337 -158 x S - 6337 -158 x S - 6337 -158 x S - 2284 -158 x S - 2284 -158 x S - 2384 -158 x S - 2471	90(49.97) 90(75.24) 90(67.57) 90(67.57) 90(67.21) 90(67.21) 90(67.21) 90(61.13) 90(61.13) 90(67.22) 90(74.32) 90(74.32) 90(77.21) 90(722) 90(722)	44.00(41.56) 73.50(59.14) 73.50(59.14) 73.50(53.46) 73.50(53.45) 73.00(23.73) 73.00(23.73) 65.00(53.74) 65.00(53.74) 68.50(53.85) 68.50(53.85)	51.22(45.74) 78.75(64.23) 82.75(66.35) 82.75(66.35)	30.67 11 10	52.00	41.33	1.69	15.34							11.18
4-40-	96(75.24) 00(75.57) 00(64.87) 00(64.87) 00(64.87) 50(64.23) 50(64.23) 50(64.23) 50(64.23) 50(64.23) 50(64.23) 50(64.23)	64.00(53.22) 73.50(59.14) 73.50(53.14) 73.50(53.25) 73.50(53.25) 73.50(53.12) 73.50(53.12) 73.50(53.12) 88.50(53.85) 88.50(53.85)	78.75(64.23) 82.75(66.35) 84.74(64.35)	11.30					102	53.33	26.67	40.00	15.34	4 .0	9.67
8-30-)0(73.57) 00(64.87) 00(56.10) 00(50.25) 50(61.21) 00(61.13) 50(64.24) 50(64.24) 50(64.24) 50(64.24) 50(64.24)	73.50(59.14) 79.50(53.46) 28.50(32.25) 28.50(53.12) 73.00(58.79) 73.50(53.12) 14.50(53.12) 14.50(53.85) 68.50(55.85)	82.75(66.35) e4 7-666.35)		40.67	26.00	1.69	10.00	5.84	46.00	22.67	34.33	8.8	5.34	19.67
¥ = ~ ~	00(64.87) 00(56.10) 50(67.21) 50(67.21) 50(68.04) 50(68.04) 50(68.04) 50(67.21)	79-50(63.46) 28-50(32.25) 24-50(59.12) 73-50(58.79) 79-50(63.12) 79-50(63.12) 14-50(53.85) 68-50(55.85)	04 75C64 17	10.01	34.00	20	3.34	7.33	533	36.67	15.33	26.00	16.22	6.0	15.67
¥	00(56.10) 00(60.25) 50(67.21) (11,13) (11,13) 50(68.04) 50(68.04) 50(68.04) 50(68.04) 50(67.72) 50(77.21)	28.56(32.25) 28.06(28.79) 73.06(58.79) 79.56(63.12) 65.06(53.74) 14.00(21.94) 68.56(55.85)	(17-16) T-16	9.3F	31.33	20.34	3.02	6.9	6.17	31.34	14.66	23.00	17.34	4.66	11.00
	00(60.25) 50(67.21) 00(74.32) 00(61.13) 50(64.22) 50(64.22) 00(77.21)	24.00(29.31) 73.00(58.79) 79.50(63.12) 65.00(53.74) 14.00(21.94) 68.50(55.85)	40.25(44.17)	20.00	60.00	40.00	8	10.00	5.51	26.00	25.33	40.67	24.66	5.34	15.00
	50(67.21) 50(7.32) 00(61.13) 50(68.04) 50(64.22) 00(77.21)	73.00(58.79) 79.50(63.12) 65.00(53.74) 14.00(21.94) 68.50(55.85)	46.50(44.78)	22.66	59.33	41.00	2.67	15.33	9.00	20.00	20.00	35.00	18.66	6.66	12.66
~	00(74.32) 00(61.13) 50(68.04) 50(64.22) 00(77.21)	79.50(63.12) 65.00(53.74) 14.00(21.94) 68.50(55.85)	79.75(63.00)	9,34	40.00	24.67	4.67	10.66	7.67	38.67	16.67	17.67	18.67	4.66	11.67
_	00(61.13) 50(68.04) 50(64.22) 00(77.21)	65.00(53.74) 14.00(21.94) 68.50(55.85)	84.75(68.72)	13.99	44.67	29.33	4.67	12.67	8.67	32.00	19.34	25.67	22.00	8.00	15.00
	50(68.04) 50(64.22) 00(77.21)	14.00(21.94) 68.50(55.85)	77.00(57.44)	7.99	46.67	27.33	5	17.34	533	32.00	21.34	26.67	27.66	134	15.00
SPV - 946 x SPV - 104 81.5	50(64.22) 00(77.21)	68.50(55.85)	47.75(44.98)	11.33	68.67	40.00	1.02	7.33	4.18	58.00	8	40.00	32.00	ร	17.18
	00(77.21)		78.00(60.10)	15.34	50.00	32.67		17.34		30.67	20	26.33	16.62	6.0	14.67
SPV - 946 x IS - 6335 96.0		60.00(50.85)	78.00(64.03)	11.99	52.00	32,00	53	21.34	11.85	20.2	20.67	23.00	26.00	4.00	15.00
	85.00(72.35)	31.00(33.70)	58.00(53.03)	11.99	42.67	27.33	3.34	16.66	10.00	30.66	18.67	24.67	ň	7.9	15.34
	90.50(72.10)	(60.65)00.ET	81.75(65.60)	15.99	35.33	25.66	CC. 7	13.34	10.33	34.67	26.67	30.67	27.34	1.5	17.33
	89.50(71.09)	74.00(59.49)	81.75(65.60)	5.99	36.67	21.33	1.69	11.34	6.51	99:90	22.67	29.33	29.37	14	18.33
	91.50(T3.41)	65.00(53.93)	78.25(63.67)	7.99	44.00	26.00	2.35	10.66	6.51	38.67	16.67	27.67	22.66	1	14.00
IS 2284 x IS -6335 85.5	85.50(67.65)	67.50(55.25)	76.50(61.45)	6.01	36.67	21.34	3.02	9.34	6.18	31.33	20.67	26.00	24.66	4.66	14.66
_	90.50(72.20)	77.50(61.75)	84.00(66.97)	12.01	34.00	23.00	8.00	12.00	10.00	30.00	26.67	28.33	26.00	6.67	16.34
171 89.	50(70.56)	63.50(52.85)	76.25(61.75)	6.0	30.00	18.00	2.35	9.66	4.51	533	8	19:02	17.33	5.34	11.33
Perentel range	29.00	2.50	15.75	53	8.8	19.67	0.71	7.34	4.02	24.00	15.33	20.67	MC.0	0.71	5.18
	9	9	9	5	9	9	9	9	9	9	9	8	9	9	9
	86.00	61.00	71.75	38.67	71.34	55.00	2.67	9 6.91	10.51	60.00	37.33	46.67	24.67	6.0	15.00
Hvhrid range	32.50	14.00	27.22	5.99	21.34	15.66	0.71	5.34	3.02	18.00	8.00	CC.02	12.00	0.71	9.00
	9	9	9	۴	9	9	9	9	9	9	9	8	9	9	9
	98.00	88.50	90.06	9 6 .55	70.67	52.34	8.00	21.34	11.85	68.00	37.33	46.33	37.34	24.00	21.67
SE (m)	3.606	4.750	116.01	0.961	2.520	1.512	0.17	0.758	0.564	2.561	1.985	2.215	1.213	89E.0	1.592
CD at 3%	10.293	13.556	42.554	1.903	4.992	2.993	0.33	1.501	1.117	5.073	3.932	4.387	2,406	0.729	3.153
L1= Akola	L2= Patanchem		Figures in parenthesis indicated arcsin values	esis indi	cated are	csin valı	S								

176

.

	1996
× = ***	ble : 8 Mean values of F_2 progenies for different characters in 10 × 10 diallel of sorghum, Akola and Patancheru,
	۲

Crosses Rg/ant ³ (millimbace) 1 1 1 2 0 1 </th <th>ל</th> <th></th> <th>5</th> <th>Graun handness</th> <th>ness</th> <th></th> <th>CICCUTICAL CONCURCIENTIN</th> <th></th> <th>a l</th> <th>Plant hereht (cm)</th> <th>Ē</th> <th>ວິ</th> <th>Cob length (cm)</th> <th>(B)</th>	ל		5	Graun handness	ness		CICCUTICAL CONCURCIENTIN		a l	Plant hereht (cm)	Ē	ວິ	Cob length (cm)	(B)
2 1 1.2 Pooled 1.1 1.2 1.3 <th1.3< th=""> <th1.3< th=""> <th1.3< th=""></th1.3<></th1.3<></th1.3<>	ž	Crosses		Kg/am	÷	5	nillimhose			,	•		þ	Ì
2 3 4 5 6 7 8 9 10 11 12 13 SYV-1201 K ARma - H8 581 537 513 734.50 386.50 346.50 346.50 346.50 346.5 346.50 346.5 <th></th> <th></th> <th>LI LI</th> <th>2</th> <th>Pooled</th> <th>3</th> <th>2</th> <th>Pooled</th> <th>Ξ</th> <th>3</th> <th>Pooled</th> <th>Ы</th> <th>1.2</th> <th>Pooled</th>			LI LI	2	Pooled	3	2	Pooled	Ξ	3	Pooled	Ы	1.2	Pooled
SYV-101x (AGB Old SM J74.50 36.57 5.67 J74.50 36.57 3.01 J74.50 36.50 36.57 13.17 2.26 37.85 2.17 2.26 37.85 2.57 2.51 7.74 2.50 2.67 4.15 5.56 6.45.00 45.30 2.50 3.57 2.51 7.75 2.50 <th2.50< th=""> 2.50 <th2.50< th=""> <th2< th=""><th>_</th><th>2</th><th>£</th><th>4</th><th>٣</th><th>0</th><th>1</th><th>~</th><th>0</th><th><u> </u>2</th><th>=</th><th>12</th><th>2</th><th>71</th></th2<></th2.50<></th2.50<>	_	2	£	4	٣	0	1	~	0	<u> </u> 2	=	12	2	71
SW-1201x KARm - 14B 6.85 3.57 5.21 74.30 43.00 39.75 180.15 24.87 21.89 21.75 22.00 SW-1201x SRT - 28B 6.67 4.16 5.41 04.30 56.70 31.53 23.15 23.00 24.30 25.30 38.9.3 21.75 23.00 24.30 58.9.3 23.16 23.30 23	_	SPV-1201 x ICSB - 101B	5.81	252	5.67	374.50	386.50	380.50	174.00	186.00	180.00	24.65	24.80	24.77
STV-1201X STT-248 667 416 541 44450 45400 2252 12353 23500 24433 2353 2350 2343 2333 </th <th>2</th> <th>SPV-1201 x AKma - 14 B</th> <th>6.85</th> <th>3.57</th> <th>5.21</th> <th>374.50</th> <th>413.00</th> <th>393.75</th> <th>189.15</th> <th>248.75</th> <th>218.95</th> <th>21.75</th> <th>22.60</th> <th>22.17</th>	2	SPV-1201 x AKma - 14 B	6.85	3.57	5.21	374.50	413.00	393.75	189.15	248.75	218.95	21.75	22.60	22.17
STV-1201x (12):451-15 6.97 4.15 5.56 6.45.0 685.00 889.0 755.00 242.20 24.31 23.35 STV-1201x (12): 223 3.77 3.77 3.77 3.77 3.20 3.715 3.23 3.15 3.16 4.16 3.16 0.40 0.75 2.16 3.16 3.16 3.16 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.15 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.	-	SPV-1201 x SRT - 26B	6.67	4.16	5.41	404.50	454.00	429.25	173.75	235.00	204.38	2 50	23.60	20 22
SW-1201x SW-204 577 375 4.51 310.50 4.40.00 377.25 200.75 252.00 256.38 21.13 23.35 SW-1201x SW-204 5.63 5.63 4.17 31.13 2.33.75 2.31.05 2.33.55 2.40.0 2.37.55 2.33.55 2.40.0 2.30.0 2.23.55 2.30.0 2.33.55 2.31.0 2.30.0 2.33.55 2.30.0 2.33.55 2.31.0 2.30.0 2.31.0 2.30.0 2.31.0 2.30.0 2.31.0 2.30.0 2.31.0 <th2.31.0< th=""> 2.31.0 2.32.10</th2.31.0<>	4	SPV-1201 x GJ-35-15-15	6.97	4.15	5.56	494.50	685.00	589.50	209.40	275.00	242.20	24.25	23.50	28
RW-LiDIA IX S-V1104 500 325 4.12 4.5150 4.815 512.00 196.65 189.52 7.365 7.365 7.365 7.365 7.365 7.365 7.365 7.365 7.365 7.365 7.365 7.375 7.317 7.310 7.317 7.317 7.310 7.317 7.310 7.317 7.310 7.317 7.310 7.317 7.310 7.317 7.310 7.310 7.310 7.310 7.310 7.310 7.310 7.310 7.310 7.310 7.310 <th>ŝ</th> <th>SPV-1201 x SPV - 946</th> <th>5.27</th> <th>3.75</th> <th>4.51</th> <th>310.50</th> <th>404.00</th> <th>357,25</th> <th>200.75</th> <th>252.00</th> <th>226.38</th> <th>23.15</th> <th>22.35</th> <th>27.15</th>	ŝ	SPV-1201 x SPV - 946	5.27	3.75	4.51	310.50	404.00	357,25	200.75	252.00	226.38	23.15	22.35	27.15
Structures Side	ò	SPV-1201 x SPV - 104	5.00	3.25	4.12	451.50	488.00	469.75	182.00	196.65	189.32	18.95	23.62	21.30
SEV-Linit IS- writ 7.17 3.41 5.29 228.00 225.00 256.40 230.00 28.27 25.27 25.20 25.21 25.27 25.20 25.21 25.27 25.20 25.21 25.25 25.20 25.21 25.25 25.20 25.21 25.25 25.20 25.10 25.25 25.20 25.10 25.25 25.20 25.10 25.25 25.20 25.20 25.20 25.10 25.25 25.20 25.20 25.20 25.20 25.10 25.25 25.20 <th>~</th> <th>SPV-1201 x 13 - 2284</th> <th>5.63</th> <th>3.66</th> <th>4.64</th> <th>355.50</th> <th>342.00</th> <th>348.75</th> <th>229.15</th> <th>233.75</th> <th>231.15</th> <th>23.25</th> <th>24.00</th> <th>23.63</th>	~	SPV-1201 x 13 - 2284	5.63	3.66	4.64	355.50	342.00	348.75	229.15	233.75	231.15	23.25	24.00	23.63
CSB-101B:rKS-9471 7.31 2.43 4.87 233.50 187.00 210.25 228.02 23.10 25.25 CSB-101B:rKm H.B 56 3.83 4.74 214.00 488.00 210.10 25.25 27.80 005 25.10 25.10 25.11 25.28.20 005 25.15 77.75 18.15 77.75 18.15 77.75 18.15 77.75 18.15 76.58 2005 25.10 25.10 25.10 25.10 25.10 25.15 2005 25.10 25.11 25.15 2005 25.11 25.28 2005 25.11 25.28 25.10 25.11 25.10	••	SPV-1201 x IS-6335	7.17	3.41	5.29	228.00	222.00	225.00	226.40	230.00	228.20	26.20	26.15	26.17
CCSB=-101B x Kma 14 B 566 383 4.4 21400 48800 35100 17102 3005 2775 CCSB=-101B x Kma 14 B 566 381.50 386.50 381.50 386.75 380.75 171.02 305.75 361.55 CCSB=-101B x G1-35-15-15 581 326.50 41000 389.75 11.70 211.32 205.88 200 56.15 CCSB=-101B x G1-35-15-15 581 365.50 479.00 377.55 11.40 233.15 271.77 266.3 CCSB=-101B x G1-35-15-16 577 3.57 366.7 470.00 386.25 11.40 288.75 11.30 213.15 200 25.90 25.90 25.90 26.15 26.15 26.15 26.15 26.15 26.15 26.15 26.15 26.16 26.15 26.16 26.15 26.16 26.17 26.16 26.15 26.15 26.16 26.15 26.16 26.15 26.16 26.15 26.16 26.15 26.16 26.15 26.16	•	SPV-1201 x IS - 9471	731	2.43	4.87	233.50	187.00	210.25	230.15	226.25	228.20	23.10	25.25	24.17
CSB=001B_x03-151 S81 3.23 4.23 81.50 382.51 11.50 341.12 206.38 2001 266.17 CSB=001B_x03-151-15 S01 3.95 4.33 366.50 41000 382.51 131.5 205.38 2590 26.11 CSB=0101B_x03-151-15 S17 3.50 3.93 365.50 41000 382.51 181.50 231.75 206.38 2590 25.61 CSB=0101B_x07V-160 S77 3.50 4.93 56.50 470.00 377.51 74.00 238.75 181.38 27.63 25.60 26.00 26.61 4.00 27.75 26.63 27.63 26.65 27.60 26.65 27.60 26.65 26.65 27.60 26.65 27.60 26.65 27.60 26.65 26.65 26.65 26.65 27.60 26.65 27.60 26.65 27.60 26.65 27.60 26.65 27.60 26.65 27.60 26.65 27.65 27.65 27.65 27.65 27.65 <th>2</th> <th>ICSB - 101B x AKma 14 B</th> <th>5.66</th> <th>3.83</th> <th>4.74</th> <th>214.00</th> <th>488.00</th> <th>351.00</th> <th>157.90</th> <th>184.15</th> <th>171.02</th> <th>30.05</th> <th>27.75</th> <th>28.90</th>	2	ICSB - 101B x AKma 14 B	5.66	3.83	4.74	214.00	488.00	351.00	157.90	184.15	171.02	30.05	27.75	28.90
CCSB 011B x grv 300 395 403 366.50 41000 388.25 181.50 233.15 207.07 29.60 26.35 ICSSB 101B x grv -96 577 151.40 238.15 207.07 29.60 25.90 ICSSB 101B x grv -96 577 153.80 36.55 100.00 36.55 130.00 24.93 25.90 25.90 15.90 15.90 25.90 25.90 15.90 15.90 25.90 26.05 15.90 26.05 15.90 26.05 15.90 26.05 15.90 26.05 15.90 26.05 26.05 15.90 26.05 15.90 26.05 15.90 26.05 15.90 26.05 15.90 26.05 26.05 26.05 26.05 26.05 26.05 26.05 26.05 26.05 26.05 26.05 26.05 26.05 26.05 26.05 27.05 26.05 27.05 26.05 27.05 26.05 27.05 26.05 27.05	=	ICSB - 101B x SRT - 26 B	5.81	3.23	4.52	381.50	398.00	389.75	171.50	241.25	206.38	29.00	26.15	27.58
CCSB-101Bx SEV - 96 579 437 508 276.00 377.5 114.00 287.5 216.38 29.30 25.90 CCSB-101Bx SEV - 104 577 3.57 5.68 26.00 490.50 366.21 170.50 165.51 183.38 29.30 25.90 25.90 25.90 25.90 25.90 25.90 25.90 25.00 26.01 <td< th=""><th>ដ</th><th>ICSB - 101B x 01-35-15-15</th><th>5.90</th><th>3.96</th><th>493</th><th>366.50</th><th>410.00</th><th>388.25</th><th>181.50</th><th>233.15</th><th>207.07</th><th>29,60</th><th>26.25</th><th>27.92</th></td<>	ដ	ICSB - 101B x 01-35-15-15	5.90	3.96	493	366.50	410.00	388.25	181.50	233.15	207.07	29,60	26.25	27.92
CSB-10lb:xf9-104 5/7 3/2 4.62 82.00 400.50 36.25 170.50 196.25 183.38 29.50 24.00 ICSB-10lb:xf9-C236 6.41 4.49 5.44 1900 39.31 21.81.75 20.00 29.33 21.81.75 20.00 29.63 26.15 71.45 26.15 71.45 26.15 71.45 26.15 71.45 26.15 71.45 7	ß	ICSB – 101B x 3PV – 946	5.79	437	5.08	276.50	479.00	377.75	174.00	258.75	216.38	29.30	25.90	27.60
CSB-101Bx15-CZ84 641 449 545 19600 390.50 23.32 218.75 2800 249.38 28.20 26.15 CCSB-101Bx15-C335 6.03 4.92 5.48 24000 27700 2659 18.35 25.55 219.57 28.40 26.65 CSB-101Bx15-941 4.90 4.22 4.56 25.59 18.60 220.73 15.57 26.50 27.45 77.45 CSB-101Bx15-941 4.90 4.22 4.56 211.00 438.50 34.75 174.50 240.00 207.25 76.50 25.25 AKma-14 Bx 207-346 5.33 2.62 4.48 34.00 380.50 38.77 174.50 25.00 192.00 192.00 23.75 25.89 25.25 AKma-14 Bx 207-346 5.33 2.62 4.48 34.00 380.50 48.00 18.75 25.89 23.25 AKma-14 Bx 207-946 5.33 2.62 4.48 34.00 380.50 48.00 18.75 25.89 23.25 AKma-14 Bx 207-946 5.33 2.61 4.42 34.05 48.00 18.07 135 25.90 132.07 25.35 AKma-14 Bx 207-104 4.62 2.89 3.75 44.2.50 533.50 48.00 16.275 21.000 18.68 24.80 21.30 AKma-14 Bx 267-234 51.2 301 4.47 72.55 23.00 18.07 10.50 25.35 AKma-14 Bx 15-234 51.2 301 4.47 72.50 235.50 18900 195.66 26.125 22.89 25.20 25.50 AKma-14 Bx 15-637 5.77 2.37 4.48 18.100 27.79 27.25 777.50 25.59 25.50	Z	IC3B - 101B x SPV - 104	5.72	3.52	4.62	382.00	490.50	436.25	170.50	196.25	183.38	29.50	24.00	25.25
CGSB-10UBx1S-633 603 492 548 24000 27100 268.50 183.50 255.50 29.57 28.40 26.65 CGSB-10UBx1S-941 6.00 4.21 4.56 255.50 186.00 20.75 19.57 267.50 211.51 71.45 77.25 Accmedia Parter-248 7.23 21.5 4.68 311.00 483.50 374.57 14.50 721.52 75.56 255.5 Accmedia Parter-248 7.23 2.63 7.24 75 11.45 77.50 721.55 75.50 255.5 Accmedia Parter-248 7.23 2.63 7.24 75 11.45 77.50 721.55 75.50 255.5 Accmedia Parter-248 7.23 2.64 7.23 2.64 7.23 2.65 7.24 7.25 2.55 7.55 7.55 7.55 7.55 7.55 7.55	<u>מ</u>	IC3B - 101B x 13 - 2284	6.41	4.49	5.45	196.00	390.50	293.25	218.75	280.00	249.38	28.20	26.15	27.17
CSB-101b:TS1-9471 4.90 4.22 4.55 255.50 186.00 220.75 267.50 216.50 27.45 27.25 AKma-HB X:RT-28B 7.23 2.13 4.68 31.40 4.86 31.40 4.86 31.55 36.80 35.25 AKma-HB X:RT-28B 7.23 2.13 4.68 31.400 4.89.50 36.175 19.50 22.405 23.52 AKma-HB X:RT-28B 7.23 2.13 4.82 34.00 49.85 34.75 15.65 2.175 19.20 28.70 24.25 AKma-HB X:RY-196 5.32 2.71 4.82 340.50 48.100 410.75 189.00 273.35 21.35 </th <th>2</th> <td>ICSB - 101B x 13 - 6335</td> <td>6.03</td> <td>4.92</td> <td>5.48</td> <td>240.00</td> <td>297.00</td> <td>268.50</td> <td>183.50</td> <td>255.65</td> <td>219.57</td> <td>28.40</td> <td>26.65</td> <td>27.52</td>	2	ICSB - 101B x 13 - 6335	6.03	4.92	5.48	240.00	297.00	268.50	183.50	255.65	219.57	28.40	26.65	27.52
Attan-14 Rx G1:3:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1	1	ICSB-101B x IS-9471	4.90	4.22	4.56	255.50	186.00	220.75	195.75	267.50	231.63	27.45	27.25	27.35
Mam-14 BX 03-51-515 53 262 448 33400 390.50 361.55 166.50 2170 192.00 28.70 23.25 Mam-14 BX 29V - 966 593 2.71 482 340.50 481.00 10.75 189.00 23.35 05 13.32 55.90 23.25 Mam-14 BX 29V - 164 467 23.90 35.70 481.00 18.77 210.00 186.86 24.80 21.50 Mam-14 BX 29V - 164 467 23.50 33.00 287.75 172.00 283.75 227.88 25.30 23.50 Mam-14 BX 15 - 633 588 3.80 484 17.25 20.25.50 18900 16.66 261.57 227.88 25.30 25.50 Mam-14 BX 15 - 633 57 448 B1.10 277.90 229.55 177.50 228.39 26.50 25.52 Mam-14 BX 15 - 633 57 448 B1.10 277.90 229.55 177.50 228.59 25.50	2	AKme-M B x SRT - 26B	7.23	2.13	4.68	311.00	438.50	374.75	174.50	240.00	207.25	26.80	25.25	26.02
Маш-14 В х 29V - 946 6 53 2.71 4 82 340.50 481.00 410.75 189.00 233.50 213.25 25.90 23.25 Маш-14 В х 29V - 104 4 62 2.89 3.75 4.2.30 53.30 488.00 162.75 210.00 186.86 24.80 21.50 Маш-14 В х 18 - 2244 512 3.01 4.07 255.50 230.00 287.75 17.20 283.75 27.88 25.30 23.50 Маш-14 В х 18 - 6335 588 3.80 4.41 172.50 235.50 189.00 196.60 26.12 22.89 25.20 Маш-14 В х 18 - 6373 5.88 3.80 4.44 172.50 235.50 189.00 196.60 26.12 22.48 27.40 25.25 Маш-14 В х 18 - 572 3.25 4.48 181.00 277.50 229.25 172.25 277.50 224.88 27.40 25.00	ച	AKma-14 B x 0J-35-15-15	6.35	2.62	4.48	334.00	389.50	361.75	166.50	217.50	192.00	28.70	24.25	26.48
Xama-H Bx 1879 V - 104 4 4 62 2 89 3.15 442.50 533.50 488.00 162.75 210.00 186.86 24.80 21.50 AKama-H Bx 18 - 2234 5.12 3.01 4.07 25.50 230.00 237.75 172.00 285.75 22.89 25.20 25.30 AKama-H Bx 15 - 6335 588 3.80 4.41 172.50 235.50 189.00 196.60 56.15 22.839 25.90 25.25 AKama-H Bx 15 - 971 5.72 3.25 4.48 181.00 277.50 279.25 172.25 777.50 23.48 77.40 25.50	8	AKme-14 B x SPV - 946	6.93	2.71	4.82	340.50	481.00	410.75	189.00	233.50	213.25	25.90	23.25	24.58
Mana-1815-224 512 301 407 25550 32000 28775 17200 28775 27788 2530 23.50 Mana-18155-2335 588 380 484 17250 20550 18900 19660 2612 22839 2530 2525 Mana-181215-947 572 3253 488 18100 27750 22925 17225 27750 22488 7740 2550	ក	AKme-14 B x SPV - 104	4.62	2.89	3.75	442.50	533.50	488.00	162.75	210.00	186.86	24.80	21.50	23.15
АКШР-14 В x 15 – 6233 5 88 3.80 4 84 172.50 205.50 189.00 196.60 261.25 228.93 26.50 25.25 АКШР-14 В x 15 – 9471 5.72 3.25 4.48 181.00 277.50 229.25 172.25 277.50 224.88 27.40 25.50	ង	AKma-14 B x IS - 2284	5.12	3.01	4.07	255.50	320.00	287.75	172.00	283.75	227.88	25.20	23.50	24.35
AXmm-14 B x IS - 9471 5.72 3.25 4.48 181.00 277.50 229.25 172.25 277.50 224.88 27.40 25.50	ព	AKme-14 B x IS - 6335	5.88	3.80	4.84	172.50	205.50	189.00	196.60	261.25	228.93	26.50	25.25	25.88
	2	AKme-14 B x IS - 9471	5.72	3.25	4.48	181.00	277.50	229.25	172.25	277.50	224.88	27.40	25.50	26.45

:
B
8
Õ.
-
œ
<u> </u>
ē.
<u>۾</u>
•

-	2	٣	4	\$	9	1	8	6	9	=	12	5	14
ม	SRT - 26B x GJ-35-15-15	4.05	4.01	4.03	310.50	405.00	357.75	181.50	191.25	186.38	26.50	24.25	25.38
8	1	4.05	3.92	3.97	400.00	495.00	447.50	190.00	265.40	227.70	23.20	23.80	23.50
5	SRT - 26B x SPV - 104	4.17	2.44	3.31	553.00	418.00	485.50	229.40	217.50	223.45	22.80	22.75	22.77
8	SRT – 26B x IS – 2284	4.55	2.55	3.55	308.00	425.00	366.50	218.75	302.50	260.63	21.65	21.50	21.58
8	SRT - 26B x IS - 6335	3.25	3.27	3.26	357.00	227.00	292.00	250.00	267.50	258.75	24.85	28.75	26.80
ສ	SRT - 26B x IS - 9471	3.73	3.39	3.56	204.00	158.00	181.00	260.00	255.40	257.70	27.75	27.25	27.50
Ħ	GJ-35-15-15 x SPV - 946	4.73	4.79	4.76	523.00	517.00	520.00	180.05	269.55	224.80	27.00	25.15	26.08
R	GJ-35-15-15 x SPV 104	4.88	3.77	4.32	538.00	583.50	561.00	172.50	245.00	208.57	25.60	22.00	23.80
R	GJ-35-15-15 x IS - 2284	4.92	4.90	4.91	263.00	290.00	276.50	204.15	312.50	258.33	28.15	29.50	28.83
¥	GJ-35-15-15 x IS - 6335	4.16	4.12	4.14	199.50	378.00	288.75	173.00	282.50	227.75	28.95	24.90	26.92
я	GJ-35-15-15 x IS - 9471	4.01	3.54	3.79	249.00	260.00	254.50	194.75	291.75	243.25	27.85	28.75	28.30
ጽ	SPV - 946 x SPV - 104	4.93	4.00	4.47	496.50	493.50	495.00	185.50	272.50	229.00	22.50	20.00	21.25
Б	SPV - 946 x IS - 2284	5.61	6.26	5.93	341.00	341.50	341.25	190.50	274.60	232.55	23.20	24.90	24.05
R	SPV 946 x IS 6335	5.11	5.08	5.09	283.50	250.00	266.75	209.00	318.25	263.67	26.90	29.85	24.38
ສ	SPV - 946 x IS 9471	5.70	4.39	5.05	190.50	227.00	208.75	198.90	283.00	240.95	25.85	26.00	25.92
\$	SPV - 104 x IS 2284	433	2.59	3.46	345.00	408.50	376.75	189.75	301.25	245.50	21.85	22.50	22.00
41	SPV 104 x IS 6335	4.49	5.TJ	4.13	338.50	510.00	424.75	191.25	233.75	212.50	25.55	23.75	24.65
\$	SPV - 104 x IS 9471	4.60	3.64	4.12 .	281.50	298.00	289.75	183.35	242.50	212.93	23.80	25.50	24.65
\$	IS 2284 x IS -6335	4.87	3.13	3.99	172.00	317.50	244.75	204.15	269.00	236.57	24.00	25.00	24.50
4	IS 2284 x IS - 9471	4.22	3.24	3.73	170.00	169.00	169.50	196.25	296.25	246.25	24.80	29.50	27.15
\$	IS 6335 x IS 9471	5.33	2.87	4.08	155.00	176.00	165.50	212.75	258.35	235.55	25.15	29.85	27.50
	F ₂ progenies range	3.25	2.13	3.26	155.00	158.00	165.50	157.90	184.15	171.02	18.95	20.00	21.25
		5	9	9	5	9	to	9	2	3	5	9	9
		7.31	6.26	5.93	553.00	685.00	589.50	230.15	318.25	263.67	30.05	29.85	28.90
	SE (m)	0.252	0.595	1.149	18.258	26.304	71.160	13.390	16.274	32.926	1.362	1.417	1.217
	CD at 5%	0.721	1.699	3.281	52.107	75.069	208.79	38.214	-16.444	93.967	3.888	4.0.46	3.474
	P = Pooled LI = /	ukola		1,2 = Pal	J = Palancheru								

111 – 8

ola and Patancheru, 1996	
лп, Ak	
el of sorghi	
10 diallel of	
×	
ferent characters in 10	
r dif	
progenies fo	
s of F.	
Mean value	
Table : 9	

Line Looled Line Looled Line Line <thline< th=""> <thline< th=""> Line <</thline<></thline<>	2		Glum	Glume covering (%)	B (%)		TGMR			Germination (%)	
SYV-100 x1CSB - 101B 47.50 5000 48.75 205 315 2.00 80.46(547) 66.45(546) SYV-100 x1CSB - 101B 47.50 5000 5000 5000 5000 500	ž	COMPO	Ы	1 2	Pooled	3	[]	Pooled	E	12	Pooled
SW-J3D1x AKme – M8 5000 <th></th> <th>SPV-1201 x ICSB - 101B</th> <th>47.50</th> <th>50.00</th> <th>48.75</th> <th>2.05</th> <th>3.15</th> <th>2.60</th> <th>80.40(63.77)</th> <th>66.45(54.61)</th> <th>73.43(59.19)</th>		SPV-1201 x ICSB - 101B	47.50	50.00	48.75	2.05	3.15	2.60	80.40(63.77)	66.45(54.61)	73.43(59.19)
SW-JBU:RST-268 4500 500 475 240 315 278 81175(64.94) 64.10(56.23) 55 SW-JBU:RST-264 45.00 500 47.2 240 315 277 80.01(53.23) 56 564.10(56.23) 56 515(64.55) 56 515(65.5) 57 59.12(50.5) 56 515(65.7) 56 56.15(65.7) 56 56.15(65.7) 56 56.15(65.7) 56 56.15(61.7) 56 56 56.15(61.7) 56	7	SPV-1201 x AKms - 14 B	S0.05	50.00	50.00	2.55	3.85	- 3.20	70.50(57.41)	43.00(40.77)	56.75(49.09)
SW-JDIX RGI-51-515 4.250 5000 6.25 2.50 3.45 2.97 80.06(539) 59.15(505) SW-JDIX RW- 946 37.0 50.00 4.75 2.60 3.47 3.97 7.43(599) 56.15(4677) SW-JDIX RW- 101 37.0 7.00 4.70 2.60 3.40 3.07 7.43(599) 56.15(4677) SW-JDIX RS- 2284 50.00 4.70 8.77 2.20 2.20 7.39(6077) 56.5(617) SW-JDIX IS -2284 50.00 47.00 2.00 2.00 4.70 8.75 2.20 2.20 7.39(5936) 56.16(677) SW-JDIX IS -571 50.00 47.00 2.10 2.20 2.20 7.30(5739) 56.16(677) SW-JDIX IS -571 50.00 47.00 2.10 2.20 2.20 2.20 46.43.5(61.17) SW-JDIX IS -571 50.00 50.00 50.00 2.00 2.00 2.00 47.00 2.00 4.70 4.70 4.70 4.70 4.70 4.70 4.70	m	SPV-1201 x SRT - 26B	45.00	50.00	47.50	2.40	3.15	2.78	81.75(64.94)	64.10(56.23)	79.93(60.58)
SW-1201 x SW-246 37.50 50.00 43.75 24.0 35.5 2.97 74.35(59.91) 56.15(48.55) SW-1201 x SW-2101 x SW-21	4	SPV-1201 x GJ-35-15-15	42.50	50.00	46.25	2.50	3.45	2.97	80.00(63.92)	59.15(50.51)	69.58(57.23)
SYV-1201 x SV - 104 45.00 37.50 41.25 26.0 34.0 30.0 74.35(59.84) 50.90(45.26) SYV-1201 x S - 2284 90.00 40.00 37.00 41.00 22.00 7.35(59.84) 50.90(45.26) SYV-1201 x S - 2784 90.00 40.00 37.00 42.00 22.00 23.00 7.35(50.17) 7.55(50.17) SYV-1201 x S - 2471 80.00 40.00 7.00 48.00 7.10 2.30 7.35(50.10) 85.90(4.14) 6.56(51.17) SYV-1201 x S - 9471 80.00 90.00 50.00 50.00 20.00 20.00 20.00 20.00 20.00 20.00 21.00 28.90(4.14) 6.775(53.4) 6.73(53.4) 6.56(51.17) 5.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.775(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(53.4) 6.73(63.5) 6.73(63.53) 6.73(53.5) 6.73(53.5)	ŝ	SPV-1201 x SPV - 946	37.50	50.00	43.75	2.40	3.55	2.97	74.75(59.91)	56.15(48.55)	65.45(54.23)
SW-1201 x1S-2234 S000 5400 5200 240 223 7385(9326) 76.15(60.7) SW-1201 x1S-971 3000 4700 877 220 220 75.95(60.7) 6.15(60.7) SW-1201 x1S-971 3000 4700 877 220 220 75.95(60.7) 6.56(61.1) SW-1201 x1S-471 300 400 700 200	9	SPV-1201 x SPV - 104	45.00	37.50	41.25	2.60	3.40	3.00	74.35(59.84)	50.50(45.28)	62.43(52.56)
SW-1201 x18-6313 S000 4700 4875 220 220 7596(8173) 566(611) CSB-1012 x877-981 S000 4000 7700 210 220 7596(6120) 4666(11) CSB-1012 x877-981 S000 S000 2000 200	1	SPV-1201 x IS - 2284	<u> 50.00</u>	54.00	52.00	2.20	2.45	2.33	73.85(59.26)	76.15(60.77)	75.00(60.01)
SPV:101.XIS -9471 X00 440 770 210 730 666100 68.50(441) ICSB-1018.x ATT-8.8 X00 200	80	SPV-1201 x IS-6335	<u> 50.00</u>	47.00	48.75	2.20	2.20	2.20	75.95(80.73)	76.65(61.15)	76.30(60.94)
CGSB=1018: x Afma 14 X 000 X 000 <thx 000<="" th=""> X 000 X 000<th>•</th><th>SPV-1201 x IS - 9471</th><th><u> 50.00</u></th><th>44.00</th><th>47.00</th><th>2.10</th><th>2.30</th><th>2.20</th><th>76.50(61.00)</th><th>48.50(44.14)</th><th>62.50(52.57)</th></thx>	•	SPV-1201 x IS - 9471	<u> 50.00</u>	44.00	47.00	2.10	2.30	2.20	76.50(61.00)	48.50(44.14)	62.50(52.57)
CGSB DIBX x877 X6B X000	2	ICSB - 101B x AKms 14 B	50.00	50.00	50.00	2.70	3.25	2.97	71.40(57.89)	50.40(45.24)	60.90(51.56)
CCSB - 1018 x G1.3454-151 5000	Ξ	ICSB - 101B x SRT - 26 B	<u>50.00</u>	50.00	50.00	2.25	3.40	2.83	79.60(63.20)	45.40(43.56)	62.50(53.38)
CCSB-1018.x STV-104 5000 </th <th>2</th> <th>ICSB - 101B x GJ-35-15-15</th> <th>50.00</th> <th>50.00</th> <th>50.00</th> <th>2.35</th> <th>3.05</th> <th>2.70</th> <th>79.50(63.14)</th> <th>67.75(55.41)</th> <th>73.63(59.28)</th>	2	ICSB - 101B x GJ-35-15-15	50.00	50.00	50.00	2.35	3.05	2.70	79.50(63.14)	67.75(55.41)	73.63(59.28)
CGSB DIBX serv 104 500 500 500 200	1	ICSB - 101B x SPV - 946	50.00	50.00	50.00	2.45	2.95	2.70	70.50(57.28)	51.00(45.61)	60.75(51.45)
ICSB-1011x15 - 2284 900 41,20 50.2 235 245 81.00(64.44) 65.2(53.90) ICSB-1011x15 - 671 84.00 54.00 24.00 24.00 24.00 25.0 25.30 ICSB-1011x15 - 671 84.00 54.00 24.00 24.00 24.00 25.0 25.64 55.06(63.49) 65.26(63.30) AGm=+015 X61-3-61 80.00 50.00 50.00 50.00 50.00 50.00 50.05 50.65.39) 69.56(53.9) 97.5(17.65) AGm=+018 X61-3-51-51 50.00 50.00 50.00 50.00 20.00 20.00 20.00 20.00 21.00 21.01 21.06(7.71) 9.75(17.65) 9.75(17.65) AGm=+018 X61-35451-36 50.00 50.00 50.00 50.00 25.00 25.00 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65) 9.75(17.65)	4	ICSB - 101B x SPV - 104	<u> 20</u> .00	50.00	50.00	2.25	3.55	2.90	76.95(61.31)	21.50(26.48)	49.23(43.90)
CCBN-1011x15 – W11 Stot0 Stot0 <th>2</th> <td>ICSB - 101B x IS - 2284</td> <td>59.00</td> <td>41.50</td> <td>50.25</td> <td>2.35</td> <td>2.55</td> <td>2.45</td> <td>81.50(64.44)</td> <td>65.25(53.90)</td> <td>73.38(59.19)</td>	2	ICSB - 101B x IS - 2284	59.00	41.50	50.25	2.35	2.55	2.45	81.50(64.44)	65.25(53.90)	73.38(59.19)
ICCBI-1018.x15 -1011 38.00 50.00 54.00 22.0 30.5 26.5 82.30(65.39) 69.50(56.48) Alom-14 Bx STT - 28B 50.00	2	ICSB - 101B x IS - 6335	54.00	54.00	54.00	2.40	2.70	2.55	81.40(64.46)	75.50(60.36)	78.45(62.41)
Mome-HB xRT<-26B	11	IC3B - 101B x IS - 9471	58.00	50.00	54.00	2.20	3.05	2.63	82.50(65.39)	69.50(56.48)	76.00(60.94)
Mom-MB xc13-15-15 \$0,00 \$0,00 \$100 \$270 \$210 \$290 \$205(5671) \$000(5116) \$100	18	AKme-14 B x SRT - 26B	<u> 50</u> .00	50.00	20 .00	2.50	4.00	3.25	71.20(57.70)	9.75(17.65)	40.48(37.67)
Mumu-H Bx SPV - №6 S0.00 88.50 54.25 3.55 3.05 6.580(54.26) 24.50(29.57) AKmu-H Bx SPV - № S0.00 50.00 50.00 50.00 50.00 30.00 50.00 30.00 50.00 30.00 50.00 30.00 30.00 50.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 40.00 30.00 40.00 30.00 40.00 30.00 40.00 30.00 40.00	61	AKm=-14 B x QJ-35-15-15	<u> 20</u> .00	50.00	50.00	2.70	3.10	2.90	69.20(56.71)	60.00(51.16)	64.90(53.93)
MXmm-H Bx SFV - 104 S0.00 S0.00 <th>20</th> <th>AKmi-14 B x SPV - 946</th> <th><u>50.00</u></th> <th>58.50</th> <th>54.25</th> <th>2.55</th> <th>3.55</th> <th>3.05</th> <th>65.80(54.26)</th> <th>24.50(29.57)</th> <th>45.15(41.91)</th>	20	AKmi-14 B x SPV - 946	<u>50.00</u>	58.50	54.25	2.55	3.55	3.05	65.80(54.26)	24.50(29.57)	45.15(41.91)
Аблан-ИВХ15-5234 47.30 50.00 48.75 215 2.65 2.40 80.86(64.05) 52.00(46.17) 1 Аблан-ИВХ15-6335 41.00 50.00 45.55 2.15 2.40 2.28 84.15(66.55) 68.75(56.36) 54.75(56.36) 54.75(56.36) 54.75(56.36) 54.75(56.37) 54.75(56.75) 54.75(56.75) 54.75(56.75) 54.75(56.75) 54.75(56.75) 54.75(71	AKmi-14 B x SPV - 104	<u>50.00</u>	<u> 8</u> 0.00	50.00	3.05	3.50	3.28	53.00(46.53)	23.00(28.39)	38.00(37.56)
АКлю-И В x IS - 6335 41.00 50.00 45.50 2.15 2.40 2.28 84.15(66.55) 68.73(56.38) 7 АКлю-И В x IS - 9471 37.50 50.00 43.75 1.75 2.65 2.20 81.10(64.34) 51.25(45.78) (ដ	AKma-14 B x IS - 2284	47.50	<u>50.00</u>	48.75	2.15	2.65	2.40	80.85(64.05)	52.00(46.17)	66.43(55.11)
AKma-14 B x IS - 9471 37.50 50.00 43.75 1.75 2.65 2.20 81.10(64.34) 51.25(45.78) (ង	AKme-14 B x IS - 6335	41.00	<u> 50</u> .00	45.50	2.15	2.40	2.28	84.15(66.55)	68.75(56.38)	76.45(61.46)
	24	AKma-14 B x IS - 9471	37.50	50.00	43.75	1.75	2.65	2.20	81.10(64.34)	51.25(45.78)	66.18(55.06)

Contd....

:
ġ
Ĕ
Ŭ
ø
<u> </u>
ġ,

	2	۳	4	۲	9	7	8	6	01	=
3	SRT - 26B x GJ-35-15-15	50.00	50.00	50.00	2.05	3.40	2.72	75.00(65.05)	51.50(45.86)	63.25(55.46)
8	SRT – 26B x SPV – 946	50.00	8.8	<u> 50.00</u>	2.60	2.80	2.70	77.65(54.16)	64.55(53.52)	71.10(53.84)
	SRT – 26B x SPV – 104	54.00	50.00	52.00	2.90	3.25	3.08	63.50(59.56)	23.75(29.11)	43.63(44.34)
8	SRT – 26B x IS – 2284	47.50	50.00	48.75	2.80	2.65	2.72	79.15(46.29)	74.25(58.15)	76.70(52.22
	SRT – 26B × IS – 6335	50.00	<u> 50.00</u>	50.00	2.20	2.30	2.25	73.40(64.25)	80.25(66.64)	76.83(63.94)
8	SRT – 26B x IS – 9471	50.00	50.00	50.00	2.65	2.50	2.58	76.70(60.07)	60.55(51.15)	68.62(55.61
	GJ-35-15-15 x SPV - 946	52.50	50.00	51.25	2.45	3.10	2.78	69.80(57.55)	58.85(50.19)	64.33(53,87
	GJ-35-15-15 x SPV 104	50.00	50.00	50.00	2.80	3.65	3.72	66.00(54.80)	25.50(30.31)	45.75(42.55)
æ	GJ-35-15-15 x IS - 2284	61.50	62.50	62.00	2.10	2.35	2.17	81.75(64.76)	81.50(64.57)	81.62(64.67
	GJ-35-15-15 x IS - 6335	56.00	50.00	52.00	2.15	2.40	2.28	80.45(63.88)	69.00(56.19)	74. 73(60.03
ž	GJ-35-15-15 x IS - 9471	50.00	47.50	48.75	1.90	2.50	2.20	67.30(55.88)	61.50(51.68)	64.40(53.76)
	SPV - 946 x SPV - 104	56.50	50.00	53.25	2.50	3.25	2.88	69.20(57.13)	49,00(44,40)	59.10(50.77
	SPV - 946 x IS - 2284	60.00	60.50	60.25	2.30	2.15	2.22	74.80(60.40)	67.10(55.08)	70.95(57.74)
	SPV - 946 x IS - 6335	66.50	75.00	70.75	2.40	2.25	2.33	86.15(68.21)	83.15(65.79)	84.56(67.00)
-	SPV - 946 x IS 9471	60.00	50.00	55.10	2.00	2.20	2.10	78.60(62.93)	59.00(50.32)	68.80(56.63)
욯	SPV - 104 x IS 2284	59.00	69.00	64.00	2.40	3.25	2.83	68.35(55.93)	62.75(52.80)	65.50(54.36)
4	SPV - 104 x IS 6335	56.50	54.00	55.25	2.75	2.15	2.45	65.35(54.36)	54.00(47.53)	59.68(50.95)
4	SPV - 104 x IS 9471	50.00	44.00	47.00	2.30	2.65	2.47	62.55(52.58)	53.75(47.15)	58.15(49.87)
ę	IS 2284 x IS -6335	54.00	50.00	52.00	1.75	2.00	1.88	87.90(69.74)	63.50(53.81)	75.70(61.77)
44	IS 2284 x IS - 9471	50.00	50.00	50.00	1.70	2.00	1.85	85.90(68.10)	83.50(66.03)	84.70(67.07)
\$	IS 6335 × IS 9471	54.00	66.50	60.25	1.90	2.00	1.95	86.40(68.45)	77.15(63.23)	81.75(65.84)
	F ₂ progenies range	37.50	37.50	41.25	1.70	2.00	1.85	53.00	9.75	38.00
		9	ţ	9	9	0	đ	9	9	Q
		66.50	75.00	70.75	3.05	4.00	3.28	87.90	83.50	84.70
	SE (m)	0.173	0.199	3.393	0.172	0.317	0.414	7.161	8.586	13.424
	CD at 5% 0.493 P=Pooled L1 = Akola L2 Patancheru	0.493 Patancher	0.568 1	9.501	0.493	0.905	1.184	20.436	24.505	38.31
	Figures in parenthesis indicate arcsin values	ate arcsin	values.							

111 - 10

	Crosses	1				puttad osent	tentra .		C. AUNAIO	9		Other hung	<u>0</u>
g	CONTROL OF	Ξ	5	Pooled	Ы	12	Pooled	L1	17	Pooled	=	3	Pooled
_		m	4	٢	9	1	8	٥	9	=	12	<u>د</u>	4
	SPV-1201 x ICSB - 101B	32.22	37.86	35.64	1.50	3.34	2.42	46.52	34.06	40.29	17.40	14.80	16.10
	SPV-1201 x AKm8 - 14 B	31.82	44.82	38.32	1.76	4.34	3.05	45.36	27.66	36.51	17.50	10.34	13.92
_	SPV-1201 x SRT - 26B	32.60	46.16	36.98	2.15	6.16	4.16	47.10	38.66	39.88	20.80	13.48	17 14
_	SPV-1201 x GJ-35-15-15	21.40	48.50	34.95	1.56	7.50	4.53	61.02	32.26	46.64	16.60	8.26	12.43
~	SPV-1201 x SPV - 946	22.72	50.20	36.46	1.35	7.10	4.23	47.20	31.60	39.40	18.56	11.10	14.83
	SPV-1201 x SPV - 104	28.20	58.34	43.27	2.50	2.35	2.43	48.26	28.00	38.13	18.46	9.66	14.06
~	SPV-1201 x IS - 2284	28.32	31.00	29.66	1.56	3.22	2.39	46.66	36.52	41.59	17.46	20.52	18.99
~	SPV-1201 x IS-6335	30.56	39.50	35.03	3.36	7.00	5.18	36.59	38.50	37.53	17.02	11.52	14.27
_	SPV-1201 x IS - 9471	31.70	41.50	31.60	1.56	6.50	4.03	42.00	41.00	41.50	16.70	12.50	14.60
2	ICSB - 101B x AKms 14 B	21.58	46.50	34.04	1.60	4.68	3.14	64.26	39.00	51.33	12.60	11.18	11.89
=	ICSB - 101B x SRT - 26 B	19.00	58.84	38.92	3.40	4.84	4.12	61.80	27.68	44.74	27.00	8.16	17.58
5	ICSB - 101B x GJ-35-15-15	29.40	38.26	33.83	1.60	3.26	2.43	51.20	44.76	47.98	21.40	14.26	17.83
<u>n</u>	ICSB - 101B x SPV - 946	29.80	50.26	40.03	2.76	5.85	4.30	54.20	31.00	42.60	13.20	14.76	13.98
4	ICSB - 101B x SPV - 104	31.30	57.50	44.40	4.20	11.00	7.60	45.60	29.00	37.30	18.70	6.50	12.60
2	ICSB - 101B x IS - 2284	35.10	50.86	42.98	3.25	3.70	3.53	41.82	31.76	36.79	19.50	13.10	16.30
9	ICSB - 101B x IS - 6335	18.50	45.76	32.13	1.66	2.37	2.02	59.30	23.26	41.28	15.76	16.02	15.89
1	ICSB - 101B x IS - 9471	27.36	42.00	34.68	4.26	5.82	5.04	45.82	25.50	35.51	14.40	14.32	14.36
8	AKma-14 B x SRT - 26B	39.40	51.00	40.20	2.40	6.00	4.20	56.60	38.00	47.30	11.40	5.50	8.45
61	AKma-14 B x GJ-35-15-15	26.00	56.34	41.17	1.56	1.50	1.53	61.20	35.00	48.35	12.00	6.00	9.00
ឧ	AKme-14 B x SPV - 946	23.40	50.00	36.70	1.35	7.50	4.43	61.80	43.50	52.65	13.80	7.00	10.40
17	AKmu-14 B x SPV - 104	41.06	67.50	54.25	2.15	5.50	3.83	45.00	20.00	32.50	12.82	7.00	16.6
ដ	AKme-14 B x IS - 2284	29.06	53.50	41.28	1.56	6.50	4.03	49.72	24.50	32.11	21.30	10.50	15.90
ឧ	AKme-14 B x IS - 6335	27.82	41.00	34.41	135	7.50	4.43	42.34	26.00	34.17	26.76	7.50	16.83
2	AKme-14 B x IS - 9471	29.30	38.00	32.15	1.35	3.00	2.18	39.30	34.50	36.90	18.40	19.50	18.95

Table : 10 Mean infection % of F2 progenies for pathological characters in 10×10 diallel of sorghum, Akola and Patanchern, 1996

11 - III

នងកន									2	;	1	2	4
228	SKT - 26B x GJ-35-15-15	33.40	50.50	41.95	3.60	4.35	3.98	42.60	31.00	36.80	16.00	15.50	15.75
5 8	SRT – 26B x SPV – 946	18.70	40.76	29.76	1.10	6.30	3.70	63.30	38.66	50.98	18.10	6.06	17.08
ģ	SRT – 26B x SPV – 104	24.00	52.50	38.25	1.75	3.50	2.63	58.60	37.50	48.05	16.60	8.00	12.30
3	÷.	25.62	37.50	31.56	0.96	6.50	3.73	47.36	35.00	41.18	19.76	9.00	14.38
ຄ	SRT – 26B x IS – 6335	22.06	50.02	36.04	2.56	4.26	3.41	59.34	27.76	43.50	15.74	14.26	15.0
R	SRT – 26B x IS – 9471	34.00	47.82	40.91	3.15	4.34	3.75	43.20	35.82	39.51	17.80	7.68	12.74
E	GJ-35-15-15 x SPV - 946	25.70	45.60	35.65	0.77	2.52	1.64	48.50	34.50	41.50	19.08	14.16	16.62
R	GJ-35-15-15 x SPV 104	30.86	67.00	48.93	2.86	5.00	3.93	66.36	24.50	45.33	15.06	3.00	9.03
R	GJ-35-15-15 x [S – 2284	33.06	45.00	39.03	4.40	8.00	6.23	47.92	28.00	37.96	9.34	16.00	12.67
7	GJ-35-15-15 x IS - 6335	30.26	48.16	39.21	2.20	5.00	3.60	37.06	31.50	34.28	14.06	11.84	12.95
Я	GJ-35-15-15 x IS - 9471	38.92	38.26	38.59	3.58	5.26	4.42	37.90	30.26	34.08	14.26	11.26	12.76
ጽ	SPV - 946 x SPV - 104	27.00	60.50	43.75	2.20	6.50	4.35	S4.60	19.00	36.80	13.20	7.50	10.35
ы		38.00	47.26	42.63	4.60	4.50	4.55	38.80	36.66	37.73	23.20	12.34	17.77
R	SPV - 946 x IS - 6335	20.42	33.34	26.88	3.42	3.00	3.21	42.42	27.16	32.29	18.02	21.68	19.85
ଛ	SPV - 946 x IS 9471	36.26	42.00	39.13	3.6	5.60	4.68	30.26	33.40	31.83	11.06	13.40	12.23
\$	SPV - 104 x IS 2284	33.82	53.50	43.66	2.56	6.16	4.36	47.02	29.16	38.09	10.06	11.50	10.78
4	SPV - 104 x IS 6335	44.06	47.50	45.18	4.96	8.00	6.48	34.86	33.50	34.18	12.76	11.50	12.13
4	SPV - 104 x IS 9471	52.52	53.00	52.76	5.92	7.50	6.71	28.04	26.50	27.27	10.72	12.50	11.61
\$	IS 2284 x IS -6335	33.66	59.00	46.33	6.04	8.00	7.02	22.20	20.00	21.10	12.12	12.35	12.74
4	IS 2284 x IS - 9471	34.42	48.50	41.46	3.74	4.50	4.12	20.92	18.50	19.71	12.00	14.50	13.25
\$2	IS 6335 x IS 9471	38.92	25.34	32.13	5.84	5.34	5.59	19.26	25.32	22.29	10.60	12.66	11.63
	F ₂ progenies range	18.50	25.34	26.28	0.77	1.50	1.53	16.26	18.50	19.71	9.34	3.00	8.45
		9	9	2	\$	2	2	9	\$	9	2		5
		52.52	67.50	54.25	6.04	11.00	7.60	66.36	44.76	52.65	27.00	20.52	19.85
	SE (m)	1.788	2.097	2.249	0.88	1.154	1.606	2.670	1.253	2.095	0.648	0.384	0.549
	CD at 5%		1.541	~	1.75	2.861	3.181	5.298	2.482	4.150	1.283	0.760	1.087

III – 12

Table 10 Condt.....

Table : 11 Mean value of parents and F, crosses for 0 modernment values. Tanuits (CF %) Flavon + 406 A A a contract of a contract value and a contract of a contract o				10X and a startare in 10X	10 diallel of sorghu	111° 4 111
Closes Fortune S S 2 1 2 1 5 2 1 1 7 5 5 1 1 7 1 1 60(17) 0 1 1 7 1 7 1 60(17) 0 1 7 1 1 60(13) 1 0<	-		crosses for bloch	CITICAL GALACTORY (%)	Tannins (CE %)	Ş,
2 3 1 0		Parents/Crosses	Protein (%)	Souther stores	~	0
Table 50 1.20(1.4) 0.000(0.7) 11.76(2.5) 1.20(1.4) 0.000(0.7) 11.76(2.5) 1.20(1.4) 0.000(0.7) 12.41(2.3) 1.40(1.3) 0.000(0.7) 12.41(2.3) 1.40(1.4) 0.000(0.7) 12.41(2.3) 1.40(1.4) 0.000(0.7) 11.76(2.3) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) 11.11(1.4) 1.40(1.4) 0.000(0.7) <t< td=""><td></td><td>2</td><td>"</td><td>4</td><td>A 0.201 75)</td><td>0.00(0.71)</td></t<>		2	"	4	A 0.201 75)	0.00(0.71)
Trade Trade <tr< td=""><td></td><td>l</td><td>12.35(3.59)</td><td>1.70(1.49)</td><td>()</td><td>0.00(0.71)</td></tr<>		l	12.35(3.59)	1.70(1.49)	()	0.00(0.71)
Trip: Trip: <th< td=""><td></td><td>SPV-1201</td><td>12 94(7,66)</td><td>1.50(1.41)</td><td>0.020.14</td><td>0.00(0.71)</td></th<>		SPV-1201	12 94(7,66)	1.50(1.41)	0.020.14	0.00(0.71)
Time Time <th< td=""><td></td><td>ICSB-101B</td><td></td><td>2.30(1.67)</td><td>0.06(0.1)</td><td>0.0000 71)</td></th<>		ICSB-101B		2.30(1.67)	0.06(0.1)	0.0000 71)
Link(1,23) Link(1,39) Ook(0,7) Icol(1,23) Link(1,39) Ook(0,7) Icol(1,23) Link(1,23) Ook(0,7) Icol(1,23) Link(1,23) Ook(0,7) Icol(1,23) Link(1,23) Ook(0,7) Ill(1,2,1) Link(1,2) Link(1,2) Ill(1,2,1) Link(1,2) Link(1,2) Ill(1,2,2) Link(1,2) Link(1,2) Ill		AKMS-14B	(10.0).11	2 20(1.64)	0.05(0.74)	(12 0,000
Constraint Constraint <thconstraint< th=""> Constraint Constrai</thconstraint<>		SRT-26B	(ac-c)1+71	(8) 1/07 1	0.06(0.75)	
Image: Section of the sectio		01-31-15	10.51(3.32)	(ac-1)a+1	0.000 75)	0.00(0./1)
111 113 133 <td></td> <td></td> <td>(62.5)10.11</td> <td>1.40(1.38)</td> <td></td> <td>0.00(0.71)</td>			(62.5)10.11	1.40(1.38)		0.00(0.71)
Name Section Section 111(158) 120(1.8) 557(2.2) 111(158) 120(1.8) 557(2.2) 111(158) 120(1.8) 557(2.2) 111(158) 160(1.4) 557(2.2) 111(158) 567(1.4) 256(1.4) 111(158) 577(2.5) 120(1.2) 111(158) 577(2.5) 120(1.2) 111(128) 577(2.5) 120(1.2) 111(128) 577(2.5) 120(1.2) 111(128) 877(2.5) 120(1.2) 1111(128) 120(1.2) 030077) 1111(128) 120(1.2) 030077) 1111(128) 110(1.2) 030077) 1111(128) 110(1.2) 030077) 1111(128) 110(1.2) 120(1.2) 1111(128) 110(1.2) 120(1.2) 1111(128) 110(1.2) 120(1.2) 1111(128) 110(1.2) 120(1.2) 1111(128) 110(1.2) 120(1.2) 1111(128) 120(1.2) 120(1.2) <tr< td=""><td></td><td></td><td>11 81(3.51)</td><td>1.20(1.30)</td><td>(c/n)000</td><td>7.90(2.90)</td></tr<>			11 81(3.51)	1.20(1.30)	(c/n)000	7.90(2.90)
11.11(1.4.1) 1.20(1.48) 4.93(2.33) 11.11(1.4.1) 1.20(1.49) 4.93(2.33) 11.11(1.4.1) 1.20(1.49) 4.93(2.33) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.49) 0.03(0.77) 11.11(1.4.1) 1.20(1.47) 0.03(0.77) 11.11(1.4.1) 1.20(1.47) 0.01(0.77) 11.11(1.4.1) 1.20(1.47) 0.01(0.77) 11.11(1.4.1) 1.20(1.47) 0.01(0.77) 11.11(1.4.1) 1.20(1.47) 0.01(0.77) 11.11(1.4.1) 1.20(1.47) 0.01(0.77) 11.11(1.4.1) <t< td=""><td></td><td>SPV-104</td><td>(11 5)00 0</td><td>2.00(1.58)</td><td>5.84(2.52)</td><td>7 60(2.85)</td></t<>		SPV-104	(11 5)00 0	2.00(1.58)	5.84(2.52)	7 60(2.85)
Transaction 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.53(1.73) 1.86(1.45) 2.23(1.73) 0.01(0.71) 0.01(0		15-2284		1.70(1.48)	4.93(2.33)	(01. 1/00 01
B SA(1,0) L30(1,0) L30(1,0) <thl30(1,0)< th=""> <thlinet< th=""> <thlinet< td="" th<=""><td></td><td>15-6335</td><td></td><td>1 60/1 45)</td><td>2.53(1.74)</td><td>10.000</td></thlinet<></thlinet<></thl30(1,0)<>		15-6335		1 60/1 45)	2.53(1.74)	10.000
11(1,10) 1.20(1,20) 0.01(0,71) 6.32(2.67) 1.20(1,20) 0.01(0,71) 6.32(2.67) 1.20(1,20) 0.01(0,71) 8.47(2.86) 1.40(1,28) 0.02(0,73) 8.47(2.87) 1.40(1,28) 0.02(0,73) 8.47(2.86) 1.40(1,28) 0.02(0,73) 8.47(2.87) 1.40(1,29) 0.02(0,73) 8.47(2.87) 1.40(1,29) 0.02(0,73) 8.47(2.87) 1.40(1,29) 2.26(1,63) 7.47(2.87) 1.40(1,23) 2.16(1,63) 7.47(2.87) 1.40(1,23) 2.16(1,63) 7.47(2.87) 1.40(1,23) 0.01(0,71) 8 2.17(2.87) 1.40(1,23) 7.41(2.87) 1.40(1,23) 0.01(0,71) 8 6.40(2.73) 1.40(1,24) 8 6.40(2.73) 1.40(1,24) 8 6.40(2.73) 1.40(1,24) 8 6.40(2.73) 0.01(67) 8 6.40(2.74) 1.40(1,24) 8 6.40(2.74) 1.40(1,24) 8 1.40(1,24)<		IS-9471	8.93(3.01)	(PE 1)00-1	0.03(0,73)	0.00(0./1)
(5.372.57) (5.372.57) (5.372.57) (5.372.57) (5.372.57) (5.372.57) (5.372.56) (5.372.		SEV_1701 + ICSR - 101B	9.11(3.10)	(HC-1)0C-1	(12 0)10 0	0.00(0.71)
6.622.67) 1.66(1.36) 0.03(0.73) 8.622.67) 1.66(1.36) 0.03(0.73) 8.7238) 1.66(1.45) 0.03(0.73) 8.90(3.73) 1.66(1.45) 0.03(0.73) 8.90(3.73) 1.66(1.45) 0.03(0.73) 8.90(3.73) 1.66(1.45) 0.03(0.73) 8.90(3.73) 1.66(1.45) 0.03(0.73) 8.90(3.73) 1.66(1.45) 2.76(1.65) 7.91(2.74) 1.00(1.22) 0.03(0.73) 8.80(2.73) 1.00(1.23) 2.76(1.65) 7.91(2.74) 1.00(1.23) 0.03(0.73) 8.80(2.73) 1.00(1.23) 0.03(0.73) 8.80(2.73) 1.00(1.23) 0.03(0.73) 8.80(2.74) 1.00(1.23) 0.03(0.73) 8.80(2.74) 1.00(1.23) 0.03(0.73) 8.80(2.74) 1.00(1.23) 0.03(0.73) 8.80(2.74) 1.00(1.23) 0.03(0.73) 8.81(1.66) 1.70(1.41) 2.74(1.66) 8.81(2.66) 1.00(1.23) 0.03(0.73) 8.81(2.66) 1.00(1.24) 2.84(1.90)		CONT 1701 - AV-me - 14 B	6.35(2.62)	1.20(1.30)	(11.0)10.0	0.00(0.71)
B B			6 62(2.67)	1.40(1.38)	(c/.n)cn:n	0.00(0.71)
B E00(2.77) L20(1.39) D00(0.77) 7.68(2.88) 1.20(1.39) 0.00(0.77) 9.87(1.27) 1.20(1.39) 0.00(0.77) 9.87(1.27) 1.20(1.39) 2.26(1.66) 9.87(1.27) 1.60(1.47) 2.26(1.66) 9.87(1.27) 1.00(1.27) 2.16(1.67) 9.87(1.27) 1.00(1.27) 2.16(1.67) 9.87(1.27) 1.00(1.27) 2.16(1.67) 10.11(2.27) 1.00(1.27) 2.16(1.67) 1.10(1.27) 1.00(1.27) 0.01(0.77) 1.110(1.28) 1.00(1.71) 2.16(1.66) 1.13(2.77) 1.00(1.72) 0.01(0.77) 1.13(2.77) 1.00(1.72) 0.01(0.77) 6.61(2.87) 1.00(1.72) 0.01(0.77) 6.61(2.87) 1.00(1.72) 0.01(0.77) 6.61(2.87) 1.00(1.72) 0.01(0.77) 6.61(2.87) 1.00(1.72) 0.01(0.77) 6.61(2.87) 1.00(1.72) 0.01(0.77) 6.61(2.81) 1.00(1.72) 0.01(0.77) 6.61(2.81) 1.00(1.72)		207 - 1XC X 1071-AdS	8 27(2 96)	1.60(1.45)	0.03(0./3)	0.00(0.71)
Matching Lizk(1.30) Odd(77) 8.90(277) 1.20(1.30) 0.04(077) 8.90(272) 1.60(1.27) 2.70(1.73) 8.90(272) 1.60(1.27) 2.70(1.73) 8.90(272) 1.60(1.27) 2.70(1.73) 8.90(272) 1.60(1.27) 2.70(1.73) 8.90(272) 1.00(1.27) 0.020(77) 9.91(272) 1.00(1.27) 0.020(77) 8.90(272) 1.00(1.27) 0.020(77) 9.91(272) 1.00(1.27) 0.020(77) 9.91(272) 1.00(1.27) 0.020(77) 9.91(272) 1.00(1.27) 0.020(77) 9.91(272) 1.00(1.27) 0.020(77) 9.91 7.70(2.81) 1.00(1.73) 9.91 1.70(1.49) 2.70(1.73) 9.91 6.61(2.73) 0.01(0.71) 9.91 6.61(2.73) 0.01(0.71) 9.91 6.61(2.73) 0.01(0.71) 9.91 6.61(2.73) 0.01(0.71) 9.91 6.61(2.73) 0.01(0.71) 9.91 6.61(2.6		CI-CI-SE-ID X 1021-AdS	7 (0/1 00/1 00)	1.40(1.38)	0.03(0.73)	0.0000
Sector Link(1,s) 223(1,56) 14 B 201(273) 160(1,57) 273(1,78) 15 B 201(273) 170(173) 273(1,78) 15 B 201(273) 170(173) 273(1,78) 15 B 201(273) 170(173) 273(1,78) 15 B 801(273) 170(127) 0.020(73) 15 B 801(273) 170(127) 0.020(73) 15 C 532(28) 1.10(120) 0.010(77) 15 C 532(28) 1.20(129) 0.010(77) 16 C 7132(233) 1.00(123) 0.010(77) 17 C 532(23) 1.00(123) 0.010(77) 17 C 532(23) 1.00(123) 0.010(77) 17 C 532(23) 1.00(123) 0.010(77) 18 B 532(24) 1.00(123) 0.010(77) 19 B 532(24) 1.00(123) 0.010(77) 10 B 532(24) 1.00(123) 0.010(77) 10 B 532(24) 1.00(123) 0.010(77) 10		SPV-1201 x SPV - 946	(00.1)00.1	1 20(1 30)	0.04(0.73)	11,0000
14 2.76(1.3) 2.76(1.3) 14.18 2.01(2.33) 1.86(1.33) 2.76(1.3) 2.26 2.76(1.3) 2.76(1.3) 2.76(1.3) 2.28 2.76(1.3) 2.76(1.3) 2.76(1.3) 2.28 7.01(2.33) 1.00(1.25) 0.03(0.7) 2.28 7.01(2.33) 1.00(1.25) 0.03(0.7) 2.86 7.01(2.33) 1.00(1.25) 0.01(0.7) 2.86 7.61(2.33) 1.00(1.23) 0.01(0.7) 2.81 7.32(2.3) 1.00(1.2) 0.01(0.7) 2.81 7.61(2.33) 1.00(1.2) 0.01(0.7) 2.81 7.32(2.3) 1.00(1.2) 0.01(0.7) 2.84 7.32(2.3) 1.00(1.2) 0.01(0.7) 2.84 7.32(2.3) 1.00(1.2) 0.01(0.7) 2.84 7.32(2.3) 1.00(1.3) 1.40(1.3) 2.84 7.32(2.3) 1.00(1.3) 1.20(1.3) 2.84 8.32(2.3) 1.00(1.3) 0.01(0.7) 2.84 8.32(2.4) 1.00(1.3) 0.01(0.7) <td></td> <td>SPV-1201 x SPV ~ 104</td> <td>(/0.6)06.8</td> <td>1 60(1 45)</td> <td>2.25(1.66)</td> <td>4.20(2.11)</td>		SPV-1201 x SPV ~ 104	(/0.6)06.8	1 60(1 45)	2.25(1.66)	4.20(2.11)
1 0.01(22) 0.03(0.73) 2.05(1.6) a H B 0.01(22) 0.03(0.73) 0.03(0.73) a H B 0.01(22) 0.03(0.73) 0.03(0.73) - 36 B 0.01(22) 0.03(0.73) 0.03(0.73) - 446 0.01(22) 0.03(0.73) 0.03(0.73) - 146 0.01(22) 0.03(0.73) 0.03(0.73) - 146 0.01(22) 0.03(0.73) 0.04(0.73) - 146 0.01(22) 0.04(0.73) 0.04(0.73) - 104 7.13(2.80) 1.04(1.29) 0.04(0.73) - 104 7.13(2.81) 1.04(1.29) 0.04(0.73) - 561 1.04(1.29) 0.04(0.73) 0.04(0.73) - 561 0.01(22) 0.01(22) 0.03(0.73) - 561 0.01(23) 0.01(23) 0.03(0.73) - 561 0.02(1.24) 0.03(0.73) 0.03(0.73) - 561 0.02(1.24) 0.03(0.73) 0.03(0.73) - 561 0.02(1.24) 0.02(1.24) 0.03(0.73) - 104 5.02(2.40) </td <td></td> <td>SPV-1201 x IS - 2284</td> <td>9.87(5.22)</td> <td>1 00(1 52)</td> <td>2.70(1.79)</td> <td>(017)065</td>		SPV-1201 x IS - 2284	9.87(5.22)	1 00(1 52)	2.70(1.79)	(017)065
5 5.01(2.37) 0.00(2.77) 7.01(2.37) 1.00(1.27) 0.00(0.77) 7.01(2.37) 1.00(1.27) 0.00(0.77) 7.01(2.37) 1.00(1.27) 0.00(0.77) 7.13(2.37) 1.00(1.27) 0.00(0.77) 7.6(4(2.37) 1.00(1.26) 0.00(0.77) 7.6(12.37) 1.00(1.29) 0.00(0.77) 7.6(12.37) 1.00(1.29) 0.00(0.77) 7.6(12.37) 1.00(1.29) 1.00(1.73) 6.6(2.77) 1.00(1.29) 0.00(0.77) 6.6(2.77) 1.00(1.29) 0.00(0.77) 6.6(2.77) 1.00(1.29) 0.00(0.77) 6.6(2.77) 1.00(1.29) 0.00(0.77) 6.6(2.77) 1.00(1.29) 0.00(0.77) 6.8(2.70) 1.00(1.29) 0.00(0.77) 6.8(2.70) 1.00(1.29) 0.00(0.77) 5.37(2.46) 1.00(1.29) 2.40(1.70) 5.32(2.46) 1.00(1.49) 2.40(1.70) 5.32(2.46) 1.00(1.49) 2.40(1.70) 5.32(2.46) 1.00(1.49) 2.40(1.70)		SPV-1201 x IS-6335	8.08(2.95)	(2011)0011	2.16(1.63)	(12 000 0
S 7.10(2.74) 7.10(2.74) 1.10(1.15) 1.10(1.35) 0.0200.73) 0.00(0.71) 5 6.61(2.87) 7.13(2.83) 1.10(1.35) 1.00(1.24) 0.00(0.71) 1.00(1.24) 7.13(2.73) 1.00(1.23) 1.00(1.24) 0.00(0.71) 1.00(1.24) 0.00(0.71) 1.00(1.24) 6.10(2.73) 1.00(1.23) 1.00(1.27) 0.00(0.72) 1.00(1.24) 0.00(0.71) 1.00(1.24) 5 5.73(2.36) 1.00(1.23) 1.00(1.23) 0.00(0.71) 0.00(0.71) 5.35(2.46) 1.00(1.23) 1.00(1.24) 0.01(0.71) 2.24(1.90) 5.36(2.46) 1.00(1.24) 2.24(1.10) 5.36(2.46) 1.00(1.24) 2.24(1.10)		SPV-1201 x IS - 9471	10.11(3.26)	(00-1)0/1	(67.0)000	0.00(0.71)
5 7.32(23) 1.30(1.37) 0.00(0.71) 7.32(23) 1.30(1.30) 0.00(0.71) 7.6(4(2.57) 1.20(1.30) 0.00(0.71) 7.6(4(2.57) 1.20(1.30) 0.00(0.71) 7.6(4(2.77) 1.00(1.31) 1.20(1.30) 7.13(2.77) 1.00(1.31) 1.20(1.30) 7.13(2.77) 1.00(1.31) 0.00(0.77) 6.0(2.77) 0.00(1.21) 0.02(0.77) 6.13(2.71) 1.00(1.23) 0.02(0.77) 6.13(2.71) 1.00(1.23) 0.02(0.77) 6.13(2.71) 1.00(1.23) 0.02(0.77) 6.13(2.71) 1.00(1.23) 0.02(0.77) 6.13(2.71) 1.00(1.23) 0.02(0.77) 6.13(2.71) 1.00(1.23) 0.02(0.77) 6.13(2.71) 1.00(1.23) 0.01(0.71) 8.33(2.46) 1.20(1.49) 2.34(1.10) 5.33(2.46) 1.20(1.49) 2.40(1.70) 5.33(2.46) 1.20(1.49) 2.40(1.70)		ICSB - 101B x AKms 14 B	7.01(2.74)	(77.1)00.1	0.02(0.72)	0.00(0./1)
5 7.32(2.80) 1.30(1.37) 0.06(0.73) 7.61(2.85) 1.20(1.37) 0.06(0.73) 7.61(2.85) 1.20(1.37) 0.06(0.73) 7.19(2.77) 1.20(1.31) 2.70(1.66) 7.19(2.77) 1.60(1.23) 0.07(1.31) 7.19(2.73) 1.60(1.23) 0.07(0.73) 6.13(2.36) 1.60(1.23) 0.07(0.73) 6.13(2.36) 1.60(1.23) 0.07(0.73) 6.13(2.46) 1.60(1.23) 0.07(0.73) 6.53(2.46) 1.00(1.23) 0.01(0.73) 5.56(2.46) 1.00(1.24) 2.26(1.10) 5.56(2.46) 1.00(1.24) 2.26(1.10)		ICSB - 101B x SRT - 26 B	8.01(2.92)	(or 1)01.1	0.01(0.71)	(17.0)000
64(2.67) 1.00(1.27) 0.01(0.71) 7.132277 1.00(1.41) 1.22(10.71) 7.132277 1.00(1.41) 1.22(10.71) 7.132277 1.00(1.41) 1.22(10.71) 6.10(2.27) 0.90(1.18) 0.02(0.72) 6.10(2.27) 0.90(1.18) 0.02(0.72) 6.10(2.27) 1.00(1.28) 0.02(0.72) 6.10(2.27) 1.00(1.28) 0.02(0.72) 6.22(2.60) 1.00(1.28) 0.01(0.71) 8.88(3.66) 1.20(1.49) 2.40(1.79) 0.01(0.71) 8.88(3.66) 1.20(1.49) 2.40(1.79) 0.01(0.71) 0.01(ICSB - 101B x QI-35-15-15	7.32(2.80)		(67.0)40 0	0.00(0./1)
7,19(2.05) 1,00(1.42) 2.25(1.66) 7,19(2.07) 1,00(1.43) 1,75(1.66) 7,75(2.07) 1,00(1.43) 1,76(1.41) 6,10(2.77) 1,00(1.23) 0,00(0.73) 6,10(2.77) 1,00(1.22) 0,00(0.73) 6,10(2.77) 1,00(1.22) 0,00(0.73) 6,10(2.71) 1,00(1.22) 0,00(0.73) 6,30(2.66) 1,00(1.23) 0,00(0.73) 6,30(2.66) 1,00(1.23) 0,00(0.73) 6,30(2.66) 1,00(1.23) 0,00(0.73) 6,30(2.66) 1,00(1.23) 0,00(0.73) 6,30(2.66) 1,00(1.26) 3,41(1.96) 8,88(2.64) 1,00(1.46) 2,88(1.80)		1CEB - 101B x SPV - 946	6.61(2.67)	(0C-1)07-1	0 01(0.71)	0.00(0./1)
1.19(2.77) 1.40(1.41) 1.76(1.51) 7.75(2.87) 1.40(1.43) 1.76(1.51) 6.80(2.79) 1.40(1.23) 1.40(1.23) 6.13(2.5) 1.40(1.23) 0.40(0.73) 6.13(2.5) 1.60(1.22) 0.02(0.73) 6.13(2.5) 1.60(1.23) 0.02(0.73) 6.53(2.65) 1.10(1.43) 0.01(0.71) 6.53(2.66) 1.10(1.43) 0.41(1.93) 6.53(2.46) 1.20(1.44) 0.41(1.93) 0.41(1.93) 6.53(2.46) 1.20(1.44) 0.41(1.93) 0.41(1.93) 6.53(2.46) 1.20(1.44) 0.41(1.93) 0.4		TCOD INTO V SDV - INA	7.61(2.85)	(77.1)00.1	7 75(1.66)	3.20(1.92)
7.35(2.87) 1.36(1.39) 1.41(1.39) 6.10(2.77) 1.30(1.34) 0.02(0.77) 6.13(2.79) 0.30(1.13) 0.02(0.77) 6.13(2.57) 0.30(1.12) 0.02(0.77) 5.37(2.51) 1.40(1.22) 0.02(0.77) 5.37(2.51) 1.40(1.23) 0.02(0.77) 6.37(2.51) 1.40(1.23) 0.01(0.71) 5.37(2.56) 1.00(1.27) 0.01(0.71) 5.36(2.46) 1.00(1.48) 2.80(1.87) 5.56(2.46) 1.70(1.48) 2.80(1.70)			7.19(2.77)	(14-1)00-1	(15 1)84. (4.20(2.17)
6.86(2.70) 1.20(1.34) 0.40(1.72) 6.11(2.31) 0.90(1.13) 0.40(0.72) 6.11(2.31) 0.90(1.12) 0.02(0.72) 6.10(2.37) 1.40(1.23) 0.02(0.72) 6.37(2.45) 1.40(1.23) 0.01(0.71) 6.37(2.45) 1.40(1.43) 2.40(1.79) 8.88(2.46) 1.70(1.43) 2.40(1.79) 0.50(1.43) 0.50(1.70)			7.75(2.87)	1.40(1.38)		6.50(2.63)
6.12(2.8) 0.96(1.18) 0.02(0.72) 6.12(2.37) 1.06(1.22) 0.02(0.73) 5.97(2.51) 1.06(1.22) 0.02(0.73) 6.33(2.65) 1.10(1.48) 3.41(1.96) 6.33(2.66) 1.20(1.48) 2.23(1.82) 8.88(2.46) 1.20(1.48) 2.46(1.70) 1 5.56(2.46) 1.20(1.48) 2.46(1.70) 1 0.20(1.48) 2			6 80(2.70)	(1:30(1:34)	(cr. 0) 14 1	0.00(0.71)
5.9(2.37) 1.06(1.22) 0.03(0.72) 5.9(2.37) 1.06(1.22) 0.03(0.72) 5.9(2.45) 1.06(1.23) 0.01(0.71) 5.9(2.46) 1.07(1.48) 2.84(1.99) 5.8(2.46) 1.07(1.48) 2.84(1.79) 5.8(2.46) 1.07(1.48) 2.84(1.70)		ICSB - 101B x IS - 34/1	(8 ()5 ()	0.90(1.18)	0.02(0.72)	0.00(0.71)
579(2.51) 1.40(1.39) 0.03(0.77) 5.79(2.51) 1.40(1.32) 0.01(0.71) 6.53(2.63) 1.70(1.43) 2.41(1.30) 8.88(3.06) 1.30(1.34) 2.40(1.70) 5.56(2.46) 1.70(1.48) 2.40(1.70)		AKms - 14 B x SRT - 26B	(m-7)CT-0	1.00(1.22)	0.02(0.72)	0.01(0.92)
5.57(2.6) 1.00(1.27) 0.01(0.71) 6.53(2.60) 1.70(1.48) 3.41(1.99) 6.26(2.60) 1.30(1.34) 2.85(1.82) 8.86(3.66) 1.30(1.34) 2.86(1.79) 5.56(2.46) 1.70(1.48) 2.40(1.79)		AKme - 14 B x 0J-35-15-15	(10-7)0I '0	1.40(1.38)	0.03(0.72)	0.00(0.71)
6.23(2.60) 1.70(1.48) 3.44(1.98) 6.24(2.60) 1.70(1.48) 2.84(1.28) 8.88(3.66) 1.30(1.34) 2.46(1.70) 5.56(2.46) 1.70(1.48) 2.46(1.70)		AKma - 14 B x SPV - 946		1 00(1 22)	0.01(0.71)	6 70(2.68)
8.88(3.06) 1.30(1.34) 2.8(1.82) 5.56(2.46) 1.70(1.48) 2.40(1.70)		AKme - 14 B x SPV - 104	(0) 0) 0 0	1 70(1.48)	3.41(1.98)	4 70(2.28)
8.88(3.06) 5.56(2.46) 1.70(1.48) 2.40(1.70)		AKms - 14 B x IS - 2284	6.24(2.00)	(HE L)UE I	2.83(1.82)	(57.5.0L 01
(0+7) OC (C		AKma - 14 B x IS - 6335	8.88(5.00)	1 70(1.48)	2.40(1.70)	prot
		AV THE - 14 B X IS - 9471	5.20(2.40)	7		

111 – 13

-	2	3	4	Ś	6
ŝ	SRT - 26B x GJ-35-15-15	6.25(2.60)	1.30(1.34)	0.05(0.74)	0.0000.71)
8	SRT 26B x SPV 946	6.58(2.66)	1.40(1.38)	0.03(0.73)	0.50(1.00)
2	SRT - 26B x SPV - 104	8.49(3.00)	1.00(1.22)	0.06(0.75)	0.0000
z	SRT - 26B × IS - 2284	5.98(2.55)	1.80(1.52)	2,78(1,81)	5.10(2.37)
8	SRT - 26B x IS - 6335	7.10(2.76)	1.60(1.45)	3.13(1.90)	6.80(2.70)
ş	SRT - 26B × IS - 9471	5.76(2.50)	1.70(1.48)	2.46(1.72)	11 60(3 33)
_	GJ-35-15-15 x SPV - 946	6.99(2.74)	(IE.I)00.0	0.05(0.74)	0.60(1.05)
ç	GJ-35-15-15 x SPV 104	7.78(288)	1.30(1.34)	0.02(0.72)	0.30(0.89)
9 3	GJ-35-15-15 x IS - 2284	6.23(2.59)	1.60(1.45)	2.26(1.66)	3.50(2.00)
2	GJ-35-15-15 x IS - 6335	6.26(2.60)	1.50(1.41)	1.78(1.51)	3.10(1.90)
Ş	GJ-35-15-15 x IS - 9471	5.23(2.39)	1.60(1.45)	138(137)	7.70(2.86)
ş	SPV - 946 x SPV - 104	8.96(3.08)	0.80(1.14)	0.02(0.72)	0.00(0.71)
4	SPV - 946 x IS - 2284	6.68(2.68)	1.20(1.30)	2.18(1.64)	3.90(2.32)
8	SPV - 946 x IS - 6335	6.72(2.69)	(1.30(1.34)	2.43(1.71)	6.80(2.70)
Ş	SPV - 946 x IS 9471	6.12(2.57)	1.10(1.26)	(65.1.43(1.39)	9 40(3 1 5)
8	SPV - 104 × IS 2284	9.54(3.17)	1.10(1.26)	2.31(1.68)	5.50(2.45)
ž	SPV - 104 × IS 6335	10.56(3.32)	0.80(1.14)	2.78(1.81)	6.40(2.63)
2	SPV - 104 x IS 9471	8.22(2.95)	0.90(1.18)	2.13(1.62)	10.50(3.32)
ŝ	IS 2284 x IS -6335	7.42(2.81)	1.30(1.34)	2.09(1.61)	5.60(2.47)
z	IS 2284 x IS - 9471	7.97(2.91)	1.40(1.38)	2.66(1.78)	11.90(3.52)
2	IS 6335 x IS 9471	9.42(3.15)	1.30(1.34)	2.99(1.87)	12.00(3.54)
	Parental range	8.93	1.20	0.02	0.0
		2	9	9	ţ
		12.94	2.30	584	18.00
	Hybrid range	5.23	0.80	0.01	0.0
		ţ	9	0	9
		10.56	1.80	3.41	12.00
	SE (m)	0.132	0.107	0.111	0.208
	CD at 5%	0.377	0.305	0.389	0.595
	Figures in parenthesis indicate square root values	quare root values.			

