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of the major reasons for the significantly high prevalence of micronutrient 
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with enhanced micronutrient concentration is one of the most sustainable 
and cost-effective approaches to alleviate micronutrient malnutrition 
globally. In this chapter we focus on the research to improve mineral element 
concentration in crops through plant breeding strategies, especially in major 
cereal crops and a legume which are most widely cultivated and preferred 
in Africa and Asia. Biofortification is an appropriate strategy to increase the 
 bioavailable concentrations of an element in edible portions of crop plants 
through traditional breeding practices or modern biotechnology to overcome 
the problem of micronutrient deficiencies. Therefore, conventional breeding 
with modern genetic engineering approaches are important for developing 
crop cultivars with enhanced micronutrient concentrations to improve human 
health. This chapter reports on biofortification research on rice, pearl millet, 
sorghum, maize, wheat and common bean.
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Abstract Micronutrients are essential minerals and vitamins required by humans 
in tiny amounts which play a vital role in human health and development. Over three 
billion people in the world are malnourished, particularly in the developing coun-
tries. Current food systems cannot provide sufficiently balanced micronutrients 
required to meet daily needs and to sustain the wellbeing of people in developing 
countries. Heavy and monotonous consumption of cereal-based foods which con-
tain limited amounts of micronutrients is one of the major reasons for the signifi-
cantly high prevalence of micronutrient deficiencies in many of the developing 
countries. The development of crops with enhanced micronutrient concentration is 
one of the most sustainable and cost-effective approaches to alleviate micronutrient 
malnutrition globally. In this chapter we focus on the research to improve mineral 
element concentration in crops through plant breeding strategies, especially in major 
cereal crops and a legume which are most widely cultivated and preferred in Africa 
and Asia. Biofortification is an appropriate strategy to increase the  bioavailable con-
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centrations of an element in edible portions of crop plants through traditional breed-
ing practices or modern biotechnology to overcome the problem of micronutrient 
deficiencies. Therefore, conventional breeding with modern genetic engineering 
approaches are important for developing crop cultivars with enhanced micronutrient 
concentrations to improve human health. This chapter reports on biofortification 
research on rice, pearl millet, sorghum, maize, wheat and common bean.

Keywords

2.1  Introduction

-
bolic needs (Table 2.1).

Insufficient ingestion of even one of these essential nutrients will result in adverse 
metabolic disturbances leading to sickness, poor health, impaired development in 

2002; Golden 
1991; Grantham-McGregor and Ani 1999; Ramakrishna et al. 1999). Micronutrient 
deficiency is the lack of essential vitamins and minerals required in small amounts 
by the body for proper growth and development. Micronutrients are not limited to 

Table 2.1 The 49 known essential nutrients for sustaining human life

Water and 
energy

Protein (amino 
acids)

Lipids-fat 
(fatty acids)

Macro 
elements

Micro 
elements Vitamins

Water Histidine Linoleic 
acid

Na A

Carbohydrates Isoleucine Linolenic 
acid

K D

Leucine Ca Cu E
Lysine Mg Mn K
Methionine S I C
Phenylalanine P B1

Threonine Cl B B2

Tryptophan Se B3

Valine Mo Niacin
Ni B6

Cr
V Biotin
Si B12

As, Sn, Co 
(Cobalamin)

Source: Welch and Graham (2002)
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vitamins A, B, C and D, but also include, calcium, folate, iodine, iron and zinc. 
Common micronutrient deficiencies among children and lactating women include 
iron, iodine, vitamin D, selenium, vitamin A, folate and zinc
Agricultural Organization, United Nations, and the World Health Organization 

2000) reported the daily required amounts for some of the essential 
nutrients for adults, which are listed in Table 2.2. Agricultural products are the pri-
mary source of all these nutrients. If agricultural systems fail to provide enough 
products containing adequate quantities of all nutrients during all seasons, the result 
is a dysfunctional food system that cannot support healthy lives. Unfortunately, this 

Table 2.2 Recommended nutrient intakes for males and females between the ages of 25 and 50

Nutrient Assessment Male

Energy (kcal) AEA 2,900 2,200
Protein (g) AEA 63 50
Vitamin A(μg retinol equivalent) RDA 1,000 800
Vitamin D (μg) RDA 5 5
Vitamin E (mg) RDA 10 8
Vitamin K (μg) RDA 80 65
Riboflavin (mg) RDA 1.7 1.3
Niacin (mg) RDA 19 15
Thiamin (mg) RDA 1.5 1.1
Pantothenic acid (mgd−1) ESADDI 4–7 4–7
Vitamin B6 (mg) RDA 2 1.6
Vitamin B12 (μg) RDA 2 2
Biotin (μgd−1) ESADDI 30–100 30–100

μg) RDA 200 180
Vitamin C (mg) RDA 90 60
Ca (mg) RDA 800 800
P (mg) RDA 800 800
Mg (mg) RDA 350 280
Na (mg) MR 500 500
K (mg) MR 2,000 2,000
Cl (mg) MR 750 750

RDA 10 15
RDA 15 12

Cu (mg) ESADDIC 1.5–3.0 1.5–3.0
Se (μg) RDA 70 55
I (μg) RDA 150 150
Mn (μg) ESADDI 2–5 2–5
Mo (μg) ESADDI 75–250 75–250
Cr (μg) ESADDI 50–200 50–200

ESADDI 1.5–4.0 1.5–4.0

2000)
AEA Average Energy Allowance, RDA Recommended Dietary Allowances, ESADDI Estimated 
Safe and Adequate Daily Dietary Intakes, MR Minimum Requirement
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is the case for many agricultural systems in all developing countries (Graham et al. 
2001; McGuire 1993; Schneeman 2001).

Micronutrient malnutrition has been designated as the most serious challenge to 
humanity (Bouis et al. 2011) because two-thirds of the world population is at risk of 
deficiency in one or more essential mineral elements (Stein 2010; White and Broadley 
2009). The concern is more crucial in developing countries, especially among 
women, infants and children of resource-poor families. More than one-half of the 
total populations in developing countries are reported to be affected by micronutrient 
deficiency and therefore more susceptible to infections and impairment of physical 
and psycho-intellectual development (WHO 2005). The mineral elements most com-

2010; White and 
Broadley 2009), whereas other essential minerals such as calcium (Ca), copper (Cu), 
magnesium (Mg), iodine (I) and vitamin A can be deficient in some human diets as 
well (Genc et al. 2005; White and Broadley 2005). These deficiencies are caused by 
customary diets that lack diversity (overly dependent on a single staple food), situa-
tions of food insecurity when populations do not have enough to eat (WHO 2002) as 
well as low intake of vegetables, fruits, and animal and fish products, which are rich 

-
tries are mostly due to monotonous consumption of cereal- based foods with low 

2001; Welch 

2009). Both minerals 
have health and clinical significance as they affect growth and development and 
many physiological and neurophysiological functions (Sandstead 1994).

The causes of malnutrition among children and lactating women worldwide 
include:

 (a) Inadequate maternal, prenatal and perinatal health care; poor prenatal diet,
 (b) Premature infant birth; low or very low birth weight resulting in underdevel-

oped infants,
 (c) Inadequate or no breastfeeding,
 (d) Animal milk or milk products offered instead of fortified infant formula,
 (e) Diluted or improperly prepared infant formula, which decreases the nutritional 

adequacy of the formula or introduces food safety risks,
 (f) Premature introduction of solid foods to the infant diet,

-
ticularly for children with special needs,

 (i) Inadequate exposure to sunlight, which inhibits vitamin D production, a crucial 
vitamin that facilitates calcium absorption for bone growth,

with meals in many countries. Although tea has many health benefits, when con-
sumed in large quantities as part of a nutrient-poor diet, naturally-occurring sub-
stances in tea may inhibit the absorption of important vitamins and minerals,

 (k) Lack of fortified foods, beverages, and vitamin supplements due to high cost or 
unavailability,

[AU1]
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 (l) The stress of transitioning from birth mother to secondary care provider and 
then to the new family can disrupt a child’s natural feeding cycle, resulting in 
nutritional issues (Adoption Nutrition- the go-to nutrition and feeding resource 
for adoptive and foster families 

).

