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IVs	 Inland Valleys
KOMFOSAT	 �Korean Multipurpose Satellite. Data 

Marketed by SPOT Image
Landsat-1, 2, 3 MSS	 Multi spectral scanner
Landsat-4, 5 TM	 Thematic Mapper
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MODIS	 Moderate Imaging Spectral Radio Meter
NGO	 Nongovernmental organization
QUICKBIRD	 �Satellite from DigitalGlobe, a private com-

pany in the United States
RAPID EYE—A/E	 �Satellite constellation from Rapideye, a 
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WCA	 �West and Central Africa
WORLDVIEW	
USGS	 United States Geological Survey

9.1  Introduction

Africa is the second largest continent after Asia with a total 
area of 30.22 million km2 (including the adjacent islands). 
It has great rivers such as the River Nile, which is the longest 
in the world and f lows a distance of 6650 km, and the River 
Congo, which is the deepest in the world, as well as the sec-
ond largest in the world in terms of water availability. Yet, 
Africa also has vast stretches of arid, semiarid, and desert 
lands with little or no water. Further, Africa’s population is 
projected to increase by four times by the year 2100, reaching 
about four billion from the current population of little over 
one billion. Food insecurity and malnutrition are already 
highest in Africa (Heidhues et  al., 2004) and the challenge 
of meeting the food security needs of the fastest-growing 
continent in the twenty-first century is daunting. So, many 
solutions are thought of to ensure food security in Africa. 
These ideas include such measures as increasing irrigation 
in a continent that currently has just about 2% of the global 
irrigated areas (Thenkabail et  al., 2009a, 2010), improving 
crop productivity (kg m−2), and increasing water productivity 
(kg m−3). However, an overwhelming proportion of Africa’s 
agriculture now takes place on uplands that have poor soil 
fertility and water availability (Scholes, 1990). Thereby, the 
interest in developing sustainable agriculture in Africa’s low-
land wetlands, considered by some as the “new frontier” in 
agriculture, has swiftly increased in recent years. The low-
land wetland systems include the big wetland systems that 
are prominent and widely recognized (Figure 9.1) as well as 
the less prominent, but more widespread, inland valley (IV) 
wetlands (Figures 9.2 through 9.8) that are all along the first 
to highest order river systems.

Africa’s bigwetland ecosystems (Figure 9.1; MAW, 2014) are 
estimated to cover more than 131 million ha (4.33% of total 
geographic area of the continent) that vary in type from saline 
coastal lagoons in West Africa to fresh and brackish water lakes 
in East Africa. They deliver a wide range of ecosystem services 
that contribute to human well-being such as nutrition, water 
supply and purification, climate and flood regulation, coastal 
protection, feeding and nesting sites, recreational opportu-
nities and increasingly, tourism (ESA, 2014). In contrast, the 
IV wetland systems (Figures 9.2 through 9.5) occupy roughly 
6%–20% of various agroecosystems with higher percentage 
areas in the wetter agroecosystems and the lower percentage 
areas in the drier agroecosystems (Thenkabail et  al., 2000b). 
Wetlands, with their abundant supply of fresh water, generally 
fertile soils, and high productivity, therefore play a central role 
in the economy of all river basins and coastal zones. They pro-
vide fish, water for agriculture, household uses, and transport. 
Additionally, many distant communities as well as entire cities 
and regions benefit from wetlands.

In this chapter, we will provide a focused study of wetlands 
of West and Central Africa (WCA) and demonstrate the rich-
ness and importance of wetlands in ensuring the food security 
of Africa. Throughout WCA, there is increasing pressure for 
agricultural development as a result of population growth and 
efforts to increase food security. The IV wetlands have high 
potential for growing agricultural crops due to (1) easy access to 
the river water, (2) significantly longer duration of adequate soil 
moisture to grow crops when compared with adjoining uplands, 
and (3) rich soils (depth and fertility) (FAO, 2005; WARDA, 
2006; Tiner, 2009). However, 90% of WCA’s current agricul-
ture is concentrated in uplands, which have very poor soils and 
scarce water resources. In spite of such huge advantages over 
uplands, IV wetlands in WCA are highly underutilized mainly 
as a result of (1) waterborne diseases such as Malaria, Bilharzias, 
Trypanosomiasis (sleeping sickness), Onchocerciasis (river 
blindness), and Dracontiasis (guinea worm); and (2) difficulty 
in accessing them from roads–settlements–markets (WARDA, 
2003; Lafferty, 2009). But these difficulties can be overcome 
with modern health care (Hetzel et al., 2007) and infrastructure 
(Woodhouse, 2009).

Given this background, it is increasingly felt that the best 
way to expedite WCA’s green revolution (more crop per unit 
area) and blue revolution (more crop per unit of water) is to 
focus on its soil-water-rich and hitherto highly underutilized 
IV wetlands, which roughly constitute about 80% of WCA’s 
total wetlands with the rest being river flood plains (12%) and 
coastal wetlands (8%) (Lyon, 2001; Mitsch and Gosselink, 2007; 
Thenkabail et al., 2009b). The WCA is yet to see a green revolu-
tion, so badly needed for the food security and economic prog-
ress of these countries, specifically for its subsistence farmers 
who constitute the overwhelming proportion of WCA’s popula-
tion of 350 million. The green revolution technologies devel-
oped in Asia in terms of improved agronomic, genetic traits, 
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and better water management can be adopted with minor mod-
ifications to WCA’s own green revolution. The importance of IV 
wetlands is particularly high for rice cultivation as it is becom-
ing a major staple in WCA. Records show a rapid increase of 
rice consumption in West Africa from 1 million tons in 1964 to 
8.6 million tons in 2004 (WARDA, 2003; FAO, 2005). IV wet-
lands have higher crop yields than the equivalent upland areas. 
For example, potential yields of rice in IVs were estimated at 
2.5–4.0 ton ha−1 compared to 1.5–2.0 ton ha−1 on uplands 

(WARDA, 2006). Also, an important link in achieving food 
security is transportation; in these rural areas, fields nearest to 
the population have great value for supplying food needs and 
enhancing food security.

Balancing the need to bring in more land for agricul-
ture by releasing land from other uses or natural cover are 
the ecological concerns about the environmental impacts of 
land cover such as wetland development (and the catchments 
that surround them) and the profound social and economic 

Figure 9.1  African wetlands (MAW, 2014). These are: “Areas of marsh, fen, peatland or water, whether natural or artificial, permanent or tem-
porary, with water that is static or flowing…” (RAMSAR, 2004). But, these do not include inland valley wetlands.
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Figure 9.2  Depiction of wetlands. (From WARDA, Medium Term Plan 2007–2009, Charting the Future of Rice in Africa.Africa Rice Center 
(WARDA), Cotonou, Republic of Benin, 2006.)
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Figure 9.3  Inland valley wetlands consist of valley bottoms, hydromorphic valley fringes, and non-hydromorphic valley fringes.
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Figure 9.4  Inland valley wetland illustration. The photos show valley bottoms. (From Gumma, M.K. et al., J. Appl. Remote Sens., 3, 033537, 2009b.)

K22128_C009.indd   230 6/29/2015   12:33:04 PM



231Inland Valley Wetland Cultivation and Preservation

repercussions for people dependent on their natural resources 
and ecosystem functions. IV wetlands play an important role 
in bio-geochemical cycling, flood control, and recharging of 
aquifers. They are considered to be one of the richest and most 
productive biomes, serving as cradles of biological diversity 
that support unique flora and fauna (RAMSAR, 2004). They 
serve as potential sites for breeding waterfowl and significant 
carbon sinks in soils and plants (Lal et al., 2002; Mitsch and 
Gosselink, 2007).