III - 14

pk

ŀ

1	1	1	1											2												
DTF	сн	=	464	1 07			064	2.24	1 32	1.66	2.32	4.14	-4.48	-6.71	-2.89	-199	4.10	-15.86	-5.86	-4.20	-11.50**	-12.22	-10.86**	-6.48	-13.72	-11.97
	H	=	6 76*	*05 0	0 86**	4 07	212	4.07	2.86	11.23**	5.46*	-1.94	-3.82	3.15	-0.50	-4.48	-3.60	-9.63	-4.88	-2.66	-6.10*	-7.14**	-5.42*	-3.86	-9.30	-10.87**
Electrical conductivity	H2	10	-30.02*	-27 65	-40.64**	-26.85	-13.80	-20,11	42.64	-43.99**	-40.84*	-32.26	-39.44**	-31.41*	-24.49	-50.25	-55.49**	-64.04	-58.83	-24.56*	-34.17**	-34.43	-40.17	-62.28	-70.90	-69.06
Electrical c	HI	6	-26.59	-16.52	-32 05**	-26.62	-10.74	-33.63	-28.32	-30.12	-26.25	-25.11*	-33.60**	-28.26*	-23.46	-36.03**	-42.36*	-53.50	-46.79	-23.85	-24.24	-26.63	-29.05	-47.62	-59.65	-57.12
Endosperm texture	H	8	4.51	12.72	15.69	-14.40	11.24	-5.70	-6.58	-14.58	-6.29	36.15*	5.23	1.43	18.26	-17.52	-10.56	-15.74	-5.59	46.18	24.18	58.01	14.59	8.08	14.31	5.68
Endosper	H	1	7.11	20.00	27.98	-6.07	14.91	18.42	23.04	12.02	23.88	48.31	18.99	8.79	25.09	5.49	19.79	12.38	26.89*	52.31**	44.14*	63.01	36.87**	35.94**	43.11**	33.46**
rdness	H2	0	-3.50	-26.50*	-15.10	3.95	- 5.82	-13.74	-19.39	-13.98	-23.10*	-13.74	-27.56	- 6.85	3.23	-15.73	-11.74	0.96	-12.50	-38.14**	-40.91	-9.50	-17.43	5.49	-10.25	-17.85
Grain hardness	H	\$	4.22	-12.86	-2.88	11.84	7.76	7.64	-5.54	-5.97	-13.47	-4.51	-22.87	-6.46	9.93	1.31	-3.54	2.29	-8.52	-35.50**	-34.35**	-5.66	-12.03	6.98	-1.82	-12.77
00 grain weight	H2	4	-5.74	-16.01	0.28	-18.36	-23.82**	8.00	-23.92**	-24.48	-9.60	-7.42	00.6-	- 9.25	3.41	0.18	4.14	0.24	5.47	3.05	-9.29	16.03	-6.34	5.34	13.49	16.41
100 gra	Ħ	3	6.26	-3.46	20.61	-4.96	-12.30	9.30	-5.11	-6.64	7.32	-5.35	-1.97	-5.81	5.92	14.14	17.02	11.50	11.94	8.72	-7.88	16.25	8.75	16.05	23.72*	20.95*
Crossess		2	SPV-1201 x ICSB - 101B	SPV-1201 x AKms - 14 B	SPV-1201 x SRT - 26B	SPV-1201 x GJ-35-15-15	SPV-1201 x SPV - 946	SPV-1201 x SPV - 104	SPV-1201 x IS - 2284	SPV-1201 x IS-6335	SPV-1201 x IS - 9471	ICSB - 101B x AKms 14 B	ICSB - 101B x SRT - 26 B	ICSB - 101B x GJ-35-15-15	ICSB - 101B x SPV - 946	ICSB - 101B x SPV - 104	ICSB - 101B x IS - 2284	ICSB - 101B x IS - 6335	ICSB - 101B x IS - 9471	AKms - 14 B x SRT - 26B	AKms 14 B x GJ-35-15-15	AKms - 14 B x SPV - 946	AKms - 14 B x SPV - 104	AKms - 14 B x IS - 2284	AKms - 14 B x IS - 6335	AKms - 14 B x IS - 9471
y X		-		7	٣	4	s	6	7	80	6	2	=	12	ព	14	2	9	17	18	61	8	51	ដ	ព	24

III - 1	6
---------	---

Table 12 Contd....

	ic 12 Collid										
1	2	3	4	5	6	7	8	9	10	11	12
25	SRT - 26B x GJ-35-15-15	2.32	-1.57	-2.90	-9.15	23.27	2.62	-14.78	-25.35*	-4.51	-8.63**
26	SRT – 26B x SPV – 946	18.36	12.39	-5.71	-5.73	30.40	21.47	-34.28**	-40.78**	-1.51	-5.47
27	SRT – 26B x SPV – 104	8.15	-10.94	5.09	-5.14	20.21	4.19	-46.49**	-55.22**	-7.85**	-11.82**
28	SRT – 26B x 1S – 2284	21.34	15.91	-3.83	-6.50	12.40	-7.73	-52.04**	-65.26*	-8.81**	-9.90**
29	SRT – 26B x IS – 6335	22.94*	18.75	-11.49	-15.83	29.90*	7.16	61.63**	-72.17**	-10.82**	-16.43**
30	SRT - 26B x IS - 9471	20.20	18.29	-18.32	-19.86	5.29	-13.94	-41.96**	-57.88**	-0.70	-1.05
31	GJ-35-15-15 x SPV - 946	9.26	-7.79	-3.01	-9.27	20.00	6.22	-13.16	-15.89	-0.96	-1.28
32	GJ-35-15-15 x SPV 104	-5.30	-19.49*	3.42	-12.00	21.41	-9.69	-31.25**	-48.22**	-6.39*	-6.39*
33	GJ-35-15-15 x IS - 2284	-0.93	-8.79	-1.80	-10.50	30.53*	-6.89	-33.63	-47.01**	-5.94*	-8.95**
34	GJ-35-15-15 x IS - 6335	0.00	-6.96	-20.79	-22.14	34.85**	-3.44	-49.47**	-59.59**	-7.64**	-16.93**
35	GJ-35-15-15 x IS - 9471	3.69	1.31	-15.61	-19.60	28.42*	-8.69	-26.64	-41.30*	-3.85	-8.31**
36	SPV - 946 x SPV - 104	5.29	-9.47	3.40	-6.64	8.44	-11.46	-28.01**	-44.55**	-3.53	-3.83
37	SPV - 946 x IS - 2284	18.26	7.54	0.40	-2.36	3.70	-19.43	-52.06**	-62.63**	-8.94**	-11.58**
38	SPV - 946 x IS - 6335	2.99	-5.36	0.99	-3.98	2.98	-19.63	-48.18**	-59.53**	7.66**	-2.29
39	SPV - 946 x IS 9471	8.87	4.98	-3.95	-5.77	15.72	-10.44	-56.23**	-65.80**	-10.25**	-14.15**
40	SPV - 104 x IS 2284	0.64	-20.04*	-16.57	-22.71	21.18*	13.60	-48.51**	-66.47**	-5.94*	-8.95**
41	SPV - 104 x IS 6335	-0.80	-20.50*	-16.74	-28.13*	31.14**	23.66*	-60.62**	-74.33**	-13.32**	-22.04**
42	SPV - 104 x IS 9471	16.69	-2.67	-18.48	-27.65*	23.42*	15.12	-70.69**	-80.89**	-17.59**	-21.41**
43	IS 2284 x IS -6335	4.55	3.35	-0.95	-8.28	-3.07	-3.67	-11.56	-11.76	-2.39	-9.56**
44	IS 2284 x IS - 9471	8.48	2.06	-4.81	-9.14	1.65	1.09	10.28	-10.55	-0.17	-1.71
45	IS 6335 x IS 9471	14.10	8.53	-17.87	-20.54	-2.72	-3.84	-25.95	-26.00	-9.36**	-14.79**
	SE (m)	0.193	0.223	0.671	0.755	5.274	6.091	39.798	45.955	1.972	2.277
	CD at 5%	0.382	0.441	1.330	1.536	10.456	12.073	78.887	91.090	3.908	4.513

Significant at 5% Significant at 1% **

Table : 13Heterosis (H1) and Heterobeltiosis (H2)III17Patanchenu, 1996

			>				Surprise Surprise	The second se	พดงณฑ์ และเการร	1	
		H	Η	Ħ	H2	Ŧ	H2	Н	H2	H	H
	2	m	4	\$	9	7	8	0	9	1	5
	SPV-1201 x ICSB - 101B	54.40	31.63**	-3.34	-13.43	-20.00	-33.33	-28.25**	-38.02**	-20.69*	12 27
	SPV-1201 x AKms - 14 B	56.81**	24.49**	- 2.42	-6.33	-12.50	-12.50	32.60	30.20	-12.50	
	SPV-1201 x SRT - 26B	33.71	14.70*	-4.23	-9.07	-12.50	-12.50	17.42**	8.85	-13.70	-16.67
	SPV-1201 x GJ-35-15-15	22.66	19.04	12.94	8.19	0.00	00.0	21.58	20.50**	-17.86*	-17.86
	SPV-1201 x SPV - 946	-3.93	-10.78*	9.05	5.11	-12.50	-12.50	5.25	-7.11	170	41.7.
	SPV-1201 × SPV 104	33.49**	23.11	2.44	-3.90	5.88	00.0	2.68	16.7-	50.5-	11.76
	SPV-1201 x IS - 2284	26.44	22.94	7.83	6.74	11.11-	-20.00	-23.06		-27.27	-42.86
	SPV-1201 x IS-6335	36.51	32.86**	14.93	7.37	10.00	-8.33	-40.10	-41.51**	-27.27*	-42.86**
	SPV-1201 x IS - 9471	34.98**	25.90**	16.22	6.27	0.00	0.00	-40.67	-43.88	-23.81	-42 86**
~	ICSB - 101B x Akms 14 B	20.59*	10.57	16.10*	7.99	-20.00	-33.33	-3.08	-17.32	3.03	-5.56
_	ICSB - 101B x SRT - 26 B	32.53	31.55**	13.71	6.90	10.00	-8.33	-3.03	-10.21	6.67	6.67
	ICSB - 101B x GJ-35-15-15	23.37**	2.61	11.59	3.99	-10.00	-25.00*	9.49	-5.94	-10.34	-13.33
~	ICSB - 101B x SPV - 946	33.86**	7.40	5.58	-2.18	-10.00	-25.00*	8.52	-15.54**	-17 86*	-23.33
_	ICSB - 101B x SPV - 104	15.88*	6.31	8.25	-8.35	-23.81	-33.33	-66.6-	-13.74**	-12.50	-17.65*
~	ICSB - 101B x IS - 2284	48.79**	23.94**	10.24	-0.36	-18.18	-25.00*	-47.56	-49.50	-30.43	-46.67
~	ICSB - 101B x IS - 6335	46.67**	22.28	11.87	6.90	0.00	0.00	-56.61	-61.74	-30.43	-46.67
~	ICSB - 101B x IS - 9471	37.15	10.41	14.39	11.80	-20.00	-33.33	-37.69	-48.63	-27.27*	46.67
~	AKms - 14 B x SRT - 26B	32.68	20.83	6.57	5.36	0.00	00.0	29.88	18.76**	3.03	-5.56
•	AKms - 14 B x GJ-35-15-15	13.29	-12.02*	- 67.61	19.54	25.00	25.00	-5.20	-6.00	00.0	11.11-
	AKms 14 B x SPV 946	36.49**	2.65	13.77	13.29	25.00	25.00	4.11	-6.91	9.68	-5.56
_	14 B x SPV	18.51*	0.50	9.58	-1.05	-5.88	11.11-	-23.45	-32.25	-2.86	-5.56
а,	AKms 14 B x IS 2284	43.21**	11.37	9.03	5.70	-22.22	-30.00	-27.12	-35.78	-38.46	-55.56
•	- 14 B x IS -	41.71**	10.28	8.20	5.18	0.00	-16.67	-35.05	-37.49**	-46.15	-61.11
٦Ì	AKms - 14 B x IS - 9471	43.19**	8.02	13.60	7.98	-12.50	-12.50	-19.95	-23.20	-44.00	-61.11

:
:
Contd.
ñ
٩
Tabl

													1	88							1		
12	6.67	-10.00	-5.88	-40.00	-40,00-	-46.67	7.14	-14.71	-42.86**	-42.86	-42.86**	-11.76	-30.77**	-38.46**	-38.46**	-41.18**	-52.94**	-52.94	-12.50	0.00	-12.50	0.350	0.693
=	10.34	-3.57	0.00	-21.74*	-21.74*	-27.27*	11.11	-6.45	-27.27	-27.27	-23.81*	0.00	-14.29	-23.81	-20.00	-20.00	-36.00	-33.33**	-12.50	6.67	-6.67	0.303	0.600
9	-23.30**	8.55	-2.45	-30.03	-25.93**	-35.35	-1.68	-16.78	-44.53	-51.32	-40.86	-33.54**	-40.93**	-44.35**	-44.93**	-57.41	-64.39**	-47.22	-30.84	-26.87	-55.43**	5.046	10.002
6	-16.77**	31.30**	1.12	-27.11	-21.87**	-26.60	10.79	-6.68	-37.52	-49.84	-37.86	-17.29**	-25.21	-35.63	-40.72**	-57.19	-61.14	-38.19**	-24.18	-13.99*	-51.82	4.370	8.662
8	0.00	0.00	-11.11	-20.00	-16.67	0.00	12.50	-11.11	00:0	-8.33	0.00	11.11	-30.00	-8.33	12.50	-10.00	0.00	-22.22	00.0	-40.00	-33.33	9.424	18.679
2	00.0	0.00	-5.88	-11.11	0.00	0.00	12.50	-5.88	11.11	10.00	00.0	17.65	-22.22	10.00	12.50	-5.26	14.29	-17.65	60.6	-33.33*	-20.00	8.616	16.177
ø	5.98	5.98	-3.30	5.98	- 0.50	1.52	-4.62	0.63	14.08	11.95	7.89	6.63	5.53	5.78	5.13	1.80	71.7	2.09	3.39	-7.60	10.17	2.307	4.574
Ś	6.97	7.64	8.19	10.54	1.22	5.64	-4.02	1.66	17.92*	14.93	13.27	17.61	8.42	9.26	11.04	9.55	22.40	18.28*	9.61	01.0	12.74	1 908	3.961
4	-19.04**	-7.40	7.69	22.43	5.44	-0.09	-4.84	12.02*	28.26	26.75	10.51	9.59	5.39	13.15*	12.60	18.81	14.31*	-0.55	17.30	5.25	3.50	14 368	28.479
m	-3.23	14.77	16.59*	46.10**	25.72	23.39**	-0.43	24.85	28.51	27.14**	15.12	27.12**	10.48*	18.74	13.12**	32.18**	27.06	14.91	17.42	9.86	8.14	12 443	24.663
2	SRT - 26B × GJ-35-15-15	SRT - 26B x SPV - 946	SRT - 26B x SPV - 104	SRT - 26B x IS - 2284	SRT - 26B × IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15× SPV 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS ~ 9471	SPV - 946 x SPV - 104	SPV - 946 x IS - 2284	SPV - 946 x IS - 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 × IS -6335	IS 2284 x IS - 9471	IS 6335 × IS 9471	SF (m)	CD at 5%
	ม	26	11	38	53	ጽ	31	33	£	¥	ŝ	8	37	8	8	9	41	42	4	4	45		

Significant at 5% Significant at 1% .:

III – 18

Heterosis (H₁) and Heterobeltiosis (H₂) in % for F_1 crosses in 10 ×10 diallel of sorghum (Pooled) Akola and Patancheru, 1996 Table: 14

.

Other fungi	H2			14:07	4																						
0	H	-	78.47		00.72	56.671	61.01	45.34	104.60*	10.38	15.41	5.76	59.89	16.16	25.71	48.90	-514	63.63	71.12	42.47	75.90	38.19	53.39	33.01	85.03	142.84*	59.19
C. lunata	H2	2	-515		10.0	/0.51-	-14.71	-16.17	2.21	-33.82	-45.59*	-49.26	-11.63	-12.14	00.00	-17.05	-33.33	-31.78	-52.72	-43.41	-19.29	-11.85	7.99	-12.82	0.86	-35.04	-20.52
ບ ບ	H	0	-2.64	1 07		75.71-	-14.39	-12.64	20.32	-25.62	-25.25	-33.01	-132	-8.55	2.27	-15.75	-23.21	-25.11	-36.13	-26.63	-12.06	-5.55	11.56	-3.77	5.84	-15.08	-0.55
noseum	H2	~	2.36	PL 92	157	5/·CI-	FC.2-	CP.17-	-36.70	-19.02	25.31	15.38	22.28	44.90	18.97	25.50	64.82	-71.25	-42.56	-27.55	5.42	37.63	-1.94	117.88	-8.04	-10.01	18.15
F. pullidoroseum	н	1	4.96	67.48	14 54		40.7	C8.41-	-31.30	0.93	28.32	23.60	52.71	50.64	21.88	35.48	83.06	-64.85	-42.42	-20.56	27.70	75.01	29.62	148.84	33.02	12.25	36.59
F. moniliforme	H2	9	-10.08	-34.39*	33.67	20.00		70.0-	-43.03	-39.34	-37.16	•53.99 •	-28.02	-0.84	-18.48	-9.92	-4.85	-41.19	-60.51	-57.98	-20.38	-26.76	-36.30*	-18.19	-50.31	-62.41	-48.40
F. mor	Н	Ś	-7.75	-23.69	27 CF-	24.5	6	70.0-	16.26-	-36.24	-27.53	-39.55	-18.11	0.41	-14.15	-9.17	10.57	-36.66	-53.47*	13.61-	-8.43	-12.88	-28.05	-16.16	-39.76	-20.81	-24.99
Germination	H2	4	37.70**	-0.46	40.56	17.05			0.6	22.50	17.43	23.13	28.51*	10.80	28.17	33.89**	17.65	24.28	24.69	33.45	-2.23	-5.03	-1.70	1.20	1.83	20.08*	18.65*
Sem	HI	3	49.62**	35.77	43.45**	-11 01	15.27		00.10	06.66	32.73	35.01	65.32	18.13	36.30	43.25	31.11*	51.76**	51.44	57.68	31.60	27.61	32.64	19.20	50.44	76.76	71.44
Crossess		2	SPV-1201 x ICSB - 101B	SPV-1201 x AKms - 14 B	SPV-1201 x SRT - 26B	SPV-1201 x GJ-35-15-15	SPV-1201 × SPV - 946	20V-1201 ~ 50V - 104		SE V-1201 X IS - 2284	CECO X IZUI X 12-0333	Sr V-1201 X IS - 94 //	ICSB - 101B x AKms 14 B	ICSB - 101B x SRT - 26 B	ICSB - 101B x GJ-35-15-15	ICSB - 101B x SPV - 946	ICSB - 101B x SPV - 104	ICSB - 101B x IS - 2284	ICSB - 101B x IS - 6335	ICSB - 101B x IS - 9471	AKms - 14 B x SRT - 26B			AKms - 14 B x SPV - 104	AKma - 14 B x IS - 2284	AKms - 14 B x IS - 6335	AKms - 14 B x IS - 9471
ż Ś		-	-	5	~	4	5			- 0	• •	. :	2 :	= 9	1	ב :	4	23	2 !	2 9	<u> </u>	2	R 8	5	1	2	24

III – 20

Table 14 Contd.....

Significant at 5% Significant at 1%

* ‡

 $\label{eq:15} III - 21$ the terosis (H1) and Heterobeltiosis (H2) in % F2 progenics 10 × 10 diallel (Pooled), Akola and Patanchen1, 1996

	i	i	i														1	91								
TGMR	H	=	-30.67	-28.80	-26 00**	-20.67	-15.00	-29.41	-33.57	-37.14	-37.14**	-33.89*	-24.67*	-28.00	-28.00**	-31.76	-34.67	-32.00	-30.0C-	-27.78	-35.56**	-32.22**	-27.22	-46.67	-49.44	-51.11 **
5	HI	6	-28.28	-20.00	-23 45	-17.93	-15.00	-22.58	-15.45	-20.00	-16.19	-27.88**	-24.67**	-28.00**	-2:5.52**	-27.50	-14.78	-11.30	- 4.55	-211.21	-20.70**	-23.75**	-25.14**	-26.15**	-30.00	-20.60**
covering	H	12	-13.33	0.00	- 5.00	- 7.50	-12.50	-17.50	- 7.56	-35.00**	- 6.00	-11.11	11.11-	-11.11	11.11-	-11.11	-10.67	-28.00**	- 4.00	0.00	0.00	8.50	00.0	-13.33	-39.33	-12.50
Glume	H	=	-8.24	0.00	- 5.00	- 7.50	-12.50	-17.50	- 2.12	-22.00	- 6.00	- 5.88	- 5.88	- 5.88	- 5.88	- 5.88	-10.67	-17.71-	1.65	0.00	0.00	8.50	0.00	-8.24	-27.20	0.57 -12.50 -12.50
Cob length	H2	2	-10.25	- 6.43	- 4.95	-4.03	-1.73	2.29	6.18	4.28	-8.08	4.90	0.09	1.36	0.18	- 8.35	- 1.36	· 0.09	- 0.73	7.32	11.71	3.69	-2.32	2.74	3.09	0.57
																		4.56								
Plant neight	H	~	-23.32	- 6.73	-12.94	1.87	-11.31	-19.35*	- 6.98	- 7.98	-15.87*	3.34	22.84	-12.90	-15.23	- 7.50	0.35	-11.46	-14.61	23.36	-19.24	-16.45	. 5.99	- 8.30	- 7.69	-17.10
L'AURI	Ŧ	7	-10.06	17.48	1.49	2.52	- 7.60	-12.55	- 4.34	-5.46	-9.80	12.70	23.76	2.70	0.85	0.82	20.47	6.20	6.07	35.46	2.20	8.46	10.86	17.92	18.61	9.90
ucuvity	H2	9	23.84	3.09	15.16	98.65**	12.17	-15.09*	25.22	-19.21	-24.51	- 7.57	4.56	26.36*	18.60	-21.15**	-4.56	-12.61	-28.15*	- 1.32	-4.74	8.16	-11 79	-24.23*	-50.23**	-39.63**
rie. Conducavity	H	2	29.92**	19.64	13.82	104.95**	19.68	12.95	\$6.48**	0.78	- 5.88	2.18	14.63	28.56	20.74	<u>8</u> -	23 60-	12.99	- 7.15	-0.40	č6.0	17.65	4.61	521	-30.99	-16.33
ruicss	H	4	-22.89*	-29.15	-26.37	-24.35	-38.67**	-43.91**	-36.80	-27.99**	-33.74	-24.18*	-27.74	-21.18	-18.78	-26.14	-12.87	-12.43	-27.10	-14.91	-22.49	-16.86	-25.69	-21.70	20.62	-21.57
	H	3	16.69	-16.01	-15.76	-15.31	-31.43**	-30.01	-25.95	- 21.29*	-25.45**	-16.10	-23.10	-18.07	-15.70	-13.52	-4.80	6335 -11.31 -12.43	-23.81*	-11.28	-17.27	-11.13	-20.83	-20.60	-13.16	-16.72
Crosses -	- 1	2	SPV-1201 x ICSB -101B	SPV-1201 x AKms 14 B	SPV-1201 x SRT 26B	SPV-1201 x GJ-35-15-15	SPV-1201 x SPV - 946	SPV-1201 x SPV - 104	SPV-1201 x IS - 2284	SPV-1201 x IS-6335	N x IS - 947	ICSB-101B x AKms 14 B	ICSB - 101B x SRT - 26 B	ICSB 101B x GJ-35-15-15	ICSB - 101B x SPV 946	ICSB - 101B x SPV 104	ICSB - 101B x IS - 2284	ICSB - 101B x IS - 6335	ICSB - 101B x IS - 9471	AKnis - 14 B x SRT - 26B	AKms - 14 B x GJ-35-15-15		AKins - 14 B x SPV 104	AKms - 14 B x IS - 2284	AKms - 14 B x IS - 6335	AKms - 14 B x IS - 9471

3	2
1	1
ŝ	Ξ

able 15 Contd

		ł.	_						-24 12**															115.0
	n	-27.33	-25.52	-23.12*	- 5.22	-21 74	91.9 -	-27.45	81.01-	-24.35	-20.87	-20.00	-25.81*	-19.09	-15.45	-2.00	- 9.60	-21.60	-17.50	- 6.25	- 133	4.00	0.137	0.638
	12	0.00	0.00	4.00	-13.33	-33.33	000	05.0	000	10.22	-30.67	- 2.50	6.50	11.7	5.67	10.00	13.78	-26.33	- 6.00	-30.67	11.11-	-19.67-	6.406	12.699
	П	0.00	0.00	4.00	- 8.24	-20.00	000	2 50	00.0	16.71	-16.80	- 2.50	6.50	13.41	13.20	10.00	20.47	-11.60	- 6.00	-20.76	- 5.88	. 3.60	882.5	10.997
	10	4.64	- 3.09	- 6.08	-11.03	6.77	4.56	12.63	3.70	25.60	7.27	7.60	- 8.21	3.89	13.05	- 1.43	- 0.34	- 1.79	- 6.27	- 2.39	3.23	4.56	1 944	3.854
	2	7.52	- 0.84	5.07	-7.20	8.61	8.80	13.12	13.20	27.54	12.07	14.92*	0.59	5.95	17.62	4.85	17.26	11.54	8.59	3.48	11.84	7.00	1 684	3 337
c	×	-21.61	-10.79	12.71	4.88	4.33	- 5.00	-11.93	-12.27	3.95	- 8.17	-10.32	-10.28	- 8.89	3.30	-11.17	- 1.21	-14.31	-21.50	- 1.80	- 9.22	-13.16	21 423	42.464
	-	- 8.13	7.60	22.02*	25.15**	24.40**	17.34*	- 8.80	- 4.32	6.25	- 6.23	- 4.42	0.99	7.67	4.79	- 8.47	9.90	- 4.76	- 9.30	- 4.70	- 5.24	- 9.27	18,553	36.775
,	•	-4.02	20.05	-12.25	- 1.68	-21.66*	-51.44**	63.27**	1.40	-6.82	-2.70	-14.24	-10.53	7.14	-16.25	-34.46**	-31.90**	-23.32**	-47.63	-45.68*	0.74	-1.63	37.988	75.299
~		6.87	29.48	4.86	35.74**	8.00	-33.09**	69.04	32.00**	19.18	24.26	9.46	13.56	40.50**	9.66	-14.23	4.58	17.64	-19.68	46.01*	1.04	-1.56	32.899	65.210
	-	-30.28	-31.57	-16'6E-	-35.41	-46.62	-37.66**	-17.85	-25.22	-15.05	-32.06**	-34.73	-22.94	2.33	-16.48	-12.94	-33.45*	-32.23	-27.95	-34.48**	-34.78	-33.05**	0,708	1.404
~		-CC 97-	-29.76	-33.43	-33.57	-43.87	-36.47**	-17.73	-15.33	-10.52	-30.25	-34.36**	-12.64	7.94	-14.38	-12.31	-28.16*	-21.49	-18.83	-29.25	-31.67**	-30.88	0.613	1.216
6	COT ACD CLAST 15 15	CI-CI-CF-DX 207 - 1XC	SKI - 20B X SPV - 946	SKI - 20B X SPV - 104	SRT - 26B x IS - 2284	SRT - 26B x IS - 6335	SRT – 26B x IS – 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV 104	GJ-35-15-15 x IS - 2284	GI-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV - 104	SPV - 946 x IS - 2284	SPV - 946 x IS - 6335	SPV - 946 x [S 947]	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 x IS -6335	IS 2284 x IS - 9471	IS 6335 × IS 9471	SE	CD at 5%

Significant at 5% Significant at 1% . :

3	CIDEGES	Germ	Germination	F. mc	F. moniliforme	F. pallidoroseum	Proseum	ບ	C. Iunata	Ő	Other funsi
ĉ		Н	H2	H	H2	HI	H2	IH	GH	E	н
-	2	m	4	۲	0	L	~	0		=	=
-	SPV-1201 x ICSB - 101B	45.67**	34.06*	8.37	-0.83	-62.90	-65.54	-16.64	-18.88	CP LP	11 02
2	SPV-1201 x AKms - 14 B	5.66	11.18	13.26	-0.04	-41.22	-49.36	-24 98	27.46	10 1	007
m	SPV-1201 x SRT - 26B	40.03**	37.20	20.54	9.37	-35.38	-39.26	-15.45	15 74	46.94	25.20
•	SPV-1201 x GJ-35-15-15	57.41	25.31	17.15	15.23	-15.45	-24.82	-417	114	26.61-	17.12
Ś	SPV-1201 x SPV - 946	29.78**	22.81	18.89	13.94	-40.46	-48.30	-14 66	-1617	3.0	21.11-
9	SPV-1201 x SPV - 104	42.74**	19.04	21.31	3.02	-58.55	-59.69	-13 90	-18.87	17 18	() () () ()
5	SPV-1201 x IS - 2284	17.27	3.13	14.08	1.11	-51.61	-60.36	0.22	-11.51	34.05	26.58
80	SPV-1201 x IS-6335	20.03	6.20	60.46	19.41	0.02	-13.99	3.77	-20.15	7.04	7 03
ۍ : د	SPV-1201 × IS - 9471	7.57	-1:90	40.44	1.7	-30.11	-33.08	10.18	-11.70	13.78	6.5
≘ :	ICSB - 101B x AKms 14 B	78.73	38.93	- 7.59	-11.20	-44.85	-55.32	3.26	2.58	53.30	39.68
=		34.31*	25.98	9.11	8.10	-40.58	-41.33	- 7.75	-9.92	89.93	75.80
2		43.24**	29.84*	3.04	- 4.26	-58.50	-65.40	-4.04	-4.68	51.66	18.87
n :		34.45*	30.53	18.90	13.29	-43.36	-47.36	-10.32	-14.23	15.63	-10.77
4		31.81	18.27	14.83	5.71	-19.57	8.22	-18.32	-24.90	31.39	18.12
<u>n</u> :		24.22	1.72	48.21	21.64	-35.08	-49.77	-14.11	-25.92	38.63	8.65
2		32.08	8.76	29.39	-9.07	-64.47	-71.27	10.08	-16.88	45.48	19.18
5	ICSB - 101B x IS - 9471	34.36	13.71	36.00	- 1.85	19.57	-28.23	-8.95	-28.50	37.78	16.44
2	AKms - 14 B x SRT - 26B	19.68	-11.09	8.15	4.87	-25.00	-38.64	-3.14	-6.02	-0.59	-15.50
<u>s</u> :	1	62.84	18.13	19.92	7.40	-66.22	-67.41	3.94	-3.94	-18.18	-40,00
2	AKms - 14 B x SPV - 946	39.71	6.34	4.36	- 4.27	-29.34	-45.86	10.07	4.60	-8.24	-33.62
7	- 14 B x SPV	50.03	27.37	35.13	29.24	-23.79	-32.73	-29.35	-35.43	12.18	-7.10
12	7	39.91	- 5.30	35.34	7.68	- 1.71	- 7.46	-25.61	-36.20	44.53	5.98
3	- 14 B x IS -	57.06	7.11	30.69	-10.24	1.90	1.66	-9.68	-32.11	65.55	26.23
2	AKms - 14 B x 1S - 9471	48.48**	2 76	19.07	-16.13	-55.85	-60.48	-6.18	-26.69	96.04	53.66
											Contd

2	m	4	۰	ه	-	8	6	10	=	12
÷.	26.00	21.47	26.48	16.51	-31.02	-41.89	-24.64	-26.89	26.00	20
26B x SPV – 946	31.66	27.07	-12.57	-17.43	-50.74	-54.75	10.03	7.71	33.09	6 00
	23.40	4.64	- 1.93	- 8.93	-58.08	-61.61	7.98	1.52	19.03	15.30
6B x IS - 2284	3.85	-10.27	7.58	-12.35	-30.26	-45.54	-1.17	-13.00	15.03	7
:6B x IS - 6335	28.19*	11.43	43.21	0.10	-39.04	-50.22	19.87	-7.99	28.58	12.51
26B x IS - 9471	15.90	3.77	58.35	13.62	-39.34	-45.25	4.43	-16.33	14.09	3.30
5-15 x SPV – 946	26.64	17.99	14.39	11.41	-74.43*	-79.88	-13.24	-17.55	8.39	6.08
5-15 x SPV 104	13.24	- 6.80	35.30	16.50	-24.26	£6.0£-	-1.24	-9.74	-29.64	30.80
IS-15 x IS - 2284	24.54*	11.12	47.30	28.68	46.03	32.91	-12.06	-24.54	-15.54	-15.55
15-15 x IS - 6335	16.53	4.62	75.60	29.28	-20.20	-23.20	6E. 6-	-31.90	-8.59	-13.67
15-15 x IS - 9471	8.35	0.33	67.80	27.23	-13.31	-19.78	-13.36	-32.29	-6.63	-14.93
~	47.35	28.80	18.24	4.17	-37.26	-46.81	-15.40	-10.83	-21.40	-33.94
946 x IS - 2284	18.30	0.79	55.97	33.22	-24.31	-44.36	-7.22	-16.78	15.88	13.42
946 x IS - 6335	38.44	16.76	16.04	-16.00	-48.69	-60.75	-8.61	-28.77	36.90	26.70
946 x IS 9471	21.78	5.67	61.19	22.28	-31.62	-42.77	-13.58	-29.79	-12.64	-21.94
104 x IS 2284	24.00	-6.58	35.03	3.95	-8.55	-23.57	16.1-	-8.58	-16.01	-28.15
104 x IS 6335	17.29	-11.21	62.55	<u>9.00</u>	29.28	13.88	2.03	-17.96	1.08	-9.02
104 x IS 9471	20.04	- 6.95	82.99	25.62	19.82	17.93	-22.08	-34.55	0.96	-5.86
4 x IS -6335	6.89	6.15	150.48	104.41**	71.64	61.94	-31.19	-41.39	-10.09	-15.10
4 x IS - 947 i	20.00	15.26	116.33	82.93	-11.92	-25.23	-38.72	-45.25	-3.05	-11.68
5 x IS 9471	18.00	14.74	114.25	105.11	13.56	1.45	-16.93	-21.33	-9.37	-12.77
SE	5.899	6.800	9.56	11.03	2.40	2.77	8.42	9.72	4.72	5.46
5%	11.673	13 478	18 94	71.87	4.76	\$ 50	16.62	10 76	54.0	

III – 24

Table 16 Contd.....

194

Significant at 5% Significant at 1%

. :

HI H2 H1	Crosses		Protein	Soluble	Soluble sugars	Ţ	l'annins	Flav	Flavan-4-ole
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		IH	H2	HI	H2	H	H2	HI	CH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	3	4	s	9	1	~	0	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V-1201 x ICSB - 101B	-14.49**	-15.44**	-7.34*	-9.51*	-0.88	-2.67	000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	^o V-1201 x AKma - 14 B	-26.15**	-26.99**	-17.40**	-22.09**	-4.58*	461*	000	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2V-1201 x SRT - 26B	-25.65**	-25.73	-11.82**	-16.10**	-2.25	-2 67	000	800
6	PV-1201 x GJ-35-15-15	-14.20**	-17.39**	1.31	-2.33	-2 67	-267	0.00	88
4 -13.57^{+0} -14.49^{+0} -6.44 -12.10^{+0} -1.80 -1.30^{-0} -0.00^{-0} -15.50^{+0} -10.180^{+0} -5.50^{-0} -10.180^{-0} -2.02^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.13^{-0} -2.23^{-0} -2.52	PV-1201 x SPV 946	-18.01 **	-20.21**	-3.67	-7.08	-2.71	PL C-	800	8.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PV-1201 x SPV - 104	-13.57**	-14.49**	-6.44	-12.10**	-1.80	-1.80	0.00	800
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PV-1201 x IS - 2284	-5.50**	-10.18**	-5.50	-8.42*	1.53	-34.15**	20.28**	-75 10**
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PV-1201 x IS-6335	-16.22**	-18.30++	2.29	2.29	16.23**	-23.24	18.04**	-26.32**
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	PV-1201 x IS – 9471	-2.13**	-9.15**	1.06	-0.10	31.08**	-6.29-	37.72**	-19 27++
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SB - 101B x AKms 14 B	-23.56	-25.25**	-20.82**	-26.96**	-0.92	-2.74	0.00	000
-15-15 -19.92** -23.72** -3.87 -5.13 -2.79 -4.55* 0.00 946 -24.45** -27.29** -6.75 -7.32 -9.90 -19.57 0.00 284 -19.57** -27.33*** -9.90** -13.41*** -2.79 -4.55* 0.00 284 -19.57*** -23.34*** -5.54 -10.53*** -2.79 -4.55 0.00 335 -18.78*** -2.64*** -4.83 -7.08 -1.03 35.21*** 5.69*** 335 -18.78*** -2.64*** -4.83 -7.08 -1.03 35.21*** 2.00 26B -27.43*** -28.67*** -29.32**** -3.67 0.00 -15-15 -24.58**** -19.77**** -29.32**** -3.67 0.00 -15-15 -24.43**** -19.77**** -29.32**** -2.14***** 2.07 -104 -24.38**** -19.77**** -26.64***** -3.67 0.00 -104 -24.38**** -19.77**** -26.64***** -2.14**** 2.14 -104 -24.38**** -19.77**** -26.64****** -3.67 0.00 -104 -24.38***** -19.76***** -21.49***** -4.61 0	7	-19.62**	-20.42**	-17.38**	-23.14**	-1.40	-2.76	0000	000
946 -24.45* -27.26* -6.75 -7.92 -0.03 -1.87 0.00 104 -20.62** -22.33** -9.90** -13.41** -27.79 -4.55 0.00 324 -19.57** -24.36** -5.34 -7.08 -1.03 -35.21** 20.4** 487 -10.87** -24.36** -5.31 -7.48 -7.08 -1.03 -35.21** 20.4** 471 -19.80** -26.31** -6.31 -7.45 12.29** -20.60** 5.67** -26B -27.43** -28.66** -28.67** -29.32** -30.60** 5.67** -26B -27.43** -28.67** -29.32** -30.67** -36.7 0.00 -156 -27.43** -17.56** -26.84** -3.67 0.00 -164 -27.27** -28.47** -17.64** -4.58** -4.61 0.00 -104 -24.33** -17.76** -26.84*** -4.61 0.00 -104 -27.27** -28.44*** -17.64*** -11.36*** -21.49*** 48.8*** -21.33*** -22.91*** -17.64*** -11.36*** 21.69**** -21.49*** 48.8*** -27.28*** -27.28**** <td< td=""><td>7</td><td>-19.92**</td><td>-23.72</td><td>-3.87</td><td>-5.13</td><td>-2.79</td><td>-4.55*</td><td>000</td><td>0.0</td></td<>	7	-19.92**	-23.72	-3.87	-5.13	-2.79	-4.55*	000	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	-24.45**	-27.26	-6.75	-7.92	-0.03	-1.87	0000	0.00
284 -19.57** -24.36** -5.54 -10.53** 2.38** -34.15 6.69* 315 -18.78** -21.64** -4.83 -7.08 -1.03 35.21** 25.44** 26B -27.43** -28.51** -6.31 -7.45 1.2.29 -36.7 0.00 -15-15 -24.38** -28.67** -29.32** -3.22 -3.67 0.00 -15-15 -24.48** -19.77** -28.67** -29.32** -3.27 -3.67 0.00 -15-15 -24.48** -19.77** -28.67** -29.32** -3.74 -2.74 0.00 -15-15 -24.43*** -19.77** -26.84** -4.58 -2.00 -0.00 -104 -24.38*** -19.77** -26.84*** -1.87 -2.6 -0.00 -104 -24.38*** -11.76*** -26.84*** -2.87 0.00 -28 -12.76*** -28.84*** -11.36*** 21.49*** 48.84*** -104 -22.89*** -14.96*** -11.36*** 21.19**** 21.99**** 21.94**** -28 -29.21 -29.21 -20.81**** -20.81**** 21.34**** 23.94***** -28 -11.36*** 13.66****	- 101B x SPV	-20.62**	-22.33**		-13.41**	-2.79	-4.55	0.00	000
335 -18.78** -21.64*** -4.85 -7.08 -1.03 -35.21** 22.04** 471 -19.80*** -26.31*** -6.31 -7.45 12.29*** 20.60*** 5.67*** 468 -28.56**** -28.45**** -28.64**** -16.44 3.67 0.00 -15-15 -24.68*** -28.64**** -17.65*** -25.64**** -3.67 0.00 -104 -27.27*** -28.42**** -9.67**** -17.65**** -2.74 2.74 0.00 -104 -24.33**** -17.76**** -25.84***** -17.65**** -26.84****** -4.61 0.00 -104 -24.33***** -17.76**** -25.84********* -17.65************************************	- 101B x IS -	-19.57**	-24.36**	-5.54	-10.53**	2.38*	-34.15	6.69	-33 64++
471 -19.80** -26.31** -6.31 -7.45 12.29** -20.60** 5.67** -26.8 -28.36** -28.67** -28.67** -3.67 0.00 -164 -27.43** -28.36** -9.67** -17.63** -26.64** 36.67 0.00 -946 -27.27** -28.42** -9.67** -17.63** -27.4 0.00 -104 -24.3** -17.65** -26.84** -4.61 0.00 -104 -24.3** -17.65** -26.84** -4.61 0.00 -104 -24.3** -17.65** -26.84** -4.58** -4.61 0.00 214 -27.8** -21.49** -21.49*** -21.49*** -21.49*** 234 -17.56*** -19.6*** -11.36*** 21.6**** -21.6**** -21.49**** 237 -11.36*** 21.6***** -21.8****** -21.9***** -21.4************************************	1	-18.78**	-21.64**	-4.85	-7.08	-1.03	-35.21**	22.04**	-23.82
26B -27.43** -28.56** -28.67** -29.32** -3.22 -3.67 0.00 15-15 -24.68** -26.68** -19.72** -28.47** -19.72** -27.4 27.4 0.00 -94 -27.43*** -19.77** -28.47** -29.67*** -19.75*** -24.43*** -19.77*** -26.84*** -4.58*** -4.61 0.00 -104 -24.38*** -24.43**** -17.76*** -26.84**** -4.58**** -4.61 0.00 284 -22.39**** -25.91***** -8.84**** -11.36*** 21.05**** -21.49**** 48.88*** 284 -22.59**** -25.60***** -14.36**** -11.36*** 21.13**** 21.34**** 21.34**** 21 -25.19**** -29.61**** -13.36*** 13.65**** 21.69**** 21.34****	101B × IS -	-19.80**	-26.31	-6.31	-7.45	12.29**	-20.60**	5.67**	-38,48**
-15-15 -24.68*** -26.88*** -19.72*** -26.84*** -3.67 30.62*** -946 -27.27**** -2.67**** -17.65**** -2.74 0.00 -104 -24.38**** -24.43***** -17.65***** -2.68.84**** -4.61 0.00 -104 -24.38***** -24.43***** -17.65***** -26.84****** -4.61 0.00 354 -22.93********** -17.65************************************	Kms – 14 B x SRT – 26B	-27.43**	-28.36**	-28.67**	-29.32**	-3.22	-3.67	0.00	0.00
946 -27.27** -28.42** -9.67** -17.63** -2.74 -2.74 0.00 -104 -24.33** -17.76** -26.84** -4.58 -4.61 0.00 284 -24.33** -17.76** -26.84** -4.58 -4.61 0.00 284 -22.89** -25.91** -8.84** -11.36** 21.49** 48.88** 375 -11.38** -12.60** -11.36** 31.51** -21.19** 23.34** 471 -25.19** -5.0 -11.36** 36.84** -21.53** 31.23**	Kms – 14 B x GJ-35-15-15	-24.68**	-26.68**	-19.72**	-26.84	-3.64	-3.67	30.62	30.62
104 -24.38*** -14.43**** -17.76**** -26.84**** -4.58*** -4.61 0.00 284 -22.89**** -25.91***** -8.84**** -11.36**** 21.09**** -21.49**** 48.88*** 284 -23.59**** -14.56***** -11.36**** 21.09**** -21.49**** 48.88*** 213 -11.36**** -19.36**** 19.78*** 18.51***** -21.49**** 28.34**** 471 -25.19**** -29.81***** -50.61***** -13.66**** 36.84***** -21.5***** 31.23***	Kms – 14 B x SPV – 946	-27.27**	-28.42**	-9.67	-17.63**	-2.74	-2.74	0.00	00.0
284 - 22.89** -25.91** -8.84** -11.36** 21.05** -21.49** 48.88** 335 -11.38** -12.60** -14.96** -19.78** 18.51** -21.71** 28.34** 471 -25.19** -29.81** -5.0 -11.36** 36.84** -2.15* 31.23**	Kms – 14 B x SPV – 104	-24.38**	-24.43**	-17.76	-26.84	-4.58*	4.61	0.00	00.0
- 14 B x IS - 6335 - 11.38** -12.60** -14.96** -19.78** 18.51** -21.71** 28.34** - 14 B x IS - 9471 - 25.19** -29.81** -5.0 -11.36** 36.84** -2.15* 31.23**	Kms - 14 B x IS - 2284	-22.89**	-25.91**	-8.84	-11.36	21.05**	-21.49**	48.88**	-7 40++
- 14 B x IS - 9471 -25.19** -29.81** -5.0 -11.36** 36.84** -2.15* 31.23**	- 14 B x IS -	-11.38**	-12.60**	-14.96**	-19.78**	18.51**	-21.71**	28.34	-19 80++
	- 14 B x IS -	-25.19**	-29.81**	-5.0	-11.36**	36.84**	-2.15*	31.23**	-23.60**

1	I													19	96						ł				
10	0.00	41.30**	0.00	-18.36**	-5.06**	-22.55**	48.37**	26.45**	-30.99**	-33.33**	-33.41**	0.00	-19.84**	-5.08**	-26.85**	-15.49**	-1.71	-22.88**	-14.79**	-18.14	-17.80**	0.053	0.106		
6	0.00	41.30**	0.00	31.26**	52.10**	33.03**	48.37**	26.45**	10.96**	6.81*	14.38**	0.00	28.88**	\$2.07**	25.64**	35.87**	47.85**	32.17**	-14.01**	-2.18	-1.08	0.046	0.092		
8	-0.80	-2.74	0.07	-28.08**	-18.26**	-1.15	-0.87	-3.61	-34.03**	-35.21**	-21.23**	-3.67	-34.99**	-26.56**	-20.20**	-33.44**	-22.29**	-6.81**	-36.10**	-29.43**	-19.85**	0.017	0.033		
-	-0.37	-2.28	0.50	11.12**	24.02**	38.64**	-0.84	-3.61	1.71	-1.90*	10.19**	-3.64	0.23	11.17**	11.61**	2.63**	17.65**	30.36**	-33.63**	-16.54**	-6.23**	0.014	0.028		s
9	-18.30**	-16.19**	-25.48**	-7.64**	-11.81**	-9.71**	-14.79**	-2.69	-8.32*	4.69	-0.03	-17.34**	-17.53**	-9.51*	-12.73**	-19.99	-23.13	-18.39**	-15.09**	-12.81**	-9.58*	0.057	0.114	parents	octicr parcni
s	-11.10**	-8.86**	-16.90**	-5.86	-7.31*	-4.06	-14.14**	-0.04	-2.00	-1.14	2.53	-15.5**	-11.88**	-6.19	-10.54**	-12.31**	18.18**	-14.08**	-12.39**	-9.03**	-8.53*	0.049	0.098	feterosis over mean of parents	er mean of l
4	-27.69**	-25.94**	-16.56	-29.15**	-23.27	-30.36**	-19.32**	-17.98++	-21.81**	-23.70**	-27.86**	-12.34**	-21.02**	-21.14**	-24.16**		-5.26**	-15.83**	-17.40**	-9.88**	-7.57**	0.032	0.064	Heterosis ov	Heterosis over mean of better parents
m	-24.82**	-23.81**	-15.57	-25.38**	-21.23	-24.91**	-18.43**	-15.70**	-20.75**	-22.68	-25.07**	-10.87**	-19.07**	-20.97**	-20.38**	-5.95	-3.88**	-10.24**	-15.19**	-7.61**	-2.77**	0.028	0.056	H	H2
2	SRT - 26B x GJ-35-15-15	SRT - 26B x SPV - 946	SRT - 26B x SPV - 104	SRT - 26B x IS - 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV - 104	SPV - 946 x IS - 2284	SPV - 946 x IS - 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 x IS -6335	IS 2284 x IS - 9471	IS 6335 x IS 9471	SE (m)	CD at 5%	Significant at 5%	Significant at 1%
-	52	56	57	58	ର	8	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45			•	:

111 - 26

Table 17 Contd.....

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Parenta/ Crosses	100 81	nn weigh	4 (g)	Gmin	Grain hardness kg/cm	g/cm ⁻⁴	Endos	Endosperm texture (%)	re (%)	Ele. cont	Ele. conductivity (millimhose)	ullimbose)		DTF	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.			2	Pooled	=	L2	Pooled	L1	12	Pooled	11	5	Pooled	1	5	Pooled
314 281 292 910 867 883 275 323 344 555 355 <th></th> <th></th> <th>3</th> <th>4</th> <th>۶</th> <th>ه</th> <th>7</th> <th>œ</th> <th>6</th> <th>10</th> <th>=</th> <th>12</th> <th>n</th> <th>Z</th> <th>2</th> <th>91</th> <th>17</th>			3	4	۶	ه	7	œ	6	10	=	12	n	Z	2	91	17
N 251 252 251 251 252 251 252 252 252 252 252 252 252 252 252 252 252 252 252		SPV-1201	3.04	2.81	2.92	9.10	8.67	8.88	27.75	30.80	29.28	194.50	159.50	177 00	80.50	73.00	76.75
2 2 2 3		ICSB-101B	2.51	2.51	2.51	7.74	6.94	7.34	30.30	26.15	28.23	287.50	242.50	265.00	88	8622	282
251 216 230 744 756 33.0 32.1 32.0		Akms-14B	2.03	2.57	2.30	8.00	6.95	7,48	29.70	32.80	31.25	335.00	188.50	26175	67 M	399	34.53
227 214 207 844 7.44 7.44 7.44 7.6		SRT-26B	2.54	2.06	2.30	7.44	6.56	2.00	33.70	32.10	32.90	275.00	300.50	287.75	8.8		22
267 203 215 817 756 637 7410 1600 7577 161 176 166 166 166 166 167 175 167 167 175 167 175 167 175 167 175 167 175 167 175 167 175 167 175 167 175 167 175 165 175 165 175 165 175 165 175 166 175 166 175 166 167 <td></td> <td>QL-35-15-15</td> <td>2.01</td> <td>2.14</td> <td>2.07</td> <td>8.44</td> <td>7.04</td> <td>7.74</td> <td>27,60</td> <td>18.00</td> <td>2 80</td> <td>135.00</td> <td>251.00</td> <td>102 00</td> <td>802</td> <td>38</td> <td>28</td>		QL-35-15-15	2.01	2.14	2.07	8.44	7.04	7.74	27,60	18.00	2 80	135.00	251.00	102 00	802	38	28
260 290 250 550 150 1010 575 550 190 1950		SPV-946	2.27	2.03	2.15	8.77	7.85	8.31	24 10	19.90	88	125.00		157.75	8.02	38	
164 1.76 169 6.87 5.85 6.57 5.85 5.75 16.87 16.95 <td></td> <td>SPV-104</td> <td>2.60</td> <td>2.90</td> <td>2.75</td> <td>6.60</td> <td>6.08</td> <td>6.34</td> <td>51.60</td> <td>46.80</td> <td>49.20</td> <td>350.00</td> <td>260.00</td> <td></td> <td>39</td> <td>38</td> <td></td>		SPV-104	2.60	2.90	2.75	6.60	6.08	6.34	51.60	46.80	49.20	350.00	260.00		39	38	
166 169 167 697 618 653 656 614 1960 17200 16000 250 265 214 766 3500 556 614 9600 197500 10000 250 265 214 766 3300 3210 3103 27750 10000 97500 10000 97500 10000 97500 10000 97500 10000 97500 10000 97		IS-2284	1.61	1.76	1.69	6.82	5.91	6.37	58.55	56.95	57.75	185.50	108.00	146.75	202	38	
250 191 159 520 151 550 154 550 156 <td></td> <td>15-6335</td> <td>1.64</td> <td>1.69</td> <td>1.67</td> <td>6.97</td> <td>6.68</td> <td>6.83</td> <td>66.95</td> <td>55.85</td> <td>6140</td> <td>198.00</td> <td>122 00</td> <td>160.00</td> <td>3</td> <td>38</td> <td></td>		15-6335	1.64	1.69	1.67	6.97	6.68	6.83	66.95	55.85	6140	198.00	122 00	160.00	3	38	
240 255 810 714 76 300 325 310 100 240 254 255 200 330 325 300 325 300 325 300 325 300 325 300 325 300 325 300 325 300 325 300 325 300 325 300		12-9471	2.06	1.91	1.99	5.29	6.11	5.70	61.40	55.30	58.35	67 CO	105.00	00101	200	35	34.04
2.40 2.61 2.51 6.50 5.57 6.50 3.57 3.32 2.560 1.600 2.253 2.560 1.600 2.253 2.560 1.600 2.253 2.560 1.600 2.253 2.560 1.600 2.253 2.560 1.600 2.253 2.560 1.600 2.253 2.560 1.600 2.756 2.756 2.560 1.600 2.253 2.560 1.600 2.756 2.766 <th2.766< th=""> <th2.766< th=""> <th2.766< th=""></th2.766<></th2.766<></th2.766<>		SPV-1201 x ICSB-101B	2.50	2.62	2.56	8.18	7.14	7.66	30.05	32.10	31.08	257.50	138.00	107 75	38	32	
2.43 3.25 2.84 6.90 7.25 7.76 3.35 2.875 5.650 2667 2.60 199 2.25 6.97 7.76 7.35 215 2360 196600 2.60 199 2.25 6.97 6.97 8716 3339 3455 247500 166600 2.60 199 2.25 6.97 7.08 7.339 5457 7750 1667 2.86 2.87 7.80 6.87 8010 5105 5455 247500 1650 2.86 2.81 7.20 8.85 3455 3475 247500 1650 2.81 2.21 2.81 7.20 8.85 5455 5770 1650 2455 2.81 2.81 7.81 7.84 7.85 7.83 2800 1500 2805 2.81 2.81 6.81 6.81 6.91 5105 566 2805 2660 2875 28750 16750		SPV-1201 x Altms-14 B	2.40	2.61	2.51	6.90	5.57	6.23	40.00	38.75	39,38	295.00	150.00	22250	SA OD	822	12
251 254 253 750 755 756 <td></td> <td>SPV-1201 x SRT - 26B</td> <td>2.43</td> <td>3.25</td> <td>2.84</td> <td>6.90</td> <td>7.23</td> <td>7.06</td> <td>33,30</td> <td>43.25</td> <td>38.28</td> <td>262.50</td> <td>155.00</td> <td>208.75</td> <td>89.00</td> <td>28.00</td> <td>82.60</td>		SPV-1201 x SRT - 26B	2.43	3.25	2.84	6.90	7.23	7.06	33,30	43.25	38.28	262.50	155.00	208.75	89.00	28.00	82.60
250 139 225 639 637 631 <td></td> <td>SPV-1201 x GJ-35-15-15</td> <td>2.13</td> <td>2.54</td> <td>2.33</td> <td>7.70</td> <td>7.85</td> <td>7.78</td> <td>27.25</td> <td>21.15</td> <td>24.20</td> <td>235.00</td> <td>135.00</td> <td>185.00</td> <td>87 00</td> <td>74 50</td> <td>80.75</td>		SPV-1201 x GJ-35-15-15	2.13	2.54	2.33	7.70	7.85	7.78	27.25	21.15	24.20	235.00	135.00	185.00	87 00	74 50	80.75
1 316 341 325 555 56 65 1400 27075 114 236 231 237 231 231 231 231 231 231 231 231 231 232 231 232 231 231 232 231 233		SPV-1201 x SPV -946	2.50	1.99	2.25	6.95	6.97	6.96	35.15	33.95	34.55	247.50	237.50	242.50	84.00	76.00	8008
233 227 231 661 730 695 550 6400 7510 650 750 656 650 651 6100 15510 1510 1.11 233 231 266 56 650 631 601 5105 553 23000 15570 15172 3.81 254 196 537 5105 553 23000 15570 15172 3.81 254 196 537 5105 553 23000 15570 15172 3.81 255 196 666 633 601 5105 553 23000 15570 17172 3.81 258 237 101 2382 1710 2383 2263 17172 2.81 267 646 656 656 650 650 650 650 650 650 650 650 650 650 650 650 650 7700 1000 23000		SPV-1201 x SPV- 104	3.16	3.41	3.29	5.95	6.46	6.21	48.10	45.05	46.58	397.50	144.00	270.75	86.00	74.50	80.25
233 225 231 728 760 745 755 750 755 111 259 250 251 726 746 755 750 750 755 251 255 150 746 755 555 2500 1755 251 255 150 575 516 537 5000 1755 251 256 566 567 566 567 566 567 566 567 566 566 567 566 576 566 567 566 566 566 566 566 566 566 566 566 566 566 566 566 566 566 566 566 566 576 567 567		SPV-1201 x IS -2284	2.36	2.27	2.31	6.61	7.30	6.95	59.50	48.00	53.75	184.00	118.00	151.00	82.00	71 00	76.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SPV-1201 x IS-6335	2.33	2.29	2.31	7.28	7.60	7.44	57.45	45.35	51.40	209.00	102.50	155.75	82.00	11.50	76.75
251 133 206 675 566 580 3575 450 403 3500 1560 2345 251 133 226 675 566 586 3575 450 403 3500 1500 2845 251 135 225 144 234 750 1700 28075 325 244 234 750 158 255 4130 3528 4130 28075 3255 244 234 726 546 567 566 567 560 327 2805 28		SPV-1201 x IS - 9471	2.59	2.71	2.65	6.54	6.08	6.31	60.10	51.05	55.58	230.00	112.50	171.25	82.00	73.00	77.50
220 195 225 645 527 588 235 110 2286 730 2205 220 195 225 645 577 588 235 710 2887 220 195 2265 645 577 728 5360 3255 2700 6400 2205 217 228 728 728 728 5560 3265 2600 1545 2205 218 209 773 645 646 646 637 556 4510 4918 7290 1900 1955 22700 2205 22170 2205 22170 2205 22170 2205 22170 2005 7270 2205 22170 2005 72700 2005 7270 2005 7270 2005 7270 2005 7270 2005 7270 2005 7270 2005 2000 1777 200 777 201 7775 7716 7775 <t< td=""><td></td><td>ICSB - 101B x AKms 14 B</td><td>2.18</td><td>1.93</td><td>2.05</td><td>6.75</td><td>6.86</td><td>6.80</td><td>35.75</td><td>45.00</td><td>40.38</td><td>293.00</td><td>156.00</td><td>224.50</td><td>63.00</td><td>68.00</td><td>65.50</td></t<>		ICSB - 101B x AKms 14 B	2.18	1.93	2.05	6.75	6.86	6.80	35.75	45.00	40.38	293.00	156.00	224.50	63.00	68.00	65.50
225 146 208 760 64 712 554 310 225 2700 1400 2205 225 24 23 723 73 73 73 254 554 358 22600 1245 2205 211 288 299 669 656 657 400 395 398 3059 1250 2025 212 208 209 773 647 618 518 536 650 651 1750 200 1657 201 201 201 201 77 64 519 515 640 521 670 1657 200 1657 201 201 201 201 201 77 64 519 517 640 236 3050 1657 200 1677 201 201 201 201 201 77 64 519 517 640 258 3132 050 200 290 211 211 213 640 366 618 517 640 258 3132 050 200 290 211 211 213 640 366 618 517 640 258 31250 900 1677 238 218 100 128 557 648 518 517 554 550 555 157 1750 2387 218 100 258 559 559 451 517 540 550 750 1500 16570 2387 218 200 255 559 559 451 565 451 555 515 1750 1500 1590 210 288 226 69 619 614 651 555 515 1750 1500 14700 17750 211 221 238 226 69 619 613 655 555 519 1750 11700 17750 212 238 225 601 619 535 576 655 598 756 1750 10700 14700 213 212 238 221 615 535 576 655 598 7550 10500 14700 17750 216 222 221 218 513 558 576 555 598 7500 1500 14700 17750		ICSB - 101B x SRT- 26 B	2.54	1.95	2.25	6.45	5.27	5.86	29.25	41.30	35.28	412.50	167.00	289.75	69.00	68.50	68.75
317 284 234 723 721 727 727 726 721 721 721 721 721 721 721 721 721 727 726 727 727 727 727 727 727 726 726 726 726 726 726 726 726 726 727 727 727 727 727 726 726 726 726 727 727 727 726 726 726 726 727 727 727 727 726 727 727 727 727 727 727 727 727 727 726 727 <td></td> <td>ICSB - 101B x GJ-35-15-15</td> <td>2.20</td> <td>1.96</td> <td>2.08</td> <td>7.60</td> <td>6.64</td> <td>7.12</td> <td>25.40</td> <td>31.10</td> <td>28.25</td> <td>277.00</td> <td>164.00</td> <td>220.50</td> <td>71.00</td> <td>72.00</td> <td>71.50</td>		ICSB - 101B x GJ-35-15-15	2.20	1.96	2.08	7.60	6.64	7.12	25.40	31.10	28.25	277.00	164.00	220.50	71.00	72.00	71.50
201 208 209 666 655 667 400 400 405 277 201 208 209 565 655 667 400 405 177 201 208 209 567 644 646 625 451 491 12900 1655 1775 225 211 211 213 640 721 495 456 652 900 900 960 900 967 225 211 211 213 640 517 645 549 652 900 900 967 900 967 900 967 900		ICSB - 101B x SPV - 946	2.25	2.44	2.34	7.23	7.32	7.28	29.45	35.80	32.63	280.00	124.50	202.25	69.00	70.50	69.75
210 208 727 614 686 52.5 4610 4611 4510 4610 4611 4510 4600 177.5 210 208 208 7.57 674 686 725 6400 6500 9600 9607 3 211 2211 2215 513 549 562 3400 5620 3900 9707 981 9817 9817 9817 9817 9817 9817 9810 7800 7817 9810 7817 9810 7817 9810 78175 9810 7810		ICSB - 101B x SPV - 104	3.11	2.88	2.99	6.69	6.65	6.67	4 0.08	39.75	39.88	303.50	150.50	227.00	88.00	71.00	79.50
210 208 7.3 6.10 7.1 4.37 4.35 4.66 7.35 6.10 7.35 6.10 7.35 6.10 7.35 6.10 7.35 6.10 7.35 6.10 7.35 6.10 7.35 6.10 7.35 6.10 7.35 6.10 7.35 6.10 7.35 6.10 9.0		ICSB - 101B x IS - 2284	2.08	2.08	2.08	7.27	6.44	6.86	52.25	46.10	49.18	129.00	106.50	117.75	57.00	69.50	63.25
2 22 217 221 613 589 601 755 6430 553 9500 9900 9900 2117 51 1213 640 557 6430 553 9500 9900 9900 21175 112 1213 640 551 6170 5400 2285 31550 23000 1773 2387 1252 638 653 618 610 326 658 4815 555 751 6175 0175 01 238 259 559 489 524 549 555 751 6170 1750 17750 1212 238 229 569 619 614 6810 557 6139 1800 14400 14700 17750 126 230 242 236 619 614 6810 555 6139 1800 1440 14700 17750 126 230 242 236 619 619 614 6810 557 6139 1800 1440 14700 17750 126 230 242 236 619 619 614 6810 557 6139 18000 14400 14700 17750 126 230 232 231 619 619 535 576 655 530 1750 10050 11400 14700 14700 1470 17750 126 231 231 238 231 619 619 614 6810 557 6139 18000 14400 147		ICSB - 101B x IS - 6335	2.10	2.08	2.09	7.73	6.70	7.21	49.75	43.55	46.65	112.50	00.66	106.75	57.00	62.00	59.50
3 241 211 213 640 395 518 517 640 2580 31550 2300 2775 15 258 250 257 464 510 910 325 438 32000 1750 23875 255 250 255 696 632 665 4415 553 5175 16750 1505 15960 210 238 229 559 419 524 545 553 557 16750 17500 1750 210 238 229 699 619 614 650 557 6193 1800 14400 14700 250 242 236 619 613 62 4425 645 7150 17500 17750 282 236 261 615 53 576 655 5380 258 17800 17400 17750 282 236 716 16 535 576 655 5380 258 1250 1050 11400		ICSB - 101B x IS - 9471	2.25	2.17	2.21	6.13	5.89	6.01	57.55	54.90	56.23	66	80.66	00.66	63.00	66.00	64.50
15 188 180 184 5510 46.4 510 49.10 32.25 43.68 32.000 175.70 239.75 2 2.55 2.56 2.55 4.64 51.0 49.10 32.25 45.94 59.00 175.50 239.75 1 3.10 2.55 2.56 4.89 5.24 4.96 55.83 15.60 175.00 177.00 2 2.17 2.38 2.25 6.09 6.19 6.14 68.10 55.75 15.80 177.00 177.50 2 2.12 2.38 2.36 6.19 6.14 68.10 55.75 15.80 177.00 177.50 2 12 2.38 5.31 5.67 65.75 61.85 69.80 177.50 187.75 196 2.52 2.11 61.61 5.35 5.76 65.85 58.80 175.80 193.75 177.50 196 2.52 2.11 61.61 5.35		AKms - 14 B x SRT - 26B	2.14	2.11	2.13	6.40	3.96	5.18	51.70	54.00	52.85	313.50	230.00	271.75	63.00	66.50	64.75
1 2.55 2.50 2.55 6.98 6.32 6.65 4.15 5.5.35 5.175 117500 111	~	AKma - 14 B x 0J-35-15-15	1.88	1.80	1.84	5.57	4.64	5.10	49.10	38.25	43.68	320.00	157.50	238.75	61.00	68.00	64.50
3.10 2.88 2.99 5.59 4.89 5.24 64.96 66.30 55.65 178.00 177.00 177.50 2.12 2.38 2.25 6.09 6.19 6.14 68.10 56.75 61.96 14.00 147.00 177.50 2.12 2.38 2.25 6.09 6.19 6.14 68.10 56.75 61.96 150.00 144.00 147.00 2.30 2.42 2.36 6.31 6.35 6.45.5 64.00 150.00 95.01 36.75 1.96 2.57 2.16 65.35 5.76 65.55 38.00 22.60 150.50 101.50	_	AKins 14 B x SPV 946	2.55	2.50	2.52	6.98	6.32	6.65	48.15	55.35	51.75	167.50	150.50	159.00	68.00	66.00	67.00
212 238 225 509 519 514 5510 5575 5139 18000 14400 14700 230 230 242 236 591 657 562 5425 5420 17500 9530 1537 235 231 515 555 555 558 555 5810 528 2150 10050 11100	_	AKms - 14 B x SPV - 104	3.10	2.88	2.99	5.59	4.89	5.24	54.96	56.30	55.63	178.00	177.00	177,50	69.00	68.00	68.50
2.30 2.42 2.36 6.91 6.73 6.82 64.25 64.55 64.40 175.00 98.50 136.75 1.96 2.25 2.11 6.16 5.35 5.76 66.55 58.80 62.68 121.50 100.50 111.00	~	AKms - 14 B x IS - 2284	2.12	2.38	2.25	6.09	6.19	6.14	68.10	55.75	61.93	180.00	114.00	147.00	63.00	65.50	64.25
1.96 2.25 2.11 6.16 5.35 5.76 66.55 58.80 62.68 121.50 100.50 111.00	~	AKins - 14 B x IS - 6335	2.30	2.42	2.36	6.91	6.73	6.82	64.25	64.55	64.40	175.00	98.50	136.75	57.00	60.50	58.75
	_	AKms - 14 B x IS - 9471	1.96	2.25	2.11	6 16	5.35	5.76	66.55	58.80	62.68	121.50	100.50	111.00	59.00	65.00	6200

III - 27 at charactore in 10 × 10 diall-1 of court

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	~	4	5	9	7	8	6	01	=	12	<u>د</u>	14	15	16	121
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		SRT- 26B x GJ-35-15-15	2.28	2.16	222	7.42	6.95	7.19	33.15	41.30	37.23	253.50	149.50	201.50	70.50	20.02	70.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SRT - 26B x SPV - 946	2.19	2.38	2.29	6.26	5.84	6.05	39.35	46.35	42.85	270.00	174.00	222.00	70.00	72.00	71.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SRT - 26B x SPV -104	3.01	2.72	2.87	6.60	6.45	6.53	50.85	52.55	51.70	189.50	166.50	178.00	68.00	66.50	67.25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SRT - 26B x IS - 2284	1.%	2.27	2.12	5.98	5.36	5.67	53.35	46.75	S0.05	282.50	119.00	200.75	63.00	60.50	61.75
193 2.31 2.13 6.05 4.44 5.24 6.13 6.06 6.100 75.90 <th>_</th> <th>SRT - 26B x IS - 6335</th> <th>F.63</th> <th>2.31</th> <th>1.97</th> <th>6.03</th> <th>6.09</th> <th>6.06</th> <th>69.45</th> <th>59.65</th> <th>64.55</th> <th>209.00</th> <th>123.00</th> <th>166.00</th> <th>58.00</th> <th>59.50</th> <th>58.75</th>	_	SRT - 26B x IS - 6335	F.63	2.31	1.97	6.03	6.09	6.06	69.45	59.65	64.55	209.00	123.00	166.00	58.00	59.50	58.75
2.8 2.10 2.33 8.71 8.53 5.55 6.53 7.30 7.39 7.30 7.35 1.80 2.00 1.90 6.31 6.36 6.35 6.35 6.35 7.30 7.3	_	SRT - 26B x IS - 9471	F6-1	2.31	2.12	6.05	4.44	5.24	61.50	49.75	55.63	183.00	123.00	153.00	60.09	61.00	60.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GJ-35-15-15 x SPV - 946	2.58	2.13	2.35	8.48	8.71	8.59	27.40	26.50	26.95	235.00	213.00	224.00	72.00	75.50	73.75
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GJ-35-15-15 x SPV- 104	2.69	2.70	2.70	6.53	7.08	6.81	47.40	46.55	46.98	250.00	202.50	226.25	73.00	76.50	74.75
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		GJ-35-I5-I5 x IS - 2284	1.80	2.00	6.1	6.91	6.90	6.90	60.35	49.60	54.98	181.00	130.50	155.75	68.00	68.50	68.25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	GJ-35-15-15 x IS - 6335	1.87	1.91	1.89	6.31	7.26	6.78	\$7.25	41.80	49.53	121.50	90.00	105.75	62.00	62.00	62.00
Ray-L(M JT J.28 J.24 J.26 J.20 J.20 <thj.20< th=""> J.20 J.20 <th< th=""><th></th><th>GJ-35-15-15 x IS - 9471</th><th>6.1</th><th>2.16</th><th>1.97</th><th>5.18</th><th>4.45</th><th>4.82</th><th>61.25</th><th>58.95</th><th>60.10</th><th>105.00</th><th>125.50</th><th>115.25</th><th>63.00</th><th>66.00</th><th>64.50</th></th<></thj.20<>		GJ-35-15-15 x IS - 9471	6.1	2.16	1.97	5.18	4.45	4.82	61.25	58.95	60.10	105.00	125.50	115.25	63.00	66.00	64.50
KLS-ZBM 1.7 1.94 1.65 7.5 5.2 6.3 7.10 4.70 6.70 7.80 7.90 1.80 1.75 8.10 9.10 9.00 1.75 7.50 <th7< th=""><th></th><th>SPV - 946 x SPV- 104</th><th>3.17</th><th>3.28</th><th>3.23</th><th>7.37</th><th>6.65</th><th>1.01</th><th>44.30</th><th>37.30</th><th>40.80</th><th>387.50</th><th>118.50</th><th>253.00</th><th>72.00</th><th>64.00</th><th>68.00</th></th7<>		SPV - 946 x SPV- 104	3.17	3.28	3.23	7.37	6.65	1.01	44.30	37.30	40.80	387.50	118.50	253.00	72.00	64.00	68.00
KIS-633 1.22 2.10 2.01 7.11 7.32 7.32 8.12 8.116 117.55 8.20 9.117.55 8.00 9.700 8.00 117.55 8.20 9.00 8.00 117.55 8.00 9.700 8.00 117.55 8.20 9.11 9.70 9.80 9.700 8.00 9.700 8.00 9.700 8.00 9.700 8.00 9.700 8.00 9.700 8.00 9.700 8.00 9.700 8.00 9.700 8.00 9.700 8.00 8.00 9.700 8.00 9.700 8.00	-	SPV - 946 x IS - 2284	1.78	<u>8</u>	1.86	7.57	5.52	6.54	53.00	34.40	43.70	139.50	118.50	129.00	68.00	67.00	67.50
KIS WTI 1.27 2.13 2.03 5.14 5.05 7.36 6.15 7.23 6.23 6.13 7.24 2.26 7.39 7.39 7.39 7.39 7.39 7.39 7.39 7.30 7.35 7.30 7.35 7.30 <th7.30< th=""> <th7.30< th=""> 7.30 <t< th=""><th>-</th><th>SPV - 946 x IS- 6335</th><th>1.92</th><th>2.10</th><th>2.01</th><th>7.13</th><th>7.92</th><th>7.52</th><th>54.20</th><th>39.70</th><th>46.95</th><th>118.00</th><th>117.50</th><th>117.75</th><th>58.00</th><th>69.00</th><th>63.50</th></t<></th7.30<></th7.30<>	-	SPV - 946 x IS- 6335	1.92	2.10	2.01	7.13	7.92	7.52	54.20	39.70	46.95	118.00	117.50	117.75	58.00	69.00	63.50
XIS 2244 2.90 2.32 2.46 5.33 4.46 67.61 7.30 8.33 11.85 11.	-	SPV - 946 x 13 9471	1.92	2.13	2.02	5.91	6.28	6.10	57.85	49.90	53.88	115.00	135.50	125.25	62.50	79.00	70.75
XIS 6335 2.3 2.3 2.4 6.7 3.4 7.3 7.	~	SPV - 104 x 15 2284	2.60	2.32	2.46	5.28	4.45	4.86	64.15	72.25	68.20	318.50	118.50	218.50	65.00	68.50	66.75
NIS WIT 2.71 2.770 8.4600 1.887.5 8.700 6.400 7.800 1.200 1.877.5 8.700 6.700 7.000 1.877.5 8.700 6.200 7.200 7.000 1.877.5 8.700 6.200 7.000 1.200 1.877.5 8.700 6.200 7.000 1.200 1.877.5 8.700 6.200 6.200 7.000 1.200 1.201 2.700 6.700 6.700 6.700 7.000 2.700 6.700 8.700 6.700 7.000 2.700 6.700 8.700 6.700 7.000 2.700 7.000 2.700 <th></th> <th>SPV - 104 x 15 6335</th> <th>2.39</th> <th>2.34</th> <th>236</th> <th>3.59</th> <th>5.33</th> <th>4.46</th> <th>67.05</th> <th>74.00</th> <th>70.53</th> <th>262.50</th> <th>114.50</th> <th>188.50</th> <th>57.50</th> <th>63.00</th> <th>60.25</th>		SPV - 104 x 15 6335	2.39	2.34	236	3.59	5.33	4.46	67.05	74.00	70.53	262.50	114.50	188.50	57.50	63.00	60.25
5.433 1 (2 177 100 5.93 6(10 315 87.5 88.0 132.50 188.0 132.50 138.0 132.50 138.0 132.50 138.0 132.50 138.0 132.50 138.0 132.50 138.0 132.50 138.0 136.0 138.75 89.00 138.75 89.00 138.75 89.00 138.75 89.00 138.75 89.00 138.75 89.00 138.75 89.00 138.00 130.00 130.75 89.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 120.00 170.00 100.00 86.70 86.0	~	SPV - 104 x IS 9471	2.71	2.71	2.71	4.23	4.69	4.46	73.85	68.55	71.20	270.00	107.50	188.75	67.00	64.00	
S-M71 L82 1.95 1.20 1.07 5.43 5.44 5.54 6.40 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 7.00 6.20 8.20 6.20 7.00 9.20 8.20 8.20 8.20 8.20 8.20 8.20 8.20 8.20 <th< th=""><th>~</th><th>IS 2284 x IS-6335</th><th>1.62</th><th>1.77</th><th>1.69</th><th>6:39</th><th>6.83</th><th>6.61</th><th>44.10</th><th>53.20</th><th>48.65</th><th>129.50</th><th>108.00</th><th>118.75</th><th>58.00</th><th>62.00</th><th>98</th></th<>	~	IS 2284 x IS-6335	1.62	1.77	1.69	6:39	6.83	6.61	44.10	53.20	48.65	129.50	108.00	118.75	58.00	62.00	98
S-W71 [155 2.20 2.07 5.33 5.13 5.13 5.14 5.16 5.10 5.10 6.00 <t< th=""><th>-</th><th>IS 2284 x IS -9471</th><th>1.82</th><th>1.95</th><th>1.88</th><th>5.32</th><th>5.64</th><th>5.48</th><th>59.85</th><th>53.65</th><th>56.75</th><th>98.50</th><th>114.00</th><th>106.25</th><th>66.00</th><th>70.00</th><th>68.00</th></t<>	-	IS 2284 x IS -9471	1.82	1.95	1.88	5.32	5.64	5.48	59.85	53.65	56.75	98.50	114.00	106.25	66.00	70.00	68.00
Bit 161 159 166 5.29 591 597 2410 1800 2700 1000 100 600 6600 <th>-</th> <th>IS 6335 x IS 9471</th> <th>1.95</th> <th>2.20</th> <th>2.07</th> <th>5.53</th> <th>5.32</th> <th>5.43</th> <th>S4.30</th> <th>53.40</th> <th>53.85</th> <th>107.50</th> <th>90.06</th> <th>98.75</th> <th>58.00</th> <th>62.00</th> <th>60.00</th>	-	IS 6335 x IS 9471	1.95	2.20	2.07	5.53	5.32	5.43	S4.30	53.40	53.85	107.50	90.06	98.75	58.00	62.00	60.00
up: 161 1.60 1																	
10 10<		Parontal renge	19:1	1.69	1.66	5.29	5.91	5.97	24.10	18.00	22.00	91.00	105.00	101.00	00.09	66.00	63.00
304 280 282 9.09 8.67 8.88 66.95 56.95 61.40 330.00 305.50 805.50 80.00 10 #F 1.62 1.76 1.69 3.88 4.45 2.72 2.113 2.420 9.50 89.50 80.50 <td< th=""><th></th><th></th><th>9</th><th>3</th><th>9</th><th>ę</th><th>9</th><th>2</th><th>3</th><th>2</th><th>2</th><th>9</th><th>9</th><th>9</th><th>9</th><th>9</th><th>9</th></td<>			9	3	9	ę	9	2	3	2	2	9	9	9	9	9	9
65 1.62 1.76 1.69 3.58 4.45 2.72.35 2.11.3 3.20 98.36 90.00 98.75 57.00 59.50 10			36	2.80	2.92	60.6	8.67	8.88	66.95	56.95	61.40	350.00	300.50	305.00	80.50	80.00	80.25
10 10<		Hybrid range	1.62	1.76	69.1	3.58	4.45	4.45	27.25	21.15	24.20	95.86	00.06	98.75	57.00	59.50	58.75
3.17 3.41 3.28 4.47 8.70 8.59 7.385 7.406 7.126 235.50 289.75 89.00 79.00 0.033 0.155 0.273 0.444 0.479 0.938 5.094 2.528 4.370 25.606 17.909 79.00 79.00 0.034 0.155 0.273 0.444 0.479 0.938 5.094 2.528 1.034 0.852 0.094 0.442 0.707 1.204 1.367 2.559 14.500 7.302 12.150 7.400 17.100 85.212 2.940 2.433 4a 1996 1.204 1.367 2.559 14.500 7.302 12.150 7.400 17.100 85.212 2.940 2.433			9	2	3	ŝ	to	To	3	2	0	9	9	2	9	9	9
0.033 0.155 0.273 0.444 0.479 0.938 5.090 2.628 4.370 26.060 17.909 29.520 1.0.4 0.852 0.094 0.442 0.707 1.269 1.367 2.559 14.550 7.302 1.2150 74.404 51.110 85.212 2.940 2.433 0. 4a 1995 L ₂ = Akola 1996			3.17	3.41	3.28	4.47	8.70	8.59	73.85	74.00	71.20	412.50	235.50	289.75	00.68	79.00	82.50
4a 1095 1.2 1.267 2.559 14.500 7.502 12.100 7.4 MM 11.100 85.212 2.400 2.433 43.1095 1.5 2.433 1.5 2.433 1.5 2.433 1.5 2.433 1.5 2.433 1.5 2.433 1.5 2.433 2.434 2.434 2.110 85.212 2.400 2.433 2.433 2.433 2.433 2.433 2.433 2.434 2.444 2.110 85.212 2.400 2.433 2.434 2.444 2.110 85.212 2.400 2.433 2.434 2.444 2.444 2.444 2.444 2.444 2.444 2.444 2.444 </th <th></th> <th>SF (m)</th> <th>610.0</th> <th>0.155</th> <th>0 273</th> <th>144</th> <th>0.479</th> <th>81.6.0</th> <th>2 000</th> <th>2 628</th> <th>4 170</th> <th>26.060</th> <th>17 9/10</th> <th>005 00</th> <th>1014</th> <th>0.857</th> <th>200</th>		SF (m)	610.0	0.155	0 273	144	0.479	81.6.0	2 000	2 628	4 170	26.060	17 9/10	005 00	1014	0.857	200
L ₂ = Akola 1996		CD at 5%	0.094	0.442	0.707	1.269	1.367	2.559	14.530	7.502	12.150	74,404	51.110	85.212	2.940	2,433	61
		$L_1 = A kola 1995$	$L_2 = Ak$	ola 1996													

. . .

III – 28

able 18 Contd.....

2 3 4 5 7 9 1 1 2 9064 1 1 2 9064 1 1 2 9064 1 1 2 9064 1 1 2 9064 1 1 2 9064 1 1 2 9064 1 1 2 9064 1 1 2 9 9 1 1 2 9064 1 1 2 9064 1 1 2 9 9 1 </th <th></th> <th>Germination (%)</th> <th>(</th>		Germination (%)	(
SWV-1201		61	
WY-1201 T.2300 225.00 226.00 236.00 216.00 210.0 230.00<		3	Polloc
Wom-1015 155 (0) 164 (0) 157 (0) 164 (0) 157 (0) 164 (0) 157 (0) 164 (0) 157 (0) 164 (0) 157 (0) 164 (0) 157 (0) 164 (0) 157 (0) 156 (0) 157 (0) 156 (0) 157 (0) 156 (0) 157 (0) 156 (0) 157 (0) 158 (0) 157 (0) 158 (0) 157 (0) 158 (0) <	5 50	1 49 17	4
Armulali Manuelali STC-200 (12.30 (15.60 (13.2) 21.60 21.91 <t< td=""><td>88</td><td>R 2</td><td>07.10</td></t<>	88	R 2	07.10
RT-288 IG500 15100 1510	5 8	47.00	80.50
W. Jaki W. Jaki <t< td=""><td>8.6</td><td>8.67</td><td></td></t<>	8.6	8.67	
WY-966 34500 34550 34551 3477 2179	8.5	81.50	80.25
SYV-104 200.00 2118 2119 2110 2119 2110 2119 2110 2119 2110 2119 2110 2119 2110 2119 2110	8.16	28	84.75
S2284 3500 2140 2140 2140 2160 230 2315 <th< td=""><td>8.8</td><td>65.00</td><td>71.50</td></th<>	8.8	65.00	71.50
[5,613] 33.50 31.57 32.70 23.70 <	-	20.02	56.75
Sign(1) Sign(2)		81.50	84.25
17,00 29,91 25,25 2,34 25,16 <th2< td=""><td></td><td>86.00</td><td>8</td></th2<>		86.00	8
Structure Living Living <thliving< th=""> <thliving< th=""> <thliving<< td=""><td>8</td><td>00.62</td><td>52 YB</td></thliving<<></thliving<></thliving<>	8	00.62	52 YB
Save. 2011 Save. 2010 Save. 2	67.00	85.00	2.8
Warring State Warrind State Warring State Warring	67.50		
STV-1011 x SV-346 Z200 Z31,0 Z350 Z31,0 Z350 Z31,0 Z300 Z300 <thz300< th=""> Z300 <thz300< th=""> <thz< td=""><td>62 00</td><td></td><td>3 5</td></thz<></thz300<></thz300<>	62 00		3 5
Weiler Main Main <thmain< th=""> Main Main <t< td=""><td>00.16</td><td>35</td><td></td></t<></thmain<>	00.16	35	
STV-101X IS -724 2190 280.5 289.7 214 219 210	90.50	8.65	
Weilsbeit Weilsbeit <t< td=""><td>63.00</td><td></td><td></td></t<>	63.00		
Witter Mark	91.00	00 86	2
CCSB-101B, 7-941 Num		00 26	
CCSB-10018 x8T-x84 B0000 B1300 2130 2130 2130 2130 2130 2100<	81.00	8	
CCSB-1001X ATT. AB 188.30 22.50 35.3 35.9 35.10 300<	61.00	5	3 4
CGSE-1001X SV-1412 11800 226.0 2300 226.0 2300 226.0 2300 230.0	52.00	05-19	
CCSB-1011X X3V-170 2.330 2.178 105 2.178 105 2.178 105 2.178 105 2.178 105 2.178 105 2.178 105 2.178 105 2.178 105 2.178 2.178 2.115 2.116 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.115 2.116 2.11	57.00	72.50	
CCSB 101B 12 2410 2410 2410 2410 2400 230 6400 330 3400 3400 3400 3400 3400 3400 3400 3400 3400	-	77.50	
ICSB-1018.715 - 633 25.39 712.00 2773 259 25.9 259 250 200 200 91.00 715 (CSB-1018.715 - 971) 261.39 1050 231.73 259 254 259 250 240 91.00 10.0 10.0 10.0 10.0 10.0 10.0 10	-		63.25 (52.72)
Mcmart HB x STT - 261	-	95.00	
Mum - M B.X.SRT - 26B 6575 19500 1915 2439 2400 2529 240 240 240 240 240 240 240 240 240 240	-	91.00	91.00 (72.55)
Mcmau-HB x (1)-35-15-15 190.00 208.00 199.00 779 77.20 75.5 7.55 3.00 100 100 300 3500 Mcmau-HB x STV-946 227.30 2560 3567 770 2580 2590 2590 350 350 350 350 Mcmau-HB x STV-946 72.20 191.00 191.75 23-40 2280 2110 359 359 359 350 Mcmau-HB x STV-140 772 00 191.00 191.75 23-40 2280 2110 359 359 350 350 Mcmau-HB x STV-140 772 00 7590 7595 2540 2280 2110 359 359 350 7500 Mcmau-HB x STV-140 772 00 7590 7550 246 2280 2110 359 359 350 7500 7500 7500 7500 7500 7500 7500	-	8,8	Ŭ
MARINI 418 KSIV - 946 227.9 286.00 55.7 2700 26.80 2.9 5.0 3.0 2.0 2.0 2.0 2.0 10 2.0	~	62.50	Ŭ
MXmm - HB X SPV - 104 172.50 191.00 181.75 23.40 22.80 21.10 3.50 3.50 3.50 76.00 AXmm - HB X 15 2284 22.00 27.90 26.95 26.00 24.00 AXmm - HB X 15 24.00 27.00 27.90 26.95 26.00 24.	-	49.50	Ŭ
AKma-14 Bx IS-2284 220:00 279:00 249:50 26:00 24:80 25:40 2:00 2:00 2:00 78:00 AKma-14 Bx IS 5:335 3:37 5:00 2:00 2:00 78:00		8.8	-
AKma-14 By 15 - 6336 247 60 260 260 260 260 260 260 260 260 260	-	2	Č
		89.68	Č
AKme - 14 B x 15 - 9471 230.00 299.00 261.50 28.00 27.90 200 200 200 86.00	(77.0/) 07.00 (80.00) (68.08)	(97.9/) 00.94 (J	(27:12) (27:12) (27:16)

III – 29

 35. SRT - 26B x (2):51-51-51 37. SRT - 26B x (2):51-51-51 38. SRT - 26B x (3) - 26B x (946 [5-15 15:50 946 [7:50 205:50 284 205:50 335 250:50 335 250:50 335 250:50 335 250:50 335 252:50 335 252:50 404 205:60 404 205:60 400 400 405:60 400 400 400 400 400 400 400 400 400 4	266.56 256.56 251.56 274.56 274.56 274.56 274.56 274.56 275.56 311.56 311.56 312.56 31	180.75 231.25 274.50 245.55 245.55 245.55 241.75 24	22.22.22.22.25.22.25.25.25.25.25.25.25.2	8 8 9 9 8 8 8 8 8	X 22 32	881	8 K	3.2	92.00	(6) (L)	88.50	(70.13) (57.44)	80.25 25	(66.17)
		255.00 213.50 213.50 204.56 284.60 284.60 285.60 311.50 311.50 312.60 312.50 315.50 31	231.25 195.56 274.56 262.25 255.75 245.56 245.56 241.75 261.25 26	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 9 8 8 9 8	24.20	5.50	275			100 000	71.00	(57.44)		
	2 3 8 8 8	213.50 301.50 274.65 283.50 283.50 311.50 311.50 312.00 3100 310.00 310.00 310.00 310.00 310.00 310.00 310.00 310.00 3100	195.50 274.50 262.25 265.75 265.75 245.50 241.75 301.25 301.25 311.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	27.10	31 22			2.63	81.00	(00.43)	3.T		NC.1	(61.94)
	- 3 3 8 6 32	301.50 274.50 284.00 325.00 312.50 311.50 312.50 312.50 312.50 312.50 312.50 312.50	274.50 262.25 255.75 245.56 241.75 241.75 301.25 311.00 311.00	X X X X X X X 4 4 4 4 8		74.10	9. E	3.00	3.25	91.00	(12.56)	58.50	(49.93)	74.75	(61.24)
	2 2 7 7 2 2 2 2 4 5 1	274.50 284.00 2285.00 311.50 312.50 312.50 312.50 312.50 312.50 312.50 312.50 312.50 312.50 312.50	262.25 255.75 245.56 241.75 241.75 301.25 311.00 311.00	25.25 25.40	A.10	24.70	2.00	2.50	2.25	82.50	(65.28)	93.50	(15.24)	88.00	(20.26)
	2888E	284,00 283,50 311,50 312,50 312,50 312,50 312,50 312,50 312,50 312,50 312,50	255.75 245.50 241.75 301.25 301.25 311.00 311.00	25.40 25.40 22.80 22.80	23.40	23.45	50	2.50	2.25	78.00	(62.05)	92.00	(73.57)	85.00	(67.81)
	<u>م</u>	283.50 278.50 311.50 312.00 312.00 312.00 312.00 312.00 312.00 312.00 312.00	245.50 241.75 301.25 297.00 311.00	25.70 25.40 22.90	25.70	26.05	2.00	2.00	2.00	84.00	(66.47)	89.00	(70.80)	86.50	(68.63)
	4 = 0 =	278.50 325.00 311.50 312.00 312.00 250.50 345.50	241.75 301.25 311.00 311.00	25.40 22.90	22.80	24.25	2.50	2.00	2.25	85.00	(67.22)	52.00	(46.16)	68.50	(36.69)
		325.00 311.50 342.00 312.00 250.50 345.00	301.25 297.00 311.00	22.90	24.50	24.95	3.50	2.75	3.13	45.00	(42.11)	69.00	(56.40)	57.00	(49.26)
	~ -	311.50 342.00 312.00 250.50 345.50	297.00 311.00		23.00	22.95	2.00	2.00	2.00	82.00	(16.19)	86.50	(68.47)	84.25	(66.69)
	_	342.00 312.00 250.50 345.50	311.00	30.90	30.60	30.75	2.00	2.00	2.00	93.00	(12:01)	90.00	(12.15)	91.50	(876)
		312.00 250.50 345.50	754 75	29.60	29.60	29.60	2.00	2.00	2.00	78.00	(62.12)	89.00	(70.65)	83.50	(86.38)
	_	250.50		21.20	20.70	20.95	3.50	3.00	3.25	49.00	(29.42)	81.50	(64.62)	65.25	(62.02)
		345.50	246.50	23.60	2.5	23.55	2.00	2.00	5.00	92.00	(03.60)	87.50	(69.43)	89.75	(11.54)
	_		312.75	27.10	26.20	26.65	50	2.00	2.00	93.00	(74.69)	96.00	(78.85)	25.50 25.50	(16.77)
	_	314.00	275.75	26.50	25.60	26.05	58	2.00	5.00	88.00	(65.79)	85.00	(67.26)	86.50	(68.53)
	_	288.50	278.00	24.20	2,2	23.45	200	2.00	2.00	79.00	(62.73)	90.50	(12.10)	84.75	(67.42)
	2	297.50	277.50	27.40	26.50	26.95	2.00	2.00	2.00	60.09	(20.80)	89.50	(60.12)	74.75	(60.95)
	-	283.50	274.25	26.30	25.30	25.80	2.00	2.00	2.00	81.00	(64.18)	91.50	(11/62)	86.25	(68.79)
	262.50	280.50	271.50	29.80	25.60	27.70	2.00	2.00	5.00	88.00	(69.79)	85.50	(67.65)	86.75	(68.72)
श है स	262.50	270.00	266.25	24.40	23.30	23.85	2.00	2.00	2.00	86.50	(68.72)	90.50	(12.20)	88.50	(20.46)
Parental rango Hybrid range	245.00	287.50	266.25	29.60	29.40	29.50	2.00	2.00	2.00	91.00	(12.56)	89.00	(20.6.5)	90.06	(09:12)
Hybrid range	142.50	136.00	139.25	21.10	21.10	21.15			1.75	21.00		29.00		40.00	
Hybrid range	3	10	3	9	To	9			9	9		p		Ę.	
Hybrid range	265.00	251.00	252.25	26.60	26.20	26.40	4.00	4.00	4.00	97.00		86.00		90.00	
	150.50	00.681	171.50	21.20	20.40	20.95			5.00	45.00		49.50		54.25	
	0	9	9	9	To	9		9	2	2		9		٩ ۲	
	282.50	345.50	312.75	30.90	30.60	30.75	3.50		3.50	93.00		98.00		94.50	
SE (m)	5.113	3.708	5.147	0.690	1.634	1.273			0.470	2.170		3.606		5.092	
CD at 5%	14.580	10.582	14.950	1.982	4.664	3.239	0.751	0.593	1.339	6.203		10.293		14.905	
L ₁ = Akola 1995	$L_2 = A kola 1996$	1996													

III – 30

Table 19 Contd.....