Micronutrient malnutrition greatly increases mortality and morbidity rates, 
diminishes cognitive abilities of children and lowers their educational attainment, 
reduces labor productivity, stagnates national development efforts, contributes to 
continued high population growth rates and reduces the livelihood and quality of 
life for all those affected (Combs and Welch 1998; Welch and Graham 1999). In an 
attempt to reverse this scenario, research has been carried out to improve nutrient 
concentrations in edible crops by biofortification (Bouis et al. 2011; Mayer et al. 
2008; Nestel et al. 2006; White and Broadley 2005). Biofortification can be achieved 
by combining breeding strategies with improved fertilization management (Bouis 
et al. 2011; Cakmak et al. 2010; Pfeiffer and McClafferty 2007; White and Broadley 
2005). Biofortification of staple crops can be a sustainable and cost-effective 
approach to combat malnutrition (Bouis 1999; Meenakshi et al. 2010) especially of 
rural populations in remote, low-rainfall areas, with limited access to a diverse diet, 
commercially-fortified foods or supplements (Saltzman et al. 2013). Genetic varia-
tion of grain micronutrient densities in adapted genetic materials is the basic require-
ment for biofortification breeding programs, and thus needs to be assessed 
beforehand. Micronutrient-enriched crops can be obtained by conventional breed-
ing or by biotechnological approaches (Brinch-Pedersen et al. 2007; Mayer et al. 
2008). An understanding of the genetic basis of the accumulation of micronutrients 
in food grains and mapping of the quantitative trait loci (QTL) will provide the basis 
for devising plant-breeding strategies and to improve grain micronutrient content 
through marker-assisted selection (MAS). Developing micronutrient-enriched sta-
ple plant foods, either through traditional plant breeding methods or via molecular 
biological techniques, is a powerful intervention tool that targets the most vulnera-
ble people (Bouis 2000; Combs Jr et al. 1996).

Studying the importance of malnutrition in developing and underdeveloped 
countries and also the availability of fortified crops in such countries is a major chal-
lenge for policymakers and researchers to provide the hungry world with nutrient 
rich foods. In many of the countries, agriculture is the main occupation and supplies 
food to the nation. Hence, biofortification of agriculturally-important crops like 
maize, rice, wheat, sorghum, pearl millet, manioc and common bean plays a major 
role in providing the essential micronutrients to this micronutrient deficient world.

This chapter mainly focuses on the genetic enhancement of crop plants for 

micronutrient deficiency through breeding major cereal crops like rice, wheat, pearl 
millet, sorghum, maize and common bean for improvement in grain yield associated 
with increased micronutrients. We discuss mainly the introduction and importance 
of micronutrients in human health. The consequences of deficiencies of micronutri-

B, folate and selenium. We also discuss the genetic enhancement of crop plants for 
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micronutrients, mainly in rice, sorghum, pearl millet, maize and common bean, for 
the current status of genetic variability for various micronutrients content along 
with their association with yield and yield components. Later we also discuss the 
genetic and environmental effect on grain micronutrient content and also on marker- 
assisted selection and transgenic approaches used for biofortification. The chapter 
concludes with a statement on biofortification as an improved tool for human health.

2.2  Consequences of Micronutrient Deficiencies on Human 
Health

The importance of some micronutrients and their consequences on human health 
are discussed under the following headings.

2.2.1  Iron (Fe)

Iron is a micronutrient that is essential to the structure of every cell in the body, but 
particularly to red blood cells (hemoglobin), which transport oxygen in the blood to 
body tissues. In addition, iron is also a key component in proteins, in muscle tissue 
and is critical for the normal development of the central nervous system. Iron defi-
ciency is the most common form of malnutrition worldwide. A lack of iron in the 
diet results in iron deficiency. The most commonly recognized condition associated 
with iron deficiency is anemia. Iron deficiency is a worldwide problem that is 
directly correlated with poverty and food insecurity. Approximately one-third of the 
world’s population suffers from iron deficiency- induced anemia, 80 % of which are 

2.1). In iron deficiency, the amount 
of iron stored for later use is reduced as indicated by a low serum ferritin level, but 
has no effect on the iron needed to meet the daily needs of an individual. If the body 
requires increased iron (due to a rapid growth spurt, for example), a person with 
inadequately stored iron has no reserves to use. When the body lacks sufficient iron 
to make adequate hemoglobin, red blood cells cannot transport sufficient oxygen to 
tissues throughout the body. This can cause iron-deficiency anemia, an advanced 
stage of iron deficiency. Iron is also critical for normal cardiac and skeletal muscle 
function and is a key component of enzymes involved in brain development. The 

(Lemke 2005; Rosegrant et al. 2003; Skalicky et al. 2006).
The consequences of iron deficiency include increased mortality and morbidity 

rates, diminished cognitive abilities of children, and reduced labor productivity that in 

may cause irreversible damage to fetal brain development leading to irreversible dam-
age to intellectual development in their children (Gordon 1997). The developed world 
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has made tremendous progress in alleviating micronutrient deficiencies through dietary 
diversification, processed food fortification, improved public health care and supple-
mentation. In developing countries, these strategies are often too expensive and diffi-
cult to sustain. Treatment for iron deficiency includes oral iron supplementation that 
can be used for both prevention and treatment of iron deficiency anemia. Oral iron 
supplements are usually best absorbed on an empty stomach. However, because iron 
can irritate a child’s stomach, supplements may need to be taken with food. A source of 
vitamin C, like citrus juice, enhances iron absorption. It usually takes several months of 
iron supplementation to correct the deficiency; iron also is rich in foods such as meats, 
poultry and fish, fortified cereals and oatmeal, legumes (e.g. soybeans and lentils), 
leafy greens and seeds (e.g. sesame and pumpkin).

2.2.2  Zinc (Zn)

range of body functions. These zinc-containing enzymes play a role in immune func-

growth and development during childhood and adolescence, and is required for a 
proper sense of taste and smell. Because zinc plays so many roles in the body, includ-
ing brain development, a deficiency of zinc can impact multiple bodily functions and 

Fig. 2.1 World map indicating the world population is affected from iron deficiency (Source: 
Sanghvi (1996))
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death in the world, and responsible for nearly 450,000 children deaths (4.4 % of the 
children deaths per year globally) under 5 years of age (Black et al. 2008). Deficiency 
of zinc in the human body will result in a number of cellular disturbances and impair-
ments such as immune dysfunctions and high susceptibility to infectious diseases, 
retardation of mental development, altered reproductive biology, gastrointestinal 
problems and stunted growth of children, reduced growth and, sexual maturity and 
weakened immune defense system (Black et al. 2008 -
tribute to vitamin A deficiency, since lack of zinc impairs the synthesis of the retinol-
binding protein. Low dietary zinc intake (in general) is the main cause of zinc 
deficiency. The risk of zinc deficiency is particularly high in populations which depend 
on diets with low levels of absorbable zinc and with no or only limited access to 

-
larly in regions where the population consumes mainly cereals and where soils are 
low in phytoavailable zinc (Cakmak 2008). Kim et al. (1998) showed that marginal 
zinc deficiency lowers the lymphatic absorption of vitamin E (α-tocopherol) in rats. 

can be managed by supplements (zinc sulfate or zinc gluconate), increasing dietary 
intake, vitamin and mineral supplements to aid in zinc absorption (e.g. A, E, B6, mag-

eggs, whole grains and oats, nuts and seeds, leafy greens, vegetables, herbs and yogurt.

2.2.3  Iodine (I)

Iodine is a nutrient essential for normal functioning of the thyroid gland, production of 
thyroid hormones and metabolism. Iodine deficiency is the world’s most common, but 
preventable, deficiency and a cause of mental retardation. Iodine deficiency is common 
in areas where there is little iodine in the diet particularly in remote inland areas where 
no marine foods are eaten and in mountainous regions of the world where food is grown 
in iodine-poor soil. Iodine is typically found in small amounts in food and varies depend-
ing on environmental factors such as the soil concentration of iodine and the use of fer-
tilizers. Prevention includes adding small amounts of iodine to table salt, a product 
known as iodized salt. Iodine compounds have also been added to other foodstuffs, such 
as bread (fortified), dairy products (e.g. cheese, cow milk and yogurt), soy milk, soy 
sauce and seafood. A meta-analysis found that iodine supplementation improves some 
maternal thyroid indices and may benefit aspects of cognitive function in school-age 
children, even in marginally iodine-deficient areas (Taylor et al. 2014). Iodine is not 
produced by the body, so it must be obtained through diet. Sufficient thyroid hormone is 
not produced without enough iodine. Iodine deficiency can lead to enlargement of the 
thyroid (goiter), hypothyroidism, and mental retardation in infants and children whose 
mothers were iodine deficient during pregnancy. Iodine deficiency resulting in goiter 
occurs in 187 million people globally as of 2010 (2.7 % of the population) (Vos et al. 
2012). It resulted in 2,700 deaths in 2013 up from 2,100 deaths in 1990 (GBD 2013). 
Consuming foods high in iodine can help treat and prevent iodine deficiency  
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(  
).