Clearly, it is essential to incorporate wetlands explicitly 
within a natural resource management framework. There is 
the need to not only develop technologies that are adapted to 
farmers’ economic needs to facilitate Africa’s much awaited 

Green Revolution and supporting its Blue Revolution, but 
also sustain the integrity of the globally valuable WCA eco-
systems. At present, the basis for making decisions relating 
to wetland utilization is weak (Gliessman, 2007). Given the 
fact that the characteristics of wetlands are known to vary 
dramatically within and across agroecosystems (Andriesse 
et al., 1994), it is important to map, characterize, and model 
different wetland systems (Gumma et al., 2009a, 2011b). This 
will provide impetus and enable the development of appropri-
ate technologies for maximizing food production along with 
transportation (food security) with minimum ecological and 
environmental disturbance. A pre-requisite for sustainable 
management of IV wetlands is greater understanding of the 

JERS L-band SAR data to delineate
wetlands from other land use/land cover

Time-series characteristics of 8 wetland classes using
MODIS terra 500 m NDVI for year 2001

GDEM data for delineating uplands from lowland
wetlands

(a) (b)

(c) (d)
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Figure 9.5  Delineating uplands from lowlands using various satellite imagery: (a) IKONOS 4 m DEM data shown in 3d (top left); (b) IKONOS 
4 m DEM (top right); (c) JRTS SAR data (bottom left); and (d) MODIS temporal NDVI signatures of wetland classes. Inland valleys (IV) are seen 
in blue color in top two images. In the bottom left (JERS SAR), very high backscatter are areas of oil palm plantations. High backscatter (see arrow 
pointer) shows IV wetlands.
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interaction between climate, soil, topography, water, bio-
physical, health, and socioeconomic factors that inf luence 
both wetland utilization and the impacts that result includ-
ing societal benefits.

Given the discussion, the three key action research goals pre-
sented in this chapter are:

First, identify, delineate, map, classify, and character-
ize wetlands of the entire WCA region using data 
fusion involving satellite multisensor data (e.g., 
Landsat ETM+, JERS SAR, ALOS PALSAR, MODIS, 
IKONOS/Quickbird; see Tables 9.1 and 9.2), sec-
ondary data (SRTM, FAO soils, precipitation), and 
in  situ data (e.g., Fujii et  al., 2010). IV wetlands are 
too small to appear on most maps and therefore the 
wetland surveys of the world have been mostly local-
ized (Gilmore et  al., 2008; Wdowinski et  al., 2008) 
and limit themselves to large flood plains, swamps, 
and water bodies with or without irrigated areas. 
However, recent studies (Thenkabail and Nolte, 2000; 

Lan and Zhang, 2006; Becker et al., 2007; Islam et al., 
2008) have identified the potential of satellite remote 
sensing data and techniques for mapping different 
types of wetlands. None, however, has done so over 
very large areas such as nations, continents, and the 
world. Thereby, we propose to use multi-data fusion 
to best identify, map, classify, and characterize IV 
wetlands at high resolution (nominal 30 m) over 
entire WCA rapidly and accurately using automated 
and semiautomated methods.

Second, develop a decision support system (DSS) through 
spatial modeling to perform land suitability analysis in 
order to determine which of the IV wetland areas are 
best suited for: (1) agricultural development or (2) pres-
ervation. The goal is to balance food security-economic 
development with environmental conservation. Since 
the need is to maximize crop yields sustainably with 
minimal ecological and environmental impacts for the 
IV wetland ecosystems, we need to take into consid-
eration climatic, soil, topographic, water, biophysical, 

250

Study areas
Wetland data points

5000

N

E

S

W 1000
km

Figure 9.6  Inland valley wetland study areas across West and Central Africa (WCA). Note: background image is GTOPO30 1 km DEM data. 
Red dots are study areas. Sand color shows ground data points. Photos on right show typical IV wetlands.
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Figure 9.8  (a) Delineated inland valley wetlands using SPOT HRV data based on semi-automated methods (see Section 9.6.3) described in this chapter. 
(Continued)
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Figure 9.7  Agroecological and soil zones of WCA. The datasets used in producing this map are shown in Table 9.3 and consist of International 
Institute of Tropical Agriculture’s (IITA) agroecological zones defined by the length of growing period (LGP), and FAO soils.
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health, and socioeconomic factors and potential soci-
etal benefits from the IV wetland ecosystem and use 
them in decision support systems. Stakeholders (e.g., 
Coalition for African Rice Development CARD/
Alliance for a Green Revolution in Africa [AGRA] net-
work, Consultative Group on International Agricultural 
Research [CGIAR] network, International Institute for 
Tropical Agriculture [IITA]) will be involved in assign-
ing weights to various spatial data layers used in the 
models of the DSS and hence will represent the collec-
tive knowledge of experts.

Third, provide access to data and products through 
USGS/NASA as well as stakeholder (e.g., CARD/

AGRA network, CGIAR Consortium of Spatial 
Information [CSI] network, IITA) through pub-
lic domain web/data portals. This will help stake-
holders to provide farmers and policy makers with 
sound science-based information that enables them 
to identify the best sites that could be developed to 
promote sustainable farming systems. The prod-
ucts will include (1) IV wetland maps, (2) wetland 
characteristics (e.g., phenology, land cover), (3) DSS, 
and (4) model outputs showing IV wetlands that are 
most suitable for (1) development as agricultural 
land and (2) conservation of biological diversity 
(outputs of goal 2).

Table 9.1  Wetland Delineation, Mapping, and Characterization Using Sensor Data Fusion

Sensor 
Spatial 

(Meters) 
Spectral 

(#) 
Radiometric 

(Bit) 
Band Range 

(μm) 
Band Widths 

(μm) 
Irradiance 

(W m−2 sr−1 μm−1) 
Data Points 

(# per Hectares) 
Frequency of Revisit (Days) 

Data Period 

A. Moderate resolution
1. MODIS terra/aqua 250, 500 2/7 12 0.62–0.67 0.05 1528.2 0.16, 0.04 8-day reflectance

0.84–0.876 0.036 974.3 0.16, 0.04 2000–present
0.459–0.479 0.02 2053 (wall to wall—Figure 9.1)
0.545–0.565 0.02 1719.8
1.23–1.25 0.02 447.4
1.63–1.65 0.02 227.4
2.11–2.16 0.05 86.7

B. High resolution on optical
2. Landsat-TM/ETM+ 30 7 8 0.45–0.52 0.07 1970 11.1 16

0.52–0.60 0.80 1843 GLS2005
0.63–0.69 0.60 1555 (wall to wall—Figure 9.1)
0.76–0.90 0.14 1047
1.55–1.74 0.19 227.1
10.4–12.5 2.10 0
2.08–2.35 0.25 80.53

C. Radar
3a. JERS/SAR 100, 500 L band 8 23.5 cm L band — 1, 0.04 Consolidated 1996

Two periods
and/or (Wall to wall—Figure 9.1)
3b. ALOS PALSAR 9–157 L band 8 23.5 cm 14–28 MHz — 123, 0.4 2006–present

For benchmark areas
(See Figure 9.2)

D. Very high resolution optical
4a. IKONOS 1–4 4 11 0.445–0.516 0.71 1930.9 10,000, 625 5

0.506–0.595 0.89 1854.8 For benchmark areas
0.632–0.698 0.66 1156.5 (See Figure 9.2)

and/or 0.757–0.853 0.96 1156.9
4b. QUICKBIRD 0.61–2.44 4 11 0.45–0.52 0.07 1381.79 14,872, 625 5

0.52–0.60 0.08 1924.59 For benchmark areas
0.63–0.69 0.06 1843.08 (See Figure 9.2)
0.76–0.89 0.13 1574.77