No.	Parents / Crosses	r. mc	P. monuliforme (%)		P. pall	F. pallkloroseum (%)	(%	U U	C. Iunala (%)		8	Other funei (%)	
_		LI	L2	Pooled	L1	5	Pooled	F	5	Pooled		12	Doular
	2	m	4	s	9	6	80	6	9	-	1	12	
1021-V92		8.89	20.67	14.78	0.71	0.71	0.71	1.46	88	78.73	14 67	21.12	200
ICSB-101B	8	31.11	26.67	28.89	0.71	0.71	0.71	43.3M	58 00	599	20.00	<u>.</u>	
AKma-14B	-	8.89	46.00	27.44	0.71	0.71	0.71	12.22	44 00	28.11	222		7 F 7
SRT-26B		34.45	26.01	30.23	0.71	2.36	1.54	31.11	80.95	4	1		
QL-35-15-15	ŝ	0.00	18.66	9.33	0.71	0.71	0.71	6.67	60.00	n n	00 00		
SPV-946		17.78	18.00	17.89	0.71	1.02	0.87	38.89	57.33	11.84	24.67	200	
SPV-104		6.67	38.67	22.67	0.71	0.71	0.71	45.56	44.67	45.11	41.11	16.00	
1S-2284		0.00	19.99	10.00	0.71	1.69	1.20	20.00	46.67	13.33	47.78	24.67	52
IS-6335		1.11	7.99	4.55	0.71	2.67	1.69	7.78	26.00	16.89	40.00	20.00	00.06
		3.33	5.33	1 33	0.71	1.02	0.87	7.78	24.00	15.89	63.34	20.00	41.67
	3PV-1201 x ICSB-101B	18.89	18.01	18.45	0.71	1.69	1.20	31.11	56.67	43.89	47.78	24.00	35.89
	3PV-[20] x Alons-14 B	23.33	13.34	18.34	0.71	0.71	0.71	44.45	61.33	52.89	32.22	25.33	28.78
	SPV-1201 x SRT - 26B	17.78	15.34	16.56	0.71	0.71	0.71	57.78	50.67	54.22	22.22	8	11 82
.,	2PV-1201 x GJ-35-15-15	11.11	29.33	20.22	0.71	1.69	1.20	51.11	50.67	50.89	B7.76	61.01	28.56
	3PV-1201 x SPV -946	24.45	35.99	30.22	0.71	0.71	0.71	40.00	50.00	45.00	32.22	16.00	24 11
16 SPV-120	SPV-1201 x SPV- 104	21.11	14.67	17.89	0.71	0.71	0.71	51.11	55.33	53.22	28.82	32.67	30.78
	PV-1201 x IS -2284	5.56	8.01	6.78	2.22	2.35	2.29	14.45	28.00	21.22	35.56	21.33	28.45
0	PV-1201 x IS-6335	11.11	2.7	9.23	0.71	0.71	0.71	22.22	18.00	20.11	37.78	18.67	28.22
en en	PV-1201 x IS - 9471	14.45	8.66	11.55	0.71	2.00	1.36	20.00	18.00	19.00	43.34	17.33	30.33
	CSB - 101B x Akms 14 B	23.33	19.33	21.33	0.71	1.69	1.20	50.00	59.33	54.67	25.56	EE.61	22.45
-	CSB - 101B x SRT- 26 B	23.33	11.99	17.66	0.71	0.71	0.71	58.89	68.00	63.45	16.67	21.33	19.00
	CSB - 101B x GJ-35-15-15	22.22	6.6	15.78	0.71	0.71	0.71	52.22	67.33	59.78	26.67	23.33	25.00
	389 - 101B x SPV - 946	14.45	14.67	14.56	0.71	3.02	1.87	55.56	49.33	52.45	26.67	34.00	30.33
<u> </u>	C38 - 1018 x SPV - 104	35.56	10.14	34.78	0.71	0.71	0.71	42.22	49.33	45.78	27.22	17.33	19.78
×.	C3B - 101B x [S - 2284	10.00	14.66	12.33	0.71	0.71	0.71	38.89	38.00	38.45	40.00	33.33	36.67
-	CSB - 101B x IS - 6335	13.33	6.6	11.66	0.71	1.02	0.87	32.22	26.67	29.45	32.22	34.00	33.11
-	CSB -101B x IS - 9471	4.44	10.67	7.56	0.71	1.69	1.20	20.00	27.33	23.67	37.78	26.67	32.22
•	JKma - 14 B x SRT - 26B	46.67	28.67	51.01	0.71	1.69	1.20	17.78	50.67	34.22	8.89	CC.61	14.11
•	Kmu - 14 B x GJ-35-15-15	24.45	23.33	23.89	0.71	4.00	2.36	56.67	52.67	54.67	18.89	66.61	19.11
•	Kmi - 14 B x SPV - 946	16.67	17.33	17.00	0.71	0.71	0.71	54.45	59.33	56.89	30.00	23.33	26.67
`	uKma - 14 B x SPV - 104	17.78	35.33	26.55	0.71	4.67	2.69	57.78	48.00	52.89	22.22	12.00	17.11
`	uKms - 14 B x 1S - 2284	23.33	15.34	19.34	0.71	6.00	3.36	38.89	47.33	43.11	23.33	21.33	25.33
	VKme - 14 B x 1S - 6335	8.89	14.01	11.45	0.71	5.33	2.02	23.33	30.67	27.00	17.78	37.33	27.56
	NKms - 14 B x IS - 9471	11.11	16.67	13.89	0.71	2.35	1.53	35.56	EE. 6E	37.45	32 22	22.00	2111

III – 31

Fable 20 Contd.

7	m	4	•	•	1	8	5	0	=	2	2	4
SRT- 26B x GI-35-15-15	41.11	12.67	26.89	0.71	0.71	0.71	46.67	55.33	51.00	12.22	34.00	23.11
SRT - 26B x SPV - 946	35.56	26.01	30.78	0.71	0.71	0.71	44.45	54.00	49.22	17.78	20.67	22:61
SRT - 26B x SPV - 104	10.00	30.67	20.33	0.71	1.69	1.20	15.56	53.33	34.44	45.56	15.33	30.45
SRT - 26B x IS - 2284		66.11	8.44	0.71	1.69	1.20	18.89	46.00	32.44	31.11	34.00	32.56
SRT - 26B x IS - 6335		10.01	10.56	0.71	Ю.6	2.03	24.45	36.67	30.56	17.78	25.33	21.56
SRT - 26B x IS - 9471		NC.6	9.11	0.71	3.02	1.87	31.11	31.33	31.22	27.78	17.33	22.55
QJ-35-15-15 x SPV - 946		20.00	17.78	0.71	1.02	0.87	31.11	26.00	43.56	46.67	24.67	33.67
QU-35-15-15 x SPV- 104		22.67	33.00	0.71	2.67	1.69	35.56	50.00	42.78	20.00	18.67	EC.61
GI-35-15-15 x IS - 2284		¥.,9	8.56	0.71	4.67	2.69	26.67	38.67	32.67	43.34	18.67	31.00
GU-35-15-15 x IS - 6335		13.99	8.66	0.71	4.67	2.69	15.56	32.00	23.78	24.45	22.00	27:52
01-35-15-15 x 15 - 9471	8.89	7.99	8.44	0.71	1.33	1.02	30.00	32.00	31.00	30.00	22.67	26.33
SPV - 946 x SPV- 104	21.11	66.11	16.22	0.71	1.02	0.87	57.78	58.00	57.89	21.11	32.00	26.56
SPV - 946 x IS - 2284	6.67	15.34	11.00	0.71	4.67	2.69	24.45	30.67	27.56	28.89	23.33	26.11
SPV - 946 x IS- 6335	6.67	11.99	9.33	0.71	2.35	1.53	14.45	29.33	21.89	35.56	26.00	30.78
SPV - 946 x 13 9471	11.11	11.99	11.55	0.71	5.5	2.02	13.33	30.67	22.00	34.45	233	28.85
SPV - 104 x 13 2284	14.45	15.99	15.22	0.71	7.33	4.02	35.56	34.67	35.11	10.04	EC.72	35.33
SPV - 104 x IS 6335	37.78	5.99	21.89	0.71	1.69	1.20	35.56	36.00	35.78	25.55	29.33	27.45
SPV - 104 x IS 9471	10.00	7.99	9.00.6	0.71	2.35	1.53	17.78	38.67	28.22	37.78	22.67	20,52
1S 2284 x IS-6335	8.89	6.01	7.45	0.71	3.02	1.87	22.22	51.33	26.78	18.89	24.67	21.78
[S 2284 x IS -947]	6.67	12.01	NC .6	0.71	8.00	4.36	25.56	30.00	27.78	27.78	26.00	26.89
IS 6335 x IS 9471	3.34	6.01	4.67	0.71	2.35	1.53	26.67	23.33	25.00	32.22	17.33	24.78
	12.0	3	19.4	12.0	12.0	12.0	1 46	00 90	15 80	16.67	11.0	19.45
		5	<u> </u>	-	9	5	9	9	q	9	9	9
	34.45	46.00	30.23	0.71	2.36	1.69	45.55	00.09	50.66	88.89	26.00	55.11
Hubrid rese	ň	18 50	4.67	0.71	0.71	0.71	13.24	18 00	00'61	8.88	12.00	H.11
-the second sec	5	9	9	9	9	9	3	9	9	9	9	9
	NC.67	52.52	51.08	0.71	8.00	4.35	58.90	68.00	63.45	46.67	37.34	36.66
SE (m)	1.103	1.203	1.644	0.148	0.163	0.220	1.430	1.630	2.132	1.111	1.213	1.657
0 a %	2.185	2.383	3.256	0.293	0.322	0.435	2.832	3.229	4.223	2.200	2.402	3.282

III – 32

					Sources and	ources and degrees of freedon	of freedom			
Sr.	Chamatans	GCA	SCA	Envior-	GCA	SCA ×	Error	8 ² eca	δ ² sca	82 aca/
°.	Cliat acturs	6)	(45)	ments	×Env.	Env.	(108)	0		5 ² cca
				(1)	(6)	(45)				***
-	100 grain weight	31.84**	2.33*	170.27**	2.63**	1.76**	0.04	0.032	0.016	1.936
Ч	Grain hardness	19.16**	1.89*	302.43**	2.88**	1.36	0.30	0.227	0.134	1.700
e	Endosperm texture	60.26**	3.86**	11.71**	1.87	1.80**	18.55	45.807	26.496	1.729
4	Electrical conductivity	53.24**	6.98**	419.70**	21.92**	3.53**	1055.92	2298.515	3156.782	0.728
Ś	DTF	104.18**	9.83**	122.67**	14.92**	3.95**	2.60	11.141	11.439	0.974
9	Plant height	120.33**	23.45**	0.26	6.22**	1.82**	103.22	513.178	1178.673	0.443
7	Cob length	16.73**	2.04*	17.43**	1.22	0.80	2.66	1.746	1.390	1.256 8
~	Glume covering	15.11**	16.1	19.99**	1.17	1.31	44.40	26.121	20.202	1.293
6	Mesocarp thickness	142.02**	37.08**	0.67	1.61	1.65*	12.73	74.811	229.710	0.326
2	TGMR	131.78**	6.55**	192.86**	32.92**	3.33**	0.06	0.333	0.170	1.961
Π	Germination	89.27**	12.40**	726.47**	6.30**	4.33**	11.43	42.075	65.226	0.646
1	F. moniliforme	18.69**	1.94**	697.64**	2.45*	1.49*	38.39	28.293	17.981	1.573
13	F. pallidoroseum	1.48	1.92**	603.45**	2.02*	1.64*	5.09	0.101	2.327	0.043
14	C. lunata	14.56**	1.28	333.63**	10.13**	1.22	34.38	19.425	4.774	4.068
2	Other fungi	1.79	1.81**	426.93**	1.71	1.37	18.24	0.603	7.379	0.082

Figures in parenthesis indicates degree of freedom Significant at 5% Significant at 1%

* :

bining ability of F_2 progenies in 10 × 10 diallel of sorthum (Powled) Akola and	
Analysis of variance for combining	Patancheru, 1996
Table 22	

1	1			I				20	4					
	8 ² eca/	S ² cra	0.904	0.378	1.716	1 227	1.967	0.480	1.187	0.772	0.725	0.045	49.780	1 845
	$\delta^2 sca$			0.349	2744.384	202 530	0.880	13.580	0.000	32.248	10.732	0.420	0.373	0 387
	δ ² gca)		0.131	4710.639	248.582	1.730	6.517	0.117	24.882	TTT.T	0.019	18.588	0.714
of freedom	Error		(108)	0.25	721.54	229.47	1.89	20.52	0.07	23.11	60.88	3.84	47.21	14.88
ources of degrees of freedor	SCA ×	Env.	(45)	2.76**	9.43**	2.68**	1.12	0.83	1.42	2.21**	0.94	1.49*	1.12	1.69*
Sources (GCA×	Env.	(6)	7.07**	11.43**	5.49**	3.74	1.09	7.02**	4.34**	1.33	1.02	3.22**	0.71
	Environ	ments	E	341.10**	269.45**	308.94**	0.30	0.11	140.15**	215.10**	130.25**	101.49**	116.14**	70.46**
	SCA		(45)	3.78**	8.61**	2.77**	1.93**	2.32**	3.86**	3.79**	1.35	1.22	1.02	0.95
	GCA		(6)	13.61**	157.86**	27.00**	22.97**	8.62**	41.70**	26.83**	4.07**	0.88	10.45**	2.15
	Characters			Grain hardness	Ele. conductivity	Plant height	Cob length	Glume covering	TGMR	Germinaton	F. moniliforme	F. pallidoroseum	C. lunata	Other fungi
	; د	ŝ			6	e	4	Ś	9	٢	∞	\$	2	Ξ

Figures in parenthesis indicate degrees of freedom * Significant at 5% ** Significant at 1%

IV -- 2

			Sources	Sources and degree of freedom	f treedom		
Sr.No	Characters	GCA	SCA	Error	δ ² gca	8 ² gca 8 ² sca 8 ² gca /	δ ² gca /
		(6)	(44)	(54)			$\delta^2 sca$
_	Protein	248.02**	204.51**	0.0005	0.0111	0.0111 0.105	0.101
2	Soluble sugars	20.63**	6.23**	0.0016	0.003	0.008	0.313
3	Tannins	10938.26**	286.57**	0.0001	0.127	0.040	3.192
ব	Flavan-4-ols	4668.30**	\$1.69**	0.0014	0.546	0.113	4.821

Figures in parenthesis indicate degree of freedom.

- Significant at 5% Significant at 1% . :

IV – 3

Estimates of general combining ability effects for parents from F₁ crosses (Pooled) Akola and Patancheru, 1996 Table: 24

Olher	-6.727	-3.792**	-6.336	-1.896**	-1.762*	20***68.1-	-3.475**	-2.511	177.6-	-0.066	0.927	1.232	1.638
U -	3.893**	5.672	-1.328	6.949**	5.783**	3.727**		6.114	4.171**	4.895**	1.135	1.693	2.249
F. p.	0.156	-0.289	-3.555**	-0.487	-1.412**	-0.985*	-2.195**	1.164**	161.0	-1.002	0.437	0.651	0.865
F. m.	7.593**	4.790**	10.955**	2.238	PE6.0-	-0.708	9.238**	11.647	11.174**	5.846**	1.200	1.789	2.377
Germina -	-12.270	-17.589	-13.773**	-8.869**	-6.234 **	-3.858**	-10:361	-13.293-+	-15.705***	+13.676**	0.655	0.976	1.297
TGMR	0.483**	0.420	0.389**	0.001	0.129**	-0.038	0.316-0	0.587**	0.795**	0.629	0.048	0.071	0.095
Meroca rp thickness	-2.605**	14.871**	-3.499**	-6.767	4.185**	-3.475**	••660.61	29.971**	37.614	26.037	0.691	1.030	1.369
Glume coverine	3.220**	10.511**	961.1	0.095	-5.114	4.072**	1.136	8.428**	-5.114-+		1.290	1.924	2.556
Cob leneth	-0.466	-2.207	-2.191**	-0.686*	-2.578	-1.466**	-2.349**		-2.641**	-2.774	0.316	0.471	0.626
Plant hoight	-68.667	-66.042**		-33.458**	-21.042**	-19.750	-36.875**		-55.208**	-39.625	1.967	2.933	3.897
:110	-8.375	1.292++	2.875	2.083**	2.708**	1.250***	5.917**	2.958***	3.333**	4 708**	0.312	0.465	0.618
Electrical conductivity	39.208**	81.792**	91.792	112.000**	44.042	65.792**	184.667**	e7.792**	98.958**	H5.208**	6.203	085.9	12.466
Endospern textwre	-3.104	-1.233	-17.316**	-7.858	-6.212	4.516**	-8.400***	-5.033**	-6.225		NC8.0	EN2.1	1.652
hite		0.051	0.784**	0.677**	0.429**	-0.298	0.122	0.020	0.464**		901.0	0.158	0.210
veigh	0.045	060.0-	-0.149	-0.282	0.132**	-0.130+++	-0.132**	-0.138**	-0.113	-0.266	0000	0.045	0.060
ran contra	SPV-1201	ICSB-101B	AKMS-14B	SRT-26B	01-35-15-10	3PV-946	3PV-104	1S-2284	IS-6335	15-9471	SE (Oi)	se(oi-oj)	CD at (Gi) 5% 0.060

* Significant at 5% F.m. = F. montifyorme ** Significant at 1% F.p. = F. pallidoroseum

V - 1

, Akola and Patancheru,	
(Pooled)	
2 progenies	
n F,	
ffor	
r parents	
s fo	
cflect	
bility	
combining a	
general	
Estimates of	2001
Ē	
Table :25	

	- 1
	- 1
	- !
	- 1
	- 1
	- 1
	- 1
	1
	1
	- 1
	1
	1
1996	1
ъ.	
5	- 1
	1

	un -	ස් ස්	Plant	යි.	Glume	TGMR	Germin-	с.	~	C. lunata	Other
ard	ş	Conductivity	height	length	covering		ation	moniliforme	pallidoroseum		fungi
ň	:	-101.451**	16.737**	0.072	5.576	0.560**	-11.000	-3.558*	2.216**	3.804**	-2.463**
2	01	-32.617	-15.434	-1.458**	4.451**	0714	-14.845**	-1.614	2.518**	2.805*	-5.706
<i>c</i> i	470**	19.049**	-34.722	-1.349**	2.742	1.014**	-16.211**	-2.364	1.372	4.250**	-3.168**
	.568**	-25.284	-41.734	-0.349	1.742*	0.619**	-7.298	-1.316	2.555**	-1.061	-3.696
	••€86	-121.617	11.808**	-3.499**	-0.258	0.777	-9.063	-7.828**	1.346**	4.102**	1.534*
	.534**	-78.284	9.420	-1.070	-4.966	0.648	-11.000**	-2.989*	3.205**	1.975	-0.366
	.852**	-21.992**	2.028	-1.253**	-0.674	0.752	- 7.520	-10.343	0.344	4.200	1357
	. 789**	-59.117	-14.005	-1.558**	-0.716	0.127**	-2.933	-13.818-	-0.493	5.672**	-0.754
	.295**	-1.867	-1.551	-2.141**	11.701	0.244	-10.174	-14.268**	-0.329	-0.508	-1.619*
	388**	70.841**	12.312**	-1.453**	0.492	0.073	-6.538**	-15.954**	0.523	3.504**	0.760
	200					0.061			0000		
	160	7N7.C	CC 6.7	0.200	1.8.0	100.0	1.5.0	1101	0.380	155.1	0.747
	0.145	7.754	4.373	0.397	1.308	0.076	1.388	2.252	0.566	1.983	1.114
	.192	10.304	5.811	0.527	1.738	0.101	1 845	2.993	0.740	2.263	1.479
	Signific	Significant at 5%									
	Simili	Vianificant at 1%									

V-2

Significant at 5% Significant at 1%

Sr.No.	Parents	Proteins	Soluble sugars	Tannins	Flavan-4-ols
-	SPV - 1201	0.372**	0.027*	-0.055**	-0.084**
7	ICSB-101B	0.637**	0.109**	0.018**	0.078**
ñ	AKms-14B	0.801**	0.280**	-0.120**	-0.210**
4	SRT - 26B	0.787**	0.197**	-0.124**	-0.247
s	GJ-35-15-15	0.619**	0.024*	0.033**	-0.050**
6	SPV-946	0.616**	0.112**	-0.002	-0.266**
7	SPV-104	0.274**	0.167**	-0.059**	-0.229**
∞	IS – 2284	0.365**	0.092**	0.815**	0.469**
6	IS – 6335	0.334***	0.083**	0.796**	0.578**
9	IS – 9471	0.326**	0.037**	0.590**	1.858**
SE (Gi)		0.006	0.011	0.003	0.010
SE (Gi-Gj)	(Ĵ	0.009	0.016	0.005	0.015
CD (Gi) 5%) 5%	0.012	0.022	0.006	0.021
	Significant at 5% Significant at 1%				

 $\label{eq:table: 27} Table: 27 \ Estimates of specific combing ability effects for F_1 crosses in 10 \times 10 \ diallel (Pooled) Akola and Patancheru, 1996$

	weight	hardness	texture		UIF	Plant	ි වි	Glume
		TIGHTICS	ובעוותנ	conductivity		height	length	covering
2 1001 - 1001 - 100	2	4		0	-	8	6	01
V-1201 X 1020 - 105	C7170	0.238	-1.631	-17.375	1.458	41.521**	-2.161*	-5.634
SPV-1201 X AKms - 14 B	-0.132	-0.481	-3.935	11.125	4.125	42.958**	-1 878	4 072
SPV-1201 x SRT - 26B	0.336**	0.078	3.707	- 28.771	4.104**	16.813	-1 \$\$1	1 503 V
SPV-1201 x GJ-35-15-15	-0.024	0.948**	-6.283*	- 32.750	0.292	10.021	1.428	
SPV-1201 x SPV – 946	-0.326**	0.274	0.715	21.500	1.938	-1008	1 094	146.0-
PV-1201 x SPV - 104	0.207*	0.435	1.511	- 27.938	1 806	10 771**	1000	0/0/0-
SPV-1201 x IS – 2284	-0.155	-0.413	5.832*	- 9.625	-0.583	0.042	0.080	205.0
SPV-1201 x IS-6335	-0.176	-0.245	0.461	1.833	5.229	26 188**	1 047	074-D-
SPV-1201 x IS - 9471	0.054	-0.534	5.832*	3.583	2.167	34 354	2 280*	
CSB - 101B x AKms 14 B	-0.227	0.163	4.038	0.542	0.708	051 01-	1 026	202.0
CSB - 101B × SRT - 26 B	-0.224*	-0.981	0.055	-17.354	-1.063	4 500	101	11 45344
CSB - 101B x GJ-35-15-15	-0.094	-0.166	-2.935	-20.083	-0.375	4 958	2850	
	0.009	0.460	3.063	2.667	1.646	37.479	117-0-	10005
CSB - 101 B x SPV - 104	0.227	0.016	-4, 191	-21.771	0.229	-22.583	155.0-	-0801
CSB - 101B x IS - 2284	0.198	-0.167	3.730	-25.708	-0.500	38.396	0.643	0102-
CSB - 101B x IS - 6335	0.111	0.399	-0.041	-36.750	-4.188	35.875**	0.701	009 6
CSB - 101B x IS - 9471	0.054	-0.063	6.380**	-27.750	-0.500	28.292	1.384	-3.551
AKms - 14 B x SRT - 26B	-0.053	-1.420	5.650	12.146	0.604	4.688	0.137	0.616
VKms - 14 B x GJ-35-15-15	-0.161	-1.345**	0.936	-12.083	-1.708	-13.354	2.316	10.511
	0.179	-0.056	9.484**	-11.583	-3.188**	36.667**	1.422	11 032
AKms 14 B x SPV 104	0.065	-0.117	2.430	2.729	0.396	-15.896**	- 0.220	-1.980
Cms - 14 B x IS - 2284	0.143	0.760*	5.000	-50.458	0.167	25.333**	0.176	-1718
VKins – 14 B x IS – 6335	0.296	0.523	7.480**	-68.000	-3.021**	24.313**	-0.416	-1 080
AKms - 14 B x IS - 9471	0.189	0.126	3.550	-68.000**	-3.833	39.979	0.918	-1 980

_	2	•	4	۶	6	1	8	6	9
ŝ	7	-0.033	0.382	0.002	29.771	-0.979	-34.000*	0.043	-2.509
9	SRT – 26B x SPV – 946	0.135	-0.124	4.100	-26.229	0.542	6.021	0.749	-1.989
~	SRT – 26B x SPV – 104	-0.025	0.652	0.546	-66.917**	-1.875	-4.792	0.257	-2.509
~	SRT - 26B x IS - 2284	0.149	0.144	-6.830	-50.604**	-3.854**	49.688**	1.303	-1.989
6	SRT – 26B x IS – 6335	0.192	-0.096	6.746**	-61.146	-4.542**	9.167	-1.363	-2 509
0	SRT - 26B x IS - 9471	0.087	-0.268	-4.408	-14.896	2.896	14.833*	-0.305	3.741
_	GI-35-15-15 x SPV - 946	0.179	-0.112	0.186	16.792	1.229	-21.521	-2.972	1.657
2	GI-35-15-15 x SPV 104	-0.122	0.459	0.582	-15.896	-0.688	26.667**	0.037	-5.114
0	GJ-35-15-15 × IS – 2284	-0.019	0.121	6.702	-19.333	-1.667	30.896	2.032	7.907
4	GJ-35-15-15 x IS - 6335	0.009	-0.843*	7.732	-39.375	-2.354	29.375	1.041	1.936
5	GJ-35-15-15 x IS - 9471	0.002	-0.303	5.502	4.875	0.833	9.042	0.649	1.136
ç	SPV - 946 x SPV - 104	-0.007	0.080	-3.045	5.854	0.833	35.688**	1.843	7.907
0	SPV - 946 x IS - 2284	0.191	-0.118	-3.150	-54.583	-4.646	-12.083	0.389	-10.322
	SPV – 946 x IS – 6335	0.068	0.140	-4.070	-30.125	7.667	396	0.197	1.677
ø	SPV – 946 x IS 9471	-0.031	0.051	1.750	-55.875	-4.646**	6.063	0.630	7.907
9	SPV - 104 x IS 2284	-0.121	-0.726	4.521	-48.521	-0.063	23.854**	-0.003	1.657
Ξ	SPV - 104 x IS 6335	-0.140	-0.588	9.100**	-76.813**	-4.750	14.333*	2.455**	7.356
g	SPV - 104 x IS 9471	0.180	-0.455	5.346	-120.063	-7.813	-3.250	1.589	-5.114
œ	IS 2284 x IS -6335	-0.052	-0.189	-7.354	64.000**	1.521	-13.938*	0.151	7.907
4	IS 2284 x IS - 9471	-0.057	-0.179	-4.533	59.250	3.708**	-23.771	-2.166	-10.843
2	IS 6335 x IS 9471	0.054	-0.408	-1.604	48.458**	-2.229*	-26.292**	-0.568	-11.364
	SE (Sij)	0.102	0.357	2.805	21.165	1.049	6.617	1.063	4.340
	SE (Sij – Sik)	0.151	0.525	4.124	31.112	1.541	9.717	1.562	6.380
	SE (Sij – Skm)	0.144	0.500	3.932	29.644	1.470	9.274	1.489	6.083
	CD (Sii) at 5%	502.0	0.707	5 5 5 2	01072	7 077	12100	107	0.00

VI - 2

Table 27 Contd.....

210

Significant at 5% Significant at 1%

. :

Estimates of specific combing ability effects for F_1 crosses in 10 × 10 diallel of sorghum (Pooled), Akola and Patancheru , 1996 (Mesocarp thickness, TGMR, Germination, F. monitforme, F. palitdoroseum, C. lunata, and other fungi VI – 3 Table: 28

Z	Crosses	Meso	TGMR	Germination	F.	F. F.	ບ.	Other fungi
					monutionme	paulaoroseum	tunala	
_	2	F	4	5	9	1	••	6
	SPV-1201 x ICSB - 101B	-17.545**	-0.298	5.235**	3.194	0.257	3.616	-2.013
	SPV-1201 x AKms - 14 B	19.318**	-0.069	-1.442	-1.388	1.802	0.452	1 457
	SPV-1201 x SRT - 26B	8.660**	-0.257	8.229**	-7.585	-1.077	572 0-	12 670**
	SPV-1201 x GJ-35-15-15	15.930**	-0.319*	-0.720	1 337	0.477	1 662	610.7T
	SPV-1201 x SPV - 946	0.231	0.098	-0.956	3.437	-1.823	0691-	
	SPV-1201 x SPV 104	10.385**	0.275	0.100	-6.584	-2.852	8317	1693
	SPV-1201 x IS - 2284	-4.847	-0.215	7.330**	-3.365	0.739	-5.329	000 8-
	SPV-1201 x IS-6335	-11.506**	-0.111	2.629	0.390	2.137	-4.299	-3 288
	SPV-1201 x IS - 9471	-15.447**	-0.069	4.135	-4.617	0.977	-6.940	-2 653
•	ICSB - 101B x Alms 14 B	3.139	0.525**	3.164	-0.460	0.901	-0.828	-0.319
_	ICSB - 101B x SRT - 26 B	1.328	0.462	-6.025**	3.676	2.869	2 478	-2 768
ы	ICSB - 101B x GJ-35-15-15	17.438	-0.100	2.476	-3.402	0.649	6.727	0.233
~	ICSB - 101B x SPV - 946	12.132**	-0.434**	6.534**	-1.625	1.941	-1.967	3.067
4	ICSB - 101B x SPV - 104	7.691	-0.132	-3.614	12.017	3.579**	-7.300	-4.122
ŝ	ICSB - 101B x IS - 2284	-22.031**	-0.371*	9.225	-5.284	-5.140	-3.941	5.015
\$	ICSB - 101B x IS - 6335	-22.195**	-0.267	7.657	-10.017	-2.761	-6.579	5.263
2	ICSB - 101B x IS - 9471		-0.225	10.526**	-7.678	-1.899	-3.549	3.238
*	AKms - 14 B x SRT - 26B	17.451	0.316	-1.373	2.762	-0.608	-2.357	-0.295
٥	AKms - 14 B x GJ-35-15-15	-3.252	0.254	-1.344	-0.657	1.639	-1.105	-0.641
0	AKms - 14 B x SPV - 946	-0.971	0.545**	1.512	-7.875	-0.512	5.864	0.872
=	AKms - 14 B x SPV - 104	-10.666**	0.223	-7.261	1.424	4.104	-3.467	-2.672
a	AKms - 14 B x IS - 2284	-8.239	-0.767**	6.336**	-5.861	1.205	4.562	4.155
£	AKms - 14 B x IS - 6335	-7.933	-0.913	15.185**	-9.259	-0.907	-3.078	7.738
-	AKms - 14 B x IS - 9471	-1.849	-0.871	12.769**	-0.596	-0.535	1.614	2.376

Contd			+ - TA	ŧ			
	۴	4	\$	9	6	~	6
26B x GJ-35-15-15	-14.070	0.441**	4.010	3.489	1.138	-5.802	4.760
SRT – 26B x SPV – 946	16.269**	-0.142	0.740	5.596	0.941	-2.493	-3.396
SRT – 26B x SPV – 104	7.131	0.160	0.192	0.233	1.405	-2.841	-3.118
SRT - 26B x IS - 2284	-11.786**	-0.330*	2.866	-3.398	-2.162	-0.132	4.042
5	-1.718	-0.225	4.188	-4.458	-1.118	-2.108	0.625
SRT – 26B x IS – 9471	-9.731	-0.434**	4.912	-4.792	-0.413	-6.078	-2 737
GJ-35-15-15 x SPV - 946	7.026	0.420	-3.291	1.180	-3.121*	2.086	0.082
GJ-35-15-15 x SPV 104	6.343**	-0.027	0.666	-0.180	1.005	-1.123	-0.465
GJ-35-15-15 x IS - 2284	-12.857**	-0.392	3.068	-4.803	-1.224	-6.548	-4.303
GJ-35-15-15 x IS - 6335	-14.928**	-0.288	7.987	2.789	1.332	-2.188	-0.387
GJ-35-15-15 x IS - 9471	-10.001-	-0.246	-0.384	2.120	1.859	-2.161	0.919
	-4.551	0.139	1.779	-3.403	-4.014	3.777	3.559
	-4.893	-0.100	1.078	0.973	1.915	-7.244	162.1-
	-5.755**	-0.246	4.207	3.233	4.313**	-2.215	-0.876
	-12.538**	-0.205	-3.888	-0.101	2.330	-3.523	0.765
	-26.604	-0.173	9.925	-8.392*	1.883	-1.245	2.664
	-21.485	-0.569	8.824	-9.795	-0.381	3.782	4.248
	-6.449	-0.527	10.111	-3.794	-0.521	1.144	1.218
	13.972**	0.441**	10.839**	1.919	-1.615	3.144	-2.263
	17.312	0.733	-2.402	4.918	2.070	4.506	0.713
	-3.680	0.587	-8.426	2.850	-1.864	5.198	-3.707
	2.324	0.161	2.203	0.436	1.459	3.819	2.782
	3.416	0.237	3.238	5.932	2.159	5.614	4.089
	3.257	0.226	3.088	5.656	2.059	5.352	3.898
	4.604	0.319	4.364	7.994	2.910	7.566	5.510
Significant at 5% Significant at 1%							

VI – 4

VI - 5Table: 29 Estimate of specific combining ability effects for F_2 progenies in 10 × 10 diallel (Pooled) Akola and Patancheru, 1996

Other Imgi	1	1 104		2 104	CAC7	20017-		3115	1.102	21		3.623	3.988	1.146	0.135	1.312	1.305	0.705	3.482	2817	2,701	0.171	2.938	4 170	7.320
C. hunata	12	4778		10 5	100	12 2 CTC	-2 200	4.828	3.012	7.488	5.159	-2.887	1.434	-2.510	-4.862	-1.804	4.930	-0.334	0.062	2.193	7.929	-9.273	-6.095	162.1-	1.745
P. P.	=	1 7.5	245.0-	0110	0.054	-0162	-2.149	-1.684	0.945	-0.366	-0.606	-0.277	-1.493	-0.433	2.675	-0.894	-2.567*	0.295	0.563	-1.635	0.450	-0.337	0.370	0.604	-1.807
F.m.	0	0110	1 574	4 277	575.0-	2 519	0.652	-5.028	4.286	-0.636	-4.784	1.785	-3.723	4.061	-0.246	6.264	-0.642	0.396	1.190	1.742	-1.144	7.759	2.689	-0.237	-4.009
Germin- ation	0	5.635	3.117	8.270	2 276	1.442	6.478	0.372	-0.418	-5.071	7.184	2.565	5.941	0.260	-0.589	1.152	2.649	4.892	-5.558	8.175**	-1.693	0.660	4.647	9.286	6.604*
IGMR	∞	-0.388**	-0.013	-0.261	0.019	0.079	-0.219	-0.081	-0.148	-0.109	-0.286	-0.259	-0.304	-0.244	-0.367	-0.004	0.154	0.269	-0.059	-0.329	-0.119	-0.217	-0.279	-0.346	-0.381
covering	7	0.638	4.159	1.159	160.1-	-5.945*	-6.299*	1.305	-5.112	0.034	0.472	-0.028	-1.028	·3.383	-1.237	-4.133	-3.549	3.347	2.242	1.242	3.138	1.034	-3.362	-9.778	-4.633
length	6	-0.643	-1.214	-0.114	-0.189	-0.224	0.259	0.857	1.690	-0.566	1.872*	0.772	0.222	0.986	0.570	0.767	-0.599	-1.030	1.201	0.751	-0.060	0.449	-0.078	-0.270	0.049
height	S	-19.474	23.583**	- 9.499	20.222*	- 5.547	-17.792	- 9.109	- 5.582	-10.276	- 5.803	11.041	3.667	2.993	- 5.203	27.655	4.333	11.689	16.022	- 7.332	3.974	E06.1	10.362	17.789	9.045
cue. conducti- vity	4	20.591**	23.424	40.258**	190.341**	-31.117	-7.847	45.591**	-49.909**	-28.430	0.716	20.799	9.133	9.424	-20.305	10.133	13.633	2.112	-4.617	-27.784	32.008	20.028	- 5.784	-76.284	0.195
hardness	•	-0.179	-0.107	0.422	0.137	-1.149**	-169'0-	-0.583	-0.133	-0.318	-0.370	-0.269	-0.291	-0.374	-0.009	-0.425	0.254	-0.426	0.424	-0.209	-0.102	-0.327	-0.426	0.149	0.029
Crosses	2	SPV-1201 x ICSB - 101B	SPV-1201 x AKms - 14 B	SPV-1201 x SRT - 26B	SPV-1201 x GJ-35-15-15	SPV-1201 x SPV - 946	SPV-1201 x SPV - 104	SPV-1201 x IS - 2284	SPV-1201 X IS-6335	SPV-1201 X IS - 9471	ICSB - 101B X AKms 14 B			ICSB - 101B x SPV - 946	ICSB - 101B x SPV - 104	ICSB - 101B x IS - 2284		ICSB - 101B x IS - 9471	AKms - 14 B x SRT - 26B	AKms - 14 B × GJ-35-15-15	AKms - 14 B x SPV - 946	- 14 B x SPV	AKms - 14 B x IS - 2284	1	AKms - 14 B x IS - 9471
N N	_		2 St	3	4	5 8	8		77 C 10 C	7 7	⊒ : ⊇ :	⊻ ! = :	2 :	2 :	2 : 5 :	2 :	2 : 2 :		8	۹ د ۱	V 20	۲ 2	< 1		24 V

Table 29 Condt.....

	Tuolo D) Condi												
1	2	3	4	5	6	7	8	9	10	11	12	13	
25	SRT - 26B x GJ-35-15-15	-0.335	-50.451**	-31.463**	-0.124	0.748	-0.327	3.263	4.211	0.162	-10.513*	2.169	
26	SRT – 26B x SPV – 946	-0.631	50.091**	-0.082	-0.910	-1.612	-0.292	3.800	-6.425	-0.931	5.103	2.215	
27	SRT – 26B x SPV – 104	-0.450	-1.138	20.472*	0.299	2.534	-0.240	0.998	-6.582	-2.190	5.121	0.797	
28	SRT – 26B x IS – 2284	-0.617	54.299**	24.505**	-2.628**	-3.862	0.223	-4.681	-5.342	-0.586	1.819	-0.346	
29	SRT 26B x IS 6335	-1.112**	8.049	29.108**	0.880	-5.778	-0.194	5.327	3.042	-1.070	6.433	0.676	
30	SRT – 26B x IS – 9471	-0.567*	-66.722**	23.364**	1.324	1.117	0.171	0.712	6.440	-0.891	2.899	-0.654	
31	GJ-35-15-15 x SPV - 946	-0.268	112.424**	-11.086	0.765	-1.362	-0.138	1.301	-0.923	-2.512	-3.296	1.870	
32	GJ-35-15-15 x SPV 104	0.135	64.195**	- 2.507	0.424	-0.466	-0.011	-3.315	3.680	-0.414	3.581	-2.358	
33	GJ-35-15-15 x IS - 2284	0.309	-45.867**	14.101	3.722**	8.388**	-0.248	5.247	1.710	2.391	-0.320	-1.941	
34	GJ-35-15-15 x IS - 6335	-0.657*	- 5.367	- 9.997	0.105	-4.778	-0.090	-1.102	5.834	-0.403	-1.7 57	-1.259	
35	GJ-35-15-15 x IS - 9471	-0.789	- 3.388	0.810	1.224	-1.133	-0.125	-3.657	3.702	0.256	-1.451	-0.519	
36	SPV – 946 x SPV – 104	0.047	8.987	7.974	-1.037	0.430	-0.300	7.053*	0.084	-0.809	-3.612	-2.322	
37	SPV - 946 x IS - 2284	1.098**	29.674	-21.617*	0.036	4.284	-0.138	0.464	6.894	-0.105	0.886	1.875	N
38	SPV - 946 x IS - 6335	0.059	-16.576	50.985**	2.645**	11.617**	0.021	8.017**	-4.912	-1.608	-2.310	4.357	4
39	SPV - 946 x IS 9471	0.252	-38.347*	-11.434	-0.062	2.763	-0.165	1.357	5.826	-0.299	-2.264	-2.333	
40	SPV - 104 x IS 2284	-0.535	-24.055	16.137	0.095	10.180**	0.139	3.796	-0.753	-0.482	4.194	-1.753	
41	SPV - 104 x IS 6335	-0.058	51.695**	-10.386	0.853	-1.737	-0.177	-1.337	5.311	1.475	2.528	-0.001	
42	SPV - 104 x IS 9471	0.165	-46.576**	-14.655	0.597	-3.091	-0.113	1.296	10.779*	1.544	-3.877	0.409	
43	IS 2284 x IS6335	-0.609	46.633**	-19.453	-1.024	-8.133**	0.060	-4.031	13.791**	2.519	-6.984	-2.617	
44	IS 2284 x IS - 9471	-0.639	7.612	-14.472	1.370	-3.237	0.075	4.944	7.409	-0.542	-7.868	-1.174	
45	IS 6335 x IS 9471	-0.482	31.862	-18.695	0.003	3.847	0.233	1.999	2.023	0.565	-3.045	-2.392	
	SE (Sij)	0.326	17.496	9.867	0.895	2.951	0.171	3.132	5.082	1.277	4.475	2.513	
	SE (Sij- Sik)	0.480	25.718	14.503	1.316	4.337	0.252	4.604	7.471	1.877	6.578	3.694	
	SE (Sij – Skm)	0.457	24.521	13.828	1.255	4.135	0.240	4.389	7.123	1.790	6.272	3.522	
	CD (Sij) at 5%	0.646	34.659	19.546	1.774	5.845	0.339	6.204	10.068	2.530	8.822	4.978	

Significant at 5% Significant at 1% *

F.m. = F. moniliforme F.p. = F. pallidoroseum

**

$v_1 = \gamma$ Estimates of specific combining ability effects for F ₁ crosses in 10 × 10 diallel of sorghum biochemical charcter Akola 1995	Protein Soluble sugars Tannins Flavan- 4-ols	5	01 B -0.021 -0.038 -0.125**0	-0.340** -0.121** -0.122**	-0.341** -0.073	0.006 0.044 -0.031++	
	Crosses	2	SPV-1201 x ICSB - 101 B	SPV-1201 x AKms - 14 B	SPV-1201 x SRT - 26B	SPV-1201 x GJ-35-15-15	SPV_10C1_VGP ~ 10C1_VGP
Table : 30	Sr.No.	1	1	7	ę	4	v

1	1	1																								
Flavan- 4-ols	9 9	ENO OF	-0.147##	1+1-0-	-001.0-		-0.175	-0.157**	0.182**	0.072*	0.063	-0.066	-0.085*	0.014	-0.094**	-0.075*	0.019	0.225**	-0.091	-0.229**	0.087*	-0.238**	-0.219**	0.635**	0.192**	0.405**
Tannins	~	-0 175**	-0 122##	-0.10544	- 00T 0-	100.0-	-0.049	1/0.0-	0.058**	0.214**	0.244**	-0.058**	-0.063**	0.005	0.008	-0.041**	0.108**	-0.015	0.045**	-0.146**	-0.071**	-0.081**	-0.124**	0.344**	0.216**	0.283**
Soluble sugars	4	-0.038	-0.171**	510 Q	6000	1000	10.0	0.00/	-0.025	0.089*	0.047	-0.127**	-0.112**	0.013	0.017	0.004	0.018	0.026	-0.017	-0.237	-0.149**	0.048	-0.041	0.042	-0.055	0.080*
Protein	3	-0.021	-0.340**	44172 U	A DOK	++VCL U		9CT-0-	9.181**	-0.214**	9.278**	-0.125**	-0.000	-0.067**	-0.237++	-0.284**	-0.174**	-0.179	-0.186**	-0.179	-0.132**	-0.232	-0.317**	0.188**	9.175**	-0.264++
Crosses	2	SPV-1201 x ICSB - 101 B	SPV-1201 x AKms - 14 B	SPV-1201 x SRT - 26B	SPV-1201 x GI-35-15-15	SPV-1701 * SPV - 946	VU = A = A = A = A = A = A = A = A = A =		or V-1201 X IS - 2284	SPV-1201 x IS-6335	SPV-1201 x IS - 9471	ICSB - 101B x AKms 14 B	ICSB - 101B x SRT - 26 B	ICSB - 101B x GJ-35-15-15		ICSB - 101B x SPV - 104		ICSB - 101B x IS - 6335	ICSB - 101B x IS - 9471	AKms – 14 B x SRT – 26B	AKms - 14 B x GJ-35-15-15	AKms – 14 B x SPV – 946	AKms – 14 B x SPV ~ 104	AKms - 14 B x IS - 2284	AKma – 14 B x IS – 6335	AKms - 14 B x IS - 9471
Sr.No.	1	1	2	m	4	v	. v	• •	- (*	6	10	11	12	13	14	15	16	17	18	19	20	21	ង	ន	24

Contd.....

-	2	÷	4	S	9
ŝ	SRT - 26B x GJ-35-15-15	-0.154**	-0.057	-0.048**	-0.149**
8	SRT – 26B x SPV – 946	-0.130**	0.021	-0.080++	0.035
5	SRT - 26B x SPV - 104	-0.022	-0.067	-0.088**	++8200-
8	SRT - 26B x IS - 2284	-0.290**	0.050	0.179**	**662.0
ຄ	SRT - 26B x IS - 6335	-0.183**	0.026	0.299**	0.596**
õ	SRT – 26B x IS – 9471	-0.274**	0.054	0.302**	0.431**
	GJ-35-15-15 x SPV - 946	-0.001	-0.126**	0.009	0.184**
ŭ	GJ-35-15-15 x SPV 104	-0.089**	0.095*	-0.040*	0.048
23	GJ-35-15-15 x IS – 2284	-0.187**	0.029	0.105**	0.032
7	GJ-35-15-15 x IS - 6335	-0.286**	0.037	-0.021	0.110**
33	GJ-35-15-15 x IS – 9471	-0.328**	0.066	0.028*	0.062
8	SPV 946 x SPV 104	0.070**	-0.062	-0.058**	-0.748**
5	SPV – 946 x IS – 2284	-0.141**	-0.074	0.063**	0.246**
8	SPV – 946 x IS – 6335	-0.238**	0.009	0.163**	0.586**
õ	SPV - 946 x IS 9471	-0.188**	-0.074	0.028*	0.236**
ç	SPV - 104 x IS 2284	0.119**	-0.048	0.074**	0 391 **
=	SPV - 104 x IS 6335	0.170**	-0.129**	0.234**	0 530**
₽	SPV - 104 x IS 9471	-0.037	-0.092*	0.233**	0 476**
Ω	IS 2284 x IS –6335	-0.153**	-0.103**	0.763**	-0.749**
4	IS 2284 x IS - 9471	0.106**	-0.072	-0.408**	-0.492**
42	IS 6335 x IS 9471	0.240**	-0.065	-0.291 **	-0.517**
SE (Sij	(0.021	0.037	0.011	0.035
(Si	SE (Sij – Sik)	0.031	0.054	0.016	0.051
ŝ	CD (Sij) 5 %	0.041	0.074	0.022	0.069
	Significant at 5%				

VI – 8

SI.NO	No.	Parents/Crosses	Albumm & Globlin	Prolamin	Cross link prolamin	Glutelin like	Glutelur	Residues
-	-	SPV-1201	[4.4]	6.96	10.41	2.51	28.74	10.68
"	64	ICSB-101B	15.84	5.49	8.57	3.01	27.90	8.87
~	٣	AKms-14B	14.09	9.08	12.14	2.46	28.95	11.46
4	4	SRT-26B	20.63	5.88	10.18	3.22	32.47	6.78
Ś	Ś	GJ-35-15-15	15.60	6.47	13.39	3.33	35.11	9.12
9	9	SPV-946	13.62	6.36	13.62	3.18	37.06	9.78
5	Ċ	SPV-104	12.62	4.88	14.92	3.98	32.51	8.64
ø	80	IS-2284	18.1	0.70	5.24	12.39	6.27	1.7
6	6	IS-6335	1.96	2.79	10.53	12.79	57.25	10.20
2	0	[S-947]	8.73	06.1	6.83	9.07	56.43	8.04
=	n	SPV-1201 x SPV-946	14.19	3.65	12.89	2.86	23.81	=
12	2	SPV-1201 x SPV-104	14 94	3.15	13.03	4.04	30.67	20.70
2	Ξ	SPV-1201 x IS-9471	9.00	1.17	8.90	10.88	38.48	4.41
Z	2	ICSB-101B x SPV-946	15.13	2.42	12.10	3.33	39.18	966
13	5	ICSB-101B x SPV-104	10.91	1.71	13.40	3.81	37.58	6.30
2	14	ICSB-101 B x [S-947]	8.82	0.75	9.12	7.65	46.91	6.18
5	6	AKms-14B x SPV-946	15.89	3.97	10.19	3.80	35.58	9.30
8	8	AKms-14B x SPV-104	13.63	4.13	12.10	4.13	36.60	08.01
61	17	AKms-14B x IS-9471	8.63	0.54	5.94	7.73	45.32	5.40
8	2	SRT-26B x SPV-946	18 09	4.10	9.73	4.40	28.88	6.36
71	5	SRT-26B x SPV-104	14.37	3.53	9.78	5.54	26.62	7.80
ដ	8	SRT-26B x IS-9471	10.07	0.52	66 E	10.24	46.18	11.46
ដ	й	GJ-35-15-15 x SPV-946	15 88	4.72	10.59	3.00	32.76	3.42
R	2	GJ-35-15-15 x SPV-104	15.67	4.24	8.87	3.73	30.98	10.02
n .	ຊ	GJ-35-15-15 x IS-9471	15.30	1.34	5.54	7.65	51.05	4.56
ន	5	SPV-946 x SPV-104	10 74	3.79	9.38	4.40	33.93	4.68
5	8	SPV-946 x [S-947]	13.89	1.80	210	7.02	51.96	3.90
ន :	ន	SPV-104 x [S-947]	15 94	1.58	7.54	7.66	36.01	8.76
2	ก	IS-2284 x IS-9471	06.	0.38	4.39	8.66	47.05	8.28
8	8	IS-6335 x IS-9471	17.4	2.55	0.58	0.96	49.68	10.80
		SE (m)	0.217	0.035	0.048		0.279	0.133
		CD at 5%	0.620	0.101	0139		367.0	0.381

	ratents/ Crosses	Giume color	Grain	lesta	Y.	Parents/ Crosses	Glume	Grain	Testa
No			color		Ň		color	color	
	SPV-1201	Light red	White	<	ନ	AKma - 14 B x GJ-35-15-15	Light red	White	
	ICSB-101B	Light red	White	<	8	AKms - 14 B x SPV - 946	l inht rad	White	: •
	AKma-14B	Light red	White		12	AVme 14 D v CDV 104			< ا
	CDT 7/D			۲.	; ;		Lught red	White	<
		ked	White	<	32	AKma - 14 B x IS - 2284	Purple	Red	۵.
	c1-c1-cr-m	Rcd	White	<	R	AKms - 14 B x IS - 6335	Black	Red	۵
	SPV-946	Light red	White	<	저	AKme - 14 B x IS - 9471	Pumle	Red	۵.
	SPV-104	Light red	White	<	ŝ	SRT- 26B x 0J-35-15-15	Lioht red	White	. <
	IS-2284	Purple	Light red	٩.	×	SRT - 26B x SPV - 946	Lieht red	White	: ◄
	IS-6335	Black	Dark red	с.	37	SRT - 26B x SPV - 104	l inht red	White	: •
	124-51	Purple	Dark red	۵	ş	SRT - 76B x IS - 7784			< 4
	SPV-1201 x ICSB-101B	Tan	White	. <	8	SRT - 26B x IS - 6335	ardin .	Lister -	
	SPV-1201 x Alma-14 B	Tan	White	. •	90	SPT - 26B × 15 - 0471	Distant	Lugar red	× 1
	SPV-1201 x SRT - 26B	l icht rad	United I	: •	: ;		KCC KCC	Ked	.
	AL 31 31 30 10 A INCLUDE			< ۰	; :	0K- AJC (CI-CI-CC-D)	Light red	White	<
		Light red	White	<	42	GJ-35-15-15 x SPV- 104	Light red	White	<
	946- A-K X 1071-A-K	Tan	White	<	ŧ	GJ-35-15-15 x IS - 2284	Purple	Dark red	4
	3474-1201 x SPV- 104	Tan	White	<	ŧ	QJ-35-15-15 x IS - 6335	Black	Dark red	۵.
	34-V-1201 X IS -2284	Purple	Light red	а.	45	GJ-35-15-15 x IS - 9471	Red	Red	۵.
	SPV-1201 x 13-6335	Partly straw purple	Dark red	а.	46	SPV - 946 x 3PV- 104	Light red	White	. •
	SPV-1201 x IS - 9471	Red	Light red	Ь	47	SPV - 946 x IS - 2284	Pumle	Red	: 0
	ICSB - 101B x AKms 14 B	Light red	White	×	48	SPV - 946 x 13- 6335	Rlack	I inht rad	. 0
	ICSB - 101B x SRT- 26 B	Red	White	•	49	SPV - 946 x IS 9471		Ded	
	ICSB - 101B x GJ-35-15-15	Red	White	: <	9	SPV - 104 x IS 7284	Dural		× 6
	ICSB - 101B x SPV - 946	Lieht Red	White		7	SEED BL - MUL - VIDS	and mus	22.	
	ICEB INIB - EBV 104			۲.	; ;	OC 0 0 V 10 1000	Black	Red	Δ.
		White	White	<	23	SPV - 104 x IS 9471	Black	Red	۵.
	IC38 - 1018 X IS - 7284	Purple	Light red	с,	\$	IS 2284 x IS-6335	Black	Light red	٩
	ICSB - 101B x IS - 6335	Black	Light red	۵.	¥	IS 2284 x IS -9471	Black	Red	. م
	ICSB -101B x IS - 9471	Purple	Red	d.	SS	IS 6335 x IS 9471	Black	Dark red	. 0
	AKma - 14 B x SRT - 26B	I inht Bad	10.01	. <			UIBUN		4

Table : 32 Observation on glume colour, grain color and testa

A = Absent P = Present

Tabl	VIII-1 Table 33. Effect of pre-treatment on actinization (%) of narmate E. crosses of Akala and Basandons. Nonce	ant on sermin:	tion (%) of	VIII - 1 Darruta E. c) Crimeere al Alb	noted here also	001			
S.N.		q	Akola	1.6	WU IN CACCATA	Patancheru	Inclicitul, 199		Pooled over locations	
		Untrotted	Treated	Mean	Untreated	Treated	Mean	Untreated	Treated	Mean
-	2	9	4	s	9	L	~	0	10	
-	SPV-1201	78.00	76.00	27.00	49.33	52.00	50.67	63 67	01.00	11
14	ICSB-101B	76.67	80.00	78.33	35,33	28.67	32.00	0.00	3.2	333
m.	Akma-148	54.00	68.67	61.33	4.67	5.33	200	388	38	2.5
4	SRT-26B	86.67	85.33	86.00	22.00	18.00	2000	32	3.5	1.55
~	GI-35-15-15	81.33	17.33	29.33	24.67	12.00	11.11	38		
\$	SPV-946	87.33	81.33	84.33	32.67	202	22.00	8.8	19.44	48.63
-	SPV-104	61.33	58.00	59.67	4.00	867	5.5	3.50	876	N 82
*	IS-2284	93.33	90.67	92.00	66.67	82.00	74 23		2.2	
\$	IS-6335	93.33	<u>93.33</u>	93,33	78.00		2908	00.00	8	2.22
2	12-2471	93.33	94.00	93.67	71.33	76.67	0.00	5.00	32	
Ξ	SPV-1201 x ICSB-101B	85.33	88.00	86.67	52.67	52.67		8.78	2.22	
2	SPV-1201 x Alcma-14 B	82.67	85.33	84.00	52.67	51.23	22.20	3.53	22	/960
n	SPV-1201 x SRT - 26B	94.00	80.06	00.26	80.67	22.22		10.10	2.22	0202
2	SPV-1201 x GJ-35-15-15	60.67	94.67	17 67	71.23		1311	2.2	2.00	
5	SPV-1201 x SPV-946	66.33	74 67	20.02	80.89	351	0.1	88	55.65	1911
91	SPV-1201 x SPV- 104	84.67	87.33	86.00	133	200	10.41	10.00	81	1233
17	SPV-1201 x IS -2284	91.33	96.00	93.67	74 67	22.22		38	10.42	
=	SPV-1201 x IS-6335	36.00	93.33	94.67	00.07	68.67	3.9	88	20.20	19 28 28 28
2	SPV-1201 x IS - 9471	96.33	92.67	94,00	76.67	72.67	1911	8.20	30	
8	ICSB - 101B x AKms 14 B	78.67	76.00	17.33	45.33	42.67	44.00	3.6	10.70	35
5	ICSB - 101B x SRT- 26 B	88.00	91.33	89.67	39.33	41.33	4	53.67	8. S	1000
R I	ICSB - 101B x 0J-35-15-15	88.00	94.00	91.00	78.67	78.67	78.67	52.52	55 A8	
ត រ	ICSB - 101B x SPV - 946	92.00	89.33	90.67	58.67	49.33	54.00	75.33	200	355
5 2	ICSB - 101B x SPV - 104	76.67	80.67	78.67	37.33	45.33	41.33	57.00	63.00	
98	ICSB - 101B x IS - 2284	88.67	90.67	89.67	87.33	89.33	88.33	88.00	806	200
98	1CSB - 101B X IS - 6335	80.06 1	53.33	91.67	9.76 96.00	00 .06	92.00	92.00	91.67	9183
1		87.00	94.00	63.00	86.00	93.33	89.67	89.00	13.67	91.33
٩ 8	AKINS - 14 B X SKT - 26B	72.00	82.00	27.00	26.00	28.67	27.33	49.00	55.33	52.17
93	CI-CI-CE-ID X 4 61 - 8000	82.00	81.33	81.67	26.67	32.67	29.67	54 33	57 m	55.67
۶;	AKIM8 - 14 B x SPV - 946	11.33	81.33	79.33	34.67	22.67	28.67	56.00	52.00	5400
7	AKms - 14 B x SPV - 104	53.33	66.00	59.67	22.00	24.00	23.00	37.67	45.00	133
2	AKma - 14 B x IS - 2284	80.08	94.00	87.00	66.67	82.67	74 67	23.23	SPE BB	2808
R ;	AKma - 14 B x IS - 6335	93.33	97.33	95.33	88.00	88.00	88.00	29.06	97.67	1916
×	AKma - 14 B x IS - 9471	88.00	94.00	91.00	80.67	76.67	78.67	84.33	85.33	8483
									Contd.	

t – IIIA ç

Table 33. Contd		-	-							
	5000		+	5	9	7	∞	6	10	11
^	97.62		00.06	91.33	40.67	40.67	40.67	66.67	65.33	66.00
SKT - 26B x SPV - 946 B4.00	84 00 20 52 20 52		86.00 70.00	85.00	64.00	62.67	63.33	74.00	74.33	74.17
	57.50 57.50		8.2	/0.0/	24.67	40.00	32.33	47.00	56.00	51.50
	0.00		10.01	83.35 1	79'08 50 67	8 8 8 8	88.00	84.33	87.00	85.67
CECUTER A 10 C C C C C C C C C C C C C C C C C C	8.66		8. 50 EE 50	03.01	00.00 96 00	30.55	00.12	55-55 50	91.33	8.8
GJ-35-15-15 x SPV - 946 85.33	85.33		88,00	86.67	20.95	13.33	29 9	20.00	93.00 80.67	90.00 75 67
	83.33		86.00	84.67	50.67	42.67	46.67	67.00	64.33	65.67
GJ-35-15-15 x IS - 2284 90.67	90.67		88.00	89.33	82.67	84.00	83.33	86.67	86.00	86,33
	92.00		00.06	91.00	83.33	88.00	85.67	87.67	89.00	88.33
	92.67		92.00	92.33	74.00	71.33	72.67	83.33	81.67	82.60
	84.67		80.00	82.33	27.33	42.67	35.00	56.00	61.33	58.67
SPV - 946 x IS - 2284 B6.67	86.67		92.67	89.67	79.33	84.00	81.67	83.00	88.33	85.67
	93.33		95.33	94.33	77.33	83.33	80.33	85.33	89.33	87.33
	92.00		89.33	90.67	78.00	82.00	80.00	85.00	85.67	85.33
SPV - 104 x IS 2284 88.67	88.67		89.33	89.00	80.67	87.33	84.00	84.67	88.33	86.50
92.67			33.33	93.00	84.67	93.33	89.00	88.67	93.33	91.00
71 92.00			94.00	93.00	78.00	92.00	85.00	85.00	93.00	89.00
	91.33		92.67	92.00	86.00	85.33	85.67	88.67	89.00	88.83
_	88.00		84.00	86.00	77.33	92.67	85.00	82.67	88.33	85.50
IS 6335 x IS 9471 96.00	8.96		94.67	95.33	78.67	78.67	78.67	87.33	86.67	87.00
Mcarı 84.80	84.80		86.78	85.79	60.62	64.05	62.29	72.66	75.41	74.01
% uncrease (+)/decrease(-)				(+)2.33			(+)5.51			(+)3.64
over untreated										
% increase over location			d	27.39 Patancheru						
U	U	0	D 5%		SE (m) +	CD 5%		SE (m)	CD 5%	
A 0.430 B 2.254	2.254		6.250		3.324	1.30/ 9.213		3.030	1.681 8.847	
A x B 3.389	3.389		8.840		4.700	13.029		4.206	12.471	

Tabk	Table 34. Effect of pre-treatment on <i>F. moniliforme</i> (%) (GS) of parents and F. crosses at Akola and Paramhorn, 1955	atment on F .	moniliforme	- III.4 (SD) (%) a	s of narents a	nd F. crosse	s at Akola	and Patanol	1006	
S.N.	Parents/Crosses		Akola			Patanchem	NOW IN C	Pool	Pooled over locations	
		Untreated	Treated	Mean	Untreated	Treated	Mean	Untreated	Treated	Mnerr
_	2	3	4	5	9	6	8	6	01	II
	SPV-1201	12.67	10.01	11.34	27.33	16.00	21.67	2000	13.00	10.60
	ICSB-101B	18.01	16.67	17.34	18.00	11.33	14.67	18.00	14.00	
	Akmu-14B	24.67	17.99	21.33	2.67	2.67	2.67	13.67	10.33	
	SRT-26B	20.67	19.33	20.00	14.00	7.33	10.67	17.34	13.33	15.24
	01-35-15-15	11.99	18.67	15.33	16.67	7.33	12.00	14 33	13.00	1361
	SPV-946	12.00	22.67	17.34	18.00	8.67	13.33	15.00	15.67	10.01
	SPV-104	20.01	27.33	23.67	4.00	4.67	4.33	12.00	16.00	
	IS-2284	15.99	8.67	12.33	28.00	16.00	22.00	22.00	17 24	
	IS-6335	5.33	3.33	4.33	32.00	12.67	22.33	18.66		13.33
	145-51	3.33	3.33	3.33	20.67	15.33	18.00	12.00	500	108.01
	SPV-1201 x ICSB-10113	12.67	9.34	11.01	28.67	11.33	20.00	20.67	10.34	1550
	SPV-1201 x Alone-14 B	8.67	10.01	9.34	26.00	12.67	19.33	17.34	11.34	14.34
	SPV-1201 x SRT - 26B	12.01	12.67	12.34	24.67	20.00	22.33	18.34	16.33	12
	SPV-1201 x GJ-35-15-15	12.67	11.34	12.00	25.33	16.67	21.00	19.00	14.00	16.50
	846- V'R X 1021-V'R	16.66	13.99	15.33	21.33	20.67	21.00	00.61	17.33	18.16
	101 - Ada X 1021 - Ada	10.00	66.6	10.00	22.67	8.67	15.67	16.33	6.56	12.83
	24 V-1201 X 13-2284	5.34	3.33	4.34	25.33	9.33	17.33	15.34	6.33	10.84
	CEE0-ST X 1021-A-NG	5.34	3.99	4.67	26.00	10.00	18.00	15.67	2.00	
		99.0	4.67	5.67	17.33	12.00	14.67	12.00	8.34	10.17
	ICSB - IOIB X AKINB 14 B	13.33	66.6	11.66	24.00	13.33	18.67	18.67	11.66	
	ICSB - IOIB X SKT- 26 B	1.99	5.34	6.67	26.67	12.67	19.67	17.33	9.00	13.17
	10-50 - 101B X 01-33-13-13	5.0	14.01	9.67	38.00	16.00	27.00	21.67	15.00	18.34
		31	57	11.67	33.33	10.00	21.67	22.33	11.00	16.67
		10:77	10.6/	16.67	27.33	14.00	20.67	25.00	12.34	18.67
			55.5	6.33	88	10.67	17.33	16.33	7.33	11,83
		85		8	10.01	0071	14.53	11.66	8.67	10.17
		10.0	2.5	0.0	16.6/	22.67	19.67	11.67	13.00	12.34
		14.6/	14.6/	14.67	16.00	8.00	12.00	15.34	11.33	13.34
	CI-CI-CE-EN X 81 81 - 8000	19:01 50 0	11.33	13.66	16.67	10.67	13.67	16.33	11.00	13.67
	ANUMB - 14 IS X SPV - 940	9.33	66.6	9.66	14.00	8.67	11.33	11.67	6.33	10.50
	ANCINE - 14 15 X SPV - 104	66.71	12.67	15.33	10.00	8.67	9.33	14.00	10.67	12.33
	AKm8 - 14 B X IS - 2284	10.01	4.67	7.34	22.67	9.33	16.00	16.34	2.00	11.67
	AKms - M B x IS - 6335	10.67	5.34	8.01	18.00	8.67	13.33	14.34	7.00	10.67
	1/16-19 14 19 19-18	12.01	4.67	8.34	23.33	8.67	16.00	17.67	6.67	12.17
									Contd.	

Tabl	Table 34. Contd.			4 - HIA						
-	2	3	4	5	9	6	8	. 6	0	=
ĸ	SRT- 26B x GJ-35-15-15	10.01	11.34	10.67	29.33	15.33	22.33	19.61	13.34	16.50
8	SRT - 26B x SPV - 946	19.34	10.67	15.01	40.67	25.33	33,00	30.00	18.00	24 00
8	SRT - 26B x SPV -104	19.33	14.67	17.00	12.00	22.00	17.00	15.67	18.34	17.00
8	SRT - 26B x IS - 2284	5.99	6.67	6.33	29.33	18.00	23.67	17.66	12.34	15.00
ጽ	SRT - 26B x IS - 6335	6.67	7.99	7.33	25.33	15.33	20.33	16.00	11.66	13.83
Ş	SRT - 26B x IS - 9471	5.34	5.33	5.33	22.67	16.67	19.67	14.00	11.00	12 50
41	GJ-35-15-15 x SPV - 946	10.67	11.33	11.00	30.00	20.00	25.00	20,33	15.67	18.00
4	GJ-35-15-15 x SPV- 104	17.33	10.66	14.00	28.00	22.00	25.00	22.67	16.33	19.50
6	GJ-35-15-15 x IS - 2284	6.67	6.67	6.67	28.67	14.67	21.67	17.67	10.67	14.17
¥	GJ-35-15-15 x IS - 6335	6.6	5.33	7.66	34.67	12.67	23.67	22.33	9.00	15.66
\$	GJ-35-15-15 x IS - 9471	3.99	8.00	6.00	28.67	10.67	19.67	16.33	9.33	12.83
\$	SPV - 946 x SPV- 104	7.33	8.67	8.00	16.67	14.67	15.67	12.00	11.67	11.83
4	SPV - 946 x IS - 2284	8.67	4.67	6.67	38.00	16.00	27.00	23.34	10.33	16.84
\$	SPV - 946 x IS- 6335	7.33	2.00	4.66	37.33	15.33	26.33	22.33	8.67	15,50
ę i	SPV - 946 x IS 9471	8.66	4.66	6.66	31.33	14.67	23.00	20.00	9.66	14,83
8	SPV - 104 x IS 2284	11.33	12.67	12.00	26.67	14.00	20.33	19.00	13.33	16.17
5	SPV - 104 x IS 6335	4.66	9.33	66:9	28.00	14.00	21.00	16.33	11.66	14.00
8	SPV - 104 x IS 9471	4.66	1.99	3.33	31.33	15.33	23.33	18.00	8.66	13.33
8	IS 2284 x IS-6335	4.67	4.00	4.34	28.67	14.67	21.67	16.67	9.33	13.00
5	IS 2284 x IS -9471	8.01	6.01	7.01	22.00	11.33	16.67	15.00	8.67	11.84
×	IS 6335 × IS 9471	4.67	3.34	4.01	18.67	12.67	15.67	11.67	8.00	9.84
	Mcun	10.78	9.19	66.6	23.89	13.32	18.61	P. 21	11 26	14 30
	% increase (+)/decrease(-)			(-)14.75			(-)44.75	5	27	(-)35.06
	over untreated									
	% increase over location					80	36 26 Akole			
		SE (m)	005%		SE (m)	CD 5%		SF (m)		
	۷	0.334	0.954		0.632	1.751		0.690	2.008	
	80 di 	1.806	5.007		3.315	9.187		3.618	10.528	
	AXB	7:004	1.081		4.687	12.993		5.117	14.891	

V111 - 4

S.N.	Parents/Crosses		Akola			Patancheru			led over location	
		Untreated	Treated	Mean	Untreated	Treated	Mean	Untreated	Treated	Mean
1	2	3	4	5	6	7	8	9	10	11
	SPV-1201	0.00	0.67	0.33	6.00	5.33	5.67	3.00	:3.00	300
2	ICSB-101B	0.00	4.67	2.33	3.33	3.33	3.33	1.67	-4.00	283
	Akms-14B	0.00	5.33	2.67	0.00	0.00	0.00	0.00	:2.67	133
	SRT-26B	0.00	4.00	2.00	1.33	4.00	2.67	1.67	4.00	283
	GJ-35-15-15	0.00	6.67	3.33	4.00	0.00	2.00	2.00	:3.33	267
	SPV-946	0.67	6.00	3.33	6.00	3.33	4.67	/ 3.33	-4.67	400
	SPV-104	0.00	6.67	3.33	0.00	0.00	0.00	0.00	3.33	167
	IS-2284	1.33	2.67	2.00	12.00	6.00	9.00	6.67	4.33	550
,	IS-6335	2.67	2.67	2.67	7.33	5.33	6.33	5.00	-4.00	450
0	IS-9471	0.67	0.67	0.67	6.00	6.00	6.00	3.33	3.33	333
1	SPV-1201 x ICSB-101B	1.33	0.00	0.67	4.00	4.67	4.33	2.67	2.33	250
2	SPV-1201 x Akms-14 B	0.00	2.67	1.33	8.67	2.67	5.67	4.33	2.67	350
3	SPV-1201 x SRT - 26B	0.00	2.00	1.00	8.00	6.67	7.33	4.00	4.33	417
4	SPV-1201 x GJ-35-15-15	0.00	2.67	1.33	6.67	4.67	5.67	3.33	3.67	350
5	SPV-1201 x SPV -946	0.00	0.67	0.33	5.33	6.00	5.67	2.67	3.33	300
6	SPV-1201 x SPV- 104	0.00	0.67	0.33	4.00	2.67	3.33	2.00	1.67	183
7	SPV-1201 x IS -2284	2.00	0.00	1.00	8.67	1.33	5.00	5.33	0.67	390
8	SPV-1201 x IS-6335	0.00	2.00	1.00	8.67	2.67	5.67	4.33	2.33	333
9	SPV-1201 x IS - 9471	2.00	0.67	1.33	6.67	2.00	4.33	4,33	1.33	283
10	ICSB - 101B x AKms 14 B	1.33	0.67	1.00	6.00	6.67	6.33	3.67	3.67	367
21	ICSB - 101B x SRT- 26 B	0.00	1.33	0.67	5.33	4.67	5.00	2.67	3.00	283
2	ICSB - 101B x 0J-35-15-15	0.00	0.00	0.00	14.67	6.00	10.33	7.33	3.00	5.17
23	ICSB - 101B x SPV - 946	2.67	1.33	2.00	8.00	4.00	6.00	5.33	2.67	490
24	ICSB - 101B x SPV - 104	0.00	2.67	1.33	6.67	4.67	5.67	3.33	3.67	350
25	ICSB - 101B x IS - 2284	0.00	2.67	1.33	5.33	4.67	5.00	2.67	3.67	317
26	ICSB - 101B x IS - 6335	0.67	0.67	0.67	6.67	3.33	5.00	3.67	2.00	283
27	ICSB -101B x 15 - 9471	1.33	0.00	0.67	6.00	6.00	6.00	3.67	3.00	333
28	AKms - 14 B x SRT - 26B	1.33	0.67	1.00	3.33	4.00	3.67	2.33	2.33	233
29	AKms - 14 B x GJ-35-15-15	3.33	1.33	2.33	4.00	6.00	5.00	2.33	3.67	253
30	AKms -14 B x SPV - 946	0.00	0.67	0.33	3.33	2.00	2.67	3.67	1.33	36/
31	AKms - 14 B x SPV - 104	4.00	2.00	3.00	4.00	3.33	3.67	4.00	2.67	333
32	AKms - 14 B x 15 - 2284	4.00	1.33	2.67	10.67	3.33	7.00	7.33	2.33	483
33	AKms - 14 B x IS - 6335	3.33	2.00	2.67	8.00	4.00	6.00	7.33		
34	AKma - 14 B x 15 - 9471	1.33	0.67	1.00	7.33	5.33	6.00		3.00	433 367
			0.01	1.00	1.33	3,33	0.33	4.33	3.00	31

Table 35. Effect of pre-treatment on F. pallidoroseum (%) (GS) of parents and F_1 crosses at Akola and Patancheru, 1996

Contcl.....

,

	~	4	-		F	•			
SRT- 26B x GJ-35-15-15	0.00	00.0	0.00	6.67	667	8 6.67	9 333	10	1
SRT - 26B x SPV - 946	0.00	6.00	3.00	10.67	4.67	7.67	533	5.33	2.5
SRT - 26B x SPV -104	0.67	2.00	1.33	3.33	6.67	5.00	5	4.33	3.17
SRT - 26B x IS – 2284	1.33	1.33	1.33	6.67	5.33	6.00	4,00	3,33	3.67
35	3.33	3.33	3.33	7.33	7.33	7.33	5.33	5.33	5.33
SRT - 26B x IS – 9471	1.33	2.00	1.67	7.33	7.33	7.33	4.33	4.67	4.50
GJ-35-15-15 x SPV - 946	0.67	00.0	0.33	4.67	2.67	3.67	2.67	133	200
5J-35-15-15 x SPV- 104	1.33	1.33	1.33	8.67	3.33	6.00	5.00	2.33	3.67
GJ-35-15-15 x IS - 2284	3.33	2.00	2.67	7.33	3.33	5.33	5.33	2.67	104
GJ-35-15-15 x IS - 6335	3.33	2.00	2.67	10.67	4.67	7.67	2.00	333	5 17
3J-35-15-15 x IS - 9471	1.33	2.00	1.67	12.67	5.33	00.6	2.00	3.67	533
SPV - 946 x SPV- 104	0.67	0.67	0.67	3.33	6.00	4.67	2.00	3.33	2.67
SPV - 946 x IS - 2284	2.67	2.67	2.67	13.33	6.00	9.67	8.00	4.33	6.17
SPV - 946 x IS- 6335	1.33	0.0	0.67	17.33	6.00	11.67	9.33	300	6.17
SPV - 946 x IS 9471	3.33	2.67	3.00	12.00	6.00	00.6	7.67	4.33	6.00
SPV - 104 x IS 2284	6.00	2.00	4.00	8.67	4.00	6.33	7.33	300	5.17
SPV - 104 x IS 6335	1.33	5.33	3.33	9.33	4.67	2.00	5.33	5.00	5.17
SPV - 104 x IS 9471	2.00	0.67	1.33	7.33	6.00	6.67	4.67	3.33	4.04
	1.33	4.67	3.00	8.00	6.00	7.00	4.67	5.33	5.00
	4.67	6.00	5.33	8.00	4.00	6.00	6.33	5.00	5.67
	200	0.67	1.33	6.00	4.67	5.33	4.00	2.67	3.33
	2.20	2.12	2.16	7 00	4.46	573	10 N	00.0	37.6
% increase (+)/decrease(-)			¥9'E(-)	8	2	(-)36.28	7	5.0	3.13 (-)21.75
over unucated % increase over location						165.27			
						Akola			
A B B	SE (m) 0.168 0.885	CD 5% 0.468 2.454 3.470		SE (m) 0.220 1.154	CD 5% 0.610 3.200		SE (m) 0.216 1.131	CD 5% 0.628 3.291	
				700.1	070.4		FRC'L	4.000	

			l							
Z'A	Parents/Crosses		Akola			Patanchenu		Poo	Pooled over locations	
		Untressed	Treated	Mean	Untreated	Treated	Mean	Untreated	Treated	Menn
-	2	6	4	\$	9	7	8	6	10	=
- 1	SPV-1201	45.33	45.36	45.35	15.33	18.67	17.00	30.33	32.01	31.17
14	ICSB-101B	45.33	39.32	42.33	11.33	14.00	12.67	28.33	26.66	27.50
.	Akma-14B	24.67	37.36	31.01	2.00	2.67	233	13.33	20.01	16.67
4	SRT-26B	48.67	34.00	41.33	6.00	6.00	6.00	27.33	2000	23.67
ŝ	GI-35-15-15	49.33	30.68	40.01	4.00	4.67	4.33	26.67	17 67	24
•	SPV-946	51.33	28.68	40.01	10.67	8.67	9.67	31.00	18.67	24.84
	SPV-104	28.67	16.68	22.67	0.00	2.67	1,33	14.33	67	12.00
	IS-2284	43.33	30.68	37.01	18.00	18.00	18,00	30.67	24.34	27.50
<u>م</u>	IS-6335	22.00	14.00	18.00	12.67	17.33	15.00	17.33	15.67	16.50
2	143-51	20.00	16.68	18.34	14.67	23.33	19.00	17 33	20.01	18.67
= :	SPV-1201 x ICSB-101B	48.67	46.68	47.67	18.67	13.33	16.00	33.67	30.05	31.84
2	SPV-1201 x Alme-14 B	50.67	40.00	45.33	14.00	12.00	13.00	32.33	26.00	4.8
n :	SPV-1201 x SRT - 26B	48.00	44.68	46.34	24.67	24.67	24.67	36.35	34.67	35.50
3	SPV-1201 x GJ-35-15-15	34.00	45.36	39,66	20.67	25.33	23.00	27.33	36.35	31 34
2	SPV-1201 x SPV -946	37.33	39.36	38.35	20.00	32.00	26.00	28.67	35.69	30.17
2 !	SPV-1201 x 2PV- 104	48.00	44.00	46.00	14.67	18.67	16.67	31.33	31,33	31.33
<u></u>	SPV-1201 x IS -2284	24.67	9.36	17.01	24.00	12.67	18,33	24.33	11.01	17.67
s :	SPV-1201 x IS-6335	16.67	8.68	12.67	23.33	10.00	16.67	20.00	9.34	14.67
<u>e</u> :	SPV-1201 x IS - 9471	16.00	9.36	12.68	19.33	11.33	15,33	17.67	10.35	14.01
8	ICSB - 101B x AKms 14 B	47.33	32.68	40.01	11.33	18.00	14.67	29.33	25.34	27.34
1	ICSB - 101B x SRT- 26 B	62.00	28.68	45.34	6.67	12.00	9.33	24.33	20.34	27.34
1	ICSB - 101B x 0J-35-15-15	60.67	46.00	53.33	20.00	19.33	19.67	40.33	32.67	36.50
R) (ICSB - 101B x SPV - 946	45.33	26.68	36.01	15.33	18.00	16.67	30.33	22.34	26.34
5	ICSB - 101B x SPV - 104	38.67	39.32	38.99	3.33	15.33	6 ,33	21.00	27.33	24.16
93	ICSB - 101B x IS - 2284	34.00	19.36	26.68	16.67	14.00	15.33	25.33	16.68	21.01
9 8	ICSB - 101B X IS - 6335	23.33	16.00	19.67	12.67	12.67	12.67	18.00	14.33	16.17
48	1/36 - 1018 X 12 - 34/1	24.00	16.00	20.00	15.33	18.67	17.00	19.67	17.33	18.50
98	AKms - 14 B x SRT - 26B	41.33	48.68	45.01	6.67	16.00	11.33	24.00	32.34	28.17
R) (AKma - 14 B x GJ-35-15-15	44.67	50.00	47.33	5.33	12.00	8.67	25.00	31.00	28.00
8	AKma -14 B x SPV - 946	47.33	52.00	49.67	13.33	13.33	13.33	30,33	32.67	31.50
FT	AKma - 14 B x SPV - 104	24.00	39.36	31.68	6.00	11.33	8,67	15.00	25.35	20.17
8	AKm8 - 14 B x IS - 2284	38.00	22.00	30.00	17.33	16.00	16.67	27.67	19.00	23.33
8	AKma - 14 B x IS - 6335	27.33	16.00	21.67	16.00	12.67	14.33	21.67	14,33	18.00
ħ	AKms - 14 B x IS - 9471	34.00	22.68	28.34	20.67	12.67	16.67	27.33	17.67	22.50
									Contd	:

- 1									
3	4		\$	\$	7	8	6	10	=
50.67	42.00	8	46.33	4.67	15.33	10.00	27.67	2.8.67	28.17
44.67	48.C	8	46.33	11.33	26.67	19.00	28.00	37.33	32.67
36.67	36.68	8	36.67	8.00	10.67	9.33	22.33	23.67	23.00
38.00	17.36	8	27.68	15.33	22.00	18.67	26.67	19.68	23.17
31.33	16.6	8	24.01	12.00	22.67	17.33	21.67	19.61	20.67
27.33	ğ	8	23.67	12.00	21.33	16.67	19.67	20.67	20.17
51.33	36.6	8	44.01	17.33	37.33	27.33	34.33	37.01	35.67
41.33	48.00	8	44.67	10.67	13.33	12.00	26.00	30.67	28.33
34.67	21.5	8	28.01	14.00	30.67	22.33	24.33	26.01	25.17
29.33	22	8	25.67	15.33	38.67	27.00	22.33	30.33	26.33
28.67	34.0	8	31.33	18.00	26.00	22.00	23.33	30.00	26.67
47.33	36.	8	42.01	6.67	17.33	12.00	27.00	27.01	27.00
26.00	14.0	8	20.00	17.33	22.67	20.00	21.67	18.33	20.00
28.00	14.0	8	21.00	16.67	30.67	23.67	22.33	22.33	22.33
26.00	Š	8	23.00	14.67	22.67	18.67	20.33	21.33	20.83
31.33	18. C	8	24.67	20.67	16.00	18.33	26.00	17.00	21,50
30.00	ŝ	8	25.34	18.67	18.00	18.33	24.33	19.34	21.84
34.00	20.0	8	27.00	11.33	18.00	14.67	22.67	19.00	
25.33	16.6	8	21.01	16.00	22.00	19.00	20.67	19.34	26 80 80
26.00	17.	Ř	21.68	20.67	15.33	18.00	23.33	16.35	19.84
21.33	13.	98	17.35	12.67	18.67	15.67	17.00	16.01	16.51
36.43	28.89	8	32.66	13.72	17.53	15.63	25.08	23.21	24.15
			(-)20.69			(+)21.73			44 (-)
		Ζ,	Patancheru						
SE (m)	8	5%		SE (m)	CD 5%		SE (m)	CD 5%	
0.504	1.456	8		0.056	0.164		0.616	1.792	
B 2.643 AxB 3.738	6.	23		167.0	0.860		3.232	9.405	
	10.7	ç							

VIII – 8

	Plucitls/Crosses	and the second se	Akola			Patencheru		Poo	Pooled over locations	
		Untreated	Treated	Mean	Untreated	Treated	Mcan	Untreated	Treated	Mean
-	2	•	4	\$	9	7	8	6	10	=
	SPV-1201	20.00	18.67	19.33	0.67	2.00	1.33	10.33	10.33	10.33
7	ICSB-101B	13.33	12.67	13.00	2.67	00.0	1.33	8 00	6.33	7.1.7
ñ	Akma-14B	4.67	8.00	6.33	00.0	00.0	0000	2 33	400	3.17
4	SRT-26B	15.33	16.67	16.00	00.0	0.67	0.33	7.67	8.67	817
ŝ	GI-35-15-15	20.00	14.67	17.33	0.00	00.0	000	10.01	2.33	59.8
9	SPV-946	23.33	14.00	18.67	00.0	2.00	001	1167	80	200
7	SPV-104	12.67	7.33	10.00	0.00	1.33	0.67	6.33	4 33	2.5
*	IS-2284	24.67	10.00	17.33	5.33	4.00	4.67	15.00	2002	85
¢	IS-6335	20:00	6.67	13.33	4.67	6.00	5.33	12.33	6.33	3
9	IS-9471	19.33	6.00	12.67	4.00	4.67	4.33	11.67	5.33	8.50
=	SPV-1201 x ICSB-101B	22.67	18.67	20.67	1.33	3.33	2.33	12.00	11.00	11.50
12	SPV-1201 x Alms-14 IS	23.33	18.00	20.67	5.33	4.67	5.00	14.33	11.33	12.83
2	SPV-1201 x SRT - 2615	34.00	20.67	27.33	23.33	7.33	15.33	28.67	14.00	21.33
Z	SPV-1201 x 0J-35-15-15	14.00	17.33	15.67	18.67	13.33	16.00	16.33	15,33	15.83
ñ	SPV-1201 x SPV -946	11.33	18.00	14.67	21.33	22.00	21.67	16.33	20.00	18.17
2	SPV-1201 x SPV- 104	26.67	27.33	27.00	4.00	2.67	3.33	15.33	15.00	15.17
5	SPV-1201 x IS -2284	18.67	9.33	14.00	8.67	2.00	5.33	13.67	5.67	9.67
<u>s</u>	SPV-1201 x [S-6335	18.00	5.33	11.67	9.33	1.33	5.33	13.67	3.33	8.50
<u>2</u> (1/ b6 - SI X 1071- A3	16.67	5.33	11.00	10.00	0.67	5.33	13.33	3.00	8.17
នុះ	ICSB - 101B x AKms 14 B	16.67	10.67	13.67	4.00	6.00	5.00	10.33	8.33	9.33
2 2	ICSB - 101B x SRT- 26 B	18.00	10.00	14.00	1.33	3.33	2.33	9.67	6.67	8.17
1	ICSB - 101B x GI-33-15-15	22.00	8.67	15.33	6.00	1.33	3.67	14.00	5.00	9.50
ra a	ICSB - 101B x SPV - 946	33.33	10.67	22.00	2:00	0.00	1.00	17.67	5.33	11.50
81	ICSB - 101B x SPV - 104	16.00	11.33	13.67	0.00	0.00	0.0	8.00	5.67	6.83
A 1	ICSB - 101B x IS - 2284	32.00	10.00	21.00	8.00	0.00	4.00	20.00	5.00	12.50
81	ICSB - 101B x IS - 6335	31.33	8.00	19.67	7.33	3.33	5.33	19.33	5.67	12.50
R I	ICSB - 101B x IS - 9471	26.00	9.33	17.67	8.00	0.0	4.00	17.00	4.67	10.83
8	AKma - 14 B x SRT - 26B	14.67	18.00	16.33	0.0	0.67	0.33	7.33	9.33	8,33
ค	AKma - 14 B x GJ-35-15-15	18.00	18.67	18.33	0.67	4.00	233	9.33	11.33	10.33
8	AKms -14 B x SPV - 946	20.67	18.67	19.67	4.00	0.00	2.00	12.33	6.33	10.83
Ē	AKma - 14 B x SPV - 104	8.00	12.67	10.33	2.00	0.67	1.33	5.00	6.67	5.83
R	AKms - 14 B x IS - 2284	24.00	6.00	15.00	7.33	4.00	5.67	15.67	5.00	10.33
8	AKms - 14 B x IS - 6335	37.33	7.33	22.33	6.00	2.00	4.00	21.67	4.67	13.17
₽.	AKma - 14 B x IS - 9471	20.67	10.67	15.67	8 00	2 00	200	14 73	6 33	10.33

Table	Table 37. Contd									
-	2	3	4	\$	9	7	8	0	10	-
x	SRT- 26B x GJ-35-15-15	34.00	19.33	26.67	00.0	3.33	1.67	17.00	11.33	14 17
Я	SRT - 26B x SPV - 946	20.00	21.33	20.67	1.33	6.00	3.67	10.67	13.67	10 11
ы	SRT - 26B x SPV -104	13.33	18.67	16.00	1.33	0.67	8	7.33	19.67	228
R	SRT - 26B × IS - 2284	32.00	11.33	21.67	5.33	6.67	6.00	18.67	006	13.83
ጽ	SRT - 26B x IS - 6335	24.00	13.33	18.67	6.00	4.67	5.33	15,00	806	128
ŧ	SRT - 26B x IS - 9471	16.67	14.00	15.33	4.67	4.00	4.33	10.67	006	200
4	GJ-35-15-15 x SPV - 946	24.00	16.00	20.00	4.67	6.67	5.67	14.33	11.33	12.83
4	GJ-35-15-15 x SPV- 104	17.33	24.00	20.67	4.00	4.00	4.00	10.67	14.00	17.33
\$	GJ-35-15-15 x IS - 2284	17.33	14.00	15.67	4.67	7.33	6.00	18	10.67	10.83
4	GJ-35-15-15 x IS - 6335	22.00	13.33	17.67	7.33	6.67	2.00	14.67	10.01	17.33
\$	GJ-35-15-15 x IS - 9471	22.67	15.33	19.00	7.33	7.33	7.33	15.00	11.33	13.17
\$	SPV - 946 x SPV- 104	30.67	22.67	26.67	0.67	6.67	3.67	15.67	14.67	15.17
4	SPV - 946 x IS - 2284	23.33	7.33	15.33	6.00	4.67	5.33	14.67	6.00	10.33
\$	SPV - 946 x IS- 6335	26.00	12.00	19.00	4.00	5.33	4.67	15.00	8.67	11.83
ŧ	SPV - 946 x IS 9471	23.33	12.67	18.00	5.33	8.00	6.67	14.33	10.33	12.33
8	SPV - 104 x IS 2284	25.33	12.67	19.00	7.33	5.33	6.33	16.33	00.6	12.67
5	SPV - 104 x IS 6335	29.33	10.67	20.00	6.67	6.67	6.67	18.00	8.67	13.33
8	SPV - 104 x IS 9471	22.67	10.00	16.33	5.33	4.67	5.00	14.00	7.33	1067
8	IS 2284 x IS-6335	24.67	10.67	17.67	4.67	4.00	4.33	14.67	7.33	118
3	IS 2284 x IS -9471	25.33	11.33	18.33	5.33	3.33	4.33	15.33	7.33	11.33
8	IS 6335 x IS 9471	16.67	6.67	11.67	5.33	5.33	5.33	11.00	6.00	8.50
	Mean	21.60	13.14	17.34	511	396	453	32 CT	0 64	204
	% increase (+)/decrease(-)			(-)39.16			(-)22.89	20.01	5	60987-)
	over untreated						;			
	% increase over location			283.44 Patancheru						
		Э З	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
	< ¤	3 539	0.8.0		0.400	81.1		0.666	1.938	
	AXB	5.005	13,873		2.966	8,220		0.434 A 0.47	10.16/ 14 261	
					1			1		

Table 37. Contd.