2.2.4  Vitamin D

Vitamin D is a fat-soluble vitamin naturally produced in the body. It is essential to the 
absorption of calcium for proper bone development and function. Vitamin D is found 
in cod and cod liver oil, egg yolks, milk and butter, fortified cereals and salmon and 
shrimp. Hypovitaminosis D is a deficiency of vitamin D, which can lead to abnormali-
ties in bone development and a condition in children called rickets, wherein, bones 

childhood diseases in many developing countries. Treatment of rickets involves vita-
min D supplementation, increasing dietary intake of calcium, phosphates, and vitamin 

-
dren; longer for darker-skinned children), special braces to position the bones (severe 
cases), surgery (very severe skeletal deformities) (

).
Emerging evidence suggests that vitamin D plays a role in non-alcoholic fatty 

2013
a fatty liver, occurring when fat is deposited (steatosis) in the liver due to causes 

Western industrialized nations (Shaker et al. 2014).

2.2.5  Vitamin A

Vitamin A is a group of compounds that play a significant role in vision, bone 
development, immune support and normal bodily function. Retinol and beta- 
carotene are forms of pre-vitamin A which are converted to vitamin A in the body. 
Deficiency is a common problem in developing countries, but rarely seen in devel-
oped countries. In Africa, vitamin A deficiency (VAD) affects more than 30 million 
children, is a contributing factor to 10.8 million deaths overall and causes blind-
ness in another 2.55 million annually. VAD is estimated to affect approximately 
one-third of children under the age of 5 around the world. It is estimated to claim 
the lives of 670,000 children under the age of 5 annually (WHO 1995–2005). 
Approximately 250,000–500,000 children in developing countries become blind 
each year owing to VAD, with the highest prevalence in Southeast Asia and Africa 
(Black et al. 2008). According to the World Health Organization, VAD is under 
control in the United States, but in developing countries is a significant concern. 
Nyctalopia (night blindness) is one of the first signs of VAD, later it can lead to 
xerophthalmia, keratomalacia and complete blindness since Vitamin A has a major 
role in phototransduction. As elucidated by Sommer et al. (1986), vitamin A 
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deficiency leads to increased risk in children of developing respiratory and diar-
rheal infections, decreased growth rate, slow bone development and decreased 
likelihood of survival from serious illness. Treatment for vitamin A deficiency 
includes oral and injectable supplementation, food fortification and increasing 
consumption of vitamin A-rich foods from animals, fruits and vegetables.

2.2.6  Vitamin B12

Vitamin B12 is a water-soluble vitamin that exists in several forms. Vitamin B12 is 
needed for proper red blood cell formation and the maintenance of healthy nerve 
cells. It is also essential in making DNA, the genetic material in cells. Vitamin B12 
is found in fortified cereals and occurs naturally in foods coming from animals, 
including fish, meat poultry, eggs, milk and milk products. Vitamin B12 deficiency, 
also known as hypocobalaminemia, refers to low blood levels of vitamin B12 
(Herrmann and Wolfgang 2011). Deficiency leads to a wide variety of signs and 
symptoms including a decreased ability to think and changes in personality such as 
depression, irritability, psychosis, abnormal sensations, changes in reflexes, poor 
muscle function, inflammation of the tongue, decreased taste, low red blood cells, 
reduced heart function and decreased fertility (Hunt et al. 2014). Without early 
treatment some of the changes may be permanent (Lachner et al. 2012). Increased 

(Hunt et al. 2014). Diagnosis is typically based on vitamin B12 blood levels below 

easily treated with supplementation by mouth or injection (Vidal et al. 2005), nasal 
sprays and increased consumption of animal products. Plants which provide vita-
min B12 include vegetables and fortified cereal foods with meat, fish and eggs.

2.2.7  Folate (C19H19N7O6)

especially important during periods of rapid cell division and growth, such as infancy 
and pregnancy. Both adults and children need folate to make normal red blood cells 

-
sis (part of DNA synthesis). Insufficient quantities cause the medicinal condition of 
folate deficiency anemia (Huethe et al. 2004). Initial symptoms of deficiency are loss 
of appetite and weight; additional signs are weakness, sore tongue, headache, heart 
palpitation, irritability and behavioral disorders. In adults, anemia (macrocytic, meg-
aloblastic anemia) can be a sign of advanced folate deficiency (Haslam and Probert 
1998
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enrich grain products such as cereals, rice, pasta, bread and flour. Inadequate dietary 

most multivitamins and in some foods. Supplementing the diet with vitamins and 
foods rich in folate or folic acid can help prevent and treat folate deficiency.

2.2.8  Selenium (Se)

Selenium is a trace mineral needed in small amounts by the human body for good 
health. It is incorporated into proteins to make important antioxidant enzymes. 
These enzymes help prevent cellular damage from free radicals that can cause the 
development of chronic diseases such as cancer and heart disease. Selenium can be 
found in foods such as Brazil nuts, tuna, cod fish, beef, poultry, enriched pasta, rice, 
eggs, cottage cheese and oatmeal. In the USA, the Dietary Reference Intake for 
adults is 55 μ μ μ
females. The 55 μ -
tathione peroxidase. Selenoprotein P (Papp et al. 2007) is a better indicator of sele-
nium nutritional status and full expression of it would require more than 66 μ
(Xia et al. 2005). Selenium deficiency is a result of inadequate selenium in the diet. 
Though rare, it can lead to three specific diseases: Keshan disease results in an 
enlarged heart and poor heart function in selenium- deficient children. Kashin-Beck 
disease results in osteoarthritis and weakened immune system in children (Moreno 
et al. 1998). Myxedematous endemic cretinism results in mental retardation in 
infants born to mothers deficient in both selenium and iodine. Selenium supplemen-
tation protects people from developing Keshan disease but cannot reverse heart 
muscle damage once it occurs. There is little evidence that improving selenium 
nutritional status prevents Kashin-Beck disease. It can occur in patients with 
severely compromised intestinal function, those undergoing total parenteral nutri-
tion, those who have had gastrointestinal bypass surgery and also in individuals of 
advanced aged (e.g. over 90) (Ravaglia et al. 2000). Selenium is also necessary for 
the conversion of the thyroid hormone thyroxine (T4) into its more active counter-
part, triiodothyronine and as such a deficiency can cause symptoms of hypothyroid-
ism, including extreme fatigue, mental slowing, goiter, cretinism and recurrent 
miscarriage ( ).

2.3  Genetic Enhancement of Crop Plants for Micronutrients

The success of any crop improvement program depends on the magnitude of 
genetic variability and the extent to which the desirable trait is heritable. The esti-
mate of variability of yield and yield-contributing characters and their heritable 
components in the material is important in any crop breeding program. The pres-
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(1981), so as to exercise critical selection pressure. Information on the nature and 
magnitude of variation in the segregating population of a cross where selection is 
actually practiced will be more meaningful and is of immediate practical utility. 
Moreover, correlation studies provide information about the relative contribution 
of various component traits on grain yield per plant and help in effective identifi-
cation and selection of superior plants. Since yield is polygenically controlled and 
highly influenced by environment, selection based on yield alone is not effective. 
Therefore, improvement in yield can be brought about by effecting indirect selec-
tion through yield attributes whose heritability is high and shows strong associa-
tion with yield.

Genetic variability studies provide information about the extent of variation 
present in a population. The phenotypic variance measures the magnitude of vari-
ation arising out of difference in phenotypic values, while the genotypic variance 
measures the magnitude of variation due to differences in genotypic values. The 
absolute values of phenotypic and genotypic variances cannot be used for com-
paring the magnitude of variability for different characters since the mean and 
units of measurement of the characters may be different. Hence, the coefficients 
of variation expressed at the phenotypic and genotypic levels have been used to 
compare the variability observed among different characters. Although the geno-
typic coefficient of variation indicates the amount of genetic variability present in 
the character, the heritability estimates aid in determining the relative amount of 
heritable portion of variation. However, heritability values themselves provide no 
indication of the amount of genetic progress that would result from selecting the 
best individuals.

In recent years, the cognizance of genetic diversity and the evolutionary history 
of crop plants have yielded major advances in crop improvement. The measure of 
genetic divergence reveals the differences in gene frequencies. Mahalanobis’s gen-
eralized distance estimated by the D2 statistic (Rao 1952) is a unique tool for dis-
criminating populations by considering a set of parameters together. In addition to 
estimation of variability, cognizance of the genetic diversity of the germplasm is 
necessary for effective choice of parents in hybridization. Knowledge of the amount 
of genetic variability present in a crop species with respect to yield and its attributes 
and their association, which reflects the nature and degree of relationship between 
any two measurable characters, is of great importance in achieving genetic improve-
ment in that crop.

content. In a few studies researchers also have given importance to other micronu-
trients such as iodine and selenium. Genetic variability for micronutrient content in 
crop plants varies widely and micronutrient accumulation in grain also depends on 
agronomic practices, soil nutrient composition, environmental features and the vari-
ety or hybrid of each particular crop. In the following crops we discuss the genetic 

so on, in individual crops with suggested breeding methods for biofortification 
programs.

