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CHAPTER 1 



1. INTRODUCTION 

Pearl millet [Pennisetum glaucum (L.) R. Br.], a monocot species belonging to the 

Poaceae family, is a staple food grain crop for about 90 million people living in the semi- 

arid tropical regions of Africa and the Indian sub-continent. Grain yields are generally 

low (around 500-600 kgha). It is better adapted than other cereals to marginal lands of 

low fertility and low rainfall that receive application of little or no inputs. It is a multi- 

purpose cereal grown for grain, stover and green fodder on more than 26 million hectares, 

primarily in arid and semi-arid regions of India and Africa (FAO, 2000). Pearl millet 

ranks sixth among cereals in terms of global area. In India, it ranks fourth among cereals, 

both in area under cultivation (9.55 m ha) and production (8.36 m tones) and sixth in 

productivity (8.8 qha). In Haryana, pearl millet occupies fifth, fourth and sixth positions 

for area, production and productivity, respectively (Statistical Abstract, India, 2002). 

Pearl millet is an excellent forage and, and because of its low hydrocyanic acid 

content, is the best annual grazing crop for the southern USA (Burton, 1995) and an 

important summer forage crop in Australia and South America as well (Hanna, 1996). 

The energy density of pearl millet grain is relatively high, arising from its higher oil 

content relative to maize, wheat or sorghum (Hill and Hanna, 1990). Pearl millet grain 

contains 27 to 32% more protein, higher concentrations of essential amino acids, twice 

the extract, and higher gross energy than maize (Ejeta et a[.,  1987). 

It is a good experimental plant for genetical studies because of its low diploid 

chromosome number (2n=14) with a moderately high DNA content of IC = 2.36 pg 

(Martel er al., 1997), its short duration (60-90 days), and its protogynous flowering that 

facilitates control of pollination. It has also been recognized as well suited for molecular 

studies. 

Downy mildew, also known as green ear disease, is one of the most widely spread 

and destructive diseases of pearl millet, potentially resulting in devastating yield losses in 

India and western Africa. It is caused by systemic infection by the obligate biotrophic 

pseudo-fungus Sclerospora graminicola (Sacc.) J .  Schroet., first reported on pearl millet 

in India by Butler (1907). The pearl millet downy mildew pathogen reproduces asexually 



by means of sporangia that germinate to release motile zoospores and sexually to produce 

soil-borne oospores. Downy mildew disease of pearl millet develops after colonization by 

the pathogen of undifferentiated host tissue, which results in symptoms resembling those 

of a systemic virus disease, with growth disturbance and chlorosis. Pearl millet plants 

infected at an early growth stage will produce no grain at all, instead transfemng in to 

leafy structures (green ear) in panicle. Later infection can severely affect basal and nodal 

tillers, although the main shoot may have escaped disease. Pearl millet originated in West 

Africa (Purseglove, 1976) and the pearl millet downy mildew pathogen, which is highly 

host specific, is likely to have co-evolved with pearl millet in that region (Rachie and 

Majumdar, 1980). Following the release and widespread adoption of genetically uniform 

pearl millet single-cross hybrid in India in the late 1960s (Dave, 1987), downy mildew 

became an economically important disease and the first major epiphytotic occurred in the 

early 1970s (Singh and Govind Singh, 1987; Hash, 1997). Since then, downy mildew has 

been a major production constraint and a major focus of pearl millet improvement 

research both by ICRISAT and the Indian National Program (Rai and Singh, 1987; 

Shetty, 1987; Singh et nl., 1987; Singh et al., 1993a; Singh, 1995; Hash et al., 1997, 

1999). As the host is a crop of poor and marginal areas, the use of resistant cultivars is the 

most appropriate control method for pearl millet downy mildew. Breeding for resistance 

to diseases of current and potential economic importance contributes to increase 

productivity and stability of pearl millet grain, stover and forage yields. Disease 

resistance is a major concern in pearl millet improvement programs, and has been the 

subject of several reviews (Louvel, 1982; Williams and Andrews, 1983; Williams, 1983, 

1984; Andrews et ul., 1985; Rai and Anand Kumar, 1994; Talukdar er al., 1994; Hash et 

a[., 1997; Hash et al., 1999). In breeding improved pearl millet cultivars, it is necessary to 

maintain moderate levels of resistance to many potential pathogens currently of minor 

importance in the breeder's target environments (Mohan et al., 1978; Singh et al., 1993b). 

This helps ensure that these potential constraints do not become actual problems later on. 

For any resistance-breeding program, knowledge of the inheritance of host plant 

resistance against available pathogen populations is a prerequisite for an effective 

resistance-based disease management strategy. Previous studies have reported that downy 

mildew resistance in the host plant shows continuous variation (Safeeulla, 1976; 

Basavaraju el al., 1981b; Shinde er al., 1984), or in some cases can be rather simply 

inherited (Singh and Talukdar, 1998). Resistance is generally dominant and variation in 



segregating populations is typically continuous (Singh et al., 1980). Non-additive gene 

action is responsible for much of the heritable variability (Deswal and Govilla, 1994) with 

complementary epistasis (Joshi and Ugale, 2002). The allogamous and highly variable 

nature of both the host and the pathogen (Thakur et al,, 1992) is a hindrance to breeding 

for host plant resistance to this disease. Because of the complexity of this host-pathogen 

system, the mechanisms and inheritance of host plant resistance to pearl millet downy 

mildew continue to he poorly understood. 

ICRISAT has developed highly effective field (Williams et al., 1981) and green 

house (Singh and Gopinath, 1985; Singh et al., 1993a; Weltzien and King, 1995) 

screening techniques that can easily differentiate between resistant and susceptible 

progenies. 

Genotypes by environment (G x E) interactions are almost unanimously 

considered to be among the major factors limiting response to selection and, in general, 

the efficiency of plant breeding programs. G x E interactions become important when the 

rank of breeding lines changes to a large extent in different environments. This change in 

rank has been defined as crossover G x E interaction (Baker, 1988). G x E interactions 

are reported to be statistically significant (but not always important) for most agronomic 

characters in pearl millet (Ali er al., 2001). For example, QTL x environment interactions 

for downy mildew were significant at each QTL due to difference in the magnitude rather 

than direction, of the QTL effects (Jones er al., 2002). 

A very good understanding of, and ability to manipulate, oligogenic and 

quantitative traits is offered to plant breeders by recent advances in genetic marker 

technology (Young, 1999). A major advantage of using molecular markers for the 

introgression of resistance genes into cultivars is a gain in time (Tanksley et al., 1989; 

Melchinger, 1990) by guiding and expediting conventional plant breeding program by 

reducing number of breeding cycles. The second major advantage is that it facilitates 

effective selection even when phenotypic selection is likely to be ineffective (e.g. for 

drought tolerance during rainy season or for resistance in absence of a target pest or 

pathogen). DNA sequence that match specific chromosomal loci can be used to detect 

restriction hgment  length polymorphisms (RFLP), random amplified polymorphic DNA 

(RAPD), microsatellite polymorphisms (SSRs and others), amplified fragment length 

polymorphisms (AFLP) or other molecular genetic marker loci (Jones et al., 1997; Mohan 



et al., 1997; Prioul et al., 1997, Qi et a(., 2001 and Allouis et al., 2001). The development 

and availability of abundant, naturally occurring, molecular genetic markers (RFLP, 

RAPD, SSRs, isozyrnes, etc.) during the last two decades has generated renewed interest 

in counting, locating and measuring the effects of genes (polygenes or QTLs) controlling 

quantitative traits. When there is a marker map and a segregating population for a 

character of interest, it is often possible to obtain information about the number, effects 

and positions of the QTLs affecting the trait (Paterson et al., 1988). Microsatellites 

remain the markers of choice for practical breeding applications with several advantages 

over RFLP, RAPD and AFLP markers. In addition, microsatellites exhibit co-dominant 

inheritance and their detection is readily automated (Hernandez et al., 2002). Marker- 

assisted selection could be more efficient than purely phenotypic selection in quite large 

populations and for traits showing relatively low heritabilities (Hospital et al., 1997; 

Moreau et al., 1998). Molecular marker technologies can be effectively used to pyramid 

several resistance genes into a single host genotype, using marker-assisted selection- 

based backcrossing. The product of such marker-assisted backcrossing can be used in 

more effective resistance gene deployment strategies (Witcombe and Hash, 2000; Hash 

and Witcombe, 2002). Pyramiding of the resistance genes in a breeding program could be 

very well possible using molecular-marker-based genotyping, even when the phenotypes 

result from epistatic interaction of alleles at two or more loci. 

The building up of a saturated molecular map using molecular markers like 

restriction fragment length polymorphisms (RFLPs) and microsatellites (SSR) makes it 

possible to dissect Mendelian factors underlying a complex trait such as disease 

resistance, and consequently enhance the effectiveness and accelerate the rate of breeding 

programs to improve pure line varieties of self-pollinated crops and hybrid parental lines 

of cross-pollinated crops. Linkage drag and confounding effects of environmental 

variation associated with conventional breeding can also be reduced. With QTL mapping, 

the role of specific resistance loci can be described, race-specificity of partial resistance 

genes can be assessed, and interactions between resistance genes, plant development, and 

environment can be analyzed. As the molecular-marker-based genetic linkage map for 

pearl millet has been constructed (Liu et a/.,  1994) and extended (Devos et al., 2000; Qi 

et al., 2004), QTL analysis is now possible even for this relatively little-studied crop. An 

added advantage of mapping resistance genes using these molecular markers is that 

homogeneous lines of the pathogen need not be isolated, because resistance QTLs 



effective against all individual pathogenic components that may exist within the pathogen 

population can be detected through inoculation with a representative sample of the whole 

pathogen population. Keeping in view the aspects mentioned above, the present study was 

carried out with the following objectives: 

1. To construct a skeleton linkage map for a pearl millet mapping population 

based on cross ICMB 891 1 1 x ICMP 423. 

2. To study the inheritance of downy mildew resistance based on screening of the 

segregating mapping population against diverse Indian and African isolates of 

Sclerospora grarninicola. 

3. To identify and map QTLs controlling downy mildew resistance effective 

against diverse pathogen populations of Indian and African origin. 

4. Multilocational assessment of the agronomic performance and downy mildew 

reaction of versions of hybrid HHB 94 based on sub-selections of ICMB 891 11 

differing in their downy mildew incidence reactions. 





2. REVIEW OF LITERATURE 

2.1. PEARL MILLET AND ITS IMPORTANCE 

Pearl millet [Pennisetum glaucum (L.) R. Br.] is grown principally for grain in the hot 

arid and semi-arid areas of Africa and the Indian subcontinent. It is sown on 

approximately 14 million ha in Africa and 9 million ha in India, annually producing 10.5 

and 6.5 million tons of grain, respectively. In terms of global production, pearl millet is 

the sixth most important cereal crop after wheat, rice, maize, barley, and sorghum (FA0 

and ICRISAT, 1996). Increasing the productivity of pearl millet to keep pace with the 

growing food demand of human and feed demand of livestock populations in the semi- 

arid tropics is a gigantic task requiring concerted efforts from national and international 

research and development organizations including both public-sector and private-sector 

agencies (Rai and Anand Kumar, 1994). More than 70 single-cross F, pearl millet hybrids 

released so far, occupy more than 60 percent of the major pearl millet areas of Gujarat, 

Maharashtra. Haryana, Uttar Pradesh, Rajasthan and Tamil Nadu, and have significantly 

contributed towards enhanced productivity (875 kglha) and production (8035 million 

tones) despite a gradual decline in total cultivated area in India (Bhatnagar, 2003). 

2.1.1. As a nutritive food grain 

Pearl millet grain has a high nutritional value and typically has higher protein content 

than maize or sorghum (Maiti and Bidinger, 1981). The amino acid profile of pearl millet 

grain is better than that of normal sorghum or normal maize and is comparable to those of 

the small grains wheat, barley and rice (Ejeta et al., 1987) with a less disparate 

leucineiisoleucine ratio (Hoseney et al., 1987; Rooney and McDonough, 1987). The 

content of lysine in protein reported in pearl millet grain ranges from 1.9 to 3.9 g per 100 

g protein (Ejeta et al., 1987). Pearl millet grain appears to be generally free of any major 

anti-nutritional factors, such as the condensed tannins in sorghum grain having a 

pigmented testa, which reduces protein availability. As with others cereals, phytic and 

nicotinic acid contained in pearl millet grain are mainly found in the germ (Simwemba et 

al., 1984; McDonough, 1986). 



In some parts of Africa there is a strong positive correlation between goiter 

incidence and per capita pearl millet production (Klopfenstein er al., 1983b). 

Epidemiological studies have suggested that pearl millet might be at least partially 

responsible for the high goiter incidence in the Durfur area of Sudan (Klopfenstein et al., 

1983a). Rats fed a pearl millet diet tend to develop symptoms similar to those of colloid 

goiter in humans. Thyroid colloid follicles were some what enlarged, but serum thyroid 

hormone concentration was normal in rats that were fed with pearl millet weaning food 

(Klopfenstein et al., 1985). Autoclaving the grain appears to alleviate the symptoms. 

2.1.2. As a feed grain and fodder crop 

Hanna et al. (1991) suggested that pearl millet grain has a good potential to be used as a 

high quality feed grain like corn and sorghum in rations of chickens, beef cattle and 

swine. The energy density of pearl millet grain is relatively high, arising from its higher 

oil content relative to maize, wheat or sorghum (Hill and Hanna, 1990). It contains 27 to 

32% more protein than maize, higher concentration of essential amino acids, twice the 

extract (fat) and higher gross energy than maize (Ejeta et al., 1987). 

Studies conducted by several workers (French, 1948; Singh and Barsaul, 1976; 

Sharma et al., 1979; Stringhini and Franca, 1999) show that pearl millet grain compares 

favorably with maize in poultry diets. Lloyd (1964) observed that broilers fed on pearl 

millet rations were heavier and had better-fed conversion than those fed on maize rations. 

Fancher et 01. (1987) reported that the metabolizable energy (MA,) content of ground 

pearl millet grain varied from 2.9 to 3.2 kcal g" dry matter. Sullivan et al. (1990) 

observed that pearl millet in comparison with sorghum and maize offers an excellent 

alternative as feed grain for cattle and broilers, having higher feed conversion rates. 

Costa (1992) and Gates et 01. (1999) reported that pearl millet has demonstrated 

great potential as a forage crop, where it can be used as pasture or to make silage and hay 

that is free of prussic acid glycosides. Pearl millet produces high yields of good quality 

forage when properly managed. Earliness is a major advantage of pearl millet when 

harvested for forage. However, its high quality is also important with dry matter crude 

protein levels reaching 18-20% between the boot leaf and the milky grain growth (Tabosa 

et al., 1999). 



Collins et al. (1997) noted commercial layers given feed containing pearl millet 

grain presented lower ratios between the omega-6 and omega-3 fatty acids, endowing the 

eggs with a fatty acid profile more favorable to human health. Gelaye et al. (1997) found 

that pearl millet grain increased the neutral detergent fiber content in the rations, with 

increases of lignin and cellulose concentrations in the diets, but the levels of calcium, 

phosphorus and crude protein were also higher than those of maize. 

Pearl millet pasture grazed rotationally by dairy cows provides total digestible 

nutrients (TDN) in the range of 1400-2300 kg ha", a quantity generally superior to that of 

Sudan grass and sorghum (Faires er a l ,  1941; Roark et al., 1952; Marshall et a[., 1953). 

Miles et a/. (1956) have shown that Tift Sudan consistently produces more dly matter, 

milk and TDN than pearl millet but that pearl millet consistently provides higher quality 

pasture than permanent pastures. Pearl millet is an excellent forage and is the best annual 

grazing crop in southern USA (Burton, 1995) and an important summer forage crop in 

Australia and South America as well (Hanna, 1996). 

2.1.3. As a crop for harsh production environments 

Pearl millet is a hot climate plant that is xerophilous and has efficient drought escape and 

tolerance mechanisms. Pearl millet growing covers 26 million hectares in sub-Saharan 

Africa and South Asia. Low input farming is the main activity for the approximately 400 

million people living in these regions. It is also grown on millions of hectares as a forage 

and mulch component minimum tillage soybean production systems in USA and Brazil, 

respectively. It is almost the only cereal crop that can be grown in parts of tropical and 

subtropical Asia and Africa with annual rainfall under 400 mm @arts of countries such as 

India, Pakistan, Yemen, Mauritania, Mali, Burkina Faso, Senegal, Chad, Niger, Nigeria, 

Sudan and others) (Scalea, 1999). Because of its sharp crop life cycle, rapid grain filling, 

and exceptional ability to tolerate drought, pearl millet extends warm rainy season food 

grain production into regions too arid for sorghum and maize (Burton, 1983). It tolerates 

drought, low soil fertility, and low soil pH, while responding well to water and good 

management (Anand Kumar, 1989). 

Pearl millet performs better than any other cereal in sandy soils and under poor 

fertility conditions and has the greatest drought tolerance (Maciel and Tabosa, 1982). Its 

better adaptation to low-fertility soils is based on its superior ability to extract nutrients 



due to a deep fibrous root system that ultimately endows it with superior shoot matter 

production resulting in green matter yields of 20-70 tons ha" (Scalea, 1999). 

2.1.4. As a component of sustainable agriculture on more intensively cultivated lands 

Satumino and Landers (1997) advocated zero-tillage seeding of pearl millet following the 

soybean crop, and stressed that compared with conventional tillage this technology 

provides greater soil protection, results in more intensive land use, ensures better weed 

control, and better supports crop-livestock production systems. 

The recent rapid expansion of pearl millet in Brazil (Bonamigo, 1999) is based on 

increased adoption of minimum-tillage planting systems. The main uses of pearl millet in 

Brazil are as a mulch component of minimum-tillage technology, grain production for 

monogastric livestock feed, biomass production for hay or direct grazing, and crop 

rotation following soybeans (Val, 1994). No-till millet is a widely adopted alternative due 

to a series of crop characteristics, particularly its ample output of biomass with high CM 

ratio and good drought tolerance (Spehar, 1999). Pearl millet was adopted by the farmers 

attracted by the advantages of more efficient sowing and lower production costs through 

no-till planting (Spehar and Landers, 1997). Low desiccation costs due to greater 

glyphosate availability greatly facilitated pearl millet management in this system. 

2.1.5. As a model crop for genetic studies 

Pearl millet is potentially an ideal species for genetic studies (Jauhar and Hanna, 1998). It 

has a small diploid genome with a haploid DNA content of 2.36 to 2.50 pg (Bennett, 

1976; Martel er al., 1997), with a small number (seven) of large chromosome pairs with 

two distinctive nuclear organizers. Its germplasm (both landrace and elite) possesses 

abundant phenotypic variation (Brunken, 1977). It has a number of wild relatives with 

haploid chromosome complements (n) of 5, 8 and 9 in addition to a large group with n=7 

with which it can be intercrossed (Jauhar, 1981). Pearl millet is also of interest as a 

biological model of studying domestication and croplwild complex evolution (Poncet el 

al., 1998, 2000, 2002). 



2.2. PEARL MILLET DOWNY MILDEW AND ITS IMPORTANCE 

2.2.1. Pearl millet downy mildew history 

Pearl millet downy mildew is caused by S. graminicola, a member of the class 

Oomycetes, order Peronosporales, and family Peronosporaceae. The first report of downy 

mildew infecting a millet was made by Saccardo (1876). He designated the species as 

Protomyces graminicola based solely on oospore characteristics. Schrtiter (1 879) 

discovered the imperfect state of the fungus and designated the pathogen as Peronospora 

graminicola (Sacc.) Schroet. He was the first authority to consider a subcategory of 

Sclerospora within the genus Peronospora in which to classify the downy mildew fungus 

infecting pearl millet. Sclerospora was subsequently elevated to the status of genus by de 

Bary (1881), thereby changing the specific name of pearl millet downy mildew to 

Sclerospora graminicola (Sacc.) Schroet. Downy mildew was first reported in India on 

pearl millet by Butler (1907) and other hosts by Bhat (1973). This disease is of great 

economic importance in India but also causes pearl millet yield losses in many countries 

in Africa, including Burkina Faso, Chad, Eritrea, Ghana, Mali, Mozambique, Niger, 

Nigeria, Senegal, Sudan, Togo, Tanzania, and Zambia. This pathogen has been reported 

in more than 20 countries around the world (Singh et al., 1993a). 

Pearl millet downy mildew (caused by the oomycetic pseudo-fungus, Sclerospora 

graminicola (Sacc.) J .  Schrot.) is a highly destructive and widespread crop disease in 

Africa and Asia. Over the past 25 years, pearl millet production area in India has come 

down for many reasons. One of the major causes of this reduction in pearl millet 

production area in India had been downy mildew. Downy mildew is the most devastating 

disease of pearl millet in India and a major epidemic occurred there in the early 1970s, 

with resurgences in subsequent years closely following the release and widespread 

adoption of several closely related, genetically uniform pearl millet single-cross hybrids 

(Dave, 1987; Singh et al., 1987; Hash, 1997). 

2.2.2. Pearl millet downy mildew resistance inheritance studies 

Since very shortly after the onset of the hybrid era for pearl millet in India, downy 

mildew resistance has been a major research focus by scientists of both ICRISAT and the 

Indian national program involved in improvement of this crop (Singh et al., 1993a; Hash, 

1997; Hash et al., 1997, 1999; Hash and Witcombe, 2002). 



Early reports from Appadurai e! al. (1975) indicated that a single gene for downy 

mildew rbsistance was apparently dominant over that for susceptibility, which was 

supported by a non-significant 2 goodness of fit test of F2 segregation data to a 3: 1 ratio. 

Gill et al. (1978) reported two dominant duplicate factors conferring resistance to 

downy mildew and proposed the gene symbols DMlDM2, DMldmz, and dmlDM2 for 

resistant and dmldrnl for susceptible genotypes. Dass e! al. (1984), Thakw et 01. (1992), 

and Singh (1995) reported resistance to be dominant over susceptibility and probably 

controlled by one or a few genes. Except in one case where resistance was reported to be 

recessive (Singh e! al., 1978) resistance is generally observed to be dominant and 

variation in segregating populations is continuous (Singh et al., 1993a). 

Quantitative inheritance of resistance to downy mildew was reported by Singh et 

al. (1978), who observed significant additive and non-additive genetic variance. 

Basavaraju (1978) and Basavaraju et al. (1980) concluded that resistance to downy 

mildew is not simply inherited, but is due to a series of non-allelic interactions. Singh er 

01. (1980) and Dass et al. (1984) have observed continuous variation for segregation in 

pearl millet downy mildew disease resistance studies. Many authors (e.g., Tyagi and Iqbal 

Singh, 1989; Deswal and Govila, 1994; Kataria et ul., 1994) have concluded that non- 

additive gene action is responsible for much of the heritable variability for host plant 

reaction of downy mildew, agreeing with simpler studies that show resistance to be 

dominant or partially dominant. 

Deswal and Govila (1994) reported inheritance of pearl millet downy mildew 

resistance as digenic based on generation mean analysis of crosses involving resistant and 

susceptible parents. The inheritance of resistance was complementary at Delhi (9:7) and 

duplicate at Villupuram, Tamil Nadu (15:l). In few cases where clear Mendelian 

segregation have been observed, Hash et al. (2003) also reported one, two or even thee  

dominant genes governing the resistance to downy mildew in pearl millet The results 

from Kataria e! al. (1994) supported a more complex pattern of inheritance of resistance 

to downy mildew and indicated simple selection would not be effective for incorporation 

of resistance to downy mildew disease. 