N.N.	Parents/Crosses		Akola			Patancheru		Pool	Pooled over locations	
		Untreated	Treated	Mcan	Untrealed	Treated	Mean	Untreated	Tranted	Mean
_	2	3	Ŧ	5	9	7	8	6	10	
	SPV-1201	4.00	3.00	3.50	4.00	4.00	4.00	4.00	350	376
	ICSB-101B	4.00	3.00	3.50	4.00	4.00	4.00	4.00	926	376
	Akma-14B	5.00	3.50	4.25	3.00	4.33	3.67	4	86	995
	SRT-26B	3.83	3.00	3.42	3.50	4.00	3.75	367	195	125
	GI-35-15-15	3.50	3.00	3.25	3.50	3.33	3.42	350	11	
	SPV-946	3.83	2.50	3.17	3.50	300	3.25	29.5	34.0	
	SPV-104	4.50	3.50	4.00	3.33	333		5.6	24.5	22
	IS-2284	2.00	1.00	1.50	2.00	001	5	18	2007	
	IS-6335	1.00	1.00	100	100	0	85	35	35	
_	[S-27]	1.00	8	100	8	18	85	35	38	3
	SPV-1201 x ICSB-101B	3.00	2.50	2.75	3.00	3.00	800	38	35	
	SPV-1201 x Alms-14 B	3.00	2.50	2.75	3.67	3.00	333	3.33	54.0	
_	SPV-1201 x SRT - 26B	2.83	3.00	2.92	3.33	300	3.17	80 6	2	5
	SPV-1201 x CJ-35-15-15	2.50	3.00	2.75	3.50	3.00	3.25	000	88	
	3PV-1201 x 1021-V98	2.83	3.00	2.92	3.50	3.00	3.25	3 17	88	
	SPV-1201 x SPV- 104	3.17	2.83	3.00	3.50	3.00	3.25	333	86	110
	SPV-1201 x IS -2284	1	- 1 0	1.00	2.50	1.00	1.75	1.75	8	138
	SPV-1201 x IS-6335	8	8	1.00	1.50	1. 0	1.25	1.25	8	113
	12 PP - 21 X 1021-747	8	8	1.00	<u>1</u>	100	8	1 .	8	9
8 3	ICSB - 101B x AKms 14 B	3.00	3.00	3.00	3.00	3.50	3.25	3.00	3.25	3.13
_	ICSB - 101B x SRT- 26 B	3.00	5.00	2.50	3.00	3.17	3.08	3.00	2.58	279
	ICSB - 101B x GI-35-15-15	2.67	2.00	2.33	3.00	3.00	3.00	2.83	2.50	267
	ICSB - 101B x SPV - 946	2.67	3.00	2.83	3.00	3.00	3.00	2.83	000	282
	ICSB - 101B x SPV - 104	3.33	2.00	2.67	3.50	2.00	2.75	3.42	200	271
	ICSB - 101B x [S - 2284	1.33	1.00	1.17	1.50	1.00	1.25	1.42	8	121
	ICSB - 101B x IS - 6335	1.00	1 .0	1.00	1.00	1.00	9. 8	1.0	8	a
	ICSB - 101B x IS - 9471	1.50	8	1.25	1.00	<u>6</u>	1. 0	1.25	100	113
.	AKms - 14 B x SRT - 26B	3.00	2.83	2.92	3.50	3.33	3.42	3.25	3.08	3.17
•	AKme - 14 B x GI-35-15-15	3.00	3.00	3.00	3.50	2.50	3.00	3.25	2.75	300
ន	AKms -14 B x SPV - 946	3.00	3.00	3.00	3.50	4.00	3.75	3.25	3,60	338
_	AKms - 14 B x SPV - 104	3.50	4.00	3.75	3.67	4.00	3.83	3.58	4.00	379
~	AKms - 14 B x IS - 2284	2:00	1.00	1.50	1.50	1.00	1.25	1.75	100	138
_	AKme - 14 B x IS - 6335	1.50	1.00	1.25	1.00	1.00	6	1.25	100	1.13
_	AKma - 14 B x IS - 9471	217	5							

N.N.	Parenta/Crosses Akola Parenta/Crosses Akola Parenta/Crosses	Intrastad	Akola			Patancheru		Pool	Pooled over locations	
-	6	-	Treater.	MCBU	Untreated	Treated	Mean	Untreated	Treated	Mean
• -	ent/losi	ر د د	•	s	9	7	80	0	10	=
- ,	1021-V-1201	877	24.00	23.00	50.67	48.00	49.33	36.33	W.W	26.17
• •		E EZ	20.08	21.67	64.67	71.33	68.00	44 W	45.67	
. .		46.00	31.33	38.67	<u> 96.00</u>	94.67	95.33	100	20.04	38
• •	1907-1 XIC	13.33	14.67	14.00	78.00	82.00	80.00	45.67	38	
.	GI-35-15-15	18.67	22.67	20.67	75.33	88.00	167	200	Ş	
•	SPV-946	12.67	18.67	15.67	68.67	3.22	5.5	31	88	51.17
-	SPV-104	38.67	42.00	10.33		38	30	40.6/	48.00	4433
<i>∞</i>	IS-2284	6.67	633	38	8. C	8.5		67.33	66.67	67.00
•	IS-6335	667	667	667	38	8.0	10.02	8.8	13.67	16.83
2	IS-9471	6.67	2		38	10.01	19.35	14.33	11.67	13.00
=	SPV-1201 x ICSB-101B	14.67	55	5.0 Ç	20.07	325	26.00	17.67	14.67	16.17
5	SPV-1201 x Abma-14 B	17.23	35	38	3	2	47.33	31.00	29.67	30,33
5	CDV-101 + 10CI-NdS	3.8		8.0	41.33	39.67	43.00	32,33	26.67	2950
2		8.62	8.0	8.00	19.33	17.33	18.33	12.67	13.67	13 17
: 2			5.33	22.33	28.00	16.00	22.00	33.67	10.67	35
2 2		19.9	25.33	30.00	32.00	18.67	25.33	33.20	200	5
9 5		15.33	12.67	14.00	56.67	38.00	47.33	88	38	
2 !	24 V-1201 X IS-2284	8.67	4.00	6.33	25.33	20.67	2002	2 C C	35	
9 9		8.8	6.67	5.33	30.00	31.33	30.67	12.8	32	
2		4.67	7.33	6.00	23.33	27.32	2533	88	9.e	31
8 2	ICSB - 101B x AKma 14 B	21.33	24.00	22.61	54.67	57.33	8	88	3.5	800
21	ICSB - 101B x SRT- 26 B	12.00	8.67	10.33	60.67	58.67	20 67	38	10.04	38
1	ICSB - 101B x QJ-35-15-15	12.00	<u>6.0</u>	9.00	21.33	21.33	21.33	34		
នេះ	ICSB - 101B x SPV - 946	8.00	10.67	9.33	41.33	20.67	46.00	10.01	10.01	22
\$	IC38 - 1018 x SPV - 104	23.33	19.33	21.33	62.67	54.67	58.67	200	200	10.17
2	ICSB - 101B x IS - 2284	11.33	9.33	10.33	12.67	10.67	1167	9 E	200	
ន	ICSB - 101B x IS - 6335	10.00	6.67	8.33	6.00	10.01	200	38		8
5	ICSB - 101B x 12 - 9471	8.0	6.00	2.00	14.00	667	10.33	35	3.5	200
ន	AKme - 14 B x SRT - 26B	28.00	18.00	23.00	74.00	71.33	17.67	2	200	
ล	AKme - 14 B x GJ-35-15-15	18.00	18.67	18.33	23.23	67.33	20.22	3.5	6 8 7 8	32
8	AKms - 14 B x SPV - 946	22.67	19.33	21.00	65.33	22.22	325	10.04	2.2 2.5	
F	AKms - 14 B x SPV - 104	46.00	34.00	40.00	76.67	76.00	26.92	38	8 8 9 1	2.9 9
R	AKms - 14 B x IS - 2284	20.00	6.00	13.00	33.33	17.33	2. Y	3.5	31	
8	AKme - 14 B x 1S - 6335	6.67	2.67	4.67	12.00	12.00	12.00	0.33	10.1	1.2
7	AKms - 14 B x IS - 9471	12.00	<u>6.00</u>	9.00	19.33	23.33	2133	15.67	3.14	15.17
								1	Contd	

CI - 111A i i i

7.33 10.00 667 59.33 59.33 59.33 59.33 39.33 10.00 10.01 16.07 19.33 16.07 19.33 16.07 19.33 16.07 19.33 16.07 19.33 16.07 19.00 15.67 10.00 14.67 7.33 14.03 19.33 16.67 19.00 15.67 10.00 10.00 4.67 7.33 14.03 9.33 11.67 12.00 15.67 10.00 4.67 7.33 14.03 9.35 19.00 10.67 10.00 16.67 17.33 14.03 9.35 35.33 35.00 15.33 12.00 10.67 17.33 16.07 17.33 16.07 15.33 12.00 10.67 17.33 16.00 16.67 17.33 15.33 12.00 17.33 15.00 17.33 15.33 15.33 15.33 13.30 17.33 15.00 17.33 15.00 15.33 15.33 10.00 17.67 72.667 5.67 14.00 15.33 13.33 13.33 13.33 13.33 13.33 15.33 10.00 17.33 12.20 <t< th=""><th>Str 268 50.3 5</th><th>·</th><th>7</th><th>۳</th><th>4</th><th>\$</th><th>6</th><th>1</th><th>8</th><th>6</th><th>10</th><th> =</th></t<>	Str 268 50.3 5	·	7	۳	4	\$	6	1	8	6	10	=
Str 7.86 7.33 3.667 3.60 3.53 3.60 1.67 1.63 1.67 1.63 1.667 1.63 3.667 3.667 3.667 3.667 3.60 3.53 3.69 3.67	Str 268 str 366 str 360 str 367 str 366 str 360 str 367 str 366 str 360 str 36	R	SRT- 26B x GJ-35-15-15	7.33	10.00	8.67	29.33	59.33	29.33	33.23	1917	24 00
3067 28.00 28.33 75.33 6.00 67.67 53.00 44.00 10.00 10.87 16.87 19.33 4.67 12.00 15.67 13.00 10.00 10.67 10.33 14.00 9.33 11.67 12.00 15.67 13.00 10.00 10.67 13.33 44.00 9.33 11.67 12.00 15.67 13.00 11.00 16.67 13.33 14.00 9.33 17.67 13.00 15.67 14.00 15.67 13.00 15.67 13.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 15.67 14.00 <t< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>×</td><td>SRT - 26B x SPV - 946</td><td>16.00</td><td>14.00</td><td>15.00</td><td>36.00</td><td>37,33</td><td>36.67</td><td>26.00</td><td>25.67</td><td>2 S S</td></t<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	×	SRT - 26B x SPV - 946	16.00	14.00	15.00	36.00	37,33	36.67	26.00	25.67	2 S S
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	SRT - 26B x SPV -104	30.67	28.00	29.33	75.33	60.00	67.67	23.00	44.00	3.94
1000 1067 1033 1133 6.67 9.00 1067 1033 1133 6.67 9.00 1067 7.00 1073 1033 1167 7.200 1067 7.00 1067 7.00 1067 1033 1167 7.200 1067 7.00 1067 1000 1067 <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	x	SRT - 26B x IS - 2284	12.00	21.33	16.67	19.33	4.67	12.00	15.67	8.5	11.25
46 1000 467 7.33 14.00 9.33 11.07 7.00 7.00 4 1667 12.00 1037 17.33 14.00 9.33 11.07 12.00 7.00 5 8.00 13.33 4.400 7.33 16.00 16.67 12.00 16.33 33.03 56.67 13.33 16.00 37.33 35.03 56.67 13.33 16.00 37.33 56.67 13.33 16.00 37.33 56.67 13.33 16.00 37.33 56.67 13.33 16.00 37.33 56.67 13.33 14.00 37.33 56.67 13.33 14.00 37.33 56.67 14.00 37.33 14.00 37.33 56.67 14.00 37.33 56.67 14.00 37.33 56.67 14.00 37.33 56.67 14.00 37.33 56.67 14.00 37.33 56.67 14.00 37.33 56.67 14.60 37.33 56.67 14.60 37.33 56.7 <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>ጽ</td> <td>SRT - 26B x IS - 6335</td> <td>10.00</td> <td>10.67</td> <td>10.33</td> <td>11.33</td> <td>667</td> <td>8</td> <td>10.67</td> <td>5.5</td> <td>3</td>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ጽ	SRT - 26B x IS - 6335	10.00	10.67	10.33	11.33	667	8	10.67	5.5	3
46 1467 1200 1333 4100 267 3130 1200 1333 4100 2667 3130 3500 3567 35	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\$	SRT - 26B x IS - 9471	10.00	4 67	7.33	14 00	0 33	5		5	10.0
16.1 14.00 15.33 49.33 57.33 33.33 29.33 19.33	No. No. <td>ŧ</td> <td>GI-35-15-15 × SPV - 946</td> <td>14 67</td> <td>12 M</td> <td>5 C C C</td> <td>8.8</td> <td>2.5</td> <td>10 H</td> <td></td> <td>8.2</td> <td>9.50</td>	ŧ	GI-35-15-15 × SPV - 946	14 67	12 M	5 C C C	8.8	2.5	10 H		8.2	9.50
3.33 1.400 10.53 4.53 5.73 5.73 5.73 5.56 3.33 1.000 10.54 4.33 5.73 5.53 33.00 35.67 3.33 10.00 9.00 16.67 17.33 16.07 13.33 17.33 14.00 3.33 20.00 17.67 7.260 16.67 13.33 17.00 11.67 5.33 20.07 16.67 12.00 14.33 11.00 11.67 5.33 20.07 16.67 12.60 14.33 11.67 14.67 31.33 5.00 1067 9.33 22.07 18.00 23.33 11.67 7.33 1067 11.00 15.33 16.07 13.33 11.67 7.33 6.07 7.00 15.33 6.07 10.06 11.67 7.33 6.07 7.00 15.33 6.07 10.07 11.67 7.33 6.07 7.00 15.33 6.07 10	No. 13.3 17.0 10.54 43.43 57.33 53.33 33.00 35.67 13.3 10.00 10.67 17.33 16.07 13.33 11.00 35.67 13.3 15.33 20.00 17.67 25.67 54.67 35.33 33.00 35.67 13.33 13.33 10.67 17.67 25.67 54.67 31.33 11.00 11.33 10.67 11.67 13.33 11.67 13.33 11.67 13.33 11.67 11.67 13.33 11.67 11.67 13.33 11.67 11.67 13.33 11.67 11.67 13.33 11.67 11.67 13.33 11.67	; ;		5	8.8	3 2 2	3	10.07	30.33	29.33	19.33	24.33
3.3 12.00 10.67 17.33 16.00 16.67 13.33 14.00 7.33 8.00 7.67 26.07 26.07 7.33 12.33 14.00 7.33 8.00 7.67 26.07 26.07 7.33 15.33 14.00 7.33 8.00 7.67 26.07 25.07 25.07 15.00 16.67 16.00 17.33 16.33 16.07 17.00 17.33 16.67 16.33 16.07 16.07 16.07 17.00 17.33 16.67 17.33 16.67 17.33 16.67 17.33 16.67 17.33 16.67 17.33 16.67 17.33 16.67 17.33 16.67 14.00 17.33 16.7 16.96 14.33 11.67 14.33 11.67 14.33 11.67 16.67 13.33 16.7 10.67 13.33 16.7 10.67 13.33 16.7 10.67 13.33 16.7 10.67 16.67 10.67 13.33 16.7 </td <td>3.33 12.00 10.67 17.33 16.00 16.67 13.33 14.00 7.33 8.00 7.67 26.07 26.07 7.33 15.33 11.00 7.33 8.00 7.67 26.07 26.07 7.33 15.33 11.00 7.33 8.00 7.67 26.07 16.07 16.07 13.33 11.00 8.00 167 9.33 20.07 16.07 16.07 14.00 17.33 16.07 10.07 8.00 17.67 7.00 15.00 16.67 10.00 14.33 14.67 17.33 16.7 14.67 17.33 16.7 14.67 17.33 16.7 14.67 17.33 16.7 14.67 17.33 16.7 14.67 17.33 16.7 16.67 14.60 17.33 11.67 14.75 14.67 14.33 11.67 14.75 14.75 14.75 14.75 14.75 14.75 14.75 14.75 14.75 14.75 <</td> <td>; ;</td> <td>PU</td> <td>10:01</td> <td>9.4</td> <td>10.33</td> <td>49.33</td> <td>57.33</td> <td>53.33</td> <td>33.00</td> <td>35.67</td> <td>34.33</td>	3.33 12.00 10.67 17.33 16.00 16.67 13.33 14.00 7.33 8.00 7.67 26.07 26.07 7.33 15.33 11.00 7.33 8.00 7.67 26.07 26.07 7.33 15.33 11.00 7.33 8.00 7.67 26.07 16.07 16.07 13.33 11.00 8.00 167 9.33 20.07 16.07 16.07 14.00 17.33 16.07 10.07 8.00 17.67 7.00 15.00 16.67 10.00 14.33 14.67 17.33 16.7 14.67 17.33 16.7 14.67 17.33 16.7 14.67 17.33 16.7 14.67 17.33 16.7 14.67 17.33 16.7 16.67 14.60 17.33 11.67 14.75 14.67 14.33 11.67 14.75 14.75 14.75 14.75 14.75 14.75 14.75 14.75 14.75 14.75 <	; ;	PU	10:01	9.4	10.33	49.33	57.33	53.33	33.00	35.67	34.33
7.33 8.00 7.00 9.00 7.66 12.00 14.33 7.233 11.00 7.33 7.000 7.767 2.667 16.07 16.67 <td>3.00 10.00 9.00 16.67 12.00 14.33 12.33 11.00 7.33 8.00 7.67 2.66 12.00 14.33 12.33 11.00 6.33 7.33 10.33 2.067 16.00 18.33 17.00 11.67 6.33 4.67 7.33 10.67 9.33 2.200 18.00 16.07 18.33 11.67 7.33 6.67 7.00 15.33 16.67 16.00 15.33 11.67 7.33 6.07 7.03 15.00 14.00 15.33 11.67 16.00 16.07</td> <td>; ;</td> <td>GJ-35-15-15×15 - 2284</td> <td>6.6</td> <td>12.00</td> <td>10.67</td> <td>17.33</td> <td>16.00</td> <td>16.67</td> <td>13.33</td> <td>14.00</td> <td>13.67</td>	3.00 10.00 9.00 16.67 12.00 14.33 12.33 11.00 7.33 8.00 7.67 2.66 12.00 14.33 12.33 11.00 6.33 7.33 10.33 2.067 16.00 18.33 17.00 11.67 6.33 4.67 7.33 10.67 9.33 2.200 18.00 16.07 18.33 11.67 7.33 6.67 7.00 15.33 16.67 16.00 15.33 11.67 7.33 6.07 7.03 15.00 14.00 15.33 11.67 16.00 16.07	; ;	GJ-35-15-15×15 - 2284	6.6	12.00	10.67	17.33	16.00	16.67	13.33	14.00	13.67
7.33 8.00 7.67 2.6.00 2.8.67 27.33 16.67 16.33 15.33 7.000 17.67 2.6.00 2.8.67 27.33 16.67 16.33 15.33 7.33 10.35 2.2.67 16.07 16.07 16.37 16.07 17.33 15.00 16.77 10.067 11.03 12.33 12.67 16.00 15.33 14.67 16.73 11.33 10.67 11.03 2.2.03 18.00 15.33 14.67 14.33 16.73 14.33 16.73 14.53	7.33 8.00 7.67 2.6.00 2.8.67 27.33 16.67 16.33 16.67 16.33 16.57 16.33 16.57 16.53 16.57 16.53 16.57 16.53 16.57 16.57 16.57 16.53 17.33 16.57 <th1< td=""><td>\$!</td><td>GJ-35-15-15 x IS - 6335</td><td>8.00</td><td>10.00</td><td>9.00</td><td>16.67</td><td>12.00</td><td>14.33</td><td>12.33</td><td>11.00</td><td>11.67</td></th1<>	\$!	GJ-35-15-15 x IS - 6335	8.00	10.00	9 .00	16.67	12.00	14.33	12.33	11.00	11.67
15.3 2000 17.67 7.267 54.67 63.67 44.00 37.33 15.3 200 17.67 7.33 10.33 27.33 16.00 18.33 17.00 11.67 6.67 4.67 5.67 2.267 16.60 18.33 17.00 11.67 7.33 6.67 7.00 15.33 25.00 14.67 14.33 11.67 7.33 6.67 7.00 15.33 16.67 11.00 15.33 11.67 7.33 6.67 7.00 15.33 16.67 14.33 11.60 14.33 7.33 6.67 7.00 15.33 16.67 14.33 11.60 8.07 7.33 16.67 14.00 15.33 11.67 12.00 16.00 14.00 15.33 11.67 13.33 15.18 13.24 14.67 21.33 21.33 11.67 15.19 13.24 14.67 21.33 21.33 24.67 13.33 15.19 13.24 14.27 39.46 21.33 24.67 13.33 15.18 13.24 14.27 39.46 21.33 24.67 13.33 15.19 13.24	15.33 20.00 17.67 7.267 54.67 63.67 44.00 37.33 15.33 7.33 10.33 20.67 16.67 19.67 11.00 11.67 11.33 10.67 11.00 15.33 15.67 15.67 15.67 14.00 37.33 11.33 10.67 11.00 15.33 15.67 11.00 15.33 11.67 11.33 6.67 7.00 15.33 6.67 7.00 15.33 6.67 10.00 13.34 6.67 7.00 15.33 6.67 11.00 15.33 11.67 12.00 16.00 16.00 14.00 27.33 16.00 17.33 11.67 12.00 15.03 14.00 15.67 13.33 16.67 13.33 16.7 12.00 15.03 14.00 15.00 15.00 17.33 11.67 12.00 15.13 21.33 21.33 15.67 13.33 15.18 13.2.4 14.27 39.46 35.90 37.68 27.33 15.18 13.2.4 14.27 39.46 35.90 37.68 27.33 24.57 15.18 13.2.4 14.27 39.45	\$:	GJ-35-15-15 x IS - 9471	7.33	8.00	7.67	26.00	28.67	27.33	16.67	18.33	17 50
13.3 7.33 10.33 2.067 16.00 18.33 17.00 11.67 667 1667 16.00 18.33 17.00 11.67 800 10.67 1.100 15.33 16.67 10.00 15.33 11.67 800 10.67 1.100 15.33 16.67 10.00 15.33 11.67 800 6.00 7.00 15.33 16.67 10.00 15.33 11.67 800 6.00 7.00 25.33 6.67 10.00 15.33 11.67 12.00 16.00 14.00 14.67 21.33 51.33 11.67 12.01 16.00 12.33 16.7 7.33 16.00 17.33 11.67 12.01 13.24 14.27 39.46 21.33 21.33 21.67 13.33 15.18 13.24 14.21 39.46 37.63 27.33 24.57 13.33 15.18 13.24 14.21 39.46	13.3 7.33 10.33 2.067 16.00 18.33 17.00 1167 8.07 10.67 11.00 15.87 2.267 16.60 18.33 17.00 1167 8.00 10.67 11.00 15.33 12.67 10.07 10.57 10.67 8.00 10.67 11.00 15.33 12.67 10.00 15.33 11.67 8.00 6.00 7.00 25.03 8.00 14.00 11.33 11.63 16.67 8.00 16.00 14.00 14.67 13.33 13.33 11.63 11.63 8.00 17.00 15.33 15.03 15.33 13.33 11.63 15.13 21.33 21.33 21.33 21.33 11.63 11.63 15.16 13.24 14.21 39.46 35.90 37.63 27.33 24.57 13.33 15.18 13.24 14.21 39.46 35.90 37.63 27.33 24.57 13	ş i	SPV - 946 x SPV- 104	15.33	20:00	17.67	72.67	54.67	63.67	44.00	37.33	40.67
667 467 567 2267 1667 1967 1467 1067 10.00 10.67 9.33 22.00 18.00 13.00 14.67 10.67 7.33 6.67 7.00 15.33 16.67 11.00 13.33 16.77 10.67 8.67 7.33 6.67 7.00 15.33 16.67 13.03 14.33 11.63 14.33 11.63 14.33 11.67 14.33 </td <td>667 467 567 2267 1667 1967 1467 1067 800 1067 9.33 2200 18.00 15.30 14.67 1067 7.33 6.67 7.00 15.33 12.67 15.00 13.33 16.77 8.67 7.33 8.00 14.00 14.33 11.33 16.77 11.33 16.67 7.00 22.67 14.67 11.33 16.73 26.7 7.33 8.00 14.00 14.33 11.33 11.53 12.00 16.00 14.00 27.33 21.33 12.63 11.53 4.00 5.60 7.33 13.33 12.69 17.33 11.67 4.00 5.63 14.37 7.33 21.33 12.63 11.67 15.18 13.24 14.21 39.48 35.93 37.68 27.33 24.57 15.18 13.24 14.21 39.48 35.93 37.68 27.33 24.</td> <td>44</td> <td>SPV - 946 x IS - 2284</td> <td>13.33</td> <td>7.33</td> <td>10.33</td> <td>20.67</td> <td>16.00</td> <td>18.33</td> <td>17.00</td> <td>11 67</td> <td>14 33</td>	667 467 567 2267 1667 1967 1467 1067 800 1067 9.33 2200 18.00 15.30 14.67 1067 7.33 6.67 7.00 15.33 12.67 15.00 13.33 16.77 8.67 7.33 8.00 14.00 14.33 11.33 16.77 11.33 16.67 7.00 22.67 14.67 11.33 16.73 26.7 7.33 8.00 14.00 14.33 11.33 11.53 12.00 16.00 14.00 27.33 21.33 12.63 11.53 4.00 5.60 7.33 13.33 12.69 17.33 11.67 4.00 5.63 14.37 7.33 21.33 12.63 11.67 15.18 13.24 14.21 39.48 35.93 37.68 27.33 24.57 15.18 13.24 14.21 39.48 35.93 37.68 27.33 24.	44	SPV - 946 x IS - 2284	13.33	7.33	10.33	20.67	16.00	18.33	17.00	11 67	14 33
8.00 1057 9.33 22.00 18.00 5.00 15.00 14.33 7.33 6.67 7.00 15.33 6.67 7.00 15.33 6.17 1100 14.33 1167 8.00 16.07 7.00 15.33 6.67 7.00 15.33 6.17 100 15.33 6.17 100 15.33 6.16 11.33 6.16 7.00 15.33 6.16 7.00 15.33 6.16 7.00 15.33 6.16 7.00 15.33 6.16 7.00 15.33 6.16 7.00 15.33 6.16 7.00 15.33 6.16 7.00 15.33 6.16 7.00 15.33 6.16 7.00 7.00 15.33 6.16 7.00 15.33 1167 7.00 15.33 167 13.33 167 13.33 167 13.33 167 13.33 167 13.33 24.57 13.33 24.57 13.33 24.57 15.56 13.33 24.57	8.00 1067 9.33 22.00 18.00 500 15.00 15.30 11.67 7.33 6.67 7.00 15.33 6.67 11.00 15.33 11.67 8.00 6.00 7.00 15.33 6.67 11.00 15.33 11.67 8.07 6.00 7.00 15.33 16.07 17.33 11.60 12.06 14.00 22.67 7.33 15.00 17.33 11.60 12.06 14.00 22.67 7.33 15.00 17.33 11.60 12.06 13.24 14.27 29.46 35.90 37.63 27.33 24.57 11.33 15.18 13.2.4 14.21 39.46 35.90 37.63 27.57 13.33 15.18 13.2.4 14.21 39.46 35.90 37.63 27.57 13.33 15.18 13.2.4 14.21 39.46 35.90 37.63 27.57 13.33 15.18 15.2.69<	\$	SPV - 946 x IS- 6335	6.67	4.67	5.67	22.67	16.67	19.67	14.67	10.67	19 61
11.33 10.67 11.00 19.33 12.67 16.00 15.33 16.07 15.33 16.07 15.33 16.07 15.33 16.07 15.33 16.07 15.33 16.07 15.33 16.07 15.33 16.07 16.00 15.33 16.07 16.33 11.67 11.00 11.33 16.07 16.00 16.33 11.67 11.00 11.33 16.07 10.00 11.63 11.63 11.63 11.63 11.63 11.63 11.63 11.67 11.60 11.63 11.67 11.60 11.63 11.67 11.66 11.63 11.67 11.66 11.67 <th< td=""><td>11.33 10.67 11.00 19.33 12.67 16.00 15.33 6.67 333 6.67 7.00 15.33 6.67 11.00 15.33 6.67 867 7.33 8.00 14.00 15.33 6.67 13.33 11.60 867 7.33 8.00 14.00 15.33 6.67 13.33 11.60 12.00 15.00 13.24 14.21 39.46 7.33 12.63 11.33 11.60 4.00 5.33 4.67 21.33 21.33 21.33 12.61 13.34 4.00 5.33 4.67 21.33 21.33 24.57 13.67 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 13.67 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 15.7 A 0.515 13.24 14.21 39.48 35.90 37.68 27.33</td><td>Ş</td><td>SPV - 946 x IS 9471</td><td>8.00</td><td>10.67</td><td>9.33</td><td>22.00</td><td>18.00</td><td>20.00</td><td>15.00</td><td>14.33</td><td>14 67</td></th<>	11.33 10.67 11.00 19.33 12.67 16.00 15.33 6.67 333 6.67 7.00 15.33 6.67 11.00 15.33 6.67 867 7.33 8.00 14.00 15.33 6.67 13.33 11.60 867 7.33 8.00 14.00 15.33 6.67 13.33 11.60 12.00 15.00 13.24 14.21 39.46 7.33 12.63 11.33 11.60 4.00 5.33 4.67 21.33 21.33 21.33 12.61 13.34 4.00 5.33 4.67 21.33 21.33 24.57 13.67 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 13.67 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 15.7 A 0.515 13.24 14.21 39.48 35.90 37.68 27.33	Ş	SPV - 946 x IS 9471	8.00	10.67	9.33	22.00	18.00	20.00	15.00	14.33	14 67
7.33 6.67 7.00 15.33 6.67 11.00 11.33 6.67 100 11.33 6.67 100 11.33 6.67 100 11.33 6.67 100 11.33 6.67 100 11.33 6.67 100 11.33 6.67 100 11.33 15.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.33 11.67 11.67 11.67 11.67 11.67 11.67 11.67 11.67 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 11.73 11.67 1	7.33 6.67 7.00 15.33 6.67 1.00 11.33 6.67 8.07 7.33 6.00 14.00 14.07 14.33 11.33 11.60 8.07 5.33 4.67 21.33 21.33 15.00 17.33 11.67 12.00 16.00 14.00 2.267 7.33 15.00 17.33 11.67 12.00 16.00 14.00 2.267 7.133 11.67 13.33 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 13.33 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 13.33 15.18 13.24 14.21 39.48 35.90 27.33 24.57 13.33 A 0.55.14 (4.006 15.50 17.33 1167 A 0.49.06 0.53 37.68 27.33 24.57 (1) A 0.51 0.55	8	SPV - 104 x IS 2284	11.33	10.67	11.00	19.33	12.67	16.00	15.33	11 67	13.60
8.00 6.00 7.00 2.200 8.00 15.	8.00 6.00 7.00 2.2.00 8.00 15.00 15.00 15.00 13.33 11.00 12.00 16.00 14.00 2.467 7.33 15.00 17.33 11.00 12.00 16.00 14.00 2.267 7.33 15.00 17.33 11.00 15.01 13.24 14.27 21.33 21.33 21.33 12.67 13.33 15.18 13.2.4 14.21 39.46 35.90 37.68 27.33 24.57 13.35 15.18 13.2.4 14.21 39.46 35.90 37.68 27.33 24.57 13.35 15.18 13.2.4 14.21 39.46 35.90 37.68 27.33 24.57 13.35 A 26.00 15.67 7.33 24.57 (1) (1) 27.33 24.57 (1) (1) A 26.00 15.66 7.33 24.57 (1) (1) 27.56 27.33 24.57 (1)	3	SPV - 104 x IS 6335	7.33	6.67	7.00	15.33	6.67	11.00	11.33	6.67	200
867 7.33 8.00 14.01 14.33 11.33 11.00 1200 16.00 14.00 22.67 7.33 15.00 17.33 11.00 1200 16.00 14.00 22.67 7.33 15.00 17.33 11.00 1200 15.18 13.24 14.27 39.48 35.50 37.68 27.33 24.57 13.35 15 13.24 14.27 39.48 35.50 37.68 27.33 24.57 13.55 15 (+)12.77 9.48 35.50 37.68 27.33 24.57 (+) 14.57 15 (-)12.77 9.48 35.50 37.68 27.33 24.57 (+) 57.56 57.53 24.57 (+) 56.54 (+) 56.54 (+) (+) 57.56 57.53 24.57 (+) 57.56 57.56 57.56 57.53 24.57 (+) 57.56 57.56 57.53 24.57 (+) 57.56 57.56 <td>8.67 7.33 8.00 14.00 2.67 14.33 11.35 11.</td> <td>2</td> <td>SPV - 104 x IS 9471</td> <td>8.00</td> <td>6.00</td> <td>7.00</td> <td>22.00</td> <td>8.00</td> <td>15.00</td> <td>15.00</td> <td>00 2</td> <td>23</td>	8.67 7.33 8.00 14.00 2.67 14.33 11.35 11.	2	SPV - 104 x IS 9471	8.00	6.00	7.00	22.00	8.00	15.00	15.00	00 2	23
12.00 16.00 14.00 22.67 7.33 15.00 17.33 11.67 1 5.33 4.67 21.33 21.33 21.33 15.67 11.67 1 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 13.33 1 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 13.33 1 1.9106 7.33 14.71 39.48 35.90 37.68 27.33 24.57 15.73 1 5 1.906 7.33 24.57 15.24 (Mode) 1.566 15.73 24.57 15.73 1 5 5 5.590 3.768 27.33 24.57 15.73 24.57 15.73 1 5	12.00 16.00 14.00 2.267 7.33 15.00 17.33 11.67 15.18 13.24 14.27 39.48 35.90 37.68 27.33 24.57 13.33 15.18 13.24 14.27 39.48 35.90 37.68 27.33 24.57 13.33 15.18 13.24 14.27 39.48 35.90 37.68 27.33 24.57 13.33 15.18 13.24 14.27 39.48 35.90 37.68 27.33 24.57 13.33 15.17 39.48 35.90 37.68 27.33 24.57 15.73 15.17 30.48 35.90 37.68 27.33 24.57 15.73 18 2.266 0.193 0.55% 35.19 3.05% 16.73 18 2.266 3.139 8.850 0.55% 3.15% 1.57.26 13 3.139 8.850 1.2980 4.270 1.2.426 1.27.426 <td>8</td> <td>IS 2284 x IS-6335</td> <td>8.67</td> <td>7.33</td> <td>8.00</td> <td>14.00</td> <td>14.67</td> <td>14.33</td> <td>11.33</td> <td>18</td> <td>_</td>	8	IS 2284 x IS-6335	8.67	7.33	8.00	14.00	14.67	14.33	11.33	18	_
4.00 5.33 4.67 21.33 21.33 21.33 21.33 21.35 12.67 13.33 .) 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 13.33 .) 15.18 13.24 14.21 39.48 35.90 37.68 27.33 24.57 13.33 .) .) .) .) .) .) .) .)	4.00 5.33 4.67 2.133 2.133 2.133 13.66 13.33 -) 15.18 13.24 14.21 39.46 35.90 37.65 27.33 24.57 13.34 -) 15.18 13.24 14.21 39.46 35.90 37.65 27.33 24.57 15.55 - (-)12.77 39.46 35.90 37.65 27.33 24.57 15.55 - (-)12.77 39.46 35.90 37.65 27.33 24.57 15.7 - (-)12.77 39.46 35.90 37.65 27.33 24.57 15.7 - - (-)9.06 27.33 24.57 15.7 16.7 16.7 - - - - - - - 15.7 16.7 15.7 - - - - - - 15.7 15.7 - - - - - - - 15.7<	3	IS 2284 x IS -9471	12.00	16.00	14.00	22.67	7.33	15.00	17.33	1911	11 60
 15.18 13.24 14.21 39.48 35.90 37.69 27.33 24.57 (-)12.77 (-)12.77 39.48 35.90 37.69 27.33 24.57 (-)9.06 (-)12.77 (-)12.77 (-)12.74 (-)12.77 (-)12.74 (-)12.74 	15.18 13.24 14.21 39.46 35.90 37.69 27.33 24.57 (-)12.77 (-)12.77 39.46 35.90 37.69 27.33 24.57 (-)12.77 (-)12.77 39.46 35.90 37.69 27.33 24.57 (-)12.77 (-)12.77 39.46 35.90 37.69 27.33 24.57 (-)12.77 (-)12.77 39.46 35.60 37.69 27.33 24.57 A (-)12.77 (-)12.77 30.46 (-)12.46 (-)12.42 A 0.450 3.51 9.178 3.019 8.755 B 2.266 6.256 3.31 9.178 3.019 8.755 x B 3.153 8.850 4.683 12.360 4.720 12.426	8	IS 6335 x IS 9471	4.00	5.33	4.67	21.33	21.33	21.33	12.67	13.33	13.85 19.61
) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	 (-)) (-)1277 (-)1270 (-)1242 (-)1242 (-)1242 (-)1242 (-)1242 (-)1242 (-)1242 (-)1242 (-)1242 		Mean	15.18	13.24	14.21	30.48	15.00	3769	55 <u>55</u>	5	2
A 0.430 0.193 0.5% SE (m) C.D.5% SE (m) SE (XE X		% increase (+)/decrease(-)			(-)12.77	2	200	90'6(-)	8.5	10.47	20.02 (-)10.00
165.24 165.24 (Mode) SE(m) CD 5% SE(m) CD 5% SE(m) C A 0.430 0.193 0.631 1.750 0.575 B 2.268 3.311 1.750 0.575 x 8 3.03 8.800 4.570 4	A 0.430 0.155.24 (Mode) (Access) 5E (m) C <thc< th=""> <thc< th=""> C C<</thc<></thc<>		over untreated									00001/-1
SE (m) CD 5% SE (m) CD 5% SE (m) C 0.430 0.153 0.631 1.750 0.575 2.258 6.258 0.331 9.178 0.575 3.133 8.800 4.823 12.940 4.770 4	SE (m) CD 5% SE (m) CD 5% SE (m) C 0.430 0.193 0.531 1.760 0.575 0.575 2.256 6.258 3.311 9.178 3.019 3.019 3.193 8.850 4.683 1.290 4.270 1		% increase over location						165.24 (Akola)			
SE(m) UJ 3% SE(m) CD 5% SE(m) C 0.430 0.193 0.631 1.750 0.575 2.256 6.258 3.311 9.178 3.017 3.193 8.800 4.580 4.270 1	SE (m) CJ 5% SE (m) C 0.430 0.193 0.531 1.750 0.657 2.258 6.258 0.331 9.178 0.657 3.193 8.850 1683 12.360 4.270 1											
2.258 6.256 3.311 9.1700 0.975 3.193 8.850 3.668 3.311 9.178 3.019 3.193 8.850 4.683 12.960 4.770 1	2.256 6.268 3.311 9.178 3.019 3.19 3.19 3.19 3.019 3.19 3.19 3.19 3.19 3.19 3.19 3.19 3.		4	SE (m)	200%		SE (m)	005%		ا ا ا ا ا ا	8 0 0	
3.193 8.850 4.683 12.960 4.770 1	3.193 8.850 4.683 12.980 4.270 1		. 8	2.258	6.258		3311	921.9		0,0,0 0+0 s	1.673	
			AXB	3.193	8.850		4 683	12.980		010.0	0.100	

1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Akola			Patanchenu		Poc	Patentis/Croses Akola Patenthen Pooled over keetions	
- e e - 2	Unicelica	I reated	Mean	Untreated	Treated	Mcan	Untreated	Treated	Mean
arv-1.01 I.CSB-101B Arma-14B RT-26B SRT-26B SRV-246 SRV-104	~	4	۰	9	7	80	6	01	=
Acm-1018 Acm-148 SRT-268 GL-35-15-15 SPV-306 SPV-106	8.0	8.00	8.00	27.33	22.00	24.67	17.67	15.00	16.33
AKm-14B SRT-26B GU-35-15-15 SPV-196 SPV-194	8.67	8.67	8.67	34.67	32.67	33.67	21.67	2067	5.5
SRT-268 SPV-346 SPV-246 SPV-104	21.33	16.00	18.67	56.00	28.00	42.00	29.67	222	1.12
GJ-35-15-15 SPV-946 SPV-104	5.33	8.00	667	37.33	28.67		5.6	38	222
5PV-946 SPV-104	6.67	8 67	767	8.8	10.00	8.90 5.90	32	5.57	22.23
SPV-104	609		5.6		ŝ	3.5	55.12	21.67	2150
	19 61	3.5	3.4	4 C	3.5	41.00	25.33	22.67	24,00
I.e. mea	5	b c c	10.01	8.10	40.6/	54.00	43.08	27.67	35,33
	36	2.5	3.67	8.02	9.33	14.67	12.00	6.33	9.17
10 0411	107	9.6	3.33	15.33	8.00	11.67	0 0.6	6.00	7.50
	3	2.67	2.33	13.33	10.67	12,00	7.67	667	717
SEV-1201 × ICSB-101B	5.33	4.00	4.67	24.67	16.00	20.33	15.00	10.01	1250
3PV-1201 X Atms-14 B	4.67	5.33	5.00	29.33	16.00	22.67	17.00	10.67	
SPV-1201 x SRT - 26B	3.33	4.67	6	11.33	11.33	11.33	1.23	2	30
SPV-1201 x GJ-35-15-15	16.67	2.67	9.67	14.67	10.00	12.33	15.67	3.5	į
5PV-1201 x 22V-946	19.33	14.67	17.00	20.67	13.23	118	500	38	38
SPV-1201 x SPV- 104	4.67	4.00	4.33	25.33	20.00	22.67	15.0	38	35
1922-SI X 1021-Ads	2.67	2.00	2.33	12.00	10.67	11.33	7.33	3 6	3
SPV-1201 x IS-6335	2.00	4.00	3.00	- 14.00	14.00	14.00	808	88	32
	2.00	2.67	2.33	8.67	12.00	10.33	5.33	7.33	
	6.00	5.33	5.67	32.00	32.67	32.33	19.00	19.00	
21 ICSB - 101B x SRT- 26 B	4.00	0.67	2.33	40.04	32.00	36.00	22.00	16.33	10
× .	4.00	2.67	3.33	17.33	12.67	15.00	10.67	7.67	0 17
= .	3.33	2.67	3.00	24.67	29.33	27.00	14.00	16.00	1500
≤.	11.33	8.00	9.67	43.33	32.00	37.67	27.33		23.67
ž	8.9 9	1.33	3.67	8.00	6.67	733	282	100	554
-	3.33	2.67	3.00	4.67	6.00	533	400	25.4	257
-	4.00	1.33	2.67	6.00	4.00	89	202	140	
•	14.00	5.33	9.67	38.67	33.33	36.00	26.35	5 ¢	38
AKms - 14 B x GI-35-15-15	7.33	5.33	6.33	36.67	24.00	20.22	88	3	3
Ì	8.0	6.00	2.00	35.33	26.67	88	25	10.4	200
AKms - 14 B x SPV - 104	17.33	10.67	14.00	44 67	28.67	36.67		20.01	
Ì	5.33	3.33	4.33	14.00	933	1167	0.1.0	0.0	38
AKms - 14 B x 13 - 6335	3.33	0.0	1.67	7.33	7.33	7.33	5.23	2.5	32
AKme - 14 B x IS - 947]	4.67	2.00	3.33	14.00	13,33	13.67	629	167	55

Table	Table 40. Contd.									
-	2	m	4	~	6	6	•		4	
S	SRT- 26B x GJ-35-15-15	2.67	6.00	4.33	38.00	26.00		20.33	16.00	11
×	SRT - 26B x SPV - 946	6.67	6.00	6.33	22.00	21.23	24.67	8. F		1.0
37	SRT - 26B x SPV -104	11.33	14.00	12 67	40.00	2.2	5.5	3 6	5.5	8.ª
8	SRT - 26B × IS - 7784	533	0	5.67	5.5	3	10.00	10.62	10.77	24.17
۶	SCEY SI DYL TOS	5	8	500	3	3.1	19.1	8.33	6.00	7.17
\$	CCC0 - CIX 007 - INC		9.6	3.6/	8.67	2.67	5.67	6.00	3.33	4.67
₽:	SKI - 20B X IS - 94/I	4.00	1.33	2.67	8.67	4.67	6.67	6.33	3.00	4.67
4	GJ-35-15-15 x SPV - 946	9.33	5.33	7.33	30.00	12.00	21.00	19.67	8.67	14 17
4	GJ-35-15-15 x SPV- 104	5.33	5.33	5.33	31.33	28.00	29.67	18.33	16.67	17 50
\$	GI-35-15-15 x IS - 2284	2.67	5.33	4.00	11.33	7.33	626	202	6.33	2.5 a
4	GJ-35-15-15 x IS - 6335	4.00	4.67	4.33	10.00	00.9	8.00	8.2	533	6.47
\$	GI-35-15-15 x IS - 9471	4.00	4.00	6	18.00	8.67	13.33	19	8.33	
\$	SPV - 946 x SPV- 104	4.00	7.33	5.67	52.00	36.67	44.33	20.00	352	10.0
4	SPV - 946 x IS - 2284	6.67	4.67	5.67	12.00	8.00	10.01	200	3 2	20.07 20.02
8	SPV - 946 x IS- 6335	4.67	1.33	3,00	14.67	526	86	3.0		2 2
\$	SPV - 946 x IS 9471	3.33	6.00	4.67	11 33	867	86	10.6 6 6 6	8.5	8.5
8	SPV - 104 x IS 2284	4.67	6.00	5.33	8.67	7.33	808	22.2	3.5	2.5
5	SPV - 104 x IS 6335	1.33	2.67	2.00	8.67	4.67	667	5	1000	10.0
5	SPV - 104 x IS 9471	3.33	4.00	3.67	12.67	467	A67	8	5	3
8	IS 2284 x IS-6335	1.33	4.00	2.67	8.00	808	5		38	
3	IS 2284 x IS -9471	4.00	7.33	5.67	12.00	40			34	34
8	IS 6335 x IS 9471	1.33	2.00	1.67	11 33	e e	5 C	3.4	200	25
					8	3	10.01	8.0	80	61/
	Mean	6.17	5.32	5.75	16.02	17 03	19.61	15.54	41 10	
	% increase (+)/decrease(-)			(-)13.77		3	(-)25.66	5	0.1	05.61 20.804/2/
	over untreated									nn:n7(-)
	% increase over location						241.04			
							(Akola)			
		SE (m)	CD 5%		SE (m)	CD 5%		SF (m)	CD 6%	
	A	0.353	0.980		0.539	1.494		0.490	1.426	
	8	1.853	5.137		2.827	7.837		2.571	7.481	
	AxB	2.621	7.265		3.299	11.083		3.636	10.582	

91 - 1IIA

Table 40. Contd.....

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	S.N.	Parents/Croases Akola Parents/Croases Akola Parents/Croases		Akola			Parancheru		boo	Pooled over locations	
WV-1001 1 5 6 7 8 RVV-1001 CO00 1003 000 1003 600 <th></th> <th></th> <th>Untreated</th> <th>Treated</th> <th>Mean</th> <th>Untreated</th> <th>Treated</th> <th>Mean</th> <th></th> <th>Tronted</th> <th>Mnan</th>			Untreated	Treated	Mean	Untreated	Treated	Mean		Tronted	Mnan
Technol (SSP-10) Cold (SSP-10) Cold	-		~	4	٢		7	8	6	01	11
Mumerial Aumerial (3-3-1):8 0.00 <t< th=""><th>- (</th><td>1021-748</td><td>0.00</td><td>1.33</td><td>0.67</td><td>6.00</td><td>6.00</td><td>6.00</td><td>3.00</td><td>367</td><td>333</td></t<>	- (1021-748	0.00	1.33	0.67	6.00	6.00	6.00	3.00	367	333
Matrix Matrix<		ICSU-IUB	80	0.0	0.0	9.33	10.00	9.67	4.67	200	4 83
Microsolution 0.00	n •	AKING-14B	0.0	0.67	0.33	7.33	8.00	7.67	3.67	1	400
WU-SULPIS 000 0	4 4	SK1-26B	80	0.00	0.0	8.67	7.33	8.00	4.33	3.67	404
SFV-M6 0.00 <	^ •	61-61-61-61-61-61-61-61-61-61-61-61-61-6	0.00	0.00	8.0	9.33	8.67	9006	4.67	4 33	450
Sized (S-234) 0.00 8.00 4.00 10.07 10.35 [S-724] 0.00	• •	SPV-946	0.0	0.00	0.0	8.67	12.00	10.33	4.33	009	515
Fights 0.00 <		SPV-104	0.0	8.00	4.00	10.00	10.67	10.33	2002	220	117
IS-971 IS-971<	20	N822-51	0.0	0.0	8.0	7.33	00.0	3.67	367	80	1 82
SV-10ht rCGB-101 0.00 0.67 0.03 4.00 3.67	~ ;	12-6335	8.0	0.0	0.0	3.33	0.67	2.00	167	80	35
STV-1201 x factor-1018 0.00 0.0	2:	124-21	0.0	0.67	0.33	4.00	4.00	400	2.00	200	250
SFV-1201 x ATMALIA 0.00 <th0.00< th=""> 0.00 0.00<th>= :</th><td>SPV-1201 x ICSB-101B</td><td>0.0</td><td>0.0</td><td>0.0</td><td>8.00</td><td>6.00</td><td>002</td><td>400</td><td>88</td><td>1950</td></th0.00<>	= :	SPV-1201 x ICSB-101B	0.0	0.0	0.0	8.00	6.00	002	400	88	1950
FV-101 x STT-368 0.00 067 0.33 2.00	12	SPV-1201 x Akma-14 B	800	0.00	0.0	8.00	5.33	667	0.4		222
Structure Construction Construction <th>n</th> <td>SPV-1201 x SRT - 26B</td> <td>0.0</td> <td>0.67</td> <td>0.33</td> <td>2.00</td> <td>200</td> <td>8</td> <td>85</td> <td>55</td> <td>3:</td>	n	SPV-1201 x SRT - 26B	0.0	0.67	0.33	2.00	200	8	85	55	3:
TV: Dial x STV: 946 0.00 0.00 5.33 0.00 267 STV: Dial x STV: 946 0.00 0.00 0.00 5.33 0.00 267 STV: Dial x STV: 946 0.00 0.07 0.03 5.03 4.00 267 STV: Dial x STV: 946 0.00 0.07 0.03 5.03 4.00 267 STV: Dial x STV: 901 x Max. 418 0.00 0.00 0.00 0.00 5.03 5.33 CSB: -1018 x Max. 418 0.00 0.00 0.00 0.00 0.01 3.53 5.33 CSB: -1018 x Max. 418 0.00 0.00 0.00 0.00 0.03 5.33 <th>1</th> <td>SPV-1201 x GJ-35-15-15</td> <td>1.33</td> <td>00.0</td> <td>0.67</td> <td>533</td> <td>000</td> <td>3.67</td> <td>32</td> <td>35</td> <td></td>	1	SPV-1201 x GJ-35-15-15	1.33	00.0	0.67	533	000	3.67	32	35	
FW-1201X Serv. 104 0.00 <th0.00< th=""> <th0.00< th=""> 0.00</th0.00<></th0.00<>	2	SPV-1201 x SPV -946	0.0	00.00	000	5.33		267	2.20	38	1
WY-1201 x18-x354 0.00 067 0.33 6.00 2.00 4.00 RYV-1201 x18-x354 0.00 0.07 0.33 5.00 2.00 4.00 RYV-1201 x18-x373 0.00 0.00 0.00 0.00 6.00 0.07 3.33 RYV-1201 x18-x373 0.00 0.00 0.00 0.00 6.00 7.33 CS95 0.013 x16 0.00 0.00 0.00 1.33 6.67 10.00 CS95 0.013 x16 0.00 0.00 0.00 1.33 6.67 10.03 CS95 0.010 0.00 0.00 0.00 0.00 1.33 1.33 CS95 0.013 x16 0.00 0.00 0.00 1.33 1.03 CS95 0.013 x16 0.00 0.00 0.00 0.00 0.07 1.33 CS95 0.013 x16 0.00 0.00 0.00 0.00 0.03 1.03 CS95 0.013 x16 0.00 0.00	2	SPV-1201 x SPV- 104	00.0	0.0	000	333	4 00	367	191	35	3
FV-1201 x B-x01 0.00	11	SPV-1201 x IS -2284	00.0	0.67	0,33	6.00	2.00	4 00	800	35	3
RF101 x15 - wr11 0.00 0.00 6.00 6.07 3.33 CSB - 1018 xx1C-x618 0.00 0.00 0.00 6.07 7.33 CSB - 1018 xx1C-x618 0.00 0.00 0.00 1.33 6.67 7.33 CSB - 1018 xx1C-x618 0.00 0.00 0.00 1.33 6.67 7.33 CSB - 1018 xx1C-x618 0.00 0.00 0.00 1.33 6.67 7.33 CSB - 1018 xx1C-x618 0.00 0.00 0.00 1.33 6.67 7.33 CSB - 1018 xx1C-x618 0.00 0.00 0.00 1.33 6.67 7.33 CSB - 1018 xx1C-x618 0.00 0.00 0.00 0.00 6.67 7.33 8.10 CSB - 1018 xx1C - x618 0.00 0.00 0.00 0.00 0.00 0.07 0.33 CSB - 1018 xx1C - x618 0.00 0.00 0.00 0.00 0.07 0.33 CSB - 1018 xx1C - x618 0.00 0.00 0.00 0.00 0.07<	8	SPV-1201 x IS-6335	0.00	00.0	00.0	7,33	3.33	533	3.67	36	1.1.2
CSB OBX Armit HB 0.00	2	SPV-1201 x IS - 9471	80	0.00	0.0	6.00	0.67	333	000	5	1.1
CCSB - 1018, X871-261 0.00 0.00 0.00 1.33 667 1000 CCSB - 1018, X871-261 0.00 0.00 0.00 0.00 1.33 667 1000 CCSB - 1018, X871-261 0.00 0.00 0.00 1.33 667 1.33 1000 CCSB - 1018, X87 - 944 0.00 0.00 0.00 0.00 1.33 100 CCSB - 1018, X87 - 947 0.00 0.00 0.00 0.00 0.07 0.57 1.33 1000 CCSB - 1018, X87 - 947 0.00 0.00 0.00 0.00 0.07 0.33 11.00 CCSB - 1018, X87 - 947 0.00 0.00 0.00 0.00 0.07 0.33 11.00 CCSB - 1018, X15 - 947 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 11.33 11.00 CCSB - 1018, X15 - 947 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	81	ICSB - 101B x AKmu 14 B	0.0	00'0	0.0	8.67	6.00	733	4.33	88	101
CCSB OBB Cut-St-1515 0.00 0.00 0.00 1.33	51	ICSB - 101B x SRT- 26 B	8 00	00.0	0.0	13.33	6.67	10.00	667	e e e	20
CCSB - 10Bx x8Y - 946 0.00	1	ICSB - 101B x GJ-35-15-15	0.0	00.0	00.0	1.33	1.33	1.33	0.67	067	067
CCSB - 10BX SFY - 104 0.00 0.000 </th <th>8</th> <td>ICSB - 101B x SPV - 946</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>8.67</td> <td>7.33</td> <td>8.00</td> <td>4.33</td> <td>367</td> <td>A D</td>	8	ICSB - 101B x SPV - 946	0.0	0.0	0.0	8.67	7.33	8.00	4.33	367	A D
CCSB 0108 CCSB 0.00 <th< th=""><th>8</th><td>ICSB - 101B x SPV - 104</td><td>8.0</td><td>0.0</td><td>0.0</td><td>14.67</td><td>7,33</td><td>11.00</td><td>7.33</td><td>367</td><td>550</td></th<>	8	ICSB - 101B x SPV - 104	8.0	0.0	0.0	14.67	7,33	11.00	7.33	367	550
CCSB - 10B x1S - 971 0.00 0.001 0.001 <th>2</th> <td>ICSB - 101B x IS - 2284</td> <td>0.0</td> <td>0.0</td> <td>00.0</td> <td>00.0</td> <td>0.67</td> <td>0.33</td> <td>000</td> <td>030</td> <td>55</td>	2	ICSB - 101B x IS - 2284	0.0	0.0	00.0	00.0	0.67	0.33	000	030	55
Adman - 101 x x x y x x x x x x x x x x x x x x x	4 8	ICSB - 101B x IS - 6335	0.0	0.0	0.0	0.00	0.67	0.33	00.0	0.33	017
AKima - H8 x87 - 248 0.00 5.00 6.00 6.00 6.00 9.00<	5	ICSB -101B x IS - 9471	0.00	0.0	0.0	2.00	0.0	00,1	8	000	020
Akima-18 kx(B)-23-15-15 0.67 0.63 0.63 0.63 0.63 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.63 0.66 0.	88	AKms - 14 B x SKT - 26B	0.0	2.00	8	8.00	8.00	8.00	4,00	5.00	450
AKmar-18 x Styr 0.00 1.33 0.67 1.33 11.33 3.00 11.33 3.00 11.33 3.00 11.33 3.00 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.00 0.03	R :	AKma - 14 B x GJ-35-15-15	0.67	0.67	0.67	11.33	8.00	9.67	6.00	4 33	517
Attan - 108 - 104 0.67 4.67 2.67 14.67 8.00 11.33 Attan - 108 - 234 2.00 0.00 1.00 2.67 3.33 3.00 Attan - 108 - 534 2.00 0.00 0.00 0.00 0.03 3.33 3.00 Attan - 108 + 15 - 5435 0.00 0.00 0.03 3.33 2.67 3.00 Attan - 108 + 15 - 5471 0.67 0.00 0.33 3.33 2.67 3.00	R .	AKme - 14 B x SPV - 946	0.0	1.33	0.67	11.33	11,33	11.33	567	6.9	2009
200 000 100 267 333 300 000 000 000 000 003 333 300 001 000 003 333 333 300	Ē	AKms - 14 B x SPV - 104	0.67	4.67	2.67	14.67	8.00	11 33	7.67		
000 000 000 000 067 000 033 067 000 033 000 033 000 033 000 033 000 033 000 033 000 033 000 033 000	32	AKma - 14 B x IS - 2284	2.00	0.0	1.00	2.67	3,33	3.00	2.33	167	
1 0 <u>67 000 033 333 2.67 3.00</u>	<u>ج</u>	AKma - 14 B x 15 - 6335	0.0	00.0	0.0	0.67	0000	0.33	033		110
	7	AKma - 14 B x IS - 9171	0.67	00.00 0	0.33	3.33	2.67	3.00	28	133	1.67
										Contcl.	

711 - 17

.

1	8	.67	33	8	117	.17	83	112	1.50	8	8	-67	8	8	8	8	8		36 8		8	8	.68		
=			•	•	Ŭ		•	.,			•		•	•	-		·	0	•			2.62	-)2		
10	3.00	2.33	4.33	0.33	0.33	0.67	100	2.33	0.67	0.33	1.33	3.33	0.67	0.67	1.33	1.00	1.00	0.00	1.67	0.33	1.67	2.20			CD 5% 0.869 2.450 3.466
6	5.00	3.00	6.33	1.67	800	1.67	2.67	4.00	2.33	1.67	2.33	2.00	3.00 3.00	2.33	2.33	3.00	8	1.67	1.33	3.67	0.33	3.04			SE (m) 0.161 0.842 1.191
20	8.00	5.00	9.67	1.67	0.0	1.33	3.67	5.67	2.33	1.00	3.67	4.67	233	2.67	3.67	3.00	1.33	1.67	1.67	2.00	200	4.77	(-)33.09	918.89	(Acola)
7	6.00	4.00	7.33	0.00	0.00	0.67	2.00	4.67	1.33	0.00	2.67	5.33	0.67	133	2.67	1.33	0.67	0.0	2.00	00.0	3.33	3.82			CD 5% 0.849 4.454 6.299
6	10.00	6.00	12.00	3.33	0.0	2.00	5.33	6.67	3.33	2:00	4.67	4.00	4.00	4.00	4.67	4.67	2:00	3.33	1.33	4.00	0.67	5.71			SE (m) 0.306 1.607 2.272
۶	0.0	0.33	1.00	0.33	0.33	1.00	0.0	0.67	0.67	1.00	0.0	0.67	1.33	0.33	0.0	. 9	0.67	0.0	1.33	2.00	000	0.47	(+) 58.33		
-	0.00	0.67	1.33	0.67	0.67	0.67	0.00	0.0	0.0	0.67	0.0	1.33	0.67	0.0	0.0	0.67	1.33	0.0	1.33	0.67	00:0	0.57			CD 5% 0.288 1.511 2.136
-	0.00	0.00	0.67	0.00	0.00	1.33	0.00	1.33	1.33	1.33	0.00	0.00	2.00	0.67	0.00	1.33	0.0	0.00	1.33	3.33	00:0	0.36			SE (m) 0.104 0.545 0.771
2	SRT- 26B x GJ-35-15-15	SRT - 26B x SPV - 946	SRT - 26B x SPV -104	SRT - 26B x IS – 2284	SRT - 26B x IS – 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x IS- 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 x IS-6335	IS 2284 x IS -9471	IS 6335 × IS 9471	Mean	% increase (+)/decrease(-) over untreated	% increase over location	A X B
-	2	Я	۶	8	ጽ	\$	41	42	4	4	Ş.	\$	4	8	Ş	8	5	8	8	3	×				

Patenta/Crosses Untreated 31 2 3 3 10.67	Untreutod 3 10.67	Akola Treated 4	Mean 5 12.00	Untreated 6 19.33	Patanchen Treated 19.33	Mean 8 19.33	(vo) (vo) (vo) (vo) (vo) (vo) (vo) (vo)	ICTU, 1950 booled over (borations Treated 10	Mean 11
	12.67	8.00 12.67	10.31	16.67	27.33	888	2 4 8	19.21	16.17
	7.33	6.00	6.67	31.33	32.67	32.00	19.33	27.57 27.51	0267
	10.67	11.33	11.00	26.00	36.00	31.00	18.33	23.67	2100
	16.00	16.01	8.33 16.00	10.33	24.67	20.08	10.67	17.67	14.17
	3.33	00.9	4.67	6.00	7.33	2.13 2.13	8. L	20.02	21.57
	4.00	2.67	3.33	2.67	7.33	200	999 999		112
	4.00	2.67	3.33	8.00	9.33	8.67	00'9	009	600
	8.00	8.00	8.00	10.67	21.33	16.00	9.33	14.67	12.00
	79.01	EE./	00 6	7.33	17.33	12.33	9 .00	12.33	10.67
	10.7	10.4	3.67	5.33	4.00	4.67	4.00	4.33	4.17
PV-1201 x 29V -946	10.01	10.01	79'F	8.9	8.4	200	11.33	8 8 1 1	7.33
	7.33	800	1.67	200	12.67	227	2. 2. f	3.6	
	3.33	2.00	2.67	8,00	7.33	7.67	292	16.2	12,01
	1.33	2.00	1.67	8.00	13.33	10.67	4.67	1.67	617
	2.00	4 8 8	3.00	8.67	12.67	10.67	5.33	8.33	6.83
	0071 2	16.67	14.33	5.33	16.67	11.00	8.67	16.67	12.67
SR - 1018 v 01-36-16-16	0.0	10.0	5.0	20	18.00	12.67	6.67	12.33	9.50
CI-CI-CC-IO & GIOI	10.0	2.0	80	197	EE /	5.00	4.67	5.33	5.00
101B x SPV - 104	10.67		10.0	0.01	2.5	00.01	5.33	10.33	7.83
	4.00	7.33	567		3.5	9.00 7.9.5	2.5	82	596
	3.33	2.67	3.00	133	333	233	3.5	88	10.4
	3.33	4.00	3.67	6.00	2.00	00.4	467	88	282
Kme - 14 B x SRT - 26B	9.33	9.33	9.33	18.00	26.67	22.33	13.67	18.00	15.83
Kma - 14 B x GJ-35-15-15	8.00	12.67	10.33	21.33	31,33	26.33	14.67	20.02	18.33
Kma - 14 B x SPV - 946	12.00	10.00	11.00	17.33	34,00	25.67	14.67	28	18.33
Kms - 14 B x SPV - 104	24.00	18.00	21,00	14.00	33,33	23.67	19.00	25.67	22.22
	9.33	2.67	6.00	14.00	4.67	9.33	1167	367	767
- 14 B x IS - 6335	3.33	2.67	3.00	4.00	4.67	4.33	3.67	3.67	367
_	5.33	4.00	4.67	2.00	7.33	4.67	3.67	5.67	467

5 9467 3.33 4.00 7.33 2.33 16.67 11.33 16.33 11.33 16.33 11.33 16.33 11.33 16.33 11.33 16.33 11.33 16.33 11.33 16.33		r ()	3	4	5			30	6	01	
9.33 667 9.00 13.3 11.33 9.33 9.00 6 167 11.33 9.00 167 9.33 9.33 9.00 8.00 1067 9.33 7.67 200 9.35 7.67 567 8.00 1067 9.00 3.67 4.00 3.67 4.33 5.67 8.00 2.67 5.67 8.00 12.00 1000 6.33 9.33 9.33 8.67 4.67 5.33 9.57 4.67 3.33 9.53 9.33 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53 9.53 <	~	SRT- 26B x GJ-35-15-15	4.67	3.33	4.00	7.33	23.33	15.33	6.00	13.33	9.67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~	SRT - 26B x SPV - 946	9.33	6.67	8.00	7.33	11.33	9.33	8.33	00.6	8.67
800 1057 9.33 7.33 0.67 4.00 7.67 5.67 400 200 3.67 7.33 0.67 4.00 7.67 5.67 400 667 5.67 2.67 4.67 3.67 3.33 3.33 240 667 5.33 2.67 6.67 3.67 3.33 5.33 3.33 247 4.67 3.67 4.67 3.67 3.33 5.67 4.67 3.33 5.33 5.33 5.00 4.67 3.33 5.00 4.67 3.33 5.00 4.67 3.33 5.00 4.67 3.33 5.00 4.67 3.53 5.00 4.67 3.53 5.00 4.67 3.53 5.00 4.67 3.67 4.67 3.67 4.67 3.67 4.67 3.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 4.67 <	~	SRT - 26B x SPV -104	16.67	11.33	14.00	18.67	20.00	19.33	17.67	15.67	16.67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ .	SRT - 26B x IS – 2284	8.00	10.67	9.33	7.33	0.67	4.00	7.67	5,67	6.67
6 4.00 2.00 3.07 2.67 3.67 3.33 3.33 3.33 3.33 3.33 3.33 3.33 5.67 3.33 3.33 5.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.	~ ·	SRT - 26B × IS - 6335	5.33	6.00	5.67	3.33	4.00	3.67	4.33	5.00	4.67
6 667 567 800 12.00 1000 6.33 9.33 2 400 667 533 9.33 16.67 467 3.33 657 2 667 667 667 667 467 3.33 657 1067 1000 367 3.33 16.57 467 3.33 657 133 1367 1400 1333 15.33 16.67 1300 12.00 133 1353 15.33 16.67 14.00 3.33 16.77 3.33 16.77 467 2000 1333 15.33 14.00 13.00 12.00 1300 12.00 467 2000 333 15.33 14.00 5.33 667 457 457 460 533 467 2.67 9.00 453 5.00 2.33 3.07 2.00 460 533 567 4.00 5.00 4.07 2.00 2.00<	~ ·	SRT - 26B × IS - 9471	4.00	2.00	3.00	2.67	4.67	3.67	3.33	3.33	3.33
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GJ-35-15-15 x SPV - 946	4.67	6.67	5.67	8.00	12.00	10.00	6.33	9.33	7.83
2 6 5 5 3 2 6 7 4 6 3 3 6 7 3 5 7 6 7 3 3 6 7 3 3 6 7 3 3 6 7 3 3 6 7 3 3 6 7 3 3 6 7 3 3 6 7 3 6 0 1 0 3 1	~	GJ-35-15-15 x SPV- 104	8.67	8.00	8.33	9.33	20.67	15.00	9.00	14.33	11.67
267 467 367 4.00 5.33 4.67 3.33 5.00 1067 1000 1037 1000 1037 1000 1333 15.33 1667 13.00 12.00 1677 1000 1037 15.33 1667 13.00 12.00 167 1600 1037 15.33 1667 13.00 12.00 167 167 13.33 15.33 1667 5.00 4.67 4.67 133 333 333 4.67 1000 6.00 4.67 2.67 3.33 467 2.67 4.00 5.00 4.67 2.67 3.33 5.33 5.00 2.33 5.00 2.33 5.33 5.00 2.33 5.00 2.33 5.00 2.33 5.00 2.33 5.00 2.33 5.00 2.00 2.33 5.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	~ .	GJ-35-15-15 x IS - 2284	4.0	6.67	5.33	2.67	6.67	4.67	3.33	6.67	5.00
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• •	GI-35-15-15 x IS - 6335	2.67	4.67	3.67	4.00	5.33	4.67	3.33	5.00	4.17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ `	GJ-35-15-15 x IS - 9471	3.33	4.00	3.67	3.33	16.67	10.00	3.33	10.33	6.83
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	~ •	SPV - 946 x SPV- 104	10.67	10.00	10.33	15.33	14.00	14.67	13.00	12.00	12.50
Wex NE-6335 1.33 3.33 2.33 4.00 5.33 4.67 2.67 4.33 96x NE 9471 4.67 4.67 4.67 2.67 4.33 3.53 104x NE 5335 6.00 3.33 3.33 3.33 3.33 3.53 3.67 5.00 4.67 3.67 3.63 104x NE 5971 4.60 3.33 3.33 5.33 2.67 5.00 2.33 3.67 5.00 2.33 3.67 5.00 2.33 3.67 5.00 2.33 3.67 5.00 2.33 3.67 3.60 2.33 3.67 3.60 2.00 2.33 3.67 3.60 2.03 3.67 3.60 2.33 3.67 3.60 2.33 3.67 3.60 2.33 3.00 3.33 3.67 3.60 2.67 6.00 5.67 6.00 5.67 6.00 5.67 6.00 5.67 6.00 5.67 6.00 5.67 6.00 5.67 6.00 5.67	~ ^	SPV - 946 x IS - 2284	4.67	2.00	3.33	4.67	7.33	6.00	4.67	4.67	4.67
We xi S238 467 467 467 467 467 467 467 467 467 467 467 467 467 467 467 467 460 500 433 533 533 533 533 533 533 533 533 533 533 533 533 500 457 500 233 337 500 233 337 500 233 337 500 467 233 337 500 467 233 500 467 200 337 500 467 200 337 500 467 200 337 500 467 500 233 307 307 307 306 600 200 200 467 400 500 467 400 500 200 467 200 337 1016 600 200 200 467 400 467 400 467 4016 473 413 413 <	•	SPV - 946 x IS- 6335	1.33	3.33	2.33	4.00	5.33	4.67	2.67	4.33	3.50
(Nex IS 2284 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.33 3.37 3.60 4.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.60 2.203 3.67 3.60 2.203 3.67 3.60 2.203 3.67 3.60 2.203 3.67 3.60 2.203 3.67 4.67 3.67 4.67 3.60 2.203 3.67 4.60 3.53 3.00 3.67 4.60 3.67 4.60 3.67 4.60 3.67 4.60 3.00 <th></th> <td>2PV - 940 X IS 9471</td> <td>4.67</td> <td>4.67</td> <td>4.67</td> <td>4.00</td> <td>6.00</td> <td>5.00</td> <td>4.33</td> <td>5.33</td> <td>4.83</td>		2PV - 940 X IS 9471	4.67	4.67	4.67	4.00	6.00	5.00	4.33	5.33	4.83
ID4X155033 6.00 3.33 4.67 4.00 1.33 2.67 5.00 2.33 ID4X155031 4.67 2.00 3.33 4.67 4.00 1.33 2.67 5.00 2.33 AtX15-9471 4.67 5.00 2.33 5.33 5.33 5.00 2.30 4.67 AtX15-9471 2.00 3.33 2.67 5.33 5.00 2.67 6.00 5.66 6.00 5.67 6.00 5.67 6.00 5.67 6.00 5.61 6.00 5.61 6.00 5.61 6.00 5.67 </td <th></th> <td>SPV - 104 x IS 2284</td> <td>3.33</td> <td>3.33</td> <td>3.33</td> <td>6.00</td> <td>4.00</td> <td>5.00</td> <td>4.67</td> <td>3.67</td> <td>4.17</td>		SPV - 104 x IS 2284	3.33	3.33	3.33	6.00	4.00	5.00	4.67	3.67	4.17
Ilext(Sey1) 4.67 2.00 3.33 2.33 2.00 3.67 5.00 2.00 3.00 2.00 2.00 3.00 2.00 3.00 2.00 3.00 4.01		SPV - 104 x IS 6335	6.00	3.33	4.67	4.00	1.33	2.67	5.00	2.33	3.67
XXIS-9471 6.00 2.00 4.07 4.67 4.33 5.33 3.00 XXIS-9471 4.00 6.7 5.67 6.30 6.07 5.67 4.33 5.00 6.00 SXIS-9471 2.00 5.37 5.67 6.33 5.67 4.33 5.00 6.00 rese (+ y/decreaset-) 7.25 5.65 6.95 9.53 13.67 11.60 8.39 10.16 attended 7.25 5.65 6.95 9.53 13.67 11.60 8.39 10.16 attender 7.25 5.65 5.93 13.67 11.60 8.39 10.16 attender 7.25 5.65 9.00 5.67 6.00 attender 7.250 5.867 10.16 0.433 10.16 attender Action 0.05% 5.77 0.05% 5.60 6.00 attender 0.05% 0.05% 0.05% 0.05% 5.60 6.00 attender	~	SPV - 104 x IS 9471	4.67	2:00	3.33	5.33	2.00	3.67	5.00	2.00	
M x IS-9471 2.00 6.67 5.33 6.00 2.67 4.33 5.00 4.67 55/5/5/11 2.00 3.33 2.67 9.33 8.67 9.00 5.67 6.00 rease (+)/dxcruxe(-) 7.25 6.65 9.53 13.67 11.60 8.39 10.16 rease (+)/dxcruxe(-) 7.25 6.65 9.53 13.67 11.60 8.39 10.16 rease over fix-alturi 7.25 6.69 9.53 13.67 11.60 8.39 10.16 rease over fix-alturi 7.25 0.695 9.53 13.67 11.60 8.39 10.16 rease over fix-alturi (+M.41) (+M.41) (+M.41) (M.41) 0.16 0.16 R 1.478 0.764 5.266 0.05% 5.00 6.03 A 0.282 0.761 0.473 1.189 0.336 1.162 A 0.282 0.764 5.286 5.286 5.000 6.03	•	IS 2284 x IS-6335	6.00	2 00	4.00	4.67	4.00	4.33	5.33	3.00	23
5X KS 9471 2.00 3.33 2.67 9.00 5.67 6.00 rease (+ // decreaset-) 7.25 6.65 6.95 9.53 13.67 11.60 8.39 10.16 rease (+ // decreaset-) 7.25 6.65 9.53 13.67 11.60 8.39 10.16 rease over location 1.38 27	-	IS 2284 x IS -9471	4.00	6.67	5.33	6.00	2.67	4.33	5.00	4.67	-
7.25 6.65 6.95 9.53 13.67 11.60 8.39 10.16 rease (+)/decrease(-) (-)/8.27 (-)/8.27 (+)/3.44 (+)/3.44 10.16 attraited (-)/8.27 (-)/8.27 (-)/8.27 (-)/3.44 10.16 attraited (-)/8.27 (-)/8.27 (-)/3.67 10.16 10.16 attraited (-)/8.27 (-)/8.27 (-)/8.27 (-)/8.27 1.152 A 0.282 0.781 0.429 1.189 0.366 1.152 A 0.282 0.781 0.429 1.189 0.000 0.000	~	IS 6335 × IS 9471	2.00	3 33	2.67	9.33	8.67	00.6	5.67	6.00	5.83
rade (+) decreared - 1		Mcan	7.25	6.65	6.95	9.53	13.67	1160	05 B	31.01	000
E (m) CD 5% (Atoda) (A		% increase (+)/decrease(-)			(-)8 27			(+)43.44	8	2	(+)21.09
(Atota) SE (m) CD 5% SE (m) CD 5% SE (m) C 0 282 0.761 0.429 1.189 0.396 1.478 4.056 2.256 0.396 2.090 5.700 3.181 8.18 0.046		% increase over location						66.91			
SE (m) CD 5% SE (m) CD 5% SE (m) C 0.282 0.761 0.429 1.189 0.396 0.396 1.478 4.066 2.250 2.266 2.080 2.090 5.704 3.181 0.036								(Akola)			
		A B A X B	SE (m) 0.282 1.478 2.090	CD 5% 0.781 5.793		SE (m) 0.429 2.250 3.181	CD 5% 1.189 6.236 8.818		SE (m) 0.396 2.080 2.941	CD 5% 1.152 6.053 8.561	

		Mean	=	150	217	300	1.50	4.17	1.67	2.83	033	033	100	233	150	033	183	150	3.17	0.83	020	0.67	2.33	1.83	0.33	0.50	100	0.67	0.67	0.50	3.67	2 50	2.83	3 83	150	000	0.33	Total and the second se
1006	Pooled over locations	Treated	10	1.33	1.67	3 33	2 00	5.67	1.67	4.00	0.67	0.33	00.0	2.00	0.67	0.33	0000	0.67	0.67	0.33	0.33	1.00	2.33	2:00	00:0	0.67	1 33	0 33	00.0	0.67	2.33	2 00	3.67	3.67	000	0.00	00:0	Contd
d Patancher	Pooler	Unireated	6	1.67	2.67	2.67	1.00	267	1.67	1.67	00.0	0.33	2.00	2.67	2,33	0.33	3.67	2.33	5.67	1.33	0.67	0.33	2.33	1.67	0.67	0 33	0.67	1 00	1 33	033	5.00	3.00	2 00	4 00	007	000	0.67	
t. Akola an		Mean	ø	0.67	2.33	2.67	2.33	6.33	2.00	2.00	0.67	0.67	1.67	4 00	1 33	0.33	1.00	0.33	3.33	0.33	0.67	1.00	2.00	1 00	000	0.33	0.67	0.33	000	033	4.33	4 33	3 33	5.33	1 33	000	000	
F. crosses a	Patancheni	Trented	L	1.33	1.33	4.67	3.33	8.67	3.33	4.00	1.33	0.67	0.00	4.00	0.00	0.00	0.00	0.67	1.33	0.67	0.67	2.00	2.00	2.00	00.0	0.67	1.33	0.00	00.0	0.67	3.33	4.00	5.33	6.67	0.00	00.00	00.0	
parents and	C.	Untreated	6	0.00	3.33	0.67	1.33	4.00	0.67	0.00	00.0	0.67	3.33	4.00	2.67	0.67	2.00	0.0	5.33	00.0	0.67	00.0	2.00	0.00	00:0	00:0	800	0.67	0.0	8	5.33	4.67	1.33	4.00	2.67	00.0	000	
(UGS) of i		Mean	5	2.33	2.00	3.33	0.67	2.00	1.33	3.67	00:0	00.0	0 33	0.67	1.67	0.33	2.67	2.67	3.00	1.33	0.33	0.33	2.67	2.67	0.67	0.67	1 33	1.00	1 33	0.67	3.00	0.67	2 33	7 33	1 67	00.0	0.67	
er funei (%)	Akola	Treated	4	1 33	2.00	2.00	0.67	2.67	00:0	4.00	00:0	0.0	00.0	0.0	1.33	0.67	00.0	0.67	00:0	0.0	80	00.0	2.67	2.00	000	0 67	1 33	0.67	0000	0.67	1 33	0.00	2.00	0.67	00.0	00.0	00.0	
nent on othe		(intreated		3.33	2:00	4.67	0.67	1.33	2.67	3.33	0.00	0.00	0.67	1.33	5 5 7	00.0	5.33	4.67	6.00	2.67	0.67	0.67	2.67	3 33		0.67	1 33	1 33	2.67	0.67	4 67	1 33	2.67	4.00	3.33	0.00	1 33	
 Effect of pre-treatment on other function (%) (U(5)) of parents and F, crosses at Akola and Parameterin 1996. 	Parents/Crosses	 Barranti - Propagation and a second se	7	SPV-1201	CSB-101B	Akms-148	SRT-26B	31-35-15-15	SPV946	SPV-104	S-2284	S-6335	S-9471	SPV-1201 × ICSB-101B	SPV-1201 x Akm8-14 }	SPV-1201 x SRT - 26B	3PV-1201 x GJ-35-15-15	3PV-1201 x SPV -946	3PV-1201 x SPV- 104	sPV-1201 x IS -2294	SPV-1201 x [S-6335	5PV-1201 x 1S - 9-171	CSB - 101B x AKms 14 h	CSB - 101B x SRT- 26 B	CSB - 1018 x GJ-35-15-15	CSB - 101B x SPV - 946	CSB - 101B x SPV - 104	CSB - 101B x IS - 2284	CSB - 101B x IS - 6335	1/66 - SI X 8101- GCD	AK-ma - 14 B x SRT - 26B	AKma - 14 B x GJ-35-15.15	AKma - 14 B x SPV - 946	AKrma - 14 B x SPV - 104	AKme - 14 B x IS - 2284	AKmu - 14 B x 15 - 6335	AKms - [4]] x IS - 9471	
Table 43.	S.N.		-	-	~	- -		v.	。 。	t.	8	•	2	=		•	•.	•••	•,	17	8	2	8	77	51	7	7	8	2	. 1	r , i	n :	8	16	32	c :	z,	

able	Table 43 . Contd.			77 - 111 A						
	2	3	+	5	9	LL		, ,	10	
	SRT- 26B x GJ-35-15-15	0.00	0.67	0.33	3.33	4.00	3.67	1.67	2.33	2.00
	SRT - 26B x SPV - 946	0.67	0.67	0.67	00.0	0.67	0.33	0.33	0.67	0.50
	SRT - 26B x SPV -104	2.00	1.33	1.67	2.67	2.67	2.67	2.33	2.00	2.17
	SRT - 26B x IS - 2284	2.00	2.00	2.00	0.00	0.00	00:0	1.00	1.00	1.00
	SRT - 26B x IS - 6335	1.33	0.00	0.67	0.00	0.00	00:0	0.67	00.0	0.33
	SRT - 26B x IS - 9471	0.67	0.00	0.33	0.0	0.00	0.00	0.33	00.0	0.17
	GJ-35-15-15 x SPV - 946	0.67	0.00	0.33	0.67	0.67	0.67	0.67	0.33	0.50
	GJ-35-15-15 x SPV- 104	1.33	0.67	1.00	2.67	4.00	3.33	2.00	2.33	2.17
	GJ-35-15-15 x IS - 2284	1.33	0.00	0.67	0.00	0.67	0.33	0.67	0.33	0.50
	GJ-35-15-15 x IS - 6335	00.0	0.67	0.33	0.67	0.67	0.67	0.33	0.67	0.50
	GJ-35-15-15 x IS - 9471	00.00	0.00	00.0	0.00	0.67	0.33	00.0	0.33	0.17
	SPV - 946 x SPV- 104	1.33	0.67	1.00	1.33	1.33	1.33	1.33	1.00	1.17
	SPV - 946 x IS - 2284	0.00	0.0	00.0	0.0	0.00	00.0	0.0	00.0	00.0
	SPV - 946 x IS- 6335	0.00	0.00	0.0	0.0	0.67	0.33	0.0	0.33	0.17
	SPV - 946 x [S 947]	0.00	00.0	0.00	2.00	0.67	1.33	1.00	0.33	0.67
	SPV - 104 x IS 2284	2.00	0.00	1.00	0.0	0.0	0.00	1.00	000	0:50
	SPV - 104 x IS 6335	0.00	0.00	0.00	0.67	0.00	0.33	0.33	0.00	0.17
	SPV - 104 x IS 9471	0.00	0.00	0.00	0.0	1.33	0.67	0.0	0.67	0.33
	IS 2284 x IS-6335	0.00	00.0	0.00	0.0	0.67	0.33	00:0	0.33	0.17
	IS 2284 x IS -9471	0.67	1.33	1.00	1.33	0.67	1.00	9	100	1.00
	IS 6335 x IS 9471	0.67	000	0.33	800	000	000	0.33	000	0.17
	Mcan	1 60	0.64	1.12	1 19	151	136	1 39	1 08	1 24
	% increase (+)/dccrease(-)			(-)60.00			(+)26.89			(-)22.30
	over untreated									
	% increase over location						20.53			
	K	SE (m) 0.120	CD 5% 0.333		SE (m) 0.146	CD 5% 0.405		SE (m) 0.126	CD 5% 0.367	
	B A X B	0.892	1./49 2.473		0.766	2.125 3.005		0.659	1.917	
		400.0	2114		50.	20.0		0.332	71/7	