Characteristics of data to be used in the study are listed.
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Table 9.2  Satellite Sensor Data That Can Potentially Used in Wetland Studies

Sensor 
Spatial 

(Meters) 
Spectral 

(#) 
Radiometric 

(Bit) Band Range (μm) 
Band Widths 

(μm) 
Irradiance 

(W m−2  sr−1  μm−1) 
Data Points 

(# per Hectares) 
Frequency of 
Revisit (Days) 

A. Coarse resolution sensors
1. AVHRR 1000 4 11 0.58–0.68 0.10 1390 0.01 Daily

0.725–1.1 0.375 1410
3.55–3.93 0.38 1510
10.30–10.95 0.65 0
10.95–11.65 0.7 0

2. MODIS 250, 500, 
1000

36/7 12 0.62–0.67 0.05 1528.2 0.16, 0.04, 0.01 Daily
0.84–0.876 0.036 974.3 0.16, 0.04, 0.01
0.459–0.479 0.02 2053
0.545–0.565 0.02 1719.8
1.23–1.25 0.02 447.4
1.63–1.65 0.02 227.4
2.11–2.16 0.05 86.7

B. Multi spectral sensors
3. Landsat-1, 2, 3 MSS 56 × 79 4 6 0.5–0.6 0.1 1970 2.26 16

0.6–0.7 0.1 1843
0.7–0.8 0.1 1555
0.8–1.1 0.3 1047

4. Landsat-4, 5 TM 30 7 8 0.45–0.52 0.07 1970 11.1 16
0.52–0.60 0.80 1843
0.63–0.69 0.60 1555
0.76–0.90 0.14 1047
1.55–1.74 0.19 227.1
10.4–12.5 2.10 0
2.08–2.35 0.25 80.53

5. Landsat-7 ETM+ 30 8 8 0.45–0.52 0.65 1970 44.4, 11.1 16
0.52–0.60 0.80 1843
0.63–0.69 0.60 1555
0.50–0.75 0.150 1047
0.75–0.90 0.200 227.1
10.0–12.5 2.5 0
1.75–1.55 0.2 1368
0.52–0.90(p) 0.38 1352.71

5b. Landsat-8 30 11 8 0.433–0.453 0.02 1970 44.4, 11.1 16
0.45–0.515 0.065 1843
0.53–0.60 0.07 1555
0.63–0.68 0.05 1047
0.845–0.885 0.04 227.1
1.56–1.66 0.1 0
2.10–2.30 0.2 1368
0.50–0.68 0.18 1352.71
1.360–1.390 0.03 1368
10.6–11.2 0.6 1352.71
11.5–12.5 1.0 1368

6. ASTER 15, 30, 90 15 8 0.52–0.63 0.11 1846.9 44.4, 11.1, 1.23 16
0.63–0.69 0.06 1546.0

(Continued)
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Table 9.2 (Continued)  Satellite Sensor Data That Can Potentially Used in Wetland Studies

Sensor 
Spatial 

(Meters) 
Spectral 

(#) 
Radiometric 

(Bit) Band Range (μm) 
Band Widths 

(μm) 
Irradiance 

(W m−2  sr−1  μm−1) 
Data Points 

(# per Hectares) 
Frequency of 
Revisit (Days) 

0.76–0.86 0.1 1117.6
0.76–0.86 0.1 1117.6
1.60–1.70 0.1 232.5
2.145–2.185 0.04 80.32

2.185–2.225 0.04 74.96
2.235–2.285 0.05 69.20
2.295–2.365 0.07 59.82
2.360–2.430 0.07 57.32

12 8.125–8.475 0.35 0
8.475–8.825 0.35 0
8.925–9.275 0.35 0
10.25–10.95 0.7 0
10.95–11.65 0.7 0

7. ALI 30 10 12 0.048–0.69(p) 0.64 1747.8600
0.433–0.453 0.20 1849.5 11.1 16
0.450–0.515 0.65 1985.0714
0.425–0.605 0.80 1732.1765
0.633–0.690 0.57 1485.2308
0.775–0.805 0.30 1134.2857
0.845–0.890 0.45 948.36364
1.200–1.300 1.00 439.61905
1.550–1.750 2.00 223.39024
2.080–2.350 2.70 78.072727

8. SPOT-1 2.5–20 15 16 0.50–0.59 0.09 1858 1,600, 25 3–5
SPOT-2 0.61–0.68 0.07 1575
SPOT-3 0.79–0.89 0.1 1047
SPOT-4 1.5–1.75 0.25 234

0.51–0.73(p) 0.22 1773
9. IRS-1C 23.5 15 8 0.52–0.59 0.07 1851.1 18.1 16

0.62–0.68 0.06 1583.8
0.77–0.86 0.09 1102.5
1.55–1.70 0.15 240.4
0.5–0.75(p) 0.25 1627.1

10. IRS-1 23.5 15 8 0.52–0.59 0.07 1852.1 18.1 16
0.62–0.68 0.06 1577.38
0.77–0.86 0.09 1096.7
1.55–1.70 0.15 240.4
0.5–0.75(p) 0.25 1603.9

11. IRS-P6-AWiFS 56 4 10 0.52–0.59 0.07 1857.7 3.19 16
0.62–0.68 0.06 1556.4
0.77–0.86 0.09 1082.4
1.55–1.70 0.15 239.84

12. CBERS-2 20 m pan 11 0.51–0.73 0.22 1934.03 25, 25
CBERS-3B 20 m MS 0.45–0.52 0.07 1787.10
CBERS-3 5 m pan 0.52–0.59 0.07 1587.97 400, 25
CBERS-4 20 m MS 0.63–0.69 0.06 1069.21

0.77–0.89 0.12 1664.3
(Continued)
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Table 9.2 (Continued)  Satellite Sensor Data That Can Potentially Used in Wetland Studies

Sensor 
Spatial 

(Meters) 
Spectral 

(#) 
Radiometric 

(Bit) Band Range (μm) 
Band Widths 

(μm) 
Irradiance 

(W m−2  sr−1  μm−1) 
Data Points 

(# per Hectares) 
Frequency of 
Revisit (Days) 

C. Hyper-spectral sensor
1. Hyperion 30 196a 16 196 effective 

calibrated bands 
VNIR (band 
8–57) 427.55–
925.85 nm SWIR 
(band 79–224) 
932.72–
2395.53 nm

10 nm wide 
(approx.) 
for all 196 
bands

See data in Neckel 
and Labs (1984). 
Plot it and obtain 
values for Hyperion 
bands

11.1 16

D. Hyperspatial sensor
1. World view-2 0.46–

1.84
8 11 0.4–0.45 0.05 1758.2229 10,000, 625 3.7

0.45–0.51 0.06 1974.2416
0.51–0.58 0.07 1856.4104
0.585–0.625 0.035 1738.4791
0.63–0.69 0.06 1559.4555
0.705–0.745 0.04 1342.0695
0.770–0.895 0.125 1069.7302
0.860–0.900 0.0.4 861.2866

PAN 0.860–0.900 0.0.4 1580.814
2. IKONOS 1–4 4 11 0.445–0.516 0.71 1930.9 10,000, 625 5

0.506–0.595 0.89 1854.8
0.632–0.698 0.66 1156.5
0.757–0.853 0.96 1156.9

3. QUICKBIRD 0.61–
2.44

4 11 0.45–0.52 0.07 1381.79 14,872, 625 5
0.52–0.60 0.08 1924.59
0.63–0.69 0.06 1843.08
0.76–0.89 0.13 1574.77