Weltzien and King (1995) subjected one population of pearl millet highly 

susceptible to downy mildew to two cycles of recurrent selection for downy mildew 



resistance and demonstrated that even in a susceptible population, recurrent selection 

effectively increased the level of resistance to this disease. However, progress in the 

second cycle of selection was much less than that in the first suggesting fixation had 

occurred after the first selection cycle at the loci contributing most to disease reaction in 

this population. 

Gill et al. (1975) studied the reaction of some FI hybrids of crosses involving 

resistant and susceptible parents as well as some crosses in the reverse directions. The FI 

data indicated that the inheritance pattern of resistance was rather complex and could 

involve genic interactions. 

Singh et al. (1978), using a sick plot screening protocol, observed resistant and 

susceptible reactions in the FI and F2 generations of crosses between resistant and 

susceptible pearl millet inbreds. In the F2 generations the frequency of resistant plants was 

higher in R x R crosses than in R x S and S x S crosses, suggesting polygenic inheritance. 

The inheritance of resistance to downy mildew in pearl millet was studied by 

Besavaraju et al. (1981a) using 16 parental lines and their FI, Fz, BCI and BC2 progenies 

under artificial epiphytotic conditions. The 2 values for different ratios and heterogeneity 

components showed that resistance to downy mildew in pearl millet was not simple but 

exhibited quantitative inheritance. 

A study by Shinde et al. (1984) revealed the contribution of both additive and 

non-additive gene effects in the inheritance of pearl millet host-plant resistance to downy 

mildew. Duplicate effects were observed in most of crosses studied. Singh and Talukdar 

(1998) studied F1, F2 and BC progenies of the cross IP 18292 x Tift 23DB for inheritance 

of downy mildew resistance. A single dominant gene from IP 18292 controlled resistance 

and they suggested simple and straightfonvard selection techniques to transfer this to 

economically important backgrounds. 

Although in the above studies pearl millet downy mildew resistance was generally 

found to be dominant over susceptibility and controlled by one or more dominant genes 

with some modifiers, a complete picture of its inheritance is not yet available. The use of 

regional variability present in pathogen populations of S. graminicola and difficulties in 

maintaining high and uniform disease pressure in downy mildew disease screening 

studies have led to the conflicting conclusions from earlier studies (Jones et al., 1995). 



However, with the availability of more precise inoculation techniques (Singh and 

Gopinath, 1985; Jones et al., 2001) highly homozygous resistant and susceptible parental 

lines, and effective molecular mapping procedure, more precise information on the 

genetics of resistance will soon become available (Singh, 1995; Hash et al., 1997, 1999; 

Hash and Witcombe 2002). 

Limited information on downy mildew resistance QTLs detected using molecular 

marker techniques has been published (Jones el al., 1995; Hash et al., 1995; Hash and 

Bramel-Cox, 2000; Breese et a!., 2002; Jones et al,, 2002). However, it is clear that this 

technique facilitates manipulation, including pyramiding, of resistance genes in genetic 

backgrounds of elite inbred hybrid parental lines (Hash et al., 1997; Witcombe and Hash, 

2000; Sharma, 2001; Hash and Witcombe, 2002). The literature on inheritance of downy 

mildew resistance has been adequately discussed in several fairly recent reviews (Koduru 

and Krishna Rao, 1983; Hash et al., 1997, 1999). Maiti and Singh (2004) also reviewed 

all biotic factors, especially downy mildew disease, affecting pearl millet growth and 

productivity. 

Significant variability in downy mildew incidence due to genetic differences 

among A-lines, due to pathotypes, and due to line x pathotype interactions were observed 

by Thakur et al. (2001). They further reported that among the sources of variation, the 

largest proportion of variability for downy mildew incidence was accounted for by lines, 

followed by line x pathotypes interaction and pathotypes, both in field and green house 

tests. 

Joshi and Ugale (2002) reported digenic Mendelian ratios of 15:l in cross 1 at 

environment 1 and 13:3 at environment 2 and hence concluded that the nature of 

inheritance of downy mildew for this cross was digenic. Further, in cross 11, they reported 

tetragenic ratios (229:27) and in cross 111, trigenic ratios (55:9) and suggested that 

resistance is not simply inherited but controlled by several loci. They also reported 

preponderance of duplicate dominant and non-allellic interactions, especially 

complementary epistasis. 

2.2.3. Pearl millet downy mildew - screening 

The life cycle of Sclerospora graminicola (Sacc.) J. Schrat. is comprised of both sexual 

and asexual phases. The sexual stage produces oospores, which are soil or seed borne, 



provide the primary source of inoculum each season (Shetty, 1987). The asexual 

sporangia are produced at night under conditions of moderate temperatures and high 

relative humidity. Maximum sporangia production occurs at 20°C. No spomlation is 

recorded at relative humidity levels below 70%. Sporangia germinate to produce motile 

zoospores (which identify the causal organisms of pearl millet downy as a member of the 

Protistae, and not of the Fungi) and generally do not remain viable for very long after 

daybreak. Sexual oospores are thick-walled, spherical, brownish yellow, and 22 to 35 pm 

in diameter. Oospores form following sexual recombination in colonized tissue and can 

survive from 8 months to 13 years under laboratory conditions (Wilson, 1999). Early 

attempts to screen for sources of resistance to pearl millet downy mildew depended on 

"sick plots" i .e. ,  plots into which infected, oospores-bearing pearl millet plants had been 

ploughed for several years (Nene and Singh, 1976). The test materials were sown in these 

plots and infection was initiated by the oospores in the soil. Large-scale field screening 

techniques have now been developed based on pre-sown infector rows that provide 

sporangial inoculum (Williams er al., 1981). This technique involves the sowing of 

infector rows (every fifth or ninth row) with a mixture of susceptible genotypes three 

weeks before sowing the test materials. 

Singh and Gopinath (1985) described a laboratory downy mildew screening 

technique using a micro-syringe that is more effective than field screening in producing 

downy mildew infection in susceptible genotypes. The procedure resembles natural 

infection but provides greater inoculum uniformity and does not affect normal host 

activity. A modified greenhouse method for assessing resistance to downy mildew 

described by Weltzien and King (1995) is more rapid and is suitable for use throughout 

the year, independent of season. In this method, instead of inoculating plants individually, 

seedlings at the coleoptile to one-leaf stage were spray-inoculated with an aqueous 

suspension of freshly prepared sporangia (about 10' sporangia m ~ . ' ) .  

Singh et al. (1997) explained all screening techniques available for this disease 

including dip inoculation, spray inoculation, drop inoculation, injection inoculation, 

setting tower inoculation and field screening infector-row techniques. Jones et al. (2001) 

discussed effective ways to maintain infection potential of inoculum by spraying a chilled 

suspension of sporangia. Spraying seedlings with a suspension of sporangia that had been 

chilled before zoospore release gave uniform and adequately high disease pressure over 



many hours. Thus there has been tremendous improvement over the past 30 years in the 

screening methods available to detect the genetic differences in host plant resistance to 

pearl millet downy mildew (Singh et al., 1997; Hash, 1997; Hash er al., 1997, 1999; Hash 

and Witcombe, 2002). 

2.2.4. Pearl millet downy mildew - pathogen variability 

There is a clear evidence for the existence of physiological specialization within S. 

graminicola (ICRISAT, 1989; Thakur and Rao, 1997). Ahmad et al. (1978) and Shetty et 

al. (1980) reported existence of pathogenic races within S. graminicola on the basis of 

differences in size of the asexual structures, number of nuclei, seed-borne nature and 

soluble proteins in the pathogen. Shetty and Ahmad (1981) reported two races from 

Gulberga and Mysore (in the Indian state of Karnataka) based on the differences in size 

and shape of sporangiophores, sporangia, and zoospores and the number of nuclei in 

sporangia. Pearl millet downy mildew pathogen variability was discussed by Ball (1983), 

who reported that the host and pathogen genotypes determine observed variation. West 

African isolates of S. graminicola were generally more pathogenic than Indian isolates. 

Thakur et a[ .  (1992) reported both the pathogen and host are allogamous and 

highly variable, and the resulting heterogeneity has consequently hampered most studies 

on the inheritance of resistance to pearl millet downy mildew. 

Ball and Pike (1983) showed that host cultivars responded differentially to 

different sources of inoculum. Ball and Pike (1984) discussed intercontinental variation of 

S. graminicola. The West African hosts were potentially more susceptible to Indian than 

to West African pathogen isolates; conversely some Indian hosts were more vulnerable to 

West African than to Indian isolates (Ball et al., 1986). They further reported that isolates 

from Africa and India vary in pathogenicity and have been shown to be sexually 

compatible. 

Large variation in pathogenicity has also been reported among isolates of 

Scelrospora graminicola by Thakur et al. (1998; 1999; 2002) and by Sivaramaktishnan et 

al. (2003). Sastry et al. (1995) reported the use of DNA fingerprinting with simple 

sequence repeats (SSRs) to detect genetic diversity among pathotypes of S. graminicola. 

They also reported that (GATA)4 identified most of the polymorphism among the host 

pathotype-specific isolates of downy mildew disease in pearl millet. In a study of host- 



pathogen specificity, SasW et al. (2001) demonstrated a change in virulence of a S. 

graminicola pathotype on a pearl millet line 700651 with a corresponding change in 

virulence in RAPD and DNA finger printing profiles in two extreme asexual generations 

of the pathotype. 

A number of downy mildew resistant pearl millet inbred lines have been 

developed by pedigree and backcrossing programs, but the effectiveness of resistance in 

these has intended to be short lived because of the high level of genetic variability in the 

pathogen populations (Thakur el al., 1997). At least six distinct pathogen populations 

have now been identified in India. Isolates of these six distinct pathogen populations are 

being maintained at ICRISAT- Patancheru (Thakur and Rao, 1993). Assessing regional 

variability between populations of the pearl millet downy mildew pathogen initially 

required expensive, time consuming, multilocational trials to study the patterns of 

differential effectiveness of host-plant resistance (Jones et al., 1995). However, 

greenhouse screening at a single location against differential lines selected on the bases of 

their response to asexually-maintained pathogen populations known to differ in virulence 

can now reduce the time required for such studies as well as improve upon the heritability 

of data obtained. 

Singru et al. (2003) detected genomic variation among 19 fungal isolates from 

different cultivars of pearl millet grown in various regions of India using fourteen AFLP 

primer combinations, which produced 184 polymorphic bands. An unweighted pair-group 

method of averages cluster analysis represented by dendrogram and principal coordinate 

analysis separated the mildew collections into four distinct groups. Isolates having 

characteristic opposite mating abilities, geographic relatedness, virulence, common host 

cultivars, and changes through asexual generations reflected heterogeneity of the 

pathogen. 

Based on recent virulence analysis of 15 S. graminicola isolates from various 

parts of India, inoculated on putative host differentials, Sivaramakrishnan er al. (2003) 

classified them in to major five pathotypes groups distributed in hybrid-intensive states of 

Rajasthan, Maharashtra, Gujarat, Madhya Pradesh, Kamataka, and Andhra Pradesh. 



2.3. AGRONOMIC PERFORMANCE IN MULTILOCATIONAL TRJAL 

2.3.1. Genotype x Environment interactions 

Genotype by environment (G x E) interactions is almost unanimously considered to be 

among the major factors limiting response to selection and, in general, the efficiency of 

breeding programs. G x E interactions become important when the rank of breeding lines 

changes in different environments. This change in rank has been defined as crossover G x 

E interaction (Baker, 1988). 

Yadav et al. (2003) studied the genetic architecture of grain yield and its 

component traits among a set of testcross hybrids produced on male-sterile line 843A 

using as pollinators F3-self-bulk progenies derived from individual RFLP-skeleton 

mapping F2 individuals from the cross H 771833-2 x PRLT 2/89-33 in wide range of 

different terminal drought stress and fully-irrigated control environments. They reported 

significant genotype x moisture regime (G x E) interactions for grain yield and its various 

component traits, indicating that the testcrosses did react differently to stress even where 

their mean yields across a particular stress treatment did not differ. Some of QTLs for 

drought tolerance of grain yield that mapped on linkage group 2 were common across the 

stress environments, where as others were specific to only particular stress environments. 

Jones et al. (2002) screened seedlings of F2 -derived F4 self bulks from the cross 

7042(S) x P7-3 under field as well as more controlled greenhouse downy mildew 

screening conditions in India against Indian pathogen isolates and in greenhouse 

conditions in the UK against African pathogen isolates. They consistently observed pair- 

wise marker interactions as dominant x additive and dominant x dominant between M298 

on LG3 and M390 on LGS in each screen and across-screen predicted means and 

detected two additional QTLs across screens by examining pair-wise marker interactions. 

But in IndiaField-1, an additional significant interaction of smaller effect as additive x 

additive was also obsewed between same markers. They further found significant QTL x 

screening environment interactions at each QTL due to differences in the magnitude 

(rather than direction) of the QTL effects. The differences in magnitude appeared to be 

consequences of the degree or normality of the disease incidence distribution in the 

screens being compared, rather than any differences between screening methods. 



Ali et al. (2001) have reported the significance of G x E interactions for five 

agronomic characters in a population diallel of pearl millet (all observed characters except 

productive tillers, biomass and growth index), indicating that relative performance of 

genotypes differed with the test environment. Although statistically significant for five 

characters, these G x E interactions were large enough to be of practical importance in 

case of grain yield and plant height. Coefficients of variation (CV) were 4 3 %  for 

individual environments for most characters studied, except for productive tillers and 

panicle length, for which the CV was >18%. 

Chikurte et al. (2003) tested seventeen genotypes of pearl millet under four 

environments for twelve characters and indicated that mean differences due to genotypes 

were statistically significant when tested against G x E interactions (GEI) and pooled 

deviation. Environmental variances were significant for all characters suggesting the 

presence of variation among genotypes due environments. They M h e r  partitioned GEI 

into linear and non-linear effects and reported the major portion of the GEI as linear in 

nature for all characters except time to 50% flowering, plant height, and number of total 

and effective tillers, indicating the possibility of prediction over environments for eight of 

the twelve observed characters. Significance of pooled deviations suggested the 

importance of the non-linear components in all characters; therefore both linear and non- 

linear components of GEI appear to be important in pearl millet in India (Tyagi et al., 

1979; Dass et al. 1985; Dahiya et al., 1987; Bhaviskar, 1990; and Anarase et al., 2000). 

Using simple analysis of variance, Gupta et al. (1975) have observed occurrence 

of environmental (seasonal) and genotypic x environmental interactions in pearl millet for 

fodder yield and its component traits. The presence of significant G x E interactions has 

been further reported by Mangat (1992) and Wilson e l  a[. (1993). However, such studies 

simply give preliminary information about the phenotypic stability of genotypes. 

Khainval and Singh (1999) have suggested that such types of multi- 

locationiphenotypic studies help the breeders in two ways: (1) to identify genotypes that 

perform better over a range of environments, and those that perform best under specific 

environmental conditions, and (2) to minimize the bias caused by genotype x 

environmental interactions in the estimates of different components of genetic variation. 

They further reported the use of regression procedures in most of pearl millet population 



studies, which allow partitioning of G x E interactions into linear (predictable) and non- 

linear (unpredictable) components. 

Bramel-Cox (1996) and Evan (1993) emphasized the need to balance high yield 

potential, wide adaptability with reliable performance in specific conditions in breeding 

programs. For this breeding programs need to better characterize the target region, 

develop better strategy to allocate resources to the test environments, develop the optimal 

population type to buffer against diverse environment constraints, define the optimal 

selection criteria to enhance mean performance and reduce environmental sensitivity, 

improve trait identification for selection and increase the use of genetic diversity within a 

crop species for specific adaptation to various stresses. 

2.3.2. Mean performance of yield and its component traits 

Whilst studying yield and its component in pearl millet in Botswana by Karikari and 

Mosekiemang (2002) reported that as the population increased, the development of tillers 

terminated earlier in growth of the plant resulting in a reduced tiller survival rate therefore 

reduced productive tillers per plant. Consequently, grain yield per plant declined owing to 

head number and also to lower seed numbers per head. Kassarn (1976) reported that 

tillers contributed about 25% of the total grain yield. Carbeny et al. (1985) and Crawfurd 

and Bidinger (1989) reported that primary yield component of millet affected by 

population was tiller numbers per plant. Karikari and Ngwako (1999) have advocated 

maintaining three tillers to have grain yield advantages. 

Rai et al. (2000) reported that grain yield of all nine FI seed parents averaged over 

11 environments, was significantly greater than the respective higher yielding (i.e. better) 

inbred seed parent. The average heterosis of the FI seed hybrid parents over the better 

inbred parental line (i.e. better parent heterosis) varied from 27% for FlSP2 to 107 % for 

FISP8. They further revealed highly significant differences among genotypes as well as 

highly G x E interaction @< 0.001). These two sources and error terms accounted for 43, 

17 and 11% of the total variability, respectively. In previous studies in sorghum, the 

comparison of Fl's and A-line has shown that high yielding A-line do not necessarily 

produce high yielding FI (Hookstra and Ross, 1982; Gorz et al., 1984). 



2.3.3. Effect of cytoplasm on grain yield 

Genetic diversification of hybrid seed parental lines in pearl millet is now achieved by 

using more than one CMS system and several nuclear genotype combinations within each 

system. Several CMS systems other than A! are currently available in pearl millet and a 

few of them are being used in pearl millet in CMS line development (K N Rai, 2004, pers. 

comm.). 

In a study on cytoplasmic male sterile and male fertile lines for agronomic and 

morphological characters of sorghum, Lenz and Atkins (1981) reported higher grain 

yield, seed per head, head per plant, leaf area and leaves per plant in normal cytoplasmic 

male fertile plants compared to different male sterility inducing cytoplasms while 100 

seed weight and flowering days were higher in male sterility inducing cytoplasms. But 

none of the male sterility inducing cytoplasm (possessed by the line KS 34 through KS 

39) differed from Milo sterility inducing cytoplasm for their effects on grain yield and its 

primary components. Further more, Ross and Kofoid (1979) reported that neither of the 

cytoplasm nor the nuclear factors of the Kansas lines (KS 34 to KS 39) differed 

significantly from those of CK (Combine Kafir 60) for agronomic performance like-days 

to flowering, plant height, grain yield, panicles per plant, seed weight and numbers of 

seed per panicle. 

The nuclear line in isonuclear different cytoplasmic lines [(Triticum timopheevii 

(AIR) and T. aestivum (BIR) cytoplasm] showed detrimental effect on the grain weight in 

hybrids (Zhonggi and Youchun, 1994). The seed set on most of A-lines was shriveled but 

on F, hybrids it was not shriveled. Seed setting in wheat sterile line have been reported to 

be 30% lower than that of fertile lines and average grain yield of the hybrids was similar 

and 17 % higher than that of better parent in normal and sterile cytoplasm, respectively 

(Goral and Spiss, 1997). 

Sushi1 Kumar et a!. (1996) evaluated various lines in pearl millet, having different 

sources of cytoplasm which showed substantial differences for one or more of the 

characters, namely length of the sheath, length of leaf blade, leaf breadth, height at 

maturity, days to 50% flowering, days to maturity, peduncles length, ear girth, ear length, 

ear weight, tillers per plant and grain per plant. In general the A, cytoplasm source was 



the best combiner for earliness and ear weight, the violaceum source was for ear length, 

AS source for ear girth and the A2 source for tiller number and grain yield. 

2.4. MOLECULAR MARKERS AND THEIR IMPORTANCE 

There is such an enormous amount of diversity in the DNA of higher plants that no two 

organisms are likely to be identical in their DNA sequences. Variations have been 

detected in restricted (i.e., enzymaticly digested) genomic DNA of plants and these 

restriction fragment length polymorphisms (RFLPs) have paved way for the development 

of molecular markers (Winter and Kahl, 1995). Genetic engineering and biotechnology 

hold great potential for application in plant breeding as they promise to reduce the time 

taken to produce crop varieties with desirable characters. With the use of molecular 

techniques, it would now be possible to hasten the transfer of desirable genes among 

varieties and to introduce novel genes from related species (Mohan el al., 1997). 

Molecular markers detect unambiguous, single-site genetic differences that can easily be 

scored and mapped in most segregating populations. It is not difficult in populations of 

most crop species to identify and map 10-50 segregating molecular markers per 

chromosome pair (Kearsey, 1998). DNA markers (Appendix 5) can increase efficiency in 

breeding programs in a number of ways: 

I. The ability to screen in the seedling stage for traits that are expressed late in the 

life of the plant. 

11. The ability to more efficiently screen for traits that are extremely difficult, 

expensive, or time consuming to score phenotypicly. Since DNA-based markers 

themselves have no known effects on the phenotype of the plant, they are ideal for 

studying quantitative traits (Stuber et al., 1992). 

111. The ability to distinguish between the homozygous and heterozygous conditions 

of many loci in a single generation without progeny testing. 

IV. The ability to perform simultaneously, marker-aided selection to screen for a 

character or complex of characters that could not previously be included in the 

program because of cost or difficulty of conventional methods based on 

phenotypic screens. 



Molecular markers can accelerate the generation of new varieties and allow 

association of phenotypic characters with the genomic loci responsible for them. 

However, the real advantage of using molecular markers is to permit backcross transfer 

and pyramiding of desirable alleles in a directed manner that would not be practical with 

conventional phenotypic selection procedures. 

Polygenic characters that were previously very difficult to analyze using traditional 

plant breeding methods can now be readily studied and it is now relatively easy to 

establish genetic relationships between even sexually incompatible crop species (Mohan 

et al., 1997). The ability to map genes contributing towards variation in complex traits 

with enough accuracy to be useful for plant breeding applications has been made possible 

through the development of comprehensive molecular markers-based genetic linkage 

maps (Jones e l  a(., 1997). 

DNA fingerprinting of the cereals has a very long scientific history. When DNA 

profiling technology first came into use, restriction fragment length polymorphism 

(RFLP) markers were considered state-of-an-art. RFLP technology was followed by 

random amplification of polymorphic DNA (RAPD) method and later by the amplified 

fragment length polymorphism (AFLP) technique. Most recently microsatellite markers 

or simple sequence repeats (SSR) have become the preferred marker technology for many 

plant breeding applications. Advantages of SSR markers are: 

The method is relatively simple and can be automated; 

Most of the markers detect a single locus and show Mendelian inheritance; 

SSR markers are highly informative and reproducible; 

A large number of public SSR primers are available in most major crop 

species; 

Cost effective per genotype and primer, and avoid use of radioactive 

material. 

2.4.1. Importance of microsatellite (SSR) and its application 

Microsatellites, alternatively known as  simple sequence repeats (SSRs), short tandem 

repeats (STRs), simple sequence length polymorphisms (SSLPs), or variable tandem 



repeats (VTRs), are tandem repeats of sequence units generally less than 5 bp in length, 

e.g. (TG)n or (AAT)n (Bruford and Wayne, 1993). SSRs have received considerable 

attention and are probably the current marker system of choice for marker-based genetic 

analysis and marker-assisted plant breeding (Akkaya et al., 1992; Chin et al., 1996). 

These markers appear to be hypervariable, in addition to which their co-dominance and 

reproducibility make them ideal for genome mapping, as well as for population genetic 

studies (Dayanandan et a/. ,  1998). Inter-SSRs are a variant of the RAPD technique, 

although the higher annealing temperature probably means that they are more rigorous 

than RAPDs. Chloroplast microsatellites (cpSSRs), are similar to nuclear microsatellites 

but the repeat is usually only 1 bp, i.e. (T)n (Provan et al., 1999). 

The repeat regions are generally composed of di-, tri-, tetra- and sometimes- 

greater length perfectly repeated, nucleotide sequences (Tautz and Ranz, 1984) that 

exhibit a high degree of polymorphism (Weber and May, 1989). 

Microsatellite variation results from differences in the number of repeat units. 

