
1 3

Theor Appl Genet (2015) 128:999–1017
DOI 10.1007/s00122-015-2506-0

REVIEW 

MAGIC populations in crops: current status and future prospects

B. Emma Huang1 · Klara L. Verbyla2 · Arunas P. Verbyla3 ·  
Chitra Raghavan4 · Vikas K. Singh5 · Pooran Gaur5 · Hei Leung4 · 
Rajeev K. Varshney5,6 · Colin R. Cavanagh7 

Received: 17 October 2014 / Accepted: 20 March 2015 / Published online: 9 April 2015 
© Springer-Verlag Berlin Heidelberg 2015

this review focuses on populations where the parents 
have all been inter-mated, typically termed Multi-parent 
Advanced Generation Intercrosses (MAGIC). Such popu-
lations have already been created in model animals and 
plants, and are emerging in many crop species. However, 
there has been little consideration of the full range of fac-
tors which create novel challenges for design and analysis 
in these populations. We will present brief descriptions 
of large MAGIC crop studies currently in progress to 
motivate discussion of population construction, efficient 
experimental design, and genetic analysis in these popula-
tions. In addition, we will highlight some recent achieve-
ments and discuss the opportunities and advantages to 
exploit the unique structure of these resources post-QTL 
analysis for gene discovery.

Introduction

A major advantage for researchers in plant and animal 
genetics lies in the ability to create experimental popu-
lations. Such populations mix well-characterized founder 
genomes in controlled pedigrees, and facilitate the inves-
tigation of both the genome itself and its relationship 
with traits and the environment. Traditional experimen-
tal populations combine the genomes of two parents with 
contrasting phenotypes to identify regions of the genome 
affecting the trait. However, each of these populations 
captures only a small snapshot of the factors affecting the 
trait due to the narrow genetic base—it is only possible 
to detect those genomic regions which differ between the 
two founders, and all alleles occur with high frequency 
in the population. The alternative of association map-
ping takes a panoramic view of the whole population by 
sampling distantly related individuals. It hence captures 
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far greater diversity, but requires very large samples to 
have sufficient power to detect genomic regions of inter-
est, and hence may have difficulty detecting rare alleles 
of importance.

The weaknesses of existing designs have led to a new 
type of complex experimental design intermediate to bipa-
rental and association mapping designs in terms of power, 
diversity, and resolution. Multi-parent Advanced Gen-
eration InterCrosses (MAGIC) inter-mate multiple inbred 
founders for several generations prior to creating inbred 
lines, resulting in a diverse population whose genomes are 
fine-scale mosaics of contributions from all founders. Simi-
lar to biparental populations, alleles occur at relatively high 
frequencies due to the limited number of founders, but the 
population encapsulates much higher diversity in polymor-
phisms. While a MAGIC population requires greater initial 
investment in capability and time than a biparental, care-
ful selection of founders allows its generalizability to the 
wider breeding population and ensures relevance as a long-
term genetic resource panel.

The first multiparental inter-mated population was 
the Collaborative Cross (CC, Complex Trait Consor-
tium 2004) in mice, but the design has since had wide 
uptake across a variety of species. The CC combined the 
genomes of eight inbred strains together through multi-
ple intercrosses, and then created inbred lines through 
sibling mating. Concurrently, the Diversity Outbred 
(DO) population was developed as a related heterogene-
ous stock (HS) population with the same eight progeni-
tors (Collaborative Cross Consortium 2012). These two 
populations form an extensive genetic resource for mouse 
which has been utilized for mapping and identification 
of candidate genes for serum cholesterol and coat color 
traits (Svenson et al. 2012; Ram et al. 2014). A similar 
design was used to create the Drosophila Synthetic Popu-
lation Resource (King et al. 2012a). In plants, there has 
been more variety in the features of different populations, 
due to many differences between organisms including 
genome size and complexity, history of the species, and 
resources and technologies available. MAGIC popula-
tions have already been created in Arabidopsis thaliana 
(Kover et al. 2009), wheat (Huang et al. 2012; Mackay 
et al. 2014), rice (Bandillo et al. 2013) and are under-
way in chickpea (Gaur et al. 2012) and a variety of other 
crops.

While much of the motivation and challenges inherent 
in these populations are common to different organisms, 
moving from model organisms to crops generally poses 
a new set of challenges and questions of interest. Refer-
ence sequence data may not be available, polyploidy is 
common, the physical scale of the experiments will often 
be much larger, and phenotypic data are often collected 
outside controlled conditions. In this review, we describe 

some of the largest MAGIC studies currently in progress 
in crops, using them to motivate discussion of design 
and analysis issues in MAGIC. We conclude with les-
sons learned from existing populations, highlighting some 
recent achievements and future directions for multiparen-
tal genetics.

Efficient experimental design

Careful consideration of design prior to initiating popula-
tion development helps to ensure not only the novelty of 
a population, but also its ability to answer practical ques-
tions of interest. For MAGIC populations this is of particu-
lar importance given the complexity of the design, the time 
investment required for development, and the number of 
factors which eventually impact the power, diversity, and 
resolution of the progeny. Hence, the objectives for the 
population need to be clearly defined before embarking on 
population development. We will touch both on the factors 
which pertain to the pedigree and how the founder lines are 
inter-mated, as well as additional considerations which may 
improve the efficiency of the study design. Figure 1 depicts 
the stages of population development which are described 
in further detail below.

Founder selection Prior to initiating population 
development, founder lines must be chosen (Fig. 1a). 
This may be based on genetic and/or phenotypic diver-
sity, either in a constrained set of material (e.g., elite 
cultivars, geographical adaptation) or material of more 
diverse origins (worldwide germplasm collections, dis-
tant relatives). Achieving an optimal level of genetic 
diversity is not a simple task. Use of landraces as found-
ers may introduce greater diversity, but simultane-
ously reduce the generalizability to the current breed-
ing populations. In addition, genetic incompatibility in 
some species can cause a large reduction in the number 
of progeny that may be derived from specific crosses. 
Variety-specific gross chromosomal differences such as 
rearrangements or alien/wild introgressions may also 
affect the production of the final population and its use 
for genetic mapping. On the other hand, narrow genetic 
diversity can be problematic for estimating founder 
probabilities (see Sect. “Genetic analysis”) and prevent 
researchers from fully exploiting the potential of their 
populations.

In addition to genetic diversity, the phenotypic diversity 
must be carefully managed to produce a resource which 
is also practical. Consideration of traits such as flowering 
time in the founders will avoid segregation for undesirable 
values in the progeny which will affect not only subsequent 
phenotypic evaluation, but also have practical impact on 
making the crosses. Ultimately, the selection of founders 
will be one of the most important design considerations and 
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will depend heavily on the goals for the population. More 
diverse founder sets may provide biological insight into 
a wide variety of traits; however, founders selected based 
on relevance to a breeding program for specific traits may 
result in a MAGIC population which more quickly trans-
lates into superior breeding lines. In particular, in breed-
ing it may be desirable to focus on capturing the allelic 
diversity present within the breeding program across mar-
ket segments, and ensuring the population size is adequate 
to ensure sufficient progeny expected to fit each market 
segment.