Parente/Crosses									
		Akola			Patanchen		Poc	Pooled over locations	
	Untreated	Treated	Mean	Untreated	Treated	Mean	Untroated	Treated	Mean
	۴	4	s	9	7	80	6	10	=
	4.50	4.00	4.25	5.00	5.00	2.00	4.75	4.50	4.63
	4.67	4.00	4.33	4.83	5.00	4.92	4.75	4.50	4.63
	5.00	4.50	4.75	5.00	5.00	5.00	5.00	4.75	4.88
	4.00	4.00	4.00	4.50	5.00	4.75	4.25	4.50	438
	4.00	4.00	4.00	4.50	5.00	4.75	4.25	4.50	438
	4.00	3.50	3.75	4.83	5.00	4.92	4.42	4.25	433
	4.50	4.00	4.25	5.00	5.00	5.00	4.75	4.50	463
	2.00	2.17	2.08	3.50	2.17	2.83	2.75	2.17	246
	1.83	1.50	1.67	2.33	2.83	2.58	2.08	2.17	513
	1.33	1.00	1.17	2.00	3.00	2.50	1 67	000	183
3PV-1201 x ICSB-101B	3.50	3.50	3.50	4.50	4.00	4 25	4 00	376	age
SPV-1201 x Akms-14 B	4.33	4.00	4.17	4.67	4.00	4,33	4.50	4.00	425
SPV-1201 x SRT - 26B	3.17	4.00	3.58	4.50	4.00	4.25	3.83	4 00	305
3PV-1201 x GJ-35-15-15	4.50	4.00	4.25	4.50	4.00	4.25	4.50	101	425
3PV-1201 x SPV -946	4.50	4.00	4.25	4.50	4.00	4.25	4.50	4.00	425
PV-1201 x SPV- 104	4.00	3.50	3.75	5.00	4.00	4.50	4.50	3.75	4.13
SPV-1201 x IS -2284	0.67	1.17	0.92	3.00	2.00	2.50	1.83	1.58	171
2PV-1201 x IS-6335	1.17	1.33	1.25	2.83	2.00	2.42	2.00	1.67	183
3PV-1201 x IS - 9471	1.50	1.00	1.25	2.50	2.00	2.25	2.00	1.50	1.75
CSB - 101B x AKms 14 B	4.00	4.00	4.00	4.17	5.00	4.58	4.08	4.50	429
CSB - 101B x SRT- 26 B	4.00	3.50	3.75	4.50	5.00	4.75	4.25	4.25	425
CSB - 101B x GJ-35-15-15	3.67	3.00	3.33	4.00	4.00	4.00	3.83	3.50	367
CSB - 101B x SPV - 946	3.00	4.00	3.50	4.00	4.00	4.00	3.50	40	3.75
CSB - 101B x SPV - 104	4.00	3.00	3.50	4.50	4.00	4.25	4.25	3.50	3.88
CSB - 101B x IS - 2284	1.83	1.83	1.83	1.50	2.00	1.75	1.67	1.92	1.79
CSB - 101B x IS - 6335	1.50	1.0	1.25	1.00	2.00	1.50	1.25	1.50	138
CSB -101B x IS - 9471	2.00	1.50	1.75	1.83	100	1.42	1.92	1.25	1.58
JKms - 14 B x SRT - 26B	3.50	3.50	3.50	4.50	4.50	4.50	4.00	4.00	4.00
uKime - 14 B x GJ-35-15-15	3.50	4.00	3.75	4.50	4.00	4.25	4.00	4.00	4.00
uKima -14 B x SPV - 946	4.17	4.00	4.08	4.83	5.00	4.92	4.50	4.50	450
vKins - 14 B x SPV - 104	4.83	4.33	4.58	4.67	5.00	4.83	4.75	4.67	4.71
NKms - 14 B x 15 - 2284	2.00	1.67	1.83	2.00	2.00	2.00	2.00	1.83	192
VKme - 14 B x 1S - 6335	2.00	0.83	1.42	2.00	2:00	2.00	2.00	1.42	1.71
VGna - 14 B x 15 - 9471	3.17	1.50	2.33	2.50	2.00	2.25	2.83	1.75	229

	3.96	4.00	4.13	2.08	2.13	200	3.92	3.92	2.08	2.04	2.38	4.46	2.75	2.38	221	2.38	2.38	2.75		42 513	,	3.17	-)0:63		
П																							Ĵ		
10	3.75	3.75	4.00	2.17	2.25	2.00	3.92	4.00	2.50	2.50	3.00	4.42	3.50	2.83	2.42	2.50	2.50	3.00	2.25	2.00	2.25	3.16			CD 5% 0.140 0.730
6	4.17	4.25	4.25	2.00	2.00	2.00	3.92	3.83	1.67	1.58	1.75	4.50	2.00	1.92	2.00	2.25	2.25	2.50	1.83	2.25	1.58	3.18			SE (m) 0.048 0.251
8	4.25	4.25	4.25	2.17	2.25	2.25	4.75	4.75	2.67	2.50	2.75	5.00	3.50	3.08	2.50	2.75	2.75	2.75	2.25	2.25	2.25	3.49	(+)3.38	23.32	(Akola)
7	4.00	4.00	4.00	2.33	2.50	2.33	5.00	5.00	3.00	3.00	3.00	5.00	5.00	4.00	3.00	3.00	3.00	3.00	2.50	2.00	2.50	3.55			CD 5% 0.099 0.523
6	4.50	4.50	4.50	2.00	2.00	2.17	4.50	4.50	2.33	2:00	2.50	5.00	2.00	2.17	2.00	2.50	2.50	2.50	2:00	2.50	2.00	3.43			SE (m) 0.035 0.188
\$	3.67	3.75	4.00	2.00	2.00	1.75	3.08	3.08	1.50	1.58	2:00	3.92	2:00	1.67	1.92	2.00	2.00	2.75	1.83	2.00	1.58	2.83	(-)3.97		
4	3.50	3.50	4.00	2.00	2.00	1.67	2.83	3.00	2.00	2.00	3.00	3.83	2.00	1.67	1.83	2.00	2.00	3.00	2.00	2:00	2.00	2.77			CD 5% 0.145 0.760
3	3.83	4.00	4.00	2.00	2.00	1.83	3.33	3.17	1.00	1.17	9.	4.00	2.00	1.67	2.00	2.00	2:00	2.50	1.67	2.00	1.17	2.88			SE (m) 0.062 0.274
2	SRT- 26B x GJ-35-15-15	SRT - 26B x SPV - 946	SRT - 26B x SPV -104	SRT - 26B x IS - 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x IS- 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 × IS-6335	IS 2284 x IS -9471	IS 6335 x IS 9471	Mcan	% increase (+)/decrease(-)	% increase over location	¥ 3
- ,	33	36	37	38	6	40	41	42	43	1	45	46	47	48	49	8	5	22	8	7	s				

Mem Untreated Treated Mee 3 3.067 9 10 3 3.067 9 10 3 3.067 9 10 3 3.067 9 10 7 5.567 7.57 3.567 7 5.333 5.566 3.567 7 14.333 8.567 3.567 7 14.333 8.566 3.566 7 14.333 8.568 3.567 7 14.333 8.568 3.567 7 14.333 8.568 3.566 7 14.333 8.568 3.567 7 14.53 7.733 7.706 7 7.333 7.356 7.736 7 7.333 7.356 7.736 7 7.333 7.356 7.736 7 7.335 7.356 7.736 7 7.335 7.738 7.736 7	1 Untraded Traded Traded <th>2.7</th> <th>Paranta/Crosses Akola Patanchen Ponted</th> <th></th> <th>Akola</th> <th></th> <th></th> <th>Patancheru</th> <th></th> <th>Por</th> <th>Pooled over locations</th> <th></th>	2.7	Paranta/Crosses Akola Patanchen Ponted		Akola			Patancheru		Por	Pooled over locations	
2 3 4 5 6 7 8 9 10 Atmail 240 (10) 760 (10)	2 3 4 5 6 7 8 9 Atma-101 767 760 7000 733 260 7 8 9 1 Atma-101 767 6000 733 267 6000 733 267 650 650 650 650 2			Untreated	Treated	Mean	Untreated	Treated	Mcan		Treated	1
Structual 760 770 7	Structual (CSB-101) 75.00 76.00 77.00 76.00 <th>- </th> <th></th> <th>3</th> <th>4</th> <th>s</th> <th>9</th> <th>7</th> <th>8</th> <th>6</th> <th>10</th> <th></th>	-		3	4	s	9	7	8	6	10	
CCBN 018 765 80.00 73.3 23.61 53.3	CCBN 018 7.67 8.00 7.83 2.867 3.53 3.20 3.53 3.20 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.53 3.50 3.50 3.50 3.50 3.53 3.50 3.53 3.50 3.53 3.50	-	SPV-1201	78.00	76.00	00:77	52.00	49.33	20.67	65.00	67.67	63.83
Attack is a start of the start of	Attentiol 54.00 64.01 53.3 4.67 5.03 5.33 4.67 5.00 2.67 2.66 2.76 2.66 2.76 2.66 2.76 2.66 2.76 2.66 2.76 2.66 2.76 2.66 2.76 2.66 2.76 2.66 2.76 2.66 2.76	1	ICSB-101B	76.67	80.00	78.33	28.67	35.33	32.00	52.67	22 67	55.55
RT-268 6667 653 6600 1000 2239 5007 5239 5007 5239 5007 5239 5007 5239 5007 5239 5007 5100 <t< td=""><td>RF7-268 B667 65.3 56.00 10.00 22.00 <th< td=""><td>n</td><td>Akme-14B</td><td>24.00</td><td>68.67</td><td>61.33</td><td>5.33</td><td>4.67</td><td>200</td><td>29.67</td><td>26.67</td><td></td></th<></td></t<>	RF7-268 B667 65.3 56.00 10.00 22.00 <th< td=""><td>n</td><td>Akme-14B</td><td>24.00</td><td>68.67</td><td>61.33</td><td>5.33</td><td>4.67</td><td>200</td><td>29.67</td><td>26.67</td><td></td></th<>	n	Akme-14B	24.00	68.67	61.33	5.33	4.67	200	29.67	26.67	
UP3-15-15 B1.33 T.33	U-15-15 01.33 77.33 73.33 73.33 73.33 73.33 73.33 73.33 73.33 73.33 73.35 <	4	SRT-26B	86.67	85.33	86.00	18.00	22.00	20.00	57.33	53.67	200
SYV-M6 FT33 B1.33 B6.33 22.67 <th< td=""><td>SPV.104 BT33 B133 B133 B133 D267 <thd267< th=""> <thd267< th=""> <thd267< th=""> <th< td=""><td>Ś</td><td>GI-35-15-15</td><td>81.33</td><td>77.33</td><td>26.93</td><td>12.00</td><td>24.67</td><td>18.33</td><td>AF 67</td><td>32</td><td>3</td></th<></thd267<></thd267<></thd267<></td></th<>	SPV.104 BT33 B133 B133 B133 D267 D267 <thd267< th=""> <thd267< th=""> <thd267< th=""> <th< td=""><td>Ś</td><td>GI-35-15-15</td><td>81.33</td><td>77.33</td><td>26.93</td><td>12.00</td><td>24.67</td><td>18.33</td><td>AF 67</td><td>32</td><td>3</td></th<></thd267<></thd267<></thd267<>	Ś	GI-35-15-15	81.33	77.33	26.93	12.00	24.67	18.33	AF 67	32	3
FV-104 61.33 56.00 59.67 867 4.00 6.33 35.00 31.00 15.233 15.401 15.23 33.33 96.67 13.34 14.00 15.33 35.00 31.00 15.401 15.401 15.401 15.401 15.401 14.33 74.00 85.67 73.66 73.66 73.66 73.66 73.66 73.66 73.66 73.66 73.66 73.66 73.66 73.76 73.	SYV-101 61.33 56.00 56.07 <	Ś	SPV-946	87.33	81.33	84.33	22.67	32.67	27.67	25.55	8.6	89
F5234 5933 9057 9200 8200 667 1133 677 730 S-971 S-911 S-9111 S-9111 S-9111	IS-204 93.33 90.67 92.00 82.00 66.7 11.30 11.33 11.30 11.33<	-	SPV-104	61.33	58.00	59.67	8.67	4.00	633	35.00	88	38
Form Solution Solution <th< td=""><td>IS-471 IS-373 93.33 94.03 93.33 94.03 93.33 94.03 95.33 96.07 88.33 16.00 86.33 17.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 75.34 75.35 75.35 75.35 75.35 75.35 75.35 75.35 75.35 75.35 75.35 77.33 <</td><td>00</td><td>IS-2284</td><td>93.33</td><td>90.67</td><td>92.00</td><td>82.00</td><td>66.67</td><td>74.33</td><td>87.67</td><td>78.67</td><td></td></th<>	IS-471 IS-373 93.33 94.03 93.33 94.03 93.33 94.03 95.33 96.07 88.33 16.00 86.33 17.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 88.33 77.33 77.40 75.34 75.35 75.35 75.35 75.35 75.35 75.35 75.35 75.35 75.35 75.35 77.33 <	00	IS-2284	93.33	90.67	92.00	82.00	66.67	74.33	87.67	78.67	
Syrvial Syrval	Syrvial (Sec) Sec Fight (Sec) Fight (Sec) <th< td=""><td>•</td><td>IS-6335</td><td>53.33</td><td>93.33</td><td>93.33</td><td>83,33</td><td>78.00</td><td>80.67</td><td>88.33</td><td>85.67</td><td>22</td></th<>	•	IS-6335	53.33	93.33	93.33	83,33	78.00	80.67	88.33	85.67	22
SYV-1011 (Mathem Holl) 87.00 91.40 89.20 75.20 73.40 77.80 61.60 65.40 SYV-1011 (Mathem Holl) 87.00 91.40 89.20 73.40 77.80 61.60 65.37 73.45 73.53 73.53 73.53 73.53 73.53 73.53 73.53 73.53 73.53 73.55	SPV-1011 ST/00 91.40 69.20 75.20 77.60 67.60 SPV-1011 ST/00 91.40 79.40 77.60 81.60 SPV-1011 ST/10 ST/10 81.60 87.60 87.60 87.60 SPV-1011 ST/10 ST/10 81.70 81.40 81.70 81.60 SPV-1011 ST/10 ST/10 81.70 81.40 81.40 81.60 71.33 SPV-1011 ST/10 ST/10 81.40 81.40 81.40 81.60 71.33 81.70 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 85.70 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 81.60 71.73 8	2	IS-9471	93.33	94.00	93.67	76.67	71.33	74 00	85 m	20.00	
SPV-101X ATT-a-14 7.4,4 7.9,4 7.6,9 4.66 51.34 4.65 6.53 SPV-101X ATT-a-14 8 8.4,4 7.4,4 7.9,4 7.6,9 6.6,7 7.1,5 <td>SPV-1301 x Kin-HI 7,4,0 7,5,0 4,66 51,34 4,60 6000 SPV-1301 x STT-261 84,40 74,40 76,90 4,56 51,34 44,80 77,37 SPV-1301 x STT-261 84,40 84,30 74,40 75,34 45,35 77,33 77,37 SPV-1301 x STT-261 83,00 84,30 84,30 83,30 86,30 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 76,34 76,34</td> <td>=</td> <td>SPV-1201 x ICSB-101B</td> <td>87.00</td> <td>91.40</td> <td>02.98</td> <td>76.20</td> <td>09.40</td> <td>77.80</td> <td>160</td> <td>85.40</td> <td>32</td>	SPV-1301 x Kin-HI 7,4,0 7,5,0 4,66 51,34 4,60 6000 SPV-1301 x STT-261 84,40 74,40 76,90 4,56 51,34 44,80 77,37 SPV-1301 x STT-261 84,40 84,30 74,40 75,34 45,35 77,33 77,37 SPV-1301 x STT-261 83,00 84,30 84,30 83,30 86,30 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 77,33 76,34 76,34 76,34	=	SPV-1201 x ICSB-101B	87.00	91.40	02.98	76.20	09.40	77.80	160	85.40	32
FVV:101X:STT-248 66.80 07.40 87.10 67.75 77.75 79.95 FVV:101X:STT-248 66.80 97.40 87.00 66.00 77.75 79.95 FVV:101X:STT-248 86.80 97.40 87.00 86.00 84.50 77.75 79.95 FVV:101X:STT-168 83.04 66.00 84.50 65.37 73.45 77.75 FVV:101X:S-701 83.04 95.07 85.97 85.97 85.97 73.45 77.75 FVV:101X:S-701 73.04 73.04 73.34 77.75 73.45 77.75 FVV:101X:S-701 73.04 90.00 75.26 84.50 75.36 73.34 77.75 FVV:101X:S-701 73.04 90.00 75.36 85.06 85.36 75.36	FVV:101x STT-261 66.50 77.75 77.75 FVV:101x STT-261 66.40 84.70 84.60 77.75 FVV:101x STT-261 66.40 84.50 75.37 77.75 FVV:101x STT-261 66.40 84.50 55.97 77.75 FVV:101x STT-261 85.00 85.00 85.07 66.27 FVV:101x STT-261 85.00 85.00 85.07 66.27 FVV:101x STT-261 85.00 85.00 85.00 73.26 73.26 FVV:101x STT-261 85.00 85.00 85.00 85.00 73.26 85.00 FVV:101x STT-261 85.00 87.00 87.00 85.00 73.26 85.00 73.66 FVV:101x STT-261 85.00 87.10 87.30 85.30 75.74 77.17 75.74 75.74 FCSB - 1018 x STT-261 70.00 73.00 89.00 75.74 77.74 75.37 75.74 FCSB - 1018 x STT-261 70.00 73.00 73.00 75.74 77.74	5	SPV-1201 x Alma-14 B	74.40	79.40	76.90	45.66	51.34	48.50		55.37	38
FPV-1001 x 50-15151 84.40 84.80 74.26 71.50 72.88 73.65 FPV-1001 x 50-15151 84.40 84.00 84.00 74.26 71.50 72.88 73.65 FPV-1001 x 50-161 73.00 85.00 86.00 86.00 86.00 86.07 73.65	FPV-1001 x STP-341 64.40 84.80 74.26 71.50 72.88 73.35 FPV-1001 x STP-346 83.00 84.80 74.26 71.50 72.88 73.35 FPV-1001 x STP-346 83.00 86.00 84.80 73.26 73.36 73.35 FPV-1001 x STP-346 83.00 85.00 85.00 85.07 73.46 FPV-1201 x STP-341 89.60 89.00 87.30 85.07 73.46 FPV-1201 x STP-341 89.60 89.00 87.30 85.07 73.46 FV-1201 x STP-341 89.60 89.00 87.30 85.37 85.97 73.46 FV-1201 x STP-341 89.60 89.60 87.30 85.37 73.46 73.66 FV-1201 x STP-341 85.00 89.00 87.30 89.35 73.36 73.66 FCSB-1018 x STP-146 7.33 80.00 85.74 77.27 73.55 73.66 FCSB-1018 x STP-146 7.30 89.30 73.06 73.67 73.66 73.66	n :	SPV-1201 x SRT - 26B	86.80	87.40	87.10	68.66	72.50	70.58	21.73	50.02	78.84
FVV:101x x FV +96 B3.00 B5.00 B4.50 B3.30 B5.50 B5.70 B7.75 T7.75 FVV:101x x FV +96 B3.00 B5.00 B5.00 B5.30 B5.50 B5.70 T7.75 FVV:1201x x FV +130 B5.40 90.40 B7.30 B7.40 B7.35 T7.75 FVV:1201x x FV +130 B5.40 90.40 B7.30 T5.50 B7.30 B7.50	FVV:101x SEV. 946 B3.00 B6.00 B4.50 B3.30 B6.70 F3.66 FVV:101x SEV. 104 73.00 81.40 81.30 85.70 85	ž	SPV-1201 x GJ-35-15-15	84.40	84.80	84.60	74.26	71.50	72.88	20.02	78.15	10.01 10.01
WV-1001 x SPV-104 73.20 91.40 80.30 55.31 55.67 70.00 SPV-1011 x 15-371 SPV-1011 x 15-371 SEC 77.50 85.67 70.00 SPV-1011 x 15-371 SEC SEC 85.37 85.67 70.00 SPV-1011 x 15-371 SEC 85.30 75.35 84.35 75.35 84.35 SPV-1011 x 15-371 713 75.36 85.30 75.35 84.35 75.35 84.35 SPV-1011 x 15-371 713 75.36 85.37 75.35 85.37 75.35 85.37 75.35 85.35 75.35 85.35 75.35 85.37 75.36 75.35 85.35 75.35 85.35 75.35 75.36 75.37 75.36 75.37 75.36 77.31 85.35 75.36 75.36 75.37 75.36 75.37 75.36 75.37 75.36 75.37 75.36 75.37 75.36 75.37 75.36 75.37 75.36 75.37 75.36 75.37 75.36	FV-1201 x FV-104 73.20 81.40 80.20 83.34 86.67 66.77 FV-1201 x FV	S	SPV-1201 x SPV -946	83.00	86.00	84.50	63.90	69.50	66.70	13.45	2 1	
BYV-1201 k15-x33 B5.40 90.40 87.70 84.50 91.50 81.55	SPV-1201 (15:-523) 85,40 90,40 87,30 86,50 87,30 87,50 84,50 81,50 <td>2</td> <td>SPV-1201 x SPV- 104</td> <td>79.20</td> <td>81.40</td> <td>80.30</td> <td>53.34</td> <td>58.60</td> <td>25.97</td> <td>66.27</td> <td></td> <td>27 au</td>	2	SPV-1201 x SPV- 104	79.20	81.40	80.30	53.34	58.60	25.97	66.27		27 au
BY-1201 XIS-M71 9960 92.20 9900 75.35 64.50 788 62.53 63.35 TCSB - 1018 X XAma H 7.34 80.00 73.75 75.35 66.35 75.35 66.35 75.35 66.35 75.35<	BYV-1201 XIS-W11 B500 92.20 90.90 75.25 M450 7988 85.45 TCSB - 1018 X XAma H H 71.34 80.00 85.46 85.34 85.46 85.47 75.47 75.46 85.47 75.47 </td <td>6</td> <td>SPV-1201 x IS -2284</td> <td>85.40</td> <td>90.40</td> <td>87.90</td> <td>78.50</td> <td>84.50</td> <td>81.50</td> <td>195</td> <td>87.45</td> <td>33</td>	6	SPV-1201 x IS -2284	85.40	90.40	87.90	78.50	84.50	81.50	195	87.45	33
BY-100 MS TSP	Structure Structure <t< td=""><td>9</td><td>SPV-1201 x IS-6335</td><td>89.60</td><td>92.20</td><td>06.06</td><td>75.26</td><td>84.50</td><td>79.88</td><td>87 43</td><td>20.00</td><td></td></t<>	9	SPV-1201 x IS-6335	89.60	92.20	06 .06	75.26	84.50	79.88	87 43	20.00	
CCSB 10B X rdt, 24 M 30.00 77.17 58.34 60.64 57.34 76.32 CCSB 10B X rdt, 24 B 50.00 86.00 77.17 58.34 60.64 77.42 CCSB 10B X rdt, 24 B 50.00 86.00 87.30 58.74 77.47 75.74 75.74 CCSB 10B X rdt, 24 B 50.00 86.00 86.70 75.37 75.74 75.75 75.75 75.75 <t< td=""><td>CCSB 10BX xRT-26 54.34 80.00 77.17 85.34 60.84 55.35 66.34 72.06 CCSB 10BX xRT-26 83.80 89.00 77.17 85.34 60.84 72.06 CCSB 10BX xRT-26 83.80 89.60 75.74 77.74 65.37 72.06 CCSB 10BX xRT-26 83.80 89.60 75.74 77.74 65.37 73.07 CCSB 10BX xRT-26 83.80 89.60 75.74 77.76 65.37 73.07 CCSB 10BX xRT-26 83.80 89.60 75.74 77.76 65.37 73.07 CCSB 10BX xRT-26 81.80 92.80 86.60 75.74 77.76 73.65 79.75 CCSB 10BX xRS 73.00 93.00 74.90 73.05 45.75 CCSS 10BX xRS 73.07 93.00 93.00 74.90 75.76 73.55 74.55 AGma-14 BX xRP-36 73.00 93.00 74.90<!--</td--><td>9 :</td><td>SPV-1201 x IS - 9471</td><td>87.80</td><td>89.00</td><td>88.40</td><td>59.50</td><td>67.50</td><td>63.50</td><td>29.62</td><td>200</td><td>38</td></td></t<>	CCSB 10BX xRT-26 54.34 80.00 77.17 85.34 60.84 55.35 66.34 72.06 CCSB 10BX xRT-26 83.80 89.00 77.17 85.34 60.84 72.06 CCSB 10BX xRT-26 83.80 89.60 75.74 77.74 65.37 72.06 CCSB 10BX xRT-26 83.80 89.60 75.74 77.74 65.37 73.07 CCSB 10BX xRT-26 83.80 89.60 75.74 77.76 65.37 73.07 CCSB 10BX xRT-26 83.80 89.60 75.74 77.76 65.37 73.07 CCSB 10BX xRT-26 81.80 92.80 86.60 75.74 77.76 73.65 79.75 CCSB 10BX xRS 73.00 93.00 74.90 73.05 45.75 CCSS 10BX xRS 73.07 93.00 93.00 74.90 75.76 73.55 74.55 AGma-14 BX xRP-36 73.00 93.00 74.90 </td <td>9 :</td> <td>SPV-1201 x IS - 9471</td> <td>87.80</td> <td>89.00</td> <td>88.40</td> <td>59.50</td> <td>67.50</td> <td>63.50</td> <td>29.62</td> <td>200</td> <td>38</td>	9 :	SPV-1201 x IS - 9471	87.80	89.00	88.40	59.50	67.50	63.50	29.62	200	38
CGBs DBL XRT 25.00 83.60 83.61 64.66 61.91 77.13 CGBs 1018 XT 30.00 83.00 83.00 53.16 61.91 77.06 77.13 CGBs 1018 XT 75.00 75.17 75.06 77.17 CGBs 1018 XT 75.00 75.00 75.37 75.78 CGBs 1018 XT 75.00 75.00 75.00 75.78 75.78 CGBs 1018 XT 72.76 56.27 73.07 75.78 CGBs 1018 XT 72.76 56.27 73.77 75.36 75.73 CGBs 1018 72.00 73.00 93.00 73.00 93.65 97.30 97.53 CGBs 1018 72.00 73.00 93.00 73.00 93.65 95.50 87.53 CGBs 1018 75.00 73.70 95.60 75.30 95.76 97.53 95.76	CCSB DIBL XRTY DIS DIS <thdis< th=""> DIS DIS <thdi< td=""><td>8</td><td>[CSB - 101B x AKms 14 B</td><td>74.34</td><td>80.00</td><td>77.17</td><td>58.34</td><td>60.84</td><td>59.59</td><td>66.34</td><td>70.42</td><td></td></thdi<></thdis<>	8	[CSB - 101B x AKms 14 B	74.34	80.00	77.17	58.34	60.84	59.59	66.34	70.42	
CGSB COBIN Color Color <thc< td=""><td>CGSB Color BSA BSA Color BSA Color <thcolor< th=""> <thcolor< th=""> <thcolor< td="" th<=""><td>ឝ</td><td>ICSB - 101B x SRT- 26 B</td><td>85.00</td><td>89.60</td><td>87.30</td><td>59.16</td><td>64.66</td><td>61.91</td><td>72.08</td><td>77.13</td><td>74.61</td></thcolor<></thcolor<></thcolor<></td></thc<>	CGSB Color BSA BSA Color BSA Color Color <thcolor< th=""> <thcolor< th=""> <thcolor< td="" th<=""><td>ឝ</td><td>ICSB - 101B x SRT- 26 B</td><td>85.00</td><td>89.60</td><td>87.30</td><td>59.16</td><td>64.66</td><td>61.91</td><td>72.08</td><td>77.13</td><td>74.61</td></thcolor<></thcolor<></thcolor<>	ឝ	ICSB - 101B x SRT- 26 B	85.00	89.60	87.30	59.16	64.66	61.91	72.08	77.13	74.61
CGSB 0101 XSTV-146 75,00 78,30 66,00 55,14 72,75 56,25 73,77 75,76 CGSB 0101 XSTV-146 75,00 76,30 56,74 76,77 76,75 76,75 76,75 76,75 76,75 76,75 76,75 76,75	CGSB : 0101x SYP - 946 75,00 78,80 76,90 85,74 72,76 89,25 70,37 CGSB : 0101x SYP - 104 75,00 78,80 76,90 85,74 72,76 89,25 70,37 CGSB : 0101x SYP - 104 86,20 91,60 88,90 89,90 89,00 31,00 55,40 CGSB : 0101x SYP - 104 86,20 91,60 88,90 89,90 89,90 55,40 75,63 78,63 76,53 78,53 78,53 78,53 78,53 78,53 76,53 78,55 78,55 78,53 78,55	ផ	ICSB - 101B x QJ-35-15-15	83.80	89.40	86.60	75.74	47.77	76.74	11.61	83.57	8167
CCSB : 01Bx 527-101 0.030 0.44.00 82.200 30.00 32.00 31.00 55.40	CCSB OBX SYR SA	ត រ	ICSB - 101B x SPV - 946	75.00	78.80	76.90	65.74	72.76	69.25	70.37	75.78	13.08
CGSB :00Bx15 : - C234 65.20 91.60 68.84 77.42 73.63 73.02 84.51 CGSB :010 x15 : - C33 87.80 92.20 90.00 75.84 75.02 94.51 CGSB :010 x15 : - 971 90.00 93.80 91.90 63.90 74.50 71.73 73.93 87.55 CGSB :010 x15 : - 971 90.00 93.80 91.90 63.90 74.50 71.75 73.90 84.75 Actima - 14 B x x87 - 364 75.00 91.60 78.30 85.86 65.25 65.75 67.76 Actima - 14 B x x87 - 946 75.00 91.60 73.70 35.50 33.75 54.55 57.90 Actima - 14 B x x87 - 104 72.20 93.50 30.00 33.75 34.55 57.90 77.28 Actima - 14 B x x87 - 104 72.80 93.00 93.00 33.75 34.55 57.90 77.28 77.30 Actima - 14 B x x87 - 104 72.80 73.70 35.50 33.75 35.76 57.90 77.30 <tr< td=""><td>CGSB 010B x15 234 85.20 9160 88.90 68.04 17.42 7363 78.02 CGSB 010B x15 63.01 91.90 93.00 69.04 17.42 7363 78.02 CGSB 010B x15 97.11 97.00 93.20 93.90 93.00 78.02 78.02 CGSB 010B x15 97.00 93.20 93.90 93.00 73.00 78.05 46.75 AGma + H 8 x SPV - 946 75.00 91.90 78.00 73.70 35.50 38.05 55.55 41.55 AGma + H 8 x SPV - 946 56.00 77.00 35.50 38.00 38.75 44.55 AGma + H 8 x SPV - 946 56.00 77.00 35.50 38.00 38.75 54.55 AGma + H 8 x SPV - 946 55.40 58.30 30.00 74.50 80.35 55.56 AGma + H 8 x SPV - 946 55.40 58.80 30.00 74.50 80.35 55.56 56.56 56.56 56.55 56.55</td><td>5</td><td>ICSB - 101B x SPV - 104</td><td>80.80</td><td>84.80</td><td>82.80</td><td>30.00</td><td>32.00</td><td>31,00</td><td>55.40</td><td>58.40</td><td>26.00</td></tr<>	CGSB 010B x15 234 85.20 9160 88.90 68.04 17.42 7363 78.02 CGSB 010B x15 63.01 91.90 93.00 69.04 17.42 7363 78.02 CGSB 010B x15 97.11 97.00 93.20 93.90 93.00 78.02 78.02 CGSB 010B x15 97.00 93.20 93.90 93.00 73.00 78.05 46.75 AGma + H 8 x SPV - 946 75.00 91.90 78.00 73.70 35.50 38.05 55.55 41.55 AGma + H 8 x SPV - 946 56.00 77.00 35.50 38.00 38.75 44.55 AGma + H 8 x SPV - 946 56.00 77.00 35.50 38.00 38.75 54.55 AGma + H 8 x SPV - 946 55.40 58.30 30.00 74.50 80.35 55.56 AGma + H 8 x SPV - 946 55.40 58.80 30.00 74.50 80.35 55.56 56.56 56.56 56.55 56.55	5	ICSB - 101B x SPV - 104	80.80	84.80	82.80	30.00	32.00	31,00	55.40	58.40	26.00
CGSB-10B1x15-x013 87.80 92.20 90.00 73.25 87.55	CGS +01B x15 - x13 87 x80 92 x30 9000 72 x6 80 x6 83 x5 75 x6 75 x6 <td>N 1</td> <td>ICSB - 101B x 15 - 2284</td> <td>86.20</td> <td>91.60</td> <td>88.90</td> <td>69.84</td> <td>77.42</td> <td>73.63</td> <td>78.02</td> <td>84.51</td> <td>81 27</td>	N 1	ICSB - 101B x 15 - 2284	86.20	91.60	88.90	69.84	77.42	73.63	78.02	84.51	81 27
Construct Mills Total H 13 M 14 M 17 M 15 M 17 M 15 M 15 <thm 15<="" th=""> M 15 M 15</thm>	Actual HB x(SPT-260) 93.00 91.90 93.00 14.50 71.75 79.50 Actual + 18 x(SPT-260) 70.00 93.80 91.90 89.00 74.50 71.75 79.50 Actual + 18 x(SPT-260) 70.00 91.80 78.30 18.50 25.50 46.75 Actual + 18 x(SPT-361) 72.00 90.80 76.40 35.50 36.80 65.55 55.55 56.56 63.25 54.55	4 8	ICSB - 101B x IS - 6335	87.80	92.20	8.6	79.26	82.50	80.88	83.53	87.35	85.44
Admain HB XRT 2500 8160 78.30 18.50 22.50 36.65 52.66 Admain HB XRU:351-151 700 8160 76.30 18.50 52.56 53.76 53.76 Admain HB XRU:351-151 700 80.60 76.40 18.50 32.50 36.67 59.76 Admain HB XRV: 946 89.60 77.80 73.70 39.50 38.00 38.75 54.55 57.90 Admain HB XRV: 946 80.60 77.80 73.70 39.50 38.00 38.75 54.55 57.90 Admain HB XRV: 946 80.60 77.80 73.70 39.50 38.00 38.75 54.55 57.90 Admain HB XRV: 946 80.60 77.80 73.70 39.50 38.00 37.70 37.00 37.00 37.00 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 37.70 </td <td>Actuar -1B x 87 - 250 - 150 - 75 - 750 - 165 - 75 - 205 - 46.75 - 205 - 46.75 - 205</td> <td>2</td> <td>ICSB - 101B x IS - 9471</td> <td>30.00</td> <td>93.80</td> <td>91.90</td> <td>00.69</td> <td>74.50</td> <td>71.75</td> <td>79.50</td> <td>84.15</td> <td>8183</td>	Actuar -1B x 87 - 250 - 150 - 75 - 750 - 165 - 75 - 205 - 46.75 - 205 - 46.75 - 205	2	ICSB - 101B x IS - 9471	30.00	93.80	91.90	00 .69	74.50	71.75	79.50	84.15	8183
Actima + IB 8x 013,11:15 72:00 90.80 76.40 54.50 86.66 63.25 69.73 Actima + IB 8x 3PV - 946 69.60 77.80 73.70 93.50 38.75 57.50 57.50 Actima - IA 8x 3PV - 946 69.60 77.80 73.70 39.50 38.05 54.55 57.50 Actima - IA 8x 3PV - 104 52.20 60.55 55.20 39.50 34.00 32.75 41.25 47.26 Actima - IA 8x 3PV - 104 52.204 90.20 86.50 69.50 14.00 71.75 76.55 82.10 Actima - IA 8x 1S - 0333 87.80 22.40 90.00 59.50 74.00 71.75 76.55 82.10 Actima - IA 8x 1S - 0333 87.80 92.40 90.00 73.00 74.00 71.75 76.55 82.10 Actima - IA 8x 1S - 0333 87.80 92.80 93.70 63.20 64.75 77.26 77.26 Actima - IA 8x 1S - 0333 87.80 93.00 64.77 77.26 77.26	Adman + IB x 2013, 15, 15 00, 15, 16, 40, 54, 50, 56, 56, 55, 55, 55, 56, 56, 56, 56, 56	8	AKms - 14 B x SRT - 26B	75.00	81.60	78.30	18.50	22.50	20.50	46.75	52.05	49.40
Atomate HB XSPV - 946 6960 77,30 73,70 35,50 30,00 3175 54,55 57,90 Atomate HB XSPV - 104 22,00 0,55 55,50 30,50 31,00 3175 54,55 57,90 Atomate - 16 B XSPV - 104 22,00 0,55 56,50 69,50 34,00 3175 74,28 47,28 Atomate - 16 B XSPV - 104 33,60 90,20 56,50 69,50 14,00 71,17 76,55 52,10 Atomate - 16 B XIS - 2214 32,60 90,20 55,50 69,50 74,00 71,17 76,55 52,10 Atomate - 16 B XIS - 2314 17,60 92,00 69,50 63,00 64,77 72,56 73,00 Atomate - 16 B XIS - 3411 54,40 86,30 92,00 63,50 64,50 64,50 57,90 Atomate - 16 B XIS - 3411 54,40 86,30 93,00 64,77 72,56 73,90 Atomate - 16 B XIS - 3411 54,40 86,30 84,30 84,30 84,30 <td>Atoma - IA BX STV - 946 68.60 77.80 73.70 38.50 38.75 54.55 Atoma - IA BX STV - 104 52.00 60.56 56.28 30.50 34.00 317.75 54.55 Atoma - IA BX STV - 104 52.00 60.56 56.28 30.50 34.00 71.75 75.55 Atoma - IA BX STV - 104 52.00 60.56 56.28 30.50 74.00 71.75 75.55 Atoma - IA BX IS - 2334 87.80 90.20 56.20 50.00 74.00 71.75 75.55 Atoma - IA BX IS - 3315 87.80 90.00 73.00 76.00 74.50 80.30 Atoma - IA BX IS - 9471 55.40 98.80 97.10 60.50 63.00 64.77 72.95 Atoma - IA BX IS - 9471 55.40 98.80 97.10 60.50 63.00 64.77 72.95</td> <td>ค</td> <td>AKms - 14 B x GJ-35-15-15</td> <td>72.00</td> <td>80.80</td> <td>76.40</td> <td>54.50</td> <td>58,66</td> <td>56.58</td> <td>8</td> <td>2.09</td> <td>66 40</td>	Atoma - IA BX STV - 946 68.60 77.80 73.70 38.50 38.75 54.55 Atoma - IA BX STV - 104 52.00 60.56 56.28 30.50 34.00 317.75 54.55 Atoma - IA BX STV - 104 52.00 60.56 56.28 30.50 34.00 71.75 75.55 Atoma - IA BX STV - 104 52.00 60.56 56.28 30.50 74.00 71.75 75.55 Atoma - IA BX IS - 2334 87.80 90.20 56.20 50.00 74.00 71.75 75.55 Atoma - IA BX IS - 3315 87.80 90.00 73.00 76.00 74.50 80.30 Atoma - IA BX IS - 9471 55.40 98.80 97.10 60.50 63.00 64.77 72.95 Atoma - IA BX IS - 9471 55.40 98.80 97.10 60.50 63.00 64.77 72.95	ค	AKms - 14 B x GJ-35-15-15	72.00	80.80	76.40	54.50	58,66	56.58	8	2.09	66 40
NGma: IB X SIV - 104 52.00 60.56 56.28 30.50 34.00 32.25 41.25 47.28 AKma: IA B X IS - 224 83.60 90.20 83.60 93.00 74.00 71.75 76.55 82.10 AKma: IA B X IS - 6335 74.00 73.00 76.00 73.00 82.10 AKma: IA X IS - 9717 56.40 98.80 73.00 74.50 76.55 82.10 AKma: IA X IS - 9717 55.40 98.80 87.10 60.50 59.00 64.77 72.95 78.90	Actima - 18 x x y - 104 52.00 60.56 55.28 30.50 34.00 32.25 41.25 Actima - 18 x 15 - 224 85.80 90.20 85.50 84.00 71.75 61.55 Actima - 18 x 15 - 6315 87.60 52.40 90.00 73.00 76.00 71.75 76.55 Actima - 18 x 15 - 6315 87.60 86.80 87.10 60.50 66.17 72.56 Actima - 18 x 15 - 971 85.40 88.80 87.10 60.50 66.00 64.75 72.56 C	8	AKms -14 B x SPV - 946	69.60	77.80	73.70	39.50	38.00	38.75	25.25	57.90	26.25
Actima - 18 X1S - 2244 83.50 90.22 86.90 69.50 74.00 71.75 76.55 82.70 Actima - 18 X1S - 6335 87.56 92.40 90.00 73.00 76.00 74.50 80.30 84.20 Actima - 16 B X1S - 9471 55.40 88.20 87.00 65.50 83.00 64.75 72.95 78.90	Admain-14 B x IS-2244 83.60 90.20 86.90 69.50 74.00 71.75 76.55 Admain-14 B x IS-6335 87.60 92.40 90.00 73.00 76.00 74.50 80.30 Admin-14 B x IS-971 85.40 98.80 87.10 80.50 69.00 64.75 72.95 Admin-14 B x IS-971 85.40 98.80 87.10 80.50 73.00 74.00 77.50 00.30	R	AKms - 14 B x SPV - 104	52.00	60.56	56.28	30.50	34,00	32.25	4	47.28	44 77
Muna - H B x IS - 6335 87.60 92.40 90.00 73.00 76.00 74.50 80.30 84.20 Mina - H B x IS - 9471 85.40 88.80 87.10 60.50 69.00 64.75 72.95 78.90	Atman - H B x IS - 633 87.60 92.40 90.00 73.00 76.00 74.50 80.30 Atman - H B x IS - 971 85.40 88.80 87.10 60.50 69.00 64.73 72.95 C	R	AKms - 14 B x IS - 2284	83.60	90.20	86.90	69.50	74.00	71.75	76.56	82 10	20.30
Akinia - 14 B x 15 - 5471 85 - 40 88 - 80 87 - 10 60 50 69 00 64 75 72 95 78 - 90	AXumi - IA B x 13 - 3471 85.40 88.80 87.10 60.50 69.00 64.75 72.95 C	R	AKma - 14 B x IS - 6335	87.60	92.40	<u> 80.06</u>	73.00	76.00	74.50	80.30	84.20	82.25
	-	7	AKine - 14 B x IS - 9471	85.40	88.80	87.10	60.50	69.00	64.75	72.95	78.90	75.90

3 T-46 16 EW.

VIII - 25

1	99	3	50	8	4	•	yo Q	5	\$	р р	- -		5	2	4	8	2	8	2	24				,						
=	73.6	7.67	61.6	84.1	818	661	717	53.5	89.35	81.7	742	672	7.67	9 0	77.6	730	66.5	68.4	81.0	305	86.7	700	36.3141							
01	76.25	83.60	64.00	86.70	85.43	83.30	73.42	55.10	90.80	83.95	76.67	69.00	82.35	91.57	80.18	76.80	68.80	71.75	82.63	91.07	89.64	73.80					CD 5%	1.349	7.078	9.978
6	71.10	75.88	59.25	81.65	78.30	76.50	70.10	51.95	87.90	79.62	71.75	65.45	77.08	89.33	75.10	69.23	64.30	65.20	79.50	90.06	83.82	70.14					SE (m)	0.462	2.425	3.429
8	64.75	74.38	52.75	81.75	81.13	75.00	67.92	35.25	91.50	76.07	74.05	60.25	76.53	89.50	69.70	70.33	60.75	68.25	20:00	90.75	81.67	61.87	(4)6.56							
7	67.50	78.60	55.00	84.00	84.26	79.00	69.84	38.00	92.00	78.30	76.60	63.00	06.67	90.34	72.20	76.00	63.50	71.50	71.00	92.00	85.34	63.82					CD 5%	3.086	16.184	12.888
9	62.00	70.16	50.50	79.50	78.00	71.00	66.00	32.50	91.00	73.84	71.50	57.50	73.16	88.66	67.20	64.66	58.00	65.00	69.00	89.50	78.00	59,390					SE (m)	1.113	5.838	8.25/
\$	82.60	85.10	70.50	86.60	82.60	34.80	75.60	71.80	87.20	87.50	74.37	74.20	82.90	91.40	85.58	75.70	72.35	68.70	92.13	90.32	91.79	82.16	(+)4.45		24.69	Patancheru				
4	85.00	88.60	73.00	89.40	86.60	87.60	77.00	72.20	89.60	89.60	76.74	75.00	84.80	92.80	88.16	77.60	74.10	72.00	94.26	90.14	93.94	83.95				100	%4 (I)	2.310	12.115	1/.133
3	80.20	81.60	68.00	83.80	78.60	82.00	74.20	71.40	84.80	85.40	72.00	73.40	81.00	<u> 80.00</u>	83.00	73.80	70.60	65.40	90.06	90.50	89.64	80.37				())	SE (m)	0.835	4.3/0	0.181
711	SRT- 26B x GJ-35-15-15	SRT - 26B x SPV - 946	SRT - 26B x SPV -104	SRT - 26B × IS – 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x IS- 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 x IS-6335	IS 2284 x IS -9471	IS 6335 x IS 9471	Mean	% increase (+)/decrease(-)	over untreated	% increase over location			<		AXB
	8	8	37	38	\$	4	41	4	\$	\$	45	46	47	48	49	8	51	8	8	3	×									

97 - 111 A

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Trened Main Unitered Trened Moin Moin Moin Moin Moin Moin Moin Moin <thm< th=""><th>S.N.</th><th>S.N. Parenta/Crosses Akola Patardient Pooled Ver hora</th><th></th><th>Akola</th><th></th><th></th><th>Patancheru</th><th></th><th>ood</th><th>Pooled over locations</th><th></th></thm<>	S.N.	S.N. Parenta/Crosses Akola Patardient Pooled Ver hora		Akola			Patancheru		ood	Pooled over locations		
2 3 4 5 6 7 8 9 10 TCSP-101 101 103 113 207 113 207 130 130 RTA-101 101 140 7.33 1607 17.34 100 130 130 RT-208 2067 1933 2013 267 15.3 100 130 130 STV-368 17.34 18.00 15.3 1607 7.33 13.00	2 3 4 5 6 7 8 9 9 10 11 10			Untreated	Treated	Mcan	Untreated	Treated	Mean		Treated		
SW-1001 TSW-1001 TJM Z/57 1600 2167 2000 1300 Atma-108 STT-268 0.01 11.34 27/3 1600 2167 2000 1300 STT-268 0.01 11.34 267 17.34 18.00 13.00 13.00 STT-268 0.03 10.97 17.34 18.00 16.7 7.33 15.00 13.03 STV-108 27.03 16.07 7.33 16.07 7.33 15.00 <	STV-1001 ISTV IO II.34 ISTV IO II.34 ISTV IO II.34 ISTV IO II.33 ISTV IO III.33 ISTV III.33 ISTV III.33 ISTV III.33 III.33 <thiii.33< th=""> IIII.33 <thiii.33< th="" th<=""><th>- </th><th></th><th>e</th><th>4</th><th>\$</th><th>9</th><th>7</th><th>8</th><th>6</th><th>0</th><th>1</th></thiii.33<></thiii.33<>	-		e	4	\$	9	7	8	6	0	1	
CGS-1018 TGS-1018	CGN-1018 TGS T/34 18/0 16/67 T/34 18/0 16/67 T/34 18/0 16/67 T/34 18/0 14/0 ST7-368 23/51-15 20/67 19/33 20/67 17/34 18/0 14/0 ST7-368 23/51-15 12/00 26/67 17/34 18/00 14/07 17/34 13/33 ST7-368 15/20 12/33 23/37 20/01 16/07 17/34 13/33 13/00 STV-104 15/20 16/27 17/34 18/00 16/07 17/34 13/33 13/00 15/34 13/00 13/35 13/00 13/05 13/33 13/00 13/05 13/33 13/00 13/05 13/33 13/00 13/05 13/33 13/00 13/05 13/33 13/00 13/05 13/33 13/00 13/05 13/33 13/00 13/05 13/33 13/00 13/05 13/33 13/00 13/05 13/33 13/00 13/33 13/05	_	SPV-1201	12.67	10.01	11.34	27.33	16.00	21.67	20.00	13.00	16.50	
Atmart (B) Atmart (B) Constraint (B)<	Advant (4) (377-38) 2.67 (375) (7.38) (377-38) 2.67 (375) (7.38) (377-38) 2.67 (375) (7.38) (375) 2.67 (375) (7.38) (375) 1.05 (375) 1.05 (375) </td <td>64</td> <td>ICSB-101B</td> <td>18.01</td> <td>16.67</td> <td>17.34</td> <td>18.00</td> <td>11.33</td> <td>14.67</td> <td>18.00</td> <td>8.5</td> <td>10.00</td>	64	ICSB-101B	18.01	16.67	17.34	18.00	11.33	14.67	18.00	8.5	10.00	
SRT-38 3.067 7.33 1067 7.33 1067 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1057 7.34 1050 1567 7.34 1057 17.34 1057 17.34 1057 133 1050 1560	ST-268 Store 133 505 173 105 173 105 173 105 10	~	Akms-14B	24.67	17.99	21.33	2.67	2.67	267	13.67	36	3.5	
GIA315151 TI39 B67 T33 T200 T433 T300 SYV-946 2001 2733 2157 100 1057 100 105 SYV-946 2001 2733 2157 100 1533 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 130 133 133 130 <td>GIAJI-Jis 1139 167 733 733 730 1433 1300 SYV-946 2001 2733 333 4100 467 1333 1300 SYV-946 2001 2733 2337 4000 467 1333 1300 1533 SYV-946 533 533 333 233 233 2300 1567 1333 1300 1533 1500 1500 1567 1533 1500 1500 1500 1500 1567 1533 1500<!--</td--><td>4</td><td>SRT-26B</td><td>20.67</td><td>19.33</td><td>20.00</td><td>14.00</td><td>7.33</td><td>10.67</td><td>17.20</td><td>2 <u>5</u> 2 5</td><td>14.00</td></td>	GIAJI-Jis 1139 167 733 733 730 1433 1300 SYV-946 2001 2733 333 4100 467 1333 1300 SYV-946 2001 2733 2337 4000 467 1333 1300 1533 SYV-946 533 533 333 233 233 2300 1567 1333 1300 1533 1500 1500 1567 1533 1500 1500 1500 1500 1567 1533 1500 </td <td>4</td> <td>SRT-26B</td> <td>20.67</td> <td>19.33</td> <td>20.00</td> <td>14.00</td> <td>7.33</td> <td>10.67</td> <td>17.20</td> <td>2 <u>5</u> 2 5</td> <td>14.00</td>	4	SRT-26B	20.67	19.33	20.00	14.00	7.33	10.67	17.20	2 <u>5</u> 2 5	14.00	
SYV-(46) T/201 T/231 18/00 6/57 17/33 18/00 6/57 17/33 18/00 6/57 17/33 18/00 6/57 15/33 15/30	SYV-M6 T/T T/T<	ŝ	GI-35-15-15	11.99	18.67	15.33	16.67	7.33	10.01	5 2	382	5	
FYV-104 2001 2733 2367 400 467 433 1200 1500 IS-253 IS-253 IS-254 IS-254 IS-254 IS-256	FYV-104 2001 2733 2367 400 467 433 1200 1500 S6335 533 337 1233 337 1233 1200 1500 S6435 533 533 337 1233 230 753 230 753 233 233 236 733 233 230 753 733	9	SPV-946	12.00	22.67	17.34	18.00	8.67	36	8.4	32	13.07	
S-2284 1539 867 1233 200 660 2.00 2.00 100 S-971 S-971 S 3.33<	S-2284 1539 567 1233 2000 16.00 2.000 2.000 2.0	7	SPV-104	20.01	27.33	23.67	4 00	4.67	32	3.6	10.01	5.01	
Scolis Scolis Sevial Signal	Sector 5.33 7.33 7.33 2.200 2.267 2.200 2.267 2.200 2.267 2.200 2.267 2.200 2.267 2.200 2.267 2.200 2.267 2.200 2.267 2.200 2.267 2.200 2.267 2.200 2.266 1.63 16.00 2.33 7.33 2.200 2.266 1.63 16.00 2.200 2.267 2.200 2.266 1.63 16.00 2.33 7.33 2.33 2.33 2.33 2.300 2.66 1.63 16.00 2.300 2.760 2.700	8	IS-2284	15.99	867	17.33	28.0	16.01	2 C		16.00	9.4	
SPV-1011 x (SP-10) 3.33 3.34 1.05 3.34 1.03 3.34 1.03 3.34 1.03 3.34 1.13 3.34 3.34 3.34 3.34 <td>SPMT S20 <ths20< td="" th<=""><td>6</td><td>IS-6335</td><td>5.33</td><td>3 33</td><td>4 33</td><td>200</td><td>10.55</td><td>38</td><td>877 77</td><td>5.7 2</td><td>/1./1</td></ths20<></td>	SPMT S20 S20 <ths20< td="" th<=""><td>6</td><td>IS-6335</td><td>5.33</td><td>3 33</td><td>4 33</td><td>200</td><td>10.55</td><td>38</td><td>877 77</td><td>5.7 2</td><td>/1./1</td></ths20<>	6	IS-6335	5.33	3 33	4 33	200	10.55	38	877 77	5.7 2	/1./1	
W. Jan K. Chellolli 256 163 2120 256 163 2120 256 163	SYV-101 KGR-101B 2566 1634 2130 2566 1634 143 SYV-101 KGR-101B 2566 1634 1235 2330 2566 1634 1436 SYV-101 KGR-141B 2566 1634 1356 1536 1634 1436 1632 SYV-101 KGR-141B 2566 1637 1335 2330 1660 2340 1445 SYV-101 KGR-141B 2560 1336 1355 1335 1346 1630 2340 1640 2435 163 SYV-101 KGR-141B 2560 1346 1355 2334 1660 2347 143 153 SYV-101 KGR-141B 2560 1346 1355 2330 2140 2345 153 SYV-101 KGR-141B 1560 2136 2136 2330 2138 1533 1533 SYV-101 KGR-141B 1416 1042 2138 2530 2148 2435 1636 CSSS - 0101 KGR-141B 1416 1042 1235	9	[S-947]	3.33	333	333	20.67	15.33	38	8.6	0.0	3.2	
SYV (20) K Adment (8) 2566 1750 2006 1566 1634 1600 246 1733 SYV (20) K Adment (8) 2567 1730 2330 1566 1634 1600 246 1733 SYV (20) K (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	SYV-101 x Amm-14 Z266 1730 Z010 1566 16.34 16.00 2.64 17.33 SYV-101 x STV-201 x C3-51-151 5550 12.65 17.30 20.06 15.66 16.34 16.00 2.67 17.33 SYV-1201 x STV-301 x STV-301 x STV 14.16 18.44 17.33 17.30 21.06 17.33 SYV-1201 x STV-304 13.56 13.56 13.56 13.56 17.30 21.06 14.36 SYV-1201 x STV-304 13.30 17.35 27.30 13.56 17.30 21.06 14.36 SYV-1201 x STV-304 21.36 13.36 17.35 27.30 13.46 17.33 SYV-1201 x STV-304 21.36 13.36 17.35 27.30 13.36 17.33 17.33 SYV-1201 x STV-304 15.40 38.61 17.33 27.40 27.42 14.36 17.33 SYV-1201 x STV-406 14.46 17.33 27.40 27.42 15.30 17.31 17.33 17.31 17.33 17.33	Ξ	SPV-1201 x ICSB-101B	25.86	16.54	21.20	25,66	200	38	32	20.0	10.01	
SYV-13bit xRT-268 355 200	SYV-101A KRT-268 3650 2030 2250 14,1 16,40 24,9 15,2 SYV-101A KRT-268 3650 2030 2250 14,6 14,4 14,9 15,2 SYV-101A KRV-461 1930 13,5 2230 24,10 14,6 14,3 15,2 SYV-101A KRV-461 1930 13,45 16,80 23,40 14,6 15,0 14,6 14,3 15,0 14,6 15,0 14,6 15,0 14,6 15,0 14,6 15,0 14,6 14,6 14,6 14,6 14,6 15,0 14,6 14,6 14,6 14,6 15,0 14,6 15,0 14,6 15,0 14,6 15,0 14,6 15,0 15,0 15,0 14,6 15,0 14,6 15,0 14,6 15,0 14,6 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0 <td< td=""><td>2</td><td>SPV-1201 x Aldms-14 B</td><td>22.66</td><td>17.50</td><td>20.08</td><td>15.66</td><td>16.24</td><td>3.07</td><td>0.4</td><td>18.4/</td><td>27.12</td></td<>	2	SPV-1201 x Aldms-14 B	22.66	17.50	20.08	15.66	16.24	3.07	0.4	18.4/	27.12	
W. Jan K (13): 11:0 17:0 17:0 20:0 24:0 17:0 17:0 20:0 24:0 17:0 17:0 20:0 24:0 17:0 17:0 20:0 24:0 17:0 24:0 17:0 26:0 24:0 17:0 </td <td>SYV-101 K Gray MG 1570 11.55 22.00 17.50 26.01 24.30 17.45 SYV-101 K SYV-161 16.57 10.55 22.00 17.50 26.01 24.30 17.45 SYV-101 K SYV-161 14.65 13.60 13.55 22.00 13.56 17.00 23.30 21.00 14.85 SYV-101 K S-0.35 21.01 17.25 23.30 13.60 13.56 13.60 14.85 SYV-101 K S-0.35 21.00 18.60 23.30 21.06 14.85 13.60 13.56 13.60 13.60 13.60 13.75 13.76 13.7</td> <td>n</td> <td>SPV-1201 x SRT - 26B</td> <td>26.50</td> <td>20.50</td> <td></td> <td>20.00</td> <td>31.11</td> <td>3</td> <td>2 5</td> <td>26.01</td> <td>18.04</td>	SYV-101 K Gray MG 1570 11.55 22.00 17.50 26.01 24.30 17.45 SYV-101 K SYV-161 16.57 10.55 22.00 17.50 26.01 24.30 17.45 SYV-101 K SYV-161 14.65 13.60 13.55 22.00 13.56 17.00 23.30 21.00 14.85 SYV-101 K S-0.35 21.01 17.25 23.30 13.60 13.56 13.60 14.85 SYV-101 K S-0.35 21.00 18.60 23.30 21.06 14.85 13.60 13.56 13.60 13.60 13.60 13.75 13.76 13.7	n	SPV-1201 x SRT - 26B	26.50	20.50		20.00	31.11	3	2 5	26.01	18.04	
FYV_1301 K FYV - 106 1250 2.50 2.50 2.50 2.50 1.50 <th co<="" td=""><td>BYV-101 K SPV - HG 145 125 125 125 126</td><td>I</td><td>SPV-1201 x GJ-35-15-15</td><td>15.70</td><td>11 40</td><td>13.55</td><td>3.55</td><td>2 2</td><td># 0 K</td><td>8 1 2</td><td>3.7</td><td>96.02</td></th>	<td>BYV-101 K SPV - HG 145 125 125 125 126</td> <td>I</td> <td>SPV-1201 x GJ-35-15-15</td> <td>15.70</td> <td>11 40</td> <td>13.55</td> <td>3.55</td> <td>2 2</td> <td># 0 K</td> <td>8 1 2</td> <td>3.7</td> <td>96.02</td>	BYV-101 K SPV - HG 145 125 125 125 126	I	SPV-1201 x GJ-35-15-15	15.70	11 40	13.55	3.55	2 2	# 0 K	8 1 2	3.7	96.02
WY-101 x Sec. 1950 13.6 16.6 23.3 16.60 23.47 24.16 14.85 SWY-101 x IS-234 21.05 13.6 17.25 21.36 13.50 13.6 13.50 13.6	SPV-1001 KS: 7201 SS27 660 22.37 21.05 14.85 SPV-1001 KS: 7201 ST30 17.25 21.05 13.65<	2	3PV-1201 x 5PV -946	14.96	10.26	12.61	2.22		200	2.5	C4.41	87.6L	
Figure 101 KS - 234 2136 1725 2550 7550 <th <<="" colspan="5" td=""><td>WV-1018 (S-234 2136 137 2350 1500 1500 </td></th>	<td>WV-1018 (S-234 2136 137 2350 1500 1500 </td>					WV-1018 (S-234 2136 137 2350 1500 1500							

	,																		246										
=	2528	17.32	16.70	20.63	27.33	23.37	1764	18.86	2420	24 13	19.37	20.50	24.17	1759	21.82	22.75	23.53	2503	28.02	28.07	20.03	07.01	00 CC/-)	00777(-)					
10	23.55	14.43	14.40	18.28	18.37	01.61	14.32	17.83	15.90	20.07	15.53	18.80	17.25	14.08	17.83	19,15	18,58	18.18	23.38	22.42	15.80	46 OK	2					20,501	29.124
6	27.00	20.20	19.00	22.98	26.28	27.63	20.96	19,88	32.50	28.18	23.20	22.20	31.08	21.09	25.80	26.35	28.48	31.88	32.65	33.71	24.25	22 M				() US	1 3.4B	7 076	10.008
8	29.25	23.70	21.00	25.75	30.88	24.83	21.79	21.00	26.50	29.55	20.00	27.00	27.93	22.17	21.40	27.42	22.25	26.00	33.50	33.00	14.50	2002	(-)17 98		28.32	(AKOB)			
7	28.50	19.20	16.00	23.50	25.00	19.00	17.16	21.00	15.00	26.60	16.00	26.00	20.70	18.00	16.80	23.50	17.00	18.50	28.00	26.50	12.00	19.84				CD 5%	2 034	10 669	15.088
9	30.00	28.20	26.00	28.00	36.76	30.66	26.42	21.00	38.00	32.50	24.00	28.00	35.16	26.34	26.00	31.34	27.50	33.50	39.00	39.50	17.00	24.19				SF (m)	0 734	3 849	5.443
5	21.30	10.93	12.40	15.51	13.77	21.90	13.49	16.71	21.90	18.70	18.73	14.00	20.40	13.00	22.23	18.08	24.81	24.06	22.53	23.13	20.55	17.16	(-)27.10						
	18.60	3.66	12.80	13.06	11.74	19.20	11.48	14.66	16.80	13.54	15.06	11.60	13.80	10.16	18.86	14.80	20.16	17.86	18.76	18.34	19.60	14 47				CD 5%	2.284	11.975	16 936
	24.00	12.20	12.00	17.96	15.80	24.60	15.50	18.76	27.00	23.86	22.40	16.40	27.00	15.84	25.60	21.36	29.46	30.26	26.30	27.92	21.50	19.85				SE (m)	0.824	4.320	6.110
	CI-CI-CE-ID X 1107 -1 NG	SKT - 26B x SPV - 946	SK1 - 26B x SPV -104	SRT - 26B x IS - 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x IS- 6335	SPV - 946 × IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 × IS-6335	IS 2284 X IS -9471	IS 6335 × IS 9471	Mezun	% increase (+)/decrease(-)	over untreated	% increase over location		~	8	AxB
-	8.2	2 1		2	6	9 :	Ŧ	<u>с</u>	p :	1	÷ :	å i	÷ :	ę:	÷ :	3:	5 5	2 3	23	51	8								

Mean Unition 1 1 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3	č	Patanchoru		5.N. Parents/Crosses Akola Palandhoru Pooled over location	Pooled over locations	
Temp 2 3 4 5 6 CSP-101 CSP-101 0.00 0.67 0.33 667 0.33 667 0.33 667 0.33 667 0.33 667 0.33 667 0.33 667 0.33 2667 2667 2667 2667 2667 2667 2667 2667 2667 2667 2667 2667 2667 2667 2667	Untreated .	Treated	Mean	Untreated	Treated	Mean
SFV-1201 0.000 0.67 0.33 Admi-14B 0.000 0.67 0.33 SFT-264 0.000 0.67 0.33 SFV-101 0.000 6.67 3.33 SFV-164 0.000 6.67 3.33 SFV-101 1.33 2.67 2.00 SFV-101 X.CBH-1018 1.33 2.67 2.03 SFV-101 x K73H-1018 1.33 2.67 2.06 3.33 SFV-101 x K73H-1018 1.50 2.67 2.00 3.33 SFV-101 x K73H-1018 1.50 2.67 2.00 3.67 2.67 2.00 SFV-101 x K73H-1018 1.50 2.66 2.06 1.06 2.06 2.00 3.75 3.75 3.75 3.75 3.75 3.75 <	9	7	•	6	01	-
CSP-101B COO 57 233 Atma-14B 000 57 233 STV-164 000 57 233 STV-164 000 57 233 STV-164 000 57 233 STV-164 000 56 333 STV-164 000 667 333 STV-164 000 67 333 STV-164 000 67 333 STV-164 103 267 203 STV-164 103 267 203 STV-1614 113 267 203 STV-1614 113 267 203 STV-1614 113 067 067 STV-1614 113 07 067 067 STV-1614 1120 060 070 066 STV-1614 1120 070 066 070 STV-1614 1120 070 066 066 STV-1614 </td <td>5.33</td> <td>6.00</td> <td>5.67</td> <td>2.67</td> <td>333</td> <td>300</td>	5.33	6.00	5.67	2.67	333	300
Admin 14B 200 5.33 2.67 GT-361 GT-361 0.00 5.03 2.67 STV-366 GT-361 0.00 5.03 3.33 STV-366 GT-361 0.00 5.03 3.33 STV-366 GT-361 0.00 5.07 2.67 3.33 STV-366 GT-361 1.33 2.67 2.67 3.33 STV-301 STV-301 1.33 2.67 2.67 3.33 STV-301 STV-301 1.33 2.67 2.67 2.67 3.33 STV-301 STV-301 STV-301 1.33 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.60 3.33 3.47 3.47	3.33	3,33	333	167	007	
SRT-288 200 400 300 STV-946 STV-946 300 400 300 STV-946 STV-946 007 607 333 STV-946 STV-946 007 607 333 STV-946 STA 133 267 203 333 STV-946 133 267 267 203 333 STV-1201 K (CBs-101B) 150 267 267 267 267 267 267 267 267 267 267 267 267 267 267 266 333 334 346 346 346 346 <td>0.00</td> <td>000</td> <td></td> <td>5</td> <td>5</td> <td>35</td>	0.00	000		5	5	35
GU-551-15 GU-56 3.33 SPV-946 0.00 6.67 3.33 SPV-164 0.07 0.67 2.67 2.67 SPV-101 A (CSB-101B 1.50 2.67 2.67 2.67 SPV-101 A (CSB-101B 1.50 2.67 2.67 2.67 2.67 SPV-101 X RUP-36B 1.60 1.60 1.66 3.33 3.33 SPV-101 X RV-301 1.50 2.67 2.67 2.67 2.67 SPV-101 X RV-301 1.50 2.66 2.67 2.66 2.67 SPV-101 X RV-304 1.50 2.66 2.67 2.67 2.67 SPV-101 X RV-301 1.72 1.66 1.66 2.66 2.66 SPV-101 X RV-301 1.72 1.72 2.67 2.66 2.	4.00	133	267	8.0	1010	2.5
STV-946 067 6.00 333 St238 St238 133 2.67 3.33 St238 St238 2.67 3.33 3.33 St238 St238 2.67 3.33 3.33 St238 St7 2.67 2.03 3.33 St471 St7 2.67 2.03 3.33 St71181 x (GB-1018) 1.50 0.67 2.67 2.67 St71201 x St7<-264	000	100	56	3	10.7	202
SY-104 0.00 667 333 SY-204 133 267 333 SS-335 267 267 333 SS-401 SS-401 133 267 267 333 SS-101 XCSB-1018 150 267	20.0	200	33	0.0	5.5	2.67
S2204 153 267 200 IS-238 133 267 267 267 IS-3471 067 267 267 267 IS-371 133 267 267 267 IS-471 133 267 267 267 IS-471 268 130 060 105 SPV-1014 1.50 066 106 060 SPV-1014 1.20 040 160 106 SPV-1014 1.20 040 160 106 SPV-1014 1.20 040 160 106 SPV-1014 1.81 1.20 040 160 SPV-1014 1.81 1.20 040 160 SPV-1014 1.81 1.26 056 166 SPV-1014 1.81 1.26 056 166 166 SPV-1014 1.81 1.26 056 166 166 166 166 166 166	3		104	2.00	9.9	4.00
IS-G33 Zer Zer<	0.0	3.5	000	800	3.33	1.67
RS-Y11 OF7 OF7<	0.00	8.2	006	3.67	7.33	5.50
SIV-1201 A (CSB-101) SIV-1201 A (CSB-101) SIV-1201 A (CSB-101) SIV-1201 X (CSB-101) SIV-1201 X SIV-251-51-51 SIV-1201 X SIV-251-51-51 SIV-1201 X SIV-251-51-51 SIV-1201 X SIV-251-51-51 SIV-1201 X SIV-264 SIV-1201 X SIV-264 SIV-1201 X SIV-2104 SIV-1201 X SIV-2104 SIV-2104 SIV-2201 SIV-220 SIV-2201 SIV-	2	3	0.33	4.00	5.00	4.50
SPV-1201 x Atma-1413 150 2.00 160 1.05 SPV-1201 x Atma-1413 150 2.00 140 160 SPV-1201 x SPV-246 1120 040 160 SPV-1201 x SV-246 1120 040 060 SPV-1201 x SV-246 120 040 040 060 SPV-1201 x SV-246 120 040 040 060 SPV-1201 x SV-246 120 050 045 066 SPV-1201 x SV-246 120 050 050 055 SPV-1201 x SV-246 120 050 100 CSB-1011 x SV-246 230 160 246 CSB-1011 x SV-246 230 160 170 248 Atma-141 x SV-246 100 160 170 Atma-141 x SV-246 106 166 100 166 Atma-141 x SV-246 106 166 100 166 Atma-141 x SV-246 106 166 100 166 170	3.0	0.0	000	3.33	3.33	3.33
SPV-1201 x STT - 263 100 100 SPV-1201 x STT - 263 100 100 100 SPV-1201 x STT - 263 100 0.40 100 SPV-1201 x STT - 263 100 0.20 0.80 SPV-1201 x STV - 964 1.20 0.40 1.45 SPV-1201 x STV - 964 1.20 0.20 0.80 SPV-1201 x STV - 964 1.20 0.20 0.86 SPV-1201 x STV - 104 1.26 0.20 0.86 SPV-1201 x STV - 104 1.26 0.20 1.03 SPV-1201 x STV - 204 1.36 0.26 2.66 CSSB - 1011 x STV - 201 1.26 0.20 1.03 CSSB - 1011 x STV - 301 1.60 1.60 2.60 CSSB - 1011 x STV - 301 1.60 1.60 2.60 CSSB - 1011 x STV - 304 3.20 2.60 1.16 CSSB - 1011 x STV - 304 3.20 2.60 1.60 CSSB - 1011 x STV - 304 3.20 2.60 1.60 CSSB - 1011 x STV - 3.61 3.20 2.6	717	1.46	1.80	1.82	2.01	1.92
BYV-1201 x GV-1201 x GV		000	0.92	1.42	0.55	0.99
SPV-1201x SWV-346 1.00 0.40 0.80 SPV-1201x SWV-346 1.00 0.40 0.80 SPV-1201x SWV-346 1.00 0.40 0.80 SPV-1201x SWV-346 1.00 0.40 0.45 SPV-1201x SWV-346 1.00 0.40 0.46 SPV-1201x SWV-346 1.00 0.40 0.46 SPV-1201x SWV-346 1.26 0.56 2.66 CSS1-001x AK-361 1.26 0.50 1.03 CSS1-001x AK-361 1.26 2.40 1.63 CSS1-001x AK-361 1.26 2.40 1.63 CSS1-001x AK-361 1.26 2.40 1.60 CSS1-001x AFY-361 1.60 1.60 1.60 CSS1-001x AFY-361 1.60 1.60 2.66 CSS1-001x AFY-361 2.20 1.60 2.66 CSS1-001x AFY-361 3.60 1.70 2.48 CSS1-001x AFY-361 3.60 1.70 2.48 CSS1-001x AFY-361 3.60 1.70 2.66	0.00	0.84	3.17	3.65	1.12	2.39
SPY-1201 X, SPY-100 100 0.00 0.00 SPY-1201 X, SPY-100 1.20 0.40 0.60 SPY-1201 X, SY-013 1.20 0.40 0.60 SPY-1201 X, SY-013 1.20 0.40 0.60 SPY-1201 X, SY-013 1.25 0.60 0.85 SPY-1201 X, SY-013 1.26 0.50 0.85 CSS1-0101 X, SK-701 1.26 0.60 0.85 CSS1-0101 X, SY-701 1.56 0.60 1.03 CSS1-0101 X, SY-701 1.60 2.40 2.90 CSS1-0101 X, SY-701 3.40 2.40 2.90 CSS1-0101 X, SY-704 3.30 3.70 2.40 2.90 CSS1-0101 X, SY-704 3.30 3.70 2.40 2.90 CSS1-0101 X, SY-704 3.30 3.76 2.70 1.16 CSS1-0101 X, SY-704 3.30 2.40 2.90 2.60 CSS1-0101 X, SY-704 3.30 2.40 2.60 1.60 CSS1-0101 X, SY-704 3.30 2.60 1.60 <td>6.50</td> <td>3.26</td> <td>4.88</td> <td>3.85</td> <td>1.83</td> <td>2.84</td>	6.50	3.26	4.88	3.85	1.83	2.84
Severation is severation 2.30 0.40 1.45 Severation is severation 3.36 1.96 0.66 1.45 Severation is severation 3.36 1.96 0.66 0.66 0.66 Severation is severation 3.36 1.96 0.66	5.20	2.40	3.80	3.10	1.30	2.20
SYV-1201 K S-473 1.20 0.50 0.85 SYV-1201 K S-473 3.50 0.50 0.85 SYV-1201 K S-473 3.50 0.50 0.65 SYV-1201 K S-473 3.50 0.50 0.50 SYV-1201 K S-473 3.50 0.50 0.50 SSV-1201 K S-473 3.60 0.50 0.50 CSSI-0101 X SFV-261 1.56 0.50 1.63 CSSI-0101 X SFV-361 3.40 2.40 2.50 CSSI-0101 X SFV-361 3.60 1.60 1.60 CSSI-0101 X SFV-361 3.20 1.60 2.60 CSSI-0101 X SFV-363 3.20 1.60 2.60 CSSI-0101 X SFV-303 3.86 1.10 2.48 CSSI-0101 X SFV-303 2.50 1.50 1.70 CSSI-0101 X SFV-304 3.88 1.10 2.48 <td>3.00</td> <td>2.66</td> <td>283</td> <td>2.75</td> <td>1.53</td> <td>2.14</td>	3.00	2.66	283	2.75	1.53	2.14
SWY-1201 KB-971 1.56 1.56 2.66 SWY-1201 KB-971 1.56 1.56 2.66 ICSB-1011 X MART AN 1.56 0.50 1.63 ICSB-1011 X MART AN 1.26 2.60 1.63 ICSB-1011 X SWT AN 1.26 2.00 1.63 ICSB-1011 X SWY-346 2.00 1.63 2.00 ICSB-1011 X SWY-346 2.00 1.60 2.00 ICSB-1011 X SWY-346 2.00 1.60 2.00 ICSB-1011 X SWY-346 3.80 3.70 2.16 2.68 ICSB-1011 X SWY-346 3.80 3.70 2.16 2.68 ICSB-1011 X SWY-346 3.80 3.76 2.76 2.78 ICSB-1011 X SWY-104 3.80 3.76 2.76 2.78 ICSB-1011 X SWY-104 3.80 1.10 2.48 2.76 2.78 ICSB-1011 X SWY-104 3.80 1.00 2.00 1.70 2.48 ICSB-1011 X SWY-104 3.80 1.00 2.70 1.70 ICSB	2.96	2.00	248	2.08	1.25	1.67
crss:::::::::::::::::::::::::::::::::::	6.00	2.00	4.00	4.68	1.98	3.33
CCB1 COB1 CCB1 CCB1 <td< td=""><td>4.00</td><td>3.50</td><td>3.75</td><td>2.78</td><td>2.00</td><td>2.39</td></td<>	4.00	3.50	3.75	2.78	2.00	2.39
CCBS-101BX 5871-551 340 240 250 CCBS-101BX 5871-551 150 240 150 150 150 150 150 150 150 150 150 15	1.66	1.66	1.66	1.46	1.83	1.65
Construction of the second sec	2.34	0.34	1.34	2.87	1.37	2.12
Cost 1018 SPV - 946 220 1018 SPV -	3.00	2.00	250	2.30	1.80	2 05
Costanti Array - 104 - 2020 -	3.50	9. 9	225	2.85	1.40	2.13
Cost I I I I I I I I I I I I I I I I I I I	1.50	0.0	0.75	2.65	1.85	2.25
CCBS-101B.415-4471 366 110 2.48 Active - MB & SRT - 268 310 2.48 Active - MB & SRT - 268 220 170 2.48 Active - MB & SRT - 268 220 150 120 Active - MB & SRT - 308 160 130 Active - MB & SRT - 308 150 130	3.10	2.26	268	3.15	221	2.68
Mina MB & SRT 268 710 248 Mina MB & SRT 268 200 120 248 Mina MB & SRT 268 200 120 170 Mina MB & SRT 268 200 160 120 Mina MB & SRT 268 0.80 160 120 Mina MB & SRV 946 0.80 160 120 Mina MB & SRV 0.80 160 120 160 Mina MB & SRV 100 160 120 120 Mina MB & SRV 100 160 130 160 Mina MB & SRV 100 160 130 171	1.76	4.26	3.01	1.71	2.48	2.10
Addina - 10 B & SM (- 20) - 2.20 - 1.20 - 1.70 - Addina - 10 B & SM (- 20) - 1.70 - Addina - 10 B & SW (- 20) - 1.70 - Addina - 10 B & SW (- 20) - 0.80 - 160 - 120 - 13	4.16	4.00	4.08	4.01	2.55	3.28
Akima - 14 12 KG-3515-15 0.280 1.60 1.20 Akima - 14 12 Kg-979 - 946 0.280 0.40 0.60 Akima - 14 13 Kg-97 - 140 1.60 1.60 1.30 Akima - 14 B. Kg - 7284 1.66 1.30 Akima - 14 B. Kg - 7284 1.66 1.71	8.	0.00	0.50	1.60	0.60	110
4 0.80 0.40 0.60 4 1.00 1.60 1.30 1.56 1.86 1.71	1.50	0.34	0.92	1 15	197	1.06
4 1.00 1.60 1.30 1.56 1.86 1.71	6.50	1.50	4.00	3.65	0.95	02.0
1.56 1.86 1.71	2.50	2.50	250	1 75	202	89
	5.00	3.00	400	3.78	2.43	2.00
2.34 1.67	6.00	5.50	5.75	3.50	66.6	371
M AKINM - 14 B x IS - 5471 1.00 1.50 1.25	3.00	4.50	3.75	2 00	300	250

.