These differences are thought to be caused by errors in DNA replication (Moxon and 

Wills, 1999; Jarne and Lagoda, 1996; Edwards e t a / ,  1992); the DNA polymerase "slips" 

when copying the repeat region, changing the number of repeats (Jarne and Lagoda, 

1996). Larger changes in repeat number are though to be the result of processes such as 

unequal crossing over (Strand et a/ . ,  1993). Such differences are detected on 

polyacrylamide gels, where repeat lengths migrate different distances according to their 

sizes or by capillary electrophoresis, where smaller repeat lengths migrate through the 

column in less time than do larger ones. 

Simple sequence repeats are abundant in eukqotic genomes. They provide a 

codominant, and usually highly polymorphic marker system (Bryan et a/ . ,  1997; Tautz 

and Ranz, 1984). In plant genomes, the overall frequency of microsatellite repeats 

appears to be generally lower than animal genomes (Morgante and Olivieri, 1993; Wu 

and Tanksley, 1993). In general, plants have about 10 times less SSRs than humans 

(Mohan et al., 1997). The incidence of closely spaced repeats AC or TC is very common, 

but in plants AT is more common followed by AG or TC. 

Microsatellites, which detect variation at individual loci, have been thought of as 

the "new allozymes". Consequently much of their use has been in studies where 
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alloz~mes have previously been used, e.g. diversity studies (e.g. Rossetto et ol., 1999). 

gene flow and mating systems (Chase et al., 1996), and paternity analysis (Streiff et a!., 

1999). Rossetto et al. (1999) studied the partitioning of variation within and between 

populations of Melaleuca alternifolia (Myrtaceae) to facilitate the identification of 

genetic resources and assist in the conservation of genetic diversity. Chase et al. (1996) 

studied the gene flow and mating patterns of Pithecellobiurn eleguns (Leguminosae) in a 

forest fragment in Costa Rica, whilst Aldrich et al. (1998) analysed the genetic structure 

and diversity of fragmented populations of Symphonia globulifera (Clusiaceae). 

However, there are few phylogenetic studies that use microsatellite markers, perhaps 

because few microsatellite markers are transferable across species (Sorrells et al., 2003). 

Many microsatellite studies appear to be expansions of goups that have been studied 

using biochemical or molecular markers. Rossetto et 01. (1999) study on genetic structure 

in Meluleuca alternifolia is an expansion of allozyme studies by Butcher el ul. (1992), 

albeit Rossetto et al. (1999) used a greater number of individuals and populations. 

Unique sequences that flank the tandem repeats can be used as highly 

polymorphic probes or for making PCR primers. There are well-established methods of 

finding microsatellites by screening phage libraries with oligonucleotide probes. But a 

quicker, if limited, approach is to examine sequence data banks for their presence (Burr, 

2001). SSR-based primers representing tri-, tetra- and penta-nucleotide repeats have been 

used successfidly to generate distinct banding patterns that are resolvable on low- 

resolution agarose gels using ethidium bromide staining (Gupta er al., 1994; Weising er 

al., 1995). on high-resolution polyaclylamide gels by silver staining (Buscot et al., 1996). 

through primer radioactive labeling followed by autoradiography (Gupta et al., 1994), or 

through primer labeling with fluorescent dyes and automated high-resolution 

visualization of PCR products separated by PAGE or capillary electrophoresis (Steve 

Kresovich er al., 1994). As would be predicted, better product size discrimination is 

obtained with polyacrylamide-based gel analysis although agarose gel is sufficient for 

many applications (Vogel and Scolnik, 1997). Further, automated high-resolution 

visualization of dye-labeled PCR products allows effective size discrimination of Ibp. 

In any case, SSRs are generally among the most reliable and highly reproducible 

of molecular makers. Indeed SSRs are now widely recognized as the foundation for many 

framework linkage maps. SSRs have played a critical role even in merging disparate 



linkage maps (Bell and Ecker, 1994; Akkaya et a!., 1995) since they define specific 

locations in the genome unambiguously (Young, 2001). These markers can require 

considerable investment to generate but are then inexpensive to use in mapping and MAS. 

The large start up costs for this technique should be justifiable for crops where large-scale 

mapping and MAS are a practical necessity (Hash and Bramel-Cox, 2000). 

Post-PCR multiplexing involves the simultaneous separation of PCR amplification 

products of several SSR loci in a single gel lane (Masi et al., 2003). Simplex PCR 

conditions were optimized for each primer pair by first testing different cycling 

conditions and then varying (1) the amount of DNA template, (2) the concentration of 

primers, and (3) the concentration of MgC12, and (4) the amount of Tag DNA polymerase. 

To optimize cycling conditions, three PCR Programs (A, B and C) were tested with 

different times for annealing and extension, and for variation in both temperatures and 

number of cycles. 

Reddy et al. (2002), in their review, have reported an Inter Simple Sequence 

Repeat (1SSR)-PCR technique that involves the use of microsatellite sequences as primers 

in polymerase chain reactions to generate multilocus markers. It is a simple and quick 

method that combines most of the advantages of SSRs and amplified fragment length 

polymorphism to the universality of random amplified polymorphic DNA (RAPD). ISSR 

markers are highly polymorphic and are potentially useful in studies on genetic diversity, 

phylogeny, gene tagging, genome mapping and evolutionary biology. 

2.4.2. Importance of RFLP and its application 

Among the various DNA-based molecular markers, RFLPs were the first to be used in 

human genome mapping (Botstein et a[., 1980) and later they were adopted for plant 

genome mapping (Helentjaris et al., 1986a; Bernatzky and Tanksley, 1986; Helentjaris, 

1987; Paterson et al., 1988; McCouch et al., 1988; Weber and Helentjaris, 1989). RFLP is 

the most reliable DNA polymorphism that can be used for accurate scoring of genotypes 

across different species that are sexually incompatible. It has provided a relatively rapid 

(for its time) means of producing genetic maps of densely spaced marker loci in 

numerous crop species (Ellis, 1986; Helentjaris et a/., 1986a; Landry el al,, 1987; Burr et 

al., 1988; Mohan et al., 1997). The four primary advantages of RFLP markers over 

morphological markers are co-dominance, frequent polymorphism, absence or limited 



influence of the environment, and absence of pleiotropic effects (Botstein et al., 1980; 

Beckmann and Soller, 1983). 

RFLP analysis employs cloned DNA sequences to probe specific regions of the 

genome for variations that are seen as changes in the length of DNA fragments produced 

by digestion with restriction endonucleases (Landry et al., 1987). 

Prior to the availability of SSR markers, two types of DNA markers have been 

most commonly used for most crop plant molecular marker-based linkage map developed 

and subsequent QTL mapping: RFLP markers (Botstein et a[., 1980) and RAPD markers 

(Williams et al., 1990). Both detect DNA polymorphism and monitor the segregation of 

a DNA sequence among progeny of a genetic cross permitting construction of a genetic 

linkage map. However, co-dominant RFLP markers are more robust and repeatable than 

RAPD markers, which are inherited in a dominant manner. 

RFLP and RAPD marker differences between plants are inherited in the same 

fashion as conventional Mendelian genes, thus genetic linkage maps of these molecular 

markers can be constructed using conventional methods. Such RFLP-based linkage maps 

indicate the location of specific restriction sites of chromosomal DNA relative to one 

another. 

RFLP and morphological markers have been used in practical plant breeding 

programs to map quantitative trait loci (QTLs) (Tanksley et al., 1982; Edwards et al., 

1987; Stuber el al., 1987; Weller et al., 1988; Mohan et al., 1997) and to monitor 

response to recurrent selection (Stuber et al., 1980, 1982). RFLP markers facilitate the 

selection of progenies with desirable genotypes in a relatively short span of time. 

However RFLP analysis is labour intensive and time consuming compared to analysis of 

DNA markers based on the polymerase chain reaction (Mohan et al., 1997). 

Costs of applying RFLPs to genetic improvement were assessed by Beckmann 

and Soller (1983) in terms of individuals and numbers of polymorphisms per individual 

that are scored for various applications including varietal identification, identification and 

mapping of quantitative trait loci and their marker-assisted introgression from source 

strain to commercial variety. Hash (1991), Gale and Witcombe (1992), Hash el  01. (1997, 

1999) and Hash and Bramel-Cox (2000) emphasized the opportunities for potential use of 

RFLPs in plant breeding with particular reference to downy mildew resistance in pearl 



millet. A number of papers suggest that the use of RFLPs and other DNA-based markers 

offers a clear advantage in breeding for important qualitative and quantitative traits 

(Edwards et al., 1987; Melchinger, 1990; Paterson et al., 1991b; Arunachalam and 

Chandrashekaran, 1993; Mohan et al., 1997; Young, 1999). 

2.5. DEVELOPING A MAPPING POPULATION 

The most critical decisions in constructing linkage maps with DNA markers are those 

made in developing the mapping population. In making these decisions, several factors 

must be kept in mind, the most important of which is the goal of the mapping project. 

Young (1994) reviewed the most important factors for a mapping project the success or 

failure of which is mainly dependent on which parents are chosen for crossing, the size of 

the population, how the cross is advanced, and which generations are used for DNA and 

phenotypic analysis. Hash and Witcornbe (1994) described the procedures being used for 

development and multiplication of pearl millet mapping populations, the parentage of 

mapping populations then available and the traits for which they might be used for QTL 

mapping. Linkage maps of crop species are often constructed with segregating 

populations i.e. F2 populations or backcrosses (Sunil, 1999) 

2.5.1. DNA polymorphisms among parents 

Sufficient detectable DNA sequence polymorphism between parents must be present. 

This cannot be over-emphasized, for in the absence of detectable DNA polymorphism, 

segregation analysis and linkage mapping are virtually useless. However, in many 

allogarnous species, any cross that does not involve related individuals will provide 

sufficient polymorphism for mapping (Helentjaris, 1987). Miller and Tanksley (1990) 

reported that in naturally inbreeding species the levels of DNA sequence variations are 

generally low and finding suitable DNA polymorphism can be more challenging. The 

requirement for sufficient DNA sequence polymorphism may preclude the use of DNA 

markers in some narrow-based crosses (Young, 1994). 

More recently developed technologies, like electrophoresis systems capable of 

separating DNA molecules with only a single base pair change (Riedel et al., 1990), 

provide better methods for uncovering polymorphisms within narrow-based crosses, 

Probes based on minisatellites (Dallas, 1988) or simple repeated tetra-nucleotide motifs 

(Weising GI., 1989) can uncover polymorphisms between closely related individuals. 



Because these are so variable at the DNA sequence level, such sequences are likely to 

eventually provide markers useful for mapping in narrow-based crosses (Hilttel et al., 

1999; Winter ef al., 1999; Choumane ef al., 2000). 

2.5.2. Choice of segregating population 

Once suitable parents have been identified, the type of genetic population to be used for 

linkage mapping must be considered. Several different kinds of genetic populations are 

suitable. The simplest are the F2 population derived from a true FI hybrid, and their 

backcross populations. For most plant species, populations such as these are easy to 

construct, although sterility in the FI hybrid can limit some combinations of parents, 

particularly in wide crosses. The major drawback to F2 and backcross populations is that 

they are ephemeral, that is seed derived from selfing these individuals will not breed true. 

It is difficult or impossible to measure characters as part of QTL mapping in several 

locations or over several years with F2 or backcross populations (Young, 1994). Soller 

and Beckmann (1990) describe advanced generation progeny-based phenotyping of F2- 

genotyped individuals. Based on this, Hash and Witcombe (1994) described a method for 

developing and maintaining a pearl millet mapping population based on F2 plants derived 

by selfing a single F, plant that will provide an "immortal" mapping population available 

for several seasons. The uses of inbred populations comprised of recombinant inbred lines 

(RTLs) derived from individual F2 plants are an excellent strategy to provide more 

permanent mapping resources (Bun et al., 1988; Burr and Burr, 1991). Similar types of 

inbred populations, such as doubled haploids, can also be used for linkage mapping with 

many of the same advantage of FULs (Heun e! al., 1991). A doubled haploid population is 

only a form of RIL population differing from conventional RIL populations in the 

procedure used to produce it. 

2.6. LINKAGE MAPPING 

Linkage mapping is putting marker loci (and QTLs) in order, indicating the relative 

distances among them, and assigning them to their linkage groups on the basis of their 

recombination values from all pair-wise and three-point combinations. The first linkage 

map of the human genome based on molecular markers (Botstein et al., 1980) fuelled the 

development of molecular marker-based genome maps in other organisms. 



2.6.1. The basis of linkage mapping 

The theory of linkage mapping is same for DNA markers as in classical genetic mapping; 

however, several new considerations must be kept in mind. This is primarily a result of 

the fact that potentially unlimited numbers of DNA markers can be analyzed in a single 

mapping population. DNA-based maps can be related to existing cytogenetic maps 

through the use of aneuploid or substitution lines (Helentjaris et al., 1986b; Sharp et al., 

1989; Young el al., 1987) or in situ hybridization (ISH) (Zhang et al., 2000). 

Since DNA marker technology was first applied to plants, there has been an 

explosion in the development and application of genetic linkage maps (Mohan et al., 

1997). Using these new DNA based markers, scientists have constructed maps in species 

where only poorly populated classical maps existed before (Bonierbale et al., 1988; 

Gebhardt et al., 1991; Liu et al., 1994), located genes governing quantitative characters, 

often in great detail, and gone on to attempt (sometimes successfully) gene cloning based 

on genetic map position. Detailed genetic linkage maps are also fundamental tools for 

studies on selection, identification and organization of plant genomes (Beckmann and 

Soller, 1986; Landry and Michelmore, 1987; Tanksley, 1993). 

2.6.2. Success achieved so far 

2.6.2.1. In crops other than pearl millet 

Using RFLPs as genetic markers, Helentjaris et al., (1986a) constructed linkage maps for 

maize and tomato. The first true RFLP-based genetic linkage map in a crop plant 

(tomato) was constructed in 1986 with only 44 Fz plants and 57 marker loci (Bernatzky 

and Tanksley, 1986). Since then, DNA marker-based genetic linkage maps for many 

plants species have been constructed (Helentjaris, 1987; McCouch et al., 1988; Heun er 

al., 1991; Tanksley, 1993; Mohan et al., 1997). 

Landry et al. (1987) constructed a detailed map of lettuce, using 53 genetic 

markers. These included 41 RFLP loci, 5 downy mildew resistance genes, 4 isozyme loci 

and 3 morphological markers covering 404 cM. 

McCouch et al. (1988) reported the construction of an RFLP-based genetic 

linkage map of rice. The map was comprised of 135 loci corresponding to clones selected 

from a Pstl genomic library covering 1389 cM of the rice genome. Causse et al. (1994) 



developed a rice genetic map using ca. 800 RFLPs that expanded the length of the rice 

linkage map to 1491 cM. Chao ei al. (1989) attempted RFLP mapping in wheat (Triticum 

aestivum) using 18 cDNA clones: 14 anonymous and 4 known functions. The loci 

identified by these probes were mapped on one or more of wheat homeologus group 7 

chromosomes. Graner er al. (1991) analyzed two populations to construct an RFLP-based 

genetic linkage map of barley using 250 genomic and cDNA markers. Maps of 

chromosomes 3A, 3B and 3D of wheat and 3R of rye were developed by Devos ef  al. 

(1992) using 22 DNA probes and 2 enzyme marker systems. 

2.6.2.2. In pearl millet 

The first detailed molecular marker-based genetic linkage map of pearl millet was 

published in 1994, and was comprised primarily of RFLP markers (Liu et al., 1994). They 

placed 181 loci on a linkage map by studying segregation in two F2 populations. Two 

crosses (LGD 1-B-10 x ICMP 85410 and Tift 23D2B1 x IP 18292) were employed. The 

total length of this map, which comprised the seven expected linkage groups, was only 

303 cM and the average distance between loci was about 2 cM. The individual linkage 

groups (LG) varied in length from 90 cM for LG1 to only 30 cM for LG6 (Devos et al., 

1995). 

Genetic linkage maps in pearl millet have been constructed and quantitative trait 

loci (QTLs) have been identified and mapped for downy mildew resistance (Jones er a[., 

1995, 2002; Breese ei al., 2002). rust and blast resistance (Morgan et al., 1998) drought 

tolerance and grain yield (Yadav el al., 2002; 2003; 2004) and for characters involved in 

domestication (Poncet er a[. 2000; 2002). An integrated genetic linkage consensus map 

for this crop has recently been accepted for publication (Qi et al., 2004). 

The integration of markers previously mapped in other grass species has provided 

the anchor points to align the pearl millet linkage groups to other cereal genetic maps, 

including the cereal model, rice. Although the pearl millet genome appears to be 

relatively highly rearranged relative to rice, regions of colinearity between the two 

species can clearly be identified (Devos et al., 2000). These now form a framework for 

exploitation of the rice genomic sequence as a source of new markers and candidate genes 

underlying traits in pearl millet. 



The pearl millet genetic linkage map originally reported by Liu et al. (1994), is 

unusual among grass genomes in that it is particularly short, but this difference is 

expected to reduce with time. Subsequent studies have extended the length of the pearl 

millet genetic linkage map to circa 700 Haldane cM, but to date no significant linkage has 

been detected between the marker loci in these seven linkage groups and telomeric 

sequences that are expected to cap the ends of each (Katrien M. Devos, pers. comm.). 

This suggests that the pearl millet genetic linkage map will eventually extend to at least 

1400 cM (Haldane). 

2.6.3. Computer software packages for genetic linkage mapping 

Advances in computer technology have been essential to progress in DNA marker-based 

genetic linkage maps. The theory behind linkage mapping with DNA markers is identical 

to mapping with classical genetic markers, but the complexity of the problem has 

dramatically increased because of the larger numbers of markers that can and must be 

used. This increase in numbers of segregating loci (and the number of progenies in which 

they are segregating) relative to studies of classical genetic markers has necessitated the 

development of complex computer algorithms and software packages specifically for this 

purpose. 

Construction of a genetic linkage map from a DNA marker data set requires 

computer software packages capable of running u2 contingency table analysis. The 

program LINKAGE-1 (Suiter el ul., 1983) carries out this type of analysis automatically 

and also compares the observed allelic distributions to expected distributions. In a 

different strategy for optimizing the use of DNA marker information, the computer 

program "Hyper Gene" converts genotypic data into a "graphical genotype" (Young and 

Tanksley, 1989a, b). In this complete genome of an individual from the mapping 

population is displayed. 

MAPMAKEREXP is a linkage analysis software package for constructing 

primary linkage maps of markers segregating in experimental crosses. It performs full 

multipoint linkage analysis for dominant, recessive and co-dominant (e.g. RFLP-like) 

markers in BC, backcrosses, Fz and Fj (self) intercrosses and recombinant inbred lines 

(Lander et al., 1987; Lincoln el al., 1992% b). 



The software package Join Map (Stam, 1993; Stam and Van Ooijen, 1995) can be 

used to analyse all types of mapping populations and can combine maps of different 

mapping populations provided there are common markers. Another software for linkage 

mapping is Gmendel from Oregon State University, USA (Holloway and Knapp, 1994). 

The package MapMaker, with different versions such as QTS, QTXP and QTX-Classic 

for Macintosh- and IBM-compatible computers (Manly, 1993; Manly and Olsen, 1999), 

can be used to analyses the results of genetic mapping experiments using backcrosses or 

recombinant inbred lines. 

2.7. MAPPING QUANTITATIVE TRAIT LOCI (QTLs) 

2.7.1. The basis of QTL 

A "QTL", the acronym for Quantitative Trait Locus, is one of the genes or gene blocks 

that underlie quantitative traits (Geldeman, 1975). Before the discovery of molecular 

markers, QTLs were referred to as polygenes (Mather, 1949). QTL analysis is predicated 

on associations between phenotypic values for the quantitative trait and the marker alleles 

segregating in the mapping population. It has two essential stages: the mapping of 

markers and the association of the trait phenotype values with the marker genotypes. The 

basic theory underlying marker mapping has been available since 1920. 

Sax (1923) first reported association of simply inherited genetic markers with a 

quantitative trait in plants when he observed segregation for seed size associated with 

segregation for a seed coat colour marker in beans (Phaseolus vulgaris L.). Rasmusson 

(1935) demonstrated linkage of flowering time (a quantitative trait) in peas (Pisum 

sarivum L.) with a simply inherited gene for flower color. Everson and Schaller (1955) 

found morphological markers that flanked a chromosomal region affecting yield in barley 

(Hordeurn vulgare L). Hash and Blake (1 981) reported variation in prolamin seed storage 

proteins conditions by genes at the highly polymorphic loci Horl and Hor2, flanking the 

multiallelic M a  locus for resistance to powdery mildew, and suggested their use as 

selectable markers for specific resistance alleles by half-seed screening of segregating 

progenies. 

Extensive work in Drosophila melanogaster (Mather and Harrison, 1949) 

demonstrated the effects of individual chromosomes on quantitative traits. Cavalli (1952) 

crossed lines of D. melanogaster selected for high and low abdominal bristle number, and 



found evidence of linkage between polygenes. Harrison and Mather (1950) and Gibson 

and Thoday (1962) by selection experiments in D. melanogaster, were able to locate 

polygenes for bristle number on a particular chromosome. Thoday (1961) developed 

methods for detecting linkage of polygenes with marker loci. In domesticated animals, 

associations of quantitative traits with segregation for blood group markers have been 

reported (Niemann-Sorenson and Robertson, 1961). In wheat (Triticum aestivum L.) 

monosomics have been used to identify association of quantitative traits with individual 

chromosomes (Law, 1967). These earlier studies provided a background of theory and 

observation for more recent work with molecular markers (Dudley, 1993). 

The first use of a reasonably complete crop linkage map based on RFLP markers 

was reported in tomato by Paterson et al. (1988). They resolved quantitative traits to 

discrete Mendelian factors in an inter-specific backcross of tomato, mapping at least six 

QTLs controlling fruit mass and four QTLs for soluble solids. 

2.7.2. QTL mapping for disease resistance 

With DNA markers and QTL mapping, complex forms of disease resistance and their 

underlying genes are now far more accessible to applied plant breeders and pathologists. 

Quantitative genetics is unsuited for dissecting polygenic resistance characters into 

discrete genetic loci or defining the roles of individual genes in disease resistance. With 

QTL mapping, the role of specific resistance loci can be described, race-specificity of 

partial resistance genes can be assessed, and interactions between resistance genes, plant 

development and the environment can be analyzed (Melchinger, 1990; Young, 1996). 

The quantitative host-plant resistance system for rice blast caused by Pyricularia 

oryzae has been especially well characterized (Wang et al., 1994). Two dominant 

qualitative resistance loci were identified on chromosomes 4 and 11 of rice (Yu et a[.,  

1991). Another disease system that has been studied with QTL mapping is late blight of 

potato caused by Phytophthora infestans. Leonards-Schippers et al. (1994) identified 

eleven genomic segments on nine chromosomes that were associated with host plant 

resistance to potato late blight. 

Inheritance of disease reaction to leaf spot caused by Cercospora zeae-maydis in 

three maize F2 populations was examined to study quantitative resistance using RFLP 



markers (Bubeck e! al., 1993). One QTL on maize chromosome 2 was found to be 

significantly associated with resistance in all three populations. 

A study of resistance to bacterial wilt caused by Pseudomonus solanacerarum in 

tomato was reported by Danesh et a/. (1994) using DNA marker genotypes and disease 

resistance reactions for 71 F2 individuals. Two genomic regions were significantly 

associated with resistance, one on chromosome 6 and another on chromosome 10. Loci 

contributing towards quantitative variation have been mapped in tomato for resistance 

against insects (Nienhuis et al., 1987), in potato for resistance against cyst nematode 

(Kreike e! a[., 1993), in peas for resistance against ascochyta blight (Dirlewanger et al., 

1994), in maize for resistance to northern corn leaf blight (Freymark et al., 1993), stalk 

and ear rot (Pe et a[., 1993), and in Sorghum for resistance to green bug (Agrama e! al., 

2002). 