Mixing In the first stage of population development, 
multiple parents are intercrossed to form a broad genetic 
base (Fig. 1b). This was inspired by the heterogeneous 
stock (HS), proposed by McClearn et al. (1970) and taken 
up by Demarest et al. (2001), which goes on to create an 
outbred population derived from multiple parents. In this 
stage, the inbred founders are paired off and inter-mated 
in a prescribed order for each line, known as a funnel. If 
each recombinant inbred line (RIL) is the product of a 2n-
way cross, then the mixing stage will require n generations. 
The result of this stage is a set of lines whose genomes 
comprised contributions from each of the founders. Bro-
man (2005) showed that the composition of these contri-
butions depends on the funnel structure; hence, the design 
and selection of funnels used in the cross will impact on the 
eventual genetic makeup of the population.

Greater variety in the types of funnels generated will 
ensure greater robustness to accounting for factors such as 
maternal effects, population structure, and segregation dis-
tortion; however, it will require greater investment in terms 
of cost and time. Simulation may provide more insight into 
balancing these factors (see Sect. “In silico experiments”). 
A further concern in generating a limited number of fun-
nels is the level of relatedness due to shared recombination 
events. If at any generation the number of individuals is 
small, individuals derived from them will be related to each 
other, reducing the genetic diversity. This relatedness can 
also create population structure which will bias analyses 
such as linkage map construction and QTL mapping if not 
appropriately accounted for.

Advanced intercrossing In the second stage (Fig. 1c), 
the mixed lines from different funnels are randomly and 
sequentially intercrossed as in the advanced intercross 
(AIC) proposed by Darvasi and Soller (1995). The main 
goal of this intercrossing is to increase the number of 
recombinations in the population. Yamamoto et al. (2014) 
performed a simulation study to consider the effect of dif-
ferent numbers of generations of intercrossing on genome 
structure. They concluded that at least six cycles of inter-
crossing were required for large improvements in QTL 
mapping power. Lines undergoing differing generations 
of advanced intercrossing may be combined together in 
the analysis; however, evidence of population structure 

Fig. 1  Stages of MAGIC population development design for eight 
founders a selection of founders based on geographic, genetic, phe-
notypic diversity. The maternal pedigree tree is presented at the bot‑
tom for an eight-way MAGIC population with each ring representing 
a subsequent generation; b mixing of parents together in predefined 
patterns, or funnels (denoted by symbol on right); c intercrossing of 

individuals (generations denoted by number within crossed circle) 
derived from different funnels for additional generations; d self-
ing (generations denoted by number within circular arrow) or dou-
ble haploidization of individuals either directly from funnels or after 
advanced intercrossing to form inbred lines (color figure online)
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should be investigated (e.g., using STRUCTURE, Pritchard 
et al. 2000) to ensure that the intercrossing has not intro-
duced differences in structure between the subsets of the 
population.

Inbreeding In the third stage, the individuals resulting 
from the advanced intercrossing stage are progressed to 
create homozygous individuals (Fig. 1d). RILs in plants 
can be created via single seed descent (Goulden 1939; 
Brim 1966; Bailey 1971) or doubled haploid production 
(Blakeslee et al. 1922; Maluszynski et al. 2003; see For-
ster et al. 2007 for a review of methods). While doubled 
haploid production is often faster, the multiple genera-
tions of selfing will introduce additional recombination, 
albeit less than during the mixing and advanced inter-
crossing stages.

The progeny of the population will not be fully inbred 
in practice except for double haploid lines. This residual 
heterozygosity can be both useful and problematic. In 
genotyping, it may cause issues due to the inability to 
distinguish heterozygotes for some markers, particularly 
for polyploids (Cavanagh et al. 2013) and genotyping-
by-sequencing (GBS) approaches (Elshire et al. 2011). In 
data analysis, it may cause issues by violating the simpli-
fying assumption of full inbreeding (Broman 2005), and 
should ideally be addressed as in Broman (2012), which 
derives genotype probabilities for individuals at interme-
diate generations with substantial heterozygosity. In many 
of the populations discussed here, plants have been self-
pollinated for five or more generations, so the expected 
level of heterozygosity in the genome is less than 3 %. 
In general to develop MAGIC populations a minimum 
of 8 crop seasons is required to reach at least the S5 
generation.

In silico experiments

Simulation is an important tool for understanding the 
potential of different designs, for comparing methodol-
ogy, and for developing guidelines for future studies. 
A number of simulation packages are now publically 
available for multiparental designs, with varying levels 
of flexibility. R/qtl (Broman et al. 2003) and R/mpMap 
(Huang and George 2011) allow the specification of gen-
otypes for founders, and descend them through a pedi-
gree. While R/mpMap allows greater flexibility in pedi-
gree definition, R/qtl is more flexible in modeling genetic 
processes such as crossover interference. A more recent 
addition, AlphaMPSim (Hickey et al. 2014), generates 
founder genotypes through a coalescent model prior to 
gene dropping, and is built to efficiently generate data up 
to full sequence.

With regard to simulating different-sized studies, it is 
important to consider both the total population size and the 

size of the subset which may be phenotyped for an individ-
ual trait. In many crops, replicates of genotypes are neces-
sary in field trials to estimate environmental variability, and 
hence even if a population of 1000 lines exists it may not be 
feasible to phenotype them all in a single study. Thus, con-
sideration of the total population size may be more affected 
by the practicalities of its maintenance and genotyping than 
by power to detect smaller associations. Inbred plant lines 
are of course easier to maintain (as seeds) than animal lines, 
but even so the potential infrastructure costs may be high.

Once the genotypes of the simulated population have 
been generated, then different subsets can be considered 
for phenotyping. Valdar et al. (2006) and Klasen et al. 
(2012) provide guidelines based on simulation for sam-
ple sizes required and gains achievable through variation 
on designs. It is important to note, however, that while 
these sample sizes may be sufficient to ensure QTL map-
ping power, other analyses such as high-resolution link-
age map construction or epistasis detection may require 
larger sample sizes. Further simulation may be required 
depending on the aims for the population. Valdar et al. 
(2006) compared variations on the first two stages of the 
collaborative cross (CC) design, and benchmarked against 
biparental advanced intercross RILs for a trait with 0.5 
heritability. They found that a MAGIC population of size 
500 could achieve high power to detect single quantitative 
trait loci (QTL) explaining 5 % of phenotypic variability. 
Klasen et al. (2012) expanded on these simulation stud-
ies by considering a larger range of multiparental designs 
and heritabilities of 0.5 and 0.8. They found reductions 
in power when a large number (50–100) of QTL contrib-
uted to the trait, but that designs with higher number of 
parental genomes combined in progeny (such as MAGIC) 
tended to have increased power.