4. RESOURSESAT 5.8 3 10 0.52–0.59 0.07 1853.6 33.64 24
0.62–0.68 0.06 1581.6
0.77–0.86 0.09 1114.3

5. RAPID EYE-A 6.5 5 12 0.44–0.51 0.07 1979.33 236.7 1–2
RAPID EYE-E 0.52–0.59 0.07 1752.33

0.63–0.68 0.05 1499.18
0.69–0.73 0.04 1343.67
0.77–0.89 0.12 1039.88

6. WORLDVIEW 0.55 1 11 0.45–0.51 0.06 1996.77 40,000 1.7–5.9
7. FORMOSAT-2 2–8 5 11 0.45–0.52 0.07 1974.93 2,500, 156.25 Daily

0.52–0.60 0.08 1743.12
0.63–0.69 0.06 1485.23
0.76–0.90 0.14 1041.28
0.45–0.90(p) 0.45 1450

8. KOMPSAT-2 1–4 5 10 0.5–0.9 0.4 1379.46 10,000, 625 3–28
0.45–0.52 0.07 1974.93
0.52–0.6 0.08 1743.12
0.63–0.59 0.04 1485.23
0.76–0.90 0.14 1041.28

Source:	 Adapted from Thenkabail, P., Lyon, G., Huete, A., Advances in hyperspectral remote sensing of vegetation and agricultural croplands. CRC Press/
Taylor & Francis Group, Boca Raton, FL,  2011.

a	Of the 242 bands, 196 are unique and calibrated. These are: (A) band 8 (427.55 nm) to band 57 (925.85 nm) that are acquired by visible and near-infrared 
(VNIR) sensor; and (B) band 79 (932.72 nm) to band 224 (2395.53 nm) that are acquired by short wave infrared (SWIR) sensor.

Note:	 First band is panchromatic, rest multi-spectral.
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9.1.1  Carbon Budget of Wetlands

Wetlands, globally, contain about 771 billion tons of carbon? 
(20% of all the carbon on earth) (Lal et al., 2002; Pelley, 2008; 
Tiner, 2009). This is about the same amount of carbon as is now 
in the atmosphere. However, they also release methane, a green-
house gas (Pelley, 2008) which is 22 times more potent than CO2, 
on a per-unit-mass basis, in absorbing long-wave radiation on 
a 100-year time horizon (Zhuang et  al., 2009). Nearly 60% of 
the planet’s wetlands have been destroyed in the past 100 years, 
mostly for agriculture.

In Africa, since most wetlands are still intact, there is 
immense pressure to develop them to ensure African food 
security. Indeed, many consider wetlands as the best hope for 
Africa’s green and blue revolution (WARDA, 2006) and a far 
better option for food security than the alternative of building 
large dams that will result in greater destruction of pristine rain-
forests (FAO, 2005). Given the discussions, WCA represents an 
unparalleled opportunity to guide agricultural expansion while 
being mindful of critical conservation goals and curtail the need 
for future remediation.

9.2  Definitions and Study Areas

9.2.1  Definition Used for Mapping Wetlands

Wetlands are (1) “Areas of marsh, fen, peatland or water, 
whether natural or artificial, permanent or temporary, with 
water that is static or flowing…” (RAMSAR, 2004), and (2) 
“…Seasonally or permanently waterlogged, including lakes, 
rivers, estuaries, and freshwater marshes; an area of low-
lying land submerged or inundated periodically…” (USGS). 
In this study, we will map wetlands including irrigated agri-
culture, fresh water bodies, salt pans, lagoons, mangroves, 
riparian vegetation, permanent marshes, water bodies with 
or without aquatic plants, and seasonal wetlands. However, 
we will clearly demarcate IV wetlands that occur overwhelm-
ingly on first- to fourth-order streams and roughly constitute 
about 80% of all wetlands in WCA (Andriesse et  al., 1994). 
Hydromorphism is considered as a permanent or temporary 
state of water saturation in the soil associated with conditions 
of reduction (Figure 9.3). This condition is created easily in 
the soil each time the water stagnates in it and is not renewed. 
This is, for instance, the case in clayey soils with a slow inter-
nal drainage (Aguilar et al., 2003).

9.3  �Remote Sensing Data for IV 
Wetland Characterization

The availability of multiple sensors at different resolution spa-
tially and temporally and access to the scientific community 
being very easy, it is now the scientists who are exploiting 
such data for multiple applications. The critical ecosystems 
services and agroeconomic services provided by the wetlands 
makes them more important and crucial for conservation 

and restoration. In this context, the identification and char-
acterization of IV wetlands becomes a priority to sustain 
food production to the growing population where cultivable 
land is becoming scarce and water use is competed by many 
sectors of the society. Thenkabail and Nolte (1995a,b, 1996) 
and Thenkabail et al. (2000b) have used different sensors and 
also new techniques to map and characterize IV ecosystems 
in West Africa. Gumma et al. (2009) have modeled different 
layers of information derived from satellite imagery to iden-
tify suitable areas for cultivation of rice in the IV wetlands of 
Ghana. The use of remotely sensed data for such ecosystems 
also depends on the bio-physical characteristics of the IV wet-
lands, like the extent of the ecosystem. Morphometric charac-
teristics of the river basin such as drainage network, drainage 
density, which in turn is dictated by the lithology and soils are 
also as important in the selection of remotely sensed imagery. 
Spatial resolution plays an important role in the IV wetland 
mapping, characterization, and modeling. The level of LULC 
classification that can be extracted is also dictated by the spa-
tial resolution of the sensor. Especially, spatial resolution of 
elevation in the form of a DEM will dictate the extraction 
of stream order in different-sized IV wetlands. Even though 
water absorption bands like MIR and FIR are also useful to 
map such wetlands, specific sensors (Rebelo et al., 2009) have 
been designed to detect wetland areas like the ASTER (VNIR, 
SWIR and TIR subsystems).

9.4  �Study Area and Ecoregional 
Approach

The 24 WCA nations are a perfect site for IV wetlands map-
ping and studied at nominal resolution of 30 m for the entire 
area (Figure 9.7, Table 9.3). The results are reported on an 
eco-regional basis across the WCA using the climate-length 
of growing period (LGP) method, FAO/UNESCO soils, and 
elevation (Figure 9.7). The 18 large ecoregions of 10 million 
ha or more (Figure 9.7) cover >90% of WCA’s geographic area 
and are identified and mapped based on the definitions pro-
vided in Section 9.2 and Figure 9.4. Then, IV wetlands are cat-
egorized and characterized using time-series MODIS Terra/
Aqua data (Figure 9.5), other temporal and spatial measures, 
including texture derivatives from very high resolution imag-
ery (e.g., IKONOS, Quickbird, GeoEye; available to us from 
USGS sources—see data plan), along with other environmen-
tal variables derived from topography, soils, and other exist-
ing datasets. Information on habitat mapping of the species 
of flora and fauna that are identified for conservation is also 
generated. Finally, spatial models are developed to determine 
IV wetlands most suited for cultivation and conservation. For 
example, IV wetlands that form an isolated patch may be best 
to preserve, especially if they are part of a wildlife migration 
corridor, whereas wetlands near a population center, close to 
transportation, and with less-developed overstory vegetation 
may be best to cultivate.
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9.5  Field Plot Data

We adopted multiple strategies to collect field plot data. 
First, we used a large and rich collection (1023 points) of field 
plot data on I) wetlands spread across WCA (see distribu-
tion and source of these points in Figure 9.6). For each point, 
we have data on (1) type of wetlands (e.g., hydromorphic, 
nonhydromorphic), (2) wetland order (e.g., first, second), 
(3) wetland bottom width, (4) land-use type (e.g., natural 
or cultivated), (5) moisture level, (6) land-cover percentages 
(e.g., trees, shrubs, grasses, water body, cultivated), and (7) 
digital photos. Second, through collaboration with CARD/
AGRA, CGIAR/CSI, and other African networks of national 
and international institutes that are actively involved in 
Africa’s wetland issues. These data will be collected during 
the year 1 project workshop in Africa (jointly hosted with 
CARD/AGRA, CGIAR/CSI). These data will include IV 
wetland point data as well as spatial data on socioeconom-
ics and numerous other datasets (e.g., Figure 9.6). Third, we 
will source data from our previous projects in West Africa 

(Gumma et al., 2009a; Fujii et al., 2010; Krishna et al., 2010). 
Fourth, very high resolution data (e.g., quickbird, IKONOS) 
are used as “groundtruth.”