Manzanares-Dauleux st al. (2000) identified QTLs against clubroot disease of 

Brassica napus caused by Plasmodiophora brassicae. Inheritance of Cercospora leaf spot 

resistance in sugar beat was studied by Nilsson et 01. (1999) and they identified QTLs for 

this trait. Four QTLs associated with Cercospora resistance on chromosomes 111, IV, VII 

and IX were revealed using composite interval mapping (Setiawan et 01.. 2000). Four 

QTLs were localized for leaf rust (Pucciniu horde;) resistance in barley, which explained 

96% of the segregating genetic variation in the mapping population studies (Kicherer et 

ul., 2000). Brown stem rot (Phialophora gregata) resistance QTLs were identified by 

Lewers et a/. (1999) in a IUL mapping population of soybean using 146 RFLPs, 760 

AFLPs and 4 probes for resistance gene analogs (RGAs). 

2.7.3. QTL analysis: statistical methods 

Jayakar (1970) suggested mathematical-statistical methods for the detection and 

estimation of linkage between a qualitative marker gene and a locus influencing a 

quantitative character. Since then, experimental designs for determination of linkage 

between marker loci and QTL have been widely described (Elston and Stewart, 1971; 

Geldeman, 1975; Hill, 1975; Soller and Beckmann, 1983, 1990; Jensen, 1989; Lander 

and Botstein, 1989; Knapp et al., 1990). 

Marker-QTL association detection can be conducted through t-tests based on 

single markers (Soller et al., 1976) or by means of likelihood ratio tests that involve that 



use of a pair of markers bracketing a QTL, a procedure termed 'Interval Mapping' 

(Weller, 1987; Jensen, 1989; Lander and Botstein, 1989; Knapp et al., 1990), although 

simpler approaches are also possible (Thoday, 1961; Weller, 1987; Haley and Knott, 

1992). 

Lander and Botstein (1989) described a set of analytical methods that modify and 

extend the classical theory for mapping QTLs and that are implemented in the computer 

software package MAPMAKERIQTL. In this, interval mapping is applied to several 

population types. Each interval between adjacent pairs of markers along a chromosome is 

scanned and the likelihood profile of a QTL being at any particular point in each interval 

is determined. 

Michelmore et 01. (1991) used a modification of "conventional QTL mapping" to 

detect QTLs for downy mildew resistance in lettuce in a procedure they called "bulk 

segregant analysis", which is remarkably similar to that previously described by Burton 

and Wells (1981) for assessing the value of a trait in near-isogenic F3 populations of pearl 

millet. 

Prioul et 01. (1997) described the genetic methods required to analyze possible 

associations between traits that are inherited in a quantitative manner using QTL analysis. 

Advantages and some limitations of QTL analysis over other methods then in use by plant 

physiologists to test associations between traits were also discussed. 

Particularly in the case of cross-pollinating crop populations, interval mapping has 

been enhanced to "all marker mappingc'. To calculate the likelihood of a segregating 

QTL, the segregation information of all linked markers is employed. Each segregating 

marker may follow a different segregation type, with two to four alleles (Maliepaard and 

van Ooijen, 1994). 

An alternate approach was developed for QTL analysis using regression by Knapp 

et al. (1990) and Haley and Knott (1992). It produces results very similar to interval 

mapping both in terms of accuracy and precision, but has the advantage of speed and 

simplicity of programming. This method used the coefficient of regression of the 

phenotype on the genotype of the different markers (Martinez and Curnow, 1992; Wu and 

Li, 1994). A significant regression coefficient is indicative of an association between the 

marker locus and gene(s) contributing to phenotypic difference. 



Estimating the location and the size of effects of QTLs using flanking markers 

was discussed by Martinez and Curnow (1992) in the framework of a backcross using a 

regression model as the analytical tool. Conneally et al. (1985), in the field of linkage 

analysis, proposed the use of confidence intervals based on limits of the X2 distribution of 

the likelihood ratio test between two positions. This idea leads to a very simple 

construction of the confidence interval. Mangin et ul. (1994) described a method for 

construction the confidence interval of the QTL location parameter, developed in the 

local asymptotic framework, leading to a linear model at each position of the putative 

QTL. 

Kearsey and Hyne (1 994) developed the marker regression approach. It attempts 

to model to all the marker means on a given chromosome simultaneously, and obtains 

significance tests by weighted least squares or by simulation. The method involves 

regressing the additive difference between the marker genotype means at a locus against 

the function of the recombination frequency between the locus and the putative QTL. 

Two classical approaches used for QTL detection are marker-by-marker ANOVA 

and multiple marker methods. The principle of the ANOVA is to test whether there are 

significant differences between the phenotypic means of genotypes classes at a particular 

marker locus (Prioul et ul., 1997). van Ooijen (1999) presented methods that provide 

reasonably accurate approximations to LOD significance thresholds for QTL analysis, 

which were obtained by large-scale simulations. Churchill and Doerge (1994) described 

an empirical method, based on the concept of permutation tests, for estimating threshold 

values for declaring significant QTL effects. 

2.7.4. QTL mapping software 

Normally all QTL mapping software require input of the data for 

1. the quantitative trait value(s) for each progeny 

2. the genotype (molecular markers) for each progeny 

There are over one hundred genetic analysis software packages available. Here is the brief 

list of some commonly used software packages: 

MAPMAKEWQTL fftv://aenome.wi.mit.edu/oub/rnavmaker3/) is the original 

QTL mapping software for Macintosh and IBM computers (Lincoln et al., 1992b). It is 



user-friendly, freely distributed, and runs on almost all platforms. It will analyze F2 or 

backcross data using standard interval mapping procedures. 

MQTL is an IBM-compatible computer program for composite interval mapping 

in multiple environments (van Ooijen and Maliepaard, 1996). It can also perform simple 

interval mapping. Currently, MQTL is restricted to the analysis of the data from 

homozygous progeny (doubled haploids or recombinant inbred lines). Progeny types with 

more than two marker classes (e.g. F2) are not handled. 

PLABQTL (hftp://www.uni-hohenheim.de/-ins~www/sofihrml) is a freely 

distributed IBM-compatible computer program for composite interval mapping and 

simple interval mapping of QTLs (Utz and Melchinger, 2000; Utz et al., 2000). Its main 

purpose is to localize and characterize QTLs in mapping populations derived from a 

biparental cross by selfing or production of double haploids. Currently, this program is 

the easiest software to use for composite interval mapping. 

QTL cartographer (htru://srar~en.ncsu.edu/urlcart/carto~ra~her.hrml) is a QTL- 

mapping package written for UNIX, Macintosh. or Windows computer operating 

systems. It performs single-marker regression, interval mapping, and composite interval 

mapping. It permits analysis of F2 or backcross populations. It displays map positions of 

QTLs using the GNUPLOT software. QTL Cartographer was developed by the group of 

Zeng in USA (Zeng, 1993, 1994; Basten et al., 1994, 1997). It allows markers to be 

chosen as cofactors to reduce the background genetic noise and increase the resolutions of 

QTL detection. This is an effective strategy for improving the ability to detect QTLs of 

small effect provided that the number of progenies in the mapping population is 

reasonably large. 

MapQTL (htt~:/lwww.c~ro.dlo.nl/cbw/) is a similar composite interval mapping 

methods package has been developed by Jansen and co-workers (Jansen, 1993; Jansen 

and Stam, 1994) called multiple QTL modeling (MQM). 

Multimapper (Sillanpaa and Arjas, 1988), based on Bayesian modeling and 

inference, treats the number of quantitative trait loci as an unobserved random variable 

using ideas similar to composite interval mapping. This method is introduced for inbred 

lines and it can be applied also in situations involving frequent missing genotypes. 



Qgene is a QTL mapping and marker-aided breeding package written for 

Macintosh computer operating systems. It has a user-friendly graphical interface and 

produces graphical outputs. QTL mapping is conducted by either single-marker 

regression or interval regression. 

QTLSTAT is based on interval mapping using nonlinear regression for F2, 

backcross, RIL and DH populations and outputs results in graphical form (Knapp et al., 

1992; Liu and Knapp, 1992). 

PGRI calculates based on the functions of t-test, conditional t-test, linear 

regression, multiple QTL modeling, and permutation tests (Lu and Liu, 1995). It is for F2, 

backcross, RIL, heterozygous F1 and open-pollinated populations. 

SAS (SAS, 1999) is a general statistical analysis s o h a r e  package. It can detect 

QTL by identifying association between marker genotype and quantitative trait by single 

marker analysis approaches such as ANOVA, t-test, and regression (eg. PROC ANOVA, 

PROC GLM or PROC REG). 

2.7.5. Selective genotyping and QTL reliability estimates 

Selective genotyping (Darvasi and Soller, 1992; Lander and Botstein, 1989; Lebowitz et 

al., 1987) was suggested as a design that can reduce the number of individuals genotyped 

for a given power of QTL detection, by genotyping only the most informative individuals 

in the experimental population. Genotyping only individuals from high and low 

phenotypic tails of the entire sample population, the number of individuals genotyped for 

a given power can be decreased considerably, at the expense of an increase in the number 

of individuals phenotyped (Lebowitz et al., 1987). 

Muranty and Goffinet (1997) extended the concept of selective genotyping to 

multiple trait QTL mapping, showing that selection on one trait can increase the power of 

QTL detection for a correlated trait. Adequate power, precision and accuracy of QTL 

analysis can only be expected from a large well suited mapping population, using a 

marker set with good genome coverage and phenotypic values based on multi- 

environment trials (van Ooijen, 1992; Utz and Melchinger, 1994; Beavis, 1998). 

Such selective genotyping is a cost-effective strategy in mapping QTLs. When the 

proportion of individuals selected for genotyping is low, the majority of the individuals 



are not genotyped, but their phenotypic values, if available, are still included in the data 

analysis to correct the bias in parameter estimation using an expectation-maximization 

(EM) algorithm (Xu and Vogl, 2000; Vision e ta ] . ,  2000). 

Three percent error rates in genotyping can double estimates of genetic map 

distance (Brzustowicz et al., 1993). The quality of marker data from the segregating 

population is very important to the success or failure of the QTL analysis. There was a 

great surprise when the map length of species as maize and wheat suddenly increased 

with the advent of molecular markers beyond the lengths predicted from chiasma 

frequency (Nilsson et al., 1993), but corrections of errors in marker genotyping data sets 

have largely done away with these artifactual surprises. 

Kearsey and Farquhar (1998) reported that the available analytical methods locate 

QTL with poor precision unless the heritability of a particular trait is high. Also the 

estimates of the QTL effects, particularly the dominance effects, tend to be inflated 

because only large estimates are detected as being statistically significant. This is 

especially problematic where size of a mapping population is less than optimal (as it 

usually is). 

Darvasi er al. (1993) showed that the power of detecting a QTL was virtually the 

same for a marker spacing of 10 cM as for an infinite number of markers and was only 

slightly decreased for marker spacing of 20 cM or 50 cM. However, a very important 

consideration is the confidence interval for the QTL position on the linkage group. 

Effective utilization of molecular marker technoloby to manipulate loci controlling 

quantitative traits is considered to be dependent on tight linkage between the marker(s) 

and the QTL (Dudley, 1993), but in fact, even loose linkages can be exploited in an 

applied breeding program ( S h m a ,  2001). 

In most published QTL studies, the number of QTLs is considerably under 

estimated and the percentage of genetic variation explained by markers is highly erratic 

and often over-estimated (Lynch and Walsh, 1998). These problems can be overcome by 

backcross transfer of putative QTLs to near-isogenic backgrounds andlor QTL mapping 

in independent (and large) samples of the mapping population for verification studies of 

any putative QTLs detected. An additional need is to verify estimated QTL effects and 



the possible epistatic interactions of QTL alleles with the genetic background of the 

material to be improved (Phillips, 1999; Kerns era!., 1999). 

Hackett (1997) described diagnostic tools based on residuals, likelihood profiles 

and regression coefficients for fitting QTL models. These are used to assess the 

agreement between linkage data and fitted normal mixture models for interval mapping. 

Nearly every agronomic trait imaginable has been subjected to DNA marker 

mapping and QTL analyses: e.g., drought tolerance (Martin et al., 1989; Yadav et al., 

2002, 2004), seed hardness (Keim et al., 1990), seed size (Fatokun et al., 1992), maturity 

and plant height (Lin et al., 1995; Yadav et a l ,  2003), disease resistance (Jones er a [ ,  

1995, 2002; reviewed by Young, 1996), oil and protein content (Diers et al ,  1992). 

soluble solids (Paterson et at., 1988), and, of course, yield (Stuber et al., 1987; Yadav et 

aL, 2003). Even when a well-performed mapping experiment indicates promising QTLs, 

there is often much more that needs to be done to make the mapping results ready for 

application in marker-assisted selection (MAS). Repetition over several years and several 

locations, repetition in genetically unrelated populations, and detailed analysis in marker- 

generated populations that isolate the effects of individual QTLs, are factors to increase 

the efficiency and reliability of use of QTLs in applied plant breeding programs (Young, 

1999). However delay in their use can be as costly as using them too soon, so se%eral 

alternative strategies for application of marker-assisted selection to backcross 

improvement of elite inbred lines have been described by Hash et al. (2000) and Hash 

(2000) to speed up adoption of this technology while minimizing cost and risk. 

For marker-assisted selection (MAS) to be most effective, reliable estimates of 

QTL positions and effects are required. Adequate power, precision and accuracy of QTL 

analyses can only be expected from large, well-suited mapping populations, using a 

marker set with good genome coverage, and phenotypic values based on multi- 

environment trials (van Ooijen, 1992; Utz and Melchinger, 1994; Beavis, 1998). In 

verification studies with maize, Melchinger el al. (1998) found that 50% or less of 

variance attributable to markers in the calibration experiment could be recovered in an 

independent sample of progenies of the same initial F2 population. Such uncertainties of 

QTL analyses have the potential to seriously reduce the efficiency of MAS. Verification 

of individual QTLs, e.g. by re-estimation in advanced generations or by evaluating near- 



isogenic backcross-derived lines (NILS) contrasting for genome segments of interest 

(Romagosa er al., 1999), is therefore imperative. 

2.8. QTL FOR DOWNY MILDEW RESISTANCE IN PEARL MILLET 

The first fairly detailed molecular marker map for pearl millet was constructed by Liu er 

al. (1994) so that QTL analysis is now possible. QTLs for host-plant resistance to downy 

mildew caused by S. graminicola pathogen populations from India, Nigeria, Niger, and 

Senegal were mapped using the susceptible x resistant cross LGD 1-B-10 x ICMP 85410 

(Jones el al., 1995). Host-plant resistance QTLs were detected that were effective against 

each of the four pathogen populations. To locate genes in mapping populations other than 

those for which marker-based genetic linkage maps exist, a skeleton map needs to be 

transferred. In pearl millet less than 40 single-copy probe-enzyme combinations will 

produce an RFLP-based skeleton map with an average map distance of less than 15 cM 

between marker loci (Liu et al., 1994). 

Jones er al. (2002) demonstrated that field screening and greenhouse pot screening 

of seedlings against the same pathogen population detect the same QTLs for host-plant 

resistance to pearl millet downy mildew using F2-derived Fq self bulk progenies of a 

mapping population derived from a cross of resistant line P7-3 and susceptible line 

7042(S). 

Breese et al. (2002) reported QTLs for downy mildew resistance from a pearl 

millet mapping population (originally intended to map seedling heat tolerance) produced 

from this cross ICMP 451 x H 771833-2. Hash er al. (unpublished) worked with mapping 

populations from crosses PT 732B x P1449-2, 81B x ICMP 451 and 841B x 8633 to 

locate additional QTLs for resistance to pearl millet downy mildew. QTLs for host-plant 

resistance effective against African and Indian pathogen populations of Sclerospora 

graminicola, the casual organism of pearl millet downy mildew, were identified in a new 

mapping populations based on cross W 504 x P 310-17 (Kolesnikova-Allen, 2001), and 

cross Tit? 238Dl x IP 18293 (Azhaguvel, 2001). To date over 65 QTLs for pathogen- 

population-specific host plant resistance to pearl millet downy mildew have been detected 

(C.T. Hash, pers. C o r n . )  

A number of QTLs have been identified and located (Nepolean, 2002) for grain 

yield and its component characters using Fq bulk testcrosses, and downy mildew disease 



resistance and F4 self bulks from an F2-skelton mapped population derived from the cross 

PT 732B x P1449-2. 

2.9. PEARL MILLET GENETIC LINKAGE MAP 

Molecular markers also have become a powerful tool for marker-aided selection of 

disease resistant crop genotypes (Howarth et al., 1994). Morgan el al. (1998) screened 

three segregating population for RAPDs using random decamer primers and for RFLPs 

and observed that rust resistance gene Rrl from pearl millet subspecies P. glaucum ssp. 

monodii was linked 8.5 cM from the RAPD OP-G835~. The linkage of two RFLP marker 

loci Xpsml08 (15.5 cM) and Xpsm174 (17.3 cM), placed the Rrl gene on linkage group 3 

of the pearl millet map and rust resistance genes from both Tift 89D2 and ICMP 83506 

were placed on linkage group 4 by linkage to RFLP marker locus Xpsm716 (4.9 and 0.0 

cM respectively). 

Allouis ef al. (2001) have constructed a bacterial artificial chromosome (BAC) 

library using nuclear DNA from pearl millet and this was used as a resource for the 

isolation of microsatellite markers. In future this BAC library may be used for map based 

cloning of downy mildew resistance genes. Using methods described by Qi el a!. (2001), 

so far 42 (GT) and 8 (CT) microsatelites have been isolated from BAC clones pooled 

from a single 384-well microtiter plate. The primer sequence, BAC origin, SSR repeat 

and PIC values obtained in panel of 20 pearl millet inbred lines are given Qi el al. (2001) 

for SSR markers PSMP2201-PSMP2225 and in Allouis el al., (2001) for SSR markers 

PSMP2224-PSMP2274. The SSR profiles of these 20 pearl millet inbred lines are 

available from MilletGene (httpl/jic-bioinfo.bbsrc.ac.uk/cerealslmillet.html). More 

recently, Budak et al. (2003) have reported additional pearl millet SSR primer pairs and 

used these for SSR-based genetic diversity assessment of pearl millet breeding lines and 

germplasm accessions. Finally, Qi el al. (2004) report the map positions of 65 pearl millet 

SSR markers, including some for which primer sequences were previously reported by Qi 

et al. (2001) or Allouis el al. (2001). 

Poncet et 01. (2002) made a comparison of the locations and effect of QTLs 

controlling the morphological differences between domesticated and wild pearl millet 

with a focus on the organization of linkage groups (LG) 6 and LG 7. In their previous 

study (Poncet et al., 2000), they revealed that domesticated spikelet structure is mainly 



controlled by major genes located on LG 6 and LG 7. Poncet et a/.  (2000) have analyzed 

another cross in which the domesticated parent differs in their geographical origin, 

agronomic characteristics and life cycle from wild parents in the studied population. 

Poncet et a/., (2002) fiuther compared the level of polymorphism and constructed a 

linkage map consisting 22 RFLP loci distributed among the seven linkage groups 

covering 177 cM, which corresponded to 54.6% of the original pearl millet reference map 

(Liu et al., 1994). This is due to both a strong reduction in recombination rate in their two 

crosses (wild x cultivated) relative to the cross between inbreds of cultivated pearl millet 

used to build the reference map (Poncet et al., 2000) and due to incomplete map 

coverage. Similar reductions in recombination rate and linkage map length in wild and 

cultivated crosses have been reported by Liu et al. (1996) 

Poncet er al. (2002) have detected a total of 18 QTLs in an F2 population derived 

from a domesticated x wild cross "Thiotande x Wild" (T x W). The location and effects 

of the QTLs detected in this cross were compared to those (36 QTLs) obtained in an F2 

population derived from another domestic x wild cross Souna x Mollissimum (S x M) 

(Poncet et al., 2000). However, the T x W and S x M mapping analyses differed by map 

coverage levels. In the T x W cross, maximum of two QTLs were detected for each trait 

and the proportion of the phenotypic variance explained by each ranged from 6.1% to 

66.6%. In general fewer QTLs with large effects were detected in the T x W population 

compared to the S x M population. 

A skeleton genetic map of 562 cM (Ilaldane function) was constructed 

(Azhaguvel el al., 2003) using 33 RFLP markers using a population size of 142 F2 plants 

based on the cross of inbred lines IP 18293 (DIIDl: dzld2, PIP) and Tift 238D1 (dlidl, 

D2/D2, plp). They mapped the Dddl plant height locus to pearl millet LGI, while the 

Dzid2 plant height and Pip foliage color loci were mapped to LG4. They also observed 

loose genetic linkage between the DzId2 and Pip locus, with 42% repulsion-phase 

recombination corresponding to a map distance of 92 cM (Haldane). 

A total of 51 alleles were detected using 16 highly polymorphic RFLP probe- 

enzyme combinations, nine associated with QTLs for downy mildew resistance and five 

associated with QTL for drought tolerance (Bhattachajee et a/., 2002). Analysis of 

molecular allelic variation revealed high within accession variability (30.9%), but the 

variability between accessions was significantly higher (61.1%) than that within the 



accessions. They produced a dendrogram based on a dissimilarity matrix using Ward's 

algorithms, which further delineated the 250 plant (25 each from 10 different landrace 

germplasm representative of phenotypic variation among accessions of Indian origin) 

plants into 10 major clusters - one per accession. 

The development of 50 SSRs from pearl millet BAC clones has been described in 

Qi et al. (2001) and Allouis et al. (2001). The development of a further 44 SSRs from an 

enriched small insert library has recently reported (Qi el al., 2004). Qi et al. (2004) also 

present a consensus genetic map with mapping data from four pearl millet crosses, 

comprising 65 SSR markers, 220 homologous and 133 heterologous FWLP markers. 

Recently, Budak et a1. (2003) and Dweikat et al. (2004) have reported primer sequences 

for 18 additional pearl millet SSR markers, but the marker loci detected by these have not 

yet been mapped. 





3. MATERIALS AND METHODS 

The present investigation was conducted during the period from May 2001 to August 

2004 at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 

Patancheru, Andhra Pradesh, India. The details of the experiments conducted in the 

laboratory, greenhouse and fields are given below. 

3.1 MATERIALS 

3.1.1 Mapping population parental lines 

Parental lines: ICMB 891 11-P6 and ICMP 423-P6 (=ICMB 901 11-P6) 

Table I. Characteristics of the parental lines ICMB 891 11-P6 and ICMP 423-P6 (=ICMB 

901 11-P6) used in the mapping population under study 

ICMB 891 1 1 -P6 

Parental Line 

The more downy mildew susceptible (Figure 1) elite parent, 

ICMB 891 11, is a d2 dwarf maintainer of the A1 cytoplasmic 

male sterility (CMS) system (Rai el ol., 1998). This 

moderately photoperiod-sensitive parent is characterized by 

high tillering ability and site-specific downy mildew 

resistance. It is the seed parent maintainer line of recently 

released pearl millet hybrids HHB 94 and RHB 12 1. 