While simulations are valuable for gaining insight with-
out the expense of a full study, it is worth noting that they 
of course cannot fully reproduce reality, and at best can 
consider a limited subset of factors. The simulations above 
focused on QTL mapping, and to a limited extent, mapping 
of epistatic interactions, which requires much larger sample 
sizes to identify effects. Characteristics of genetic data such 
as introgressions and translocations, which may cause seg-
regation distortion, depression of recombination near cen-
tromeres, and other unusual patterns are difficult to study 
in silico. Hence, with any simulation it is necessary to note 
the assumptions and the limitations and to be cautious in 
generalization.

Optimizing resource allocation

While consideration of resource allocation in the design 
stage is not specific to MAGIC, we include it here due to its 
relevance for large resource populations. Figure 2 outlines 
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some general approaches to increase resource allocation 
efficiency throughout the experiment.

One of the first considerations (once a population has 
been established) is the selection of lines for phenotyping, 
as it may not be practical to phenotype the whole popula-
tion. This is of particular importance for traits which are 
expensive to measure, or when there are resource con-
straints, such as when trials require a large amount of land. 
An alternative to random selection of lines is to attempt 
to sample representative haplotypes from the population 
to maximize genetic diversity. Huang et al. (2013) devel-
oped an approach based on clustering (SPCLUST) that 
can efficiently select lines to be phenotyped from a given 
set of genotyped individuals from a MAGIC population 
(Fig. 2a). This may be used to: (1) select a general diverse 
set from a larger population, (2) select based on prior infor-
mation (e.g., maturity) to subset for important major gene 
effects, or (3) identify individuals that have breakpoints in 
a selected region of the genome for fine mapping. After an 
initial QTL analysis (Fig. 2c), information on candidate 
regions for QTL may even be input to SPCLUST to prior-
itize lines for further phenotyping.

Once line selection is complete further efficiency 
can be gained in crop studies through optimization of 
resources in experimental design (Fig. 2b). Partially 
replicated (p-rep) designs were introduced by Cullis 
et al. (2006), and are commonly used in crops for both 

research and breeding. Such designs are particularly use-
ful when seed is limited, the trait of interest is expensive 
to measure and/or where there are multiple phases of 
experimentation, as in a situation where lines are grown 
in the field and then further tested in a laboratory (Smith 
et al. 2006). All of these situations are likely to occur 
for MAGIC populations due to their size and relevance 
to a broad range of phenotypes. Combining replicates of 
lines (composites) from the field for subsequent analy-
sis in the laboratory can provide additional cost benefits 
(Smith et al. 2015). This approach allows for reduction of 
the number of samples required in expensive lab testing, 
while still being able to reduce variability by accounting 
for spatial effects.

Current status of MAGIC populations in major crops

We summarize the progress of MAGIC studies in three 
major crops—rice, wheat and chickpea—and provide brief 
descriptions of other studies in Table 1. While this is not a 
comprehensive list of all MAGIC populations, it highlights 
a range of studies with differences in features of the popu-
lation design and the data collected thus far. These features 
will impact the analyses possible, and ultimately, the ability 
to answer specific research questions.

The notation used to present the current status of 
MAGIC populations was adopted from the published and 
unpublished datasets of specific crops. Fn denotes the nth 
filial generation of a cross originally resulting in inter-
crossed F1 plants. This differs by a generation from Sn, 
which denotes the nth generation of selfing of intercrossed 
F1 plants. S6:8 is preferred notation for breeders, indicat-
ing the selfed generation of the last single plant from which 
bulked seeds are obtained, e.g., S6, which is equivalent to 
F7.

Rice

Rice (Oryza sativa L.) is an inbreeding species with two 
major ecotypes of cultivated rice: indica and japonica. 
Indica and japonica rice represent 80 and 20 %, respec-
tively, of the world rice production. Rice is a diploid spe-
cies with 2n = 24, and a genome size (of the reference 
genome Nipponbare) of 473 Mb. Pedigree breeding using 
biparental populations has been the primary approach in 
most rice improvement programs. MAGIC is an attrac-
tive alternative from both theoretical and practical stand-
points. From a theoretical standpoint, MAGIC offers an 
opportunity to assess the potential of enhanced genetic 
recombination in trait dissection and synthesis. Although 
diverse genotypes are regularly introduced into pedigrees, 
little is known regarding how much genotypic diversity 

Fig. 2  Efficient phenotyping strategy moving from a using 
SPCLUST to select subset of lines for phenotyping by maximizing 
genetic diversity to b planting selected lines in a field trial design 
using partial replication (blocks in green and red) and compositing 
(blocks in red; lines indicating composited samples) to c analyzing 
the data from the field trial accounting for the spatial design. This can 
become a cycle if QTL support intervals (green band in c) are then 
used to select individuals with recombination within the QTL region 
for future analyses (color figure online)
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created by recombination has been captured, particularly 
for achieving genetic gain in complex traits such as yield. 
From a practical standpoint, a compact genetic resource 
with moderate population size and a concentration of 
high-value traits is particularly valuable as a pre-breeding 
gene pool.

Four rice MAGIC populations are currently at different 
stages of development in the Philippines (Bandillo et al. 
2013). The furthest progressed are the indica MAGIC 
and MAGIC PLUS populations, which are both derived 
from eight indica parents and intercrossed for zero or two 
generations, respectively. The indica MAGIC population 
consists of 60 plants from each of 35 funnels, generating 
a population of 2100 RILs. The MAGIC PLUS popula-
tion has the same first mixing stage, but produces 12 lines 
from each of 175 crosses in the second AI stage, gener-
ating the same-sized population. The eight parents, 200 
S4 indica MAGIC RILs, and 190 MAGIC PLUS S4 RILs 
have been genotyped using genotyping-by-sequencing 
(Elshire et al. 2011). The other two populations incor-
porate japonica lines, which is the subtype to which the 
reference sequence (cultivar Nipponbare) belongs. The 
japonica MAGIC follows the same population design as 
the indica MAGIC, while the Global 16-parent MAGIC 
intercrosses eight-way lines from the indica MAGIC and 
japonica MAGIC prior to inbreeding via production of 
RILs.

The rice MAGIC populations were deliberately devel-
oped to serve breeding applications. Rice MAGIC lines are 
presently being extensively phenotyped, presenting new 
challenges for dissection of complex traits such as yield, 
drought tolerance, and quantitative disease resistance. 
Approximately 17,000 single nucleotide polymorphism 
(SNP) markers have been used in genome wide association 
mapping for multiple traits, including: blast and bacterial 
blight resistance, salinity and submergence tolerance, and 
grain quality. Over 1000 lines have been extracted from 
the different MAGIC populations by IRRI breeders and are 
being tested in market environments for use in breeding 
programs. High-yielding lines with favorable agronomic 
traits have been identified. Rice breeders consider rice 
MAGIC lines as good pre-breeding material with a package 
of favorable traits.