9.6  �Methods of Rapid and Accurate 
IV Wetland Mapping of WCA

9.6.1  Existing Methods of Wetland Mapping

There are several studies that discuss methods of wetland map-
ping using remote sensing (Lyon and McCarthy, 1995; Lunetta 
and Balogh, 1999; Thenkabail et al., 2000a; Harvey and Hill, 
2001; Lyon, 2001; Ozesmi and Bauer, 2002; Hirano et al., 2003; 
May et  al., 2003; Töyrä and Pietroniro, 2005; Wagner et  al., 
2007; Wright and Gallant, 2007; Gumma et  al., 2009; Jones 
et al., 2009). High levels of accuracy in delineating and map-
ping wetlands are feasible when multidate, multisensor, very 
high spatial resolution imagery are used (e.g., Lan and Zhang, 
2006; Becker et al., 2007; Gilmore et al., 2008). Ramsey et al. 

Table 9.3  Parameters Describing the Level I Agroecological and Soil Zones

Level IAESZa 
Agroecological Zone According 

to IITA’s Definition 
LGPb 

(Days) 

Major FAO 
Soil

Groupingc 
Aread 

(Million ha) 

1 Northern Guinea savanna 151–180 Luvisols 25.2
2 Southern Guinea savanna 181–210 Luvisols 18.4
3 Southern Guinea savanna 181–210 Acrisols 12.4
4 Southern Guinea savanna 181–210 Ferralsols 11.9
5 Southern Guinea savanna 181–210 Lithosols 10.7
6 Derived savanna 211–270 Ferralsols 47.2
7 Derived savanna 211–270 Luvisols 24.9
8 Derived savanna 211–270 Nitosols 14.2
9 Derived savanna 211–270 Arenosols 14.0
10 Derived savanna 211–270 Acrisols 11.7
11 Derived savanna 211–270 Lithosols 10.8
12 Humid forest >270 Ferralsols 150.1
13 Humid forest >270 Nitosols 27.2
14 Humid forest >270 Gleysols 19.2
15 Humid forest >270 Arenosols 18.9
16 Humid forest >270 Acrisols 18.0
17 Midaltitudesavannae Ferralsols 45.4
18 Midaltitudesavannaf Nitosols 12.3

a	AESZ, level I agroecological and soil zones.
b 	LGP, length of growing period.
c	 Names refer to the soil classification scheme of FAO/UNESCO (1974).
d	The area figures are for West and Central Africa and were determined using the “AREA” proce-

dure of IDRISI (Eastman, 1992).
e	 Area distribution of LGP in AEZ 17 is: 151–180 days 11%, 181–210 days 9%, 211–270 days 59%, 

>270 days 21%.
f	 Area distribution of LGP in AEZ 18 is: 151–180 days 2%, 181–210 days 5%, 211–270 days 53%, 

>270 days 40%.

K22128_C009.indd   240 6/29/2015   12:33:11 PM



241Inland Valley Wetland Cultivation and Preservation

(1998) found an integrated ERS SAR-optical (TM and CIR) 
improved the accuracy of wetland classes by up to 20%. The 
SAR data are sensitive to soil moisture and are quite ideal 
for delineating lowlands (with high moisture) and uplands 
(with lower moisture) (Wagner et al., 2007). Recent research 
(Thenkabail and Nolte, 2000; Kulawardhana et  al., 2007; 
Islam et al., 2008; Jones et al., 2009) demonstrated the ability 
to attain high levels of accuracy in delineating and mapping 
wetlands using multiple data. These data include (Table 9.4) 
(1) Global Land Survey 2005 (GLS 2005) Landsat 30 m, (2) 
Japanese Earth Resources Satellite Synthetic Aperture Radar 
(JERS SAR) 100 m, (3) MODIS 250–500 m, (4) Space Shuttle 
Topographic Mission (SRTM) 90 m, and (5) secondary datas-
ets (e.g., soils).

9.6.2  �Automated Methods of Wetland 
Delineation and Mapping

Automated methods of wetland delineation involve (Table 9.2; 
Lan and Zhang, 2006; Islam et al., 2008; Jones et al., 2009): (1) 
algorithms to rapidly delineate wetland streams using SRTM 
DEM data, (2) thresholds of SRTM-derived slopes, (3) thresh-
olds of spectral indices and wavebands, and (4) automated clas-
sification techniques. First, wetlands are topographical lowlands 
and hence the DEM data offer a significant opportunity to delin-
eate lowlands from uplands. Automated methods involving the 
SRTM-derived wetland boundaries have four known limita-
tions (Islam et al., 2008): (1) generating non-existent or spurious 
wetlands, (2) providing nonsmooth alignment, (3) resulting in 

Table 9.4  Automated Methods to Separate Wetlands, including Inland Valley Wetlands, from Non-Wetlands

Index or Parameter Definition 
Range (−1.0 to 1.0 

Dimensionless or 0%–100%) 
Threshold Values That 

Best Delineated Wetlands 

a. Slope derived from SRTM DEM This is the percentage slope derived using spatial 
analyst tools available in ArcGIS

0 to 100 <0.5%

b. Normalized difference vegetation 
index (NDVI)

(Rouse et al., 1974)
NDVI =

+
ρ −ρ
ρ ρ

4 3

4 3

where ρ3 and ρ4 are the reflectance values derived 
from the bands 3 (red) and 4 (NIR) of Landsat 
ETM+ data respectively.

−1.0 to +1.0 −0.25 to 0.10

c. Tasseled-cap Wetness Index (TWI)
(Crist and Cicone, 1984)

TWI = ([B1] * 0.1509 + [B2] * 0.1973 + [B3] * 0.3279 
+ [B4] * 0.3406 + [B5] * −0.7112 + [B7] * −0.4572)

Where B1 to B7 are the DN values of the respective 
bands of Landsat ETM+ data. This index represents 
the overall degree of wetness over the area as 
reflected by the image data.

0 to 100 0 to 30

d. Normalized difference water index 
(NDWI)

(McFeeters, 1996)
NDWI =

+
ρ −ρ
ρ ρ

2 4

2 4

where, ρ2 and ρ4 are the reflectance values derived 
from the bands 2 (Green) and 4 (NIR) of Landsat 
ETM+ data respectively.

−1.0 to +1.0 −0.15 to 0

e. Mid-infrared ratio (MIR)
(Coppin and Bauer, 1994) MIR

Band

Band
=

4

5

where bands 4 and 5 are NIR and mid infrared bands 
of Landsat ETM+ data respectively.

0 to 4 >0.25

f. Ratio vegetation index (RVI)
(Tucker, 1979) RVI

Band

Band
=

4

3

where bands 4 and 3 are NIR and red bands of 
Landsat ETM+ data respectively

0 to 6 <0.6

g. Green ratio (GR) (Lo,  1986)
GR

Band

Band
=

4

2

where bands 4 and 2 are NIR and green bands of 
Landsat ETM+ data, respectively.

0 to 4 0.5 to 0.8

h. Ratio of indices (this study) RoI = B4/B7 * B4/B3 * B4/B2 0–240 12.5–20
i. Reflectance of SWIR 1 band 

(this study)
Band 5
where band 5 is the shortwave infrared band 1 of 

Landsat ETM + data.