P.I. Gangashetty et al.

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388



2.3.1  Rice (Oryza sativa)

Rice is central to the lives of billions of people around the world. Possibly the oldest 
domesticated grain (~10,000 years), it is the staple food for 2.5 billion people (Anon 
2004) and growing rice is the largest single use of land for food production, cover-
ing 9 % of the earth’s arable land. Rice provides 21 % of global human per capita 
energy and 15 % of per capita protein (Anon 2002). Calories from rice are particu-
larly important in Asia, especially among the poor, where it accounts for 50–80 % 
of daily caloric intake. As expected, Asia accounts for over 90 % of the world’s 
production of rice, with China, India and Indonesia producing the most. Around 
85 % of the rice that is produced in the world is used for direct human consumption 
(Anon 2002). Rice can also be found in cereals, snack foods, beverages, flour, oil, 
syrup and religious ceremonies to name a few other uses.

Rice belongs to the genus Oryza and has 2 cultivated and 22 wild species; the 
cultivated species are O. sativa and O. glaberrima. Oryza sativa is grown all over 
the world while O. glaberrima has been cultivated in West Africa for the past 
~3,500 years (Anon 2002). Rice is grown under many different conditions and pro-
duction systems worldwide, but most commonly in flooded fields. It is the only 
cereal crop that can grow for long periods of time in standing water (Anon 2004).

Rice is the world’s most important food crop and a primary source of food for 
more than one-half the world’s population. It is the predominant staple food crop for 
15 countries in Asia and the Pacific, 10 in Latin America and the Caribbean, 7 in 

1999). In developing coun-
tries, rice accounts for 715 kcal per capita per day, 27 % of dietary energy supply, 
20 % of dietary protein and 3 % of dietary fat. Southeast Asian countries are heavily 
reliant upon rice. India accounts for nearly one-fourth (22 %) of the world’s rice 
production, with China the leader. World rice production currently is around 597.8 
million mt grown over 151 million ha with a productivity of 3.96 mt ha−1. India has 
an area of 44 million ha under rice cultivation with an output of 99 million mt, 
which averages to a yield of around 2.10 mt ha−1. Dietary intake surveys from China 

1998). Technological advances during the last 40 years have led to an increase in 
rice production by 150 %. Rice production needs to increase even further to meet 
growing demand. Sustainable production will have to overcome a number of chal-
lenges including the decline in arable land, global water shortage and global climate 
change (Royal Society 2009).

content in the grains (Graham et al. 1999; Welch and Graham 2004). A recent study 
by Gangashetty et al. (2013) screened germplasm accessions from the Western 

-
tent and found a range from 2–17.49 to 9.80–32.44 ppm, respectively. Anarudha 
et al. (2012 -
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et al. (2012
Athira to 72 ppm in Oryza nivara
67 ppm in O. rufipogon
indica and aromatic rice varieties (Brar et al. 2011). Another study showed wide 
variation for micronutrient levels recorded among 46 tested rice genotypes, which 
ranged from 4.82 to 22.69 μ μ
content (Banerjee et al. 2010). Liu et al. (1995

done among 57 rice varieties. Qui et al. (1995) reported a higher variability in min-

162.37 mg kg−1 −1.

2.3.2  Pearl Millet [Pennisetum glaucum (L.) R. Br.]

Pearl millet is the staple cereal of what is undoubtedly the harshest of the world’s 
major farming areas: the arid and semiarid regions stretching over 7,000 km from 
Senegal to Somalia. There, on the hot, dry, infertile sandy soils having low organic 
matter content, farmers produce some 50 % of the world’s pearl millet grain. The 
agricultural research challenge is how to help farmers in this often drought- 
devastated zone, living on the edge of the world’s largest desert, who have no access 
to irrigation, affordable mineral fertilizer, pesticides or other purchased inputs. The 
answer may lie in their age-old staple, pearl millet. Indeed, there is probably no bet-
ter cereal to relieve the underlying threat of starvation in the Sahelian and northern 
Sudanian areas extending from Mauritania, Senegal and The Gambia in the west, to 
eastern and northeastern Kenya and the coastal lowlands of Yemen, Oman, and Iran.
Millions of people entrust their daily lives to this single species and of all the inhab-
itants on the planet, they are among the poorest in economic terms and most in need 
of help. Yet, at the moment, pearl millet continues to suffer from neglect and misun-
derstanding, in part because the crop grows in some of the poorest countries and 
regions, and in some of the least hospitable habitats for humans and livestock. 
People have therefore unjustly stigmatized it as a poor crop, fit only for temporary 
support of poor people until something better is identified.

Pearl millet is the sixth most important of the world’s cereals. Descended from a 
wild West African grass (also Pennisetum glaucum), it was domesticated more than 
4,000 years ago, probably in what is now the heart of the Sahara Desert. In ancient 
times, it was dispersed from its homeland to East Africa and thence to India, reach-
ing there more than 3,000 years ago. Both regions adopted it eagerly and it has 
become a much-favored staple food grain, feed and fodder crop. Today, pearl millet 
is sown on ~22 million ha in Africa and ~12 million ha in Asia, as well as more than 
3 million ha in Latin America, much of it in Brazil where it serves as the best avail-
able mulch component of sustainable limited-tillage soybean production on acid 
soils in the Cerrado region. Global production of pearl millet grain probably exceeds 
20 million mt annually, to which India contributes nearly one-half. At least 200 
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million people depend on pearl millet for at least several months each year and a 
large percentage of them depend upon it throughout the year.

Pearl millet’s important characteristic is its concomitant ability to withstand 
heat, low soil fertility and low moisture availability (Gupta et al. 2015). Today, 
approximately 40 % of the world’s pearl millet is grown in Africa and the rest 
mostly contributed by India. About 85 % of Africa’s production is in the West 

ha), Chad (3 M ha), Mali (1.5 M ha) and Senegal (1 M ha). Sudan (2 M ha), Tanzania 
(0.2 M ha), Eritrea, Namibia and Uganda (0.1 M ha each) are other producing coun-
tries in Africa. In these regions, pearl millet is a staple food of more than 90 million 
people. Pearl millet is a highly nutritious cereal with high levels of metabolizable 
energy and protein, and a more balanced amino acid profile (Andrews and Kumar 
1992). Pearl millet grains from crops grown with 20–40 kg ha−1 of applied nitrogen 
have 10–11 % protein, comparable to the protein found in wheat cultivars. Processing 
technologies for preparing various types of alternative and health food products 
have been developed. These products have been shown to have lower glycemic 
index levels than similar products produced from wheat (Sehgal et al. 2004), thus 
increasing the food value of pearl millet for those prone to diabetes. Pearl millet 
grains lack gluten, unlike most of the major cereals, thus enhancing its health value 
for those allergic to gluten (Dahlberg et al. 2004).

Pearl millet is less prone to aflatoxin contamination than sorghum and maize. 
Collins et al. (1997) reported that eggs produced by chickens fed pearl millet-based 
diets have lower levels of low-density lipoprotein, thus making possible the produc-
tion of designer eggs for those with high cholesterol. These findings suggest that 
pearl millet can play an important role not only in contributing to the nutritional 
security of the poor in the pearl millet growing areas of India and Sub-Saharan 
Africa, but could also have potential health value for the affluent.

-
onstrated potential to increase these levels further with plant breeding. Several reports 

minerals a moderate to high range in mineral density among the West and Central 
Africa (WCA) pearl millet accessions studied (Burger et al. 2014). The study focused 
on the grain density of several minerals in 225 Sudanese pearl millet accessions evalu-
ated in Sudan also found wider density ranges for all 8 minerals (Bashir et al. 2014). 
A study conducted with a limited number of 27 genotypes at ICRISAT showed high 

millet grains (Jambunathan and Subramanian 1988
densities in pearl millet material, based on means of two environments reported from 
India, ranged around 30–80 mg kg−1 −1

2013; Velu et al. 2007). Parthasarathy Rao et al. (2006) reported that in the major pearl 

intake by the population, and it is also the cheapest source of these micronutrients as 
compared to other cereals and even vegetables. Pearl millet is a significant source of 
these micronutrients both in India and Sub- Saharan Africa.
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2.3.3  Maize (Zea mays L.)