The success so far has led to the development at IRRI 
of additional MAGIC populations focused on the traits 
biotic stress tolerance and heat tolerance. Lines have also 
been distributed for evaluation in multiple countries in 
Southeast Asia (Indonesia, Vietnam, Laos, Myanmar, Tai-
wan, Philippines) and Africa (Tanzania, Senegal). Yield 
measurements from these multi-environment trials exhibit 
transgressive segregation. These data offer ideal mate-
rials for studying gene × gene and gene × environment 
interactions.
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Wheat

Bread wheat (Triticum aestivum L., 2n = 6× = 42, genome 
size 17 Gb) is one of the most important crops globally, 
with a worldwide production of over 710 million met-
ric tons. The complexity of its genome structure requires 
novel approaches for its genetic dissection, leading to great 
uptake of MAGIC among wheat researchers. The first 
MAGIC wheat population was grown in Australia (Huang 
et al. 2012) and inter-mated four spring-type Australian 
cultivar parents. Subsequently, eight-parent and 16-parent 
populations have been created both in Australia (spring 
wheat) and the United Kingdom (winter wheat; Mackay 
et al. 2014). The basic designs for the eight-parent popu-
lations are similar to those for the indica rice population, 
namely, mixing all eight founders through multiple funnels 
with no intercrossing to create RILs. However, the wheat 
designs are more ambitious, realizing lines from many 
more funnels. Subsets of both eight-parent wheat popula-
tions also created lines with two to three generations of 
intercrossing.

The wheat populations are the furthest progressed in 
data collection, with over 1000 lines genotyped in winter 
wheat, and nearly 4000 in the two spring wheat MAGIC 
populations. This has motivated development of numer-
ous methods for analysis, both in the realm of linkage map 
construction (Huang and George 2011; Ahfock et al. 2014), 
and marker–trait association mapping (Verbyla et al. 2014a, 
b; Scutari et al. 2014). Extensive data have been collected 
and analyzed on traits including yield, disease resistance, 
plant height, flowering time, and coleoptile length (Huang 
et al. 2012; Rebetzke et al. 2014; Mackay et al. 2014; 
Scutari et al. 2014). Comparison of results in these popula-
tions with those from biparental populations is discussed in 
later sections on genetic analysis.

Chickpeas

Chickpea (Cicer arietinum L., 2n = 2× = 16 and genome 
size is ~738-Mb), the second largest consumed pulse crop 
of the world, is grown in over 50 countries and traded 
across 140 countries. Similar to rice, there are two major 
ecotypes: desi, which have a small seed and a dark, thick 
seed coat, and kabuli, which are larger, lighter colored, 
with a smooth coat. However, the genetic base of the elite 
genepool is very narrow and poses a serious constraint both 
for breeding and for mapping traits of interest. To enhance 
the genetic base and identify marker–trait associations for 
target traits, efforts have been made to develop the first set 
of the desi MAGIC population. As with both the wheat and 
rice eight-way populations, a total of eight elite and diverse 
founder parents were selected and crossed in half-diallel 

mating design to develop 28 two-way F1s. These lines 
were subsequently combined to produce 14 four-way inter-
crosses and finally, seven funnels. Selfing of lines from the 
seven funnels through single seed descent resulted in the 
development of ~1000 F6 MAGIC lines.

Currently, the eight parents have been sequenced at 
8–10× coverage, and ~1000 MAGIC lines are being rese-
quenced at lower coverage (2–3×). These data will be used 
to classify the MAGIC lines into different groups based 
on SNPs and haplotypes. Subsequently, a set of 200–500 
lines possessing non-redundant haplotypes will be identi-
fied and used for extensive phenotyping for targeted traits 
in multiple environments. Genotyping data and phenotyp-
ing data collected on the set of MAGIC lines will be ana-
lyzed for establishing marker–trait associations via genome 
wide association studies (GWAS) for targeted traits. In 
addition, those MAGIC lines well characterized at both the 
molecular and phenotypic level will be an ideal resource 
for deploying in chickpea breeding programs.

While there has been slower uptake of the MAGIC 
design in other crops, a four-parent durum wheat MAGIC 
population has been produced (S. Milner, pers. Comm.), 
and eight-parent MAGIC resources are in production for 
maize (M. dell’Acqua, pers. Comm.), barley (Sannemann 
et al. 2015), pigeonpea (C. Sameerkumar, pers. Comm.), 
peanut (P. Janila, pers. Comm.), and tomato (Pascual et al. 
2015). Brief summaries of these populations are listed in 
Table 1.

Data management

The suitability of MAGIC populations as focal points for 
communities of researchers and foundations for in-depth 
system biology analysis necessitates a shift in thinking 
regarding the collection and maintenance of associated 
data. Genetic, phenotypic, environmental, and ‘omics data 
may all be collected on individuals with the same genetic 
makeup, with many of these variables changing value over 
time. The integration of these data in analysis requires effi-
cient storage and distribution of the data.

Management of large genetic resource populations

In most cases, these collections of genotypic and pheno-
typic data are/should be shared across multiple groups of 
researchers. The mouse Collaborative Cross Consortium 
has had the most experience in this area, as even the devel-
opment of the population was split across multiple loca-
tions (Collaborative Cross Consortium 2012). Durrant et al. 
(2012) review existing tools and evaluate the need to fur-
ther integrate resources for both bioinformatic analysis and 
data management in mice. Researchers can additionally 
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look at human studies to learn from the lessons of large-
scale multicentre clinical trials in handling big data of this 
type (e.g., Das et al. 2011).

Big data management is not a new problem (Schmitt 
and Burchinal 2011); indeed, in 2011 Science had a 
special online collection dealing with data highlight-
ing the ubiquity of the problem across diverse scien-
tific disciplines. However, it is an emerging problem for 
crop studies, which in the past were rarely of this scale. 
There is still a pressing need for data infrastructure to be 
recognized as a critical part of studies of this size, and 
for well-developed systems to become the norm rather 
than the exception. We provide details of some systems 
available for breeding management and analysis in crops 
(Table 2).

High‑throughput genotyping

Efficient and consistent handling of genetic data is a prior-
ity for data management in MAGIC studies. While in the-
ory, a resource population needs only be genotyped once 
if done at sufficiently high density and quality, in practice 
most populations have been genotyped more than once as 
genotyping technologies evolve. In wheat, it has progressed 
from Diversity Arrays Technology (DArT) markers and 
simple sequence repeats (SSRs) (Huang et al. 2012) to a 9K 
SNP chip (Cavanagh et al. 2013), and finally a 90K SNP 
chip (Wang et al. 2014). As genotyping-by-sequencing 
technologies develop, the relative low cost of this approach 
will most likely result in great uptake as in the case of rice 
and chickpea.