VIII - 30

	47			

	47 . Contd									
1	2	3	4	5	6	7	8	9	10	11
5	SRT- 26B x GJ-35-15-15	3.60	2.60	3.10	3.00	2.00	2.50	3.30	2.30	2.80
5	SRT - 26B x SPV - 946	1.10	1.50	1.30	6.10	1.40	3.75	3.60	1.45	2.53
7	SRT - 26B x SPV -104	1.20	1.20	1.20	3.00	1.50	2.25	2.10	1.35	1.73
8	SRT - 26B x IS - 2284	0.60	1.00	0.80	5.00	0.50	2.75	2.80	0.75	1.78
9	SRT - 26B x IS - 6335	1.80	2.20	2.00	4.00	1.00	2.50	2.90	1.60	2.25
0	SRT - 26B x IS - 9471	2.40	2.20	2.30	3.50	1.00	2.25	2.95	1.60	2.28
1	GJ-35-15-15 x SPV - 946	0.34	0.34	0.34	1.50	1.00	1.25	0.92	0.67	0.80
2	GJ-35-15-15 x SPV- 104	2.86	1.96	2.41	1.00	1.50	1.25	1.93	1.73	1.B3
3	GJ-35-15-15 x IS - 2284	4.46	2.14	3.30	8.00	3.00	5.50	6.23	2.57	4.40
4	GJ-35-15-15 x IS - 6335	2.20	0.20	1.20	5.00	3.00	4.00	3.60	1.60	2.60
5	GJ-35-15-15 x IS - 9471	2.92	2.80	2.86	4.76	1.00	2.88	3.84	1.90	2.87
6	SPV - 946 x SPV- 104	2.20	1.40	1.80	5.00	3.00	4.00	3.60	2.20	2.90
7	SPV - 946 x IS - 2284	4.40	2.20	3.30	4.00	2.50	3.25	4.20	2.35	3.28
8	SPV - 946 x IS- 6335	3.42	2.16	2.79	2.66	1.34	2.00	3.04	1.75	2.40
9	SPV - 946 x IS 9471	3.76	3.00	3.38	4.80	1.60	3.20	4.28	2.30	3.29
0	SPV - 104 x IS 2284	2.30	2.40	2.35	3.66	1.00	2.33	2.98	1.70	2.34
1	SPV - 104 x IS 6335	3.70	5.10	4.40	5.00	1.50	3.25	4.35	3.30	3.83
2	SPV - 104 x IS 9471	4.60	2.86	3.73	4.50	1.00	2.75	4.55	1.93	3.24
3	IS 2284 x IS-6335	6.04	3.52	4.78	4.00	3.00	3.50	5.02	3.26	4.14
4	IS 2284 x IS -9471	3.74	0.92	2.33	4.50	0.50	2.50	4.12	0.71	2.42
5	IS 6335 x IS 9471	5.34	4.10	4.72	5.34	2.34	3.84	5.34	3.22	4.28
	Mean	2.29	2 18	2.24	3.72	2.40	306	2.91	2.29	2.60
	% increase (+)/decrease(-) over untreated			(-)4.80			(-)35.48			(-)21.30
	% increase over location						36.60 (Akola)			
		SE (m)	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
	Λ	0.148	0.409		0.205	0.569		0.216	0.598	
	В	0.775	2.147		1.076	2.983		1.133	3,139	
	AxB	1.095	3.036		1.522	4.220		1.602	4,441	

1 SPV-1201 2 1CSB-101B 3 Atms-14B 4 SRT-26B 6 GPV-3515-15 6 SPV-36B 7 SPV-104						Lauruciu		2	Pooled over locations	
1 SPV-1201 2 ICSB-101 3 Akme-141 5 GJ-35-15 6 SPV-946 7 SPV-946		Untreated	l'realed	Mean	Untreated	Treated	Mcan	Untreated	Treated	Mean
1 SPV-1201 2 ICSB-101 3 Akms-141 4 SRT-26B 5 GJ-35-15- 6 SPV-946 7 SPV-104	7	3	4	5	9	7	8	6	01	=
2 ICSD-101 3 ALms-141 4 SRT-268 5 GJ-35-15- 6 SPV-946 7 SPV-104		45.33	45.36	45.35	18.67	15.33	17 00	32.00	30.35	31.17
A AKINE-14L 4 SRT-26B 5 GJ-35-15- 6 SPV-946 7 SPV-104	æ.,	45.33	39.32	42.33	14.00	11.33	12.67	29.67	25.33	27.50
4 SRT-26B 5 GJ-35-15- 6 SPV-946 7 SPV-104	-	24.67	37.36	31.01	2.67	2.00	233	13.67	10.68	14 67
5 GJ-35-15- 6 SPV-946 7 SPV-104		48.67	34.00	41.33	6.00	6.00	600	27.33	2000	73.67
6 SPV-946	-15	49.33	30.68	40.01	4.67	4.00	433	22.00	17.24	2.55 5.55
7 SPV-104		51.33	28.68	40.01	8.67	10.67	9.67	8.02		1000
		28.67	16.68	22.67	2.67	000	57	2.3 14	10.0	58
8 IS-2284		43.33	30.68	37.01	18.00	18.00	80	20.67	502	
9 IS-6335		22.00	14.00	18.00	17.33	12.67	1500	10.67	5 C	00.12
10 IS-9471		20.00	16.68	18.34	23.33	14.67	0.01	19.62	3.5	
••	SPV-1201 x ICSB-101B	40.76	29.10	34,93	25.80	20.02	78.75	10.12	10.01	19.51
	SPV-1201 x Akms-14 B	31.16	34.30	32.73	14 00	24.16			70.67	
•••	SPV-1201 x SRT - 26B	34.90	30.00	32.45	20.16	23.84	800	89	3.5	
	SPV-1201 x GJ-35-15-15	51.76	35.60	43.68	26.00	24.50	25.25	20.07 88.82	30.02	21.12
15 SPV-1201	SPV-1201 x SPV -946	39.10	35.06	37.08	21.40	23 M	22.20	8.00	3.8	5
••	SPV-1201 x SPV- 104	37.26	33.66	35.46	16.34	25.00	2067		3.52	50.57 50.57
	SPV-1201 x IS -2284	39.90	34.46	37.18	29.26	21.50	25.38	24.54	3.5	10.02
	SPV-1201 x IS-6335	32.16	27.06	29.61	30.50	25.26	27,88	31.33	24 92 24 16	24.80
	SPV-1201 x IS - 9471	36.50	35.60	36.05	20.50	16.00	18.25	28.50	25.80	24.15
-	CSB - 101B X AKms 14 B	46.16	40.84	43.50	25.34	18.84	22.09	35.75	29.84	32.80
	CSB - 1018 X SK1 - 26 B	51.00	37.20	44.10	16.84	14.24	15.54	33.92	25.72	29.82
	Call - 101B X (4-3)-13-13	43.40	29.20	36.30	32.26	27.26	29.76	37,83	28.23	33.03
		40.40	33.60	37.00	20.50	18.50	19.50	30.45	26.05	28.25
		09.9£	36.40	36.50	8.50	10.50	9.50	22.55	23.45	23.00
• •		8,8	N. 15	32.73	21.76	20.66	21.21	28.01	25.93	26.97
		00'10 91 01	0.75	44.55	92.91	18.76	17.51	33.78	28.06	30.92
	Wmm M D v CDT 200	0.04	20.70	8	5.0	45.CL	15.84	28.25	23.85	26.05
	AKmm - 14 B × GL35-15-15		20.00	09.6C	3.50	4.50	4.00	23.55	20.05	21.80
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31.00	41.20	20.00	25.00	22.50	32.40	31.30	31.85
		42.60	36.20	39.40	18.00	15.00	16.50	30.30	25.60	27.95
•		N C	25.16	25.23	8.50	8.50	8.50	16.90	16.83	16.87
	AKIM8 - 14 B X IS - 228-1	32.36	27.66	30.01	18.00	16.00	17.00	25.18	21.83	23.51
	Akms - 14 B X IS - 6333	36.50	21.16	28.83	18.00	18.50	18.25	27.25	19.83	23.54
1	Akma - 14 B X IS - 94/1	32.70	20.40	26.55	20.00	21.00	20.50	26.35	20.70	23.53

1E - 111V

=	24.85	34.82	27.40	28.78	29.65	28.17	26.73	24.22	3120	25.04	23.74	25.48	28.61	26.30	20.99	24.33	20.03	2 2991		17.73	15.50	75.47	(-)13.81					
10	23.80	30.98	25.55	25.83	26.77	25,50	24.63	18.35	29.80	22.65	23.40	26.10	28.90	24.63	20.48	22.38	19.70	16.48	14.63	17.71	13.67	73 58				CD 5%	1.457	2 627
6	25.90	38.65	29.25	31.73	32.53	30.83	28.82	30.08	32.60	27.43	24.08	24.85	28.32	27.96	21.50	26.28	20.35	16.76	16.80	17.75	17 33	27 JE	ì			SE (m)	0.500	3710
æ	18.00	22.60	17.00	21.75	18.63	24.83	22.93	10.50	29.00	21.25	19.88	14.75	26.42	19.83	18.90	18.25	17.50	15.25	13.50	17.75	15.83	17 77	(-)2.44					
7	18.00	20.10	16.50	19.50	17.00	24.00	23.52	12.00	32.00	19.50	21.00	18.00	28.00	21.00	18.60	17.50	18.00	15.50	13.00	18.50	14.00	17.55				CD 5%	1.666 8.736	12.354
9	18.00	25.10	17.50	24.00	20.26	25.66	22.34	9.00	26.00	23.00	18.76	11.50	24.84	18.66	19.20	19.00	17.00	15.00	14.00	17.00	17.66	17 99				SE (m)	3 157	4.457
\$	31.70	47.03	37.80	35.81	40.67	31.50	30.52	37.93	33.40	28.83	27.60	36.20	30.80	32.76	23.08	30.41	22.56	17.99	17.93	17.71	15.17	33 17	(-)19.36		46.43 Patancheru			
4	29.60	41.86	34.60	32.16	36.54	27.00	25.74	24.70	27.60	25.80	25.80	34.20	29.80	28.26	22.36	27.26	21.40	17.46	16.26	16.92	13.34	29 61			_		3.028 15.890	22.458
	33.80	52.20	41.00	39.46	44.80	36.00	35.30	51.16	39.20	31.86	29.40	38.20	31.80	37.26	23.80	33.56	23.70	18.52	19.60	18.50	17.00	36.72				SE (m)	260.1	8.102
2	SRT- 2613 x GJ-35-1 5-15	SRT - 26B x SPV - 946	SRT - 26B x SPV -104	SRT - 26B x IS - 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x [S- 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 x IS-6335	IS 2284 x IS -9471	IS 6335 x IS 9471	Mean	% increase (+)/decrease(-)	over untreated	% increase over location		< 2	AXB
- :	ŝ	36	37	88	ŝ	40	4	42	43	4	45	46	47	48	49	8	2	8	3	X	8							

			AKOIa			Patanchen		Pool	Pooled over locations	
		Untreated	Treated	Mcan	Untreated	Treated	Mean	Untroated	Treated	Mean
	2		4	S	6	7	8	6	10	=
	SPV-1201	20.00	18.67	19.33	2.00	0.67	1.33	11.00	9.67	10.33
	ICSB-101B	13.33	12.67	13.00	00.0	2.67	133	6.67	7.67	717
_	Akms-14B	4.67	8.00	6.33	00.0	0000	000	233	0.4	- - -
_	SRT-26B	15.33	16.67	16.00	0.67	000	033	008	528	817
	GJ-35-15-15	20.00	14.67	17.33	000	000		80	22	2.20
	SPV-946	23.33	14.00	18.67	2.00	000	86	12.55	32	200
	SPV-104	12.67	7.33	10.00	133	000	067	2	20.0	3.5
-	IS-2294	24.67	10.01	17.33	4 00	533	467	9. 1	10.0	25
	IS-6335	20.00	6.67	13.33	6.00	4.67	533	385	567	3.5
2	IS-9471	19.33	6.00	12.67	4.67	4.00	4.33	12.00	500	89
=	SPV-1201 x ICSB-101B	16.70	16.00	16.35	12.46	19,60	16.03	14.58	17 80	16.10
2	SPV-1201 x Alms-14 B	15.60	21.30	18.45	5.34	7.84	6.59	10.47	14 57	17.57
5	SPV-1201 x SRT - 26B	20.10	14.60	17.35	9.32	10.00	996	14.71	12.30	13.51
2	SPV-1201 x GJ-35-15-15	15.90	13.76	14.83	6.26	11.50	8,88	11.08	12.63	11.86
<u>م</u>	3PV-1201 x 5PV -946	17.86	14.10	15.98	10,10	11.20	10.65	13.98	12.65	13.32
2	SPV-1201 x SPV- 104	17.00	17.96	17.48	6.00	6.64	6.32	11.50	12.30	11.90
5	SPV-1201 x IS -2284	16.56	16.30	16.43	17.76	11.50	14.63	17.16	13.90	15.53
	SPV-1201 x 13-6335	16.36	16.30	16.33	10.26	12.76	11.51	13.31	14.53	13.92
2	SPV-1201 x IS - 9471	16.20	18.10	17.15	10.00	8.50	9.25	13.10	13.30	13.20
ន	ICSB - 101B x AKms 14 B	12.26	18.50	15.38	7.34	9.34	8.34	0 80	13.92	11.86
12	ICSB - 101B x SRT- 26 B	26.60	16.40	21.50	6.00	12.66	9.33	16.30	14.53	15.42
	ICSB - 101B x 01-35-15-15	16.80	19.40	18.10	14.00	12.50	13.25	15.40	15.95	15.68
F1 :	ICSB - 101B x SPV - 946	11.80	19.40	15.50	13.00	13.76	13.38	12.30	16.58	14.44
5	ICSB - 101B x SPV - 104	18.50	16.40	17.45	200	7.00	4.50	10.25	11.70	10.98
n :	ICSB - 101B x IS - 2284	18.90	20.50	19.70	10.76	8.34	9.55	14.83	14.42	14.63
81	ICSB - 101B x IS - 6335	14.96	15.60	15.28	14.26	8.00	11.13	14.61	11.80	13.21
2	ICSB - 101B X IS - 3471	14.40	12.26	13.33	11.66	10.00	10.83	13.03	11.13	12.08
83	AKms - 14 B x SRT - 26B	9.80	16.60	13.20	0.50	0.50	0.50	5.15	8.55	6.85
R	AKms - 14 B x GJ-35-15-15	9.80	16.20	13.00	3.00	7.66	5.33	6.40	11.93	9.17
8	AKms -14 B x SPV - 946	10.80	15.80	13.30	5.00	6.00	5.50	2.90	10.90	9.40
ā	AKms - 14 B x SPV - 104	7.86	15.16	11.51	1.00	5.00	3.00	4.43	10.08	7.26
R	AKm8 - 14 B x IS - 2284	20.10	14.46	17.28	00 .6	11.00	10.00	14.55	12.73	13.64
8	AKma - 14 B x 1S - 6335	25.16	14.00	19.58	7.50	7.00	7.25	16.33	10.50	13.42
5	AKnus - 14 B x 15 - 9471	17.90	13.50	15 70	13.50	800	10.75	15,70	10.75	12.22

49 . Contd		and the second se	the second se							
~	r	Ì		s	9	7	8	6	10	
ŝ	14.40		15.40	14.90	12.00	9.50	10.75	13.20	12.45	12.83
15.50	•••		21.40	18.45	13.50	11.46	12.48	14.50	16.43	15.47
13.40		¥	3.20	13.30	5.00	6.00	5.50	9.20	9.60	9.40
		14	ß	16.83	9.00	7.50	8.25	14.08	11.00	12.54
15.54		÷	6.74	16.14	12.76	<u>90</u> 6	10.88	14.15	12.87	13.51
16.40		=	8.	17.20	6.84	9.66	8.25	11.62	13.83	12.73
6 17.02		₽	8	15.41	12.66	10.52	11.59	14.84	12.16	13.50
13.86		15	R	14.58	1.50	4.00	2.75	7.68	9.65	8.67
		12	5	10.77	16.00	8.00	12.00	12.50	10.27	11.39
14.06		16.	8	15.43	9.84	12.60	11.22	11.95	14.70	13.33
71 12.54		ţ;	8	12.80	8.76	7.76	8.26	10.65	10.41	10.53
10.80		5	8	13.20	5.50	8.50	7.00	8.15	12.05	10.10
22.40		12	8	17.50	10.00	13.60	11.80	16.20	13.10	14.65
5 17.76		₽	ŝ	14.13	21.34	10.00	15.67	19.55	10.25	14.90
06.6		5	92	11.33	11.60	9.20	10,40	10.75	10.98	10.87
9.20		£.	8	11.58	9.16	5.50	7.33	9.18	9.73	9.46
5 10.46		Ξ	8	11.06	00.6	8.00	8.50	9.73	9.83	9.78
71 9.66		ை	8	9.73	11.50	7.50	9.50	10.58	8.65	
11.86		æ	8	9.94	12.00	7.00	9.50	11.93	7.51	52 226
11.40		₽	09.01	11.00	14.50	8.00	11.25	12.95	0:30	
		8	8	9.17	10.00	8.66	9.33	10.17	8.33	9.25
Mean 15.37 14		14	14.39	14.88	8.17	7.74	2.96	11 77	10.07	10.07
% increase (+)/decrease(-)				(-)6.37			(-)4.91			(-)14 44
over untreated										
% increase over location				46.50						
				Patancheru		100				
.,	<u> </u>	5 F			сца) Сцар Сцар Сцар Сцар Сцар Сцар Сцар Сцар	CD 5%		SE (m)	CD 5%	
010.0			35		0.420	5/1/1		0.326	0.950	
12 3.231 0.3 A 11 A 560 126		α α α	8 8		2230	6,182		1.714	5.003	
P. 200		2.21	ç		51.7	8./4.5		2.424	7.053	