Maize is a major component of the daily diet of many of the neediest people of the 
world, and was selected as a target crop by the HarvestPlus Biofortification Program 
(Nestel et al. 2006). Maize is a major cereal crop widely consumed in developing 
countries, which have a high incidence of iron deficiency anemia. The major cause 

-

is also a model system for genomic research and thus allows the opportunity for gene 
discovery. The development of an efficient breeding program to increase mineral 
concentrations in maize depends on the presence of genetic variability in this species. 

-

respectively (Agrawal et al. 2012). Queiroz et al. (2011) reported significant vari-
−1 −1) in 22 tropi-

cal maize inbred lines with different genetic backgrounds. Significant differences in 

2000) and in Nigeria by 
Menkir (2008
maize genotypes and 400 core accessions (landraces) from different environments 

(Banziger and Long 2000; Long et al. 2004). Hence maize also serves as a major 

2.3.4  Sorghum [Sorghum bicolor (L.) Moench]

Sorghum is an affordable staple food for more than 400 million people in Africa and 
some parts of Asia, many of whom live in the drier, more vulnerable agricultural 
areas. However, sorghum is deficient in most essential nutrients, and it is difficult to 
digest when cooked. If enhanced with key nutrients it could benefit key targeted 
populations who suffer from micronutrient deficiency. Sorghum is a crop with many 
advantages; it grows quickly and can tolerate much more heat and drought than 
most other crops. Sorghum also is gluten free and can be a good substitute for wheat 
in baked goods and other products. In Africa, sorghum is used to make bread and 
nutritious porridge, and can even be popped like corn. Sorghum is an important crop 
in Africa, with 23.4 million mt produced in 2012. While world production of sor-
ghum appears to be level, production is slowly increasing in Africa.
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ICRISAT, Kumar et al. (2012) evaluated the ICRISAT germplasm core collection, 
improved varieties and partner institution selected varieties. In this study the range 

−1 and 14–91 mg kg−1

recent study Kumar et al. (2013) at ICRISAT-India studied three particularly-

variability available in sorghum germplasm and also observed the heterosis for 

additive gene effects, suggesting the high effectiveness of progeny selection in ped-
igree selection or population breeding to develop lines with increased levels of 

-
nantly by non-additive gene effects in combination with additive gene effects, sug-
gesting scope for heterosis breeding in addition to progeny selection to develop 

concentration with no yield loss, indicating that it is possible to develop high grain 

sorghum genotypes of improved and farmers varieties from southern Africa for 

in sorghum will help breeders select superior genotypes with high yield while 
improving micronutrients content.

2.3.5  Phaseolus Bean (Phaseolus vulgaris L.)

The common bean is the most important economic variety of the genus Phaseolus 
and is grown throughout the world. It requires much warmth and sun; cool weather 
and wind hamper growth. The crops prefers moderately-heavy or light soils are 
preferred. It is the most important legume worldwide for direct human consump-
tion. The crop is consumed principally for its dry (mature) beans, shell beans (seeds 
at physiological maturity) and green pods. When consumed as seed, beans consti-
tute an important source of dietary protein (22 % of seed weight) that complements 
cereals for over one-half billion people, mainly in Latin America. The largest pro-
ducers of dry beans are Brazil, Mexico, China and the USA. Annual production of 
green beans is around 4.5 million mt, with the largest production taking place 
around the Mediterranean and in the USA. The common bean was used to derive 
important principles in genetics.
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beans seeds was observed by researchers at the International Center for Tropical 
Agriculture (CIAT). A core collection of over 1,000 accessions of common beans 
were evaluated (Beebe et al. 2000
34 to 89 μgg−1 μgg−1

accessions ranged from 21 to 54 μgg−1 μgg−1

1999). Recently, some common bean accessions from Peru were found to contain 
μgg−1 -

(~50 %) concentrations in common beans.

2.3.6  Breeding Strategies

A common breeding strategy can be used to enhance micronutrient content in crop 
2.2). Applied breeding programs 

begin with introduction of material developed elsewhere for improved micronutri-
ent content. Advanced breeding lines, released varieties and hybrids also can be 
used as base material for developing new elite lines with trait breeding for micronu-
trients. Availability of genetic variability in the population can be used at the begin-
ning to harness the genetic variability for developing new breeding lines. If the 
available genetic variability is not sufficient to develop the breeding lines, then it 
can be created by hybridization, mutation and polyploidy breeding approaches. A 

Improved Breeding lines with
elevated micro nutrient content

Pre breeding Material

Genomics Approach

Core Set

Novel Lines Phenomics Genomics Novel Lines

Genetic ImprovementCreation Genetic Variation

Germplasm
Accessions from

Gene banks

Land races from
Farmers field

Improved Breeding
lines, Released

Verities

Other genetic
resources

Characterization for grain
Micronutrient density (Fe,Zn)

Fig. 2.2 Breeding strategy for micronutrient enhancement in crop plants
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core set of genetic germplasm will be developed by evaluating complete genetic 
material and breeding lines available in particular crop. At present molecular 
marker-assisted breeding is gaining importance in fast-track breeding for develop-
ing genetic material. The combination of molecular breeding and conventional 
breeding will be of great help in developing the genetic material and elite breeding 
lines in the shortest time available. Based on the pollination systems in crop plants, 
breeding methods can be applied. Breeding methods used in rice, sorghum and 
beans include mass selection, pedigree selection, single seed descent method of 
selection, back-cross breeding, mutation breeding and marker-assisted selection. 
The breeding methods commonly followed in maize and pearl millet include popu-
lation improvement approaches, mass selection and marker-assisted selection. If a 
crop is often cross-pollinated, like sorghum, either of the selection methods used for 
self-pollinated and cross-pollinated selection methods can be practiced depending 
upon the breeding objectives.

2.4  Effect of Genetics and Environment on Grain 
Micronutrient Content

Genotype by environment (G × E) interaction is the differential response of crop 
genotypes to changing environmental conditions. Such interactions complicate 
testing and selection in breeding programs and result in reduced overall genetic 
gains of desired traits (Shafii and Price 1998). Understanding the G × E interac-
tion therefore allows the making of informed choices regarding which locations 
and input systems to use in the breeding efforts. Burger et al. (2014) reported 

millet, showing the importance of multi-environmental evaluation to identify 
genotypes stable across environments. Studies on pearl millet in general have 

(Govindaraj et al. 2013; Gupta et al. 2009; Velu et al. 2011), indicating the gen-
eral importance of basing biofortification breeding programs on multiple envi-
ronment testing.

-
tion in rice grains (Anuradha et al. 2012; Suwarto and Nasrullah 2011). The pH, 

-

2010). Several studies carried out in The 
Philippines, Bangladesh, Korea and Vietnam have reported a significant G × E inter-
action effect on grain nutritive-value related traits in rice, including factors, such as, 
wet and dry season, inherent soil properties like saline, acidic or neutral soils, nitro-
gen supply and period of flooding during crop growth (Graham et al. 2005; Gregorio 
et al. 2000).
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In wheat, significant G × E interactions on grain nutrients were reported, demon-

(Badakhshan et al. 2013). Several studies reported significant G × E interactions for 

et al. 2007; Oury et al. 2006; Wang et al. 2010) as well as for their wild and culti-
vated relatives (Chatzav et al. 2010; Gomez-Becerra et al. 2010a, b; Peleg et al. 
2008).

In maize, Queiroz et al. (2010) showed that there were highly significant effects 
of maize genotypes in mineral content, but the location effect was not significant in 

trials. The mineral concentrations in maize grains can be affected by soil type and 
fertility, soil moisture, environmental factors, crop genotype and interactions 

2005). Oikeh et al. (2003) reported that the effects of 

can greatly influence genotypic performance across different crop-growing 
scenarios.

In common bean, results also indicate that the traits responsible for genetic 

Significant location and location × genotype effects indicate that environments have 

-
-

ously at the same location, which once again shows that the environmental effect 
was absent and variation is purely due to the genotype. Interestingly, a very highly 

across different genotypes were observed by CIAT researchers.

2.5  Genetic Association of Grain and Grain Yield 
in Micronutrient Concentration

Iron, zinc and copper are essential micronutrients for plants as well as humans 
(Asad and Rafique 2000; Hao et al. 2007). A deficiency of one of these nutrients 
can greatly reduce plant yield and even cause plant death. The correlation coeffi-

earlier researchers are presented in Table 2.3. A recent study on micronutrient 
density in pearl millet showed no significant correlation between grain yield and 

the four. However, studies on pearl millet, reported significant negative to no cor-
2009; Rai et al. 
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2012; Velu et al. 2008). A negative correlation was observed between the concen-

wheat, although the strength of these relationships was influenced greatly by the 
environment (White and Broadley 2009). There were obviously significant nega-

-
cients ranging from −0.67 to −0.41, while there was no significant correlation for 

2007; Oury et al. 2006). In maize and sorghum, grain yield 

-
2012) 

reported negative correlation between grain yield and mineral contents in rice. 