0 to 47 <1
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spatial dislocation of streams, and (4) absence of stream width. 
Second, the SRTM DEM data are used to derive local slope maps 
in degrees using the slope function of ArcInfo Workstation GIS. 
A threshold (Table 9.2) of degree slope provides areas of wet-
lands or low lying areas and nonwetlands. Third, the wetlands in 
the images can be highlighted by enhancing images (Lyon and 
McCarthy, 1995; Lunetta and Balogh, 1999). The thresholds of 
indices and wavebands will automatically delineate wetlands 
from nonwetlands (Kulawardhana et  al., 2007; Schowengerdt, 
2007). Numerous researchers have also attempted wetland sepa-
ration through automated classification techniques on various 
remotely sensed data (Jensen et al., 1995; Fuller et al., 2006; Lan 
and Zhang, 2006) without first identifying and separating wet-
land areas from other land units based on their location in the 
toposequence. However, as Ozesmi and Bauer (2002) point out, 
this leads to difficulties of wetland categorization because  of 
spectral confusion (Lan and Zhang, 2006). This is because 
the automated classification techniques are applied on entire 
image areas that include wetlands and other land units that often 
have significantly similar spectral properties. Classification 
accuracies improve when multitemporal data are used along with 
ancillary data such as soils and topography (Ozesmi and Bauer, 
2002) in GIS modeling framework (Sader et al., 1995; Lyon, 2001; 
Fuller et al., 2006). Automated methods are rapid, but needs to 
be supplemented by semiautomated methods to increase accura-
cies and decrease errors of omissions and commissions.

9.6.3  �SemiAutomated Methods of IV 
Wetland Delineation and Mapping

The semi-automated methods: (1) check any omissions or com-
missions of IV wetlands derived using automated methods, 
and (2) apply appropriate corrections to improve the mapping 
accuracies. The semi-automated methods involve (Thenkabail 
et  al., 2000a): (1) image enhancement techniques involving 
ratio indices and applying simple thresholds were investigated 
for delineating wetlands automatically (Table 9.4; Lyon and 
McCarthy, 1995; Thenkabail and Nolte, 2000; Kulawardhana 
et al., 2007); (2) enhanced displays in red, green, blue (RGB) 
false color composites (FCCs) in different combinations of the 
ETM+ bands were also able to highlight wetland boundaries. 
The RGB FCCs that best highlight wetlands from other areas 
(Thenkabail et al., 2000a) were (a) ETM + 4/ETM + 7, ETM + 4/
ETM + 3, ETM + 4/ETM + 2; (b) ETM + 4, ETM + 3, ETM + 5; 
(c) ETM + 7, ETM + 4, ETM + 2; and (d) ETM + 3, ETM + 2, 
ETM + 1; and (3) once the images are enhanced (Section 3.2.1) 
and displayed (Section 3.2.2), they are subjected to object-
oriented image analysis using eCognition software and delin-
eate wetlands and nonwetlands (Bock et  al., 2005) and then 
compare the results with the IV wetland maps derived using 
automated methods. Studies (Kulawardhana et al., 2007; Islam 
et al., 2008) have established that accuracies between 88% and 

97% are attainable using ETM+ and SRTM data and the auto-
mated and semiautomated methods.

9.7  �Characterization and 
Classification of IV Wetlands

The IV wetland areas are highlighted using various types of 
remote sensing and ancillary data (e.g., Figure 9.5). Any of the 
images with 30 m spatial resolution or better (see Tables 9.1 and 
9.2) can be used to delineate, characterize, and map IV wetlands 
based on methods and approaches described in Section 9.3 and 
its subsection (Table 9.4).

9.7.1  �Case Studies of a Location in 
Côte d’Voire and Entire Ghana

The IV wetland maps using SPOT HRV 20 m resolution 
image illustrated in Figure 9.8a for a location in Gagnoa, Côte 
d’Voire (see Figure 9.7 for the location), for the entire coun-
try of Ghana (Figure 9.9a) using Landsat ETM+ 30 m data in 
Figure 9.9b, and for a selected area within Ghana showing 
comparison between ETM+ derived versus IKONOS-derived 
IV wetlands (Figure 9.9c) are derived using the different 
methodologies explained in this chapter. These wetlands 
are then classified using optimized layered classification for 
monitoring wetland vegetation dynamics (Lan and Zhang, 
2006; Wright and Gallant, 2007) using standard classifica-
tion scheme such as the USGS Anderson (Table 9.5). The 
land-use categories derived from the imagery in this study 
are uplands, valley fringes, valley bottoms, and others. An 
equivalent level 1 class of the USGS classification systems is 
also compared. Since the classification systems used in this 
study is within the IVs and focused on agriculture as of the 
USGS system at different levels, it appropriately matches with 
the present study. It can also be seen that the toposequence 
followed in the classification system clearly shows the type of 
land-use/land-cover in the IVs. If we compare the class “sig-
nificant farmland” in the uplands, it is agricultural land in 
the USGS system, in the valley fringes it is either agricultural 
land or range land due to the slope condition. Similarly in the 
valley bottoms, they are classified as wetlands in the USGS 
system, which can be potential rice cropland. A comparison 
to a standard classification system always helps in relating the 
different systems at different levels but also connects across 
scales. A glance at the statistics (Table 9.6) reveals the distri-
bution of LULC in the study area. Even though the uplands 
occupy around 40% of the total area, the valley fringes and 
valley bottoms total to 58%, which can be potential rice crop-
lands. The resulting outcome is shown for the Gagnoa, Côte 
d’Voire study area, in Figure 9.8b (with legend in Figure 9.8b 
and class bispectral plots in Figure 9.8c). Figure 9.10 shows 
the approach of using the tassel cap bispectral plots of the 
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Colors indicate
characteristically
similar inland valley
wetlands in
biophysical terms.
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Figure 9.9  (a) Map of the Ghana. Inland valley (IV) wetlands were mapped for the entire country using Landsat ETM+ images. The Mankran 
and Kwaha study areas, greater details of IV wetlands, were studied using Qucikbird imagery. (b) Inland valley wetlands were delineated using 
Landsat ETM+ imagery based on semiautomated methods described in this chapter. Results showed that 11.4% (2,714,946 ha) of the total geo-
graphic area (23,853,300 ha) of Ghana was IV wetlands. Only 5% (130,000 ha) of IV wetlands is currently cultivated.� (Continued)
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land-use classes to define and separate various distinct 
classes. Table 9.7 provides the percentage land-cover types in 
each of the 16 land-use classes.

Other classifications, not presented here, can include rule-
based wetland mapping using fused MODIS, Landsat, sec-
ondary data like GDEM (e.g., Figure 9.5), and wetland change 
probability mapping (Nielsen et al., 2008; Wdowinski et al., 
2008). Incorporating geostatistical evaluation of fine-scale 
spatial structure (e.g., Wallace and Marsh, 2005) will stratify 
wetlands based on overall canopy characteristics. Clustering 
algorithms, such as canonical correlation, will be used to 
group the wetlands into similar types based on various suites 
of environmental variables and their derivatives. The goal 
is to quantify various characteristics of the wetlands so that 
they can be compared for suitability given a set of criteria. For 
example, if two wetlands differ in total canopy cover but are 
otherwise similar, it may be preferable to develop the wetland 
with less canopy since the cost for clearing the land would be 
lower. It is also to be noted that even though the canopy cover 

decides the type of action taken on it, the amount biological 
diversity in that wetland needs to be considered before any 
action is taken.