Issues can arise in maintaining coherency among 
these data, primarily due to changes over time. Indi-
viduals may be genotyped at different generations of 
inbreeding, resulting not only in differing levels of het-
erozygosity, but also differences in genome structure 
at subsequent generations due to differential fixing of 
alleles at formerly heterozygous loci. As long as all indi-
viduals are substantially progressed through inbreeding 
prior to genotyping, this should be a minor issue, but it 
may result in subtle differences in analysis. Different 
individuals may be genotyped on different platforms, 
resulting in systematic missing data. Different platforms 
may have different biases and quality of data, such as 
the propensity of GBS to have high levels of missing 
data (Elshire et al. 2011). Even for a single platform, 
reductions in cost over time may result in higher cover-
age for individuals genotyped a few months later than 
others. Many of these issues will require development of 
methods for genotype imputation (http://mus.well.ox.ac.
uk/19genomes/magic.html; Wang et al. 2012; Huang 
et al. 2014) and analysis approaches which accommo-
date potential confounding factors. Ta
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High‑throughput phenotyping

The potential phenotypic diversity of the MAGIC popula-
tions makes them ideally suited for high-throughput phe-
notyping endeavors. High-throughput phenotyping can be 
interpreted in two senses for these populations. The first 
occurs at a molecular level, with different ‘omics’ platforms 
producing thousands of traits representing gene, protein or 
metabolite expression. The second occurs at the individual 
plant level, however, capitalizing on the wide range of traits 
segregating in MAGIC, and the ability to phenotype traits 
for the same inbred line across different environments, 
years, and conditions. In both cases, implementing and 
profiting from the high information content of the data rely 
on novel technologies.

Measurement of different ‘omics’ traits has thus far been 
limited to MAGIC populations in model organisms. In pre-
Collaborative Cross mice (not fully inbred), Aylor et al. 
(2011) and Bottomly et al. (2012) performed expression 
QTL (eQTL) studies to investigate associations with gene 
expression. Even in a relatively limited sample of 220 lines, 
Aylor et al. (2011) detect abundant eQTLs, more than dou-
ble the number reported in other mouse studies. In Dros-
ophila, King et al. (2014) identified nearly 8000 eQTL, pre-
dominantly cis, but with a number of trans-eQTL hotspots, 
indicating eQTL regulating the expression of several other 
genes. The success of these studies is promising for ‘omics’ 
analysis in crops.

A far more typical situation in crops, however, arises in 
attempting to phenotype a large number of lines in glass-
house or field trials. This can be time-consuming and 
expensive, and ultimately, limit the number of lines phe-
notyped and/or traits investigated. Automation of pheno-
typing is an active area of research, with several reviews 

published recently describing advances in sensors, robotics 
and imaging which may revolutionize the collection of data 
for large field trials (Montes et al. 2007; Furbank and Tester 
2011; Araus and Cairns 2014). These approaches will be 
crucial for fully capitalizing on the strengths of MAGIC, 
not just in field trials, but also for controlled environment 
experiments.

Genetic analysis

Analysis of MAGIC populations has many similarities 
to that of biparental populations, but it must accommo-
date the unique features of the design such as multiple 
founder alleles. This makes it impossible or at best inef-
ficient to apply previously developed methods and has 
stimulated the development of a number of MAGIC-
targeted software tools (Table 3). By incorporating the 
known family structure and the ability to differenti-
ate between founders, analysis approaches can gain in 
power, precision and depth of interpretation for these 
populations.

Linkage map construction

The large number of polymorphic markers across all found-
ers and accumulation of recombination events through 
many generations of the MAGIC pedigree can be used to 
achieve dense and high-resolution mapping of the genome. 
The first linkage map from a MAGIC population was con-
structed in wheat (Huang et al. 2012), which due to its 
large genome size (17 GB) and hexaploid nature, does not 
yet have a reference sequence. When maps from six bipa-
rental wheat populations were combined with a four-parent 
MAGIC map to create a consensus map of markers from 

Table 3  Software tools designed for the simulation and analysis of multi-parent populations (MPP)

Software  
package

Applicability Functionality Availability References

HAPPY General MPP QTL analysis; permutation http://mus.well.ox.ac.uk/magic/ Mott et al. (2000)

R/qtl 4-way, 8-way, 16-way MAGIC Simulation; map construction; 
QTL analysis; imputation

CRAN Broman et al. (2003)

R/ricalc MAGIC by selfing, sib-mating Simulation; probability 
calculation

https://github.com/kbroman/ricalc Broman (2005)

Genome_scan General MPP; full sequence QTL analysis; permutation http://mus.well.ox.ac.uk/19genomes/
magic.html

R/mpMap 4-way, 8-way MAGIC by selfing Simulation; map construction; 
QTL analysis; imputation

https://github.com/behuang/mpMap Huang and George 
(2011)

R/spclust NAM, 4-way, 8-way MAGIC by 
selfing

Selective phenotyping https://github.com/behuang/spclust Huang et al. (2013)

R/mpwgaim 4-way, 8-way MAGIC by selfing QTL analysis Contact authors Verbyla et al. (2014a)

AlphaMPSim General MPP Simulation https://sites.google.com/site/hickey-
john/workstuff/alphampsim

Hickey et al. (2014)

http://mus.well.ox.ac.uk/magic/
https://github.com/kbroman/ricalc
http://mus.well.ox.ac.uk/19genomes/magic.html
http://mus.well.ox.ac.uk/19genomes/magic.html
https://github.com/behuang/mpMap
https://github.com/behuang/spclust
https://sites.google.com/site/hickeyjohn/workstuff/alphampsim
https://sites.google.com/site/hickeyjohn/workstuff/alphampsim
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a 9K SNP chip, 7504 polymorphic loci in total were posi-
tioned (Cavanagh et al. 2013). Of these, 3931 were mapped 
in the four-parent MAGIC population, while the median 
number mapped in biparental populations was 2670. Fur-
ther, these markers tended to represent unique recombina-
tion bins more frequently in MAGIC than in the biparen-
tal populations. The higher levels of recombination in the 
MAGIC population can be seen most clearly in the region 
around centromeres, where there is very little separation 
between markers in biparental populations (Fig. 3).

While it can be difficult to validate map order derived 
from these populations, Ahfock et al. (2014) suggest meth-
ods to assess map uncertainty which may be particularly 
relevant for high-density maps. Further, they suggest guide-
lines for sample sizes and marker types in multiparental 
populations to ensure low uncertainty in map positions. In 
particular, for four-parent MAGIC population sizes of 500 
lines, most markers spaced at least 2 cM apart can be con-
fidently ordered, while for larger populations of 1000 lines 
this improves to 1 cM resolution. As resources improve, 
availability of a physical map or reference sequence will 
provide a standard against which to validate the genetic 
map; conversely, the high-density genetic maps achiev-
able from MAGIC populations may be used to verify and 
anchor sequence assemblies.