Table 2.3
grains

Crop Correlation coefficient (r) References

Bean 0.34* Gelin et al. (2007)
Maize −0.26* Chakraborti et al. (2009)
Pearl millet −0.02ns Gupta et al. (2009)
Sorghum −0.32* Reddy et al. (2005)

−0.36* Ashok Kumar et al. (2009)
Wheat −0.39** Vogel (1989)

−0.41* Morgounov et al. (2007)
−0.19ns

−0.51ns Oury et al. (2006)

Bean 0.21* Gelin et al. (2007)
Maize 0.18ns Chakraborti et al. (2009)
Pearl millet −0.1ns Gupta et al. (2009)
Sorghum −0.54** Reddy et al. (2005)

−0.46** Ashok Kumar et al. (2009)
Wheat −0.64** Morgounov et al. (2007)

−0.57 to −0.61** McDonald et al. (2008)
−0.41**
−0.64** Morgounov et al. (2007)

Oury et al. (2006)
−0.439**

≤ 0.05 and P ≤ 0.01, respectively; ns non-significant
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2.6  Heritability Estimates of Grain Iron and Zinc 
Concentrations

The inheritance of nutritional traits appears to be mostly quantitative, influenced 
by the environment, but more specific to source genotypes (Blair et al. 2009; 
Cichy et al. 2005, 2009
particular crop can be improved by traditional breeding methods, it must be 
determined to what extent these traits are heritable. Heritability estimates are 
limited to experimental material and setup, and may differ widely in the same 
crop and for the same trait (Garcia-Oliveira et al. 2009). Heritability is a measure 
of genetic differences among individuals in a population, not simply of whether 
or not a trait is inherited (Gomez-Becerra et al. 2010b
in the cited study was estimated by some researchers previously. Recently 
Govindaraj et al. (2011, 2013) and Bashir et al. (2013) reported high heritability 
estimates in pearl millet and suggested the predominance of additive gene effects 

2009
2007) have been reported in pearl millet, indi-

effects. In wheat, estimates of broad-sense heritability (h2B) ranged from 
2013). 

Rawat et al. (2009
wheat genotypes. Khodadadi et al. (2014) reported that the heritability of grain 

-

-
nant inbred lines of rice. Chakraborti et al. (2010) reported high heritability for 

-

common bean (Cichy et al. 2005). Thus, heritability estimates are useful for the 
biofortification of high-yielding crop varieties.

2.7  Molecular Marker-Assisted Breeding for Genetic 
Improvement of Grain Fe and Zn Content in Crop 
Plants

The rapid development of DNA marker technology provides great opportunities to 
enhance nutritive values of traditionally-cultivated crops and grains. Molecular 
markers augment conventional plant breeding for efficient and precise identifica-
tion or selection of a trait of interest linked to them. During the last few decades, 
molecular markers have been widely used in plant biotechnology and genetic stud-
ies. They are used in the assessment of genetic variability and characterization of 
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germplasm; estimation of genetic distance between populations, inbred and breed-
ing material; genetic mapping; detection of monogenic and quantitative trait loci 
(QTLs); marker-assisted selection; increase in the speed and quality of backcross-
ing to introgress desirable traits from closely related varieties to elite germplasm 

2002; Murtaza et al. 2005; Rana and Bhat 2005). Recent developments in quantita-
tive genetics of molecular markers allow construction of linkage maps to deter-

QTLs. In QTL analysis, scientists attempt to identify associations between quanti-
tative traits and marker alleles within a segregating population (Lander and Bostein 
1989; Weller et al. 1990) to identify the genomic locations of loci contributing to 
complex traits, the contribution of each and the interaction between loci. QTL 
analysis provides a powerful approach to identify the genes underlying the natural 

2006). Molecular mark-

plants. Subsequently, there have been thousands of QTL studies carried out in dif-
ferent plant species.

In a study of wheat, nine additive and four epistatic QTLs were identified, among 
which six and four, respectively, were effective at the two environments (Xu et al. 
2012). Peleg et al. (2009) found 11 QTLs on chromosomes 2A, 5A, 6B, 7A and 7B 

2008
chromosomes 4 and 5 contributing 11.9 % and 10.9 %, respectively, to the variance 

μ -
somes 2 and 7 in a double haploid wheat population. Genc et al. (2009) also reported 

2:3 mapping population (Jin et al. 2013). Lungaho et al. (2011) reported three 
-

population of maize.

(Anuradha et al. 2012
each explaining >30 % phenotypic variance in rice accessions (Neelamraju et al. 
2012

Stangoulis et al. (2006). In common bean, a total of 26 QTLs were identified in an 
inter-gene pool mapping population for the mineral × trial × method combinations 

(Blair et al. 2009). Cichy et al. (2009) reported 11 QTLs on 6 linkage groups (LGs) 
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However, marker-assisted selection is useful in improving the efficiency of selec-
tion early in the breeding cycle by helping to improve characters with low heritabil-
ity. Thus, identifying the target QTL genes will help achieve biofortification with 
greater precision and accuracy.

2.8  Transgenic Approaches for Micronutrient Improvement

Transgenic approaches are advantageous when a micronutrient does not natu-
rally exist in a crop (e.g. provitamin A in rice) or when sufficient amounts of 
bioavailable micronutrients cannot be effectively bred into the crop. However, 
once a transgenic line is obtained, several years of conventional breeding are 
needed to ensure that the transgenes are stably inherited and to incorporate the 
transgenic line into varieties that farmers prefer. While transgenic breeding can 
sometimes offer micronutrient gains beyond those available to conventional 
breeders, many countries lack the legal framework to allow release and commer-

content in crops where genetic variation for these traits has not been identified, 
HarvestPlus, its partners, and other organizations have explored transgenic 
approaches, discussed below in detail.

2.8.1  Golden Rice

Golden Rice is a variety of Oryza sativa produced through genetic engineering to 
biosynthesize beta-carotene, a precursor of vitamin A, in the edible parts of rice 
(Ye et al. 2000

rice with only two beta-carotene biosynthesis genes: psy (phytoene synthase) from 
daffodil (Narcissus pseudonarcissus) and crtI (carotene desaturase) from the soil 
bacterium Erwinia uredovora 2.3).

In 2005, a research team at the Syngenta biotechnology company produced a 
variety of Golden Rice called Golden Rice 2. It combined the phytoene synthase 
gene from maize with crt1 from the original Golden Rice. Golden Rice 2 produces 
23 times more carotenoids than the original Golden Rice (up to 37 μ -
erentially accumulates beta-carotene (up to 31 μ μ
(Paine et al. 2005). To receive the Recommended Dietary Allowance (RDA), it is 
estimated that 144 g of the highest-yielding strain would have to be eaten. 
Bioavailability of the carotene from Golden Rice has been confirmed and found to 
be an effective source of Vitamin A for humans (Datta et al. 2007; Tang et al. 2009). 
Bioavailability testing has confirmed that Golden Rice is an effective source of 
 vitamin A in humans, with an estimated conversion rate of beta-carotene to retinol 
of 3.8:1 and 2:1 (Tang et al. 2009, 2012).
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2.8.2  Iron-Rich Rice

Iron deficiency is considered one of the world’s most widespread micronutrient 

absorption of the micronutrient is poor from these food sources because it is 
bonded with phytic acid. Since rice is a staple food for over three billion people, 

-
tein from Phaseolus vulgaris and pAGt 1Me with metallothirnein-like protein 

-
tent in the rice endosperm twofold (Lucca et al. 2002). To address the bioavail-
ability problem, Lucca et al. (2002) integrated the gene from Aspergillus fumigatus 
encoding a thermotolerant phytase protein and the gene for endogenous cysteine-

-
tion. The concerted effect of these genes resulted in a sevenfold increase in 
cysteine level and a 130-fold increase in phytase level. Masuda et al. (2013) 

rice seeds (Tables 2.4 and 2.5) and also proposed some additional prospective 

Fig. 2.3 A simplified overview of the carotenoid biosynthesis pathway in Golden Rice. The 
enzymes expressed in the endosperm of Golden Rice, shown in red, catalyze the biosynthesis of 
beta- carotene from geranylgeranyl diphosphate. Beta-carotene is assumed to be converted to reti-
nal and subsequently retinol (vitamin A) in the animal gut (Source: 
Golden_rice)

2 Breeding Crop Plants for Improved Human Nutrition

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

http://en.wikipedia.org/wiki/Golden_rice
http://en.wikipedia.org/wiki/Golden_rice