			VIOR			Patancheru		Poc	Pooled over locations	
		Untreated	Treated	Mean	Untrealed	Treated	Mean	Untreated	Treated	Magn
	2	۳	4	5	9	4	*	6	10	1
	1021-742	4.00	3.00	3.50	4.00	4.00	4.00	4 00	350	376
~~~~~~	CSB-101B	4.00	3.00	3.50	4.00	4.00	400	0.4	250	
	Alcme-14B	5.00	3.50	4.25	4.33	3.00	367	467	20.0	
	SRT-26B	3.83	3.00	3.42	4.00	3.50	376	50.0	20.0	
	31-35-15-15	3.50	3.00	3.25	333	350	200		22.0	8.5
5 m s	SPV-946	3.83	2.50	3.17	000	250				2.0
21 z	5PV-104	4.50	3.50	4.00	333	333		2	3	17.5
2	S-2284	2.00	9	150	8	88	84	78.0	1	3.07
4	S-6335	8	8	5	88	88	3	8	2.5	2
21 9	5-9471	1.00	100	10	1	8	<u>8</u>	33	3	3
2	IPV-1201 x ICSB-101B	3.20	3.00	3.10	345	3 5	36	3.5	32	8.8
55	3PV-1201 x Akms-14 B	3.70	3.40	3.55	350	300	5.5	200	0.0	
9 10	SPV-1201 x SRT - 26B	3.60	3.10	3.35	340	02.0	10		800	38
S S	2PV-1201 x GJ-35-15-15	3.73	3.13	3.43	3.50	3.13	2.5	0.00	85	22
2 2	3PV-1201 x SPV-946	3.05	2.70	2.68	3 70	320	3.45		2 40	
20	2PV-1201 x SPV- 104	3.75	3.10	3.43	4.00	267	333			200
2	3PV-1201 x IS -2284	3.10	2.58	2.84	3.13	300	906	115	32	8
29 i	8PV-1201 x IS-6335	3.10	2.88	2.99	3.19	2.50	2.85	315	990	88
2 2	1742-1201 x 13-9471	2.98	2.73	2.85	3.75	2.50	3.13	3.36	52	18
-	CSB - 101B X AKms 14 B	3.75	3.00	3.38	3.75	3.42	3.58	3.75	100	846
2 : 3 1	CSB - 101B x SRT- 26 B	3.65	2.90	3.28	3.84	3.00	3.42	374	205	
× .	CSB - 101B x GJ-35-15-15	3.65	3.00	3.33	3.50	3.07	3.28	3.58	303	8.6
~ .	CSB - 101B x SPV - 946	3.65	3.20	3.43	3.50	3.25	3.38	3,58	323	3.40
	CSB - 101B x SPV - 104	3.40	3.10	3.25	3.75	3.00	3.38	3.58	305	333
= :	CSB - 101B x IS - 2284	3.05	2.85	2.95	2.96	2.63	279	3.01	2.74	2.87
= 2	CSB - 101B X IS - 6335	8.9	2.98	3.01	3.07	2.69	2.88	3.06	2.83	2.95
		0.5	2.08	2.54	3.25	3.25	3.25	3.13	2.66	2.89
		3.65	00.0	3.33	3.13	3.50	3.31	3.39	3.25	3.32
	CI-CI-CS-ID X B FI - BUN	3.75	3.00	3.38	3.84	3.34	3.59	3.79	3.17	3.49
< • 8 7		4.0	3.30	3.65	3.75	3.50	3.63	3.86	3.40	3.64
•	AKING - 14 B X SPV - 104	4.00	3.40	3.70	3.88	3.75	3.81	3.94	358	3.76
د به م	AKIMB - 14 B x IS - 2284	2.78	2.30	2.54	3.00	3.00	3.00	2.89	2.65	2110
ৰ ন :	AKma - 14 U x IS - 6335	2.34	2.17	2.25	3.13	2.75	294	2.73	2.46	2.59
5	AKms - 14 B X IS - 9471	2.70	2.40	2.55	3.75	3.25	3.50	3.23	2.83	3.03

Table 50 Contd.

¥ 111 - 20

1	2	3	4	5	6	7	8	9	10	11
5	SRT- 26B x GJ-35-15-15	3.30	2.80	3.05	3.50	3.10	3.30	3.40	2.95	3.10
6	SRT - 26B x SPV - 946	3.70	2.90	3.30	3.50	2.85	3.18	3.60	2.88	324
7	SRT - 26B x SPV -104	4.00	3.40	3.70	3.88	3.25	3.56	3.94	3.33	3.63
8	SRT - 26B x IS - 2284	3.23	2.58	2.90	3.50	2.38	2.94	3.36	2.48	2.9
9	SRT - 26B x IS - 6335	3.60	2.80	3.20	2.94	2.50	2.72	3.27	2.65	2.96
0	SRT - 26B x IS - 9471	3.00	2.60	2.80	3.25	2.92	3.08	3.13	2.76	2.94
1	GJ-35-15-15 x SPV - 946	3.55	2.92	3.23	4.00	3.23	3.62	3.78	3.07	3.4
2	GJ-35-15-15 x SPV- 104	3.80	3.35	3.58	4.00	3.00	3.50	3.90	3.18	3.5
3	GJ-35-15-15 x IS - 2284	3.38	2.74	3.06	3.50	2.50	3.00	3.44	2.62	3.0
4	GJ-35-15-15 x IS - 6335	2.67	2.40	2.53	3.38	3.05	3.21	3.02	2.73	2.8
5	GJ-35-15-15 x IS - 9471	3.19	2.54	2.86	3.00	2.55	2.78	3.09	2.54	2.8
6	SPV - 946 x SPV- 104	3.80	3.60	3.70	3.63	2.75	3.19	3.71	3.18	3.4
7	SPV - 946 x IS - 2284	3.50	2.70	3.10	3.88	3.15	3.51	3.69	2.93	3.3
8	SPV - 946 x IS- 6335	2.92	2.34	2.63	2.75	3.00	2.88	2.83	2.67	2.7
9	SPV - 946 x IS 9471	2.94	2.30	2.62	3.20	3.00	3,10	3.07	2.65	2.8
50	SPV - 104 x IS 2284	3.87	3.07	3.47	3.84	2.75	3.29	3.85	2.91	3.3
51	SPV - 104 x IS 6335	3.90	3.03	3.46	3.50	3.00	3.25	3.70	3.01	3.3
52	SPV - 104 x IS 9471	3.79	2.97	3.38	2.75	2.75	2.75	3.27	2.86	3.0
53	IS 2284 x IS-6335	2.70	1.88	2.29	3.25	3.25	3.25	2.98	2.56	2.7
54	IS 2284 x IS -9471	2.44	1.75	2.10	2.75	2.50	2.63	2.60	2.13	2.3
55	IS 6335 x IS 9471	2.69	2.13	2.41	1.84	1.67	1.75	2.26	1.90	2.0
	Mean	3.33	2.74	3.03	3.32	2.95	3.14	3.33	2.85	3.0
	% increase (+)/decrease(-)			(-)17.71			(-)11.14	0.00	2.00	(-)14.4
	over untreated						()			(-)
	% increase over location						3.63 (Akola)			
		SE (m)	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
	А	0.041	0.113		0.047	0.131		0.052	0.151	
	в	0.214	0.595		0.248	0.688		0.275	0.800	
	AxB	0.304	0.841		0.351	0.972		0.388	1.128	

S.N. Parchis	Parents/Crosses	S.N. Parcnis/Crosses Akola Paranchen Pooled over iccuire	Akola			Putancheru		Pool	Pooled over locations	
		Untreated	Treated	Mean	Untreated	Treated	Mcan	Untreated	Trented	Mean
	2	•	4	s	6	4	8	0	10	=
SPV-1201		22.00	24.00	23.00	48.00	20:05	49.33	35.00	37.33	36.17
ICSB-101B		23.33	20.00	21.67	71.33	64.67	68.00	47.33	EF C1	44.83
Akms-14B		46.00	31.33	38.67	94.67	96.00	95.33	20.25	2929	38
SRT-26B		13.33	14.67	14.00	82.00	78.00	0008	47.67	10.00 AR 33	88
01-35-15-15		18.67	22.67	20.67	E B	75.33	3	5.5	2	7
SPV-946		12 67	18.67	15.67	35	30	58	3.5	312	11.10
SPV-104		19 62	200	5.5	3 2	10.00	3	8.6	43.67	44.33
Part PI		10.00	47.A	55.0 <del>4</del>	3.2	8.95	93.67	62 <b>:</b> 8	8 <u>0</u> .69	67.00
1077-01		0.0	200	8.00	18.00	33.33	25.67	12.33	21.33	16.83
12-030		6.67	6.67	6.67	16.67	22.00	19.33	11.67	14.33	13.00
1/4/5		6.67	6.00	6.33	23.33	28.67	26.00	15.00	17.33	16.17
	SB-101B	13.00	8.60	10.80	19.80	20.60	20.20	16.40	14 60	15.51
	kma-14 B	25.60	20.60	23.10	54.34	48.74	51.54	39.97	24.67	22.22
13 SPV-1201 x SRT - 26B	RT - 26B	13.20	12.60	12.90	31.34	27.50	29.42	2021	2000	5 7 7 7
•.	1-35-15-15	15.60	15.20	15.40	25.74	28.50	4 12	20.67	21.65	
•.	PV -946	16.80	14.00	15.40	36.10	30.50	33.30		22	
	PV- 104	20.80	18.60	19.70	46.66	41.40	44.03	22	000	31.87
•••	1-2284	14.60	<b>09</b> .6	12.10	21.50	15,50	18.50	18.05	13.55	2.4
.,	F6335	10.40	7.80	9.10	24.74	15,50	20.12	17.57	11 65	146
0	- 2471	12.20	11.00	11.60	40.50	32.50	36.50	20.92	2.12	040
20 ICSB - 101B x AKms 14 B	AKms 14 B	25.66	20.00	22.83	41.66	39.16	40.41	33.66	20.58	315
× .	SRT-26 B	15.00	10.40	12.70	40.84	35.34	38.09	27.92	22.87	25.40
× .	01-35-15-15	16.20	10.60	13.40	24.26	22.26	23.26	20.23	16.43	18.33
=	SPV - 946	25.00	21.20	23.10	34.26	27.24	30.75	29.63	24.22	26.03
<b>×</b>	SPV - 104	19.20	15.20	17.20	70.00	68.00	00.69	44.60	4160	43 10
-	IS-2284	13.80	8.40	11.10	30.16	22.58	26.37	21.98	15.49	18.74
~ .	IS - 6335	12.20	7.80	10.00	20.74	17.50	19.12	16.47	12.66	14.56
-	IS - 9471	10.00	6.20	8.10	31.00	25.50	28.25	20.50	15.86	18.18
•	c SRT - 26D	25.00	18.40	21.70	81.50	77.50	79.50	53.25	47.96	50.6
`	uKma - 14 B x GJ-35-15-15	28.00	19.20	23.60	45.50	41.34	43.42	36.75	30.27	33.61
<	SPV - 946	30.40	22.20	26.30	60.50	62.00	61.25	45.45	42.10	43.78
•	t SPV - 104	48.00	39.44	43.72	69.50	<u>66.00</u>	67.75	58.75	22.72	55.74
32 AKma - 14 B x IS - 2284	( IS - 2284	16.40	11.80	14.10	30.50	26.00	28.25	23.45	18.90	21.15
`	c IS - 6335	12.40	7.60	10.00	27.00	24.00	25.50	02.61	15.80	17 75
AKnus - 14 B x IS - 947	( IS - 9471	14.60	11.20	12.90	39.50	31.00	35.25	27.05	21 10	24.08
					20122	~~~~	22.20	21.12	21.10	

		DEKE	3 8		2 2	3 7	5	9 4	5	1065	8	15	. 2	8	15	18	8	5		56 33	. 4	328	88
	=		3 2	3 7	3 \$	2	5 8	3 8	99	2	8	22	1 12	88	3 9	3 י	18	12	3 2	; 8	) «	τ τ	2802 (-)1250
	10	24.75	16.40	90 92	13.30	14.57	16.70	26.92	44.90	9.20	16.05	23.33	31.00	17.65	8.43	19.87	23.20	31.20	28.26	17.37	693	10.36	26.13 26.13 1.338 7.069
	6	28.00	24 12	41.55	18.35	21 70	23.50	29.90	48.05	12.10	20.38	28.25	36.05	22.92	10.67	24.90	30.77	35.70	34.80	20.50	9.95	16.20	29.87 SE (m) 0.460 2.418
	×	35.75	25.62	47.25	18.25	18.87	25.00	32.42	64.75	8.50	23.93	25.95	40.25	23.47	10.50	30,30	29.67	39.25	31.75	30.00	9.25	18.33	38.15 (-)9.51 113.60 (Akola)
	L	33.50	21.40	45,00	16.00	15.74	21.00	30.84	62.00	8.00	21.70	23.40	37.00	20.10	9.66	27.80	24.00	36.50	28.50	29.00	8.00	14.66	36.24 CD 5% 3.081 16.157 27 8:67
	9	38.00	29.84	49.50	20.50	22.00	29.00	34.00	67.50	9.00	26.16	28.50	43.50	26.84	11.34	32.80	35.34	42.00	35.00	31.00	10.50	22.00	40.05 SE (m) 1.112 5.829 8.243
9C - 111A	\$	17.40	14.90	30.30	13.40	17.40	15.20	24.40	28.20	12.80	12.50	25.63	26.80	17.10	8.60	14.42	24.30	27.65	31.30	7.87	7.63	8.23	17.86 (-)18.63
	4	15.00	11.40	27.00	10.60	13.40	12.40	23.00	27.80	10.40	10.40	23.26	25.00	15.20	7.20	11.84	22.40	25.90	28.00	5.74	5.86	6.06	16.02 CD 5% 2.301 12.067
	3	19.80	18.40	33.60	16.20	21.40	18.00	25.80	28.60	15.20	14.60	28.00	28.60	19.00	10.00	17.00	26.20	29.40	34.60	10.00	9.40	10.40	19.69 SE (m) 0.830 3.156
51 . Contd.	2	SRT- 26B x GJ-35-15-15	SRT - 26B x SPV - 946	SRT - 26B x SPV -104	SRT - 26B × IS – 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x IS- 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 x IS-6335	IS 2284 x IS -9471	IS 6335 x IS 9471	Mean % increase (+)/decrease(-) over untraated % increase over location A A R
Table	-	ŝ	*	5	R	ጽ	4	41	4	đ.	4	\$	\$	41	\$	Ş	8	21	s	8	35	8	

85 - 111 A

S.N.	Parents/Crosses	Annual la sub-	Akola			Patanchem			led over locations	
		Untreated	Treated	Mean	Untreated	Treated	Mean	Untreated	Treated	Mean
1	2	3	4	5	6	7	8	9	10	11
	SPV-1201	8.00	8.00	8.00	22.00	27.33	24.67	15.00	17.67	16.3
	ICSB-101B	8.67	8.67	8.67	32.67	34.67	33.67	20.67	21.67	21.1
l I	Akms-14B	21.33	16.00	18.67	28.00	56.00	42.00	24.67	36.00	30.3
ļ.	SRT-26B	5.33	8.00	6.67	38.67	37.33	38.00	22.00	22.67	22.3
5	GJ-35-15-15	6.67	8.67	7.67	34.67	36.00	35.33	20.67	22.33	21.5
i	SPV-946	6.00	8.00	7.00	37.33	44.67	41.00	21.67	26.33	24.0
7	SPV-104	18.67	14.67	16.67	40.67	67.33	54.00	29.67	41.00	35.3
3	IS-2284	4.00	3.33	3.67	9.33	20.00	14.67	6.67	11.67	9.1
9	IS-6335	2.67	4.00	3.33	8.00	15.33	11.67	5.33	9.67	7.5
10	IS-9471	2.00	2.67	2.33	10.67	13.33	12.00	6.33	8.00	7.1
u –	SPV-1201 x ICSB-101B	6.36	4,40	5.38	12.20	10.34	11.27	9.28	7.37	8.3
2	SPV-1201 x Akms-14 B	9.16	7.60	8.38	29.16	19.50	24.33	19.16	13.55	16.3
13	SPV-1201 x SRT - 26B	6.10	6.30	6.20	23.50	14.16	18.83	14.80	10.23	12.5
4	SPV-1201 x GJ-35-15-15	5.70	4.90	5.30	16.00	13.00	14.50	10.85	8.95	9.9
5	SPV-1201 x SPV -946	7.76	6.26	7.01	23.00	17.70	20.35	15.38	11.98	13.6
6	SPV-1201 x SPV- 104	8.30	7.86	8.08	30.00	29.26	29.63	19.15	18.56	
17	SPV-1201 x IS -2284	6,96	5.50	6.23	10.50	7.26	8.88	8,73	6.38	18.8
8	SPV-1201 x 1S-6335	5.56	4 16	4.86	14.00	7.76	10.88	9.78	5.96	7.5 7.8
19	SPV-1201 x IS - 9471	6.30	4 60	5.45	14.50	12.50	13.50	10.40	8.55	7.c
20	ICSB - 101B x AKms 14 B	7.42	5.50	6.46	22.50	22.34	22.42	14,96	13.92	
21	ICSB - 101B x SRT- 26 B	3.80	2.80	3.30	25.34	24.34	24.84	14.50	13.57	14.4 14.0
22	ICSB - 101B x 0J-35-15-15	7.20	4.40	5.80	11.76	10.76	11.26	9.48	7.58	
n	ICSB - 101B x SPV - 946	10.40	7.40	8.90	20.00	13.26	16.63	15.20	10.33	8.5
и	ICSB - 101B x SPV - 104	9.60	7.00	8.30	39.50	39.00	39.25	24.55	23.00	12.7
25	ICSB - 101B x 15 - 2284	5.70	4.20	4.95	20.76	15.00	17.88	13.23		23.7
6	ICSB - 101B x IS - 6335	3.30	2.16	2,73	11.76	12.00	11.88	7.53	9.60	11.4
7	ICSB -101B x IS - 9471	3.96	3.66	3.81	17.50	16.00	16.75	10.73	7.08	7.3
28	AKms - 14 B x SRT - 26B	10.20	8.00	9.10	37.50	33.50	35.50		9.83	10.2
9	AKina - 14 B x GJ-35-15-15	9.00	7.20	8 10	27.00	24.66		23.85	20.75	22.3
0	AKms - 14 B x SPV - 946	7.80	6.20	7.00	32.00		25.83	18.00	15.93	16.9
ñ	AKms - 14 B x SPV - 104	22.46	16.30	19.38	49.00	40.50	36.25	19.90	23.35	21.6
32	AKms - 14 B x IS - 2284	7.80	6.00	6.90		38.50	43.75	35.73	27.40	31.5
ñ	AKm8 - 14 B x 13 - 2204	5.66	3.66		21.00	17.50	19.25	14.40	11.75	13.0
я	AKm8 - 14 B x 15 - 9471	6.50	5.80	4.66	17.50	14.50	16.00	11.58	9.08	10.3
	AND 8 - 14 D X 15 - 9471	6.50	5 80	6.15	19.00	15.00	17.00	12 75	10.40 Contd	11.5

Table 52. Effect of pre-treatment on F. moniliforme (%) (UGS) of parents and F₂ progenies at Akola and Patancheru. 1996

Contd.

Table 52 . Contd.	And in case of the local division of the loc										
	2	3	Ŧ	\$	6	7	*	6	10	11	
S.		9.40	7.80	8.60	20.50	15.90	18.20	14.95	11.85	13.40	
SRT-		6.50	4.10	5.30	12.56	8.96	10.76	9.53	6.53	8,03	
S	SRT - 26B x SPV -104	12.00	12.60	12.30	26.50	28.00	27.25	19.25	20.30	19.78	
S	SRT - 26B x IS – 2284	7.66	5.86	6.76	9.50	9.00	9.25	8.58	7.43	8.01	
ĸ	.T - 26B x IS – 6335	6.26	4.34	5.30	13.26	12.00	12.63	9.76	8.17	8.97	
ŝ	SRT - 26B x IS - 9471	9.40	7.60	8.50	17.16	11.34	14.25	13.28	9.47	11.38	
9	JJ-35-15-15 x SPV - 946	10.20	8.52	9.36	19.18	14.60	16.89	14.69	11.56	13.13	
9	3J-35-15-15 x SPV- 104	12.10	9.76	10.93	46.00	44.00	45.00	29.05	26.88	27.97	
9	<b>JJ-35-15-15 x IS - 2284</b>	6.06	4.54	5.30	7.00	4.00	5.50	6.53	4.27	5.40	
σ	3J-35-15-15 x IS - 6335	6.40	5.00	5.70	15.66	10.50	13.08	11.03	7.75	95.9	
Q	3J-35-15-15 x IS - 9471	16.52	12.26	14.39	14.26	10.40	12.33	15.39	11.33	13.36	
3	SPV - 946 x SPV- 104	10.60	10.20	10.40	32.50	22.50	27.50	21.55	16.35	18.95	
3	SPV - 946 x IS - 2284	11.00	8.60	9.80	12.10	8.00	10.05	11.55	05.8	599	
ŝ	SPV - 946 x IS- 6335	4.58	3.00	3.79	7.00	6.66	6.83	5.79	4.83	531	
2	SPV - 946 x IS 9471	10.66	7.00	8.83	16.00	14.00	15.00	13.33	10.50	11.92	
3	SPV - 104 x IS 2284	12.46	10.20	11.33	22.16	16.50	19.33	17.31	13.36	15.33	
5	SPV - 104 x IS 6335	14.60	13.46	14.03	20.00	15.50	17.75	17.30	14.48	15.89	
3	SPV - 104 x IS 9471	22.26	16.80	19.53	19.50	15.00	17.25	20.88	15.90		
ŝ	S 2284 x IS-6335	7.36	4.26	5.81	20.02	21.00	20.50	13.68	12.63	13.16	
S	IS 2284 x IS -9471	6.50	4.84	5.67	9.00	6.00	7,50	7.75	5.42		
S)	6335 x IS 9471	7.42	4.76	609	8.34	8.66	8.50	7.88	6.71	7.30	
Σ	Mean	8.66	7 08	7.87	26.12	20.47	20.00	14 00	13.7K	72.44	
×	% increase (+)/decrease(-)			(-)18.36			(-)4 45	60-T	2.2	1997	
δ	over untreated									and l	
*	% increase over location						165.56				
		SE (m)	CD 5%		SE (m)	CD 5%	( power)	SE (m)	CD 5%		
	<	0.473	1.310		0.857	2.377		0.358	1.041		
	19 I	2.479	6.872		4.496	12.464		1.881	5.493		
	AXB	3.506	9.719		6.359	12.627		2.556	627.7		

																			2	:59	9																
9	Mean	=	333	4 83	8.4	88	39	35			<u>8</u> 5	55	10	128	200		100	85	200	0.75	0.88	125	0.88	0.17	0.55	3.40	0.15	0.07	0.52	2.30	0.60	0.98	2.28	0.55	071	0.50	
atancheru, 199	Treated	10	367	4.67	104	4 33	1.67	1.5	88	3.6	167		80	600	100	13	220	5	88		0.50	001	0.50	0.20	00.0	1.85	0.0	0.00	000	2.00	1.00	1.25	2.65	0.35	0.67	001	Contd
la and Patan Poole	Untreated	6	3.00	5.00	4 00	3.67	133	009	533		233	200	0.60	1631	033	0.50	0.95	0.67	0.13	0.50	1.25	1.50	1.25	0.13	1.10	4.95	0:30	0.13	103	2.60	0.20	0.70	1 90	0.75	0.75	00.0	
pies at Ako	Mean	8	6.00	9.67	7.67	8.00	000	10.33	10.33	367	200	400	0.60	2.42	041	0.63	120	217	0.13	0.50	1.75	2.33	1.75	0.13	1.00	6.50	0:30	0.13	0.83	4.50	1.00	1.75	3.75	100	1.25	0	
nd F2 proge	Treated	7	6.00	9.33	7.33	8.67	633	8.67	10.00	7.33	3.33	4.00	00.00	1.84	0.16	0.26	0.50	3.00	0000	0.00	1.00	2.00	1.00	0.00	0.0	3.50	0.0	000	00.0	4.00	2.00	2.50	4.50	0.50	1 00	2:00	
of parents a	Untreated	9	6.00	10.00	8.00	7.33	8.67	12.00	10.67	0,00	0.67	4.00	1.20	3.00	0.66	1.00	1.90	1.34	0.26	00	2.50	2.66	2.50	0.26	2.00	9.50	0.60	0.26	1.66	5.00	0.00	1.00	3.00	1.50	1.50	00.0	
(%)(NGS)	Mean	5	0.67	0.0	0.33	0.0	0.0	0.00	<b>4</b> .00	00.0	0.00	0.33	0.0	0.13	0.0	0.00	0.00	0.0	0.0	0.00	0.0	0.17	0.00	0.20	0.10	0.30	0.0	0.0	0.20	0.10	0.20	0.20	0.80	0.10	0.17	00.0	
idoroseum Akola	Treated	4	1.33	0.00	0.67	0.0	0.00	0.0	8.00	0.0	00.0	0.67	0.0	80	0.0	0.00	0.0	0.0	0.0	80	0.00	0.0	0.00	0.40	0.00	0.20	0.0	0.0	200	00.0	0.0	0.00	0.80	0.20	0.34	000	
nt on F: pall	Untreated	3	0.00	0.00	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.0	0.0	0.26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.34	00.00	00.0	0.20	0.40	0.00		0.40	0.20	0.40	0.40	0.80	0.00	0.00	0.00	
Table33.Effect of pre-treatment on <i>F: pallidoroseum</i> (%0,UGS) of parents and F ₂ progenies at Akola and Patancheru, 1996 SN ParatsCrosses Akola Akola Akola		2	SPV-1201	CSB-101B	Akma-14B	3RT-26B	31-35-15-15	SPV-946	SPV-104	S-2284	S-6335	S-9471	IPV-1201 x ICSB-101B	SPV-1201 x Alons-14 B	3PV-1201 x SRT - 26B	SPV-1201 x GJ-35-15-15	3PV-1201 x SPV-946	5PV-1201 x SPV- 104	5PV-1201 x IS -2284	SPV-1201 x 13-6335	1742-1201 x IS - 9471	CSB - 101B x AKms 14 B	CSU - 101B x SRT- 26 B	CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-CI-C	CSB - 101B X SPV - 946					VUITE - 14 B X SKT - 26U	C1-C1-C5-FD X R M - MUN	VKnus - 14 B x SPV - 946	ukms - 14 B x SPV - 104	uKms - 14 B x IS - 2284	AKme - 14 B x IS - 6335	AKms - 14 B x IS - 9471	
I able		-			- -	4	ŝ	6	2 2	8	•	9		12			<u>.</u>	9	5	2 : 2 :		= : R :			n a	57	2 2	3 2				~ `	-			3	

																			26	0									
=	020	005	030	038	0.17	031	047	5	000	000	076	020	018	600	020	690	157	142	5	000	0.13	150	(+)2652						
01	0.50	0000	0.25	00.0	00.0	000	0.46	0	0.0	0.0	0.93	0.25	0.00	0000	000	000	8	0.67	1.00	00.0	0.00	1.67				CD 5%	0.291	1.535	2.156
6	0:50	0.10	0.35	0.75	0.33	0.62	0.47	2.00	0.00	0.0	0.58	0.75	0.35	0.17	0.40	1.38	2.13	2.16	2.00	0.0	0.25	1.32				SE (m)	100	0.526	0.742
8	1.00	0.10	0:50	0.75	0.13	0.42	0.58	3.00	0.00	0.00	0.25	1.00	0.25	0.17	0.40	1.25	2.25	1.50	3.00	0.0	80	2.26	(+)88.15		882.60 (Atolo)	(BUDAN)			
7	1.00	00.0	0.50	00.0	0.00	0.00	0.50	2.00	0.00	0.00	0.00	0.50	00.0	0.00	0.00	0.0	1.50	0.0	2.00	0.00	0.0	2.032				CD 5%	0.631	3.308	4.0/8
و	1.00	0.20	0.50	1.50	0.26	0.84	0.66	4.00	0.00	00.0	0.50	1.50	0.50	0.34	0.80	2.50	3.00	3.00	4.00	0.0	0.0	2.48				SE (m)	0.228	1.193	1.000
5	8 0	<u>8</u> 0	0.10	0.0	0.20	0.20	0.35	0.0	0.0	0.00	1.26	0.00	0.10	0.0	0.0	0.13	0.88	1.33	0.00	0.0	0.25	0.23	(+)87.50						
~	00:0	0.00	0.00	0.00	0.00	0.00	0.42	0.00	0.00	0.00	1.86	0.00	0.00	0.00	0.00	0.0	0:50	1.34	0.00	0.00	80	00:0				CD 5%	0.164	0.861	017.1
1	0.00	0.00	0.20	0.00	0.40	0.40	0.28	0.00	0.00	0.00	0.66	0.00	0.20	0.00	0.00	0.26	1.26	1.32	0.00	0:00	0:50	0.16				SE (m)	0.059	0.311	004-0
2	SRT- 26B x GJ-35-15-15	SRT - 26B x SPV - 946	SRT - 26B x SPV -104	SRT - 26B x IS - 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x IS- 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 x IS-6335	IS 2284 x IS -9471	IS 6335 x IS 9471	Mean	% increase (+)/dccrease(-)	over untreated	% increase over location		<	m :	AXB
: -	ñ	*	31	R	ຄ	\$	4	42	4	\$	45	46	47	<b>48</b>	49	ନ	51	2	8	7	≈								

Treated
-
2 4
-
16.00
4
e
'n
4
5
3
9.6
1
ę
ŝ
ñ
; ت
ġ
2 0
<u>, 5</u>
8.40
ŝ
ö
4
Ξ
2
17.0
18
Ś
4.59
ö

Table	Table 54 . Contd									
-	2	3	4	5	9	6	8	6	10	11
35	SRT- 26B x GJ-35-15-15	8.80	6.60	7.70	13.00	11.40	12.20	10.90	90 ^{.6}	395
36	SRT - 26B x SPV - 946	11.10	7.36	9.23	13.56	10.60	12.08	12.33	8.98	1066
37	SRT - 26B x SPV -104	17.60	14.00	15.80	20.00	12.50	16.25	18.80	13.25	1603
8	SRT - 26B x IS - 2284	7.90	4.66	6.28	11.00	7.00	<b>00</b> .6	9.45	5.83	764
6	SRT - 26B x IS - 6335	14.54	8.06	11.30	7.50	3.76	5.63	11.02	5.91	8.47
40	SRT - 26B x IS - 9471	7.20	4.20	5.70	10.16	8.66	9.41	8.68	6.43	7.56
41	GI-35-15-15 × SPV - 946	13.20	13,14	13.17	12.16	13.92	13.04	12.68	13.53	13.11
42	GJ-35-15-15 x SPV- 104	15.20	16.06	15.63	15.50	13.00	14.25	15.35	14.53	14.94
ę	GJ-35-15-15 x IS - 2284	8.72	2.40	5.66	2.00	4.00	3.00	5.36	3.20	428
4	GJ-35-15-15 x IS - 6335	5.20	4.86	5.03	8.50	10.10	9.30	6.85	7.48	717
÷	GI-35-15-15 x IS - 9471	8.50	8.14	8.32	11.50	11.50	11.50	10.00	9.82	199
\$	SPV - 946 x SPV- 104	16.40	13.40	14.90	7.50	8.50	8.00	11.95	10.95	1145
47	SPV - 946 x IS - 2284	2.00	5.80	6.40	11.82	11.60	11.71	9.41	8.70	906
<b>4</b> 8	SPV - 946 x IS- 6335	5.16	4.26	4.71	3.50	3.00	3.25	4.33	3.63	396
Ş	SPV - 946 x IS 9471	6.46	4.36	5.41	14.20	12.60	13.40	10.33	8.48	9.41
ន	SPV - 104 x IS 2284	13.46	11.46	12.46	10.16	4.50	7.33	11.81	7.98	980
5	SPV - 104 x IS 6335	11.16	10.96	11.06	16.50	19.00	17.75	13.83	14.98	14.41
5	SPV - 104 x IS 9471	9.52	8.00	8.76	11.50	11.00	11.25	10.51	9.50	1001
8	IS 2284 x IS-6335	2.60	1.26	1.93	6.00	6.00	6.00	4.30	3.63	3.97
3	IS 2284 × IS -9471	2.42	1.10	1.76	1.50	2.00	1.75	1.96	1.55	1.76
8	IS 6335 x IS 9471	2.26	1.10	1.68	7.66	5.66	999	4.96	3.36	4.17
	Mean	8.8	7.25	11.1	6.22	4 98	560	7.75	£ 17	039
	% increase (+)/decrease(-)			(-12.44			50 61(-)	2	1.0	1-115.59
	over untreated									
	% increase over location		-	27.92						
		SF (m)		alancheru	SF (m)	105.00		SE (m)		
	۲	0.534	1.480		0.989	2.740		0.330	0.960	
	8	2.799	7.79		5.184	14.370		1.731	5.051	
	AxB	3.958	10.972		7.331	20.323		2.449	7.126	

55 - 111 A

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S.N.	Parents/Crosses		Akola			Patanchen		bod	Pooled over locations	
2         3         4         5         6         7         8         9         10           TCBP-101         233         133         233         133         233         133         200         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         157         150         153         157         150         153         157         157         150         153         157         150         153         158         158         158         158         158         158 <td< th=""><th></th><th></th><th>Untreated</th><th>Treated</th><th>Mean</th><th>Untreated</th><th>Treated</th><th>Mean</th><th>Untreated</th><th>Treated</th><th>Mean</th></td<>			Untreated	Treated	Mean	Untreated	Treated	Mean	Untreated	Treated	Mean
TSV/101         333         133         233         133         233         133         233         133         233         133         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233         233	-		m	4	~	9	-	~	0	0	
Class-1018         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00		SPV-1201	3.33	1.33	233	1.33	000	0.67	55.6		17
Atma-16         Atma-16 <t< td=""><td>17</td><td>ICSB-101B</td><td>2.00</td><td>2 00</td><td>0 C</td><td>133</td><td>3.33</td><td>222</td><td></td><td>2.40</td><td>3</td></t<>	17	ICSB-101B	2.00	2 00	0 C	133	3.33	222		2.40	3
Str.Tole	-	Akma-14B	4.67	18	12	1.67	220	36	5	10.7	717
Constraint         Constraint <thconstraint< th="">         Constraint         Constrai</thconstraint<>		CDT 3CD	19.0	32	31	è è	10:0	107	4.01	3.5	3.00
With the second secon		007-1VC	10.0	19'0	0.6/	5.5	1.33	2.33	58	<del>1</del> 0	1.50
SYV-Meth         355         0.00         1.33         3.33         0.67         2.00         3.00         0.33         1.67           SYV-Meth         5.57         0.00         0.00         0.33         0.67         2.00         3.00         2.03         2.03           SYV-Meth         5.54         0.00         0.00         0.00         0.00         0.03         0.07         0.07         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03	<b>^</b> '	ci-ci-ci-m	1.33	2.67	50	8.67	<b>4</b> .0	6.33	5.00	3.33	4.17
SYV, Iol S 200         STA SYV, Iol S 400         STA S 400	•	SPV-946	2.67	0.0	1.33	3.33	0.67	2.00	300	033	167
S.238 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S.401 S	7	SPV-104	3.33	4.00	3.67	4.00	000	200	2.67		6 C
Second Bears         Descend Constraints         Descend Descendence         Descendence         Descendence <thdescendece< th="">         Descendence         <thdescende< td=""><td>*</td><td>IS-2284</td><td>000</td><td>000</td><td>8</td><td>8</td><td>800</td><td>540</td><td>500</td><td>88</td><td>22</td></thdescende<></thdescendece<>	*	IS-2284	000	000	8	8	800	540	500	88	22
Stepril         Stepril         Off         Off <th< td=""><td>•</td><td>IS-6335</td><td>000</td><td>8</td><td>80</td><td>0.67</td><td>500</td><td>50</td><td>500</td><td>8.8</td><td>220</td></th<>	•	IS-6335	000	8	80	0.67	500	50	500	8.8	220
Sivilar (CB-101)         O/O	91	IS-9471	0.67	88	200	5	5.0		3	31	0.55
Stv.1201 x Adms, 10         100         200         190         200         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103         103	Ξ	SPV-1204 x ICSB-101B	220	800	200	3.0	3	201	25	1.6/	8
Structure         Structure <t< td=""><td>2</td><td>a vi smit &gt; luci-has</td><td>2</td><td>2 2</td><td>5</td><td></td><td>5</td><td>5</td><td>20.1</td><td>0.90</td><td>121</td></t<>	2	a vi smit > luci-has	2	2 2	5		5	5	20.1	0.90	121
Sivilarization         O/0	: :		<u> </u>	B	8	<b>B</b> .0	4.66	4.83	3.45	3.33	3.39
STV-1001 LTG-101         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70         0.70	2:	SPY - 136 X 1021- V 36	0.70	0.90	0.80	4.16	2.16	3.16	243	1.53	198
Weylolitis 278         Model         D/2         D/3         D/3 <thd 3<="" th="">         D/3         <thd 3<="" th=""></thd></thd>	1	SPV-1201 x GJ-35-15-15	0.70	0.70	Q.0	5 0	2.50	2.25	1.35	160	4
STV-1011 IS - 278         146         4.00         2.73         366         2.00         2.66         3.00         2.73           STV-1011 IS - 278         0.90         0.90         0.95         1.76         1.76         2.66         300         2.73           STV-1011 IS - 278         0.90         0.76         0.76         0.76         1.76         1.26         1.00         1.13         0.86         1.41           STV-1011 IS - 371         0.81         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.7	2	2PV-1201 x 1021-V92	0.70	0.76	0.73	1.0	0.80	0.90	0.85	0.78	200
STV-1011 IS - 2014         0.09         0.26         2.76         1.76         2.26         1.80         0.96         1.41           STV-1011 IS - 4071         0.56         0.66         0.66         0.56         2.56         1.76         2.26         1.80         0.66         1.41           STV-1011 IS - 4071         0.56         0.66         0.76         0.56         2.56         1.76         2.76         1.70         0.73         0.66           CSS - 1013 IS - 4071         0.56         0.70         0.86         2.56         3.00         2.75         1.50         1.78         0.66           CSS - 1013 IS - 4010         0.70         0.86         2.56         3.00         2.76         1.78         0.66         1.41           CSS - 1013 IS - 4010         1.60         0.76         0.67         2.66         0.68         1.46           CSS - 1013 IS - 4010         0.70         0.70         0.76         0.76         0.61         1.78         1.86         1.46           CSS - 1013 IS - 4010         0.70         0.76         0.76         0.61         1.78         1.86         1.76           CSS - 1013 IS - 4010         0.70         0.76         0.76         0.76	16	SPV-1201 x SPV-104	1.46	8	273	3.66	2.00	283	2.66	8	120
SFV-JBI IS -433         066         0.46         0.55         1.26         1.00         1.15         0.56         0.73         0.65           SFV-JBI IS -4313         0.66         0.46         0.55         1.26         1.00         1.15         0.56         0.73         0.65           SFV-JBI IS -570         0.61         0.50         0.70         0.66         0.46         0.56         0.73         0.65         0.73         0.65           CSS1 - 101 IX A/Mark H         0.34         0.37         0.37         0.16         1.75         1.26         0.67         0.86           CSS1 - 101 IX XAV-164         1.60         0.30         0.20         0.20         0.75         0.75         1.28         0.67         0.86           CSS1 - 101 IX XAV-164         1.60         1.70         1.75         1.23         1.75         1.23         0.67         0.86           CSS1 - 101 IX XAV-164         0.80         0.80         0.76         0.73         1.67         1.75         1.75         2.26         1.75         2.26         1.75         2.26         1.75         2.26         1.75         2.26         1.75         2.26         1.75         2.26         1.75         2.26         1.7	17	SPV-1201 x 15-2284	0:00	0.20	0.55	2.76	1.76	2.26	18	800	1
CSS - 10B x ACom         0.50         0.70         0.60         2.50         3.00         2.77         1.50         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86         1.86 <th1.86< th="">         1.86         1.86</th1.86<>	<b>8</b>	SPV-1201 x IS-6335	0.66	0.46	0.56	1.26	8	113	960	32	
CGS-101B x RT: X6m (H         0.34         0.36         0.47         116         250         236         0.66           CGS-101B x RT: X6m (H         0.34         0.36         0.36         0.34         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36         0.36	6	SPV-1201 x IS - 9471	0:50	0.70	0.60	2.50	3.00	2.75	150	185	
CGSB - 10B x xST - 26B         0.40         0.20         2.16         1.34         1.75         1.26         0.67           CGSB - 10B x xST - 26B         0.40         0.00         0.25         0.25         0.75         1.24         1.75         1.26         0.67           CGSB - 10B x xST - 24B         0.40         0.20         0.01         1.75         1.24         0.66         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75         1.75	ន	ICSB - 101B x AKms 14 B	9.34	0.50	0.42	3.84	1.16	250	500	200	
CGSB         OBIR SERV - 946         150         0.25         0.76         0.71         2.46         0.66           CGSB         OBIR SERV - 946         150         0.10         1.75         1.30         1.06         0.07         2.46         0.66           CGSB         OBIR SERV - 946         150         0.10         1.75         1.30         1.00         1.33         1.36         1.06           CGSB         OBIR SERV - 146         0.20         0.00         0.10         4.75         1.60         1.47         1.60         1.65         1.76         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66         1.66	7	ICSB - 101B x SRT- 26 B	0.40	800	0.20	2.16	13	175	80.4	0.67	
CGS-101B x SPV - 96         160         170         175         150         160         176         150         160         176         160         176         160         176         160         176         160         176         160         176         160         176         160         176         160         176         160         176         160         176         160         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176         176	ជ	ICSB - 101B x QJ-35-15-15	4.60	0.40	2.50	0.26	0.76	0.61	2.5		5.5
CGSs - 10BX SFY - 104         0.20         0.00         0.10         4.50         3.50         4.00         2.35         1.75           CGSs - 10BX SFY - 104         0.20         0.00         0.10         4.50         3.60         4.00         2.35         1.75           CGSs - 10BX SFS - 2013         0.80         0.20         0.20         0.20         0.20         1.75         1.75           CGSs - 10BX SFS - 2013         0.80         0.20         0.00         0.40         1.75         1.16         1.16         1.14         1.10           CGSs - 10BX SFS - 2013         0.80         0.20         0.00         0.40         1.26         0.34         1.26         0.17         1.14         1.10           CGSs - 10BX SFS - 2013         0.80         0.00         0.40         1.26         0.34         1.26         0.17         1.14         1.10         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16         1.16	ส	ICSB - 101B x SPV - 946	1.00	09:0	1.10	1.76	1.50	3	169	35	6
CCSN=10BA IS: 5234         0.66         1.20         0.90         2.34         1.00         1.67         1.10           CCSN=10BA IS: 533         0.80         0.00         0.40         1.76         1.00         1.38         1.28         0.30           CCSN=10BA IS: 533         0.80         0.00         0.40         1.76         1.00         1.38         1.28         0.30         0.30         0.30         0.31         1.33         0.17         0.40         1.38         1.28         0.30         0.35         0.33         0.17         0.40         1.38         1.28         0.30         0.35         0.33         0.17         0.46         1.38         0.17         0.46         1.38         0.17         0.46         1.38         0.17         0.46         1.38         0.17         0.46         1.38         0.17         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46	র	ICSB - 101B x SPV - 104	0.20	0000	0.10	4.50	3.50	4.00	2.35	1 75	202
CCSB-101B x15: x035         0.80         0.00         0.40         1.75         1.00         1.33         1.23         0.30           CCSB-101B x15: x971         0.00         0.00         0.00         0.00         0.00         0.34         1.33         1.23         0.30           Mcmar +1B x x877 - 364         1.00         0.00         0.00         0.00         0.00         0.00         0.46         1.33         0.17         0.47         0.4           Mcmar +1B x x877 - 364         1.00         0.00         1.20         0.00         0.00         0.46         1.33         0.45         0.47         0.44         0.45         0.44         0.47         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.46         0.45         0.46	ห	ICSB - 101B x IS - 2284	09.0	1.2	0.00	2.34	1.00	167	1.47	1	32
Ctss-101B x15-9/1         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 <td>8</td> <td>ICSB - 101B x IS - 6335</td> <td>0.80</td> <td>0.0</td> <td>0.40</td> <td>1.76</td> <td>10</td> <td>5</td> <td>1 28</td> <td>0.0</td> <td></td>	8	ICSB - 101B x IS - 6335	0.80	0.0	0.40	1.76	10	5	1 28	0.0	
Advan - HB X:817 - 24B         160         0.40         100         5.00         9.50         7.25         3.30         4.95           Advan - HB X:877 - 24B         160         0.40         100         5.00         9.50         7.25         3.30         4.95           Advan - HB X:877 - 946         3.00         100         2.00         2.00         0.43         0.43           Advan - HB X:877 - 104         4.96         3.60         1.20         2.00         2.00         0.43           Advan - HB X:877 - 104         4.96         3.60         1.26         1.00         2.00         2.00         1.46           Advan - HB X:877 - 104         4.96         3.60         1.50         1.00         1.26         1.30         2.60         2.30         2.60         2.30         2.60         2.30         2.60         2.30         2.60         2.30         2.60         2.30         2.60         2.30         2.60         2.30         2.60         2.30         2.60         2.30         2.60         2.30         2.30         2.30         2.30         2.30         2.30         2.30         2.30         2.30         2.30         2.30         2.30         2.30         2.30         2.30 <td< td=""><td>5</td><td>ICSB-101B x IS - 9471</td><td>0.0</td><td>0.00</td><td>8.0</td><td>2.66</td><td>0.34</td><td>150</td><td>i e</td><td>0.17</td><td>0.75</td></td<>	5	ICSB-101B x IS - 9471	0.0	0.00	8.0	2.66	0.34	150	i e	0.17	0.75
Admin H 8 x (H-31:1)         2.20         0.20         1.20         3.00         0.66         1.83         2.60         0.43           Admin -18 x (H-31:1)         2.21         0.20         1.20         2.00         2.00         0.43           Admin -18 x (H-31:1)         2.21         2.00         1.00         1.00         2.60         1.50         0.43           Admin -18 x (H-104         3.60         3.60         4.28         6.00         1.00         1.25         1.50         0.50           Admin -18 x (S)         1.00         0.30         0.30         0.30         0.50         0.50         0.50         0.50         0.51         0.50         0.51         0.51         0.50         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.55         0.50         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.51         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.55         0.51         0.51         0.51         0.51         0.51	ក	AKma - 14 B x SRT - 26B	1.60	0.40	10	5.00	9.50	7.25	330	4 95	13
Akma-H B x SIV - 96         3.00         1.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         2.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 <th0.01< th="">         0.01<td>ล</td><td>AKma - 14 B x GJ-35-15-15</td><td>2.20</td><td>0.20</td><td>2</td><td>3.0</td><td>0.66</td><td>1</td><td>260</td><td>0.43</td><td>153</td></th0.01<>	ล	AKma - 14 B x GJ-35-15-15	2.20	0.20	2	3.0	0.66	1	260	0.43	153
Advan - H3 X STV - 104 4.96 3.80 4.28 6.00 1.00 3.60 5.46 2.30 2.40 2.30 4.40 2.50 4.40 2.50 4.40 2.50 4.40 2.50 4.40 2.50 4.40 2.50 4.40 2.50 4.40 2.50 4.40 2.50 4.40 2.50 4.40 2.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4	ន	AKms - 14 B x SPV - 946	3.00	90;T	2.00	2.00	2.00	200	250	150	12
Mxman + B x IS - 224         1.20         0.00         0.60         1.50         1.00         1.25         1.35         0.50         1.50         0.50         1.50         0.50         1.50         0.50         1.50         0.50         1.50         0.50         1.51         1.35         0.50         0.50         0.50         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.51         0.50         0.50         0.51         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50         0.50<	2	AKms - 14 B x SPV - 104	4.96	3.60	4.28	6.00	100	350	548	2.30	
Akama - H & XIS 100 034 067 0.00 1.00 0.50 0.50 0.57 0 Akama - H & XIS - 471 0.50 0.00 0.25 6.00 1.00 3.50 3.25 0.50 1 Akama - H & XIS - 471 0.50 0.00 0.25 6.00 1.00 3.50 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 1.00 0.50 0.5	ñ	AKma - 14 B x IS - 2284	1.20	000	09.0	1.50	8	125	8	390	
AXaae - M B x 13 - W71 0.50 0.00 0.25 6.00 1.00 3.50 3.25 0.50 1 Control	ŝ	AKma - 14 B x IS - 6335	1.00	0.34	0.67	0.0	8	020	020	067	050
Contd	⊼	AKnue - 14 B x IS - 9471	0.50	000	0.25	6.00	1.00	3.50	3.25	020	188
										Contd	

Table	: 55 . Contd									
-	2	3	4	s	9	7	80	•	10	=
ŝ	SRT- 26B x GJ-35-15-15	1.60	09.0	1.10	3.50	4.00	3.75	2.55	2.30	243
36	SRT - 26B x SPV - 946	2.60	0.00	00.1	2.56	1.76	2.16	2.58	0.88	173
37	SRT - 26B x SPV -104	3.20	2.40	2.80	3.00	4.00	3.50	3.10	3.20	3.15
88	SRT - 26B × IS - 2284	09:0	0.20	0.40	0.0	0.00	0:00	0:30	0.10	020
66	SRT - 26B x IS - 6335	0.20	0.34	0.27	1.50	0.00	0.75	0.85	0.17	051
40	SRT - 26B x IS - 9471	1.40	0.20	0.80	0.84	1.00	0.92	1.12	09.0	086
41	GJ-35-15-15 x SPV - 946	2.06	1.78	1.92	1.50	1.80	1.65	1.78	1.79	179
4	GJ-35-15-15 x SPV- 104	1.20	2.10	1.65	1.50	4.00	2.75	1.35	3.05	220
<b>6</b>	GJ-35-15-15 x IS - 2284	0.34	3.40	1.87	00.0	00:0	00:0	0.17	1.70	094
4	GJ-35-15-15 x IS - 6335	0.0	0.54	0.27	2.00	1.70	1.85	1.00	1.12	106 106
45	GJ-35-15-15 x IS - 9471	1.72	6. 0	1.36	2.50	1.50	200	2.11	1.25	168
46	SPV - 946 x SPV- 104	2.40	1.20	1.80	2.00	5.50	3.75	2.20	3.35	278
47	SPV - 946 x IS - 2284	0.80	0.60	0.70	2.34	0.50	1.42	1.57	0.55	106
48	SPV - 946 x IS- 6335	0.26	000	0.13	0.34	8.0	0.17	0:30	0.00	0,15
4	SPV - 946 x IS 9471	1.16	0:0	0.83	1.80	1.20	1.50	1.48	0.85	117
8	SPV - 104 x IS 2284	0.86	0.76	0.81	2.34	8	1.67	1.60	0.88	124
51	SPV - 104 x IS 6335	2.30	8	1.65	2.50	8.1	1.75	2.40	1. 0	
22	SPV - 104 x IS 9471	1.06	1.86	1.46	1.00	2.50	1.75	1.03	2.18	164 1
8	IS 2284 × IS-6335	0.26	0.26	0.26	1.00	0.0	0.50	0.63	0.13	
3	IS 2284 x IS -9471	0.60	00.0	0:30	00.0	0.0	0.0	0:30	0.0	0.15
×	IS 6335 x IS 9471	0.26	0.34	0:30	2.66	0.34	1.50	1.46	0.34	060
	Mean	6.22	4.98	5.60	7.43	6.26	7.10	7.08	5.62	635
	% increase (+)/decrease(-)			6.9(-)			(-)21.05			(-)2062
	over untreated									
	% increase over location						26.78 (Akola)			
		SE (m)	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
	<	0.776	2.150		0.962	2.667		0.119	0.331	
	8	4.068	11.276		5.046	13.988		0.626	1.827	
	AXB	5.753	15.947		7.136	19.782		0.883	2.447	

Table 55. Contd.

N.S	S.N. Parenta/Crosses Akola-96 Parenta/Crosses Akola-96		Akola-96			Patancheru		Poc	Pooled over locations	
		Untreated	Treated	Mean	Untreated	Treated	Mean	Untreated	Treated	Mean
-	2	3	4	ŝ	s	1	œ	6	01	11
-	SPV-1201	4.50	4.00	4.25	5.00	5.00	5.00	4.75	4.50	4 63
19	ICSB-101B	4.67	4.00	4.33	5.00	4.83	4.92	4.83	4 42	463
m	Altma-14B	5.00	4.50	4.75	5.00	5.00	5.00	200	4.75	4.88
4	SRT-26B	4.00	4.00	4.00	5.00	4.50	4.75	4.50	4 25	438
ŝ	GI-35-15-15	4.00	4.00	4.00	5.00	4.50	4.75	4.50	4 25	4 39
¢	SPV-946	4.00	3.50	3.75	5.00	4.83	4.92	4.50	4 17	4 33
-	SPV-104	4.50	4.00	4.25	5.00	5.00	200	4.75	4.50	463
80	15-2284	2,00	2.17	2.08	2.17	3.50	2.83	2.08	2 83	2.46
•	IS-6335	1.83	1.50	1.67	2.83	2.33	2.58	233	192	10
2	IS-9471	1.33	1.0	1.17	3.00	2.00	250	2.17	150	18
=	SPV-1201 x ICSB-101B	4.05	3.80	3.93	4.54	4.49	4.51	4 29	4 14	64
2	SPV-1201 x Alma-14 B	4.75	4.40	4.58	5.00	5.00	200	4 88	4 70	479
2	SPV-1201 x SRT - 26B	4.50	4.00	8	4.63	4.25	4.44	4 56	4 13	434
z	SPV-1201 x GJ-35-15-15	4.83	4.18	4.50	4.75	4.38	4.56	4.79	4 28	
2	946- V92 x 1021-V92	4.00	3.60	3.80	4.65	8.4	4	4.33	4	4.21
2	3PV-1201 x 2PV- 104	4.70	4.25	4.48	5.00	4.34	4.67	4.85	4.29	4.57
17	SPV-1201 x IS -2284	3.98	3.08	3.53	3.75	4.13	3.94	3.86	3.60	373
<b>8</b>	SPV-1201 x IS-6335	4.00	3.68	3.84	4.00	3.44	3.72	400	3,56	3.78
5	SPV-1201 x IS - 9471	3.90	3.58	3.74	4.75	<b>4</b> .00	4.38	4.33	3.79	4.06
ล	ICSB - 101B x AKme 14 B	4.75	3.84	<b>4</b> 29	5.00	4.34	4.67	4.88	4.09	4.48
5	ICSB - 101B x SRT-26 B	4.65	3.90	4,28	5.00	4.25	4.63	4.83	4.08	4.45
ជ	ICSB - 101B x 01-35-15-15	4.60	4.00	4.30	2.0	4.13	4.56.	4.80	4.06	4.43
នេះ	ICSB - 101B x SPV - 946	4.65	4.20	4.43	5.00	4.25	4.63	4.83	4.23	4.53
5	ICSB - 101B x SPV - 104	4.40	4,10	<b>4</b>	4.88	3.75	4.31	4.64	3.93	4.28
2	ICSB - 101B x IS - 2284	4.10	3.85	3.98	4.15	3.88	4.01	4.13	3.86	3.99
8	ICSB - 101B x [S - 6335	4.10	3.98	4 8	4.25	3.75	4.00	4.18	3.86	4.02
R	ICSB - I01B x IS - 9471	3.95	2.99	3.47	4.25	4.34	4.29	4.10	3.66	3.88
ឌ	AKmu - 14 B x SRT - 26B	5.00	4.00	4.50	5.00	2.8	5.00	5.00	4.50	4.75
ຊ.	AKmu - 14 B x GJ-35-15-15	4.70	4.00	4.35	4.84	4.50	4.67	4.77	4.25	4.51
8	AKmu -14 B x SPV - 946	5.00	4.40	4.70	5.00	<b>2</b> .00	5.00	5.00	4.70	4.85
<b>#</b> :	AKma - 14 B x SPV - 104	2:00	4.40	4.70	5.00	4.75	4.88	5.00	4.58	4.79
R	AKma - 14 B x IS - 2284	3.78	3.20	3.49	4.50	4.00	4.25	4.14	3.60	3.87
<b>R</b> .	AKma - 14 B x IS - 6335	3.17	2.84	3.0	4.50	4.00	4.25	3.83	3.42	3.63
Ā	AKms - 14 B x IS - 9471	3.70	3.65	3.68	4.75	4.25	4.50	4.23	3.95	4.09

1	8	39	99	92	94	14	48	53	8	62	97	84	36	3	E	2	24	2	-	66 5	3.02	;	1.0	;					
=		٩	4			4	. 4	4	° M		6	•	4			4	. 4	. 4	· ~	6	°.		19	2					
10	4.20	4.8	4.33	3.66	3.65	4.09	4.16	4.20	3.44	3.80	3.82	4.28	4.18	3,33	3.53	<b>9</b> .9	4.06	3.98	3.69	2.94	2.62	50	200			20.64	0.248	0.723	1020
6	4.40	67.4	5.00	4.24	4.23	4.19	4.80	4.85	4.37	3.79	4.12	4.68	4.54	3.75	<b>4</b> .02	4.71	4.41	4.45	3.88	3.59	3.43	2	70.1			SE (m)	1000	0.248	0.350
8	4.55	4.48	4.63	4.00	3.78	4.46	4.76	4.75	4.00	4.48	4.16	4.25	4.69	3.92	4.08	4.36	4.25	4.06	4.38	3.63	2.92	133	96'9(-)		11.31	(Akola)			
7	4.60	4.20	4.25	3.75	3.50	4.59	4.53	4.50	3.50	4.50	<b>4</b> 28	4.00	4.80	<b>4</b> .00	4.10	3.88	4.00	4.00	4.50	3.50	2.67	418	2			00.5%	0.110	0.579	00.750
9	4.50	4.75	5.00	4.25	4.07	4.34	5.00	5.00	4.50	4.46	4.07	4.50	4.58	3.84	4.05	4.84	4.50	4.13	4.25	3.75	3.17	4.48	1			SF (m)	0.039	0.209	957.0
5	4.05	4.30	4.70	3.90	4.10	3.83	4.20	4.30	3.81	3.11	3.78	4.70	4.03	3.16	3.47	4.42	4.23	4.37	3.19	2.91	3.13	3.89	(-)13.22						
4	3.80	3.90	4.40	3.58	3.80	3.60	3.80	3.90	3.39	3.10	3.39	4.55	3.55	2.65	2.95	4.25	4,13	3.97	2.88	2.38	2.57	3.61				CD 5%	0.139	0.729	0171
٣	4.30	4.70	5.00	4.23	4.40	4.05	4.60	4.70	4.23	3.12	4.18	4.85	4.50	3.67	3.99	4.59	4.33	4.78	3.50	3.44	3.69	4.16				SE (m)	0:050	0.263	210.0
2	SRT- 26B x GJ-35-15-15	SRT - 26B x SPV - 946	SRT - 26B x SPV -104	SRT - 26B x IS - 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x IS- 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 x IS-6335	IS 2284 x IS -9471	IS 6335 x IS 9471	Mean	% increase (+)/decrease(-)	over untreated	% increase over location		V	е:	AXB
-	33	×	ñ	<b>R</b>	£	\$	41	4	4	1	÷	46	47	8	<b>\$</b> :	8	5	8	8	7	×								

2 SPV-1261 ICSB-101B Afree L48	Eintraced	AKOIa-1995			Akola - 1996		The second control of	Pooled over locations	
1 -	CINCERCO	Dollar	Mcan	Untreated	Treated	Menu	Intrested	Treed	
CCSB-101B Atme-148	~	4	s	9		8	0	10	WICHT
ICSB-1018 Arme 148	97.78	997.96 96	96.67	78.00	76.00	W12	01 00	20.00	=
Arme AH	74.45	<b>80.06</b>	82.23	76.67	80.08	3.2	8	8.9	86.84
	51.11	56,56	53.34	200	38	202	8.0	82.00	80.28
SRT-26B	73.34	08 83	5 ¥	3.5	10.00	1.33	52.56	62.11	57.33
GI-35-15-15	97.70	38		10:00	80.33	86.00	80.08	71.11	78.56
SPV-946	0. LC		8.6	81.33	77.33	79.33	89.56	8/4 Z/8	5.5
SDV 100	2.1	8/./0	12.78	87.33	81.33	84.33	32 Ca	11.65	5
IC THEA	11	82.23	76.67	61.33	58.00	2965	38	B	90.92 1
	87.78	91.12	89.45	93.33	1908	58	38		28
(10-51)	97.78	96.67	57.75	8	568	38	83	68.06	60.72
	97.78	96.67	2 20	223		21	88	8.8	88
SPV-1201 x ICSB-101B	67.78	9		88	333	19.67	96.56	17. 18 18	95.45
SPV-1201 x Alma-14 B	67.78			81	8	86.67	76.56	80.56	83.06
SPV-1201 x SRT - 26B	EA AS		51	97.51	85.33	8.8	75.22	82.11	78.67
SPV-1201 - CLASTIC 10	2 1	31	3.5	8.8	80 00 00 00	9200	79.27	BC ET	55
SPAL NOS - INCLANS	6.9 9	8.18	97.Z2	60.67	<b>54.67</b>	11 61	78.67	58	
	31	<b>9</b> 5	93.94	85.33	74.67	0002	97.87	1 1 1	21
	6/.78	75.56	71.67	84.67	87.33	Re Co	2	5	0.19
	82.58	96.67	96.12	91.33	8	2928			
	82.23	<u>87</u> 28	87.23	96.00	55.55	1910	2	58	
	80.00	<b>88.89</b>	84.45	95.33	52.52	58		8758	80.05
ILOB - IULB X AKms  4 B	65.56	78.89	77 23	78.67	5 a.	38	10.10	8	89.22
ICSB - 101B x SRT- 26 B	35.56	62.23	48.80			31	1771	1.45	74.78
ICSB - 101B x CI-35-15-15	58.83	78.89	68.80	8.8	33	/9/Rg	61.78	76.78	68.28
IC3B - 101B x SPV - 946	62.23	2008	3 F	888	8. 5	00.12	73.45	86.45	26.62
ICSB - 101B x SPV - 104	7111	22	5	322	2	19:06	11.11	84.67	80.89
ICSB - 101B x IS - 2284	24.45	3 8	20.2	10.01	80.67	78.67	73.89	76.45	75.17
ICSB - 101B x 13 - 6335	2.6		328	29.6V	20.67	89.67	91.56	93.11	92.34
ICSB - 101B x IS - 9471	2.00	24	5.25	8.8	2.23	91.67	91.11	93.89	92.50
AKma - 14 B x SRT - 26B	76.67	25	58	828	8.8	<u>93.0</u>	92.11	94.22	23 17
AKme - 14 B x QJ-35-15-15	1113		BA	0022	82.00	00.77	74.34	81.56	26.11
AKma-14 B x SPV . 946	00 04	21	07.78	82.00	81.33	81.67	71.56	17 89	24.72
AKma - 14 B x SPV - 104	72.27		87.78	EE LI	81.33	79.33	78.11	8400	8106
AKme - 14 B x 15 - 2294	00.04	3 3	3.2	53.33	<b>66.00</b>	59.67	65.00	74.67	60.84
AKma - 14 B × 18 - 6115			87.78	80.00	94.00	87.00	79.45	10.08	AA RO
AKme IABYIC 0471	20.00	533	<b>31.67</b>	<b>93.33</b>	97.33	95.33	9167	8	35
	2	806	87.23	88.00	94.00	91.00	86.22	80.06	11 08

-	2 6011 340 - CT 36 16 16	1	4	5		1	×	6	10	=
33	CI-CI-CE-PD X 907 -1 XG	5.00	60.06	94.45	92.67	00.06	91.33	93.00	92.78	92.89
s 1	SKI - 20B X SPV - 946	84.45	87.78	86.12	84.00	86.00	85.00	84.22	86.89	85,56
37	SRT - 26B x SPV -104	92.23	96.67	94.45	69.33	72.00	70.67	80.78	84.34	8256
8	SRT - 26B x IS - 2284	84.45	82.23	83.34	88.00	78.67	83.33	86.22	80.45	83.34
ŝ	SRT - 26B x IS - 6335	78.89	84.45	81.67	00:06	89.33	89.67	84.45	86.89	85.67
40	SRT - 26B x IS – 9471	82.23	84.45	83.34	00:06	95.33	92.67	86.11	89.89	88.00
41	GJ-35-15-15 x SPV - 946	86.67	94.45	90.56	85.33	88.00	86.67	86,00	91.22	8861
42	GJ-35-15-15 x SPV- 104	45.56	54.45	50.00	83.33	86.00	84.67	64.45	70.22	67.33
43	GJ-35-15-15 x IS - 2284	85.56	85.56	85.56	90.67	88.00	89.33	88.11	86.78	87.45
4	GJ-35-15-15 x IS - 6335	96.67	<b>98.8</b> 0	97.78	92.00	00:06	91.00	96,96	94.45	94.39
45	GJ-35-15-15 x IS - 9471	78.89	82.23	80.56	92.67	92.00	92,33	85.78	87.11	8645
46	SPV - 946 x SPV- 104	51.11	55.56	53.34	84.67	80.00	82.33	67,89	67.78	67.83
47	SPV - 946 x IS - 2284	96.67	<b>98.8</b> 6	97.78	86.67	92.67	89.67	91.67	95.78	53.72
<b>8</b>	SPV - 946 x IS- 6335	97.78	97.78	97.78	93.33	95.33	94.33	95.56	96.56	9096
<del>\$</del> ;	SPV - 946 x IS 9471	90.06	<b>00</b> .06	<b>00</b> .06	92.00	89.33	90.67	91.00	89.67	90.34
8	SPV - 104 x IS 2284	81.12	86.67	83.89	88.67	89.33	00.68	<b>84.8</b> 0	88.00	86.45
21	SPV - 104 x IS 6335	61.11	70.00	65.56	92.67	93.33	<u>93.00</u>	76.89	81.67	82.62
2	SPV - 104 x IS 9471	83.34	85.56	84.45	92.00	94.00	93.00	87.67	89.78	88.77
8	IS 2284 x IS-6335	<b>3</b> 0.00	<b>69</b> .86	94.45	91.33	92.67	92.00	90.67	95.78	63.22
<b>x</b> :	IS 2284 x IS -9471	91.12	97.78	94.45	88.00	84.00	86.00	89.56	<b>68</b> .06	206
8	IS 6335 x IS 9471	93.34	97 78	95.56	96.00	94.67	96.33	94.67	96.22	95.45
	Mean	80.04	85 70	82.87	84.80	RG 7R	85.70		10.90	5
	% increase (+)/decrease(-)			10.7(+)	8		(+)233	74.70	<b>47</b> .00	(+)463
	W increase over location									
							3.52 (Akola 95)			
		SE (m)	CD 5%		SE (m)			SE (m)	CD 5%	
	< 4	0.450	1.249 6.553		0.430	1.91		0.585	1.702	
	AxB	3 344	9.268		0110	002.0		3.073	276.8	
					2	2000		170.7	670.71	

	I-succession of the second second		Akola-1995			Akola -1996		Poc	S.N. Parentu/Cronnes Action-1955 Action-1956 Powled over Actinitian	
-	6	Ollucator	Ireact	Mcan	Untrented	Treated	Mcan	Untreated	Treated	Mean
	7 1001 //03		4	~	ø	7	æ	م	10	=
	1071-1-201	6.67	12.81	9.74	12.67	10.01	11.34	9.67	11 41	10 54
	ICSB-101B	24.45	22.22	23.33	18.01	16.67	17.34	21.23	10.45	
	Akma-14B	4.44	4.44	4.44	24.67	17.99	21.33	1	2 F	5.5
_	SRT-26B	21.11	13.33	17.22	20.67	19.33	200		1.1	2071
	GJ-35-15-15	0.0	2.22	111	11 90	18.67	15.22	3.4	3.5	10.01
	SPV-946	12.22	11.11	11.67	200	200	200	8.9	10.45 10.45	8.22
	SPV-104	2.22	5.56	3.89	2002	22.22	5.2	171	16.89	14.50
_	IS-2284	0.0	3.33	1.67	15.99	867	10.01		4 9 4 9	8/19/13
	IS-6355	1.1	1.1	F	533		32	3.5	38	31
•	IS-9471	2.22	1.11	1.67	3.33	333	22 F	77.0 72.0	35	222
	SPV-1201 x ICSB-101B	12.22	6.67	9.44	12 67	124	11.01	24.5	12	R S
	SPV-1201 x Abms-14 B	12.22	8.89	10.56	8.67	10.01	0.24	44	8.0	57.0
- -	SPV-1201 x SRT - 26B	7.78	7.78	7.78	12.01	12.67	10.21		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00
••	SPV-1201 x GJ-35-15-15	10.00 00.01	11.11	10.56	12.67	11.34	1200	133	2 2 2 2 2 2 2	801
<u>,</u> ,	946- A-X X 1021- A-IS	20.00	7.78	13.89	16.66	13.99	15.33	18.33		9 14
0,1	SPV-1201 X SPV- 104	12.23	10.00	11.11	10.00	<b>6</b> 676	10,00	11.11	800	
		3.33	4.44	3.89	5.34	3.33	4.34	4.34	3.89	114
		4.44	4.44	4.44	5.34	3.99	4.67	4.89	4 22	456
2 8		6.67	5.56	6.11	6.66	4.67	5.67	6.66	5.11	5.89
8.2	ICOD - IVIB X ANIME 14 B	8.0	7.78.	8.89	13.33	66.6	11.66	11.67	8,89	10.28
= 2		6.67	8.89	7.78	2.99	5.34	6.67	7.33	7.11	122
15		8.9	0.0	55.9 5	5.33	14.01	9.67	7.67	10.34	00.6
23	ICSR - INIB * SPV - IM		11.11	2.5	11.33	12.01	11.67	8.44	11.56	10.01
5	ICSB - 101B x IS - 2284	3.3	00.01 N V V	64 in 1	19.77	10.67	16.67	23.00	13.11	18.06
8	ICSB - 101B x IS - 6335	800	33.5	00.0	0.0	20.0	55.0	1.11	42	5.66
5	ICSB -101B x IS - 9471	333	800	167	8.99 6.99		00.0	8.33	5.45	6.89
<b>9</b> 9	AKma - 14 B x SRT - 26H	52.22	26.67	39.45	14.67	200		0.5	1.6/	3.34
ø	AKma - 14 B x GJ-35-15-15	15.56	8.89	55		55		9 I 23	70.67	27.06
8	AKms - 14 B x SPV - 946	00.01	5.56	178		28	00.5	19.01	11.01 11.11	12.94
=	AKms - 14 B x SPV - 104	15.56	13.33	14.45	17 90	12 67	9 <u>1</u>	5		8.12
2	AKme - 14 B x IS - 2284	10.00	5.56	7.78	10.01	467	800 L		2. 13. 14.	14.89
<b>2</b>	AKma - 14 B x IS - 6335	7.78	5.56	6.67	10.67	534	108	200		
3	AKma - 14 B x IS - 9471	5.56	2.22	3.89	12.01	467		07.0	24.0	5

Table	58 . Contd			70 - 111 A						
-	2		÷	5	6	1	×	6	10	=
n	SRT- 26B × GJ-35-15-15	35.56	23.33	29.45	10.01	11.34	10.67	22.78	17.34	20.06
36	SRT - 26B x SPV - 946	26.67	15.56	21.11	19.34	10.67	15.01	23.00	13.11	18,06
37	SRT - 26B x SPV -104	3.33	4.44	3.89	19.33	14.67	17.00	11.33	9.56	10.45
80	SRT - 26B x IS - 2284	1.11	3.33	2.22	5.99	6.67	6.33	3.55	5.00	428
8	SRT - 26B × IS - 6335	1.11	4.44	2.78	6.67	7.99	7.33	3.89	6.22	5.06
4	SRT - 26B × IS - 9471	2.22	2.22	22	5.34	5.33	5.33	3.78	3.77	3.78
4	GL-35-15-15 x SPV - 946	10.00	5.56	7.78	10.67	11.33	11.00	10.33	8.44	9:39
45	GI-35-15-15 x SPV- 104	11.11	12.22	11.67	17.33	10.66	14.00	14.22	11.44	12.83
4	GL35-15-15 X IS - 2284	3.33	1.11	222	6.67	6.67	6.67	5.00	3.89	4.45
\$	GI-35-15-15 x [S - 6335	1.11	1.11	1.11	<b>66</b> .6	5.33	7.66	5.55	322	4.39
45	GI-35-15-15 x IS - 9471	2.22	3.33	2.78	3.99	8.00	6.00	3.11	5.67	4.39
\$	SPV - 946 x SPV- 104	8.89	8.89	8.89	7.33	8.67	8.00	8.11	8.78	8.44
47	SPV - 946 x IS - 2284	4.44	1.11	2.78	8.67	4.67	6.67	6.56	2.89	4.72
8	SPV - 946 x IS- 6335	5.56	0.0	2.78	7.33	2:00	4.66	6.44	1.00	3.72
4	SPV - 946 x IS 9471	7.78	3.33	5.56	8.66	4.66	6.66	8.22	4.00	6.11
8	SPV - 104 x IS 2284	6.67	3.33	5.00	11.33	12.67	12.00	00.6	8.00	8.50
5	SPV - 104 x IS 6335	17.78	11.11	14.45	4.66	9.33	66.9	11.22	10.22	10.72
22	SPV - 104 x IS 9471	5.56	2.22	3.89	4.66	1.99	3.33	5.11	2.11	3.61
S	IS 2284 x IS-6335	4.44	6.67	5.56	4.67	4.00	4.34	4.56	5.33	4.95
7	IS 7284 × IS -9471	3,33	3.33	3.33	8.01	6.01	7.01	5.67	4.67	5.17
8	IS 6335 x IS 9471	222	4.44	3.33	4.67	3.34	4.01	3.45	3.89	3.67
	Mean	9.443	6.93	8.18	10.79	2.32	6.56	10.26	4.63	7.45
	% increase (+)/decrease(-)			(-)26.51			(-)78.49			(-)54.87
	over untreated									
	% increase over location			19.80 (Akola 96)						
		SE (m)	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
	<	0.492	1.363		0.344	0.954		0.377	1.097	
	8	2.577	7.145		1.806	5.006		1.979	5.177	
	AXB	3.645	10.105		PCC:7	nan' /		FR/ 7	8.1 <del>4</del> 5	

70 - 111 A

Table 59. Effect of tre-treatment on $F$ nallidarizente (%) (65) of narrente and F. crossees at $4x_{14}$ , 1005 and $1x_{15}$ , 1005	Pooled over bestime	Meun Unireated Treated Mean		0.33 0.00 0.33 0.17	0.00 2.33	267	100 200	000 333	0.33 3.00	000	0.67 1.33	1.33 1.33	033	067 000	0.00	000	1.33 0.00 1.33 0.67	000	000	0.00	0.00	1.00 0.33 0.67	0.67	0.00 0.67	0.00 0.00		0.00 1.33 (	0.00 1.33		0.67 0.00	1.00 0.67 0.33 0.50	1.67 0.67	0.00 0.33	2.00 1.00	2.00	1.67 1.00	1.00 0.67 0.33 0.50	Contri
nd F. crosce	Akola -1996	Treated	7	0.67	4.67	5.33	4.00	6.67	6.00	6.67	2.67	2.67	0.67	0.0	2.67	200	2.67	0.67	0.67	00.00	2:00	0.67	0.67	1.33	00.0	1.33	2.67	2.67	0.67	00.0	0.67	1.33	0.67	2:00	1.33	2.00	0.67	
of narents a	N N N N N N N N N N N N N N N N N N N	Untreated	9	0.00	0.0	0.0	2.00	0.0	0.67	0.0	1.33	2.67	0.67	1.33	800	0.0	0.0	0.0	0.0	2.00	0.00	2.00	1.33	0.0	0.00	2.67	0.00	0.00	0.67	1.33	1.33	3.33	0.00	4.00	4.00	3.33	1.33	
(SD) (%) 6		Mean	\$	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.56	0.0	0.00	0.0	0.0	0.00	0.0	0.0	80	0.0	0.0	0.00	0.0	0.0	0.0	0.0	00.0	00.00	
ullidor oseun	Akola-1995	Treated	4	0.00	0.00	0.00	0.0	0.0	0.00	0.0	0.00	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.00	0.0	0.0	0.0	0.0	0.0	8	80	0.0	80	0.0	0.0	0.0	0.0	0.0	0.0	
ent on F. no		Untreated	3	0.0 0	0.0	0.0	0.0	0.0	00.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.11	8.0	0.0	0.00	0.00	80	0.0	000	00.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00:0	
59. Effect of pre-treatme	Parentis/Crosses		2	SPV-1201	ICSB-101B	Akms-14B	SRT-26B	GJ-35-15-15	SPV-946	SPV-104	IS-2284	IS-6335	IS-9471	SPV-1201 x ICSB-101B	SPV-1201 x Abms-14 B	SPV-1201 x SRT - 26B	SPV-1201 x GJ-35-15-15	SPV-1201 x SPV-946	SPV-1201 x SPV- 104	SPV-1201 x IS -2284	SPV-1201 x IS-6335	SPV-1201 x IS - 9471	ICSB - 101B x AKina 14 B	ICSB - 101B x SRT- 26 B	ICSB - 101B x 01-35-15-15	ICSB - 101B x SPV - 946	ICSB - 101B X SPV - 104	ICSB - 101B X IS - 2284	1000 1010 X 15 - 6333		AKIMS - 14 B X SKI - 20B	AKms - 14 B X GJ-35-15-15	AKms -14 B x SPV - 946	AKma - 14 B x SPV - 104	AKms - 14 B x IS - 2284	AKma - 14 B x IS - 6335	AKmu - 14 B x IS - 947]	
Table	S.N.		-	-	7	ň	4	s	9	2	8	<u>م</u>	01	=	12	6	1	5	16	17	8	61	สเ	51	5	22	5 2	93	9 Ş	38	5	2	R :	F I	2	2	Ā	

SRT- 26B		~	4	\$	و	7	80	ه	10	=
SDT. JAL	SRT- 26B x GJ-35-15-15	0.0	00 [.] 0	0.00	00:0	0.00	00.0	000	000	000
	SRT - 26B x SPV - 946	0.0	0.00	0.00	00.0	6.00	3.00	000	300	150
SRT - 26E	SRT - 26B x SPV -104	0.0	0.0	0.00	0.67	2.00	1.33	0.33	5	0.67
SRT - 26E	SRT - 26B x IS - 2284	0.00	0.00	0.00	1.33	1.33	1.33	0.67	0.67	0.67
SRT - 26E	3 x IS - 6335	00.0	0.00	0.00	3.33	3.33	3.33	1.67	167	167
SRT - 26E	SRT - 26B x IS - 9471	0.0	0.00	0.00	1.33	2.00	1.67	0.67	ŝ	
GI-35-15-	GJ-35-15-15 x SPV - 946	0.0	0.00	0.0	0.67	0.0	0.33	0.33	200	
GJ-35-15-	GJ-35-15-15 x SPV- 104	0.00	0.00	0.00	1.33	1.33	1.33	0.67	0.67	061
GI-35-15-	GJ-35-15-15 x IS - 2284	0.00	0.00	0.00	3.33	2.00	2.67	1.67	8	13
GI-35-15-	3J-35-15-15 x IS - 6335	0.00	0000	00.0	3.33	2.00	2.67	167	8	5
GI-35-15-	3J-35-15-15 x IS - 9471	0.00	000	0.0	1.33	200	1.67	0.67	8	20
SPV - 946	SPV - 946 x SPV- 104	0.0	0.00	0.00	0.67	0.67	0.67	0.33	0.33	2030
SPV - 946	SPV - 946 x IS - 2284	0.0	0.00	0.0	2.67	2.67	2.67	1 33	133	1
SPV - 946	i x IS- 6335	0.00	00.0	0.00	1.33	0000	0.67	0.67	8	
SPV - 946	SPV - 946 x IS 9471	0.00	00:0	0.00	3.33	2.67	3,00	1.67	133	52
SPV - 104	SPV - 104 x IS 2284	0.00	000	0.00	6.00	2:00	4,00	3.00	8	00
SPV - 104	SPV - 104 x IS 6335	0.00	000	0.00	1.33	5.33	3.33	0.67	2.67	16
SPV - 10	SPV - 104 x IS 9471	00.0	000	00:0	2.00	0.67	1.33	100	033	067
IS 2284 × IS-6335	IS-6335	0.00	0.0	0.0	1.33	4.67	3.00	0.67	2.33	150
IS 2284 × IS -9471	IS -9471	0.00	00.0	0.0	4.67	6.00	5.33	2.33	000	267
IS 6335 x IS 947	IS 9471	0.0	800	0.00	2.00	0.67	1.33	8	0.33	0.67
Mean		0.02	000	0.01	142	212	171	0.70	5	
% increas	% increase (+ )/decrease(-)			(-)100.00	1		62,61(+)	-	3	(+)47.00
over untreated	ated									
% Increase	% increase over location						176.00			
		SE (m)	CD 5%		SE (m)	CD 5%	(CE BONY)	SF (m)	CD 5%	
	v	0.014	0.039		0.169	0.168		0.118	5). 1343	
	8	0.075	0.208		0.885	2.454		0.623	1.818	
	AxB	0.106	0.294		1.252	3.471		0.881	2.564	

			Akola-1995			Akola - 1996		ond	Pooled over locations	
		Untrated	Treated	Mean	Untreated	Trested	Mean	Untreated	Treated	Mean
_	2	e.	+	5	9	-	~	6	10	=
	SPV-1201	111	7.78	4.44	45.33	45.36	45.35	23.22	26.57	2490
	ICSB-101B	28.89	27.78	28.33	45.33	39.32	42.33	37 11	33.66	36.33
	Akms-14B	6.67	20:00	13.33	24.67	37.36	31.01	15.67	2.8.68	325
	SRT-26B	20.00	16.67	18.33	48.67	34.00	4133	34.33	25.33	2802
	GI-35-15-15	6.67	17 78	12.22	49.33	30.68	40.01	28.00	24.23	26.11
	SPV-946	23.33	15.56	19.45	51.33	28.68	40.01	27.25	22.52	22
	SPV-Jum	35.56	33.34	34.45	28.67	16.68	22 67	3.55	222	
	IS-2284	12.22	22.22	17.22	43.33	30.68	37.01	27.78	26.45	2222
	S-633<	5.56	17.78	11.67	22.00	14.00	18.00	13 78	15.89	1483
_	IS-947	7.78	14.45	11,11	20.00	16.68	18.34	13.89	15.55	
	SPV-1201 x LCSB-101B	17.78	2111	19.45	48.67	46.68	47.67	33.22	33.90	3356
5	SPV-1201 x Akms-14 B	32.22	13.33	22.78	50.67	40.00	45.33	4145	26.67	2406
<u>ت</u>	SPV-1201 x SRT - 26B	36.67	21.11	28.89	48.00	44.68	46.34	42 33	32.90	3767
Z	SPV-1201 x GJ-35-15-15	48.89	26.67	37.78	34.00	45.36	39.68	41.45	36.01	1.95
2	3PV-1201 x SPV-1946	37.78	26.67	32.22	37,33	39.36	38,35	37.56	33.01	35.2
2	SPV-1201 x SPV- 104	34.45	21 11	27.78	48.00	44.00	46.00	41.22	32.56	368
	SPV-1201 x IS -2284	13.33	8 89	11.11	24.67	9:36	17.01	19.00	9.12	14.06
2	SUV-1201 X 15-0335	17 78	12 23	15.00	16.67	8.68	12.67	17.22	10.45	1384
	SPV-1201 X IS - 9471	15.56	11,11	13.33	16.00	9.36	12.68	15.78	10.24	1301
_	IC:SB - 10115 X AKma 14 B	<b>1</b>	40.00	36.67	47.33	32.68	40.01	40.33	36.34	38.34
	ICSE 101B X SRT- 26 B	20 00	32.22	26.11	62.00	28.68	45.34	41.00	30.45	35.75
	ICSB - 101B x GI-35-15-15	31.11	45 56	38.34	60.67	46.00	53.33	45.89	45.78	4583
	ICSB - 101B x SPV - 946	38.89	32.22	35.56	45.33	26.68	36.01	42 11	29.45	35.76
	ICSB - 101B x SPV - 104	27.78	25 56	26.67	38.67	39.32	38.99	33.22	32.44	328
	ICSB - 101B x IS - 2284	37 78	18.89	28.33	34.00	19.36	26.68	35.89	19.12	275
81	ICSB - 101B × IS - 6335	82	18.89	24.45	23.33	16.00	19.67	26 67	17,44	2206
	1/28 - 10 18 X 12 - 34/1	37.75	10.00	13.89	24.00	16.00	20:00	20.89	13.00	1694
_	AKms - 14 B x SRT - 26B	15.56	14.45	15.00	41.33	48.68	45.01	28.44	31.56	CODE
	AKms - 14 B x GJ-35-15-15	34.45	31 11	32.78	44.67	50.00	47.33	39.56	40.56	40.06
~	AKnus -14 B x SPV - 946	41,11	33 34	37.22	47.33	52.00	49.67	44 22	42.67	43.45
_	AKms - 14 B x SPV - 104	43.34	32.22	37.78	24.00	39.36	31.68	33 67	35.79	347
~		33.34	24 45	28.89	38.00	22.00	30,00	35.67	23.22	2945
8	AKms 14 B x IS - 6335	17 78	32 22	25.00	27 33	16.00	21.67	22 56	24.11	23.33
_	AKIII8 - 14 13 x 15 - 9471	27 78	31.11	29.45	34 00	22 68	<b>N2 8C</b>	20.90	76.00	

-	2	3	-	5	6	7	8	6	01	=
ž	SRT- 26B x GJ-35-15-15	45.56	24.45	35.00	50.67	42.00	46.33	48.11	33.22	40.67
8	SRT - 26B x SPV - 946	42.22	21.11	31.67	44.67	48.00	46.33	43.45	34.56	39.00
37	SRT - 26B x SPV -104	14.45	13.33	13.89	36.67	36.68	36.67	25.56	25.01	25.28
R	SRT - 26B × IS – 2284	12.22	16.67	14.45	38.00	17.36	27.68	25.11	17.01	21.06
۶	SRT - 26B x IS - 6335	14.45	24.45	19.45	31.33	16.68	24.01	22.89	20.56	21.73
\$	SRT - 26B x IS - 9471	23.33	12.23	17.78	27.33	20.00	23.67	25.33	16.11	20.72
41	GJ-35-15-15 x SPV - 946	23.33	23.33	23.33	51.33	36.68	44.01	37.33	30.01	33.67
ţ	GI-35-15-15 x SPV- 104	21.11	20:00	20.56	41.33	48.00	44.67	31.22	34.00	32.61
ţ	GJ-35-15-15 x IS - 2284	22.22	13.33	17.78	34.67	21.36	28.01	28.45	17.35	22.90
1	GJ-35-15-15 x IS - 6335	15.56	14.45	15.00	29.33	22.00	25.67	23.44	18.22	20.33
<b>\$</b>	GJ-35-15-15 x IS - 9471	20.00	16.67	18.33	28.67	34.00	31.33	24.33	25.33	24.83
46	SPV - 946 x SPV- 104	28.89	18.89	23.89	47.33	36.68	42.01	38.11	27.78	32.95
47	SPV - 946 x IS - 2284	23.33	12.22	17.78	26.00	14.00	20:00	24.67	13.11	18.89
48	SPV - 946 x IS- 6335	14.45	5.56	10.00	28.00	14.00	21.00	21.22	9.78	15.50
49	SPV - 946 x IS 9471	10.00	12.22	11.11	26.00	20.00	23.00	18.00	16.11	17.06
8	SPV - 104 x IS 2284	28.89	22.22	25.56	31.33	18.00	24.67	30.11	20.11	25.11
51	SPV - 104 x IS 6335	27.22	21.11	21.67	30.00	20.68	26.34	26.11	20.90	23.50
22	SPV - 104 x IS 9471	8.89	11.11	10.00	34.00	20.00	27.00	21.44	15,56	27
3	IS 2284 x IS-6335	20.00	18.89	19.45	25.33	16.68	21.01	22.67	17.78	
3	IS 2284 x IS -9471	22	17.78	20.00	26.00	17.36	21.68	24.11	17.57	20.84
2	IS 6335 x IS 9471	25.56	17.78	21.67	21.33	13.36	17.35	23.45	15.57	19.51
	Mean	23.83	20.65	22.24	36.44	28.89	32.66	30.14	747	27.46
	% increase (+)/decrease(-)			(-)13.34			(-)22.36			(-)17.82
	over untreated									2
	% increase over location						46.85 / Akrole 05)			
	<ul> <li></li> </ul>	SE (m) 1.313	CD 5% 3.642		SE (m) 0.796	CD 5% 2.206		SE (m) 0.754	CD 5% 2.194	
	B AxB	6.890 9.744	27.150		<b>4</b> .173 5.902	11.568 16.360		3.960 5.601	11.561 16.299	

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mem         United         Tradeol         Tradeol         Mem         United           CSN-101         2         3         5         5         6           CSN-101         2         13.33         15.00         5         6           Amm-101         2         33.4         5         5         6           Amm-101         25.55         25.56         25.56         25.56         25.56           STV-101         21.51         33.34         47.76         25.55         25.66         25.56         25.60           STV-101         21.51         33.34         40.00         23.33         47.73         35.56         25.60         25.56         25.60         25.56         25.60         25.60         25.60         25.60         25.56         25.60         25.60         25.60         25.60         25.66         25.66         25.66         25.66         25.66         25.66         25.60         25.66         25.60         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66         25.66			Akola - 1996		Poole	Pooled over locations	
SV-1301         2         3         4         5         6         7         8         9         10           Atme-1418         23:11         23:33         27:20         23:33         27:20         13:33         15:11         13:33         15:11         16:33         16:11         16:33         16:11         16:33         16:11         16:13         16:11         16:13         16:11         16:13         16:11         16:13         16:11         16:13         16:11         16:13         16:11         16:13         16:11         16:13         16:11         16:13         16:11         16:13         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:13         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11         16:11 <th>2         3         4         5         6           CSB-101b         CSB-101b         2111         3334         5780           CSB-101b         CSB-101b         2111         3334         2722           CSB-101b         2555         2555         5555         5555           SRV-301         2667         2222         2111         3334         2722           SRV-301         2667         2222         3111         2555         5555         5555           SRV-301         20.00         23.33         26.67         25.22         3111         21.67         23.33         2555         3111         21.67         23.33         25.67         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69</th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th>Treated</th> <th>Mean</th>	2         3         4         5         6           CSB-101b         CSB-101b         2111         3334         5780           CSB-101b         CSB-101b         2111         3334         2722           CSB-101b         2555         2555         5555         5555           SRV-301         2667         2222         2111         3334         2722           SRV-301         2667         2222         3111         2555         5555         5555           SRV-301         20.00         23.33         26.67         25.22         3111         21.67         23.33         2555         3111         21.67         23.33         25.67         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69         25.69		-				Treated	Mean
FYV-1001         TGM         TG	FSV-1001         16.67         13.33         15.00           Ammer 10B         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.57         25.71         25.72         25.72	4	9			6	10	=
Circle 1018         Z111         Z334         Z722         T133         T22         T333         T233	CSP-1018 25,11 33,34 27,22 25,23 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,55 25,	13.33		18.67	19.33	18.33	16.00	17.17
Attend (d)         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101         101 </td <td>Admin (18)         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.57         25.72         27.11         27.11         27.11         27.22         25.72         27.22         25.72         27.22         27.22         27.23         27.22         27.23         27.23         27.23         27.23         27.23         27.23         27.23         27.24         27.11         27.22</td> <td>33.34</td> <td></td> <td>12.67</td> <td>13.00</td> <td>17.20</td> <td>2300</td> <td>, i c</td>	Admin (18)         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.56         25.57         25.72         27.11         27.11         27.11         27.22         25.72         27.22         25.72         27.22         27.22         27.23         27.22         27.23         27.23         27.23         27.23         27.23         27.23         27.23         27.24         27.11         27.22	33.34		12.67	13.00	17.20	2300	, i c
RFX-208         COM         2567         23.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33         15.33 <th1< td=""><td>SF7-268         25,50         25,67         23,33           SFV-946         SFV-946         24,45         25,55         54,45           SFV-946         SFV-946         24,45         25,55         54,45           SFV-946         SFV-946         24,45         25,55         56,67         25,33           SFV-946         SFV-946         26,67         25,55         54,45         55,56         56,67         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         &lt;</td><td>25.56</td><td></td><td>8.00</td><td>6.33</td><td>15.11</td><td>16 78</td><td>5.5</td></th1<>	SF7-268         25,50         25,67         23,33           SFV-946         SFV-946         24,45         25,55         54,45           SFV-946         SFV-946         24,45         25,55         54,45           SFV-946         SFV-946         24,45         25,55         56,67         25,33           SFV-946         SFV-946         26,67         25,55         54,45         55,56         56,67         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         35,56         <	25.56		8.00	6.33	15.11	16 78	5.5
SU-15-15         B667         4.22         64.45         23.33         1467         17.35         23.34           SYV-M6         SYV-M6         20.06         23.33         2667         23.67         17.35         23.34           SYV-M6         SAM         40.46         52.25         54.45         25.67         17.35         23.34           SYV-M6         20.06         23.33         26.77         17.33         17.33         30.05           SYV-M6         20.06         23.33         26.77         17.33         17.33         30.05           SYV-1001         67.27         31.17         27.20         14.67         17.33         30.05           SYV-1001         67.27         31.71         27.33         10.07         21.67         23.33           SYV-1001         27.23         13.71         12.53         10.07         21.67         23.33           SYV-1001         27.72         11.3         10.07         21.67         23.33         30.05           SYV-1001         27.72         11.3         11.3         11.33         10.07         21.87         30.33           SYV-1001         27.73         11.33         11.33         10.07 <td< td=""><td>GL3515151         B667         222         64.6           SFV-946         2000         2333         2667           SFV-104         3000         2333         2667           SFV-104         3000         2333         2667           SFV-104         3000         2333         2667           SFV-104         56.55         44.6         26.55           SFV-101         57.23         31.1         31.6           SFV-101         57.23         31.4         31.7           SFV-101         57.23         31.4         31.7           SFV-101         57.23         31.4         31.7           SFV-101         57.23         31.4         31.7           SFV-101         27.23         31.1         14.6         27.7           SFV-101         27.23         31.1         14.6         27.7           SFV-101         27.24         31.1         14.6         27.7           SFV-101</td><td>26.67</td><td></td><td>16.67</td><td>16 00</td><td>17 67</td><td>2167</td><td>ta ta</td></td<>	GL3515151         B667         222         64.6           SFV-946         2000         2333         2667           SFV-104         3000         2333         2667           SFV-104         3000         2333         2667           SFV-104         3000         2333         2667           SFV-104         56.55         44.6         26.55           SFV-101         57.23         31.1         31.6           SFV-101         57.23         31.4         31.7           SFV-101         57.23         31.4         31.7           SFV-101         57.23         31.4         31.7           SFV-101         57.23         31.4         31.7           SFV-101         27.23         31.1         14.6         27.7           SFV-101         27.23         31.1         14.6         27.7           SFV-101         27.24         31.1         14.6         27.7           SFV-101	26.67		16.67	16 00	17 67	2167	ta ta
SYV-104         2445         2558         2600         2333         1400         1667         2338           SYV-104         3046         2558         2600         2333         1400         1667         2338           Stand         1545         2558         2560         2333         1400         1677         1333         300           Stand         1545         3555         3446         2557         3555         2467         7333         300           Stand         3555         1446         2520         3556         3533         1600         1733         300           Stand         1738         1677         233         1892         7111         2333         300           Stand         1778         1627         723         1600         733         2667         233           Stand         1778         1627         733         1600         733         558           Stand         1778         1627         733         1607         733         538           Stand         1778         1656         2733         1600         733         517           Stand         1711         1446         2733 <td>SIV-946         Subsect         <t< td=""><td>42.22</td><td></td><td>14.67</td><td>17.33</td><td>53.24</td><td>28.45</td><td></td></t<></td>	SIV-946         Subsect         Subsect <t< td=""><td>42.22</td><td></td><td>14.67</td><td>17.33</td><td>53.24</td><td>28.45</td><td></td></t<>	42.22		14.67	17.33	53.24	28.45	
FSVA S204         SEG         1267         133         1000         2133         2135           S5205         S5401         0.000         2.33         355         111         2000         607         1333         3155           S5401         S5401         0.000         2.33         3111         2000         667         1333         3153           S4401         S555         14.45         2667         3563         14.35         2000         2573         3005         2011         3333         3015         2333         3016         3017         3333         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017         3017	SY-104         30.00         23.33         26.67           IS-236         15.6333         40.00         23.33         26.67         35.65           IS-6333         IS-6333         40.00         22.27         3131         55.55         3151           IS-6333         IS-6333         40.00         22.27         3151         55.55         35.55         3151           SYV-1201X K/GN-101B         55.55         11.73         15.222         3161         21.11           SYV-1201X K/GN-161B         23.55         31.71         14.45         25.00         25.00           SYV-1201X K/GN-161B         23.33         16.00         27.22         25.22         25.22           SYV-1201X K/GN-161B         23.33         16.60         27.22         25.22         25.22           SYV-1201X K/GN-161B         23.33         31.11         14.45         27.22         27.22           SYV-1201X K/GN-161B         27.21         27.22         25.22         25.22         25.22         25.22           SYV-1201X K/GN-101B         27.21         14.45         27.22         25.65         25.66         27.66         27.73           SYV-1201X K/GN-101B         27.21         17.78         24.45	25.56		14.00	18.67	23.89	10.78	21.83
S238         S445         267         355         2467         1000         1733         3455           S4971         S4971         S445         255         33.4         4771         19.33         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         3455         34	IS-228         44.45         25.57         35.56           IS-033         SEV1	23.33		7.33	10.00	13	5.5	32
Servit         Book         <	Is-633         40.00         22.22         3111           IS-971         IS-971         25.55         14.45         25.00           SPV-1201 x (C3b-101B)         35.55         14.45         25.00           SPV-1201 x (C3b-101B)         35.55         14.45         25.00           SPV-1201 x (C3b-101B)         35.55         14.45         25.00           SPV-1201 x SPT-3461         31.73         15.22         15.01           SPV-1201 x SPV-3461         31.73         15.22         15.00           SPV-1201 x SPV-3461         31.73         15.22         15.00           SPV-1201 x SPV-3461         31.71         14.45         27.22           SPV-1201 x SPV-3461         31.11         14.67         27.22           SPV-1201 x SPV-3461         31.11         14.67         27.22           SPV-1201 x SPV-3461         31.11         14.67         27.23           SPV-1201 x A5.71         10.10         10.10         10.10         10.10           SPV-1201 x A5.71         10.11         10.55         25.23         16.33           SPV-1201 x A5.72         10.11 x C1.73         21.61         10.66         27.73           SPV-1201 x A5.72         10.12 x C1.73         21.61	26.67		10.01	17.33	34.56		26.45
Style         SZ3         3.3.4         4.7.8         19.33         6.00         12.67         6.03           SYV-1001 x (CSB-1011         35.25         3.3.4         4.7.8         19.33         6.00         12.67         6.03           SYV-1001 x (CSB-1011         35.55         13.45         27.13         13.05         21.11         23.33         15.67         23.04           SYV-1001 x (CSB-1011         35.55         13.01         14.67         27.33         15.67         23.06         23.11           SYV-1001 x (CJ-55.15)1         37.17         14.45         27.27         14.00         75.33         15.67         23.33           SYV-1001 x (CJ-55.15)1         37.11         14.45         27.72         25.58         35.33         15.00         24.56         23.33         14.00         26.55         25.58         35.55         15.55         25.33         14.00         26.55         25.58         25.53         14.67         27.23         25.58         25.58         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55         25.55	Syry:1201x (SSB-1011)         5.223         3.3.4         47.78           SWV-1201x (SSB-1011)         5.525         3.3.4         47.78           SWV-1201x x(SSB-1011)         5.525         3.3.4         47.78           SWV-1201x x(SWV-1011)         5.525         3.3.4         47.78           SWV-1201x x(SWV-1011)         3.533         18.89         27.111           SWV-1201x x(SVV-1011)         3.7.78         18.69         27.111           SWV-1201x x(SVV-1011)         3.7.78         3.1.11         14.45         27.72           SWV-1201x x(SVV-1011)         3.7.78         3.1.11         14.45         27.72           SWV-1201x x(SVV-1011)         3.7.78         3.1.11         14.45         27.72           SWV-1201x x(SVV-1011)         3.7.56         3.5.56         25.56         25.56           SWV-1201x x(SVV-1011)         3.7.78         3.1.11         10.56         25.56           CSS1- 1011x x(SVV-1011)         3.7.78         3.1.11         10.55         25.56           CSS1- 1011x x(SVV-1011)         17.778         24.46         27.11         10.55           CSS1- 1011x x(SVV-1011)         17.778         24.46         27.11         10.55         27.78           CSS1- 1011x x(SV	22.22		6.67	13 33	30.00	1.4.45	22
Stylink (MB-101)         35.56         14.45         25.00         25.75         36.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75         25.75	SWV-101 x 1CSB-101B         35.55         14.45         25.00           SWV-101 x 1CSB-101B         35.55         14.45         25.00           SWV-101 x 1CSB-101B         35.55         14.45         25.00           SWV-101 x 1CSB-101B         37.78         12.22         15.00           SWV-101 x 1ST-204B         77.78         12.22         15.00           SWV-101 x 1ST-204B         31.11         14.45         22.73           SWV-101 x 1ST-204B         31.11         14.45         22.73           SWV-101 x 1ST-204B         31.11         14.45         22.73           SWV-101 x 1S-204B         31.17         24.45         23.23           SWV-101 x 1S-204B         17.78         24.45         21.31           CSSB-10101 x SWV-306         7.77         24.45         27.78           SW1 x 1S-204B         10.00         7.78         24.45         27.78           CSSB-10101 x SWV-306 <td>33.34</td> <td></td> <td>6.00</td> <td>12.67</td> <td>40.78</td> <td>1901</td> <td>12</td>	33.34		6.00	12.67	40.78	1901	12
Stry-1201 x Stry - 201         Stry-201         Stry-20	SW-1201 x SW-1201 x Ameria 18         3.33         18.48         21.11           SW-1201 x	14.45		18.67	20.67	29.11	16.56	280
SYV-1001 x ST-260         17.78         12.22         14.00         267         27.35         25.86           SYV-1001 x SV-946         31.11         14.45         22.73         14.00         26.7         33.35         15.6         27.35         25.86         27.35         25.86         27.35         25.86         27.35         25.86         27.35         25.86         27.35         25.86         27.35         25.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86         27.86<	SW-1201 x ST-208         17.78         12.22         15.00           SW-1201 x ST-208         7.73         15.22         15.00           SW-1201 x ST-204         31.11         14.45         22.78           SW-1201 x ST-204         31.11         14.45         22.78           SW-1201 x ST-204         31.11         14.45         22.78           SW-1201 x ST-204         35.51         15.55         22.73           SW-1201 x ST-204         35.51         15.55         25.32           SW-1201 x ST-204         35.51         15.55         25.33           SW-1201 x ST-204         35.51         15.55         25.33           SW-1201 x ST-304         35.51         15.55         25.33           SW-1201 x ST-304         17.78         34.45         11.11           CSB-1011 x GU-3-15-15         17.78         24.45         27.78           CSB-1011 x GU-3-15-15         17.778         24.45         27.78           CSB-1011 x SU-34         30.00         7.46         22.78           CSB-1011 x SU-34         30.00         7.46         22.78           CSB-1011 x SU-34         30.00         7.46         22.78           CSB-1011 x SU-34         30.00         7.46 <td>18.89</td> <td></td> <td>18.00</td> <td>20.67</td> <td>23.33</td> <td>1.8.44</td> <td>20.80</td>	18.89		18.00	20.67	23.33	1.8.44	20.80
StrV-1001 x50-x51-51         37.78         1667         27.22         14.00         17.33         1667         25.66           StV-1001 x50-x51         31.11         14.66         27.22         14.00         17.33         1567         25.66           StV-1001 x50-x51         31.11         14.66         27.22         13.33         14.07         21.22           StV-1001 x56-x51         31.11         15.66         25.33         11.67         24.65           StV-1001 x56-x51         31.11         15.66         25.33         11.67         24.65           StV-1001 x56-x51         31.11         15.66         25.33         11.67         24.65           StV-1001 x56-x51         31.11         10.66         5.33         11.67         24.65           CS10         0101         11.11         10.05         10.67         13.07         13.67           CS11         0100         11.11         10.05         10.67         13.07         13.67           CS11         0101         11.11         10.05         13.07         13.67         13.67           CS11         0101         11.11         10.05         13.07         13.67         13.67           CS12 <t< td=""><td>SPV-1201 x SPV-46         31.73         16.57         27.22           SPV-1201 x SPV-46         31.11         16.57         27.23           SPV-1201 x SPV-46         31.11         14.67         27.23           SPV-1201 x SPV-46         31.11         14.67         27.23           SPV-1201 x SPV-164         31.11         14.67         27.23           SPV-1201 x SPV-164         31.11         16.55         25.35           SPV-1201 x SP-164         31.11         20.00         20.65           SPV-1201 x SPV-164         31.11         20.00         20.65           SPV-1201 x SPV-7201         10.00         11.11         20.00         20.65           SPV-1201 x SPV-164         17.78         35.44         21.11         20.65         21.11           CSB1-0101 x SPV-301         10.00         11.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11</td><td>12.22</td><td></td><td>20.67</td><td>27.33</td><td>25.89</td><td>15.4</td><td>21 12</td></t<>	SPV-1201 x SPV-46         31.73         16.57         27.22           SPV-1201 x SPV-46         31.11         16.57         27.23           SPV-1201 x SPV-46         31.11         14.67         27.23           SPV-1201 x SPV-46         31.11         14.67         27.23           SPV-1201 x SPV-164         31.11         14.67         27.23           SPV-1201 x SPV-164         31.11         16.55         25.35           SPV-1201 x SP-164         31.11         20.00         20.65           SPV-1201 x SPV-164         31.11         20.00         20.65           SPV-1201 x SPV-7201         10.00         11.11         20.00         20.65           SPV-1201 x SPV-164         17.78         35.44         21.11         20.65         21.11           CSB1-0101 x SPV-301         10.00         11.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11         20.66         21.11	12.22		20.67	27.33	25.89	15.4	21 12
SPV-1001 x SPV-946         31,11         14,45         22.78         11,33         13,00         14,67         27.25           SPV-1001 x SPV-946         31,11         14,45         22.78         11,33         14,00         24,45         27.25           SPV-1001 x SPV-104         34,45         55,50         15,57         25,50         16,57         33,33         11,00         24,45           SPV-1001 x SC-1364         34,45         15,57         25,50         16,57         53,33         11,00         24,45           SYV-1001 x SC-1301         35,16         15,58         25,33         11,00         24,45         23,33         11,00         24,45           SYV-1001 x SFT-261         17,73         24,45         21,11         13,57         13,67         13,67         14,60         24,65           CSU-1011 x SFT-261         17,73         24,45         22,22         66,00         10,067         15,53         13,67         14,60         14,60         24,65         24,45         21,11         33,33         10,67         25,00         26,66         14,33         14,56         16,77         13,67         13,67         13,67         13,67         13,67         13,67         13,67         13,67	SW-1001 x SW-100         31.11         14.45         22.78           SW-1001 x SW-101 x S-204         31.11         14.45         22.78           SW-1001 x S-203         34.45         31.11         14.45         25.28           SW-1001 x S-203         34.45         15.56         25.02         25.33           SW-1001 x S-203         34.45         15.56         25.33         35.56         15.56         25.33           SW-1001 x S-403         31.11         10.10         21.11         21.66         25.56         25.56           SW-1001 x S-477         35.51         17.78         34.46         11.11         10.56         25.56         25.56         25.56         25.56         25.78           CCSU-1011 x CU-3-14-15         17.78         24.46         7.77         24.45         21.11         10.55         22.78           CCSU-1011 x CU-3-14-15         17.78         24.46         7.78         24.46         27.78           CSU-1011 x SU-203         30.00         7.78         24.46         27.78         24.46         27.78           CSU-1011 x SU-203         30.00         7.78         24.46         27.78         24.46         27.78           CSU-1011 x SU-203         30.00	16.67		17.33	15.67	25.80	17 M	21.65
Strv. 100 kt Serv. 104         Z.ZZ         Z.ZZ <thz< t<="" td=""><td>SPV-1001x SPV-104         2.22         2.22         2.22           SPV-101x SPV-104         3.24         5.25         5.50           SPV-101x LS-013         31.11         15.56         5.50           SPV-101x LS-013         31.11         15.56         2.33           SPV-101x LS-013         35.56         15.56         2.50           SPV-101x LS-013         35.56         15.56         2.33           CSB-101x Xr/17         35.56         15.56         2.33           CSB-1011x Xr/17         35.56         17.78         3.34           CSB-1011x Xr/17         3.53         13.11         10.55           CSB-1011x Xr/17         3.54         5.56         2.111           CSB-1011x Xr/17         3.34         15.56         2.111           CSB-1011x Xr/17         3.33         15.56         2.113           CSB-1011x Xr/17         3.33         15.56         2.178           CSB-1011x Sr/17         3.33         15.56         2.178      <tr< td=""><td>14.45</td><td></td><td>18,00</td><td>14.67</td><td>21.20</td><td>16.25</td><td>12</td></tr<></td></thz<>	SPV-1001x SPV-104         2.22         2.22         2.22           SPV-101x SPV-104         3.24         5.25         5.50           SPV-101x LS-013         31.11         15.56         5.50           SPV-101x LS-013         31.11         15.56         2.33           SPV-101x LS-013         35.56         15.56         2.50           SPV-101x LS-013         35.56         15.56         2.33           CSB-101x Xr/17         35.56         15.56         2.33           CSB-1011x Xr/17         35.56         17.78         3.34           CSB-1011x Xr/17         3.53         13.11         10.55           CSB-1011x Xr/17         3.54         5.56         2.111           CSB-1011x Xr/17         3.34         15.56         2.111           CSB-1011x Xr/17         3.33         15.56         2.113           CSB-1011x Xr/17         3.33         15.56         2.178           CSB-1011x Sr/17         3.33         15.56         2.178 <tr< td=""><td>14.45</td><td></td><td>18,00</td><td>14.67</td><td>21.20</td><td>16.25</td><td>12</td></tr<>	14.45		18,00	14.67	21.20	16.25	12
Silv. Flox 18.6-03         34.45         15.56         25.00         16.67         9.33         14.00         26.56         25.56         25.56         25.56         25.56         15.56         25.56         15.56         25.56         15.56         25.56         15.56         25.55         11.00         26.51         15.56         25.55         11.00         26.51         15.56         25.55         15.56         25.55         15.56         25.56         15.56         25.55         15.56         25.55         15.56         25.55         15.56         25.55         15.56         15.56         25.55         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.57         15.50         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.56         15.57         15.56	SIV-1001 x 15 - 256 SIV-1001 x 15 - 256 SIV-1001 x 15 - 256 SIV-1001 x 15 - 256 SIV-1001 x 15 - 371 SIV-1001 x 15 - 371 CCSH - 0011 x SIV-261 CCSH - 0011	22.22		27.33	27.00	24.45	24.78	2461
Silver Joint KS- with Silver Joint KS- with CCSN - Dill X Admit Hit CCSN - Dill X SHT- XKI CCSN - Dill X SHT - XKI Admit - HI X SHT - XKI - Dill X S	SIV-1001x IS-5071 31/11 1556 2536 CSSP (CSSP - 1001x XS-2071 51/11 25/05 2566 CSSP (CSSP - 1001x XS-2011 11 25/05 2566 CSSP (CSSP - 1001x XS-2011 11 25/05 25/66 CSSP - 17.78 13/11 10/56 CSSP - 10/11 XS-2011 17.78 13/11 10/56 CSSP - 17.78 13/11 10/56 CSSP - 10/11 XS-2011 11.78 13/11 10/56 CSSP - 10/11 XS-2011 11.78 13/11 11/11 11/11 11/10 CSSP - 10/11 XS-2011 11.77 13/11 11/11 11/11 10/20 CSSP - 10/11 XS-2011 11.77 13/11 11/11 11/11 11/11 11/20 CSSP - 10/11 XS-2011 11.77 13/11 11/11 11/11 11/10 CSSP - 10/11 XS-2011 11.77 13/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11/11 11	15.56		9.33	14.00	26.56	12 44	19.50
Strength MS, Servit 1         35.55         15.56         25.56         16.67         5.33         1100         2611           CCSN - 1011x XARm 141         35.55         16.56         35.56         16.67         5.33         1100         2611           CCSN - 1011x XARm 141         21.11         20.05         15.66         16.67         5.33         1100         2611           CCSN - 1011x XARm 141         21.11         20.05         11.11         10.55         18.00         10.00         14.00           CCSN - 1011x XR1- 34.15         17.78         18.46         21.11         33.33         10.67         15.65         25.65           CCSN - 1011x XR1- 34.73         24.46         21.11         33.33         10.67         25.66         10.67         15.65         35.65           CCSN - 1011x XR1- 34.73         30.00         74.45         21.13         33.33         10.67         25.67         35.65           CCSN - 1011x XR1- 34.73         30.00         75.56         22.78         31.33         10.67         25.67         25.66           CCSN - 1011x XR1- 34.73         30.33         15.65         22.78         20.00         19.67         26.77         26.67           CCSN - 1011x XR1- 34.73	SW-1001 A15 - 971         3.55         15.56         25.56           CS31 - 1011 A15 - 971         3.55         15.56         25.56           CS31 - 1011 A2877-261         11.00         10.00         11.81         10.55           CS31 - 1011 A2877-261         17.78         18.94         23.34         15.56         23.34           CS31 - 1011 A2877-261         17.78         18.94         23.44         23.14         13.33           CS31 - 1011 A2877-261         17.78         23.46         23.14         23.34         15.56         24.76           CS31 - 1011 A2877-261         20.00         7.78         23.39         15.56         24.46         27.17           CS31 - 1011 A2877-261         33.34         15.56         24.46         27.18         27.86           CS31 - 1011 A2877-261         33.34         15.56         24.46         27.78           Adma - H0 B 5.877         30.00         7.78         22.27         26.66           Adma - H0 B 5.877         36.86         11.11         14.45         12.00           Adma - H0 B 5.877         36.86         27.27         14.46         18.33           Adma - H0 B 5.877         36.86         27.27         14.46         18.33	15.56		5.33	11.67	24.56	10.44	17 60
CCSN - 1018: Xerkm 4/10         21.11         2005         16.67         10.67         13.67         18.68           CCSN - 1018: XSR7-2613         10.00         11.11         10.55         16.67         10.67         13.67         18.68           CCSN - 1018: XSR7-2613         10.00         11.33         10.67         15.53         18.69           CCSN - 1018: XSR7-3613         10.77         18.68         18.33         12.73         13.67         18.68           CCSN - 1018: XSR7-364         17.78         18.68         18.33         12.73         13.67         13.66           CCSN - 1018: XSR7-364         2000         74.45         22.22         15.60         11.33         13.67         18.60           CCSN - 1018: XSR7-304         2000         75.76         22.28         32.200         13.67         18.60           CCSN - 1018: XSR - 2013         33.34         15.56         22.78         32.00         13.76         18.00           CCSN - 1018: XSR - 2013         33.34         15.56         22.78         32.00         13.67         33.67           CCSN - 1018: XSR - 2013         33.34         15.56         22.78         34.67         36.73           Acture + 1018: SFS - 2013         33.34	CSB-1011x AKam 41         21,11         2000         20.56           CSB-1011x AKam 41         21,11         2000         20.56           CSB-1011x AKam 41         10,01         10,01         20.66           CSB-1011x AKam 41         10,00         11,11         10,55           CSB-1011x XST*241         17,78         18.89         18.33           CSB-1011x XST*244         10,00         7.45         22.73           CSB-1011x XST*244         20,00         7.46         21.11           CSB-1011x XST*244         20,00         7.46         21.11           CSB-1011x XST*243         30,00         7.56         22.78           CSB-1011x XST*241         30,00         7.56         22.78           Kam - H0 XST*241         30,00         7.56         22.78           Kam - H0 XST*241         11,11         14,45         20.46           Kam - H0 XST*261         11,11         14,45         12.78           Kam - H0 XST*261         17.78         22.27         20.00           Kam - H0 XST*261         17.78         14.45         18.33           Kam - H0 XST*261         17.78         14.45         18.33           Kam - H0 XST*261         17.78         14.45	15.56		5.33	11.00	26.11	10.44	18.28
CCSN : D011X STAT 201         10.00         11.11         10.55         15.00         16.00         14.00           CCSN : D011X STAT 201         10.00         11.11         10.55         15.00         16.00         14.00           CCSN : D011X STAT 201         17.78         18.89         10.33         16.67         5.33         16.67         5.36           CCSN : D011X STAT 201         7.77         24.45         21.11         3.33         16.67         22.66         16.80         16.80         25.65         22.78         16.00         21.00         35.65           CCSN : D011X ST 2010         7.78         23.84         5.56         22.78         32.00         19.67         25.65           CCSN : D011X ST 2010         7.78         23.84         5.56         24.78         20.00         19.67         25.65           CCSN : D011X ST 2010         7.33         30.00         15.56         24.78         20.00         19.67         25.67           CCSN : D011X ST 2010         3.33         16.67         22.78         30.00         16.67         22.78         34.65           AKma - 411X SU-35.51.51         11.11         10.00         14.67         18.67         10.33         14.78	CS9-1001x S87-26 1000 11,11 10.55 1000 21,25 1000 21,25 1000 21,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25 10,25	20:00		10.67	13.67	18.80	15.33	17.11
CG8         D018 XC1-354-15         17.78         18.88         16.33         22.00         8.67         15.33         19.58           CG81-0018 XC1-364         17.78         24.45         21.13         33.30         0.67         15.33         19.56           CG81-0018 XG1+ 704         20.00         24.45         21.13         33.30         0.67         25.03         35.66           CG81-0018 XG1+ 704         20.00         24.45         23.22         16.00         11.33         10.67         36.00         36.67           CG81-0018 XG1+ 704         20.00         24.45         22.27         31.33         10.67         36.07         36.07           CG81-0018 XG1+ 704         30.00         15.56         22.78         31.33         10.67         36.77         36.07           CG81-0018 XG1+ 704         33.34         15.56         22.78         31.33         10.67         36.77         36.77           Mcma-1418 XG1+ 764         31.33         10.67         12.78         14.47         10.30         17.78         17.78           Mcma-1418 XG1+ 764         13.33         16.67         2.278         24.46         15.73         11.78           Mcma-1418 XG1+ 764         13.33         16.07<	CSB-1011X CU-35-L5-L5 17.78 18.89 18.33 (CSB-1011X CU-35-L5-L5 17.78 18.86 18.33 (CSB-1011X STW - 346 17.78 24.45 21.18 (CSB-1011X STW - 346 17.78 24.45 27.18 (CSB-1011X LS - 247 2000 74.45 27.18 (CSB-1011X LS - 247 30.00 75.56 24.45 Akma - H0 S - 877 30.00 75.56 24.45 Akma - H0 S - 877 30.00 75.56 24.45 Akma - H0 S - 877 30.00 15.56 22.78 Akma - H0 S - 877 30.00 15.56 22.78 Akma - H0 S - 877 30.00 15.56 22.78 Akma - H0 S - 877 30.00 15.27 21.11 Akma - H0 S - 2000 47.77 14.45 16.17 Akma - H0 S - 2000 47.72 14.45 16.13	11.11		10.00	14.00	14.00	10.56	12.28
CISB-101BX STV-946 17.78 24.45 27.11 33.39 10.67 22.00 25.56 CISB-101BX STV-946 17.78 24.45 27.11 33.39 10.67 23.00 25.56 CISB-101BX STV-104 20.00 778 23.69 33.00 13.67 30.67 CISB-101BX STS-244 40.00 778 23.69 33.01 15.67 24.76 24.76 33.00 13.67 30.67 CISB-101BX STS-247 33.34 15.56 24.76 25.00 1000 21.00 36.00 CISB-101BX STS-247 33.34 15.56 24.76 25.00 1000 21.00 36.00 CISB-101BX STS-247 33.34 15.56 24.76 25.00 1000 21.00 36.00 CISB-101BX STS-247 33.34 15.56 24.76 25.00 1000 15.67 23.67 30.67 CISB-101BX STS-247 33.34 15.56 24.76 25.00 1000 15.67 23.67 30.67 CISB-101BX STS-247 33.00 15.56 24.76 25.00 16.57 25.33 14.56 Monta-101 STS-104 17.73 22.20 10.00 10.07 15.67 23.78 Monta-101 STS-247 11 20.77 10.67 15.67 23.37 Monta-101 STS-247 11 20.77 10.67 15.67 23.37 Monta-101 STS-247 11 20.77 10.67 15.67 23.37 Monta-101 STS-247 11 20.77 10.57 15.77 23.44 25 Monta-101 STS-247 11 20.77 10.57 15.77 23.34 25.20 10.57 15.57 23.55 Monta-101 STS-247 11 20.77 10.57 15.77 23.34 25.20 10.57 15.57 23.55 Monta-101 STS-247 11 20.77 10.57 15.77 23.34 25.20 10.57 15.57 23.55 Monta-101 STS-247 11 20.77 10.57 15.77 23.34 25.20 10.57 15.57 23.55 Monta-101 STS-247 11 20.77 10.57 15.77 23.34 25.20 10.57 15.57 23.55 Monta-101 STS-247 10.57 15.57 23.55 Monta-101 STS-247 10.57 15.57 23.34 25.57 23.55 Monta-101 STS-247 10.57 15.57 23.35 23.55 Monta-101 STS-247 10.57 15.57 23.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55 24.55	CSB - 1010.1X STV - 946 17.78 24.45 27.11 CSB - 1011.X STX 94 4000 778 23.89 CSB - 1011.X IS. 433 4000 778 23.89 CSB - 1011.X IS. 433 4000 778 23.89 CSB - 1011.X IS. 433 4000 756 24.65 Akma - 1018.X STX 94 4000 756 24.65 Akma - 1018.X STX 94 11.11 14.45 12.78 Akma - 1018.X STX 94 11.11 14.45 12.78 Akma - 1018.X STX 94 11.77 11.12 22.78 Akma - 1018.X STX 94 11.77 11.12 22.78 11.11 Akma - 1018.X STX 94 11.77 11.12 22.78 11.11 Akma - 1018.X STX 94 11.77 11.12 22.78 11.11 Akma - 1018.X STX 94 11.11 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.12 11.1	18.89		8.67	15.33	19.89	13,78	16.83
CISN-1014 X22V-104 2000 74.45 22.22 16.00 11.33 13.67 18.00 CISN-1014 X15-22V-104 2000 74.45 22.78 31.00 11.00 21.00 36.00 CISN-1014 X15-247 33.4 15.56 22.78 31.33 80.0 19.67 36.67 CISN-1014 X15-347 33.4 15.56 22.78 31.33 80.0 19.67 36.7 AKana - 18 X547 - 38.8 38.9 11.11 14.67 21.77 18.00 16.37 11.78 AKana - 18 X547 - 34.8 38.9 11.11 14.67 21.77 18.00 16.37 11.78 AKana - 18 X547 - 34.8 38.9 11.11 14.67 21.77 18.00 16.37 11.78 AKana - 18 X547 - 34.8 28.9 11.11 14.67 21.77 26.7 18.37 14.58 AKana - 18 X547 - 34.8 15.7 22.72 20.07 18.67 18.37 14.38 AKana - 18 X547 - 34.8 17.78 22.2 20.07 18.67 18.37 24.78 AKana - 18 X547 - 34.8 17.78 22.2 20.07 13.67 10.37 21.78 AKana - 18 X547 - 35.7 17.78 14.45 15.37 24.00 15.00 53.0 23.11 AKana - 18 X547 - 35.7 17.78 14.45 15.37 24.00 15.00 53.0 23.11 AKana - 18 X547 - 35.7 17.78 14.45 15.37 24.00 15.00 53.0 23.11 AKana - 18 X547 - 35.7 17.78 14.45 15.37 24.00 15.00 53.0 23.11 AKana - 18 X547 - 35.7 17.78 14.45 15.37 24.00 15.00 53.0 23.11 AKana - 18 X547 - 35.7 17.78 14.45 15.7 25.20 10.57 25.53	C59-1011x 515-2281 C59-1011x 515-2281 C591-1011x 515-2281 C591-1011x 515-2013 C591-1011x 515-2013 C591-1011x 515-2013 C591-1011x 515-2013 Advan-141 315 579-216 Advan-141 315 579-216 Advan-141 315 579-216 Advan-141 315 579 Advan-141 315 579 Advan-	24.45		10.67	22.00	25.56	17.56	21,56
CISN-1011 X15-2244 40.00 778 23.89 33.00 10.00 21.00 36.00 10.01 CISN-1011 X15-63.33 40.00 778 23.89 33.00 10.00 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 10.01 1	CSB-10101x15-2244 4000 778 2389 CSB-1011x15-6335 3000 15.56 2378 CSB-1011x15-6335 3000 15.56 24.45 Marrier M B x GJ-35-15-15 11.11 14.45 12.78 Marrier M B x GJ-35-15-15 11.11 14.45 12.78 Marrier M B x SP - 104 17.78 22.27 20.00 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.45 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 11.77 14.55 18.33 Marrier M B x B x SSB 17.78 14.55 18.33 Marrier M B x B x SSB 17.78 14.55 18.33 Marrier M B x B x SSB 17.78 14.55 18.33 Marrier M B x B x SSB 17.78 14.55 18.33 Marrier M B x B x SSB 17.78 14.55 18.33 Marrier M B x B x SSB 17.78 14.55 18.33 Marrier M B x B x SSB 11.78 18.33 Marrier M X X X X X X X X X X X X X X X X X X	24.45		11.33	13.67	18.00	17.89	17.96
CISN: 1011 K15: 4333 3000 1556 22,78 3133 8.00 1967 3067 3067 (CISN: 1011 K15: 471 333 1556 24,76 2667 (CISN: 1018 K15: 471 333 1566 24,76 266 (CISN: 1018 K15: 471 333 1567 2667 (CISN: 1018 K15: 471 334 1556 24,76 2578 1800 1867 1833 1436 MKma: 1118 K17: 328 1800 1867 1833 1436 MKma: 1118 K17: 328 288 1657 22.78 2067 1867 1957 24.78 MKma: 1118 K17: 328 288 1657 22.78 2067 1867 1957 24.78 MKma: 1118 K17: 328 288 1657 22.78 2067 1867 1957 24.78 MKma: 1118 K17: 328 288 1657 22.78 2067 1867 1957 24.78 MKma: 1118 K17: 328 288 1657 22.78 2067 1867 1957 24.78 MKma: 1118 K17: 328 2400 1507 10.33 12.58 AKma: 1118 K15: 478 27.78 14,46 153 24.00 1507 10.33 12.58 AKma: 1118 K15: 478 27.78 14,46 153 24.00 1507 10.33 12.58 AKma: 1118 K15: 478 27.78 14,46 153 24.00 1507 10.33 12.58 AKma: 1118 K15: 478 27.78 24,46 150 1207 10.33 12.58 AKma: 1118 K15: 478 27.78 24,46 150 1207 10.33 12.58 AKma: 1118 K15: 478 27.78 24,46 150 1207 10.57 12.58 AKma: 1118 K15: 478 27.78 24,46 150 1207 10.57 12.58 AKma: 1118 K15: 478 27.78 24,00 1507 12.57 12.58 AKma: 1118 K15: 471 207 10.57 10.57 12.58 AKma: 1118 K15: 471 207 10.57 10.57 12.58 AKma: 1118 K15: 471 207 10.57 12.58 AKma: 1118 K15: 471 207 10.57 12.57 12.58 AKma: 1118 K15: 471 207 10.57 12.58 AKma: 1118 K15: 471 208 10.58 AKma: 1118 K15: 471 208 10.58 AKma: 1118 K15: 471 208 10.58	CSN-1011 K15-471 333 3000 1556 22.78 CSN-1011 K15-471 3334 1556 24.46 Akma - H0 5 877 - 268 369 11.11 14.5 12.06 Akma - H0 5 877 - 268 369 11.11 14.5 12.06 Akma - H0 5 877 - 368 268 16.57 22.78 Akma - H0 5 18.27 34 46 18.33 Akma - H0 5 18.27 34 18.34 Akma - H0 5 18.27 34 18.34 Akma - H0 5 18.27 34 19.34 Akma - H0 5 18.37 34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34 19.34	7.78		10.00	21.00	36.00	8.89	22.45
Mcmar-H01x SRT-2041         33.34         15.55         24.45         26.00         9.33         17.67         28.67           Mcmar-H0 x SRT-2048         8.09         11.11         10.00         14.61         10.00         16.33         11.78           Mcmar-H0 x GL-35-15-15         11.11         14.45         12.78         18.07         18.67         18.33         14.56           Mcmar-H0 x GL-35-15-15         11.11         14.45         12.78         18.07         18.67         19.67         24.35           Mcmar-H0 x GL-35-15-15         11.11         14.45         12.78         18.07         19.67         24.35           Mcmar-H0 x GL-35-15-15         11.11         14.45         12.78         20.07         18.67         19.67         24.35           Mcma-H0 x STV-106         27.22         14.45         18.33         24.00         15.00         23.11           Mcma-H0 x LS-2784         12.77         14.45         18.33         24.00         15.00         23.14           Mcma-H0 x LS-2784         16.77         27.22         16.11         27.22         24.10         15.00         23.14           Mcma-H0 x LS-2035         17.78         12.45         18.33         24.00         15.00 <td>CONTUNEXTS-WAT 33.34 15.56 24.46 AGAT HB 5.87 24.66 AGAT HB 5.87 268 3.69 11.11 10.00 AGAT HB 5.87 268 3.69 11.11 14.45 12.78 AGAT HB 5.87 40 17.78 22.22 20.00 AGAT HB 5.87 40 17.78 22.22 20.00 AGAT HB 5.87 40 17.78 22.22 20.00 AGAT HB 5.87 40 17.78 14.45 15.31 AGAT HB 5.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15</td> <td>15.56</td> <td></td> <td>8.00</td> <td>19.67</td> <td>30.67</td> <td>11.78</td> <td>2122</td>	CONTUNEXTS-WAT 33.34 15.56 24.46 AGAT HB 5.87 24.66 AGAT HB 5.87 268 3.69 11.11 10.00 AGAT HB 5.87 268 3.69 11.11 14.45 12.78 AGAT HB 5.87 40 17.78 22.22 20.00 AGAT HB 5.87 40 17.78 22.22 20.00 AGAT HB 5.87 40 17.78 22.22 20.00 AGAT HB 5.87 40 17.78 14.45 15.31 AGAT HB 5.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.78 14.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15 15.97 40 17.15	15.56		8.00	19.67	30.67	11.78	2122