Characteristics 

ICMP 423 -P6 

(=ICMB 901 1 1-P6) 

The resistance donor parent, ICMP 423, is a genetically tall, 

weak restorer of male-fertility for the A1 CMS system (Rai et 

al., 1994). It is characterized by high tillering capacity and 

highly stable downy mildew resistance. It is also moderately 

photoperiod-sensitive. ICMP 423 is the pollinator of released 

hybrid MH 143 (ICMH 423) and a maintainer of the A,, CMS 

system (this maintainer line is referred to as ICMB 901 11). 
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3.1.2. Mapping population-generation advancement 

Two pearl millet inbred parental lines, ICMB 8911 1-P6 and ICMP 423-P6 (=ICMB 

901 11-P6), were crossed, plant x plant, to produce FI hybrids. The FI progenies from 

each plant x plant cross were selfed to produce F2 seed. Each selfed FI plant produced 

large numbers of F2 seeds for development of a mapping population. Selfed parents of 

each of nine plant x plant crosses were screened against six Indian populations of 

Sclerospora graminicola and differential responses were observed. One of the nine 

available FI  progenies was selected for further study on the inheritance of these 

differential reactions. 

In 2001, one F2 segregating population of approximately 172 plants was raised. 

This F2 population was derived from a plant x plant cross of ICMB 891 11-P6 x ICMP 

423-P6 having parental plants differing in their disease resistance to six Indian 

populations of Sclerospora graminicola. F2 seed of this population was produced 

previously by selfing single F1 plants from plant x plant cross. Seed from each of the 

selfed F2 plants of this population were in the turn used to produce head-rows of F3 plants, 

selfing of which provided Fq self-bulk seed, representative of a single F2, plant for use in 

the downy mildew screens. 

During kharif2000 and rabi 2001102, 30-35 selfed seeds harvested from each of 

about 172 individual F2 plants in the mapping population were sown in pots (one pot per 

F2 plant) to produce small bulks of F2-derived F3 (Ft 3) plants, which were used as sources 

of tissue for DNA isolation for each of F2 plants in this mapping population. After 

collecting leaf tissues from each bulk of 10-14 days old seedlings, the seedlings of each 

F2-derived F3 progeny were transplanted to single rows in plot RL 18 at ICRISAT, 

Patancheru during late kharif2001 and approximately 25-30 F3 plants were selfed in each 

of the circa 172 F2.3 families to produce F24 self-bulk seed progenies. The remnant F3 

seed produced by selfing the original F2 plants of this mapping population was maintained 

as a nucleus stock for use in further multiplication of Fq self-bulk (F2:4) seed (Figure 2) as 

described by Hash and Witcornbe (1994). During summer and khurf2002, the Fd self- 

bulk progenies were screened against Indian pathogen populations under greenhouse 

conditions at ICRISAT, Patancheru to generate the phenotypic data required for QTL 

mapping. During kharfand late Wlarf2002, these progenies were screened under similar 
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conditions by Dr. Wendy A. Breese at the University of Wales, Bangor, UK, against two 

African pearl millet downy mildew pathogen populations. 

Single 4-m rows of each of the Fz4 self bulk seed progenies of this population 

were sown in ICRISAT-Patancheru field RL 18 during kharg2003. In the progeny rows, 

observations were recorded for segregating plant height (both qualitative and 

quantitative), glume color, basal node and internode color and downy mildew incidence. 

3.2. DOWNY MILDEW PATHOGEN POPULATIONS 

Indian Isolates African Isolates 

ICRISAT, Patancheru (Sg153) 

MAHYCO, Jalna (Sg150) 

Maiduguri, Nigeria (Screen 43) 

Bamako, Mali (Screen 45) 

GAU MRS, Jamnagar (Sg200) 

CAZRI, Jodhpur (Sg139) 

RAU ARS, Durgapura, Jaipur (Sg15 1) 

IAN, New Delhi (Sg298) 

3.2.1. Preparation of pathogen inoculum 

3.2.1.1. Collection and inoculum 

Single infected leaves were collected from downy mildew infected plants that did not 

show extensive chlorosis. Each leaf was washed and gently rubbed with moist cotton 

wool to remove old sporangia and sporangiophores and then placed into a moist box. 

Separate boxes were used for each pathogen population. The leaves in the boxes were 

incubated overnight in the dark at 20°C and 100% relative humidity. The following 

morning, leaves with the most profuse sporulation were selected. Using a camel 

hairbrush, for each pathogen population spores were removed from the leaves and 

collected into ice-cold water (below 2°C). The concentration of spore suspensions were 

adjusted to approximately 1.5 x 10' sporangia mL'. 

3.2.1.2. Maintenance of pathogen isolates 

A wide diversity of populations of this pathogen has been identified from India and 

samples of these are being maintained at ICRISAT, Patancheru (Thakur and Rao, 1993). 



The pathogen populations are maintained on plants of highly downy mildew susceptible 

pearl millet genotypes 7042(S) [a selection from landrace germplasm accession IP 2696 

from Chad (Singh et al., 1994)] and Fl  hybrid NHB 3, both of which show >SO% 

infection under heavy inoculum pressure. The infected plants are grown in sterilized soil 

in covered pots in a greenhouse room maintained at slightly above atmospheric pressure 

to prevent the entry of air-borne spores. Seedlings were inoculated at the two or three-leaf 

stage by spray application of a freshly prepared, chilled suspension of a particular 

pathogen population. The pots are then covered with polythene bags and incubated at 

20°C to promote infection. After 12 hours, the bags were removed and the pots of 

seedlings infected with a particular pathogen population were maintained at 20-25°C in 

plexiglass-covers on benches in the greenhouse. 

3.2.2. Screening mapping population progenies 

3.2.2.1. Screening at ICRISAT, Patancheru 

The mapping population (from plant x plant crosses of ICMB 891 11-P6 x ICMB 901 11- 

P6) of 172 F 2 4  entries along with their parental lines and control entries such as 7042(S), 

7042(R) = ICML 22 (Singh et al., 1994). 700651 = ICML 16 (Singh et a[., 1990), 843B 

(Stegmeier el al., 1998) P1449-P2, PT 732B (Appadurai et al., 1982) and HB 3, were 

evaluated under greenhouse conditions during early kharif 2002, at ICRISAT, 

Patancheru. Seedlings were grown in 12 cm diameter plastic pots. Pots were three- 

quarters filled with a potting mixture consisting of equal proportions of Alfisol, farmyard 

manure and fine sand. Thirty-five to forty seeds of an entry were sown at a uniform 

distance on a well-leveled soil surface in a single pot and covered with a two cm layer of 

potting mixture, irrigated and maintained at 25-3O0C in the greenhouse. Seedlings at the 

coleoptile-to-one-leaf growth stage are considered optimal for inoculation. When 

seedlings in the majority of pots had reached'this stage (normally 3 4  days after sowing), 

all pots of seedlings were sprayed with an aqueous suspension of sporangia (about lo5 

sporangia mL") using a hand sprayer (Figure 3). Care was taken to cover uniformly all of 

the seedlings and to keep the sporangial suspension adequately chilled (Jones et al., 

2001). The pots were then covered with a polythene sheet and incubated in the dark at 

20°C for 16 hours to promote infection. After 16 hours, the pots were shifted from the 

incubation room to greenhouse benches. Counts of total seedlings per pot were taken just 

before inoculation and those of diseased seedlings per pot were taken 14 days after 



inoculation. The same inoculation procedures were repeated three times [time replications 

in completely randomized block designs for each of the six pathogen populations (a total 

of 18 different screens]. 

3.2.2.2. Screening at Bangor, UK (Wendy A. Breese, pers. comm.) 

Seeds of two parental lines, appropriate control entries, and a circa of 172 (data scored 

from 164) skeleton-mapped F z : ~  pearl millet progenies from a cross (ICMB 891 11-P6 x 

ICMB 9011 1-P6)-based mapping population were sown (43 seedstpot using a vacuum 

planter) in low-nutrient peat and sharp sand compost (Chempak Seed Base, Chempak 

Products, UK: NPK 25-39 mg L-I). Each pot represented a replicate of the pearl millet 

genotype. For each pathogen population a single inoculation date with three pots 

(replicates) per entry was used, with pots arranged in a randomized complete block design 

prior to inoculation. Pots were placed on flood benching in a controlled environment 

(greenhouse) providing a 16 hour day length (0600-2200 h) with a light intensity of 

between 500 and 1200 pE m'* s-', and a temperature of 25 to 30°C from 0600-1800 h and 

20°C from 1800-0600 h. The benches were flooded daily to an approximate depth of 1 cm 

for 30 minutes and then drained. When the seedlings were at the coleoptile-to-one-leaf 

stage the inoculum was prepared. Leaves from 2-3 month-old infected plants were wiped 

using moist laboratory roll (Kimwipes Roll, Kimberly Clark, Kent, UK) and incubated in 

sealed plastic boxes lined with moist laboratory roll for 8 h at 20°C in the dark. The 

resulting sporangia were collected in chilled (below 2°C) distilled water and their 

concentration assessed. Each pot of seedlings was sprayed with approximately 4 mL of 

inoculum using a compressed air cylinder fed sprayer (Kestrel Eqpt. Ltd., London). The 

inoculum was maintained on ice throughout inoculation to prevent zoospore release and 

so ensure a uniform inoculum concentration over time (Jones et al., 2001). The pots were 

then covered with a polythene sheet to maintain a high level of humidity and incubated in 

the greenhouse at 20°C for 15 hours to promote infection. Downy mildew disease was 

assessed 14 days later based on the percentage of infected seedlings within each pot. The 

disease score for each genotype was the mean of infection percentages for individual pot 

replicates. 
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3.3. GENOMIC DNA ISOLATION 

Several procedures for genomic DNA isolation have been reported (Dellaporta et al., 

1983; Murray and Thompson, 1984; Tai and Tanksley, 1990). The procedure based on 

Sharp et a!. (1988) and re-optimized by substituting S-buffer with CTAB extraction 

buffer (Mace et al., 2003) was used for pearl millet genomic DNA isolation in this study. 

Dark-grown, young seedlings or soft, non-green, stem internodes tissues are generally 

used to isolate genomic DNA as they yield better quality DNA with good restriction 

digestion with restriction endonuclease enzymes. These soft tissues respond well because 

of lower concentrations of phenolics and other adhering compounds compared to older 

green leaves. However, in this study young green leaves were used as the source of tissue 

for DNA isolation. 

3.3.1. Grinding 

Normally two methods are used to grind leaf tissues for DNA isolation. The process of 

DNA isolation requires lysis of the cell wall and cell membrane to release the DNA into 

an extraction buffer. 

3.3.1.1. Method I 

The leaf material is ground to powder with liquid nitrogen using pestle and mortar. The 

powder is then transferred to centrifuge tubes. 

3.3.1.2. Method I1 

A small coffee grinder serves the purpose of grinding tissue samples, particularly when 

preparing tissue samples for DNA extraction from a population of more than 172 single 

plants. In this method, powdered dry ice (solid phase C02) is used along with the leaf 

samples that have been dipped in liquid nitrogen. The ground leaf samples were then kept 

at 4°C overnight to permit evaporation/sublimation of any remaining dry ice. 

3.3.2. Extraction 

Extraction of the ground leaf samples using a buffer having CTAB (cetyltrimethyl 

ammonium bromide), EDTA (ethylene diamine tetra acetic acid) and P-mercaptoethanol, 

is followed by differential centrifugation to isolate genomic DNA from cell debris, 

precipitation of CTAB-protein-carbohydrate complexes with an acetate-isopropanol 



solution, followed by phenol and phenol-chloroform extractions; and a second 

precipitation of DNA with absolute alcohol. 

In the present study, tissue grinding method I, and a Millet CTAB maxi-prep 

DNA extraction protocols were followed. CTAB maxi-prep DNA extraction differs from 

the SDS maxi-prep protocol outlined above in terms of avoiding excessive use of phenols 

(a highly corrosive chemical) and skipping some of the steps, thus saving money and 

time. DNA quality is obtained on par with that from the SDS maxi-prep protocol but the 

quantity is comparatively less. 

3.3.2.1. First day extraction 

DNA was isolated from 2-3 grams of green F3 seedling leaf tissue produced from the 

selfed-bulk seed of a given Fz plant, 10-14 days after emergence. These seedling leaves 

were quick-frozen in liquid nitrogen and ground to a fine powder in liquid nitrogen with 

the help of a pestle and mortar. The ground tissue was transferred to a 50 pL propylene 

tube containing 15-20 mL extraction buffer (2-3% wiv CTAB, 1.4 NaC1, 20 mM EDTA, 

100 mM Tris-HCL pH 8.0, 0.17% P-mercaptoethanol) preheated to 6S°C. These tubes 

were incubated at 65'C in a water bath for 30 minutes with occasional gentle inversions 

for mixing. An equal volume of chloroform-isoamyl alcohol (24:l viv) was added to the 

ground material and buffer and mixed well by a number of inversions on a shaking 

platform for 10 minutes to form an emulsion. The emulsion was separated into an 

aqueous phase and cell debris by centrifugation at 6000 rpm for 10 minutes at 4°C in a 

Sorvall HB 7 rotor. The upper aqueous phase was transferred to a sterile tube and 0.7 

volume of cold iso-propanol was added and the mixture then incubated at -20°C for 20 

minutes. Precipitated DNA was spooled out with a glass hook and rinsed twice in 70% 

ethanol (if no precipitation was seen then the solution was centrifuged at 6000 rpm for 5 

minutes at 4 O C )  and lastly the pellets were air dried under a fan for 20-30 minutes 

(avoiding over-drying of the pellet to help the dried pellet dissolve quickly in T50Elo). The 

dried DNA pellet was then dissolved in 500-700 pL T50Elo (50 mM Tris-HCL, 10 mM 

EDTA, 2 M NaCI, pH 8.0) and incubated overnight at room temperature. 



3.3.2.2. Second day purification 

To the completely dissolved DNA samples from the first day extraction 10 pL RNase (10 

mg/mL) was added and the samples were incubated at 37OC for 1 hour, during which they 

were gently stirred every 15 minutes. To purify the samples (removing the degraded 

RNA), an equal volume (500-700 pL) of cold phenol:chloroform:isoamyl alcohol 

(25:24:1) was added, gently mixed and separated as two phases by centrifugation in a 

microfuge at 14000 rpm for 5 minutes. The supernatant was transferred into a clean and 

sterile eppendorf microtube and the extraction was repeated with cold chloroform:isoamyl 

alcohol (24:l). To the final supernatant (aqueous phase), 3 M sodium acetate (one tenth 

volume) and two volumes of absolute ethanol was added and mixed by gentle inversions. 

The jelly-fish-like precipitated DNA was carefully spooled-out with a glass hook and 

rinsed twice in chilled 70% ethanol, then placed in a clean sterile eppendorf tube. After 

briefly centrifuging at 10,000 rpm for 2-4 minutes, excess ethanol was poured off and 

DNA samples were air-dried in dust free conditions for 1-2 hours. The DNA samples 

were finally suspended in an appropriate volume of TloEl (10 mM Tris-HCI and 1 mM 

EDTA, pH 8.0), to make a volume of 250-350 pL (according to the size of the individual 

pellets) and stored at 4OC. 

3.3.3. DNA quantification and purity check 

DNA concentration of each sample was quantified by spectrophotometer measurements 

of UV absorption at 260 nm, assuming 1 OD at 260 nm is equal to 50 pg of DNA 

(Maniatis et al., 1982). The ratio of OD260 to OD280 was calculated to check the purity of 

each DNA sample. Pure DNA preparations show an OD260 to OD280 ratio between 1.7 and 

1.8 (Maniatis et al., 1982). 

Each DNA sample was analyzed in a 0.8% TAE-agarose gel to test its integrity 

(Maniatis et al., 1982). Gels were stained with ethidium bromide and viewed on a UV- 

transillumninator, then photographed with a camera fitted with a W filter. 

For preparing working solutions of uniform DNA concentration from the above samples, 

the following formulae were used: 

DNA concentration (pg/pL) of stock solution: 



= [OD value (260 nm) x 50 pg/mL x DF] 

where 

DF = Dilution factor (200 in case of 5 pL of newly extracted plant DNA dissolved 

in 1 mL of DDW (double distilled water) or 500 in case of 2 pL of newly 

extracted DNA dissolved in 1 mL of DDW for spectrophotometery) 

DNA concentration (1 pgipL) for digestion and blotting: 

= (Total volume to be made x 20 pg/pL) + DNA concentration of stock solution 

DNA concentration (5 ng/pL) for total dilution of volume of 1000 pL for PCR reactions: 

= (5 ndpL x I000 pL) + DNA concentration of stock solution 

DNA degradation and contamination with other substances were checked by 

electrophoresis of aliquot of samples in mini agarose gels (0.8%). It was assumed that 

large molecular weight DNA appears as a band with sharp edges, whereas partially 

degraded material forms a smear of long to small fragments. The amount of DNA was 

also approximated utilizing UV-induced fluorescence emitted by ethidium bromide 

molecules intercalated into the DNA. Because the amount of fluorescence is proportional 

to the total mass of DNA. The quantity of DNA sample was estimated by comparing the 

fluorescent yield of the sample with that of a series of lambda DNA standards. 

3.4. SIMPLE SEQUENCE REPEATS (SSRs) MARKER 

3.4.1. Testing parental polymorphism using SSR primers 

According to Caetano-Anolles (1997) the parameters of DNA amplification (viz., 

specificity, efficiency, and fidelity) are strongly influenced by the different components 

of the reaction and by thermal cycling. Therefore, the careful optimization of these 

parameters will ultimately result in reproducible and efficient amplification. To achieve 

the optimization, the range of values for components of PCR reaction was varied in the 

protocol below for different primers used in the present study. 

PCR conditions for pearl millet SSR primer pairs (Allouis et al., 2001; Qi e l  al., 

2001, 2004) were optimized using a grid with various amounts and concentrations of 

chemicals used for the PCR master mix, at different annealing temperatures. To identify 



SSR primer pairs detecting polymorphism between parents, initial screening of parental 

lines was conducted before actual genotyping of individuals in segregation F2 mapping 

population. For this, DNA from ICMB 891 11-P6 (taken as first parent i.e. PI) and ICMB 

901 11-P6 (taken as second parent i.e. P2) and their corresponding FI hybrids were 

subjected to PCR amplification with each of the available SSR primer pairs. A total of 80 

SSR primers pairs were used to screen the parents of the population. Line 81B (Anand 

Kumar et a/ , ,  1984) was the source of the DNA used in generation of an SSR-enriched 

library (Qi et al., 2001) and a mapping parent. Its seed parent Tifi 23D2B (Burton, 1969) 

was the genotype used in the construction of a pearl millet BAC library from which 

additional pearl millet SSRs were identified (Allouis et al., 2001). 

The sequence information of forward and reverse primers used for genotyping 

pearl millet SSR loci included within study is given in Table 2. From this screening, SSR 

primer pairs detecting scorable polymorphism between the parents were noted and used 

for further screening of the F2 mapping population. 

3.4.2. PCR reaction mix and conditions for SSR amplification 

The PCR reactions were conducted in a Peltier Thermocycler DNA Engine PTC 200 

model and Dyad machine from MJ Research. The standard PCR reagents in a total 

reaction volume of 20 uL were: 

Genomic DNA template (5 ng/pL) 3.0 pL 

PCR buffer (10X) 2.0 pL 

M ~ ~ +  (50 mM) 0.5 pL 

DNTP mix (2 mM) 2.0 pL 

Primer (30 ng/pL) 1.0 pL 

Taq DNA polymerase (5 UIpL) 0.2 pL 

De-ionized distilled water 11.3 pL 

3.4.2.1. PCR cycling 

The cycling conditions for SSR primers were set up using touchdown PCR thermo 

cycling (Don et al., 1991) with minor modifications. The details of the standard 

touchdown PCR program are as follows: 

95OC - 5 minutes hold (initial denaturation) 



95'C - 15 second (denaturation) 

*61°C - 20 second @rimer annealing) 

* = 1°C drop per cycle for 10 cycles 

72OC - 30 second (primer extension) 

95°C - I0 second (denaturation) 

54°C - 20 second (primer annealing) for 35 cycles 

72'C - 30 second (primer extension) 

72°C - 2 minutes hold 

04OC - storage 

Optimization started with the above-mentioned PCR conditions. However, 

changes in annealing temperatures (from 4S°C to 63'C) were followed for different 

primer pairs per the temperature range required for the respective primer pairs to achieve 

optimization of the amplified products. The most common annealing temperature for a 

majority of the SSR primers for PCR reactions was 61°C in 9-step touchdown PCR 

protocol SSR61: 

94OC - 4 minutes hold 

94OC - I minute (initial template denaturation) 

Ramping @ - 0.5"Cisecond to 61°C 

61 "C - 1 minute (primer annealing) 

Ramping @ +0.5"C/second to 72'C 

72OC - 1 minute (extension) 

Go to step 2 for 34 times 

72'C - 4 minutes (final extension) 

04'C - storage 

In the course of genotyping of the F2 population, the above-mentioned total volume 20 pL 

of the PCR master-mix was reduced to half (10 pL) by reducing the volumes of all PCR 

master-mix ingredients (especially dNTPs, primers and Tag DNA polymerase) following 

re-optimization of the reaction conditions for each primer pairs. This was done to use 

resources more efficiently and save on consumables costs. Before loading, 5 pL of 

loading buffer (5X) containing orange dye was added to each reaction sample. 



Table 2. List of 26 polymorphic pearl millet SSR primers used for screening of 172 F2 mapping population progenies fiom the cross based on 
parental l ies  ICMB 891 1 1-P6 and ICMB 901 1 I -P6 

5' ACC AGA GCT TGG AAA TCA GCA C 3' 1 (CA)II(GA)IO I I07 / 049 1 Qnetal (20M)TAG 

PSMP2030 R 5' CAT AAT GCT TCA AAT CTG CCA CAC 3' 

PSMP2080 R S'TGCAACTGAGCGAAGATCAA3' 

PSMP2273 F I B320PI 1 5' AAC CCC ACC AGT AAG TTG TGC TGC 3' (GA) I2 169 0.75 Allouxs et al. (2001) TAG 102 1200- 1205. 

PSMP2273 R 5' GAT GAC GAC AAG ACC TTC .TCT CC 3' QI a al. (20W) TAG 

PS-072 F 2 -- 5' GAA ATC T.4C ACA AGG GTC TCC A 3' (CA)24 165 0.90 Qi a al (2004) TAG 

Microsatellite 
motif 

Sr. 
No. 

PSMP2072 R 5' GTA CGG AGC AAT GAC ATC TGA A 3' 

PSMP2077 F 2 - SGCC AA A I T  ATT CCC AAG TGA ACA 3' (CA)15(TA)8 180 0 50 01 el  al (2004) TAG 

Linkage 
g~oup 

Primer name 

PSMP2089 R 5' TGT GCA TGT TGC TGG TCA TT 3' 

7 PSMP2201 F 2 8320008 5' CCC GAC GTT ATG CGT TAA G T I  3' 

PCR product 
size (bp) based 

5' CCG TAC TGA TGA TAC 1%A TGG TT 3' 

PSMP2225 R 5' TGG GAG GTA AGC TCA GTA GTG T 3' I 

BAC 
origin 

Qi et al (2004) TAG 

0 60 Allouir etal. (2001) TAG 102- 1200-1205. 