Table 2.4

Approach 
cultivation

Introduced 
genes Rice cultivar

Cultivation 
condition

concentration 
compared to 
non-transgenic 
ricea References

Approach 1: 
enhancement 

in rice seeds 
by ferritin

OsGluB1pro- 
SoyferH1

Japonica cv. 
Kitaake

Soil 
cultivation 
in 
greenhouse

2 fold (polished 
seeds)

Goto et al. 
(1999)

OsGluB1 
pro- 
SoyferH1b

Japonica cv. 
Kitaake

Soil 
cultivation 
in 
greenhouse

3 fold (brown 
seeds)

Qu et al. 
(2005)

OsGlb1 
pro- 
SoyferH1b

1.5 fold (brown 
seeds)

OsGluB1 
pro- SoyferH1

Japonica cv. 
Taipei 309

Soil 
cultivation 
in 
greenhouse

2.2 fold (brown 
seeds)

Lucca et al. 
(2002)

OsGluB1 
pro- SoyferH1

Indica cv. 
IR68144

Soil 
cultivation 
in 
greenhouse

3.7 fold 
(polished 
seeds)

Vasconcelos 
et al. (2003)

OsGluA2 Indica cv. 
Pusa-Sugandh 
II (aromatic 
rice)

Soil 
cultivation 
in 
greenhouse

2.1 fold 
(polished 
seeds)

Paul et al. 
(2012)

Approach 2: 
enhancement 

translocation 
by 
overexpression 
of NAS

OsActin1 
pro- HvNAS1c

Japonica cv. 
Tsukinohikari

Soil 
cultivation 
in 
greenhouse

2 fold (polished 
seeds)

Masuda 
et al. (2009)

35S pro- 
HvNAS1c
Activation tag 
line of 
OsNAS3

Japonica cv. 
Dongjin

Soil culture 
in 
greenhouse

3 fold (polished 
seeds)

Lee et al. 
(2009c)

35S pro-  
OsNAS1, 2, 3

Japonica cv. 
Nipponbare

Soil 
cultivation 
in 
greenhouse

4 fold (polished 
seeds)

Johnson 
et al. (2011)

Approach 3: 
enhancement 

transportation 

transporter

OsSUT1 
pro-OsYSL2

Japonica cv. 
Tsukinohikari

Soil 
cultivation 
in 
greenhouse

4 fold (polished 
seeds)

Ishimaru 
et al. (2010)

(continued)
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Table 2.4 (continued)

Approach 
cultivation

Introduced 
genes Rice cultivar

Cultivation 
condition

concentration 
compared to 
non-transgenic 
ricea References

Approach 4: 
enhancement 

and 
translocation 
by IDS3 gene

Barley IDS3 
genome 
fragment

Japonica cv. 
Tsukinohikari

Andosol soil 
in paddy 
field

1.4 fold 
(polished 
seeds)

Masuda 
et al. (2008)

1.3 fold (brown 
seeds)

Calcareous 
soil in paddy 
field

1.3 fold (brown 
seeds)

Suzuki et al. 
(2008)

Approach 5: 
overexpression 

transporter

Ubiquitin 
pro-OsIRT1

Japonica cv. 
Dongjin

Paddy field 1.7fold (leaves) Lee et al. 
(2009a)1.1 fold (brown 

seeds)
OsActin1 
pro- OsYSL15

Japonica cv. 
Dongjin

Paddy field 1.3 fold (brown 
seeds)

Lee et al. 
(2009b)

Approach 6: 
overexpression 
of 
transcription 
factor

35S 
pro-OsIRO2

Japonica cv. 
Tsukinohikari

Calcareous 
soil in 
greenhouse

3 fold (brown 
seeds)

Ogo et al. 
(2011)

Approach 7: 
knockdown of 
OsVITs genes

OsVIT1 or 
OsVIT2 
T-DNA 
insertion 
mutant lines

Japonica cv. Hydroponic 
culture

1.4 fold (brown 
seeds) (2012)

Japonica cv. 
Dongjin

Paddy field 1.4 fold (brown 
seeds)

OsVIT2 
T-DNA 
insertion 
mutant line

Japonica cv. 
Dongjin

Soil 
cultivation 
in 
greenhouse

1.3 fold (brown 
seeds)

Bashir et al. 
(2013)

1.8 fold 
(polished 
seeds)

Source: Masuda et al. (2013)
a

bThey introduced these two genes into same transgenic lines
cThese two genes were introduced separately into rice and they analyzed these two types of trans-
genic lines
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Table 2.5

Approach 
cultivation

Introduced 
genesa Rice cultivar

Cultivation 
condition

compared to non- 
transgenic riceb References

Combination 
of 
approaches 1 
and 2

OsGlb 
pro-Pvferritin

Japonica cv. 
Taipei 309

Hydroponic 
culture

6 fold (polished 
seeds)

Wirth et al. 
(2009)

35S pro- 
AtNAS1
OsGlb 
pro-Afphytase

Combination 
of 
approaches 
1, 2 and 3

OsGluB1 
pro-SoyferH2

Japonica cv. 
Tsukinohikari

Soil 
cultivation 
in 
greenhouse

6 fold (polished 
seeds)

Masuda 
et al. 
(2012)OsGlb1 

pro-SoyferH2
OsActin1 
pro-HvNAS1

Paddy field 4.4 fold 
(polished seeds)

OsSUT1 
pro-OsYSL2
OsGlb1 pro- 
OsYSL2
OsGluB1pro- 
SoyferH2

Tropical 
Japonica cv. 
Paw San Yin 
(Myanmar 
high quality 
rice)

Soil 
cultivation 
in 
greenhouse

3.4 fold 
(polished seeds)

Aung et al. 
(2013)

OsGlb1 
pro-SoyferH2
OsActin1pro- 
HvNAS1
OsSUT1 
pro-OsYSL2
OsGlb1 pro- 
OsYSL2

Combination 
of 
approaches 1 
and 4

OsGluB1 
pro-SoyferH2

Japonica cv. 
Tsukinohikari

Normal soil 
in 
greenhouse

4 fold (polished 
seeds)

Masuda 
et al. 
(2013)OsGlb1 

pro-SoyferH2
HvNAS1, 
HvNAAT-A,-B 
and IDS3 
genome 
fragments

Calcareous 
soil in 
greenhouse

2.5 fold 
(polished seeds)

Source: Masuda et al. (2013)
aThese gene expression cassettes were introduced concomitantly
b
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2.9  Micronutrient Bioavailability

The total amount of a micronutrient from a plant source does not represent the 
actual micronutrient content of the food that is utilizable by the consumer. The bio-
availability of micronutrients must be determined independently using methodolo-
gies especially developed for such purposes. In human nutrition terms, bioavailability 
is commonly defined as the amount of a nutrients in a meal that is absorbable and 
utilizable for metabolic processes in the body (Welch and Graham 2004). 
Determining the bioavailability of micronutrients to humans in plant foods is fraught 

2.4). Ultimately to determine the bioavailability of a particular 
micronutrient a number of factors interact in the body of an individual eating a 
mixed diet within a given environment. Because of this complexity, the data obtained 
using various bioavailability model systems are always ambiguous (House 1999; 
Van Campen and Glahn 1999).

Not all ingested minerals are completely absorbed and utilized by humans or 
livestock (Grusak and Cakmak 2004); moreover, only a small portion of accumu-
lated minerals in edible parts is bioavailable leading to certain groups of people who 

lines is an important aspect of a crop biofortification program. The levels of bio-
-

tively (Bouis and Welch 2010). Researchers should therefore consider the 
bioavailability of micronutrients and their concentration while conducting breeding 
experiments.

Fig. 2.4 The complexities 
of bioavailability in human 
nutrition (Source: Graham 
et al. 2001)
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Only data from feeding trials in micronutrient-deficient test populations under 
free-living conditions can delineate the efficacy of using micronutrient-enriched 
varieties of plant foods as an intervention tool. Unfortunately, it is impractical to test 
the bioavailability of selected micronutrients in numerous genotypes of staple plant 
foods that can be generated in plant breeding programs (Graham and Welch 1996). 
Therefore, to screen large numbers of promising lines of micronutrient-enriched 
genotypes identified through a breeding program one must use a bioavailability 
model before advancing them within these programs.