9.8  �Spatial Data-Weights-Models for 
Identifying Areas for Agriculture 
versus Conservation

The goal of the spatial modeling (e.g., Figure 9.10a through c) 
is to pin-point IV wetland areas most suited for (1) cultivation 
and (2) conservation using spatial data layers (Figure 9.10a) 
and their relative weights (Table 9.8). For example, as a result 
of our extensive knowledge of the wetlands of WCA (see Fujii 
et al., 2010), a total of 29 biophysical, technical, socioeconomic, 
and eco-environmental factors (e.g., Table 9.8, Figure 9.10b) are 
considered important. In this project, weights will be assigned 
to these spatial data layers (e.g., Table 9.8) using expert knowl-
edge solicited from stakeholder networks (e.g., CARD/AGRA, 

IKONOS data—displayed  as FCC of bands 432
image acquisition dates: February 13, 2000, January 16, 2003,

 ese
are all 1
to 4th

order
streams

Area 1aArea 1a

Detailed study area

(225 km2)

Landsat ETM + 30 m IKONOS 4 m

Landsat ETM+ data displayed as FCC
of bands 432

image acquisition date: March 20, 2002

(c)

Figure 9.9 (Continued)  (c) Inland valley wetlands mapped for the Mankran, Kumasi, Ghana study area (225 km2). The left image is derived 
from Landsat ETM+ 30 m and the right image using IKONOS 4 m. Total area of IV wetlands was determined as 27.72% using Landsat ETM+ 
and 28.50% using IKONOS.
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CGIAR CSI, IITA).The socioeconomic factors will include 
accessibility of settlements, road networks, markets, land 
tenure, labor force, credit systems, extension systems, social 
customs, gender, rice policy tariff, rice policy subsidy, and 
farmer’s incentives. The models used algebra (e.g., coded in 
ERDAS modeler; Figure 9.10b) to arrive at the outputs that 
determined their suitability for cultivation and/or conserva-
tion. Two sets of data and four scenarios were considered to 
arrive at suitable areas in the IV wetlands. A 10 variable data-
set where equal weights were assigned to the layers and vary-
ing weights for classes within the layers, varying weights for 
layers and varying weights for classes within layers produced 
2 outputs, showing relatively lower area under “suitable” 
class. A nine-variable dataset with similar scenarios produced 
higher area under “suitable” class (Figure 9.10c). For example, 
if two wetlands differ only in their closeness to transporta-
tion and markets, it might be preferable to develop the wetland 

nearest to the markets. As another example, if two wetlands 
are similar, but one forms an isolated patch of habitat impor-
tant for migratory wildlife, that wetland may be prioritized for 
conservation.

9.9  Accuracies, Errors, and Uncertainties

Thematic accuracy of the wetland maps is assessed through 
an error matrix analysis and a regression analysis. A num-
ber of statistical considerations including appropriate sam-
pling scheme, sample size, and sample unit are considered 
(Congalton and Green, 2008). Error matrix including over-
all, producers,’ and users’ accuracies (Congalton, 2009) are 
reported. The study used 1023 wetland data points already 
available with us (e.g., Figure  9.7), as well as data sourced 
through our African network partners during the project 
(Figure 9.10c).

Table 9.5  Comparison of the Land-Use/Land-Cover Classification System Used in This 
Study with the USGS Classification System

Classification System Used 
in This Study  

This Classification of USGS 

Level I Level II 

Upland
1 Significant farmlands 2 Agricultural land 21 Cropland and pasture
2 Scattered farmlands 2 Agricultural land, or

3 Rangeland
3 Insignificant farmlands 3 Rangeland 32 Herbaceous rangeland

33 Mixed rangeland
4 Wetland/marshland 6 Wetland
5 Dense forest 4 Forest land 43 Mixed forest land
6 Very dense forest 4 Forest land 42 Evergreen forest land
Valley fringe
7 Significant farmlands 2 Agricultural land, or

3 Rangeland, or 33 Mixed range land
4 Forest land 43 Mixed forest land

8 Scattered farmlands 3 Rangeland, or 33 Mixed rangeland
2 Agricultural land, or
4 Forest land 43 Mixed forest land

9 Insignificant farmlands 4 Forest land, or 43 Mixed forest land
2 Agricultural land, or
3 Rangeland 33 Mixed rangeland

Valley bottom
10 Significant farmlands 6 Wetland
11 Scattered farmlands 6 Wetland
12 Insignificant farmlands 6 Wetland 61 Forested land
Others
13 Water 5 Water
14 Built-up area/settlements 1 Urban or built-up land
15 Roads 1 Urban or built-up land 14 Transportation

Communication and utilities
16 Barren land or desert land 7 Barren land

Source:	 Anderson, J.R., A land use and land cover classification system for use with remote sensor data 
(US Government Printing Office), 1976.
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Table 9.6  Land-Use Distribution in the Study Areaa,b

No. Land-Use Category Color 

Full Study Area 

Area (ha) Study Area (Percent of Total)   Mean NDVI 

Uplands 157,601 40.1
1 Significant farmlands Gray 22,589 5.8 0.29
2 Scattered farmlands Seafoam 31,992 8.1 0.34
3 Savanna vegetationc Violet 0 0 —
4 Wetlands/marshland Mocha 7,024 1.8 0.25
5 Dense vegetation Rose 54,619 13.9 0.34
6 Very dense vegetation Red-orange 41,377 10.5 0.39

Valley fringes 158,606 40.3
7 Significant farmlands White 26,299 6.7 0.31
8 Scattered farmlands Pine-green 39,376 10.0 0.32
9 Insignificant farmlandsd Red 92,931 23.6 0.38

Valley bottom 70,638 18.0
10 Significant farmlands Cyan 11,490 2.9 0.29
11 Scattered farmlands Yellow 19,058 4.9 0.33
12 Insignificant farmlandse Magenta 40,090 10.2 0.35

Others 6,268 1.6
13 Water Blue 358 0.1 −0.07
14 Built-up area/settlements Tan 2,703 0.7 0.11
15 Roads Navy 2,194 0.5 0.09
16 Barren land or desert lands Sand 1,013 0.3 0.13

a	The study area falls entirely into agroecological zone 16 of the level I map (Figure 9.1 and Table 9.1).
b	For the composition of land-cover types and their distribution in each land-use class see Tables 9.2 and 9.3.
c	 Class 3 occurs only in Guinea savanna zones.
d	Spectral characteristic of vegetation in class 9 is similar to that of classes 5, 6, and 12; the difference is mainly 

in the toposequence position.
e	 Mainly riparian vegetation; spectral characteristics of vegetation similar to classes 5, 6, and 9; the difference is 

mainly in the topo sequence position.

Table 9.7  Percentage Distribution of Land-Cover Types in the 16 Land-Use Classes 
for SPOT HRV K:44, J:338 Covering the Region of Gagnoa, Côte d’Ivoire (See the Area 
in Figure 9.8)

Code of Land-Use Classesa Code of Land-Cover Types 

1 2 3 4 5 6 7 8 9 10 

1 4 14 12 58 12 0 0
2 20 30 25 10 15 0 0
3b

4 21 31 27 4 7 1 9
5 48 25 0 0 0 0 27
6 83 17 0 0 0 0 0
7 10 19 4 57 6 3 1
8 19 39 6 13 6 2 15
9 30 55 5 2 1 1 6
10 7 6 6 60 21 0 0
11 17 6 5 17 0 0 0
12 32 52 11 5 0 0 0
13 100
14 100
15 100
16 100

a	See land-use class names in Table 9.5.
b	Class 3 (savanna vegetation) does not exist in this study area.
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Figure 9.10  (a) Spatial model steps involved in selecting the most suitable areas for rice cultivation in IV wetlands.� (Continued)
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(b)