Published PIC 
value 

Primer sequence 

I QI et al. (2OW)TAG 

Reference 



..... contd. Table 2. List of 26 polymorphic pearl millet SSR primers used for screening of 172 F 2  mapping population progenies from the cross 
based on parental lines ICMB 891 11-P6 and ICMB 901 11-P6 

0 0 7 O F  3 I - I S ACA GAA AAAGAG AGGCAC AGG AGA3 I (CA)25(TA)6 I 226 1 0 90 I Qi el al ( 2 W T A G  

PSMF2070 R 5' GCC ACT CGA TGG AAA TGT GAA A 3' 

0.79 Allouisaal. (2WI)TAG 102. 12W1205. I 1 I / Qi  a al (2004) TAG 

PSMP2084 R 5' GGT TAG TIT G I T  TGA GGC AAA TGC 3' 

PSMP.7078 F 5 - SCAT GCC CAT GAC AGT ATC I T A  AT 3' (CAM2 172 0 85 QB el al. (2004) TAG 

PCR product 
size (bp) based 

on 8 lB  

Microsatellite 
motif 

PSMP2078 R 5' ACI G1T CGG l7C CAA AAT ACT T 3' 

PSMPU02 F 5 B320W5 SCTG CCT G I T  GAG AAT AAA TGA G 3' (67)s 161 0.42 Ql a al. (2001) BioTechniques 31 355-362. 

Sr. 
No. 

PSMPU02 R 5' GIT  CCG AAT ATA GAG CCC AAG 3' QI et al (2004) TAG 

PSMP2208 F 5 832609 5' GGA AGA GCA AAC TGA ACA ATC CC 3' (GT) I 0  253 0.78 QI ct al. (2001) B~aTeehniquss 31: 355-362. 

Published PIC 
value 

Linkage 
group 

Primer name 

PSMP2208 R 5' ACT =G CCC TGG ATG ATC CTC 3' Qi el al. (2004) TAG 

PSMP2220 F 5 El320112 S' GCA TCC TTC ACC A I T  CAA GAC A 3' (GT) I I 128 0.66 Ql et al. (2001) B'iTechniques3l: 355-362. 

Reference 

I PSMP~ZZO R I I I s TGG GAA ACA GAA TGG AGA AAA GAG Y I I I ( ~l a a ~ .  ( 2 ~ 4 )  TAG I 

BAC 
origin 

Allouis a al (200l)TAG 102: 1200-1205 

QI et al. (2003) TAG 

Primer sequence 

- - 

PSMP2276F 5 5 TGT GGC AAT TAC GGT CGA GC 3' (CAI16 700in841B None 

PSMP.7276 R 5' CTA CCT CTA TCT TAC TTC ACC 3' 





3.4.3. Separation of PCR products containing SSRs 

For separation and visualization of PCR products both agarose (1%) as well as 

polyacrylamide gels (6%) were used. Agarose gels were used only for initial 

visualization/checking of amplification considering two limitations in their use. Firstly, 

exact sizing of microsatellite alleles cannot be accomplished on agarose. Secondly, it is 

difficult to distinguish two, three or four base-pair differences in DNA fragment length on 

agarose (Cregan and Quigley, 1998). Therefore, scoring of allele size differences of PCR 

amplified products was performed in polyacrylamide gels. 

3.4.3.1. Agarose gel electrophoresis 

Agarose 1% gels were cast in TBE buffer (1X). Gels were cast in a horizontal gel frame 

(GIBCO BRL or Bio-Rad sub cell or Owl separation systems) and products were 

visualized by incorporating 1 pL (10 mgImL) ethidium bromide (EB) per 20 mL of gel 

solution and viewed in a gel documentation system. Here the purpose of running agarose 

gels (for 15-30 minutes at 100 V) was to check whether amplification of PCR product has 

taken place or not before attempting to separate this PCR product on PAGE as a PAGE 

run takes more time than an agarose run. 

3.4.3.2. Polyacrymide gel electrophoresis (PAGE) 

For separation and visualization of PCR products, 6% polyacrylamide gels were used. 

The details of gel preparation, electrophoresis and visualization of separated DNA bands 

are given below. 

3.4.3.2.1. Gel preparation and electrophoresis 

Polyacrylmide gels allow high resolution of amplified products from PCR. For separating 

amplified products of SSR primers, non-denaturing polyacrylmide gels (6%) were used. 

Before preparation of gel solution, glass plates were cleaned thoroughly with ethanol. A 

few drops of repel-silane-ES were applied to the back plate and rubbed over the surface. 

This makes it easier to separate the plate from the gel. To the front glass plate a few drops 

of bind silane were applied and rubbed over its entire surface. This prevents the gel from 

dislodging during staining. 



Cautions: 

i) If plates are not thoroughly cleaned prior to use, bubbles can get trapped while 

pouring the gel, which adversely affects movement of the PCR-amplification 

of a product resulting in ambiguous scoring of the bands. 

ii) Silane is a carcinogen, so gloves and a facemask should be worn when 

applying this to the glass plates. 

1). For a 6% gel (Bio-Rad plates) 75 mL of gel solution was prepared by mixing 

08.0 mL TBE buffer (10X) 

15.0 mL 29:1 (wlw) acrylamidehis-acrylamide solution 

52.0 mL distilled water 

Caution: 

1). Acrylamide is a neurotoxin. Always wear gloves, goggles and a facemask when 

working with aclylamide powder, solutions and/or gels. 

2). The contents of the gel solution were mixed vigorously. TEMED (90 pL) was added 

and mixed by swirling the flask. 

3). Immediately added 400 pL of 10% (w/v) APS (ammonium per-sulphate) and mixed 

by swirling the flask. 

4). Acrylamide solution was poured into the syringe, which feeds it between the glass 

plates, and the comb was inserted to produce track-loading wells at the top of the gel. 

Note: Polymerization is catalyzed by the addition of freshly prepared APS, so be quick 

in pouring the solution into the plates after adding this catalyst to the gel solution. 

5). After polymerization the gel was set up for running electrophoresis. The comb was 

removed. The lower tank was filled with TBE (0.5X; approximately 250-300 mL) and 

the back of the plate and upper reservoir with the same (approximately 400 mL), 

ensuring that the well was covered. Each well was aspirated with TBE buffer using a 

Pasteur pipette to remove small fragments of gel and tiny bubbles. The gel was pre- 

run for at least 10 min at 5 V/cm (approximately 400 V, 9 W) to warm it. 

6). The samples were made up for loading in 5X loading buffer to give a final 

concentration of 1X. Between 2 and 5 pL were loaded into each well on the gel. 

Lambda size markers (2 FL of 50 ng/pL) were loaded along with the samples. 

7). The gel was run at approximately 5 Vlcm (400 V, 9 W) until the desired resolution 

was reached. This was determined by the dye front. 



8). After the run, the plates were carefully pulled apart so that the gel remained attached 

to the front glass plate. 

3.4.3.2.2. Silver staining and visualization of bands 

Electrophoresed DNA fragments were detected with silver nitrate staining (Goldman and 

Merril, 1982). Several protocols for silver staining can be used, most of which require 

approximately 2 hours. Although commercial kits for silver staining were available from 

several manufacturers (e.g.,  Bio-Rad), lab-made solutions were used in the present study. 

Each solution was prepared in a separate container. The same solutions were used twice 

over a 30 h period except for silver nitrate solution and developer, which were freshly 

prepared during the staining process. 

The steps followed for silver staining are: 

1). The gel was rinsed in distilled water for 3-5 minutes. 

2). The gel was soaked in 2 L of 0.1% CTAB (2 g in 2 L of water) for 20 minutes. 

3). The gel was incubated in 0.3% ammonia (26 mL in 2 L) for 15 minutes with shaking. 

4). Silver nitrate solution was prepared (2 g silver nitrate, 8 mL of 1M NaOH, 8 mL 25% 

ammonia) and titrated with ammonia until the solution became clear after which a 

further 1 mL of ammonia solution was added. 

5). The gel was placed in the silver nitrate solution for 15 minutes and was gently 

agitated. 

6). The gel was then rinsed in water for 1 minute. 

7). The gel was placed in developer (30 g sodium carbonate, 0.4 mL formaldehyde, 2 L of 

water) until the bands became visible. 

8). The plate was rinsed in water for 1 minute to stop staining. 

9). The gel was placed in fixer (30 mL glycerol in 2 L of water). 

10). The gel was kept for air-drying overnight and then scanned. 

Note: To remove the dried gel from the plate, the plate was soaked in concentrated 

sodium hydroxide (NaOH) solution (40 g flakes in 1 L of distilled water) for a few 

hours. 

DNA polymorphism among the parents was observed based on length of 

amplified fragments in terms of number of base pairs by comparing with a 100 base pair 

ladder (50 ng/pL). The images showing parental polymorphism for some SSR primer 



pairs on a polyacrylamide gel visualized by silver staining are presented in Figurel5-16. 

Among the different bands observed in each lane, the smallest base pair size of a band 

was considered for scoring. 

3.4.4. Genotyping F2 population with SSR primers 

3.4.4.1. Monoplex PCR product separation and visualization 

Subsets (depending on size of comb) of the mapping population were screened with the 

SSR primer pairs showing polymorphism between mapping population parents. The PCR 

products (2 pL) of each individual in the mapping population were loaded along with 

those of the parents and standard size ladder (1.5-2.0 pL of 100 bp ladder of 

concentration 50 ng/wL) using a custom 50- or 69- or 100-toothed comb (0.4 cm well- 

center-to-well center with thickness of 0.4 mm). The electrophoretically separated DNA 

bands were visualized by silver staining. The gels were cleaned well before scanning. 

More than 90% of the SSR loci were genotyped using monoplex PCR product separation 

and visualization. An image of a silver-stained PAGE gel in which PCR products of a 

single primer pair were loaded is presented in Figure 19-2 1. 

3.4.4.2. Multiplex PCR product separation and visualization 

Individuals of the mapping population were screened with more than one primer 

simultaneously on a single PAGE gel. This is based on the concept of differences in size 

of amplified products with different primers; the information of which was previously 

known from the parental screening. While choosing the primers, it was made sure that the 

amplified products of selected primers do not co-migrate with each other. In this 

procedure instead of running the PCR reaction with a number of primer pairs 

simultaneously (pre-amplification multiplex PCR), which requires a lot of time for 

optimization, the PCR reaction for each primer pair was set up separately and these 

monoplex products were pooled together, i .e . ,  post-amplification multiplexing (also 

called multi-loading). These samples were loaded in the PAGE and bands were visualized 

with silver staining procedures. The alleles for each primer were scored separately by 

comparing banding patterns with those of parental alleles for the respective primer pairs. 

An example for two-primer multiplex (Xpsmp2203 and Xpsmp2202, Xpsmp2202 and 

Xpsmp2274) and same primer loaded twice with a time interval of 15 minutes on a urea 



denaturating gel and 30-45 minutes on a 6% non-denaturating polyacrylamide gel are 

given in Figure 18. 

3.4.4.3. Scoring of SSR amplified bands and genotyping 

The banding patterns obtained from PCR amplification of various SSR primers in the F2 

individuals were scored as follows: 

A = Homozygote for allele a from parental strain PI at this locus 

B = Homozygote for allele b from parental strain P2 at this locus 

H = Heterozygote canying alleles f ~ o m  both PI and PI parental strains i.e. genotype 

comparable to the F, 

C = Not a homozygote for allele a (i.e. either B or H) 

D = Not a homozygote for allele b (i.e. either A or H) 

- = Missing data for the individual at this locus 

After scoring, the individual progeny genotypes were typed in a Microsoft Excel 

spread sheet in a format suitable for linkage analysis by MapMakerIExp. (i.e., rows = 

genotype score at a given locus; columns = F2 individual of the mapping population). 

3.5. RESTRICTION FRAGMENT LENGTH POLYMORPHISM (RFLP) MARKER 

3.5.1. Restriction enzyme digestion 

For each mapped F2 plant from the population, 20 pg of DNA in sterile distilled water 

(SDW) was digested with Dral, EcoRI, EcoRV and Hind11 restriction endonucleases 

following the supplier's instructions (Amersham Pharmacia Biotech, Ltd.). The digestion 

was conducted in a total volume of 30 pL and incubated overnight at 37'C. The reaction 

was terminated by addition of 5 pL of loading buffer (25% sucrose, 0.1% bromophenol- 

blue and 20 mM EDTA) to each 30 pL sample. 

3.5.2. Electrophoresis 

Fragments of digested DNA obtained after restriction enzyme digestion were separated 

by electrophoresis in 0.8% TAE-agarose on a horizontal slab gel (Bio-Rad DNA Sub 

cellTM) electrophoresis unit (Owl Separation Systems Model N0.A-1) for 16 hours at 38 

V cm" in TAE (0.04 M Tris-acetate, 0.001 M EDTA, pH 7.8) buffer. Agarose gels were 

prepared in the same buffer that was used for electrophoresis. HindII-digested lambda 



DNA (h  DNA) was used as molecular size markers with fragment sizes of 23.1 kb, 9.4 

kb, 6.6 kb, 4.4 kb, 2.3 kb and 2.0 kb. Gels were stained in 0.5 ~g m ~ . '  ethidium bromide 

for 15 minutes, destained for 30 minutes in distilled water, viewed on a UV- 

transilluminator and photographed to assess digestion quality (Figure 4). 

3.5.3. Southern blot hybridization 

3.5.3.1. Preparation of southern blots 

DNA fragments, separated electrophoretically after digestion, were transferred from 

agarose gels onto nucleic acid nylon transfer membranes (Hybond-N*, Amersham 

Pharmacia Biotech, Ltd.) following the procedure of Southern (1975). The sponge was 

partially dipped in an alkali solution of 0.4 M NaOH. This solution served as a denaturing 

agent and the vehicle for capillary transfer of DNA fragments from the gel to the nylon 

membrane. As the alkali solution passes through the gel on its way to be absorbed in the 

paper towel, the DNA fragments are carried out of the gel and bound to the nylon 

membrane. Transferred membranes were soaked in 2X SSC for 2 minutes to neutralize 

the alkali, air dried, wrapped with cling film and then stored at -20°C for future use. 

3.5.3.2. Probes used 

The clones used for probing were selected from a Psrl genomic library (named as 

PgPSMl to PgPSM1000) constructed from total DNA of pearl millet genotype 7042(S) 

by Liu et al. (1 994). Initially around 40 clones identified as detecting single copy or low 

copy loci were evaluated and from this a set of 20 detecting polymorphism between 

parental lines ICMB 891 11-P6 and ICMB 901 11-P6 were selected for use (Table 3). 

3.5.3.2.1. PstI genomic library (Liu el al., 1994) 

Pearl millet PstI genomic library clones were constructed with total-plant DNA extracted 

from the leaves of pearl millet genotype 7042(S). Fifty micrograms of DNA was digested 

with 100 units of Pstl enzyme and subjected to electrophoresis. Fragments in the size 

range of 500-3000 bp were collected using DEAE membrane. The purified fragments 

were then ligated into the PstI site of pUC 18. The Escherichia coli bacterial strain DH5 

was transformed and plated out on LB media (NaCI, trypton and yeast extract) with 

ampicilin (10 mg W ' ) .  Individual colonies were picked out and grown in 2 mL of LB 

media containing cafbenicillin (10 mg W 1 )  to produce stab cultures (Liu er al., 1994). 



Table 3. List of 20 polymorphic probe-enzyme combinations used for screening of 
segregating 172 F2 mapping population progenies from the cross based on parental lines 
ICMB 891 1 1-P6 and ICMB 901 1 1-P6 



Figurc 4. Image of pearl ~ n i l l c ~  genomic DNA isolatcd l,oni i : ~  rirnpping popt~li~lion 
progenies restrizled with 1)rztl on ethidium stained I .O %' ;\gorose gel electropl~oresis 

Cienomic DNA ixolatcti from 'i:> mapping populatioi~ progcrries + 



ICRISAT received the pearl millet RFLP probes as stab culture stocks, from Drs. Michael 

D. Gale and Katrien M. Devos of the John Imes Centre, Cambridge Laboratory, 

Nonvich. UK. 

3.5.3.2.2. Plasmid DNA extration 

From a stab culture, one loop full of culture was taken and transferred to a culture tube 

containing 5 mL of LB media with 10 pL ampicilin (10 mg m~. ' ) .  The inoculated 

cultured tubes were kept overnight in a shaker at 270 rpm at 37% Centrifugation was 

done at 6000 rpm for 10 minutes to get the pellet. Then 200 pL of solution A (4 mg 

lysozyme mL" of GTE solution), 300 pL of solution B (10% SDS and 1 N NaOH) and 

300 pL of solution C (7.5 M ammonium acetate) were added to the pellet which was re- 

dissolved in this solution and incubated for 10 minutes in ice. Again centrifugation was 

performed at 10,000 rprn for 10 minutes. To the supernatant, 30 pL of RNase (10 mg mL' 

I) was added and incubated at 37°C in an oven for an hour. The solutions were then 

centrifuged at 5000 rprn for two minutes with equal volumes of 

phenol:chloroform:isoarnyl alcohol (25:24:1 vlv). After collecting the supernatant, 

chloroform mixture was added, mixed gently and the solution again centrifuged at 5000 

rprn for two minutes. To the supernatant, an equal volume of isopropanol was added, 

mixed thoroughly but gently, and kept for 20 minutes at -20°C. After one centrifugation 

at 10,000 rpm, the plasmid DNA pellet was washed two times with 70% ethanol, and 

diluted with 30 pL of TloEl for storage at -20°C. 

3.5.3.2.3. Purification of the inserts-NA 45 membrane method 

The gene inserts of the clones were cleaved from their vectors using appropriate 

endonuclease enzymes such as Pstl and Ps111 and fractioned by electrophoresis on a mini- 

gel of 0.8% agarose in TAE buffer for 3 hours at 6 V cm-'. The gel was observed on a 

UV-transilluminator and the desired fragment was transferred onto NA 45 membrane in a 

slit just behind the band of the interest and allowing the electrophoresis to resume for a 

further 30 minutes. The DNA was eluted from the membrane by addition of sufficient 

(250 pL) high salt buffer (I M NaCI, 0.01 mM EDTA, 20 mM Tris, pH 8.0) to cover the 

membrane, followed by incubation at 65OC for 10 minutes. Ethidium bromide was 

removed by extraction with TE saturated n-butanol and the DNA was precipitated with 

0.5 volume of isopropanol at -80°C for 30 minutes and pelleted in a Sowall 



microcentrifuge at 10,000 rpm for 10 minutes. The pellet was washed in 70% ethanol, 

dried under vacuum and dissolved in Tlo El. 

3.5.3.2.4. Using PCR amplification for insert purification 

Alternatively, we used PCR for amplification and then inserts were purified using 

Sephadexa 6-50 or Spin Column Elutipsa or similar size exclusion media. In this 

method, the extracted plasmid DNA was diluted 100 times by mixing 1 pL plasmid DNA 

in 99 pL of water and 5 5 of this solution was used in a PCR reaction using M13 

forward and M13 reverse primers. The following recipe was used to make the PCR 

reaction mixture: 

PCR comuonents 

Distilled water 

10X PCR buffer 

2.5 mM dNTP 

Farward primer 

Reverse1 primer 

Tuq poymerase 

Template DNA 

Total 

Volume 

32.5 pL 

05.0 pL 

02.0 pL 

01.0 pL 

01.0 pL 

00.5 pL 

05.0 pL 

50.0 pL 

The details of the PCR cycling conditions used for insert amplification are as follows: 

94°C - 3-5 minutes (initial denaturation) 

94°C - 1 minute (denaturation) 

40°C - 1 minute (annealing) 

70°C 2 minutes for 32 cycles (annealing) 

72°C - 5 minutes (extension) 

04OC - Storage 

After amplification, the amplified insert was purified using the Geneclean 11 DNA 

purification kit from B10 101, Vista California or the GFxTM PCR DNA and gel band 

purification kit from Amersham Pharmcia Biotech, NJ, USA. After purification of the 



insert, a minigel of 0.8% agarose was run to determine the concentration of the insert 

based on band intensity and probe volume taken at the time of hybridization. 

3.5.3.3. Labeling of probes 

The random-primed method of Feinberg and Vogelstein (1983a) was used for labeling 

DNA with a-"P. A purified insert DNA sample of 5 pL was denatured by heating at 

95OC for 5 minutes, then quenched on ice for 3 minutes before the labeling reaction 

mixture was added and incubated at 37'C for 2-3 hours. The reaction was terminated by 

adding 5 pL of 0.5 M EDTA to use in the hybridization step. 

The labeling reaction mixture consists of 5 FL of oligo-labeling buffer (Amersham 

Phamacia Biotech), 2 pL equimolar concentrations of dCTP, dGTP and dTTP each, 2 pL 

of 50 pCi 3 2 ~ - d ~ ~ ~ ,  and 2 units of Klenow enzyme. 

Alternatively, the NE Blot@ kit from New England Biolab Inc. can also be used for 

labeling following the method of Feinberg and Vogelstein (1983a & b). In this method, 

random sequence octa-deoxinucleotides serve as primers for DNA synthesis in vitro from 

denatured double stranded template DNA. 

3.5.3.4. Hybridization to labeled probe 

Southern blots were pre-hybrized at 65°C with 15-20 mL of pre-hybridization solution (3 

mL of 5X HSB, 1.&1.5 mL of denatured salmon sperm DNA, 1.0 mL of Denhardt's 

solution and sterile distilled water to 15 mL) for 6 hours in case of new blots and 2 4  

hours for stripped blots. Pre-hybridization was performed in a Techne Hybridizer (HB- 

1 D). 

3.5.3.4.2. Hybridization 

Labeled probe was added to the hybridization bottles containing blots and pre- 

hybridization mixture and incubated at 65'C in a hybridization oven for at least 16 hours. 

Care was taken to remove air bubbles present between the blots and the wall of the 

hybridization bottle. 



3.53.4.3. Washing of blots 

Following hybridization, the blots were washed using four changes of 5 W 0  mL each of 

32~-wash solution. Each wash was carried out for 15 minutes at 65OC in hybridization 

bottles using the hybridization oven. The first two washes were done using wash 1 

solution (100 mL 20X SSC, 25 mL 20% SDS and diluted to a volume of 1 L with 

distilled water) followed by two washes with wash 2 solution (10 mL 20X SSC, 25 mL 

20% SDS and diluted to a volume of 1 L with distilled water). Membranes were air dried 

and enclosed in cling films. 

3.5.3.5. Autoradiography 

Autoradiography was conducted at -80°C by exposing the membrane to photographic 

film (Kodak, X-OMATTM, XK-5) using Kodak intensifying screens in a cassette for 

various exposure times depending on radioactivity counts. The X-ray films were 

developed with Kodak developer for 2 minutes followed by a stop bath (1% acetic acid) 

treatment for 1 minute, fixed with Kodak fixer for 2 minutes, washed in running tap water 

and air dried. The autoradiograms (Figures 17 and 22-25, given in Chapter 4 

Experimental Results) were scanned/photographed using Kodak 100 ASA color print 

films. 

3.5.3.6. Filter stripping and reuse 

After results were scored, incorporated 3 Z ~ - a - d ~ ~ ~  was stripped off from the filters so 

they could be used with the next probe. Filters were placed in the plastic box and boiling 

stripping solution (0.1X SSC, 0.5 SDS) was poured in until it covered the top filter. The 

box was placed on a shaking platform and kept there for 5 minutes while shaking 

intensively. The solution was poured off and the procedure was repeated three more 

times. After stripping, filters were wrapped in Saran-Wrap@ and kept at -20°C, or 

hybridized again immediately. Filters were reused for 4 5  times before the resulting 

images became too weak to score confidently. 

3.5.4. Scoring RFLP bands and genotyping 

The banding patterns obtained from RFLP procedures were also scored in the same 

fashion as given above (section 3.4.4.3) in SSR banding pattern scoring. 



3.5.5. Probe-enzyme DNA polymorphism between parents 

To identify polymorphic combinations of probes and restriction enzymes, initial 

screening of parental lines was conducted before the actual genotyping of individuals in 

the F2 mapping population. For this, the DNA from parental plants of ICMB 891 11-P6 

and ICMB 901 11 -P6 for population under study was restricted with four endonuclease 

restriction enzymes and probed against the available pearl millet PgPSM probes. From 

this screening, the polymorphic combinations were noted and used for further screening 

of the segregating F2 population (Table 3). 