Akmar - HU & SGT - 268         3.63         11.11         10.00         14.67         18.00         16.37         11.73           Akmar - HU & SGT-35.15.1         11.11         14.46         12.00         14.67         18.00         16.67         18.33         14.56           Akmar - HU & SGT-35.15.1         11.11         14.46         12.78         18.07         19.67         18.75           Akmar - HU & SGT-35.15.1         11.11         14.46         12.78         20.67         18.67         19.67         24.78           Akmar - HU & SGT-35         11.73         2.222         20.07         18.67         19.67         24.78           Akmar - HU & SGT-35         17.78         2.222         20.00         8.00         12.67         10.33         12.69           Akmar - HU & SGT-35         17.78         14.46         16.71         27.28         21.11         27.67         10.67         15.67         23.33           Akmar - HU & SGT-36         16.71         20.77         16.41         27.22         21.11         20.67         10.67         25.67           Akmar - HU & SGT-36         16.71         2.222         21.11         20.67         10.67         25.75         23.66           Akmar -	Akana - MB S. SRT - 248 - 88 - 89 - 11, 11 - 10.00 Akana - MB S. SRT - 248 - 88 - 89 - 11, 11 - 14, 65 - 12, 78 Akana - MB S. SRT - 946 - 12, 88 - 89 - 657 - 22, 78 Akana - MB S. ST - 94 - 17, 78 - 22, 22 - 20, 00 Akana - MB S. S. ST - 17, 78 - 14, 45 - 18, 33 Akana - MB S. S. ST - 17, 78 - 14, 45 - 18, 33 Akana - MB S. ST - 235 - 17, 78 - 14, 45 - 18, 33 Akana - MB S. ST - 235 - 17, 78 - 14, 45 - 18, 33 Akana - MB S. ST - 235 - 17, 78 - 14, 45 - 18, 33 Akana - MB S. ST - 235 - 17, 78 - 12, 72 - 21, 11	15.56		<u>9.33</u>	17.67	29.67	12.44	21.06
MKmu - HU 8: G135-15-15 11:11 14:45 12.78 18:00 18:67 18:33 14:55 MKmu - HU 8:21 V- 946 28:89 16:67 22.78 20:67 19:57 24:78 AKmu - HU 8:21V - 946 17.78 22.27 20:00 8:00 12:67 19:57 24:78 AKmu - HU 8:15' 22:28 14:45 18:33 24:00 6:00 15:00 23:11 MKmu - HU 8:15' 23:29 AKmu - HU 8:15' 23:20 14:45 16:11 20:67 10:57 25:39 27:56 AKmu - HU 8:15' 23:30 27:58 24:00 6:00 15:00 23:11 AKmu - HU 8:15' 23:20 AKmu - HU 8:15' 23:20 24:00 6:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 6:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 6:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 6:00 15:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 6:00 15:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 4:00 15:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 4:00 15:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 4:00 15:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 4:00 15:00 15:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 4:00 15:00 15:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 4:00 15:00 15:00 15:00 23:11 AKmu - HU 8:15' 23:28 24:00 4:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00 15:00	Akma - HB SG3-51-51         11.11         11.46         12.78           Akma - HB SG97 2197         96         28         66         27.78           Akma - HB SG97 - 104         17.78         22.22         20.00           Akma - HB SG97 - 104         17.78         22.22         18.33           Akma - HB SG97 - 5035         17.78         14.45         18.33           Akma - HB SG97 - 5035         17.78         14.45         16.33           Akma - HB SG97 - 5035         17.78         14.45         16.33           Akma - HB SG97 - 5035         17.78         14.45         16.33           Akma - HB SG97 - 5035         17.78         14.45         16.33           Akma - HB SG97 - 5035         17.78         14.45         16.33           Akma - HB SG97 - 5035         17.78         14.45         16.33	11.11		18.00	16.33	11.78	14.56	13.17
Mana - H0 X ST 946 28.08 16.67 22.78 20.67 18.67 19.67 24.78 Mana - H0 X ST 947 17.78 22.52 20.00 8.00 12.67 10.33 12.89 Mana - H0 X IS - 22.22 14.45 18.32 24.00 5.00 12.67 10.33 17.80 Mana - H0 X IS - 22.23 14.45 18.32 24.00 5.00 12.67 10.33 17.80 Mana - H0 X IS - 22.22 14.45 18.32 24.00 5.00 12.67 10.33 17.80 Mana - H0 X IS - 22.22 14.45 18.32 24.00 5.00 12.67 10.33 17.80 14.45 18.32 24.00 12.67 10.67 15.67 25.33 17.80 14.45 18.32 24.00 12.67 10.67 15.67 25.33 17.80 14.45 18.32 24.00 12.67 10.67 15.67 25.33 17.80 14.45 18.32 24.00 12.67 10.67 15.67 25.33 17.80 14.45 18.37 17.80 15.67 15.67 25.33 17.80 15.67 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.67 15.53 17.80 15.55 17.53 17.80 15.55 17.53 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 17.55 1	Mana - Hb STW - 946 28 B9 16 57 22.78 Mana - Hb STW - 104 17.78 22 22 2000 Mana - Hb St St St St St 445 18.33 Mana - Hb St St St 37 78 14.45 18.33 Mana - Hb St St St 37 78 14.45 18.33 Mana - Hb St St St 37 78 14.45 18.33 Mana - Hb St St St 37 78 14.45 18.33 Mana - Hb St 37 78 18.33 Mana - Hb St 38	14.45		18.67	18.33	14.56	16.56	15.56
MKma - H B. STV - 104 17.78 22.22 20.00 8.00 12.67 10.33 12.89 MKma - H B. STSM 22.22 14.45 18.33 24.00 6.00 15.00 23.11 MKma - H B. SL - 17.78 14.45 18.11 37.33 7.33 22.33 27.55 MKma - H B. SL - 2017 10.67 15.67 25.33	Mana - M 8.5 SV - 104 17.78 22.22 20.00 Mana - M 5 M 5 S2 22 14.46 18.33 Mana - M 5 M 5 S3 17.78 14.46 18.33 Mana - M 5 M 5 S3 17.78 14.46 18.13 Mana - M 5 M 5 S3 17.78 14.45 18.13	16.67		18.67	19.67	24.78	17.67	2122
MXma - M Barls - 2284 22.22 14 45 18.33 24.00 6.00 15.00 23.11 MXma - M Barls - 233 17.78 14.45 16.11 27.33 7.33 22.33 27.56 MXma - MXma - 414.15 - 971 30.00 12.57 25.32	Mum - HB XIS - 224 2.22 14 46 18.33 2 Mum - HB XIS - 233 17.78 14 46 16.11 Mum - HB XIS - 971 30.00 12.25 21.11	222		12.67	10.33	12.89	17.45	15.17
Akuma H B x 15 - 6335 17.78 14 45 16,11 37.33 7.33 22.33 27.56 Akuma H 11 x 15 - 971 30.00 12.22 21,11 20.67 10.67 15.67 25.33	Akina - HB x IS - 6335 17.78 14.45 16.11 Akina - HB x IS - 971 30.00 12.22 21.11	14.45		6.00	15.00	23,11	10.22	16.67
Akina 14 B x 15 - 9171 30.00 12.22 21.11 20.67 10.67 15.67 25.33	AKma - H B x IS - 9/71 30.00 12.22 21.11	14.45		7.33	22.33	27.56	10.69	19.22
		12.22		10.67	15.67	25.33	11.44	18,39

Table	61 . Contd									
-	2	۴	4	5	6	7	×	6	10	
33	SRT- 26B x GJ-35-15-15	12.22	10:00	11.11	34.00	19.33	26.67	23.11	14.67	18.89
ž	SRT - 26B x SPV - 946	14.45	11.11	12.78	20.00	21.33	20.67	17.22	16.22	16.72
37	SRT - 26B x SPV -104	45.56	12.22	28.89	13.33	18.67	16.00	29.45	15.44	22.45
8	SRT - 26B × IS - 2284	26.67	11.11	18.89	32.00	11.33	21.67	29.33	11.22	20.28
8	SRT - 26B x IS - 6335	16.67	11.11	13.89	24.00	13.33	18.67	20.33	12.22	16.28
4	SRT - 26B × IS - 9471	24.45	7.78	16.11	16.67	14.00	15.33	20.56	10.89	15.72
41	GJ-35-15-15 x SPV - 946	44.45	12.22	28.33	24.00	16.00	20.00	34.22	14.11	24.17
42	GJ-35-15-15 x SPV- 104	13.33	16.67	15.00	17.33	24.00	20.67	15.33	20.33	17,83
43	GJ-35-15-15 x IS - 2284	37.78	15.56	26.67	17.33	14.00	15.67	27.56	14.78	21.17
4	GJ-35-15-15 x IS - 6335	23.33	11.11	17.22	22.00	13.33	17.67	22.67	12.22	17.44
45	GJ-35-15-15 x IS - 9471	25.56	13.33	19.45	22.67	15.33	19.00	24.11	14.33	19.22
46	SPV - 946 x SPV- 104	13.33	11.11	1222	30.67	22.67	26.67	22.00	16.89	19.44
47	SPV - 946 x IS - 2284	28.89	11.11	20.00	23.33	7.33	15.33	26.11	9.22	17.67
<b>4</b> 8	SPV - 946 x IS- 6335	34.45	7.78	21.11	26.00	12.00	19.00	30.22	9.89	20.06
49	SPV - 946 x IS 9471	31.11	12.22	21.67	23.33	12.67	18.00	27.22	12.44	19,83
8	SPV - 104 x IS 2284	38.80	26.67	32.78	25.33	12.67	19.00	32.11	19.67	25.89
21	SPV - 104 x IS 6335	20.00	8.89	14.45	29.33	10.67	20.00	24.67	9.78	17.22
2	SPV - 104 x IS 9471	34.45	18.89	26.67	22.67	10.00	16.33	28.56	14.44	21.60
8	IS 2284 x IS-6335	16.67	16.67	16.67	24.67	10.67	17.67	20.67	13.67	17.17
3	IS 2284 x IS -9471	25.56	14.45	20:00	25.33	11.33	18.33	25.45	12.89	19.17
8	IS 6335 x IS 9471	28.89	18.89	23.89	16.67	6.67	11.67	22.78	12.78	17.78
	Mean	27.70	17.09	22.40	21.60	13.14	17.37	24.65	15 12	10.80
	% increase (+)/decrease(-)			06.06(-)			(-139.16	2	1	(-)38.66
	over untreated									
	% increase over location			12.45 / Abola O61						
		SE (m)	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
	<	0.898	2.489		0.675	1.871		1.171	3.407	
		4.709	13.052		3.539	9.810		6.147	17.993	
	AXB	6.039	18.459		5.005	13.873		8.694	25.300	

	8888688	Untreated 6 4 00	Townson Townson	and and a second s		PUOLED OVER . IOCALIONI	
FWV-1201         Z         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         50         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20 <t< th=""><th>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</th><th></th><th>IICHICO</th><th>Mean</th><th>Untreated</th><th>Troated</th><th>Mean</th></t<>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		IICHICO	Mean	Untreated	Troated	Mean
SW-1031         150         150           Atma-14B         253         356           Atma-14B         253         356           ST7-363         356         357           ST7-364         255         257           SY-946         356         356           SY-946         356         253           SY-101         250         256           SY-204         356         357           SY-101         250         250           SY-101         250         250           SY-101         250         250           SY-101         250         250           SY-101         253         250           SY-101         253         250           SY-101         253         250           SY-101         253         253           SY-101         253         253           SY-101         254         256 <th></th> <th>4 00</th> <th>7</th> <th>8</th> <th>6</th> <th>10</th> <th>=</th>		4 00	7	8	6	10	=
CGS-101B         Attran-101B			3.00	3.50	2.75	2.25	250
Attent (4)         2.83         3.50           RST-260         U-3511-15         2.50         2.67           SYV-96         3.56         2.57         2.57           SYV-96         3.56         2.57         2.53           SYV-96         3.56         2.57         2.53           SYV-101         3.50         2.50         2.50           SYV-101         2.50         2.50         2.50           SYV-101         2.50         2.60         2.00           SYV-101         2.61         2.63         2.61           SYV-101         2.64         2.63         2.61           SYV-101         2.64         2.65         2.65           SYV-101         2.64         2.66         2.66           SYV-101         2.61         2.66         2.66           SYV-101         2.63         2.66         2.67           SYV-101         2.63         2.66		•	3.00	3.50	4.08	3.25	3.67
SRT-208         3.50         2.83           SRT-206         3.57         3.57           SV-106         5.27         3.57           SV-106         5.27         3.57           SV-106         5.233         3.67           SV-206         5.263         3.67           SV-206         5.263         3.67           SV-201         S.200         2.00           SV-201         S.200         2.00           SV-201         S.201         2.00           SV-201         S.201         2.00           SV-201         S.201         2.00           SV-201         S.V-201         2.00           SV-201         S.V-201         2.00           SV-201         S.RV-201         2.00           SV-201         S.RV-201         2.00           SV-201         S.RV-201         2.00           SV-201         S.RV-201         2.00           SV-201         S.RV-204         2.00			3.50	4.25	392	926	52
UL3511-15         250         267           SFV-96         350         250         250           SFV-96         350         250         250           SFV-101         350         250         250           SFV-101         350         250         250           SFV-101         200         200         200           SFV-1201         251         253         253           SFV-1201         253         250         200           SFV-1201         253         253         253           SFV-1201         253         253         253           SFV-1201         253         256         253           SFV-1201         254         263         257           SFV-1201         254         263         257           SFV-1201         254         263         267           SFV-1201         254         263         267 <t< td=""><td></td><td></td><td>3.00</td><td>3.42</td><td>3.67</td><td>66</td><td>000</td></t<>			3.00	3.42	3.67	66	000
SYV-104         3.67         3.33           SYV-104         5.33         3.33           SYV-104         S.200         2.00           SYV-101         S.201         2.00         2.00           SYV-101         S.971         2.00         2.00           SYV-101         S.971         2.00         2.00           SYV-101         S.971         2.00         2.00           SYV-101         S.71         2.00         2.00           SYV-101         S.71         2.03         2.03           SYV-101         S.71         2.03         2.01           SYV-101         S.71         2.03         2.00           SYV-101         S.71         2.00         1.50           SYV-101         S.71         2.00         1.50           SYV-101         S.71         2.00         1.50		.,	3.00	3.25	8	180	36
SYV-104         3.50         2.50           15-234         2.00         2.00           15-6335         2.00         2.00           15-6335         2.00         2.00           15-6335         2.00         2.00           15-6335         2.00         2.00           15-6335         2.00         2.00           15-6335         2.00         2.00           15-7018         2.03         2.03           15-719         2.03         2.03           15-71         2.03         2.03           15-71         2.03         2.07           15-71         2.03         2.07           15-71         2.03         2.07           15-71         2.03         2.07           15-71         2.04         2.03           15-71         2.04         2.03           15-71         2.04         2.03           15-71         2.04         2.03           15-71         2.03         2.03           15-71         2.04         2.03           15-71         2.04         2.03           15-71         2.04         2.04           15-71         2.04		3.83	2.50	3.17	22.6	38	100
15-254         2.00         2.00           15-473         2.00         2.00           15-471         15-471         2.00         2.00           15-471         15-471         2.00         2.00           15-471         15-471         2.00         2.00           15-471         15-471         2.00         2.00           15-471         15-441         2.83         2.03         2.03           15-471         15-441         2.83         2.03         2.03         2.03           15-471         15-441         2.83         2.01         2.03         2.03         2.03         2.03         2.03         2.03         2.03         2.03         2.04         2.03         2.04         2.03         2.04         2.03         2.04         2.03         2.03         2.03         2.03         2.03         2.03         2.04         2.03         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04         2.04		-	3.50	0.4	28	10	
[5:633]         2.00         2.00           [5:97]         2.01 x 450-1018         2.03         2.03           \$\$\$Y\$'-101 x \$\$\$\$T-268         2.03         2.03         2.03           \$\$\$\$Y\$'-101 x \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$			8	150	35	3 <del>-</del>	476
<ul> <li>[S-97]</li> <li>[S-96]</li> <li>[S-97]</li> <li>[S-96]</li> <li>[S-96]</li> <li>[S-97]</li> <li>[S-96]</li> <li>[S-97]</li> <li>[S-96]</li> <li>[S-96]</li></ul>			8	8	35	35	
STV-1011 x Atma-1018         283         183           STV-1201 x Atma-148         283         183           STV-1201 x StT-248         287         287           STV-1201 x StT-248         267         233           STV-1201 x StT-248         267         233           STV-1201 x StT-248         287         287           STV-1201 x StT-248         283         207           STV-1201 x StT-248         203         150           STV-1201 x St-249         200         150           STV-1201 x St-249         200         150           STV-1201 x St-249         200         259           CSSI-1011 x St+241         200         259           CSSI-1011 x St+241         417         267           CSSI-1011 x St+241         200         256           CSSI-1011 x St+241         200         150           CSSI-1011 x St+241         200         150           CSSI-1011 x St+241         200         256           CSSI-1011 x St+241         200         150		-	001	5	1		3
SW-1201 x SW-1201 x Abm-4 B         2.83         2.00           SW-1201 x SW - 201 x CH-35-15         3.00         2.53         3.00         2.53           SW-1201 x SW - 101 x CH-35-15         3.00         2.50         3.00         2.50           SW-1201 x SW - 101 x SW - 101 x SW - 101 x L-35-15         3.00         2.50         3.00         2.50           SW-1201 x SW - 101 x LS - 254         2.00         1.50         3.00         2.50         1.50           SW-1201 x LS - 274         3.01         3.03         3.00         2.50         1.50         3.00         2.50         1.50         3.00         2.50         1.50         3.00         2.50         1.50         3.00         2.50         1.50         5.71         2.51         1.50         2.51         1.50         2.51         1.50         5.71         2.51         1.50         2.50         1.50         2.50         1.50         5.71         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51         2.51			2.50	27.5	38	5.5	
SYV-100, X SRT - 208         2.67         2.33           SYV-100, X SRT - 208         2.67         2.33           SYV-100, X SRT - 201         2.89         2.96           SYV-100, X SRT - 201         2.83         2.17           SYV-100, X SRT - 201         2.83         2.17           SYV-100, X SRT - 201         2.83         2.17           SYV-100, X SRT - 201         2.00         1.50           SYV-100, X SRT - 201         2.00         2.50           SYV-100, X SRT - 201         2.00         2.50           SYV-100, X SRT - 80         2.00         2.50           SYV-100, X SRT - 80         2.00         2.50           CSSB - 1010, X SRT - 80         4.17         2.67           CSSB - 1010, X SRT - 80         4.17         2.67           CSSB - 1010, X SRT - 80         4.17         2.67           CSSB - 1010, X SRT - 80         4.17         2.67           CSSB - 1010, X SRT - 80         4.17         2.67           CSSB - 1010, X SRT - 80         4.17         2.67           CSSB - 1010, X SRT - 80         4.17         2.67           CSSB - 1010, X SRT - 80         4.17         2.67           CSSB - 1010, X SRT - 80         4.17         2.67			250	54.0	18	10	
SPV-101X SPV-161X CU-35-15-15 SPV-101X SPV-164 25 SPV-101X SPV-164 233 217 SPV-101X SPV-164 233 217 SPV-101X SPV-164 233 217 SPV-101X SPV-164 233 200 159 SPV-101X SPV-172 200 159 SPV-101X SPV-172 200 159 (CSB-101B X SPV-264 417 267 (CSB-101B X SPV-364 413 356 (CSB-101B X SPV-364 413 356 (CSB-101B X SPV-364 413 200 156 (CSB-101B X SPV-364 410 356 (CSB-101B X SPV-36		2.83		28	14.0	36	
RY-1201X STV-946 233 217 STV-1201X STV-946 233 207 STV-1201X ST-274 220 150 STV-1201X ST-274 220 150 STV-1201X ST-277 220 150 CSS1 - 101X STV-746 43 200 250 CSS1 - 101X STV-746 417 2267 CSS1 - 101X STV-746 433 357 CSS1 - 101X STV-746 433 400 367 CSS1 - 101X STV-746			300	275	24.0	24.0	272
87V-101X 87V-104 3.33 3.00 87V-101X 85-224 2.03 87V-101X 15-633 2.00 15.0 87V-101X 15-633 2.00 15.0 87V-101X 15-633 2.00 15.0 1023 - 101X 87V-246 4.17 2.67 1023 - 1013 X 87V-246 4.17 2.67 1023 - 1013 X 87V-246 4.17 2.67 1023 - 1013 X 87V-246 4.33 3.50 1023 - 1013 X 15.633 2.00 15.0 15.00 12.53 10.00 13.15 - 633 2.00 15.0 15.00 13.53 10.00 13.15 - 633 2.00 15.0 15.00 13.53 10.00 13.15 - 633 2.00 15.0 10.00 13.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15			000		2 8		210
SPV-1001 N1 S-2264         2.00         150           SPV-1201 x1 S-4013         2.00         2.00           CSS1 - 0101 x StFT-261         2.00         2.00           CSS1 - 0101 x StFT-261         4.17         2.67           CSS1 - 0101 x StFT-261         4.00         3.07		3.17	2.83	000	38	38	
SW-1301 IS-633 2.00 150 SW-1301 IS-633 2.00 150 CSB - 1015 x K/sm1 H B 200 250 CSB - 1015 x K/sm1 H B 400 250 CSB - 1015 x K/sm1 H B 417 2.67 CCSB - 1015 x FF - 361 4.17 2.67 CCSB - 1015 x FF - 361 4.17 2.67 CCSB - 1015 x FF - 361 4.13 3.67 CCSB - 1011 x FS - 353 2.00 150 CCSB - 1011 x FS - 533 2.00 150 CCSB - 1011 x FS - 533 2.00 150 CCSB - 1011 x FS - 533 2.00 150 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 3.67 Kmn - H B x SFT - 361 4.00 4.00 3.67 Kmn - H B x SFT - 361 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.0		•	100	8	5	15	96.1
SW-JOIL X. 5-97) 200 CSS1-0101 X. 5-97) 200 CSS1-0101 X. SR7-26 417 CSS1-0101 X. SR7-26 417 CSS1-0101 X. SR7-26 417 CSS1-0101 X. SR7-26 417 CSS1-0101 X. SR2-26 417 CSS1-0101 X. SR2-26 413 CSS1-0101 X. 15-218 410 CSS1-0101 X. 15-218 400 CSS1-0101 X. 15-218 400 CSS1-010 X. 1		1.00	8	8	99 F	22	
CSB - 101B x AKam i 18 400 250 CSB - 101B x AKam i 18 417 257 CSB - 101B x 01-251 417 267 CSB - 101B x 01-254 417 267 CSB - 101B x 18 - 254 417 267 CSB - 101B x 18 - 254 200 150 CSB - 101B x 15 - 254 200 150 CSB - 101B x 15 - 535 200 150 CSB - 101B x 15 - 535 200 150 AKam - 14 B x 01-354 200 367 AKam - 14 B x 01-354 200 367 AKam - 14 B x 01-354 200 367 AKam - 14 B x 01-354 200 133 AKam - 14 B x 01-354 200 134 AKam - 14 B x 01-354 200 134 AKam - 14 B x 01-354 200 134 AKam - 14 B x 01-354 200 1354 200 135 200 135 200 135 200 135 200 135 200 135 200 135 200 135 200 135 200 135 200 135 200 135 200 135 200 135 200 135 200		•	8	8	1.50	150	35
CCSB - 1010 LX SRT - 261 CCSB - 1010 LX SRT - 261 CCSB - 1010 LX SRT - 266 CCSB - 1010 LX SRT - 946 CCSB - 1010 LX SRY - 104 CCSB - 1010 LX IS - 204 CCSB - 1010 LX I			3.00	3.00	3.50	2.75	313
CONTRINCTION CONTRIPTION OF A 11 267 CONTRIPTION CONTRIPTICA CONTRIPTICA CONTRIPTICA CONTRATION CONTRIPACTORICA CONTRATION CONTRUCA CONTRATION CONTRATION CONTRATION		3.00	2.00	2.50	3.58	2.33	2.96
CGSD 1010 LX SFV - 1946 433 350 CGSD 1010 LX SFV - 1946 433 357 CGSD 1010 LX LS - 2349 200 150 CGSD 1010 LX LS - 6335 200 150 CGSD 1010 LX LS - 6335 200 150 AGma - 101 LX LS - 643 400 3.67 AGma - 101 LX SFV - 1946 3.33 AGma - 101 LX SFV - 104 4.00 3.63 AGma - 104 4.00 4.00 4.00 4.00 4.00 4.00 4.00			2.00	2.33	3.42	2.33	286
C58-1018.x 58/v 104 1433 367 158 158 158 158 158 158 158 158 159 158 159 159 159 159 159 159 159 159 159 159			3.00	2.83	3.50	3.25	338
CSB-101B x 15-224 200 150 CSB-101B x 15-635 200 150 CSB-101B x 15-635 200 150 Kama - 18 0 5 40.3515-15 400 367 Kama - 18 15 x 29-96 3.33 2.83 Adma - 18 15 x 29-196 3.03 Adma - 18 15 x 5.258 200 183 Adma - 18 15 x 5.35 200 153			200	2.67	4.08	2,83	3.46
CSB-10118 x15 x335 200 150 CSB-10118 x15 x971 200 200 Kama - H0 18 x877 - 208 400 367 Afam - H0 18 x877 - 208 400 367 Afam - H0 18 x877 - 204 400 328 Afam - H0 18 x877 - 204 200 183 Afam - H0 18 x15 - 234 200 183		1.33	6.1	1.17	1.67	1.25	146
Construction - 200 Construction - 200 Construction - 200 Construction - 40 to 50 Construction - 40 to 50 Construction - 40 Construction -			00:	1.00	1.50	1.25	1.38
Mana - 10 Har Saft - 249 400 3.67 Mana - 10 Har Saft - 249 400 3.67 Mana - 10 Har Saft - 946 3.03 Mana - 10 Har Saft - 104 4.00 3.00 Mana - 10 Har IS - 238 2.00 1.83 Mana - 10 Har IS - 238 2.00 1.83			8	1.25	1.75	1.50	163
Admin - H B X 50 - 25 - 25 - 25 - 25 - 25 - 25 - 25 -			2.83	2.92	3.50	3.25	3.38
AKma - 14 B x SPV - 946 3.3.3 2.83 AKma - 14 B x SPV - 104 4.00 3.00 AKma - 14 B x 15. 2284 2.00 1.83 AKma - 14 B x 15 6335 7.00 1.50			3.00	3.00	3.50	3.25	3.38
Akma - 14 B x SPV - 104 4.00 3.00 Akma - 14 B x 15 - 2284 2.00 1.83 Akma - 14 B x 15 - 6335 2.00 1.50			3.00	3.00	3.17	2.92	304
AKms - 14 B x 1S - 2284 2.00 1.83 AKms - 14 B x 1S - 6335 2.00 1.50		3.50	4.00	3.75	3.75	350	20
2 00 150		2.00	001	150	80	1.42	171
2011 D214	1.50 1.75	1.50	9. 1	1.25	1.75	1.25	150
2.00		2.17	1.00	1.58	1.83	150	1.67

05 - 111V

-	2	f	4	5	9	7	8	6	10	=
33	SRT- 26B x GJ-35-15-15	3.00	2.33	2.67	2.83	2.50	2.67	2.92	2.42	2.67
×	SRT-26B x SPV - 946	2.83	2.00	2.42	3.00	2.50	2.75	2.92	2.25	2.58
31	SRT - 26B x SPV -104	1.50	1.50	1.50	3.00	3.00	3.00	2.25	2.25	2.25
2	SRT - 26B x IS - 2284	1.50	1.50	1.50	1.00	1.00	1.00	1.25	1 25	1 25
2	SRT - 26B x IS - 6335	1.50	1.50	1.50	1.00	1.00	1.00	1.25	1.25	2
40	SRT - 26B x IS - 9471	1.50	1.50	1.50	1.00	1.00	1.00	1.25	1.25	5 5 5
41	GI-35-15-15 x SPV - 946	2.17	1.83	2:00	3.00	2.33	2.67	2.58	2.08	233
42	GJ-35-15-15 x SPV- 104	2.83	2.50	2.67	2.33	2.50	2.42	2.58	2.50	254
43	GJ-35-15-15 x IS - 2284	1.50	1.50	1.50	1.00	1.00	1.00	1.25	1.25	1.25
1	GJ-35-15-15 x IS - 6335	1.50	1.50	1.50	1.00	1.00	1.00	1.25	1.25	125
45	GJ-35-15-15 x IS - 9471	1.50	1.50	1.50	1.00	2.00	1.50	1.25	1.75	150
46	SPV - 946 x SPV- 104	4.00	3.00	3.50	3.33	3.00	3.17	3,67	3.00	333
47	SPV - 946 x IS - 2284	1.50	1.50	1.50	1.17	1.00	1.08	133	1 25	- - -
48	SPV - 946 x IS- 6335	1.50	1.00	1.25	1.00	1.00	1.00	1.25	8	) <u>-</u>
49	SPV - 946 x IS 9471	1.50	1.50	1.50	1.00	100	1.00	1.25	1.25	125
ନ	SPV - 104 x IS 2284	2:00	1.50	1.75	1.50	1.00	1.25	1.75	125	150
51	SPV - 104 x IS 6335	2.50	2.33	2.42	1.50	1.00	1.25	2.00	167	183
5	SPV - 104 x IS 9471	1.50	2.00	1.75	1.50	2.00	1.75	1.50	2.00	175
S	IS 2284 x IS-6335	1.50	1.50	1.50	1.00	1.00	1.00	1.25	1.25	5
X,	IS 2284 x IS -9471	1.50	1.50	1.50	1.50	1.00	1.25	1.50	1 25	138
×	IS 6335 x IS 9471	1.50	1.50	1.50	1.00	1.00	100	1.25	1.25	1.25
	Mean	2.54	2 17	2.36	2.26	196	211	2.40	20 0	100
	% increase (+)/decrease(-)			(-)14.56			(-)13.27	}	10.7	1-113 75
	over untreated									
	% increase over location			11.84						
		SE (m)	CD 5%		SE (m)	CD 5%		SF (m)	CD 5%	
	V	0.060	0.166		0.039	0.111		0.047	0.136	
		0.315	0.872		0.210	0.581		0.248	0.736	
	AXB	0.449	1 223		0.296	0.822		0.350	1.020	

2.0	Parenta/Crosses		Akola-1995			Akola-1996		Poc	Pooled over locality	
		Untreated	Troated	Mean	Untreated	Treated	Mean	Untreated	Treated	Moan
-	2	3	4	ŝ	9	4	8	6	01	-
-	SPV-1201	2.20	4,44	3.32	22.00	24.00	23.00	12 10	14.20	1316
6	ICSB-101B	25.56	10.00	17.78	23.33	20.00	2167	24.45	i și	2
~	Aknue-14B	48.69	41.11	45.00	46.00	31.33	38.67	14.54	3.2	
4	SRT-26B	26.67	31.11	28.89	13.33	14 67	14.00	200	27.05	3
Ś	GI-35-15-15	c c c	7 78	500	10 21		3	20.02	877	2140
	AND AND	1 č 1 £	2.5	3.8	10.01	10.77	19:07	10.44	15.22	1283
		7 2 2		11	1971	18.67	15.67	17.45	2:5.45	21A5
- •		8.87	8/.7	EE EZ	38.67	42.00	40.33	33.78	29.89	3183
	N27-51	12.22	8.89	10.56	6.67	9.33	8.00	9.44	6	9.78
<u>م</u>	IS-6335	2.22	3.33	2.78	6.67	6.67	6.67	4.44	800	477
2	12.5.5	1.1	3.33	222	6.67	6.00	633	3,80	167	1
=	SPV-1201 x ICSB-101B	32.22	8.89	20.56	14.67	12.00	13.33	23.45	10.44	14041
12	SPV-1201 x Alons-14 B	32.22	21.11	26.67	17.33	14.67	16.00	24.78		33
2	SPV-1201 x SRT - 26B	35.56	16.67	26.11	6.00	00.01		2.00	3.5	32
1	SPV-1201 x CJ-35-15-15	3.33	2.22	2.78	39,35	533	20.33	21.25	202	
<u></u>	946- V48 x 1021-V48	7.78	5.56	6.67	34.67	25.33	88	35	2.7	
2	SPV-1201 x SPV- 104	32.22	24.45	28.33	15,33	12.67	14.00	122		222
2	SPV-1201 x 13 -2284	4.44	3.33	3.89	8.67	4.00	633	6.55	19.5	
8	SPV-1201 x 1S-6335	17.78	7.78	12.78	4.00	6.67	533	10.90	5.0	
2	SPV-1201 x 15 - 9471	20:00	11.11	15.56	4.67	7.33	600	12.33	16	820
ន	ICSB - 101B x AKms 14 B	34.45	21.11	27.78	21.33	24.00	22.67	27.89	22.56	26.26
5	ICSB - 101B x SRT- 26 B	64.45	37.78	51.11	12.00	8.67	10.33	38.2	22.22	129
5	ICSB - 101B x GJ-35-15-15	41.11	21.11	31.11	12.00	6.00	00'6	26.56	13.56	2000
8	[CSB - 101B x SPV - 946	37.78	20:00	28.89	8.00	10.67	9.33	22.89	15.33	1911
\$ 2	ICSB - 101B x SPV - 104	28.89	27.78	28.33	23.33	19.33	21.33	26.11	23.56	2483
93	ICSB - 101B x IS - 2284	2.56	4.44	5.00	11.33	9.33	10.33	8.44	6.89	767
\$ 5	ICSB - IUIB X IS - 6335	1.78	2.50	6.67	10.00	6.67	8.33	8.89	6.11	750
58		8/./	5.56	6.67	8.00	6.00	7.00	7.89	5.78	683
<b>R</b> 8	AKJUB - 14 B X SKT - 2613	23.33	18.89	21.11	28.00	18.00	23.00	25.67	18.44	2206
3		58.86 28.10	92.02	32.22	18.00	18.67	18.33	28.45	22.11	2528
3;		21.12	13.33	17.22	22.67	19.33	21.00	21.89	16.33	19.11
7 2		22.23	16.67	20.00	46.00	34.00	40.00	34.67	25.33	3000
5	AKITUR - 14 B X JS - 2284	21.11	13.33	17.22	20.00	6.00	13.00	20.56	9.67	1511
2	AKINB - 14 B X IS - 6335	0.0	6.67	8.33	6.67	2.67	4.67	8.33	4.67	650
R	AKINI - 14 B X IS - 9471	15.56	10.00	12.78	12.00	6.00	<b>0</b> 0.6	13.78	8.00	1089
									Control	

1	2	3	4	5	6	7	8	9	10	11
35	SRT- 26B x GJ-35-15-15	6.67	4.44	5.56	7.33	10.00	8.67	7.00	7.22	7.11
36	SRT-26B x SPV - 946	15.56	12.22	13.89	16.00	14.00	15.00	15.78	13.11	14.44
37	SRT - 26B x SPV -104	7.78	3.33	5.56	30.67	28.00	29.33	19.22	15.67	17.44
38	SRT - 26B x IS - 2284	15.56	17.78	16.67	12.00	21.33	16.67	13.78	19.56	16.67
39	SRT - 26B x IS - 6335	21.11	15.56	18.33	10.00	10.67	10.33	15.56	13.11	14.33
40	SRT - 26B x IS - 9471	17.78	15.56	16.67	10.00	4.67	7.33	13.89	10.11	12.00
41	GJ-35-15-15 x SPV - 946	13.33	5.56	9.44	14.67	12.00	13.33	14.00	8.78	11.39
42	GJ-35-15-15 x SPV- 104	54.45	45.56	50.00	16.67	14.00	15.33	35.56	29,78	32.67
43	GJ-35-15-15 x IS - 2284	14.45	14.45	14.45	9.33	12.00	10.67	11.89	13.22	12.56
44	GJ-35-15-15 x IS - 6335	3.33	1.11	2.22	8.00	10.00	9.00	5.67	5.56	5.61
45	GJ-35-15-15 x IS - 9471	21.11	17.78	19.45	7.33	8.00	7.67	14.22	12.89	13.56
46	SPV - 946 x SPV- 104	48.89	44.45	46.67	15.33	20.00	17.67	32.11	32.22	32.17
47	SPV - 946 x IS - 2284	3.33	1.11	2.22	13.33	7.33	10.33	8,33	4.22	6.28
48	SPV - 946 x IS- 6335	5.56	2.22	3.89	6.67	4.67	5.67	6.11	3.44	4.78
49	SPV - 946 x 1S 9471	10.00	10.00	10.00	8.00	10.67	9.33	9.00	10.33	9.67
50	SPV - 104 x IS 2284	18.89	13.33	16.11	11.33	10.67	11.00	15.11	12.00	13.56
51	SPV - 104 x IS 6335	37.78	30.00	33.89	7.33	6.67	7.00	22.56	18.33	20.45
52	SPV - 104 x 1S 9471	16.67	14.45	15.56	8.00	6.00	7.00	12.33	10.22	11.28
53	IS 2284 x IS-6335	10.00	1.11	5.56	8.67	7.33	8.00	9.33	4.22	6.78
54	IS 2284 x IS -9471	8.89	2.22	5.56	12.00	16.00	14.00	10.44	9.11	9.78
55	IS 6335 x IS 9471	5.56	2.22	3.89	4.00	5.33	4.67	4.78	3.78	4.28
	Mcan	19.91	14,24	17.08	15,19	13.24	14.22	17.55	13.74	15.65
	% increase (+)/decrease(-) over untreated			(-)28.47			(-)12.83			(-)21.71
	% increase over location			16.74 (Akola 96)						
		SE (m)	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
	۸	0.452	1.252		0.430	1.193		0.589	1.714	
	В	2.368	6.563		2.258	3.258		3.093	9.029	
	AxB	3.348	9.281		3,193	8.8580		4.375	12.731	

Untreated 222 222 222 222 222 222 222 222 222 2	Traaed 4.11 555 555 555 555 555 1.11 1.11 1.11	Menn S 167 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11 1.11	Durtreated 8.00 8.00 8.00 8.00 8.00 8.00 8.00 8.0	7.77 1 8.67 8.67 8.67 8.67 8.65 8.65 8.65 8.65 8.65 8.65 8.65 8.65	Mean 88.00 88.07 88.07 88.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 17.07 1	Untrated 9 11 12.89 15.11 15.67 11.56 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156 1.156	Transled           10           10           10           11           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           12           13	Mean 11 1267 1267 1267 1267 1267 1268 1268 1268 1268 1268 1268 1268 1268
1         2         3           SWV-1201         [CSB-101B         Atma-10B           Atma-10B         Atma-10B         Atma-10B           Atma-10B         Atma-10B         Atma-10B           Atma-10B         Atma-10B         Atma-10B           Attra-10B         Str1-24B         G1.35-15           Str2Aid         Str2Aid         Str2Aid           Str2Aid         Str2Aid	4 558 558 558 558 558 558 558 558 558 55	2 6.16 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45	6 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2133 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 2135 215	7 8858 8858 8858 8858 8858 8858 8858 88	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	* 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	10 7,456 11,28 11,28 11,28 12,23 11,23 11,23 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,13 11,	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SFV-1201 (CSB-1018 Attam-1018 SFT-268 SFT-268 SFT-268 SFT-268 SFV-101 (S-2734 (S-2734 SFV-1201 x (CSB-1018 SFV-1201 x (CSB-1018 SFT-278 (CSB-1018 x Attam-18 (CSB-1018 x CSB-1018 x CSB	1.1 5.5 2.22 2.22 2.22 2.22 2.22 2.22 2.	00 66 75 75 75 75 75 75 75 75 75 75 75 75 75	28888888888888888888888888888888888888	88888888888888888888888888888888888888	88889998999999999999999999999999999999	511 258 258 258 258 258 258 258 258 258 258	4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	882232988889552388 882238888885553888 882538888888888
ICSB-101B Attame-101B SRT-36B G1-35-15-15 SRV-166 SRV-166 SRV-166 SRV-166 SRV-166 SRV-166 SRV-101 X (CSB-101B SRV-1201 X (CSB-101B SRV-201 X (CSB-101B	858 858 1588 1588 1588 1588 1588 1588 1	199 <u>4</u> 199 <u>4</u> 1995 1995 1995 1995 1995 1995 1995 199	2897 5133 5133 5153 5153 5153 5153 5153 515	8.67 8.67 8.68 8.69 8.69 8.69 8.69 8.69 8.69 8.69	880 880 1945 880 1946 880 1998 800 1998 800 1998 800 1998 1998	7.67 2.289 2.333 2.333 2.200 7.33 2.000 7.33 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.3333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3333 2.3	1721288253846 84288253846 85588558558558555	8622255888555555 86288885885555 8628888888888
Attan (4) SRT-264 GU3515-15 SPV-366 SPV-366 SPV-366 SPV-366 SPV-366 SPV-366 SPV-366 SPV-320 x (CSB-1018 SPV-220 x 20-3-16 SPV-220 x 20-3-1	888 222 222 222 222 222 222 222 222 222	667 748 753 753 753 754 755 755 755 755 755 755 755 755 755	213 2022 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	600 1600 1600 1600 1600 1600 1600 1600	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	128 233 233 233 233 233 233 233 233 233 2	124 128 128 1233 1233 128 128 128 128 118 118	1255 1628 1628 1628 1628 1628 1628 1628 1628
SRT-208 G123-15-15 SPV-104 SPV-104 SPV-104 SST25 SS-208 SS-208 SS-208 SS-208 SPV-1201 x (CSD-101B SPV-1201 x (CSD-101B SPV-1201 x (CSD-101B SPV-1201 x (CSD-101B SPV-1201 x (SSD-101B SPV-1201 x (SSD-101B x (S	558 558 581 581 581 581 581 581 581 581	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	86986788666 8698678866 86986868686	888 889 890 890 890 890 890 890 890 890	99779888999 99988889999 9998888899999	233 233 235 255 255 255 255 255 255 255	112223 8528 8528 8128 8128 118 118 118 118	968865777488 8888887774888
GU-5415-15 SPV-346 SPV-346 SPV-346 SPV-346 SPV-305 SPV-305 SPV-2021 x (CSB-101B SPV-2021 x (CSB-101B SPV-2021 x (CSB-101B SPV-2021 x (CSB-101B SPV-2021 x (CSB-101B SPV-2021 x (CSB-101B SPV-2021 x (CSB-2023 SPV-2021 x (C	22222222222222222222222222222222222222	112221114888158 8112221114888818 8118888188	669 669 669 669 669 669 669 669 669 669	889 889 889 889 889 889 889 889 889 889	7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	885 288 288 288 288 288 288 288 288 288	8851253 872 872 875 875 875 875 875 875 875 875 875 875	
SPV-J946 SPV-104 SPV-104 IS-233 IS-977 IS-977 SPV-1201 x (ISSL-101B SPV-1201 x (ISSL-101	556 2000 2222 2223 2331 2331 2331 2331 2331	555 252 311 88 88 88 88 88 88 88 88 88 88 88 88 8	869 869 869 869 869 869 869 869 869 869	4 5 6 7 4 2 8 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	200 200 200 200 200 200 200 200 200 200	22552222222222222222222222222222222222	192128 19228 19388 1938 1938 1938 1938 1938 1938 19	8612228 <b>8</b> 8
8.97-1.104 15-224 15-224 15-477 15-477 15-477 15-477 15-477 15-474 15-474 15-474 15-474 15-274 1011 x 15-471 1011 x 15-471 101	008 222 222 223 233 233 233 233 233 233 23	22111112 8888 8888 31188 8888 8888 8888	8.67 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.0	2 2 4 5 3 3 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		112 852 852 852 852 852 852 852 852 852 85	11222 1222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 12222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122 12 1	
IS-224 IS-224 IS-477 SPV.1201 x (CSL-101B SPV.1201 x (CSL-101B SPV.1201 x (SSL-101B SPV.1201 x (SSL-101B SPV.1201 x (SSL-101B SPV.1201 x (SSL-101B SPV.1201 x (SSL-104 SPV.1201 x (SSL-104 SPV.1201 x (SSL-104 CSB - 101B x (ALX-205 CSB - 101B x (ALX-205 CSB - 101B x (ALX-205 CSB - 101B x (SSL-101B CSB - 101B x (SSL-101B x (SSL-101B CSB - 101B x (SSL-101B x (SS	222 221 221 222 222 222 222 222 222 222	3.89 3.89 3.89 3.89 3.89 3.89 3.89	260 260 260 260 260 260 260 260 260 260	269 269 269 269 269 269 269 269 269 269	10 0 0 4 0 4 0 5 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	867 98 88 98 98 88 98 98	3118 118 118 118 118	522 52 52 52 52 52 52 55 55 55 55 55 55
IS-4335 IS-4375 IS-471 SPV-1201 x (CSB-101B SPV-1201 x SRT-26B SPV-1201 x SRT-26B SPV-1201 x SRT-946 SPV-1201 x SRT-164 SPV-1201 x SRT-164 SPV-1201 x SRT-26B SPV-1201 x SRT-26B CSB-101B x XRT-26B (CSB-101B x	222 2111 2667 3311 2667 278 278 278	1.11 1.11 8.89 8.89 1.11 3.89	2.66 5.33 19.67 2.86 2.80 2.80 2.80 2.80 2.80 2.80 2.80 2.80	4 7 4 7 7 4 9 9 9 9 8 8 9 9 9 9 8 9 9 9 9 9 9 9 9 9	8698995 88698995 8998995	898 898 898 8	200 19 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	122 <b>88</b>
IS-471 SPV-1201 x ALEM-14 SPV-1201 x ALEM-14 CSS - 1011 x ALEM-14 C	1.11 2.22 6.67 3.33 1.11 3.33 3.33 7.78	1.11 8.89 8.89 1.11 3.89	2.00 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.53 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 19.55 1	240 240 240 240 240 240 240 240 240 240	8696 8696 8698 8698 8698 8698 8698 8698	999 809 809 800 800 800 800 800 800 800	11.65 11.65	12 <b>8</b> 99
EPV.1201 X.CSL.010. SPV.1201 X.CSL.010. SPV.1201 X.Mm-14 B SPV.1201 X.RT-26B SPV.1201 X.ST-26B SPV.1201 X.ST-295 SPV.1201 X.ST-295 SPV.1201 X.ST-295 SPV.1201 X.ST-201 CSB-10113	222 667 1.11 3.33 7.78	4.44 8.89 1.11 3.89 3.89	5.3 16.67 16.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.67 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19.77 19	4.67 7.67 7.67 7.67 7.67 7.67 7.67 7.67	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	88	1.5	429 969 79
8PV-1201 x Alme-14 B 8PV-1201 x 217 - 248 8PV-1201 x 21-35-15-15 8PV-1201 x 27-3-46 8PV-1201 x 27-3-46 8PV-1201 x 27-3-46 8PV-1201 x 27-304 8PV-1201 x 27-304 CSSB - 1011 x 21-3-15-15 (CSSB - 1011 x 21-3-15-15 (CSSB - 1011 x 21-3-15-15) (CSSB - 1011 x 21-3-15-15)	6.67 7.78 3.33 3.33 7.78	8.89 8.89 1.11 3.89	4.67 19.33 16.67	2 4 5 5 3 2 6 7 9 4 2 6 7 9 8	896 896 896	7.89	í	669
89V-1201 x 817 - 268 89V-1201 x 915-15-15 89V-1201 x 915-15-15 89V-1201 x 87 - 294 89V-1201 x 18 - 2294 89V-1201 x 18 - 2294 89V-1201 x 18 - 2294 (C38 - 1011 x 418-23) (C38 - 1011 x 418-25 (C38 - 10	7.78 1.11 3.33 7.78	8.89 1.11 3.89	16.67 19.33	267 267 267	8 6 6 8 6 6		5	
EPV-1201 x GJ-511-15 SPV-1201 x SPV-946 SPV-1201 x SPV-946 SPV-1201 x SPV-946 SPV-1201 x SPV-946 SPV-1201 x SPV-946 SPV-1201 x SPV-946 ICSB - 1013 x X SPV-946	1.11 3.33 7.78	1.11 3.89	16.67 19.33	267 14.67	9.67	667	52	
87V.1201 x59V.946 87V.1201 x59V.946 87V.1201 x18-2294 87V.1201 x18-2294 87V.1201 x18-2294 (CSB - 1011 x x18-756 (CSB - 1011 x x18-756 (CSB - 1011 x x18-756 (CSB - 1011 x x18-756	3.33 7.78	3.89	19.33	14.67	17.00	8.89	8	
8PV-1201 x5PV-104 8PV-1201 x5PV-104 8PV-1201 x15-4234 8PV-1201 x15-4234 1CSB - 1013 x x5Dm 19 1CSB - 1013 x x5Dm 14 1CSB - 1013 x x17-26 1CSB - 1013 x x17-26 1CSB - 1013 x x17-34	7.78		5	400	3	11.89	38	1044
8PV.1201 K15.2284 SPV.1201 K15.4335 SPV.1201 K15.4335 CSSB - 1011 K15.471 CSSB - 1011 X K17-261 CSSB - 1011 X K17-261 CSSB - 1011 X K17-261 CSSB - 1011 X K17-261		8.33	4.01		4.33	6.78	589	533
8PV-1201 x15-6335 8PV-1201 x15-9971 [CSB-101B x Akma   4 B [CSB-101B x Akma   4 B [CSB-101B x AYT-26 B [CSB-101B x AYT-24] [CSB-101B x YY-246	2.22	2.22	2.67	200	2.33	2.44	2.11	860
82V-1201 x IS - 9471 ICSB - 101B x Akrau 14 B ICSB - 101B x 2RT-26 B ICSB - 101B x 2D-24 - 15 ICSB - 101B x SPV - 946	4.44	5.56	2.00	4.00	3.00	66.4	4.23	428
CSB - 101B x AKma 14 B CSB - 101B x 87T - 26 B CSB - 101B x 01-35 15 15 CSB - 101B x SPV - 946	4.44	6.11	2.00	2.67	2.33	4.89	356	423
ICSB - 101B x SRT- 26 B ICSB - 101B x GJ-35-15-15 ICSB - 101B x SPV - 946	4.44	8.89	6.00	5.33	5.67	9.67	4.69	7 28
ICSB - 101B x GJ-35-15-15 ICSB - 101B x SPV - 946	7.78	12.23	4.00	0.67	2.33	10.33	4	728
ICSB - 101B x SPV - 946	5.56	8.89	4.00	2.67	3.33	8.11	4.11	6.11
the second second second	6.67	7.78	3.33	2.67	3.00	6.11	4.67	5.39
ICSB - 101B X SPV - 104	7.78	10.00 10.00	11.33	8.00	9.67	11.78	7.619	586
ICSB - 101B X IS - 2284	2.22	3.33	6.00	1.33	3.67	5.22	1.78	350
IC38 - 1018 X IS - 6335	5.56	4.44	3.33	2.67	3.00	3.33	4.11	3.72
		111	4.00	1.33	2.67	2.56	122	1.89
AKms - 14 B x SRT - 26B	16.67	18.89	14.00	5.33	9.67	17.56	11.00	1428
-12	10.00	9.44	7.33	5.33	6.33	8.11	7.67	7.89
30 AKmii - 14 B x SPV - 946 6.67	4.44	5.56	8.00	6.00	7.00	1.33	522	628
×	223	23	17.33	10.67	14.0	9.78	6.414	8.11
	4.44	8.89	5.33	3.33	4.33	9.33	3.519	661
33 AKma- 14 B x IS - 6335 1.11	222	1.67	3.33	0.0	1.67	222	1.11	167
34 AKma - 14 B x IS - 9471 5.56	222	3.89	4.67	2.00	3.33	5.11	2.11	361

1 auto	1 2010 04 . CONIUS	3	+			6	ď		4	
2	SRT- 26B x GJ-35-15-15	5.56	4 44	500	2.67	e.m			n	
36	SRT - 26B x SPV - 946	8.89	6.67	7 78	667	00.00	200 F		77.0	10.4
37	SRT - 26B x SPV -104	6.67	2.22	4 44	11.33	14.00	12.67	0.0	0.45	
<b>8</b>	SRT - 26B x IS - 2284	4.44	4 44	4.44	533	0.8	667		 	00.0
<b>6</b> 2	SRT - 26B x IS - 6335	10.00	6.67	8.33	3.33	4.00	3.67	6.67	533	
4	SRT - 26B x IS - 9471	6.67	8.89	7.78	4.00	1.33	2.67	5.33	5 11	523
ŧ	GJ-35-15-15 x SPV - 946	5.56	2.22	3.89	9.33	5.33	7.33	7.44	3.78	561
4	GJ-35-15-15 x SPV- 104	32.22	28.89	30.56	5.33	5.33	5.33	18.78	17.11	17.95
43	GJ-35-15-15 x IS - 2284	4.44	3.33	3.89	2.67	5.33	4.00	3.56	4.33	394
\$	GJ-35-15-15 x IS - 6335	2.22	1.11	1.67	4.00	4.67	4.33	3.11	2.89	300
\$	GJ-35-15-15 x IS - 9471	6.67	4,44	5.56	4.00	4.00	4.00	5.33	4.22	4.78
46	SPV - 946 x SPV- 104	12.22	13.33	12.78	4.00	7.33	5.67	8.11	10.33	9.22
47	SPV - 946 x IS - 2284	2.22	1.11	1.67	6.67	4.67	5.67	4.44	2.89	3.67
48	SPV - 946 x IS- 6335	1.11	1.11	1.11	4.67	1.33	3.00	2.89	122	2.06
49	SPV - 946 x IS 9471	3.33	5.56	4.44	3.33	6.00	4.67	3.33	5.78	4.56
8	SPV - 104 x IS 2284	7.78	5.56	6.67	4.67	6.00	5.33	6.22	5.78	6.00
5	SPV - 104 x IS 6335	20.00	15.56	17.78	1.33	2.67	200	10.67	9.11	9,89
8	SPV - 104 x IS 9471	4.44	7.78	6.11	3.33	4.00	3.67	3.89	5.89	4.89
2	IS 2284 × IS-6335	4.44	1.11	2.78	1.33	4.00	2.67	2.89	2.56	2.72
3	IS 2284 x IS -9471	3.33	2.22	2.78	4.00	7.33	5.67	3.67	4.78	4.22
×	IS 6335 x IS 9471	1.1 1.1	1.11	111	1.33	2.00	1.67	1.22	1.56	1.39
	Mcan	6.93	5.56	6.25	6.16	5.32	574	6.55	5.44	5 00
	% increase (+)/decrease(-)			(-)19.76			(-)13.64	8		(-)16.95
	ever untreated			11 00						
				(Akola 96)						
		SE (m) 0.430	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
	( <b>2</b> 2	2.301	6.380		1.853	5,136		1 253	3,656	
	AxB	3.256	9.022		3.706	7.264		1.520	5.004	

S.N.	Parenta/Crosses		Akola-1995			Akola-1996		Pood	Pooled over locations	
		Untreated	Treated	Mcan	Untreated	Treated	Mcart	Untreated	Treated	Mean
-	2	3	۲	5	9	7	×	6	10	=
	SPV-1201	0.0	0.00	0.0	00.0	1.33	0.67	000	0.67	033
~	ICSB-101B	0.0	000	0.0	0.0	00.0	0.00	000	000	000
_	Akme-14B	0.0	00.0	0.0	00.0	0.67	0.33	0000	0.33	112
	SRT-26B	0.0	0.0	0.0	0.0	0.00	0.00	000	000	000
	GI-35-15-15	0.0	0000	00.0	0.00	0.0	00.0	000	000	
	SPV-946	0.0	00.0	0.0	00.0	00.00	00.0	000	000	200
~	SPV-104	0000	00.0	00.0	0.0	8.00	4.00	000	8.6	200
~	IS-2284	0.0	00.0	00.0	000	00.0	00.0	000	000	12
•	IS-6335	00.0	00.0	00.0	00.0	00.0	000	800	800	
2	IS-9471	0.0	00.0	0.0	00.00	0.67	0.33	000	220	110
=	SPV-1201 x ICSU-101B	0.0	0.0	0.0	0.00	00.0	00.0	000	000	000
5	SPV-1201 x Alons-14 B	000	0.0	0.00	00:0	0.0	800	00.0	000	000
9	SPV-1201 x SRT - 26B	000	00.0	0.0	00.00	0.67	0.33	000	033	110
ī	SPV-1201 x GJ-35-15-15	0.00	0.0	00.0	1.33	0000	0.67	0.67	000	033
5	SPV-1201 x SPV -946	0.0	0.0	0.0	00.0	00'0	000	000	8	80
9	SPV-1201 x SPV- 104	00:0	0.00	0.0	0.0	0.0	00.0	000	000	ogo
2	SPV-1201 x IS -2284	0.0	0.0	0.00	00:0	0.67	0.33	800	0.33	0.17
<u>s</u>	SPV-1201 x IS-6335	0.0	0.0	0.0	8.0	0.0	0.0	00.0	0.0	000
2	SPV-1201 x [S - 947]	0.0	0.0	0.0	00:0	0.0	0.0	80	0.0	000
ន	ICSB - 101B x AKms 14 B	800	0.00	800	0.00	0.0	8	0.0	0.0	00.0
2	ICSB - 101B x SRT- 26 B	000	0.0	0.0	0.00	0.00	800	80	0.0	000
5	ICSB - 101B x GJ-35-15-15	00.0	000	800	0.00	0.00	0.0	0.0	80	80
n :	ICSB - 101B x SPV - 946	000	800	800	0.0	0.0	0.00	0.0	0.0	000
5.2	ICSB - IOIB X SPV - IO4	0.0	8.0	0.0	000	0.00	000	0.0	0.0	000
33	1020 - 1010 X 15 - 2204	8.0	0.0	3.3	0.0	8.0	8.0	0.0	000	
4 F	1012 - 1015 X 13 - 6333	8	38	38	0.00	88	8.0	8.0	8.0	000
; #	AVme IAB v SDT - 26B	88	88	8	88	38	3	8	3	
38	AKme - M B x GL3C15-15	88	88	88	220	2.90	2.50	3	8.5	
8	AKms - 14 B x SPV - 946	00.0	800	000		133	0.0	88	67	85
31	AKms - 14 B x SPV - 104	00.00	000	0.0	0.67	4.67	2 67	0.33	2.33	133
32	AKms - 14 B x IS - 2284	0000	0.0	0.0	2.00	00.0	10	8	000	0.50
R	AKms - 14 B x IS - 6335	0000	0.0	00:0	0.0	0.00	0.0	000	000	000
5	AKme - 14 B x IS - 9471	000	800	800	0.67	000		~~~~~	000	240

ł	0	7	0	~	~	0	0		e	0	ç	e	2	~	ç	ç	g		284		او	2	8						
=	8.0	0.1	0.51	0.1	0.1	0.51	0.0	0.3	0.3	0.5	00	Ю. Э.Э.	0.6	0.1	00	0.50	0.3	0.0	9.0	0;F	00	0.47	(+)58.00						
10	00:0	0.33	0.67	0.33	0.33	0.33	0.0	0.0	0.00	0.33	0.0	0.67	0.33	0.0	0.0	0.33	0.67	0.0	0.67	0.33	0.0	0.57				CD 5%	0.201	1.356	
6	00.0	0.00	0.33	0.0	0.0	0.67	0.00	0.67	0.67	0.67	0.00	000	1.00	0.33	0.00	0.67	0.0	00.0	0.67	1.67	0.0	0.36				SE (m)	0.069	0.362	<b>1</b>
×	00:0	0.33	8: 8:	0.33	0.33	1.00	000	0.67	0.67	9. 1	0.0	0.67	1.33	0.33	0.0	9 <u>.</u>	0.67	000	1.33	200	80	0.47	(+)68.00	47 M	(Akola 95)				
1	00:0	0.67	1.33	0.67	0.67	0.67	0.0	000	0.0	0.67	0.0	1.33	0.67	0.0	0.0	0.67	1.33	0.0	1.33	0.67	8	0.57				CD 5%	0.288	1.510	~ ~ ~
9	00.0	0.00	0.67	0.0	0.0	1.33	0.00	1.33	1.33	1.33	00.0	0.0	2:00	0.67	00.0	1.33	0.0	00.0	1.33	3.33	80.0	0.36				SE (m)	0.104	0.545	
201 - 1114	00.0	0.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00	0.0	0.00	0.0	0.0	0.0	<b>8</b> 00	0.0	0.0	<b>8</b> 0	000	N						
•	00:0	0.00	0.0	0.0	0.00	0.0	0.0	0.0	00.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	000	00:0	0.0	0000	<b>8</b> 0	00.0			•	CD 5%	•	•	
	0.00	00.0	0.0	00.0	0.00	0.0	0.00	00:0	0.00	0.00	0.00	0.00	0.0	0.0	0.0	0.0	0.00	00.0	0.00	0.0	0.0	0.00				SE (m)	'		
Table 65 . Contd	SRT- 26B x GJ-35-15-15	SRT - 26B x SPV - 946	SRT - 26B x SPV -104	SRT - 26B x IS - 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x IS- 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 × IS-6335	IS 2284 x IS -9471	IS 6335 x IS 9471	Mean	% increase (+)/decrease(-)	over unitrealed			<	B	
Table (	SE	Ř	37	8	R	4	41	42	4	4	45	46	47	48	49	ନ	51	2	ß	3	s								

VIII - 66

S.N.	Parents/Crosses		Akola-1995			Akola-1996		Poo	lod over location	8
		Untreated	Treated	Mean	Untreated	Treated	Мсни	Untreated	Treated	Mean
1	2	3	4	5	6	7	8	9	10	11
	SPV-1201	0.00	0.00	0.00	10.67	13.33	12.00	5.33	6.67	6.00
	ICSB-101B	14.45	4.44	9.44	12.67	8.00	10.33	13.56	6.22	9.89
	Alkms-14B	5.56	14.45	10.00	19.33	12.67	16.00	12.44	13.56	13.00
	SRT-26B	11.11	14.45	12.78	7.33	6.00	6.67	9.22	10.22	9.72
	GJ-35-15-15	0.00	4.44	2.22	10.67	11.33	11.00	5.33	7.89	6.6
	SPV-946	15.56	17.78	16.67	6.00	10.67	8.33	10.78	14.22	12.5
	SPV-104	10.00	6.67	8.33	16.00	16.00	16.00	13.00	11.33	12.1
	IS-2284	7.78	5.56	6.67	3.33	6.00	4.67	5.56	5.78	5.6
	IS-6335	2.22	0.00	1.11	4.00	2.67	3.33	3.11	1.33	2.2
0	IS-9471	0.00	0.00	0.00	4.00	2.67	3.33	2.00	1.33	1.6
1	SPV-1201 x ICSB-101B	13.33	4.44	8.89	8.00	8.00	8.00	10.67	6.22	8.4
2	SPV-1201 x Akms-14 B	12.22	5,56	8.89	10.67	7.33	9.00	11.44	6.44	8.9
3	SPV-1201 x SRT - 26B	21.11	6.67	13.89	2.67	4.67	3.67	11.89	5.67	8.7
	SPV-1201 x GJ-35-15-15	2.22	0.00	1.11	16.67	2.67	9.67	9.44	1.33	5.3
i i	SPV-1201 x SPV -946	2.22	2.22	2.22	12.67	10.00	11.33	7.44	6.11	6.7
5	SPV-1201 x SPV- 104	16.67	11.11	13.89	7.33	8.00	7.67	12.00	9.56	10.7
7	SPV-1201 x IS -2284	1.11	0.00	0.56	3.33	2.00	2.67	2.22	1.00	16
	SPV-1201 x IS-6335	4.44	2.22	3.33	1.33	2.00	1.67	2.89	2.11	2.
•	SPV-1201 x IS - 9471	4.44	4.44	4.44	2.00	4.00	3.00	3.22	4.22	3.7
)	ICSB - 101B x AKma 14 B	16.67	15.56	16.11	12.00	16.67	14.33	14.33	16.11	15.2
l I	ICSB - 101B x SRT- 26 B	38.89	24.45	31.67	6.00	6.67	6.33	22.45	15.56	19.0
2	ICSB - 1018 x QJ-35-15-15	21.11	15.56	18.33	6.67	3.33	5.00	13.89	9.44	11.6
3	ICSB - 101B x SPV - 946	16.67	12.22	14.45	4.00	7.33	5.67	10.33	9.78	10.0
i	ICSB - 101B x SPV - 104	14.45	11.11	12.78	10.67	10.00	10.33	12.56	10.56	11.5
ŝ	ICSB - 101B x IS - 2284	1.11	0.00	0.56	4.00	7.33	5.67	2.56	3.67	3.1
6	ICSB - 101B x IS - 6335	2.22	0.00	1.11	3.33	2.67	3.00	2.56	1.33	2.0
,	ICSB - 101B x IS - 9471	2.22	2.22	2.22	3.33	4.00	3.67	2.78	3.11	2.9
	AKma - 14 B x SRT - 26B	2.22	2.22.	2.22	9.33	9.33	9.33	5.78	5.78	2.3 5.7
5	AKms - 14 B x GJ-35-15-15	22.22	11.11	16.67	8.00	12.67	10.33	15,11	11.89	
5	AKms -14 B x SPV - 946	13.33	7.78	10.56	12.00	10.00	11.00	12.67		13.
í	AKms - 14 B x SPV - 104	14.45	11.11	12.78					8.89	10.7
2	AKms - 14 B x IS - 2284	5.56	8.89	7.22	24.00	18.00	21.00	19.22	14.56	16.8
ŝ	AKms - 14 B x 15 - 6335				9.33	2.67	6.00	7.44	5.78	6.6
	AKma - 14 B x 15 - 6335	5.56	1,11	3.33	3.33	2.67	3.00	4.44	1.89	3.1
•	ANIII - 14 D X IS - 94/1	7.78	5.56	6.67	5.33	4.00	4.67	6.56	4.78	5.6

Table 66. Effect of pre-treatment on C. lungta (%) (UGS) of parents and F₁ crosses at Akola 1995 and Akola 1996

Contd.....

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2	~	4	5	9	1		6	10	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ŗ	<b>I- 26B x GJ-35-15-15</b>	1.11	0.00	0.56	4.67	3.33	4.00	2.89	167	2.28
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S.	<b>F - 26B x SPV - 946</b>	2.22	4.44	3.33	9.33	6.67	8.00	5.78	5.56	567
667         667         667         667         667         667         667         667         667         667         667         667         667         667         667         667         667         667         667         657         657         657         657         657         657         657         657         657         657         657         657         657         657         657         657         653         1157         657         653         1157         657         553         1157         657         553         1157         657         553         155         1157         153         1158         553         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         153         1	R	r - 26B x SPV -104	1.11	1.11	1.11	16.67	11.33	14.00	8.89	6.22	7.56
1000         667         8.33         5.33         6.00         567         7.67         6.33           7.78         5.56         6.67         8.33         5.33         6.00         5.67         5.67         5.63         3.73           4.44         13.33         13.18         6.67         5.67         5.67         5.53         3.73           0.00         0.00         0.00         2.67         1.67         3.67         5.53         1.73           1.11         1.11         0.00         2.67         1.67         3.53         1.55         5.33         1.55         5.33         1.56         5.33         1.57         5.33         1.67         5.33         1.67         5.33         1.67         5.33         1.55         5.33         1.55         5.33         1.56         5.33         1.56         5.33         1.56         5.33         1.67         5.33         1.67         5.33         1.56         5.33         1.56         5.33         1.56         5.33         1.56         5.33         1.56         5.33         1.56         5.33         1.56         5.33         1.56         5.33         1.56         5.33         3.53         5.53         3.53	ŝ	T - 26B x IS - 2284	6.67	6.67	6.67	8.00	10.67	9.33	7.33	8.67	8.00
7.78         5.56         6.67         4.00         2.00         3.00         5.88         3.78           1.44         13.33         13.44         4.67         6.67         6.67         6.67         5.33         11.5         14.6         10.0         5.89         3.78         10.8         3.78         10.8         3.78         10.8         3.78         10.8         3.78         10.8         3.78         10.8         3.78         10.8         3.78         10.8         3.78         10.8         3.78         11.7         10.8         3.78         11.8         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78         10.78 <t< td=""><td>ŝ</td><td>T - 26B x IS - 6335</td><td>10.00</td><td>6.67</td><td>8.33</td><td>5.33</td><td>6.00</td><td>5.67</td><td>7.67</td><td>6.33</td><td>2002</td></t<>	ŝ	T - 26B x IS - 6335	10.00	6.67	8.33	5.33	6.00	5.67	7.67	6.33	2002
7.78         1.11         4.44         4.67         6.67         5.67         6.27         5.33         1.35         1.44         6.77         6.77         6.77         6.77         6.77         6.77         6.77         6.77         6.77         6.77         6.77         6.77         5.33         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         1.35         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         3.34         3.35         3.35         3.34         3.33 <th< td=""><td>ĸ</td><td>T - 26B x IS - 9471</td><td>7.78</td><td>5.56</td><td>6.67</td><td>4.00</td><td>2.00</td><td>3.00</td><td>5,89</td><td>3.78</td><td>4 83</td></th<>	ĸ	T - 26B x IS - 9471	7.78	5.56	6.67	4.00	2.00	3.00	5,89	3.78	4 83
14.45         13.33         13.89         8.67         8.00         8.33         11.55         0.07           0.00         0.00         0.00         2.67         4.00         6.67         5.33         1.55         0.07           0.00         0.00         2.67         4.00         5.33         4.22         7.78         4.53         2.33         4.22         7.78         5.33         2.33         1.33         1.667         5.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         3.33         2.33         2.33         2.33         2.33         2.33         2.33         2.33         3.33         2.33         3.33         2.33	3	-35-15-15 x SPV - 946	7.78	1.1	4.44	4.67	6.67	5.67	6.22	3.89	905
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	-35-15-15 x SPV- 104	14.45	13.33	13.89	8.67	8.00	8,33	11.56	10.67	112
0.00         0.00         0.00         0.00         0.00         267         4.67         367         1.33         2.33         2.33         1.33         2.33         2.33         1.33         2.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.33         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1.46         1	3	-35-15-15 x IS - 2284	4,44	8.89	6.67	4.00	6.67	5.33	42	7.78	600
10.00         6 67         8.33         3.33         4.00         367         6.67         5.33           11.1         0.00         0.56         4.67         2.00         3.33         2.89         1.667         1.67           11.1         0.00         0.56         4.67         2.00         3.33         2.33         2.33         2.667         1.67           3.33         2.33         2.33         3.33         2.33         2.33         2.34         1.67         1.67           3.33         2.33         3.33         3.33         2.33         3.33         2.69         1.67         1.67           3.33         10.00         1.16         6.00         3.33         3.33         5.66         3.34         4.67         5.33         3.44           3.33         0.00         1.16         6.00         3.33         5.63         1.67         1.67         1.67           3.33         0.00         1.11         1.11         2.00         3.33         5.63         1.78         5.33         3.33         5.63         1.67         2.33         3.33         5.63         1.67         1.67         1.67         1.67         1.67         1.67	3	i-35-15-15 x IS - 6335	0.00	0.0	00:0	2.67	4.67	3.67	133	2.33	183
28.89         23.33         26.11         10.67         10.00         10.33         19.78         16.67           1.11         0.00         0.05         4.87         2.03         2.33         2.89         1.00           3.33         2.22         2.78         4.67         2.00         3.33         2.89         1.00           3.33         2.22         2.78         4.67         2.00         3.33         2.89         1.00           3.33         2.22         2.78         4.67         2.00         3.33         2.89         1.00           3.33         10.00         1.11         1.66         3.33         3.33         3.67         4.37           2.33         10.00         1.11         2.00         3.33         2.67         1.56         2.22           3.33         0.00         1.11         2.00         3.33         2.67         1.56         2.22           3.33         0.00         1.11         2.00         3.33         2.67         1.56         2.22         2.22           3.33         0.00         1.51         2.00         3.33         3.67         4.33         3.33         3.67         2.22         2.22	0	i-35-15-15 x IS - 9471	10.00	6.67	8.33	3.33	4.00	3.67	667	533	39
1/11         0.00         0.56         4.67         2.00         3.33         2.89         1.00           3.33         2.33         2.33         2.33         2.33         2.89         1.00           3.33         2.33         2.33         3.33         3.33         2.33         0.67         1.67           3.33         10.00         116         4.67         2.00         3.33         5.00         3.84           8.89         6.67         7.78         4.67         2.00         3.33         5.00         3.84           8.89         6.67         7.78         4.67         2.00         3.33         6.77         4.67           3.33         10.01         111         2.00         3.33         5.67         3.84         5.73         5.67         3.84           3.33         0.00         1.11         2.00         3.33         5.77         5.67         3.33         3.73         3.33         3.73         3.33         3.33         3.33         3.33         3.33         5.77         5.67         3.33         5.77         5.22         2.22         1.00         3.33         3.33         3.33         3.33         3.33         3.33 <t< td=""><td>3</td><td>PV - 946 x SPV- 104</td><td>28.89</td><td>23.33</td><td>26.11</td><td>10.67</td><td>10.00</td><td>10.33</td><td>19.78</td><td>16.67</td><td>5 45 2 6 45</td></t<>	3	PV - 946 x SPV- 104	28.89	23.33	26.11	10.67	10.00	10.33	19.78	16.67	5 45 2 6 45
0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01         0.01 <th0.01< th="">         0.01         0.01         <th0< td=""><td>3</td><td>PV - 946 x IS - 2284</td><td>1.11</td><td>0.0</td><td>0.56</td><td>4.67</td><td>2.00</td><td>3.33</td><td>2.89</td><td>ŝ</td><td>1</td></th0<></th0.01<>	3	PV - 946 x IS - 2284	1.11	0.0	0.56	4.67	2.00	3.33	2.89	ŝ	1
3.33         2.22         2.78         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         4.67         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         5.00         3.88         3.83         3.87         3.88         3.83         3.87         3.88         3.88         3.83         3.88         3.83         3.88         3.83         3.86         3.83         3.83         3.83         3.83         3.83         3.83         3.83         3.83         3.83         3.83         3.83         3.83 <th< td=""><td>S</td><td>2V - 946 x IS- 6335</td><td>0.0</td><td>0.00</td><td>0000</td><td>1.33</td><td>3.33</td><td>233</td><td>0.67</td><td>161</td><td>;;</td></th<>	S	2V - 946 x IS- 6335	0.0	0.00	0000	1.33	3.33	233	0.67	161	;;
6.67         4.44         5.56         3.33         3.33         3.33         5.00         3.88           1.33         1000         1167         6.00         3.33         3.33         5.00         3.88           2.22         0.00         111         6.00         3.33         5.73         6.67         4.67           3.33         0.00         111         6.00         2.00         3.33         6.78         4.33           3.33         0.00         111         111         2.00         3.33         5.73         6.67         3.33           1.11         1.11         1.11         2.00         3.33         2.67         1.56         2.23           1.11         1.11         2.00         3.33         2.67         1.56         2.23           1.11         1.11         2.00         3.33         2.67         1.56         2.23           1.11         1.11         2.00         3.33         2.67         1.56         2.23           1.11         2.00         3.33         2.67         1.56         2.33         1.90           1.11         2.00         1.33         2.67         1.56         2.33         1.56	3	PV - 946 x IS 9471	3.33	222	2.78	4.67	4.67	4.67	400	3.44	3.77
13.33         10.00         11.67         6.00         3.33         4.67         9.67         6.67           2.22         0.00         11.67         6.00         2.00         3.03         6.78         4.33           3.33         0.00         11.67         4.00         6.67         5.33         4.67         9.67         6.67           3.33         1.11         1.11         1.11         1.11         1.11         1.11         1.11         1.11         2.00         3.33         2.67         1.56         2.22         3.33           1.11         1.11         1.11         2.00         3.33         2.67         1.56         2.22         2.22           1.11         1.11         1.11         2.00         3.33         2.67         1.56         2.22         2.23           1.11         1.11         1.11         2.00         3.33         2.67         1.56         2.22         2.23           1.11         1.11         2.00         3.33         2.67         1.56         5.22         2.22         2.23         2.65         6.36         7.76         6.38         6.38         6.38         6.38         6.38         6.38         6.36	3	V - 104 x IS 2284	6.67	4.44	5.56	3.33	3.33	3,33	200	3.89	444
A.85         6.67         7.78         4.67         2.00         3.33         6.79         4.33           2.32         0.00         111         6.00         6.77         6.00         4.11         1.00           3.33         0.00         167         4.00         5.00         3.33         5.67         4.33         3.67         3.63           3.33         0.00         167         4.00         5.07         156         2.22           1.11         1.11         2.00         3.33         2.67         156         2.22           0.00         1.67         2.00         3.33         2.67         156         2.22           0.111         1.11         2.00         3.33         2.67         156         2.22           0.4         0.75         6.55         6.55         6.55         6.56         6.36         7.78         6.38           1         4.26         7.78         2.078         0.781         0.203         0.50         1.9           1         1.010         0.205         5.78         0.781         0.731         0.500         1.9           1         1.910         0.206         1.406         0.711	5	vV - 104 x IS 6335	13.33	10.00	11.67	6.00	3.33	4.67	9.67	6.67	8.17
2.22         0.00         1.11         6.00         2.00         4.11         1.00           3.33         0.00         1.17         4.00         5.67         5.33         3.67         3.33           1.11         1.11         1.11         2.00         3.33         2.67         1.56         2.33           9.42         6.10         7.25         7.25         6.65         6.95         7.78         6.34           1.11         1.11         2.00         3.33         2.67         1.56         2.23         3.33           0         7.25         7.25         6.65         6.95         7.78         6.38         7.78         5.33           1         4.25         7.25         6.55         6.55         5.92         7.78         6.34         (1)           1         5.76         1.010         0.05%         5.78         1.010         0.213         0.650         1.78         0.500         1.91         0.513         0.650         1.91         1.91         0.513         0.650         1.91         0.513         0.650         1.91         0.500         1.91         1.91         1.91         1.91         1.91         1.92         1.91	i.	V - 104 x IS 9471	8.89	6.67	7.78	4.67	2.00	3,33	6.78	4.33	999
3.33         0.00         167         4.00         667         5.33         367         3.33           1.11         1.11         1.11         1.11         1.11         2.00         3.33         2.67         1.56         2.22           8.42         6.10         7.26         7.25         6.65         6.36         7.78         6.38           1         (-)2755         7.25         6.65         6.36         7.78         6.38           1         (-)2755         7.25         6.65         6.36         7.78         6.38           1         (-)2755         7.25         6.65         6.36         7.78         6.38           1         0.10         7.26         7.25         6.65         6.36         7.78         6.38           1         0.364         1.00         0.282         0.781         0.050         (-)           1         1.010         0.282         0.781         0.781         0.733         0.650           1         1.510         1.300         3.382         1.300         4.588           1         2.033         7.026         5.702         1.300         4.588	S	2284 x IS-6335	2.22	0.0	1.1	6.00	2.00	4.00	4.11	8	2.56
1.11         1.11         1.11         1.11         1.11         2.00         3.33         2.67         1.56         2.23           0         4.42         6.10         7.26         7.25         6.65         6.95         7.78         6.38           1         (-)2755         7.25         6.65         6.95         7.78         6.38         (-)           1         (-)2755         7.25         6.65         6.95         7.78         6.38         (-)           4.26         (-)2755         7.25         6.65         6.95         7.78         6.38         (-)           A         4.28         (Atotal 90)         2.222         0.781         0.213         0.650         (-)           A         0.364         1.010         0.222         0.781         0.213         0.650         1.780         4.568           A         0.364         1.010         0.222         0.781         0.731         0.650         4.568           A         2.03         7.493         2.043         5.702         1.300         4.568	ŝ	2284 x IS -9471	3.33	0.0	1.67	4.00	6.67	5.33	3.67	3.33	350
8.42         6.10         7.26         7.25         6.65         6.95         7.78         6.38           (-)2755         (-)2755         (-)2755         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)927         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)929         (-)928         (-)928         (-)929         (-)928         (-)928         (-)928         (-)928         (-)928         (-)929         (-)928         (-)928         (-)928         (-)928         (-)928         (-)929         (-)928         (-)928         (-)928         (-)928         (-)928         (-)929         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (-)928         (	≌∣	6335 x IS 9471	1.11	1.11	11	2.00	3.33	267	1.56	222	1.89
(1) (-)2755 (-)20 (-)2755 (-)20 (-)2755 (-)20 (-)2755 (-)20 (-)2755 (-)20 (-)275	Σ	ean	8.42	6.10	1.26	7.25	665	505	7 TB	96.9	90 1
A         0.25%         Avoid 96)         SE (m)         CD 5%         Avoid 96)         SE (m)         CD 5%         A 0.26%         SE (m)         CD 5%         SE (m)	*	increase (+)/decrease(-)			(-127.55		2	2C 87.7	01.1	00	00.7
1 4.25 5 E(m) CD 5% (Avola 5%) 5 E(m) CD 5% 5 E(m) C 1 0.364 1.010 0.282 0.781 0.213 1 1.12 1.15 2.08 1.172 1.120 1.120 1.120 1.120 1.120	8	er untreated						17-01-1			RG:/1(-)
SE (m)         CD 5%         (Avola 96)         SE (m)         CD 5%         SE (m)         C           A         0.364         1.010         0.28         0.781         0.213         0.213           B         1.911         5.298         1.478         4.066         1.120           XB         2.703         7.493         2.089         5.792         1.580	*	increase over location			4.76						
SE (m)         CD 5%         SE (m)         CD 5%         SE (m)         C           0.364         1.010         0.232         0.781         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.213         0.21					(Akola 96)						
1.014 1.010 0.282 0.781 0.213 1.015 5.288 1.478 0.066 1.120 2.703 7.493 2.089 5.792 1.580			SE (m)	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
2.703 7.433 2.089 5.732 1.580 1.580		< :	1.304 1.0	010.1		0.282	0.781		0.213	0.620	
2.103 1.433 2.089 5.792 1.580		3 1	1.6.1	967.0		1.478	4.096		1.120	3.362	
		axe	3	264.2		590'Z	5.792		1.580	4.599	

VIII - 68

z	Parenta/Crosses		Akola-1995		'	Akola - 1996			Pooled over location	
		Untreated	Treated	Mean	Untreated	Treated	Moun	Untreated	Treated	Mean
L	2	•	4	s	9	4	œ	0	10	=
	SPV-1201	0.00	0.0	<b>0</b> 000	3.33	1.33	2.33	1.67	19,0	1.17
	ICSB-101B	4.44	0.0	22	2.00	200	2.00	322	8	2.11
	Akms-14B	36.67	15.56	26.11	4.67	2.00	3.33	20.67	3.78	14.72
	SRT-26B	11	222	1.67	0.67	0.67	0.67	0.89	1.44	1.17
	GI-35-15-15	2.22	1.11	1.67	133	2.67	2.00	1.78	1.89	183
	SPV-946	222	8.89	5.56	2.67	00.00	1.33	2.44	4.44	3.44
	SPV-104	11.11	1.1	6.11	3,33	4.00	3.67	7.22	2.56	4.89
	15-2284	3.33	222	2.78	0.0	00.00	0.00	1.67	11	1.39
	15-6335	000	1.1	0.56	0000	00.0	0000	000	0.56	0.28
^	15-9471	1.1	2.22	1.67	0.67	0000	0.33	0.89	11	8
1	SPV-1201 x ICSB-101B	12.22	2.22	12	1.33	0.00	0.67	6.78	1.11	3.94
~	SPV-1201 x Akma-14 B	8.89	8.89	8.89	2.00	1.33	1.67	5.44	5.11	5.28
~	SPV-1201 x SRT - 26B	4.44	2.22	3.33	00.0	0.67	0.33	2.22	44.1	183
*	SPV-1201 x GI-35-15-15	0.0	1.11	0.56	5.33	000	2.67	2.67	0.56	1.61
ŝ	9 <del>16-</del> AJS × 1021-AJS	1.1	0000	0.56	4.67	0.67	2.67	2.89	0.33	1.61
÷	327-1201 x SPV- 104	6.67	44.4	5.56	6.00	0.0	3.00	6.33	222	428
•	SPV-1201 x 13 -2284	E	0.00	0.56	2.67	0.0	1.33	1.89	0.0	
ei,	SPV-1201 x IS-6335	6.67	0.0	3.33	0.67	0.0	0.33	3.67	0.0	28
•	SPV-1201 x IS - 9471	7.78	1.1	4.4	0.67	0.0	0.33	4.22	0.56	
8	ICSB - 101B x AKms 14 B	4.44	1.1	2.78	2.67	2.67	2.67	3.56	1.89	272
=	ICSB - 101B x SRT-26 B	6.67	5.56	6.11	3.33	2.00	2.67	5.00	3.78	4.39
ង	ICSB - 101B x 0J-35-15-15	8.89	0000	444	1.33	00.0	0.67	5.11	0.0	2.56
ជ	ICSB - 101B x SPV - 946	8.89	1.1	5.00	0.67	0.67	0.67	4.78	0.89	2.83
×	ICSB - 101B x SPV - 104	22	7.78	2.00	1.33	1.33	1.33	1.78	4.56	3.17
R	ICSB - 101B x IS - 2284	000	222	1.11	1.33	0.67	1.00	0.67	1.44	1.06
x	ICSB - 101B x IS - 6335	222	0.0	1.1	2.67	0.0	1.33	2.44	0.0	12
2	ICSB -101B x IS - 9471	4.44	2.22	3.33	0.67	0.67	0.67	2.56	1.44	500
8	AKms - 14 B x SRT - 26B	0.0	0.00	00:0	4.67	1.33	3.00	2.33	0.67	1.50
ุล	AKma - 14 B x GI-35-15-15	7.78	4.44	6.11	1.33	0.0	0.67	4.56	222	3.39
ន	AKms - 14 B x SPV - 946	1.1	0.0	0.56	2.67	200	2.33	1.89	8	1.44
ñ	AKma - 14 B x SPV - 104	4.44	3.33	3.89	4.00	0.67	233	4	2.00	3.1
R	AKma - 14 B x IS - 2284	E.	0000	0.56	3.33	0.0	1.67	22	0.0	Ē
8	AKme - 14 B x 15 - 6335	0.0	3.33	1.67	0.0	0.0	0.00	0.0	1.67	0.83
7	AKma - 14 B x IS - 9471	222	222	22	1.33	80	0.67	1.78	1.11	1.44
									Contd	:

•

VIII - 69

Table	e 67 . Contd			0/ - IIIA						
-	2	e	4	5	6	L	8	6	10	=
35	SRT- 26B x GJ-35-15-15	0.00	0.00	0.0	00:0	0.67	0.33	0.00	0.33	0.17
×	SRT - 26B x SPV - 946	3.33	1.11	2.22	0.67	0.67	0.67	2.00	0.89	1.44
37	SRT - 26B x SPV -104	0.00	00.0	0.0	2.00	1.33	1.67	8	0.67	0.83
R	SRT - 26B x IS - 2284	4.44	0.00	222	2.00	2:00	200	32	8	211
8	SRT - 26B × IS - 6335	1.11	1.1	1.11	1.33	0.0	0.67	<u>1</u>	0.56	0.89
Ş	SRT - 26B x IS - 9471	3.33	1.11	22	0.67	0.0	0.33	2.00	0.56	1.28
4	GJ-35-15-15 x SPV - 946	2.22	2.22	22	0.67	0.00	0.33	1.44	1.1	1.28
42	GJ-35-15-15 x SPV- 104	6.67	3.33	5.00	1.33	0.67	1.00	9	2.00	300
ę	GJ-35-15-15 x IS - 2284	5.56	0.00	2.78	1.33	00.0	0.67	3.44	0.00	1.2
\$	GJ-35-15-15 x IS - 6335	1.11	0.0	0.56	0.0	0.67	0.33	0.56	0.33	0.44
Ş	GJ-35-15-15 x IS - 9471	4.44	222	3.33	800	0.0	0000	22	1.11	1.67
\$	SPV - 946 x SPV- 104	7.78	7.78	7.78	1.33	0.67	1.00	4.56	423	4.39
4	SPV - 946 x IS - 2284	0.0	0.0	0.0	00:0	00.0	000	0.00	0.00	0000
8	SPV - 946 x IS- 6335	1.1	1.11	1:11	00:0	000	00.0	0.56	0.56	0.56
4	SPV - 946 x IS 9471	3.33	1.11	222	0.00	0.0	0.0	1.67	0.56	11
8	SPV - 104 x IS 2284	4.44	3.33	3.89	2.00	0.0	1.00	3,22	1.67	2.44
51	SPV - 104 x IS 6335	5.56	4.44	5.00	<b>0</b> 0.0	0.0	000	2.78	22	
8	SPV - 104 x IS 9471	3.33	0.0	1.67	0.0	0.0	00.0	1.67	0.0	28
3	IS 2284 x IS-6335	2.22	0.0	1.11	0.0	0.0	00.0	1.1	0.00	
X	IS 2284 x IS -9471	2.22	00.0	1.11	0.67	1.33	1.00	1.44	0.67	1.06
8	IS 6335 x IS 9471	3.33	00:0	1.67	0.67	8	0.33	2.00	0.00	1.00
	Mean	4.20	2.12	3.16	1.60	0.64	112	90	136	2.14
	% increase (+)/decrease(-)			(-)49.52			00:09(-)	}	2	(-Y52.41
	over untreated									
	% increase over location						64.56 (Al-to 00)			
		SE (m)	CD 5%		SE (m)	CD 5%		SE (m)	CD 5%	
	<	0.411	1.140		0.120	0.333		0.170	0.494	
	81 G	2.157	5.978		0.631	1.749		0.892	2.421	
	AXD	3.000	8.430		769.0	2.413		197	3.6/U	

VIII - 70

3.N	Parents/Crosses		Akola-1995			Akola-1996		Poor	Powled over locations	
		Untreated	Troated	Mean	Untreated	Treated	Mean	Untreated	Treated	Mean
-	2	9	4	s	9	1	8	6	01	=
-	SPV-1201	- 1.00	0.67	0.83	4.50	4.00	4.25	2.75	233	254
64	ICSD-101B	4.17	4.00	4.08	4.67	4.00	4.33	4.42	10	421
ñ	Akma-14B	3.00	4.00	3.50	5.00	4.50	4.75	4 00	1.25	113
4	SRT-26B	<b>4</b> .0	3.33	3.67	4 0	4.00	4	4 00	367	285
ŝ	GU-35-15-15	0.67	283	1.75	4.00	4 00	4 00	2.33	5	
\$	SPV-946	4.17	3.83	4.00	4	3.50	3.75	894	127	
1	SPV-104	4.0	3.50	3.75	4.50	400	4 25	12	24.0	
•	15-2284	2.50	2.17	233	2.00	2.17	208	i č	2 Ç	2
•	13-6335	0.67	1.33	1.00	1.83	1.50	1.67	15	147	15
2	[3-947]	0.67	1.17	0.92	1.33	8	1.17	8	10	į
=	SPV-1201 x ICSB-101B	3.67	1.50	2.58	3.50	3.50	3.50	3.56	32	ļ
2	SPV-1201 x Alona-14 B	3.50	267	3.08	4.33	4.00	4.17	8	38	
2	SPV-1201 x SRT - 26B	3.33	2.83	3.08	3.17	400	3.58	325	242	32
1	8PV-1201 x CJ-35-15-15	20	0.67	1.33	4.50	4.00	4 25	5	1.50	32
2	8PV-1201 x SPV -946	2.83	3.00	292	4.50	4	4 25	3.67	35	
9	8PV-1201 x SPV- 104	<b>4</b> .0	3.67	3.83	4.00	3.50	3.75	8	3.59	22
1	SPV-1201 x 13 -2284	1.33	1.50	1.42	0.67	1.17	0.92	8	130	117
81	SPV-1201 x IS-6335	2.50	200	2.25	1.17	1.33	125	1.83	191	176
2	SPV-1201 x IS - 9471	2.33	2.50	2.42	1.50	1.00	1,25	192	1.75	183
ន	ICSB - 101B x AKma 14 B	5.00	3.00	4.00	4.00	4.00	4.0	4.50	3.50	400
71	ICSB - 101B x SRT- 26 B	4.83	3.67	422	4.00	3.50	3.75	4.42	3.58	400
ដ	ICSB - 101B x 0J-35-15-15	2.00	3.17	4.06	3.67	3.00	3.33	4.33	3.08	371
ន	ICSB - 101B x SPV - 946	5.00	4.00	4.60	3.00	<b>9</b> .0	3.50	8	400	400
a	ICSB - 101B x SPV - 104	2.00	4.00	4.50	4.0	3.00	3.50	4.50	3.50	400
ห	ICSB - 101B x IS - 2284	1.33	1.33	1.33	1.83	1.83	1.83	1.58	1.58	158
ន	ICSB - 101B x IS - 6335	2.17	1.83	5.00	1.50	1.00	1.25	1.83	1.42	2
5	ICSB -101B x IS - 9471	2.17	1.67	1.92	2.00	1.50	1.75	2.08	80	
ដ	AKmu - 14 B x SRT - 26B	2.00 2.00	4.50	4.75	3.50	3.50	3.50	4.25	4	4.13
ล	AKmu - 14 B x GL-35-15-15	4.67	4.33	4.50	3.50	90. <del>4</del>	3.75	4.08	4.17	413
8	AKmı -14 B x SPV - 946	4.33	4.00	4.17	4.17	4.00	4.08	4.25	400	4.13
R	AKms - 14 B x SPV - 104	2.00	4.00	4.50	4.83	4.33	4.58	4.92	4.17	454
8	AKms - 14 B x IS - 2284	3.00	2.67	2.83	2.00	1.67	1.83	2.50	2.17	233
8	AKma - 14 B x 13 - 6335	1.67	1.67	1.67	2.00	0.83	1.42	1.83	1.25	154
⊼	AKme - 14 B x 13 - 9471	2.17	2.50	2.33	3.17	1.50	2.33	2.67	2.00	233
									Contcl	

VIII - 70

	2.79	3.50	2.88	2.38	2.38	1 92	583	3.42	200	1.46	2.13	4.21	1.42	113	200	238	2.63	2.75		90	1.29	3.76	(+)8.68					
=															- 1								(+)	2				
10	2.75	3.25	2.67	2.50	2.25	200	2.33	3.25	233	1.75	2.58	4.08	1.25	1.08	2.00	2.25	2.50	3.00	1.00	1.50	1.42	263				CD 5%	0.131	
6	2.83	3.75	3.08	2.25	2.50	183	3,33	3,58	1.67	1.17	1.67	4.33	1.58	1.17	2.00	2.50	2.75	2.50	2.08	2.08	1.17	2.8.6	Ì			SE (m)	0.045	1400
8	3.67	3.75	4.00	2.00	2.00	1.75	3.08	3.08	1.50	1.58	200	3.92	2.00	1.67	1.92	200	200	275	1.83	200	1.58	2.82	(+)4,16		4.96	(Akola 95)		
7	3.50	3.50	4.00	2.00	2.00	1.67	2.83	3.00	2.00	2.00	3.00	3.83	2:00	1.67	1.83	2:00	2:00	3.00	2.00	2.00	200	2.76				CD 5%	0.145	0.100
6	3.83	4.00	4.00	2.00	2.00	1.83	3.33	3.17	1.00	1.17	1.0	4.00	2.00	1.67	2.00	2:00	2.00	2.50	1.67	2.00	1.17	2.88				SE (m)	052	
5	1.92	3.25	1.75	2.75	2.75	2.08	2.58	3.75	2.50	1.33	2.25	4.50	0.83	0.58	2.08	2.75	3.25	2.75	1.25	1.58	8.	2.68	(+)13.24					
4	2.00	3.00	1.33	3.00	2.50	2.33	1.83	3.50	2.67	1.50	2.17	4.33	0.50	0,50	2.17	2.50	3.00	3.00	0.0	9. 8	0.83	2.49				CD 5%	0.256	1 242
3	1.83	3.50	2.17	2.50	3.00	1.83	3.33	4.00	2.33	1.17	2.33	4.67	1.17	0.67	2.00	3.00	3.50	2.50	2.50	2.17	1.17	2.87				SE (m)	0.092	0 494
2 507 360	CI-CI-CF-(1) X 802 -1 XS	SRT - 26B x SPV - 946	SRT - 26B x SPV -104	SRT - 26B x IS - 2284	SRT - 26B x IS - 6335	SRT - 26B x IS - 9471	GJ-35-15-15 x SPV - 946	GJ-35-15-15 x SPV- 104	GJ-35-15-15 x IS - 2284	GJ-35-15-15 x IS - 6335	GJ-35-15-15 x IS - 9471	SPV - 946 x SPV- 104	SPV - 946 x IS - 2284	SPV - 946 x IS- 6335	SPV - 946 x IS 9471	SPV - 104 x IS 2284	SPV - 104 x IS 6335	SPV - 104 x IS 9471	IS 2284 × IS-6335	IS 2284 x IS -9471	IS 6335 x IS 9471	Mcan	% increase (+)/decrease(-)	over untreated	% increase over location		~	9
_	•	<u>,</u>	~	8	~	•	_	6	•	4	ũ	2	5	<b>8</b> 2	6	8	5	2	8	<b>x</b>	2							

VIII - 72

 $\mathrm{IX}-1$  Table : 69 Correlation coefficient between fungul load of germinated and ungerminated seed (Untreated), Atola and Patancheru, 1996

								- 10	0.000	10		0	Other	Score	
		Loca	Germi	Ungermi	Р. т.	P.P.	د ن					lumata	funci		ana a
ä		۲. ۲	-nated	paller-			DEMON						,		
ž			Seed	poos			90	30	30	1305	1003	NGS	nos	SĐN	
			8	SÐU	8	3	3	3	-	0.000	24	100	-0.74	-0.74	-0.72
-	Germinated Seed	<		-10	11.0	0.21	11.0-	00.0	10.0		18.9	-0.82	-0.52	-0.80	-0.87
,		۵.	•	6.0-	RS O	8.0		***	0.69**		10.0	0.95	0.75**	0.74	-17- 
ы	Ungerminated seed	<		•	14.0	17.0-	11.0	1 55 9	14.0	- 96'0	0.80	0.82**	0.51**	100	0.87
		۵.		•	80.7-	3	0.78*	10.49	0.76**	0.72	90.0	0.67	0.38**	1.0	0.65
n	F. munitforme (GS)	< 0				0.78	0.48***	0.17	97.0-	10.0	-10.01	10.0	2		
•	a additionant (GS)	. <				•	-0.38	0.11	-0.45	ង្ក	0.55			9	
r	the second	•				•	0.56**	0.28		800			8	0	0.52
Ś	C. homata (GS)	< (						12.0	-0.A3	14.9	55	195.0-	-0.32	-0.43	19.0
		<b>D.</b> ·						•	-9E.0-	10.9	-0.05	-0.60	-0.46	59	1240
ø	Other fungi (GS)	< •						•	10.24	15.0	-0.45	940		11.0	
٢	Score (OS)	. <								14.0	0.67	0.57	14.0	1	0.10
•		₽. ◄								•	0.0 7	0.82	0.67**	0.66	290
0	P. HOREGOINS (CCC)	<b>د</b> م								•	2.0	100	i i i	12.9	0.28
٩	F. pallidorowum (UOS)	~										0.48	6E 0	12.0	11.0
2	C. humata (UGS)	. <											0.50	0.62	0.64
:		۵, ۹											•	1 1 C	0.57
=	(eno) thur wino	( <b>p</b> .											•		0.86
1	Score (UOS)	< •												•	0.90**
1	A= Akola		· Sig	Significent at 5%	*	08-0	OS = Germinated Seed	leed	-	P.m. =	F. monthforme	me			
â	P = Patencheru			•• Significant at 1%	×	200				-	- hanned				

m IX-2Table : 70 Correlation coefficient between fungal load of germinated and ungerminated seed (treated), Akola and Patarocheru, 1996

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ti og	Certi,	Ungermi- nated	P. m.	<i>R.</i> P.	C. Iumata	Other funci	Score	P. m.	P. P.	C. Iterato	Other france	Score	
at Sold         Cos         Cos <thcos< th=""> <thcos< <="" th=""><th>~</th><th></th><th></th><th>Peed</th><th>Peed</th><th></th><th>- 1</th><th></th><th></th><th></th><th></th><th></th><th></th><th>ŀ</th><th></th><th>TOME</th></thcos<></thcos<>	~			Peed	Peed		- 1							ŀ		TOME
at field A	1			GS	SOU	80	8	63	0S	88	SDU	UGS	ngs	nos	nos	
Made and (3)         P         - 0.994 - 0.4754         0.4564 - 0.4754         0.6465 - 0.4354         0.4354 - 0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354         0.4354 <th0.4354< th="">         0.4354         0.4354<td></td><td>Germinated Seed</td><td>&lt;</td><td>•</td><td>1.86.9</td><td>1.12</td><td>-0.36**</td><td>-0.40**</td><td>-0.25</td><td>-0.72-+</td><td>-0.89***</td><td>-0.63**</td><td>-0.92</td><td>-0.75**</td><td>-0.69</td><td>144</td></th0.4354<>		Germinated Seed	<	•	1.86.9	1.12	-0.36**	-0.40**	-0.25	-0.72-+	-0.89***	-0.63**	-0.92	-0.75**	-0.69	144
and feed         >         0.77**         0.36**         0.36**         0.36**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35**         0.35** <th0.3**< th=""></th0.3**<>			<b>G.</b>	•	1 8.9	0.45**	0.46**	0.60**	0.43***	-0.73		10.94	-0.95	-0.83	14.0	1.1
form (C3)         P         -0.45m         -0.45m </td <td></td> <td>Ungerminated seed</td> <td>&lt;</td> <td></td> <td>•</td> <td>0.72**</td> <td>0.36**</td> <td>0.40**</td> <td>0.26</td> <td>0.73**</td> <td>0.89**</td> <td>0.63**</td> <td>0.92**</td> <td>0.75**</td> <td>0.69</td> <td>0.75</td>		Ungerminated seed	<		•	0.72**	0.36**	0.40**	0.26	0.73**	0.89**	0.63**	0.92**	0.75**	0.69	0.75
More (05)         A         0.00         0.33         0.77         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76         0.76 <th0.76< th="">         0.76         0.76         <t< td=""><td></td><td></td><td>۵.</td><td></td><td>•</td><td>-0.45**</td><td>1.474</td><td>-0.60</td><td>-0.43</td><td>0.71</td><td>0.94</td><td></td><td>0.95**</td><td>0.83</td><td>0.76**</td><td>0.83</td></t<></th0.76<>			۵.		•	-0.45**	1.474	-0.60	-0.43	0.71	0.94		0.95**	0.83	0.76**	0.83
		F. montiforme (GS)	<			•	0.49**	0.51**	6.33	0.75**	0.70	0.44	0.62**	0.54***		0.69
motion (05)         A			<b>6.</b> ·			•	0.60	0.59**	0.46**	20	+ZE-0-	-0.41	-0.52	1.0E.0-	60.0	89
(103)       (103) $0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{} 0.35^{$		P. palidorozanin (GS)	< "				•	-0.01	9.08	0.13	0.41	•00.0	0.21	0.36 <del>**</del>	0.19	0.14
(103)         A         0.76**         0.25**         0.10         0.64**         0.21         0.64**         0.21         0.64**         0.21         0.64**         0.21         0.64**         0.21         0.64**         0.21         0.64**         0.21         0.64**         0.24         0.21         0.64**         0.24         0.21         0.21         0.24         0.21         0.24         0.21         0.22         0.21         0.21         0.24         0.21         0.22         0.21         0.21         0.22         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0.21         0			<b>.</b> .				•	0.48	0.36**	9.2	1	1149	10:23	-0.45	-0.21	*R19
ef (03)         p         0.65**         -0.10         -0.55**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.66**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.65**         -0.55**         0.55**         0.55**         0.55**         0.55**         0.55**         0.55**         0.55**         0.55**         0.55***         0.55***         0.55***         0.55***         0.55***         0.55***         0.55***         0.55***         0.55***         0.55*** <th0.55****< th="">         0.55****         0.55****</th0.55****<>		C. IMMER (CS)	< /					•	0.76	0.77	0.33*	0.01	0.48**	0.23	0.80	0.71**
Bit (U)         A         L56*         0.23         0.01*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03*         0.03* <th0.03*< th=""> <th0.03*< th=""> <th0.03*<< td=""><td></td><td></td><td><b>.</b> .</td><td></td><td></td><td></td><td></td><td>•</td><td>0.65</td><td>-0.10</td><td>-0.53</td><td>19.9</td><td>199.9</td><td>1. 30. P</td><td>-0.14</td><td>-0.33</td></th0.03*<<></th0.03*<></th0.03*<>			<b>.</b> .					•	0.65	-0.10	-0.53	19.9	199.9	1. 30. P	-0.14	-0.33
3)     5)     -0.05     -0.566     -0.416     -0.516     -0.516     -0.516     -0.516     -0.516     -0.516     -0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.516     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556     0.556			< ,						•	0.56**	20	10.0	•100	0.06	0.60	0.59
0         0.01         0.01         0.02         0.03         0.03         0.03         0.04         0.03         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.		(ac) a	<b>.</b> .						•	-0.03	1900	1 4 9	1040	1 22	89	9 21 22
forme (UGS)         Control         Contre         Contrel         Control		Source (US)	< ,							•	0.62	90	1.1.0	0.53*	•••56'0	1.8.0
marker (UGS) A 0.45° 0.65° 0.65° 0.65° 0.65° 0.65° 0.65° 0.65° 0.65° 0.65° 0.65° 0.65° 0.65° 0.75° 0.77° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.77° 0.55° 0.55° 0.77° 0.55° 0.55° 0.77° 0.55° 0.55° 0.77° 0.55° 0.55° 0.77° 0.55° 0.55° 0.77° 0.55° 0.55° 0.77° 0.55° 0.55° 0.77° 0.55° 0.55° 0.77° 0.55° 0.55° 0.77° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.55° 0.5			<b>.</b> .							•	0.71	0.64	2.0	1.0	1160	1.03
More uclds         Normal Ucls         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.990*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950*         0.950* <th0.950*< th=""> <th< td=""><td></td><td>(coo) mussimum</td><td>&lt; 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>0.47</td><td>0.69</td><td>0.58**</td><td>0.61**</td><td></td></th<></th0.950*<>		(coo) mussimum	< 1								•	0.47	0.69	0.58**	0.61**	
more and U(u)         A         0.50***         0.51***         0.55***         0.71***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.75***         0.55****         0.55***         0.55***         0.55***         0.55***         0.55***         0.55***         0.55***         0.55***         0.55****         0.55***         0.55***         0.55***         0.55***         0.55***         0.55****         0.55***         0.55***         0.55****         0.55****         0.55****         0.55*****         0.55*****         0.55*****         0.55******         0.55******         0.55********         0.55*******         0.55******         0.55********         0.55**********         0.55**********         0.55********         0.55**********         0.55**************         0.55***********         0.55*********************         0.55***********************************			7.								•	0.90**	0.90	0.69**	0.78**	0.85***
r (103) 7 gi (103) 7 gi (103) 7 gi (103) 7 23) 7 23) 7 - Significant a 2% 03 = Ortminated Seci <i>F.m. = F. monthforme</i> - Significant a 1% 03 = Ortminated Seci <i>F.m. = F. monthforme</i>		r. particorourant UCS)	< 4									•	0.50	0.48**	0.26*	**6E'0
e (UOS) A 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.650 0.			•										0.86**	0.71	0.72	
gi (UOS) > > 23) > ? 53 54 54 55 50 55 55 55 55 55 55 55 55			< 0										•	0.69++	20	
<ul> <li>28) P.</li> <li>29. Significant a 3% 03 = Occuminated Seed F.m. = F. montliferme</li> <li>Significant a 1% UGS = Ungernitioned seed F.m. = F. publichroneann</li> </ul>		Other finei (1)(S)	. •										•	MR.O	0.68	
<ul> <li>28) A</li> <li>58, 200</li> <li>58, 200</li> <li>69, 200</li> <li>7, 7, 7, 200</li> <li>10, 200</li></ul>			4											•		89.0
P • Significant a 3% O3 = Oxeminated Seed F.m. = P. monUfforme •• Significant at 1% U0S = Ungerminated seed P.p. = P. pullidoroatum			. <											•	100	00.0
• Significant at 3% OS = Ocerminated Seed F.m. = P. montliferne •• Significant at 1% UOS = Ungerminated seed P.p. = F. pulliderosatum	1		•													0.85**
** Significant at 1% UOS = Ungarminated seed		alož	•	Significa	mi at 5%	5	0S = Oem	insted Seed			1 1 1					
	-	atanchana	•	** Signific	ant a 1%	-	uos = Ung	betwinning	Peed	d. 4	E P	lidorose				

292

•

IX - III Table : 71 Correlation coefficient between physical characters, Akola and Patanchern, 1996

	1		5		i i	212		MCBO.	×.	×		Other	TOMIK	Oermina
-	Characters	grain weight	hardness	texture	Conducti -vity		covering	thickness	montiforme	pallidoroseum	henata	<b>fun</b> ti		tion
	100 grain weight	<	0.09	-0.02	0.11	0.22	-0.26*	0.21	0.28*	-0.26*	0.25	0.07	0.40**	-0.22
		۵.	0.03	0.09	0.14	-0.02	-0.25	-0.02	0.02	-0.11	-0.12	0.03	0.08	100
Č	Orain hardness	<		-0.61	0.15	0.42	0.19	0.13	0.10	-0.32*	0.17	0.10	0.05	0.0
		۵.		-0.33*	-0.19	0.39**	-0.05	0.07	-0.26*	-0.11	0.25	0.50	-0.23	0.30*
	End. texture	<			-0.51	-0. <b>X</b>	0.01	*6E.0-	-0.35**	0.41**	-0.52	0.14	**6E.0-	-0.41
		<b>م</b> .			1. S. 9	-0.51	0.06	-0.55**	-0-59	-0.17	-0.24	0.06	-0.87**	0.52**
-	Ele. conductivity	<				0.54	-0.07	0.56**	0.67**	-0.33+	0.61**	-0.44**	0.64**	-0.66
•	ļ	<b>.</b> .				0.40	-0.12	0.59	0.72	0.08	6.23	-0.31**	0.82**	-0.82
-	DIF	< 1					+0.0-	0.41	•	-0.32*	0.37**	-0.19	0.29*	120.0
		<b>.</b> .					-0.05	66.0	0.31*	0.26*	0.46**	0.24	10.0	977 9
Ĵ	Giu. covering	×						9.14	-0.13	-0.12	-0.19	0.04	-0.10	0.06
		<b>م</b> ا						-0.13	-0.06	0.02	-0.04	-0.07	-0.05	0.11
-	Moso. thickness	<							0.51**	-0.38	0.68***	-0.20	0.65**	0.57
	:	۵.							0.58**	0.18	0.14	-0.10	0.64**	-0.53*
	F. montiforme	<								-0.19	0.45	-0.52	0.68**	-0.82
		۵.								0.49**	<b>80</b> .0-	-0.50	0.77-	-92.0-
	F. pallidoromum	<									-0.40	0.02	-0.41	0.28*
		<b>.</b>									-0.17	-0.18	0.19	0.19
~	C. Iumata	< 4										10.0		-0.59
	in the second	7 <										0.23	0.19	27
		< 0											-0.31	0.56
2	TOME	. <											2.0	140
1		٩												8 9 9
	Significant at 5%	5%	×.	A = Akola										
ŧ	Significant at	1%		> = Patanc	theru									

	X – IV
Table 72	Correlation coefficient between biochemical characters, Akola, 1995

Sr. No	Characters	Protein	Soluble sugars	Tannins	Flavan- 4-ols	Grain hardness	TGMR
1	Protein	-	0.27*	0.01	-0.15	0.29*	0.16
2	Soluble sugars			0.35**	0.24	0.26*	-0.26*
3	Tannins				0.73**	-0.37**	-0.75**
4	Flavan-4-ols					-0.59**	-0.78**
5	Grain hardness						- 0.30*

Significant at 5%

** Significant at 1%

න දී	Characters	Albumin and Gobulin	l'rolamin	Cross link Professin	Glutelin Like	Glutelin	Kesi- dues	Meso carp nick-	Eados- perm texture	Germina Lion	Gruin Incrinen
	Alh. & Glob.		0.55*	0.36*	-0.73**	-0.78**	-0.10	0.09	-0.45**	-0.37	0.24
	Prolamin			0.64**	-0.69	-0.66**	0.34	550	0.73**	-0.69**	0.63**
	Cross lisk Prol.				-0.58**	-0.59**	0.11	0.42*	-0.57**	-0.60**	0.55**
	Glutelin like					0.72.0	-0.18	-0.20	0.62**	0.57**	-0.47**
	Glutelin						-0.07	-034	0.52**	0.56**	-0.42*
	Residues							01.0	-0.10	-0.32	0.02
	Meso, thickness								-0.33	-0.48**	0.41*
	End. texture									0.44*	0.77**
	Germination										<b>●87.</b> U*

1996
Patancheru,
s Akola and
il character
and physica
actions
ween protein fr
coefficient bet
Correlation 6
Table :73

Significant of 5% ••• Significant at 1%

crosses and F2 progenies
ú,
5
-
alle
÷8
g
ς.
â
Ξ
2
ą
Ð
8
្ធ
2
.8
ä
ž
ŭ
0
Table: 74

X - 1

8 10 8 - K								l												
- 106 - 106		F, F2	F2	L.	F,	ц,	Ŀ.	L,	Ŀ,	u.	Ľ.	14	L.	1			1	Ľ	ľ	6
2	100 grain weight	.	{.			.	.	Ł		+									1	1
	- the second		4		+			-	-		-						,	•		•
	Statistic and I	•	ŀ	•	٠	÷	+	+	ł	+	÷	•	+	•	+		+	+	+	+
3	Endospern texture	+	•	+		+		+	,	+		+		+		+	Ť	•	+	•
4	Electrical conductivity	,	+	,	+				+		+		+	,	+		+	+	•	•
5 DTF	ĬF.	+	•							,								•	•	•
6 Pla	Plant height	+	•	+	+	+		+		+	+	+	+	+		+	+	•	+	+
۲ 0	Cob length	•	:	•					,									•	•	•
8 8	Olume covering	•	+	+	+		+		+	•						+		+	+	•
9 Ma	Masocarp thickness	+	•			+		+				+						•	•	•
01 DT	TOMOR	+	•	•	•	•				•		,						•	•	•
н В	Germination	•	٠	•	•	•					,							•	•	•
12 F.	P. monififorme	•	+	•							+		+		+		+	+	•	+
ы. Р.	P. pallidoroseum	•	•	•	•	+				+		+		+				•	+	•
ບ <b>1</b>	C. Armata	•	•	•		•						•		+				•	•	•
15	Other fungi	+	+	+	+	+	+	+	+	+		+		+		+	•	+	•	•
16 Pa	Proteine	+	•	+		+		+		+		+	,	+		+		•	+	•
17 So	Soluble sugars	+	•	+	,	+		+		+		+	,	+		+	•	•	+	•
5	Tennine	•	•	•												+	•	•	+	•
E E	Flavan-4-ols	•	,	•										,		+	,	•	+	•

+ 1

Significant and desirable general combining ability estimates Non-significant and undesirable general combining ability estimates

ous components Significant aca attocts for	components characters in F ₂ progenies	Electrical conductivity and TGMR.	TOMR			•	Electrical conductivity	Glume covering		1	
X-2 Xuperior combinations showing significant sca effects for germination (%) with their desirable sca effects for various components Superior combinations showing significant sca effects for germination (%) with their desirable sca effects for various components Significant scale of the	Significant sea effects for components characters at a l	100 grain weight, alectrical conductivity, DTF, meaocarp thickness, TOMR, <i>P. montiforms</i> , protein, tarnins and favorat-tols	Electrical conductivity, DTF, TCMR, soluble sugara, terrian and flavra-4-ols	Endosperm texture, plant height and tarmins	Mesocarp thickness and tanting	Electrical conductivity. DTF, menocarp thicknees, TOMR, terrains and flaven-4-ola	Electrical conductivity, mencent thickness, F. montificrates, proteina, termina and flavan 4-ols	Mesocarp thickness, TOMR, F. pallelorossum and tanuns	Electrical conductivity, DTF, cob langth, protein, tanning and flavan-4-ola	100 grain weight	DTF, mesocarp thickness and flavan-4-ols
ut sca effects for g	Sca estimates for germination (%)	n F 1 programes 9.286**	e.604 **	160.1-	4.832	1.296	3.7%	1.152	1337	8.270	-1.102
is showing significa	Sca estimates for germination ( %)	in F ₁ Croees 15.785**	12.769***	10.839**	10.526**	10.111-	**\$ <b>2</b> 6'6	9.225	8.824**	8.229**	7.987**
	Desirable crosses for germination (%) on the basis	of aca affects of F ₁ crosses AKma-14B x IS-6335	<b>АКта-</b> 14В х IS-9471	IS-2284 x IS-6335	ICSB-101B x IS-9471	SPV-104 x 13-9471	SPV-104 x 13-2284	ICSB-101B x 1S-2284	SEC3-21 x HOI-VQS	SPV-1201 x SRT-26B	GJ-35-15-15 x 13-6335
Table : 75	න් දි	-	8	'n	•	'n	9	٢	80	۵	9

. 297

Table : 76 Gene action of various parameters related to grain mold resistance in 10 $\times$ 10 diallel (F1-F2) progenies of sorghum lines	Gene action in
Gene action of variou 1 10 × 10 diallel (F ₁ -F.	Characters
Table : 76 resistance ir	Sr.No.

r.No.	Characters	Gene action in	tion in
		Fidiallel	F ₂ diallel
-	100 grain weight	Additive	.
1	Grain hardness	Additive	Non-additive
e	Endosperm texture	Additive	•
4	Electrical conductivity	Non-additive	Additive
s	DTF	Non-additive	
\$	Plant height	Non-additive	Additive
۲	Cob length	Additive	Additive
••	Glume covering	Additive	Non-additive
•	Meaocarp thickness	Non-additive	1
2	TOMIR	Additive	Additive
=	Germination	Non-additive	Non-additive
12	F. mondiforme	Additive	Additive/ Non-
ព	P. pallidorourum	Non-additive	Non-additive
1	C. Iumata	Additive	Additive
15	Other fungi	Non-additive	Additive
16	Proteins	Non-additive	
17	Soluble sugars	Non-additive	•
18	Tannine	Additive	
61	Flaven-4-ole	Additive	

X - 4Table: 77 Heterotic crosses for germination (%) showing heterosis and heterobelticsis for other characters

	Mean	Mean	Mean	Heteroeis for		Significant heterosis for component characters	component characters	
of (%) of grower	J.	ance of	P, P,	germunaton (%) over mid perent H ₁	germunston (%) over better parent H ₂	Over mud parent !!! (%)	Over better parent H2 (%)	
8	90.00	36.75	71.75	21.76**	24.28**	Electrical conductivity, mesocarp thickness, TGMR, P. pallidoroseam,	Electrical conductivity, glume coverine, mesocare thickness	
8	89.75	36.75	05.69	51.44***	24.69***	tamins and fisven-4-ols Electrical conductivity, DTF, mesocarp thickness, TGMR, F.	TOMR and flavan-4-ols Electrical conductivity, DTF, mascorm dickness, TCAR, P	
86	88.25	36.75	63.75	57.68**	33.45**	montificance and flavan-4-ola Electrical conductivity, meaocarp thickness, TOMR, tamins and	monthforme and C. Janata Electrical conductivity, glume covarine, menocarn this ana	
æ	86.75	48.75	71.75	<b>39.30</b>	22.50**	flavur-4-ols Mencocarp thickenne, TGMR and	TGMR, P. monultionme C. Ianata Electrical conductivity, memory	
<i>8</i> 0	85.50	15.75	<b>9</b> .99	76.76	20.08*	Davan-4-ole 100 grain weight, electrical conductivity, DTE, menocarp thickness, TCBAR, P. mondiforme.	thickness and TOMR, Bectrical conductivity, DTF, meacage thickness, TOMR, and P. monafiloness	
60	84.75	51.00	69.50	38.09**	19.76*	tunnins and flavan-t-ols Electrical conductivity, DTF, mesocrp thickness, TOMR, and	Electrical conductivity, DTF, menocup thickness, TCMR, and	299
9	BM.25	46.75	63.75	33.73**	•14.61	fiavan-4-ola Electrical conductivity, meaocarp thickness, TOMR, tauning and flavan-	C. kunsta Electrical conductivity, manocarp thickness. TCMR. P. monthlerme	
\$	84.00	71.75	63.75	19.83**	15.09	4-ola Glume covering and menocarp	and C. kunata Menocarp thickness and ghune	
80	82.75	46.75	69.50	33.03**	15.63	Chickness 100 grain weight, doctrical conductivity, DTF, mesocarp thickness TCAAP C, Acade Provine	covering Electrical conductivity, DTF, mesocarp thickness, TGMR and	
80	81.75	28.00	05.69	50.32**	67.61	and flaver.4 old Electrical conductivity, DTF, cob length, mesocarp thickness, <i>P</i> .	Electrical conductivity, DTF, menocarp thickness, TOMR and F. montiforms	

## APPENDIX - XI-1

Table 78. Composition of stain

Mac Grunwald's stain			
Methylene blue	0.5%		
Eosin Y	0.5% in methanol		
Pianeze III b			
Malachite green	0.5 g		
Acid fuschin	0.1 g		
Martin gleb	0.01 g		
Water	150 ml		
Ethanol (95%)	50 mi		
Host tissues staining green and fungal mycelium deep pink in lignified and non-lignified			
tissue.			

## APPENDIX - XI-1

Table 78. Composition of stain

The second se			
Mac Grunwald's stain			
Methylene blue	0.5%		
Eosin Y	0.5% in methanol		
Pianeze III b			
Malachite green	0.5 g		
Acid fuschin	0.1 g		
Martin gleb	0.01 g		
Water	150 ml		
Ethanol (95%)	50 ml		
Host tissues staining green and fungal mycelium deep pink in lignified and non-lignified			
tissue.			

# VITA

PAGE : 301

#### VITA

Gulab Daultrao Agarkar was bome on August 30th 1947 at Loni-District Amravati. He completed his higher secondary school certificate examination in 1964 from Smt. Ramparibai Chandak High School, Loni, in first division, B.Sc. (Agri.) from Shri Shivaji Agriculture College, Amravati in 1969, and stood 10th in order of merit and M.Sc. (Agri.) in Plant Pathology in 1971 in first division from College of Agriculture, Nagpur, Dr. PDKV, Akola.

He was appointed as Agricultural Officer in 1971 at Agriculture. Research Station, Washim. He was selected as Asstt. Prof. of Plant Pathology in 1977 and till 1993 he was at College of Agriculture Akola. In 1993 he was selected for Ph.D. in service training and served for three years in Sorghum Research Unit as a Sorghum Pathologist. In 1998 he was again posted at College of Agriculture Akola and presently working at same place.

He has published five research articles in National Journals, participated and presented nearly 10 papers in National symposia and workshops. He has guided two students for thesis in M.Sc. (Agri.). He is associated with the release of sorghum hybrids SPH-840 and pre-release hybrids SPH-792, SPH-1010, and W-815 and W-2019 at the State level.

# THESIS ABSTRACT

PAGES : 302 - 304

### THESIS ABSTRACT

<b>a</b> )	Title of the thesis		Mechanism and genetics of grain mould resistance in sorghum".
b)	Full name of student		Gulab Daulatrao Agarkar
c)	Name and Address of major	;	Dr. R.B. Somani, Asso. Prof. of Plant
	Advisor		Pathology & Head Deptt. of Agro-
			Product Processing Centre, Dr.P.D.K.V.,
			Akola - 444 104
d)	Degree to be awarded	:	Ph.D.
e)	Year of award of degree	:	1999
f)	Major subject	:	Plant Pathology
g)	Total number of pages	:	304
h)	Number of words in abstract	:	696
i)	Signature of student	:	Sparka
j)	Signature, Name and Address of the forwarding authority		Diffes 4
			(Dr. N.L. Peshney)
			Head,
			Uni, Deptt.of Plant Pathology

### ABSTRACT

Dr. PDKV, Akola

Grain mold of sorghum is a complex problem involving several fungal species. Resistance to grain mold in sorghum is known to be imparted by various factors associated with host genotypes, fungal species and their interactions. The objectives of the present investigations were to determine infection sites and colonization by major mold fungi (*Fusarium moniliforme, F. pallidoroseum* and *Curvularia lunata*); determine physical, physiological and biochemical mechanism of resistance and determine genetics and heretability of various host factors contributing to grain mold resistance in selected sorghum lines.

The experimental comprised of 10 divergent parents and their 45  $F_1$  corsses and 45  $F_2$ , progenies of partial diallel, Experiments were conducted at two locations, Akola under natural condition during 1995 and 1996 and at Patancheru under controlled condition during 1996. Data were analyzed using model I, method 2 of Griffings (1956b) further extended by Singh (1973a, 1973b).

Data were recorded on agronomic, physical, pathological and biochemical parameters. Superior combination showing significant sca effects for germination with their desirable sca effects were observed in crosses Akms 14B x IS-6335, Akms 14B x IS-9471 and SPV-1201 x SRT - 26B. On the basis of superior mean performance in germination, four crosses viz. ICSB-101B x IS-2284, ICSB-101B x IS-6335, ICSB-101B x IS-9471 and SPV-1201 x IS 2284, were selected to understand significant heterosis for component characters. The results revealed that electrical conductivity, mesocarp thickness, thresh grain mold rating (TGMR), glume covering, tannins and flavan-4-ols are the major components imparting resistance. As regards to gene action governing inheritance, it was noticed that in  $F_1$  diallel the gene action was non-additive for grain hardness, glume covering, TGMR, *F. moniliforme, C. lunata*, tannins and flavan-4ols, whereas, in  $F_2$  diallel, gene action changed for grain hardness and electrical conductivity.

Over all there was decrease in 100-grain weight, grain hardness, germination, C. lunata and fungal load; and increase in electrical conductivity, TGMR, F. moniliforme and F. pallidoroseum load at Patancheru compared with Akola location. F. moniliforme, C. lunata, and F. pallidoroseum were important mold fungi, at Patancheru, while C. lunata and F. moniliforme were important at Akola. F. pallidoroseum remained a minor mold fungi at Akola. In general more fungal load was recorded at Akola during 1996 than in 1995. Pre-treatment with HgCl₂ reduced fungal load of grain deteriorating fungi and improved seed germination, except C. lunata at Patancheru. However, fungal load of all fungi was reduced at Akola in both seasons.

Soluble sugars could not show any effect on grain mold resistance. However, tannins and flavan-4-ols were important biochemical parameters conferring resistance to grain mold singles or in combination. Prolamin and cross-link prolamin were recorded low in colored grain parents and crosses, have resistance to grain mold in colored grain could be attributed to tannins and flavan-4-ols. Prolamin and cross-link prolamin were more in white grain thus contribute for mold resistance. *Fusarial* infection (both species) takes place through hilar areas, however, *Curvularial* infection takes place from both ends i.e. hilar and stylar or directly through pericarp.

Germinated seed (treated with  $HgCl_2$ ) showed significant negative association with fungal load of all fungi at Akola, while it was positive Patancheru. Ungerminated seed exhibited positive with fungal load of all fungi and score, negative with germination and positive with TGMR. Grain hardness had significantly negative correlation with endosperm texture, however, endosperm texture showed negative association with electrical conductivity, mesocarp thickness, *F. moniliforme, C. lunata* and TGMR. Mesocarp thickness exhibited positive correlation with *F. moniliforme, C. lunata* and TGMR and negative with germination. Prolamin and cross-link prolamin had showed positive correlation with grain hardness, however it was negative with endosperm texture and germination.

Considering the above results it is concluded that :

- Parental lines IS-9471, SPV-1201, IS-6335, GJ-35-35-15 and IS-2284 with high gca effect for most of the characters contributing towards resistance to grain mold may be utilized in hybrid breeding program.
- 2. The cross : Akms 14B x IS-6335, ICSB-101B x IS-9471, ICSB-101B x IS-2284, SPV-104 x IS-6335, GJ-35-35-15 x IS-335 and SPV-1201 x SRT-26B exhibited high gca effects, desirable heterosis for most of the characters and additive gene action for important traits (agronomic, physical and biochemical) related to grain mold resistance. Therefore it is suggested that these crosses and their progenies may be utilized to generate better tolerance to grain mold infection.
- Important traits imparting resistance to grain mold fungi are : low electrical conductivity, thin mesocarp, low TGMR, grain hardness, more glume covering, more tannins, more flavan-4-ols, more prolamin and cross-link prolamin.