The advantages of MAGIC populations for map con-
struction have accompanying challenges, however. In 

contrast to biparental populations, recombination events 
cannot be directly observed due to the use of biallelic mark-
ers. Thus, the estimation of recombination fractions is more 
computationally demanding, particularly for high-density 
mapping. Further, the pattern of alleles among the founders 
has a major impact on the accuracy of mapping, with the 
recombination fractions between certain alleles not being 
identifiable (Ahfock et al. 2014). This may require imputa-
tion of recombination fractions or removal of certain mark-
ers prior to map construction.

Haplotype mosaic reconstruction

Once a high-density map or reference sequence has been 
established, it serves as a foundation for investigation 
of genome structure relevant both within the MAGIC 
population and to the species in general. In most studies, 
genetic data are represented as marker scores resulting 
from genotype calling, whether these are biallelic SNPs, 
multiallelic SSR, or even bases at different sequence posi-
tions. In MAGIC populations, these serve as surrogates for 
the underlying (unobserved) alleles inherited from each 
founder. Combining our knowledge of the pedigree struc-
ture with the observed data allows us to probabilistically 
reconstruct the haplotype mosaics which represent the mix-
ing of the founder genomes to produce inbred lines (Fig. 4).

The different stages of this haplotype reconstruction 
process have led to three representations of genetic data 
in MAGIC populations: marker scores, founder probabil-
ities, and the mosaics themselves. Each can be used to 
investigate genomic structure and as input to QTL analy-
sis. To estimate the founder probabilities, Hidden Markov 
Model (HMM) methods are typically used, which may 
depend on the pedigree structure (Broman et al. 2003) 
or just the observed data (Mott et al. 2000). The mosa-
ics are one step further removed from the marker data, 
essentially imputing multiallelic markers from the prob-
abilities. The drawback is that this approach does not 
account for the uncertainty associated with the estimation 
process; further, in regions of the genome where founder 
genotypes are very similar or marker density is low, both 
of which result in lower genomic information content, 
it may not be able to impute alleles with high certainty. 
However, if estimated with low error, these values should 
be closest to the true underlying genotypes, and can be 
used to identify recombination breakpoints in individual 
lines.

Haplotype mosaic reconstruction from high-density 
genotype data allows positions of recombination break-
points to be estimated with high accuracy. This supports 
identification of recombination hotspots and QTL for 
recombination events. While this is also feasible in bipa-
rental RIL populations (Esch et al. 2007), the greater 

Fig. 3  Comparison of wheat 9K SNP maps of Chr 3A in MAGIC 
four-way population with those from two biparental populations—
Gladius × Drysdale (GD, orange) and Synthetic × Opata (SO, 
green). Markers in the middle of the chromosome display little 
recombination in the biparental populations, but are spread over more 
than 20 cM in the MAGIC map (color figure online)
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resolution offered by MAGIC may provide increased 
insight into genome structure. In theory, the different vari-
ations on MAGIC designs will produce additional benefits 
for investigating genome structure. In rice, previous stud-
ies using SSR and restriction fragment length polymor-
phism (RFLP) markers (Harushima et al. 1998) and low-
depth sequencing data of biparental RILs suggested that 
each meiosis produced approximately 33 recombinations 
per genome (Huang et al. 2009). Yamamoto et al. (2014) 
used simulation studies to estimate recombination fre-
quency in rice MAGIC populations. Their results suggest 
approximately 160 genome segments per individual with 
a mean segment size of 20 cM in a multi-parent popula-
tion with no cycles of recurrent crossing. However, com-
parison of the MAGIC Indica and MAGIC PLUS, which 
underwent two additional generations of intercrossing, 
did not confirm the theoretical predictions of the simula-
tion study. More samples and more complete data may be 
required to determine the recombination breakpoints more 
accurately.

QTL mapping approaches

The first step in mapping the relationship between pheno-
type and genotype and detecting gene-trait associations 
is often identifying QTL. The development of methods 
to utilize the additional information available in MAGIC 
populations has been essential to maximize the useful-
ness of such resources. Methods can differ in a number of 
ways. Inputs may be marker scores or founder probabili-
ties; search strategies may involve a genome scan, or mod-
eling of QTL while simultaneously accounting for all other 
markers genotyped. Statistical approaches can be frequen-
tist or Bayesian, differ in type of model and the number 
of stages used (1-stage vs. 2-stage), and in how the QTL 
effects are modeled (fixed vs. random). Figure 5 illustrates 

the relationship and differences between various methods 
applied to MAGIC populations.

The most common approach to QTL analysis in MAGIC 
populations is to use a genome scan such as interval map-
ping, testing each marker or interval separately for asso-
ciation with the trait of interest. Xu (1996) demonstrated 
the first QTL analysis for a four-way cross using markers 
in an interval mapping approach based on the regression 
method of Haley and Knott (1992). However, this approach 
failed in a mouse heterogeneous stock population (Mott 
et al. 2000), leading to development of HAPPY, an interval 
mapping approach method based on founder probabilities. 
This and a similar approach were applied to the A. thaliana 
MAGIC (Kover et al. 2009) and Drosophila populations 
(King et al. 2012b).

In spite of the difficulty encountered by Mott et al. 
(2000) using markers, several studies have employed 
an association mapping approach (Bandillo et al. 2013; 
Mackay et al. 2014), using existing GWAS software such 
as TASSEL (Bradbury et al. 2007). The benefit of this 
approach is that the test is simple and computationally 
straightforward, requiring fewer degrees of freedom than 
other methods. Such methods typically agree well with 
those based on founder probabilities for large QTL, but 
may differ in performance for those with smaller effects. 
An example comparing the performance of interval map-
ping based on marker scores, founder probabilities, and 
haplotype mosaics is shown in Fig. 4c. In general, differ-
ences between the methods can be attributed to the ability 
to accurately estimate probabilities, coupled with the true 
number of allelic effects among the founders.