3.6. LINKAGE MAPPING 

Linkage analysis was accomplished using the software MapMaker~Exp version 3.0b 

supplied by E.S. Lander, Whitehead Institute for Biomedical Research, Cambridge, 

Massachusetts, USA (Lincoln el al., 1992a). CentiMorgan (cM) distances were calculated 

using the Haldane function. The base map of pearl millet constructed by Liu et al., (1994) 

from a cross of LGD x ICMP 85410 was used for comparison. The "sequence", "group" 

and "map" command were performed for linkage mapping and "build" command to place 

new markers from genotypic data set in the most appropriate position within the 

identified linkage group. Then software Mapchart was used to draw all linkage groups of 

the genetic linkage map. 

3.7. QTL MAPPING 

3.7.1. Using MapMakerIQTL 

Trait data from F 2 4  self-bulks was averaged for each entry and sorted to correspond with 

the progeny order of the genotypes (marker data). The total number of progeny 

individuals from the cross (ICMB 891 11-P6 x ICMB 90111-P6) with both trait and 

genotype information was 172. QTL mapping was performed using the program 

MapMakerIQTL version l . lb (Lander and Botstein, 1989; Lincoln et al., 1992b). 

MapMakerIQTL calculates additive and dominance effect from the change in phenotype 

resulting from the substitution of B parent alleles for A parent alleles. In the cross under 

study, ICMB 891 11-P6 was susceptible downy mildew (scored as 'A) and the male parent 

ICMB 901 11-P6 was resistant to downy mildew (scored as 'B'). 

The measured phenotype of FI individual number 1 is calculated as follows: 



Fz Trait = Mean + (Weight x Numi) + (Dominance x Het,) +Noise 

where 

Mean = the mean value of the components of the traits that was not controlled by 

this locus (in effect, the average trait value for A/A individuals) 

Weight = the additive component of the B allele effect at this locus 

Numi =the number of B alleles carried by the individual number I; 0, 1, or 2 

Dominance = the dominance component of the QTL B allele effect 

Hetj = 1 if individual i is an A/B hetrozygote, and 0 othemise 

Noise = variation in the trait not controlled by this QTL (a normally distributed 

random variable) 

3.8. MULTILOCATIONAL TRIALS 

3.8.1. Development of different versions of hybrid HHB 94-like hybrid 

Versions of ICMA 891 1 1 corresponding to each of three sub-selections of ICMB 891 11 

have been produced by two generations of backcrossing (one generation each in summer 

and kharif2001). During summer 2002, different versions of HHB 94 were developed by 

producing hybrid of the A-line corresponding to the mapping population parent versions 

of ICMB 891 11, and the original ICMA 891 11 with pollinator G731107 (Table 4). 

3.8.2. Layout out the experiment 

The resulting nine different version of HHB 94 hybrids based on sub-selections of ICMA 

891 1 1, ICMB 891 11 and ICMB 901 11 with pollinator G 731107, the original HHB 94 and 

control entry HHB 181 were evaluated in replicated trials conducted across different rainy 

season locations over 2 years (kharif2002 and kharif2003). In each environment, the 11 

entries were evaluated in 5 replications of 4 rows by 4 m plots arranged in completely 

randomized block designs. Between and within rows spacing was 45-75 cm and 15 cm 

(Appendix 6) ,  respectively, and 1 m alleys separated the plots. In kharif2002, all 11 

entries were evaluated at HAU Hisar, HAU RRS Bawal, and ICRISAT Patanchem (two 

locations RF' 6 and RCE 24E). During kharif2003, all entries were again evaluated at 

Patanchem (RF' 9A and RCE 24C), HAU Hisar, HAU RRS Bawal (low fertility 

conditions), RAU RRS Durgapura, and RAU RRS Nagaur. 



Table 4. Development of different versions of HHB 94-like hybrids using sub-selections 

of ICMA 891 11, ICMB 891 11 and ICMB 901 11 as seed parent pollinated by G731107 

I Sr. No. I Seed parent / ~ollioatar 1 Hybrid 1 

1 4 1 ICMA 8911 1-Original I G 731107 I HHB 94-Original 1 

1 

2 

3 

ICMH 02002 

ICMA 891 1 1-P2 

ICMA 891 11-P5 

lCMA 891 11-P6 

1 5  I lCMB 901 1 1 -P2 

or ICMP 423-P2 G 731107 

G 731107 

G 731107 

G 731107 

l 6  I ICMB 901 11-P5 

or ICMP 423-P5 

18  I ICMB 891 11-P2 G 731107 / HHB 94-P2B 1 

HHB 94-P2A 

HHB 94-P5A 

HHB 94-P6A 

l 7  1 ICMB 901 1 1 -P6 

or ICMP 423-P6 

1 9 1 ICMB 8911 1-P5 1 G 731107 1 HHB 94-P5B I 

G 731107 

/ 10 1 ICMB 891 11-P6 1 G 731107 I HHB 94-P6B I 

ICMH 02005 

G 731107 

/ 11 / ICMA 891 1 1-original I H 771833-2 I HHB 18 1 (control) / 

ICMH 02006 

Plant counts were taken after thinning from the central two rows of each plot to 

determine the actual plant population. Flowering time, plant height, panicle girth and 

panicle length were assessed before harvesting as described below. At physiological 

maturity, panicles from the two central rows were harvested, counted, dried (oven dried at 

60°C for 24 hours at Patancheru and sun dried at other locations), weighed and threshed 

to determine grain yieldplot and 1000-grain mass. Stover of the two harvested rows was 

cut and fresh yield was observed. Fresh straw samples were dried in the same fashion 

mentioned for panicles above to assess dry straw yield. Straw moisture content, average 

number of grains per panicle, effective number of tillers, total above-ground-biomass 

yields and harvest index were calculated using the above-mentioned information. All the 

observed plot data were transformed to a per square meter basis prior to statistical 

analysis. 



3.8.3. Observations and measurements in multilocational trials 

The observations and measurements taken during the trial were as follows: 

1). Time to 50% flowering (TF): Time to 50% flowering was recorded as the number of 

days from sowing until 50% of the plants in each plot produced stigmas on their 

main stem panicles. 

2). Plant height (PH): Plant height (cm) was measured from the base of the main stem to 

the tip of the panicle at maturity. Data was recorded on 5 random plants from the 

central two rows of each plot. 

3). Panicle length (PL): Length of the panicle (cm) was measured for main the stem of 

the same plants considered for plant height in each plot. 

4). Panicle diameterlgirth (PD): Panicle diameter (mm) was measured using venire 

calipers on the panicles for which panicle length was recorded. 

5). Effective plant stand (EPS): Number of plants was counted from the central two 

rows from each plot and then transformed into EPS per square meter. 

6). Effective Tiller number (ETN): Number of productive panicles was counted from 

the central two rows from each plot and then transformed into ETN per square 

meter. 

7). Fresh straw yield (FSY): After panicles were harvested, the stems and the tillers 

were cut and weighed of each plot, and then plot values transformed into per square 

meter. 

7.1). Sub-sample fresh straw weight (SSFSW): Samples of fresh straw were then 

collected from each entry and chopped and fresh weight of these samples was 

taken (only at Patanchem and Nagaur). 

7.2). Sub-sample dry straw weight (SSDSW): The chopped samples were kept in a 

drier for two days at temperature of 60°C and their dry weights were then 

recorded (only at Patanchem). 

8). Dry straw yield (DSY): Dry straw yield was calculated using FSY, SSFSW and 

SSDSW per plot as follows: 



DSY= (FSYISSDSW) I (SSFSW) 

and then transformed into dry matter yield per square meter. 

9). Straw moisture content (SMC in %): Straw moisture content was computed as 

follows: 

10). Panicle yield (PY): After harvesting was completed, panicles were dried in an oven 

for 24 hours at 60°C at Patancheru and sun-dried at other locations. The dry weight 

of the panicles was then recorded before threshing and then this was transformed 

into panicle yield per square meter 

11). Grain yield (GY): Dried panicles harvested from the two central rows of each plot 

were threshed and their grain cleaned. The weight of the grains from each plot was 

recorded and then transformed into grain yield per square meter. 

12). 1000-grain mass (TGM): One thousand grains were counted and their mass was 

recorded for each plot. 

13). Panicle grain number (PGN): It was calculated for each plot as follows: 

PGN = (lOOOIGY )I (TGMIETN) 

14). Total above ground biomass yield (TAGBY): Above-ground-biomass yield was 

calculated for each plot as the sum of PY and DSY. 

15). Harvest Index (HI%): It was calculated for each plot using total above ground, 

biomass yield and grain yield in percentage as 

HI= 100*GY/ (TAGBY) 

3.8.4. In addition to the above characteristics, the analysis of other single degree of 

freedom contrasts were carried out as follows 

Test of potential in ICMB 901 11 to improve HHB 94 (in B-cytoplasm) was computed as 
- - 
x 56.7,- x 8.9.10 

where 
- 
X 5.6,7 = trait average of entries 5-7 (ICMB 891 1 l-based sub-selections x G 73/107), 



- 
X 8,9,10= trait average of entries 8-10 (1CMB 901 11-based sub-selections x G 731107) 

Test of Al cytoplasm effect on GY within HHB 94 background was computed as 

where 
- 
X 1.2.3 = trait average of entries 1-3 (ICMA 891 1 1-based sub-selections x G 731107) 
- 
X 8.9.10 = trait average of entries 8-10 (1CMB 901 11-based sub-selections x G 731107) 

Test effect of selection within ICMB 891 11 was computed as 1.2.3 - X4 

Test for comparison between HHB 94 and HHB 18 1 was computed as X ,, - X 4 

3.9. STATISTICAL ANALYSIS OF THE DM SCREENS 

3.9.1. Frequency distributions 

To identify clear breakpoints for resistance and susceptibility to downy mildew disease 

incidence, frequency distributions with class values of 0-5, 5-10, 10-15, 15-20,20-25, 25- 

30, 30-35, 35-40, 40-45, 50-55, 55-60, 60-65, 65-70, 70-75, 75-80, 80-85, 85-90, 90-95 

and 95-100% disease incidence were used. These class values were plotted on the X-axis 

against the interval frequency on the Y-axis to produce a frequency graphlhistogram for 

disease reactions of the progenies from this pearl millet mapping population screened 

against each of the eight pathogen populations. 

3.9.2. Chi-square tests 

Chi-square goodness of fit tests is widely applicable to numerous problems of 

significance in frequency data. If the calculated Chi-square value is zero, the observed 

distribution shows complete agreement with the hypothetical distribution. Chi-square 

table values are compared at (n-1) degrees of freedom with the calculated Chi-square 

value. 

where 

0 = observed frequencies 



E = expected frequencies 

C = summation over all the classes 

n = number of independent classes in the hypothetical distribution. 

All possible Mendelian ratios for monogenic, digenic, and trigenic (polygenic) 

segregations and their epsitatic interactions were taken as a expected frequencies and 

compared against the observed frequencies of downy mildew incidence resistance and 

susceptible behavior using distribution breakpoints in the disease incidence frequency 

histograms to assign groups to "resistant" or "susceptible" classes for estimation of 

observed frequencies. 

3.9.3. Spearman rank correlation coefficients 

Spearman rank correlation coefficients were calculated for disease incidence of the 

progenies in a given mapping population against each of the possible pairs of pathogen 

populations and a correlation table was formed to study the relationship between the 

different pathogen populations from India and Africa using the ranks of entry replicated 

mean downy mildew incidence (%) values of this mapping population progeny against 

each of a pair of pathogen isolates as the x and y inputs and summing across all progenies 

in a given mapping population (Azhaguvel, 2001). 

Spearman rank correlation coeff~cient r = cov (x, y) l (a,, a,) 

where 

cov (x, y) = Jm 

r = correlation coefficient 

a, = standard deviation of x 

cry = standard deviation of y 

x = rank of variable 1 (DM incidence in screen against pathogen population 1) 

y = rank for variable 2 (DM incidence in screen against pathogen population 2) 

N = total number of mapping population progenies (from a single mapping 

population) scored against the two pathogen populations 



i = mapping population progeny i.... N 

3.9.4. Cluster analysis 

Cluster analysis was done with a hierarchical clustering technique-Euclidean distance 

with average link analysis-using NTSYSpc ver. 2.ld from Applied Biostatistics Inc. and 

Genstat version 6.0 from Rothamsted, UK (GENSTAT, 2002) to group the pathogen 

populations from India and Africa, using first, the ranks of entry replicated mean disease 

reaction and then entry replicated mean disease reactions of the 172 progenies in screens 

against each of the eight pathogen populations as the input data. 

3.10. STATISTICAL ANALYSIS OF MULTILOCATIONAL FIELD TRIALS 

All statistical analyses were performed using Genstat version 6 from Rothamsted, UK. 

Analysis was performed using the plot data recorded from multilocational trials 

conducted in two different khurij seasons. For the traits measured on individual plants, 

the phenotypic data was analyzed as means of 5 individual plants from each plot. Other 

traits were measured on plot basis and transformed to a per square meter basis prior to 

analysis. 

3.10.1. Statistical analysis of individual trial environment data sets 

The data obtained form kharif2002 and khurif2003 for different phenotypic traits were 

statistically analyzed on the basis of a model described by Panse and Sukhatme (1967): 

where, 

YiJ = observation in the i "treatment and j" block 

p = general mean 

ai = ith treatment effect 

b, = jth block effect, and 

e ,  = random error associated with the i" treatment and the j" block. 

The assumptions of the model are: 

a. all the observations should be independent; 

b. different effects in the model should be additive; and 



c. error in the population should be normally and independently distributed with mean 

zero and variance a:. 

3.10.1.1. Analysis of variance (ANOVA) 

Analysis of variance for all characters under study were carried out for individual trial 

environments separately, as follows: 

Source Expected M.S. F ratio 

MSr/MSe 

MStMSe 

Error (r-1) (t-1) MSe 

Total (fl-1) 

where, 

r =number of replications; 

t = number of treatments or genotypes; 

aZg = genotypic variance of character x; 

a', = replication variance of character x; 

a', = error variance of character x and 

MSr, MSt and MSe stand for mean sums of squares due to replications, treatments 

and error, respectively. 

3.10.1.2. Genotypic and phenotypic variances 

The Genotypic and phenotypic variances for each trial environment were calculated as 

follows 

Genotypic variance of character x = 02, = (MSt - MSe) 1 r 

Phenotypic variance of character x = a', = a', + a2, 

3.10.1.3. Parameters of variability 

3.10.1.3.1. Mean: 

Mean value (X) of each character in each trial environment was worked out dividing the 

sum of the observed values by the corresponding number of observations: 



where, 

Xi, = obsewation in the im treatment and j th  replication, and 

N = total number of observations. 

3.10.1.3.2. Range: 

Lowest and highest entry mean values for each character were recorded for each trial 

location. 

3.10.1.3.3. Standard error: 

Standard errors of means were calculated for each character for each trial location from 

the corresponding mean square error values from the analysis of variance tables as: 

where 

d, is estimated mean sum of squares 

S.E. is the standard error of the mean, and 

r is the number of replications. 

3.10.1.3.4. Honestly significant difference (hsd): 

For all the characters, hsd values were calculated to compare treatment means within each 

trial location as suggested by Tukey (1953), using the equation: 

where, 

q,is obtained from table for a = 0.05 or 0.01 (Steel and Tome, 1960) 

p is the number of treatments, 

n2 is the error degrees of freedom, 

s, is the standard error of the mean (SEM) and 

w is used to judge the significance of each of the observed pair-wise differences 

between treatment means. 



3.10.1.3.5. Coefficient of Variation: 

Genotypic and phenotypic coefficients of variation were estimated for each observed or 

calculated trait in each trial environment by the formula suggested by Burton (1952) for 

each character as: 

Genotypic coefficient of variation (G.c.v.) = 
X 

Phenotypic coefficient of variation (P.C.V.) : 
&ZG 

X 

where 

.Y is the mean of that particular trait in that particular trial environment. 

3.10.1.3.6. Heritability (in broad sense): 

Heritability in broad sense was calculated according to the formula suggested by Hanson 

(1956) for each character as given below 

3.10.2. Statistical analysis of genotypic x environment interactions 

Analyses of variance were first performed on the data from individual and pairs of 

locations/environment using micro across location randomized block design (acrrbd) 

program and restricted maximum likelihood (REML) from Genstat version 6, from 

Rothamsted Experimental Station. The observation Y,,kl on genotype i recorded in block j 

of the replication k in environment I was modeled as: 

where 

p denotes the general mean; 

el denotes the effect of environment, I; 

rkl denotes the effect of replication k within environment 1; 

bjkl denotes the effect of block j within replication k within environment 1; 

gi denotes the effect of genotype i; 

(ge)i~ denotes effect of interaction of genotype i within environment 1; and 



eijkl denotes residual effect. 

3.10.2.1. Pooled analysis of variance 

Pooled analysis of variance (Macintosh, 1983) for all characters across all multiple-test 

environment clusters and all ten test environments was carried out using Genstat version 

6 (2002) as follows: 

where, 

r = number of replications; 

g = number of treatments or genotypes; 

02, = genotypic variance of character x; 

02, = variance of character x due to gxe; 

a2, = error variance of character x, and 

MSr, MSg, MSge and MSE stand for mean sums of squares due to replications, 

genotypes, genotype x environment interactions and error, respectively. 





4. EXPERIMENTAL RESULTS 

4.1. DOWNY MILDEW SCREENING 

4.1.1 Downy mildew reaction by parental and control entries 

The parental lines of the P6 mapping population (ICMB 891 11-P6 x ICMB 901 11-P6) 

along with resistant and susceptible control entries were screened against six lndian and 

two African populations of Sclerospora graminicola under greenhouse conditions at 

ICRISAT, Patancheru, India (six lndian pathogen populations) in kharif2002 and at the 

University of Wales, Bangor, UK (two African pathogen populations) in late kharif2002 

in three replications each. Parental line ICMB 901 11-P6 was highly resistant and 

exhibited no symptoms of infection against three pathogen populations, one from India 

(Patancheru) and two from Africa (Maiduguri, Nigeria and Bamako, Mali), but was 

resistant to moderately susceptible to five pathogen populations [Jamnagar (4% downy 

mildew incidence), New Delhi (6%). Jodhpur (9%). Durgapura (10%) and Jalna (24%)] 

from India, as presented in Table 5. 

Very high downy mildew incidence (DM1 %) levels were observed on susceptible 

parental line ICMB 891 11-P6 in DM screens against Indian pathogen populations from 

Durgapura (95%). Jamnagar (94%), and Patancheru (91%). Moderately high DM1 level 

were observed for this parental line in screens against the African pathogen population 

from Bamako, Mali (82%), as well as those from Jodhpur (73%) and New Delhi, (69%). 

But surprisingly, a different pattern was recorded from the screen against the Jalna 

pathogen population where parental line ICMB 891 11-P6 exhibited a low level of DM1 

(14%). This parental line also exhibited a relatively moderate DM1 level in its screen 

against pathogen population from Maiduguri, Nigeria (35%). DM1 was comparatively 

higher on ICMB 891 11-P6 in screens against the six Indian pathogen populations than 

against the two African pathogen populations. Parental line ICMB 901 11-P6 showed 0% 

DM1 against the two African pathotypes for which data were generated, where as 

differential disease reactions were observed on the parents in its screens against the six 

Indian pathogen populations. Among various control entries 7042 (S) showed 95-100% 

DM1 across all Indian and 7.545% DM1 in screens against the two African pathogen 



I Parentdwntrols 

Table 5. T h e  mean downy mildew reactions o f  pearl millet mapping population parental lines ICMB 891 11-P6 and  ICMB 901 11-P6, and resistant 
and susceptible control inbreds, against six Indian and t w o  African populations o f  Sclerospora graminicola under greenhouse conditions at 
Patanchem, India (kharif; 2002) and at  Bangor, UK (Late kharif2002) 

ICMB 891 1 I-P6 

ICMB 901 l I-P6=ICMP 423-P6 

7042(S) 

700651 = 1CML 16 
7042R = ICML 22 

8438 

P1449-2 

PT 7328 

ICMB 891 11-P2 
ICMB 901 1 I-P2=ICMP 423-P2 

HB 3 
P7-3 

JAU MRS, Jamnagar, Sg200 

TPC I DMC I DMI% 

36 34 94 

26 I 4 
32 32 99 

24 4 16 

32 14 44 
39 35 90 

32 0 0 

34 1 3 

DM1 (%) = downy mildew incidence = 100xDMCTTPC; DMA = arcsin (DMCITPC); 'TPC = total plant count; DMC =downy mildew count; 
- = indicates non-availability of data 

Parentdcontrols 

ICMB 89 1 1 1-P6 

ICMB 901 11-P6=ICMP 423-P6 

7042(S) 
700651 = ICML 16 

7042K = ICML 22 

8438 
P 1449-2 

PT 7328 

ICRISAT, Patancheru. Sgl53 

TPC I DMC I DMI% 

20 18 91 

I2 0 3 
31 30 99 

22 4 18 

25 15 63 

40 39 97 

17 I 9 

33 27 81 

CAZKI. Jodhpur, Sg139 

TPC I DMC 1 DMI% 

32 23 72 

23 2 9 

32 32 100 
18 4 22 

29 17 59 

40 38 95 
20 I 5 

32 0 0 

Bamako, Mali, Screen 45 

TPC I DPC I DMI% 

36 29 82 

IARI, New DeUli, Sg298 

TPC I DMC I DM[% 

25 18 69 

21 I 6 
33 32 96 

23 5 23 
26 15 58 

33 31 96 

31 I 4 

32 30 92 

Maiduguri, Nigeria, Screen 43 

TPC I DPC I DM[% 

27 9 35 

RAUARS, Durgapura, Sg15 1 

TPC I DMC I DMI% 

25 24 95 

MAHYCO, Jalna, Sg150 

TPC DMC 1 DM19/ 

23 3 14 



populations. Another susceptible control entry (843B) exhibited DM1 values ranging from 

90% to 97% across the Indian pathogen populations against which it was screened except 

that from Jalna (19%). In contrast, a very highly resistant reaction was observed for 

resistant control P1449-2 in screens against all six Indian pathogen populations (DM1 

values ranges from 0% to 9%). Resistant control 700651 was also found to possess 

moderate levels of resistance that was effective across most of Indian pathogen 

populations. Another control genotype. PT 732B exhibited high levels of resistance to 

pathogen population from Jodhpur, Durgapura and Jamnagar (0-3% each) but high levels 

of susceptibility to those from New Delhi, Jalna and Patanchem (81-92% DMI). This 

differential disease reaction of PT 7328 is a clear case of pathogen population-specific 

host-plant resistance as described by van der Plank (1963, 1968), Day (1974) and many 

others. A high degree of susceptibility was observed in susceptible control hybrid HB 3 

when it was screened against both the African pathogen populations. In contrast, very 

high to moderate levels of resistance were recorded for resistant control inbred P7-3 

against downy mildew African pathogen populations from Maiduguri and Bamako. 

respectively. For all other resistant and susceptible genotypes used in this study, variable 

DM1 levels were observed across both Indian and African pathogen populations of S. 

gruminicolu. 