Figure 9.10 (Continued)  (b) Illustration of a typical spatial model built in ERDAS.
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Figure 9.10 (Continued)  (c) Most suitable sites for IVs rice cultivation in (A) Kumasi (left) and (B) Tamale (right). For each location, the results 
and statistics are provided considering 16 variables and 2 approaches: (1) equal weight for layer, variable weight for classes within the layer; and (2) 
variable weight for layer, variable weight for classes within layer.
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Table 9.8  Process of Assigning Weightage to Spatial Data Layers and Classes within Each Spatial Data Layer 
Based on Expert Opinion from Stakeholders

Weight Scores 

A. Biophysical variables
1 Rainfall 1

<700 1
700–1,000 2
1,000–1,300 3
1,300–1,600 4

>1,600 5
2 ET 1

<700 1
700–1,000 2
1,000–1,300 3
1,300–1,600 4

>1,600 5
3 LGP 1

90–120 1
120–150 1
150–180 2
180–210 3
210–240 4
240–270 5

>270 5
4 Water resources: surface water unit discharge 2

Very high 5
High 4
Moderate 3
Low 2
Very low 1

5 Water resources: stream order 5
1 1
2 2
3 3
4 4
5 5

6 Slope 1
<0.5 5

0.5–1 5
1–1.5 4
1.5–2 3
2.0–3.0 2
3.0–5 1

>5 1
7 Vegetation 4

Dense forest natural vegetation 1
Fragmented natural vegetation 2
Moderate natural vegetation 3
Sparse natural vegetation 4
Fallow lands and farmlands 5

8 Soil type 3
(Continued)
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Table 9.8 (Continued)  Process of Assigning Weightage to Spatial Data Layers and Classes within Each Spatial 
Data Layer Based on Expert Opinion from Stakeholders

Weight Scores 

Type 1 5
Type 2 4
Type 3 3
Type 4 2
Type 5 1

9 Soil depth 4
<10 1

10–20 2
20–30 3
30–40 4

>40 5
10 Soil fertility 3

Type 1 5
Type 2 4
Type 3 3
Type 4 2
Type 5 1

B. Technical factors Water quality
11 Agronomic experience in rice cultivation 2

<2 years experience 1
2–5 years experience 2
5–10 years experience 3
10–15 years experience 4

>15 years experience 5
12 Agronomic technology (fertilizer, chemicals, machinery) 3

Very high tech 5
High tech 4
Moderate 3
Low tech 2
Very low tech 1

13 Water management technology and facility 3
Major irrigation canal systems 5
Minor canal systems 4
Pump and lift irrigation 3
Dug well and manual 2
Rainfed 1

C. Socio-economic factors Postharvest
14a Accessibility settlements: major (>500 people) 5

<500 m 5
500 m–1,000 m 4
1,000–2,000 3
2,000–4,000 2

>4,000 1
14b Accessibility settlements: minor (<500 people) 3

<500 m 3
500–1,000 m 2
1,000–2,000 1
2,000–4,000 1

>4,000 1
(Continued)
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Table 9.8 (Continued)  Process of Assigning Weightage to Spatial Data Layers and Classes within Each Spatial 
Data Layer Based on Expert Opinion from Stakeholders

Weight Scores 

15a Accessibility roads: major 3
<500 m 5

500–1,000 m 4
1,000–2,000 3
2,000–4,000 2

>4,000 1
15b Accessibility roads: minor 1

<500 m 3
500–1,000 m 2
1,000–2,000 1
2,000–4,000 1

>4,000 1
16a Market: major (>50,000 people): define by size of settlement 3

<500 m 5
500–1,000 m 4
1,000–2,000 3
2,000–4,000 2

>4,000 1
16b Market: moderate (10,000–50,000 people) define by size of settlement 2

<500 m 4
500–1,000 m 3
1,000–2,000 2
2,000–4,000 1

>4,000 1
16c Market: minor (2,000–10,000 people) define by size of settlement 1

<500 m 3
500–1,000 m 2
1,000–2,000 1
2,000–4,000 1

>4,000 1
17 Land tenure 3

Ownership individual 5
Ownership community/family 4
Lease < 80 GHC per ha 3
Lease 80–100 2
Lease > 100 1

18 Labor force 3
Labor force enough 5
Labor force OK 3
Labor force shortage 2
Labor force extremely short 1

19 Credit systems 3
Credit fully available 5
Credit available 4
Credit difficult 3
Credit very difficult 2
Credit not available 1

(Continued)
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Table 9.8 (Continued)  Process of Assigning Weightage to Spatial Data Layers and Classes within Each Spatial 
Data Layer Based on Expert Opinion from Stakeholders

Weight Scores 

20 Extension system 1
Available 5
Inadequate 3
Not available 1

21 Social customs 1
22 Gender 3

Female gender obstacle 1
Female gender not obstacle 3
Male gender obstacle 1
Male gender not obstacle 3

23 Rice policy tariff 3
No tariff 1
Tariff 10% 2
Tariff 10%–20% 3
Tariff 21%–30% 4
Tariff > 30% 5

24 Rice policy subsidy 4
No subsidy 1
Low subsidy 2
Moderate subsidy 3
High subsidy 5

25 Farmers’ incentive
D. Ecoenvironmental factors
26 Malaria 2

Very high incidence 1
High incidence 2
Moderate incidence 3
Low incidence 4
Negligible incidence 5

27 Bilhazias 1
Very high incidence 1
High incidence 2
Moderate incidence 3
Low incidence 4
Negligible incidence 5

28 Onchocercasis 3
Very high incidence 1
High incidence 2
Moderate incidence 3
Low incidence 4
Negligible incidence 5

29 Species of conservation significance flora and fauna
Critically endangered 1
Endangered species 2
Vulnerable 3
Not endangered 5

Illustrated for IV wetlands of Ghana.
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9.10  Conclusions

The chapter provides a comprehensive overview of mapping 
inland valley (IV) wetlands of Africa using remote sensing and 
GIS. Wetlands are in cusp of development versus preservation 
debate in Africa. Africa’s food security, especially given that 
its population is projected to be four times (reaching about 
four billion) by the year 2100 relative to its present population 
of little over one billion, calls for urgent need to utilize inland 
valley wetlands for agriculture. At the same time, preserving 
the unique flora and fauna and the carbon sequestered in the 
wetlands is of utmost importance.

First, the chapter provides a roadmap for consistent IV wet-
land characterization and mapping at various spatial resolu-
tions using a multitude of remote sensing data. For this, the 
chapter uses West and Central African (WCA) nations as case 
studies. Second, the chapter demonstrates wetland land-use/
land-cover classification and study of their time-series pheno-
logical characteristics (Gumma et al., 2011a, 2014). Third, the 
remote sensing-derived products along with secondary data 
(e.g., length of growing period, soils, slope, elevation, tempera-
ture, agroecological zones), as well as a number of other data 
such as the biophysical data, socioeconomic data were assigned 
weights by experts for their importance and then harmonized, 
standardized, and built into a decision support spatial model 
that pin-pointed IV wetland areas that are (1) best suited for 
cultivation and (2) prioritized for conservation.

The chapter shows approaches and methods of utilizing EO 
for the purposes of (1) understanding inland valley wetlands 
as land units for Africa’s green and blue revolution, and (2) 
balancing inevitable developmental activities with environ-
mental/ecological solutions that inform which areas to pre-
serve and which areas to develop. The outputs and outcomes 
of such a study is expected to benefit: (1) farmers to make deci-
sions on where to focus their IV wetland agriculture based on 
pin-pointed areas most suitable for cultivation; (2) national 
governments to make decisions on promoting IV wetland 
cultivation and conservation; (3) financial institutions (e.g., 
African Development Bank) to make educated decisions on 
where to invest to fast forward Africa’s green and blue revolu-
tion; and (4) researchers and NGOs working in Africa.
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