2.9.1  Bioavailability Models

Various bioavailability models have been developed to determine the micronutrients 
in human plant foods (House 1999; Van Campen and Glahn 1999). Among these in 
wide use are in vitro models such as cultured human intestinal cells (i.e. Caco-2 cell 
model), animal models (e.g. rats, pigs and poultry) and small-scale human clinical 
trials (Underwood and Smitasiri 1999). The rat and poultry models are easy to exe-
cute and relatively cost effective, but the results obtained are limited in their accep-
tance by the nutrition community (Greger 1992). In vitro cultured human intestinal 
cell models such as the Caco-2 cell model are rapid, inexpensive and can be used to 

1999). However, the Caco-2 cell model needs further development before adopting 

foods. The pig animal model is a currently and widely accepted, as it is the most 

provitamin A carotenoids in plant foods (Miller and Ullrey 1987). Current breeding 
efforts to screen large numbers of promising genotypes rich in micronutrients of 
staple foods crops (rice, maize, pearl millet, sorghum, wheat, beans and manioc) at 
several CGIAR Centers (IRRI, CIMMYT, ICRISAT, CIAT and IITA) for bioavail-

-
ponents, which include both absorption inhibitors and enhancers. Among the inhibi-
tors, phytic acid (PA), tannins, dietary fiber and calcium are the most potent, while 

2010; Sandberg 2002; Elad et al. 2015). Phytate, a complex of phytic acid and min-
eral elements, decreases the bioavailable concentration of nutrient elements and 

diets based mainly on cereals and legumes (Liu et al. 2006). These compounds are 
normal plant metabolites and only small changes in their concentration may have 
significant effects on the bioavailability of micronutrients.

absorption, causing nutritional deficiencies both in humans and livestock (Lonnerdal 
2000 -
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2015

Similarly, in the case of higher fiber and tannin contents, the chelating effect of 
these compounds was higher than that of phytates (Lestienne et al. 2005). Results of 
pilot studies among maize consumers in the USA and Guatemala showed that 
genetically-selected low phytic acid plants have the potential to be used as primary 

et al. 2004). Studies in animals have shown the positive effect of diets containing 
low phytate maize to improve the use of minerals (Li et al. 2000; Veum et al. 2001). 
Therefore, food crop breeding strategies for higher levels of nutrients and low levels 
of anti-nutritional substances, such as phytic acid, are desirable (Ghandilyan et al. 
2006). Thus, the inhibitory effect of phytate should be taken into account when 

Recent technological advancements have improved the accuracy and precision of 
methods used in the study of bioavailability and absorption of trace elements. 
Currently two models are used to evaluate mineral bioavailability in foods and diets, 
each giving a great variability of results: in vivo and in vitro models (Vitali et al. 
2007; Welch and Graham 2002). In vivo investigations generally include work with 
rats or clinical studies with humans. In vitro methods involve determining the solu-

-
1995). Due to the phytic acid influence on mineral 

(Abebe et al. 2007; Lestienne et al. 2005). In vivo and in vitro studies on the avail-

in humans (Bueno et al. 2013).

2.10  Biofortification: A Tool for Improved Human Health

Breeding staple cereal crops richer in minerals is a low-cost, sustainable strategy to 
ameliorate micronutrient malnutrition for people living in developing countries who 
cannot afford to include sufficient amounts of pulses, fruits, vegetables, fish and animal 
products, rich or enriched with micronutrients in their diet (Cakmak 2008; Martinez 
et al. 2010). A combination of strategies involving food fortification, pharmaceutical 
supplementation and dietary diversification has been suggested to combat micronutri-
ent malnutrition (Stein et al. 2005). However, neither of strategy has been universally 
successful in developing countries, largely due to lack of safe delivery systems, stable 
government policies, appropriate infrastructure and continued adequate investment 
(Bouis 2003; Timmer 2003). Thus, biofortification has been proposed as an alternative 
solution to micronutrient malnutrition (Bouis 2003). Biofortification is a new approach 

-
ability of essential elements in the edible part of the plant by traditional plant breeding 
or genetic engineering (White and Broadley 2005). By definition, the focus of plant 
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breeders and biofortification initiatives is on breeding crops with a high density and 
increased bioavailability of nutrients. HarvestPlus (www.harvestplus.org) is a major 
international consortium created to develop new plant genotypes with high concentra-
tions of micronutrients by applying classical and modern breeding tools (i.e. genetic 
biofortification). Although plant breeding is the most sustainable solution to the prob-
lem, developing new micronutrient-rich plant genotypes is a protracted process and its 
effectiveness can be limited by the low amount of readily-available pools of soluble 
micronutrients in soils (Cakmak 2008
(i.e. agronomic biofortification) is a short-term solution and represents a complemen-
tary approach to breeding. Biofortified crops, once developed, adapted and released for 
cultivation, will continue to be grown and consumed yearly, thus contributing signifi-
cantly to overcoming malnutrition (Graham et al. 2007; Stein et al. 2005, 2010; White 
and Broadley 2009
when biofortified pearl millet grain of Indian origin is consumed by young women or 
children (Cercamondi et al. 2013; Kodkany et al. 2013). Another study showed strong 

-
2014; Kanatti 

et al. 2014
millet (Bashir et al. 2013; Govindaraj et al. 2009; Velu et al. 2007) and in wheat (Gomez 
et al. 2010a, b; Velu et al. 2012 -
est concentrations (up to 85 μ
primitive relatives (Ortiz-Monasterio et al. 2007; Peleg et al. 2009). In India, applica-

concentrations (Shivay et al. 2008).
Conventional plant breeding and genetic engineering both involve changing the 

genotype of targeted crops with the aim of developing plants carrying genes that 
support the enhanced accumulation of bioavailable minerals. The means of  achieving 
this goal differ between the two approaches (Gomez-Galera et al. 2010). The main 

research is being done on traditional plant breeding techniques, exploiting the vari-
ability of mineral concentrations found in different germplasm (Qaim et al. 2007). 
Not all crops have the genetic potential to meet desired micronutrient levels with 
traditional plant breeding, and therefore genetic engineering has to be applied to 
achieve sufficient improvements (Borg et al. 2009). It is suggested that genetic mod-
ification is an excellent approach to obtain high micronutrient concentrations (Bouis 
2007) and that genetically-modified organisms (GMOs) have the potential for 
increased agricultural productivity.

diets is the elimination of phytate. This sugar-like molecule binds a high proportion 
2001) intro-

duced a fungal gene for the enzyme phytase, which breaks down phytate synthesis, 
2012) reported that 

Aspergillus niger 
phytase gene (phyA2) in seeds using a construct driven by the maize embryo-specific 
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globulin-1 promoter resulted in about 5,000 % increase in phytase activity and 30 % 
decrease in seed phytate concentration. On the other hand, a very novel and interest-
ing approach has been used in maize and soybean to silence the genes involved in the 
biosynthesis of phytic acid (PA) (Shi et al. 2008). It was found that maize lpa1 
mutants are defective in a MRP ATP-binding cassette (ABC) transporter that is more 
highly expressed in embryos, but also in immature endosperm, germinating seeds 
and vegetative tissues. The expression of this transporter was silenced in an embryo-
specific manner. The concentration of PA in seeds of transgenic maize was found to 
be reduced by up to 87 % depending upon the transgenic line, and the transgenic 
plants were not adversely affected in grain yield or seed germination in contrast to 
the lpa mutants. Similarly, silencing of MRP (expansion) transporter in sorghum 
decreased the PA concentration in seeds by 80–86 %, and a consequent increase in 

2013). These remarkable findings indicate the possibility of producing GMO cereals 
with low PA and without affecting agronomic performance by silencing the expres-
sion of transporters involved in the biosynthesis of PA.

2.11  Conclusion and Prospects

Biofortification is a method of breeding crops to increase their nutritional value. 
This can be done either through conventional selective breeding or through genetic 
engineering. Biofortification differs from ordinary fortification because it focuses 
on making plant foods more nutritious as they are growing, rather than having nutri-
ents added to processed foods. This is an improvement over ordinary fortification 
when it comes to providing nutrients for the rural poor, who rarely have access to 
commercially-fortified foods. As such, biofortification is seen as a future strategy to 
deal with deficiencies of micronutrients
WHO estimated that biofortification could help cure the two billion people suffering 
from iron deficiency-induced anemia.

There is very compelling global human health and nutritional evidence to con-
vince plant breeders that micronutrient density traits should be primary objectives 
in their work, and targeted to the developing world. Therefore, biofortification is of 
great importance in enriching seeds with mineral micronutrient. Both plant breed-
ing and genetic modification offer good opportunities to increase the micronutrient 
contents of edible parts of major crops. Anti-nutrient factors should be minimized 
to maximize micronutrient bioavailability. Understanding the genetic basis for 
breeding crop cultivars with higher grain micronutrient concentration is required. 
Emerging cost-effective genomics tools should be used to accelerate the breeding 
process and product development targeting these micronutrients. After development 
of new breeding lines and varieties, dissemination of biofortified breeding lines and 
hybrid parents to and their utilization by user-research organizations in the public 
and private sector on a continuing basis will make biofortified cultivar development 
a routine matter and significantly contribute to improved human nutrition.
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