Various compromises between marker scores and 
founder probabilities have been proposed to provide a 
flexible and parsimonious model. Yalcin et al. (2005) sug-
gest testing based on imputing the genomes of the map-
ping population from the founder probabilities and founder 

Fig. 4  Comparison of different representations of simulated genetic 
data in MAGIC populations. a Example haplotype mosaics (colored 
lines) and SNP data (black and white lines) for founders (first eight) 
and five RILs (last five); b construction of RIL haplotype mosaics by 
finding best path through estimated founder probabilities. Colored 

segments indicate most likely founders in that region; c example of 
simple interval mapping based on probabilities (green line); haplo-
types (red line); and biallelic SNPs (points); dashed blue lines denote 
true locations of QTL (color figure online)



1011Theor Appl Genet (2015) 128:999–1017 

1 3

sequence information. This retains a biallelic model, but 
uses haplotype information to inform the genotypes. A 
more general approach is based on linkage disequilibrium 
and linkage analysis (LDLA) mapping, originally pro-
posed by Meuwissen and Goddard (2001). LDLA models 
local similarities using haplotypes, but does not require all 
founders to have separate effects. This can increase power 
when there are many founders or founders are genetically 
similar. Such models have had greater uptake in linked 
biparental populations than in MAGIC studies (e.g., Giraud 
et al. (2014)), though their use has been investigated in a 
durum wheat MAGIC (S. Milner, pers. comm.), using the 
ClustHaplo (Leroux et al. 2014) software to create hap-
lotypes. While no simulations of their efficacy have been 
performed yet in MAGIC, Bardol et al. (2013) compared 
a variety of models ranging from biallelic to individual 
founder effects in data from a maize breeding program and 
concluded that the different models were complementary 
depending on the QTL and trait under consideration.

Interval mapping approaches often proceed in two 
stages, modeling phenotypic variation prior to genetic vari-
ation to reduce the computational burden. However, one-
stage methods allow greater model flexibility and can avoid 
complexities associated with correctly accounting for esti-
mation error across two stages (Mohring and Piepho 2009). 
The approach described in Huang and George (2011) 
expands the basic HAPPY model to a linear mixed model 
framework to simultaneously model genetic and spatial 

or environmental variation. This was applied in Huang 
et al. (2012) for the analysis of plant height and hectoliter 
weight to demonstrate that known genes could be detected 
with increased precision (confidence interval half as wide) 
relative to biparental populations. Kover et al. (2009) com-
pared HAPPY to an empirical Bayes method combining 
founder probabilities with random effects to model popula-
tion structure, but found little difference in results. A simi-
lar approach based on markers was used by Malosetti et al. 
(2011) for a three-way cross in barley.

Recognition that interval mapping approaches can lead 
to bias in QTL mapping led to the development of more 
sophisticated approaches such as composite interval map-
ping (CIM; Zeng 1994; Jansen 1994) and multiple interval 
mapping (Kao et al. 1999). By including other covariates 
to account for background variation, these approaches 
more accurately model the magnitude and location of QTL. 
While developed for biparental populations, they can be 
relatively easily extended to MAGIC populations (Huang 
and George 2011; van Eeuwijk et al. 2010).

Expanding upon the idea of incorporating covari-
ates, Verbyla et al. (2007) proposed to accommodate 
all genotype information in a single model with whole 
genome average interval mapping (WGAIM). The origi-
nal approach for biparental populations was demonstrated 
to be more powerful than CIM, and has been extended 
for use in MAGIC populations (Verbyla et al. 2014a) and 
applied in wheat by Rebetzke et al. (2014). The approach 

Fig. 5  Deconstruction of exist-
ing QTL mapping approaches 
for MAGIC populations based 
on common analysis features
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(multi-parent WGAIM or MPWGAIM) adds QTL to the 
model through forward selection, while modeling effects 
from population structure and any non-genetic effects, such 
as spatial variation, in a linear mixed model framework. A 
dimension reduction technique is implemented to reduce 
model complexity.

Bayesian methods offer a flexible alternative to mixed 
models, but are typically computationally demanding, 
requiring many Markov chain Monte Carlo iterations to 
reach convergence. Kover et al. (2009) use a hierarchical 
Bayes method to perform a genome scan, explained more 
fully in Durrant and Mott (2010). As the choice of priors 
for this method results in complete factorization of the like-
lihood, no Monte Carlo Markov chains are required, result-
ing in a very fast Bayesian approach. van Eeuwijk et al. 
(2010) present a whole genome method based on the work 
of Bink et al. (2008) that includes all markers in a single 
hierarchical Bayesian model where the number of QTL 
is allowed to change through the use of a reversible jump 
algorithm (Green 1995).

Determination of significance thresholds is an important 
aspect of QTL analysis. The genome scan methods typi-
cally use resampling techniques (permutation tests or the 
bootstrap). In contrast, the Bayesian approaches use Bayes 
factors (Kass 1993; Kass and Raftery 1995) to assess the 
support for different QTL models, and MPWGAIM uses a 
likelihood ratio test of significance at a set type I error rate 
to determine when to cease forward selection.

The computational demands of any approach are 
dependent on the complexity of the statistical mod-
els implemented. Approaches using linear models to 
perform genome scans can often be parallelized easily 
and can, therefore, be more computationally efficient 
than those relying on complex linear mixed models. 
For example, software developed for the Arabidopsis 
MAGIC population (genome_scan, http://mus.well.
ox.ac.uk/19genomes/magic.html) can analyze full 
sequence data very quickly, fast enough that permuta-
tions are a viable method of computing genome wide 
significance. Reducing the complexity of the final model 
using multiple stages is often an option. However, the 
computational gain must be balanced against potential 
loss of statistical efficiency; with certain experimental 
designs (e.g., p-rep), this may be a reason to consider 
more complex models.

Future prospects

MAGIC populations have proven their worth for standard 
genetic analysis—linkage map construction, linkage anal-
ysis, and association analysis—but the real test of their 
longevity will be whether these results can be extended 

beyond preliminary identification of interesting genomic 
regions. In this section, we take a look forward and discuss 
some of the areas we think will provide a valuable con-
tribution to our understanding of complex traits into the 
future.

Multivariate analysis

In crop studies, material is often grown in multiple environ-
ments and multiple traits are measured; sometimes a trait is 
measured at several time points. The analysis of such situa-
tions is an area of particular promise for inbred populations 
in general and MAGIC specifically, as the inbred lines can 
be easily replicated across environments. Further, MAGIC 
populations have been developed to capitalize on pheno-
typic diversity, so a multitude of traits segregate in each 
population. We call these complex situations multivariate, 
and the methods required for their analysis are correspond-
ingly complex, in biparental populations as well as multi-
parental. The complexity arises from both the genetic and 
non-genetic components of the model, and the analysis is 
expensive both in time and computing resources. As fitting 
methods are iterative, there can be issues with convergence. 
Automating such analyses is very difficult.

Multivariate analyses build on underlying correlation, 
thereby providing more powerful analysis. For multi-envi-
ronment trials, this leads to an understanding of genotype 
(or QTL) by environment interaction. For multi-trait anal-
yses, this furthers our understanding of pleiotropic QTL. 
Both types of information can provide valuable input to a 
breeding program.

Multivariate QTL analysis for biparental populations 
has a modest literature, much of which has been previously 
outlined (Verbyla and Cullis 2012; Malosetti et al. 2013). 
For MAGIC, methods are only beginning to become avail-
able; Verbyla et al. (2014b) extend MPWGAIM (Verbyla 
et al. 2014a) to the multivariate case, while Scutari et al. 
(2014) take an alternative approach using Bayesian net-
works. In addition, Malosetti et al. (2013) mention that 
their multivariate models for biparental populations can be 
easily extended to multiparental populations. While both 
MPWGAIM and Bayesian networks have been applied to 
wheat MAGIC data, a direct comparison has not yet been 
made. This is in part due to differences in focus; while 
the Bayesian network approach can be used to identify 
associations, it is primarily intended for prediction. For 
all methods, analyses can be time-consuming and require 
large computing resources due to the complexity of mod-
els being fitted. There is a need to investigate two-stage 
analyses for this purpose. Although they may be less sta-
tistically efficient, they are likely to be less computation-
ally demanding.

http://mus.well.ox.ac.uk/19genomes/magic.html
http://mus.well.ox.ac.uk/19genomes/magic.html
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Epistasis detection

One of the main benefits of the MAGIC populations is the 
creation of new combinations of alleles through generations 
of mixing founder genomes together. However, the detection 
of epistatic interactions in MAGIC has been little explored 
to date. One of the few in-depth studies of epistasis was per-
formed in the context of two-locus segregation distortion 
(Corbett-Detig et al. 2013), and considered biallelic interac-
tions in the Arabidopsis MAGIC as well as other multiparen-
tal populations. A few studies (e.g., Huang et al. 2011, 2012) 
have considered interactions between QTL detected with main 
effects. While such a strategy may be successful in identify-
ing a few instances of epistasis, a full genome wide scan may 
be necessary to detect epistasis between loci without main 
effects. Indeed, Scutari et al. (2014) indicate that a disadvan-
tage of their Bayesian network approach is its limited ability 
to capture smaller epistatic effects, although they should be 
able to capture those where one of the SNPs has a main effect.

There are three primary issues with escalating the 
search for epistasis in these populations. The first is com-
putational—as the number of genetic markers available for 
most populations increases from the thousands to the hun-
dreds of thousands, the number of pairwise interactions 
to test increases by four orders of magnitude. However, 
exhaustive search methods have become feasible in human 
association studies with the application of parallel comput-
ing, either with Graphics Processing Units (Hemani et al. 
2011) or computing clusters (Gyenesei et al. 2012). While 
these can only be applied to test for interactions between 
observed marker scores, extension to accommodate multiple 
founders will have great utility in MAGIC populations. The 
second issue, however, actually stems from the multiplic-
ity of founder alleles. Testing for differences between eight 
parental effects, while at times less powerful than compar-
ing two alleles, is still a low-dimensional endeavor. Testing 
for differences between 64 pairwise combinations, how-
ever, may not be feasible except in large samples. Hence, 
the third issue is power; depending on how the first two 
issues are addressed, the sample size required to detect epi-
static interactions may be much larger than that required to 
detect main effects of similar magnitude. Determining the 
best approach to modeling epistatic interactions in MAGIC 
requires further study through simulations prior to applica-
tion in real data.

Multi‑parent advanced generation recurrent selection 
(MAGReS)

MAGIC populations and their derivatives additionally 
offer the opportunity to develop genotypes with com-
binations of superior alleles from diverse backgrounds, 
and thereby directly improve a breeding program. One 

option is to apply genomic selection to the RIL prog-
eny for forward selection via genotype only. We propose 
here the alternative of multi-parent advanced generation 
recurrent selection (MAGReS), for which the breeding 
scheme is presented in Fig. 6. This approach combines 
MAGIC for the development of recombinant lines, with 
marker-assisted recurrent selection (MARS) for iden-
tification of superior lines for intercrossing, to develop 
lines possessing elite alleles from diverse parents. The 
MAGReS lines will be highly diverse and can be used 
as donors for different breeding lines, leading to direct 
release of superior lines as new varieties for commercial 
cultivation.

MAGReS initially follows the same stages of population 
development as MAGIC, with the further constraints upon 
founder selection of breeder-relevant alleles for a trait of 
interest, and high molecular diversity. Once MAGIC lines 
have been developed, QTL mapping approaches can be 
employed to identify associations with target traits. These 
associations in turn are used to select plants possessing the 
maximum number of positive/superior alleles. Two to three 
generations of intercrossing between the selected plants 
are then used to assemble all targeted superior alleles from 
the diverse founder parents in a common background. It is 
important to bear in mind that all traits of interest should 
ideally be considered concurrently, as this process has the 
potential to break up some existing allelic combinations for 
traits which have not been targeted, which could result in 
lower or unacceptable performance for these traits. Finally, 
newly developed breeding lines possessing all the target 
alleles can be selfed to identify inbred lines homozygous 
for the target alleles. Such lines form a direct pipeline to 
commercial cultivation through phenotyping for the target 
traits in multilocation trials and selection of improved lines 
showing positive response.

Multi-parent populations such as MAGIC provide a 
unique opportunity to explore genetic diversity, better 
define genomic intervals involved in complex traits, model 
complex environmental interactions and better predict 
allelic effects in diverse backgrounds. In species where a 
genome reference sequence is not available, these popula-
tions also provide a valuable resource for generating high-
density linkage maps that may be used for anchoring the 
meiotic map with the physical map.

However, MAGIC designs are not the only type of mul-
tiparental populations, and different designs may be more 
or less suitable depending on the crop, its genome struc-
ture, and resources available (Stich 2009). Nested Associa-
tion Mapping (NAM) designs were proposed by Yu et al. 
(2008) and have had uptake in several crops including 
maize (McMullen et al. 2009; Giraud et al. 2014), bar-
ley (Schnaithmann et al. 2014) and sorghum (Mace et al. 
2013). The strategy of using related biparental populations 
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requires less time to develop than MAGIC populations. 
Further, the choice of founders is less crucial since the pop-
ulations can be post-modified to either include lines derived 
from additional founder crosses, or exclude those derived 
from an undesirable founder. However, fewer novel allelic 
combinations will be generated in these populations, as any 
specific individual carries alleles from only two founders 
rather than all of them.

Multiparental populations of all types are still in their 
infancy, and their value will be judged through their ability 
to deliver solutions and understanding of the genetic deter-
minants underpinning complex traits. Overall, however, this 
area of research looks set to deliver outcomes well into the 
future by capitalizing on new technological developments, 
complex multivariate analyses and the implementation 

of strategies to utilize new insights for breeding program 
improvement.
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Fig. 6  Multi-parent advanced 
generation recurrent selection 
(MAGReS) approach for devel-
opment of new breeding lines. 
Development of MAGIC lines 
is followed by QTL analysis 
from which markers associ-
ated with the trait of interest 
can be identified. MAGIC lines 
possessing large numbers of 
desired alleles are selected and 
combined for 2–3 additional 
cycles of recombination through 
marker-assisted recurrent selec-
tion (MARS), leading to the 
development of superior breed-
ing lines. G1, G2, G3, G4, G5, 
G6, G7 and G8 represent the 8 
diverse founder genotypes; Gen 
generation (color figure online)
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