4.1.2. DM reaction by 172 F2:r self-bulks against individual pathogen populations 

Table 6 presents a summary of analysis of variance for screens against these eight 

individual pathogen populations from India and Africa. The individual conlparisons of 

average downy mildew disease incidence of 172 F 2 4  self-bulks and eight parents and 

control entries, made among Indian as well as African pathogen populations, revealed that 

the pathogen population of S grnminicolu from Jodhpur (Sg139) caused the greatest 

disease incidence (37.31%) followed by the pathogen populations from Bamako, Mali 

(Africa) and Durgapura (India). The pathogen population from Jalna (India) with mean 

DM1 13.91% and that from Maiduguri, Nigeria (Africa) with mean DM1 14.24% were 

observed to be the least virulent pathogen populations used in this study. A general trend 

of very high operational heritability estimates for DM1 was observed for screens against 

the Maiduguri (0.83 and 0.94) and Jamnagar (0.82 and 0.93) pathogen populations. The 

lowest operational heritability values for DM1 were recorded from screens against 

pathogen populations from Jalna (0.58 and 0.80) and Jodhpur (0.64 and 0.84). 





4.1.3. Genotype by pathogen population interactions 

Replicated data of 172 F2.4 self-bulks, two hybrid parental lines and six control entries 

screened against six Indian and two African pathogen populations of S graminicola were 

subjected to analysis of variance. The 172 F24 self-bulk showed significant variation in 

downy mildew screens against all pathogen populations, as indicated by significant values 

of F-ratios. Table 7 presents a summary of this analysis of variance showing interactions 

between genotypes and their screens against pathogen populations from India (Asia) and 

Africa. 

No significant variation was recorded between pathogen populations from 

different continents, but significant variations between pathogen populations from Asia 

and between pathogen populations from Africa were observed. Also significant effects of 

entries and entries x pathogen population interactions were observed for DMI, DMA and 

DMC. Total plant count (TPC) differed significantly across the two continents (P>0.01, 

level of significance), indicating that the seedling numbcrs used in screens at ICRISAT- 

Patancheru (against the six pathogen isolates from India) and thc University of Wales, 

Rangor (against the two pathogen populations from Western Africa) were significantly 

different. Significant differences were recorded for all four variables (DM%, DMA. TPC 

and DMC) among the six Indian pathogen populations and among the two African 

pathogen populations using the 172 F2 4 self-bulk mapping population progenies (except 

for TPC within two African pathogen populations). Significant differences were observed 

among genotypes (F2 4 self-bulks) across all pathogen populations for all four variables. 

In addition to this, genotype x pathogen population interactions including pathogen 

population across continents. Indian pathogen populations x genotypes. and African 

pathogen populations x genotypes were significant for all four variables. 

REML variance component analysis (Table 8) revealed significant contributions 

of differences among genotypes (Fl-derived Fa self bulks). and genotypes x screens 

(pathogen populations) interactions, observed variation downy mildew incidence 

(DM%), DMA, TPC. DMC across all the eight screens; however pathogen populations 

themselves do not contribute significantly to observed variation. No significant 

differences were observed across pathogen populations for any of the variables (DMI, 

DMA, TPC and DMC) when tested at 5% and I %  levels of significance. Almost the same 

pattern was followed across Indian and African pathogen populations for all four 



Table 7. Analysis of variance showing interactions between genotypes (172 Fz self-bulks 
and eight parents and controls) and their screens against eight pearl millet pathogen 
populations of S. graminicola from India and Africa against which 180 common host 
entries were screened 

Source of 
variation 

Continent 

Asia 

Africa 

Error 

Entries 

Continent x Entry 

Asia x Entry 

d.f. (m.v.) 

1 

5 

1 

16 

179 

170(9) 

1 895 

Mean sums of squares 

DMI% DMA TPC DMC 
- 

573.20 0.16 1418.01* 51.38 

366O3.7OX* 5.20** 523.42* 2713.25** 

118390.60** 13.34** 54.86 11552.71** 

5315.10 0.76 172.64 453.96 

8146.90** 1.38** 1254.01** 735.54** 

861.30t* 0.15** 72.03** 113.15** 

393.10** 0.07** 25.96** 34.13** 

, a x t r y  70(9)  

28 1 8(46) 

Total 4255(64) 

, 5 * *  ::.I :L::: ::.':* 1 149.1 0 

DM1 (%) = downy mildew incidence = 100 x (DMCITI'C) 
DMA (radians) = arcsin (DMCITPC) 
TPC = total plant count 
DMC = downy mildew count 





variables except for TPC where no significant differences were recorded for genotype x 

pathogen population interactions for pathogen populations from within India (screens 

conducted at Patanchem) or pathogen population from within Africa (screen conducted at 

Bangor). 

The grand means of 29.24 for total plant count (TPC) and 7.20 for downy mildew 

diseased plant count (DMC) resulted in a grand mcan DM1 value of 26.12% across all six 

Indian pathogen populations of pearl millet downy mildew for all 172 Fl4 self-bulks, two 

parents and six checks. Significant and very high broad sense heritability values for all 

the four variables were observed (>0.94). The analysis of screens against the two African 

pathogen populations indicated a mean DM1 value of 24.38% from a TPC mean value of 

31.22 and DMC mean value of 7.53. Very high heritability for TPC (0.95) and 

moderately high heritability values (0.69) for DM1 (%), DMC and DMA were observed. 

The grand means of all four variables and their heritabilities wcre also calculated from 

DM screen data against eight pathogen populations. This too revealed very high 

heritability values for DMI, DMA and 1'1'C and DMC (>0.93). with a grand mean of 

25.70°h (DMI) resulting from a mcan downy mildeu plant count of 7.27 out of the mean 

29.72 total plant count (Table 8). 

4.1.4. lnheritance of downy mildew disease resistance 

Thc Chi square ( X 2 )  estimates for goodness of fit among 172 F z ~  self-bulks screens 

against six Indian and two African pearl millet pathogen populations of S. graminicola 

under greenhouse conditions revealed monogenic to oligogenic types of gene action 

eoverning the downy mildew disease resistance exhibiting classical Mendelian ratios 

from 3 : l  (single gene action) to 255:l epistatic gene interaction) for resistant : susceptible 

disease reactions of the mapping population progenies against different pathogen 

populations (Table 9) at natural downy mildew disease incidence (DMI%) break points 

observed in frequency distributions (Figures 5-12). The details of DM1 against each 

pathogen population resistance and inheritance of DMR for each pathogen population is 

explained below: 

4.1.4.1. Pathogen population from CAZRI, Jodhpur, Rajasthan, India (Sg139) 

DM screening of the 172 F Z 4  mapping population progenies revealed a good fit to the 

Mendelian ratio of 1 resistant to 3 susceptible (monogenic recessive resistance) against 



Table 9. Chi square estimates for goodness of fit to various classical Mendelian ratios 
among 164 to 172 F24 self-bulks under greenhouse conditions against eight pearl millet 
pathogen populations of Indian and African origin 

CAZRI, Jodhpur, India 
(Sg139) 

Pathogen Population 

ICRISA'r, Patancheru, 3 0 3:l 0.63 
India (Sg153) 1 40 

13:3 0.54 

DM1 (%) break Mendelian Chi square value 
point at segregation ratio 

IAN, New Delhi, India 
(Sg298) 

RA1J ARS. Durgapura, 
India (Sgl5 1) 1 6: 

JAU MRS, Jamnagar, 
lndia (Sg200) 

50 I3:3 0.86 

85 15:l 1.05 

Maiduguri, Nigeria West 
Africa Screen 43 

1 90 63: 1 2.99 

MAHYCO, Jalna, lndia 
(Sg 1 5 0) 

30 I ~ : I  0.06 

40 63: 1 2.99 

5 5 255:l 0.04 

Bamako, Mali West 
Africa Screen 45 

5 9 5 5  0.66 

10 3:13 0.29 

50 3: 1 0.30 

60 13:3 0.5 1 

80 1 5 1  1.07 



the CAZRI, Jodhpur pathogen population using a breakpoint of 15% DM1 (Figure 5). 

Using a breakpoint of 55% DMI, the digenic epistatic ratio of 13:3 (resistant : 

susceptible) was observed, whereas trigenic epistatic segregation ratios of 55:9 and 63: 1 

(triplicate dominant resistance) were observed at DM1 breakpoints of 65% and 95%, 

respectively. The majority of the F2:4 self-bulks exhibited DM1 values in the range of 20% 

to 40% with the mapping population frequency distribution displaying a moderate 

skewedness toward the resistant parent value. 

4.1.4.2. Pathogen population from ICRISAT, Patancheru, India (Sg153) 

Segregation among the 172 F24 self-bulks for disease reaction against the pathogen 

population from ICRISAT, Patancheru gave a good fit to the Mendelian monogenic 

dominant resistance ratio (3 resistant : 1 susceptible) at a natural breakpoint of 30% DMI. 

At breakpoints of 40% and 80% DM1 the Mendelian segregation ratios (among progenies 

of the mapping population) of 13:3 (one basic gene and one inhibitory gene action) and 

15:l (duplicate dominant resistance) respectively, were observed to fit best to observed 

resistant : susceptible segregation patterns. Figure 6 indicates that distribution of the 172 

F2 4 mapping population progeny self-bulks was skewed towards the DM1 value of the 

resistant parent, ICMB 901 1 I-P6, with a substantial majority of the progenies exhibiting a 

DM1 below 35%. 

4.1.4.3. Pathogen population from IARI, New Delhi, India (Sg298) 

The 172 F24 mapping population progenies screened against the pearl millet downy 

mildew pathogen population from IARI, New Delhi recorded the best fit to a Mendelian 

segregation ratio of 3: 1 (resistant : susceptible) at a DM1 breakpoint level of 25% (Figure 

7). It also fit well a digenic dominant resistance gene ratio of 15:l at the DM1 breakpoint 

level of 50% DMI. IIowever, it did not fit trigenic ratio of 63 resistant to 1 susceptible at 

the natural breakpoint level of 80% DMI. At a high DM1 breakpoint of 85%, for the 

pathogen population from New Delhi, this mapping population progeny set also exhibited 

a good fit to the Mendelian segregation ratio of 255:l (quadruplicate dominant resistance 

genes). A relatively high resistance level was observed among the mapping population 

progenies against this pathogen population, with low DM1 value ranging between 5% and 

20% for the majority of the 172 F2-derived F4 self-bulks, the distribution strongly skewed 

towards the value of the resistant parent ICMB 901 11-P6, as shown in Figure 7. 



Figure 5. Frequency distribution of downy mildew disease incidence (%) among 172 FZ:4 self- 
bulks from the pearl millet cross (ICMB 891 11-P6 x ICMB 901 11 -P6) when screened under 
greenhouse conditions in ICRISAT-Patanchem against a S. graminicola population (Sg139) 
from CAZRI, Jodhpur, Rajasthan, India. The arrows in red colnr indicate DM1 (%) natural 
break points 

1 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

Domy mildew incidence (%) 
-- -- -- 

Figure 6. Frequency distribution of downy mildew disease incidence (8) among 172 F2.4 self- 
bulks from the pearl millet cross (ICMB 891 11-P6 x ICMB 901 11 P6) when screened under 
greenhouse conditions in ICRISAT-Patanchem against a S. graminicola population (Sg153) 
from ICRISAT, Patdnchem, A.P., India. The arrows in r i . d  t s~ l t l r  indicate DM1 (%) natural 
break points 
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4.1.4.4. Pathogen population from JAU MRS, Jamnagar, Gujarat, lndia (Sg200) 

The segregating pattern observed for downy mildew disease reactions among the 172 F2 

mapping population progenies when screened against the pathogen population from 

Jamnagar, Gujarat, India, suggested that two epistatic host plant resistance genes were 

largely responsible (Figure 8). Good fits to Mendelian digenic segregation ratios 13:3 and 

15:l were recorded at DM1 breakpoints of DM1 50% and 85%, respectively, as shown in 

the frequency distribution histogram. The frequency distribution histogram drawn for this 

pathogen population depicts a very consistent disease reaction pattern with large numbers 

of progenies having low DM1 values and small numbers of progenies having high levels 

of DMI, showing a strong skewedness of the distribution toward values of the resistant 

parent ICMB 901 1 1 -P6. 

4.1.4.5. Pathogen population from RAU ARS Durgapura, Rajasthan, India (Sg151) 

The frequency distribution of DM1 values observed among 172 F2-derived Fi self-bulks 

from pearl millet cross ICMB 891 11-P6 x ICMB 901 11-P6 in their screen against downy 

mildew pathogen population Sg151 from RAU. ARS Durgapura is presented in Figure 9. 

The monogenic dominant resistance ratio of 3:l and the digenic ratio of 13:3 gave good 

fits at the natural breakpoints of 40% and 50% DM1 respectively. Digenic and Trigenic 

ratios of 15:l and 63:3 were observed to give best fits to natural breakpoints in frequency 

distribution at 80% and 90% among a mapping population of 172 self-bulks. The majority 

of these F1-derived Fq self-bulks showed DM1 values in the range from 10% to 35%, so 

the population exhibited substantial skewedness towards the DM1 level observed in 

resistant parent ICMB 901 11-P6. 

4.1.4.6. Pathogen population from MAHYCO, Jalna, lndia (Sg150) 

The DM1 screening of 172 F24 mapping population progenies against this pathogen 

population displayed a fairly different pattern of DM1 as compared to the five screens 

mentioned above. More than 90% of the 172 F24 self-bulks showed a downy milden 

disease incidence values of 5% to 25% and DM1 as high as 60% was observed for on11 

one of the Fz4 self-bulks (Figure 10). The S graminicola pathogen population from Jalna 

has  found to much less virulent than others used in screening the mapping population of 

cross ICMB 891 11-P6 x ICMB 90111-P6. At natural DM1 breakpoints of 30%. the 

digenic ratio of 15 resistant : I susceptible, which has been fairly consistently observed 



Figure 7. Frequency distribution of downy mildew disease incidence (%) among 172 F2:4 self- 
bulks from the pearl millet cross (ICMB 891 11-P6 x ICMB 901 11-P6) when screened under 
greenhouse conditions in ICRISAT-Patancheru against a S. graminicola population (Sg298) 
from IARI, New Delhi, India. The arrows in red color indicate DM1 (%) natural break points 
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Figure 8. Frequency distribution of downy mildew disease incidence (%) among 172 F2.4 

progenies from the pearl millet cross (ICMB 891 11-P6 x ICMB 901 11-P6) when screened 
under greenhouse conditions in ICRlSAT-Patancheru against a S. graminicola population 
(Sg200) from JAU MRS. Jamnagar, Gujrat. India. The arrows in ~ s t l  L.LIIOI indicate DM1 (%) 
natural break points 



Figure 9. Frequency distribution of downy mildew disease incidence (%) among 172 F24 self- 
bulks from the pearl millet cross (ICMB 891 1 I-P6 x ICMB 901 11-P6) when screened under 
greenhouse conditions in ICRISAT-Patanchem against a S. graminicola population (Sg151) 
from RAU ARS, Durgapura, Jaipur, Rajasthan, India. The arrows in red ~ o l o r  indicate DM1 
(%) natural break points 

1 ICMB90111-P6 ICMB 89111-W 
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Figure 10. Frequency distribution of downy mildew disease incidence (Q) among 172 F2., 
progenies from the pearl millet cross (ICMB 891 11-P6 x ICMB 901 11-P6) when screened 
under greenhouse conditions in ICRISAT-Patanchem against a S. graminicola population 
(Sg150) from MAHYCO, Jalna, Maharashtra, India. The arrows in ICLI .L'IOI indicate DM1 (70) 
natural break points 
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across majority of screens in present study, was also recorded against this pathogen 

population. Pearl millet downy mildew screening of 172 F24 mapping population 

progenies against the pathogen population (Sg150) from Jalna also exhibited 63: 1 (three 

dominant resistance genes) and 255:l (four dominant resistance genes) Mendelian 

segregation ratios at 40% and 55% of natural DM1 breakpoints respectively. Howeber 

perhaps the most interesting results from this screen was that the parent ICMB 891 11 1-P6 

appeared to be more resistance to the MYHCO-Jalna pathogen population than the 

"resistant" parent ICMB 901 11-P6. 

4.1.4.7. Pathogen population from Maiduguri, Nigeria (West Africa) 

The frequency distribution of pearl millet downy mildew incidence among 172 F24 self- 

bulks from cross ICMB 891 11-P6 x ICMB 901 11-P6, when screened against this 

pathogen population from Maiduguri, Nigeria (Africa) showed that a majority of the self- 

bulks had DM1 values of 0% to 20% and their distribution was thus skewed strongly 

towards the DM1 level observed in resistant parent ICMB 901 11-P6. The monogenic 

segregation ratio of 3:l and the digenic segregation ratio of 15:l were observed to fit well 

at natural DM1 frequency distribution breakpoints of 20% and SO%, respectively (Figure 

11). However, trigenic dominant gene action with a segregation ratio of 63:l (resistant : 

susceptible) also gave a good fit when using the natural DM1 breakpoint of 75%. A single 

major R-gene from ICMB 901 11-P6 appears responsible for most of the observed 

variation in DM1 with two additional genes of smaller effect also likely to be present. 

4.1.4.8. Pathogen population from Bamako, Mali (West Africa) 

It is evident from the pearl millet DM screening results that the Bamako Mali pathogen 

population from West Africa was more virulent than the six Indian pathogen populations 

and the first African (Maiduguri, Nigeria) pathogen population used in this study. Digcnic 

Mendelian segregating ratios of 13:3 and 15:l were observed to fit well the observed 

segregation pattern among the 172 F 2 4  self-bulks using natural breakpoints in DM1 

frequency distribution of 60% and 80%. respectively (Figure 12). Interestingly, a digenic 

segregation ratio (3 resistant : 13 susceptible) and a trigenic segregation ratio (9 resistant : 

55 susceptible) were also observed, both ratios titting good to Mendelian segregation 

pattern at natural breakpoint of 10% DM1 from screen of the 172 mapping population 

progenies under study against pathogen population from Bamako (Africa). More than half 



Figure 11. Frequency distribution of downy mildew disease incidence (%) among 172 & self- 
bulks from the pearl millet cross (ICMB 891 11-P6 x ICMB 901 11-P6) when screened under 
greenhouse conditions at the University of Wales, in Bangor, UK, against a S. graminicola 
population from Maiduguri, Nigeria, in West Africa. The arrows in red c i l l o ~  indicate DM1 (%) 
natural break points 
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Figure 12. Frequency distribution of downy mildew disease incidence (%) among F2.4 self- 
bulks from the pearl millet cross (ICMB 891 11-P6 x ICMB 901 11 -P6) when screened under 
green house conditions at the University of Wales, in Bangor, UK, against a S. graminicola 
population from Bamako, Mali, in West Africa. The arrows in I~.LI , ,IIOI indicate DM1 (%) 
natural break points 
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of the total of 172 Fz 4 self-bulks of mapping population progenies from cross ICMB 

89111-P6 x ICMB 90111B-P6 displayed DM1 values between 20% and 45% in the 

screen against this highly virulent pathogen population. 

4.1.5. Spearman rank correlation coefficient 

Spearman rank correlation coefficient values (significant at p<0.01 level) were calculated 

based on ranks of entry mean DM1 (%) among 172 F2 4 self-bulks screened against each 

of six Indian pathogen populations, and are presented in Table 10. Separate Spearman 

rank correlation coefficient values were also calculated based on ranks of entry mean 

DM1 (%) among 164 F2 4 mapping population progenies self-bulks screened against each 

of the six lndian and two African pathogen populations and these values are presented in 

Tablc 11. Very strong correlations were observed in disease reactions of the mapping 

population progenies to pathogen populations of S. gruminicolu from Patancheru and 

New Delhi both, from lndia (r = 0.823), and betwecn Patancheru (India) and Maiduguri 

(Nigeria) (r = 0.822), despite the apparent differences in frequency distributions of DM1 

values (compare Fig. 6 vs. Fig. 7 and Fig. 6 vs. Fig. 1 I). The general trend of correlation 

was stronger amongst pathogen populations from India and between Indian and African 

populations than betwecn the two African pathogcn populations. A relatively lower 

correlation (r = 0.539) was observed bcturen the two Afiican pathogen populations. 

Pathogen populations from northern lndia (Jodhpur. New Delhi. Durgapura and 

Jamnagar) were more highly correlated anlong themselves than with the pathogen 

populations from southern regions of India (Patancheru and Jalna). Two highly virulent 

pathogen populations from Jodhpur (India) and Bamako (Mali) exhibited a significant 

positive correlation (r = 0.713) where as a correlation of r = 0.707 was obsened bctween 

the two most highly virulent lndian pathogen populations (Jodhpur and Patancheru). In 

contrast. mapping population progeny disease reactions against the Jalna pathogen 

population exhibited a very poor correlation with those against the rest of the lndian and 

African pathogen populations used in this study. Among lndian pathogen populations 

(Table lo),  very strong correlations were also recorded for Jamnagar with Patancheru 

(0.810). New Delhi with Patancheru (0.805) and both New Delhi and Durgapura with 

Jamnagar. For example, the relationship between pathogen populations from Jalna and 

Patancheru was observed to be relatively poor [(0.449 and 0.433 based on 172 (six 

Indian) and 164 F21 progenies (two African pathogen populations), respectively)]. 



Table 10. Spearman rank corrleation coefficients for greenhouse seedling downy mildew 
reaction among 172 F2 4 self-bulks derived from a single selfed plant of pearl millet cross 
(ICMB 89111-P6 x ICMB 90111-P6) when screened against six Indian pathogen 
populations of S. graminicola 

Jodhpur 1 

Patancheru 0.695** 1 

New Delhi 0.776"" 0.805** I 

Jamnagar 0.724" 0.810** 0.797.. 1 

Table 11. Spearman rank corrleation coefficients for greenhouse seedling downy mildew 
reaction among 164 self-bulks derived from a single selfed plant of pearl millet cross 
(ICMR 891 11-1'6 x lCMB 901 11-P6) when screened against six Indian and two African 
pathogen populations of S graminicolu 

Jalna 

Pur lodh- 

Patan- I 
Cheru j 0.707** I 

I 

0.450** 0.449** 0.467** 0.546** 0.543** 1 

Jodhpur Patancheru New Delhi Jamnagar Durgapura Jalna 

New 
Dellii 

Jalna 1 0.430** 0.433** 0.448** 0.5?7** 0.5??** 1 

Maidu- 
guri 0.571** 0.8??** 0.73?** 0.7?4** 0.669** 0.411** 1 

Bam- 
ako - 

0.713** 0.558** 0.684** 0.585** 0.647** 0.385** 0.539" 1 

Jodh- Patan- New Jam- Durga- Jalna Maidu- Bam- 
pur cheru Delhi nagar pura guri ako 



These Spearman rank correlation matrix values were then used to construct two 

separate dendrograms (Figures 14a and 14b). The first dendrogram shows relationships 

among six pathogen populations of Indian origin and the second dendrogram was 

constructed based on screens against these six Indian and two additional African pathogen 

populations. 

4.1.6. Cluster analysis 

4.1.6.1. Based on entry mean DM1 (%) 

The entry mean downy mildew incidence (%) of 164 Fz J mapping population progenies 

from screens against each of eight pathogen populations from India and Africa, were used 

to construct two separate dendrograms (Figure 13). The first dendrogram was constructed 

based on screens against six Indian pathogcn populations. The second dendrogram was 

constructed on based on screens from these six Indian and two African pathogen 

populations. The first dendrogram (Figure 13a) revealed two groups of pearl millet 

pathogen population of S graminicolu used in present study. First group consisted of t\lo 

more virulent pathogen populations from Jodhpur and Durgapura. 'The second group 

consisted of three virulent pathogcn populations from Patanchem, New Delhi. Jamnagar 

and one very less virulent pathogen population from Jalna. Among the six Indian 

pathogen populations, those from Patancheru and New Delhi were observed to bc most 

siniilar to each othcr based on downy mildcw reactions exhibited among these 172 Fl a 

sclf-bulks. These two similar pathogen populations forming a subgroup within the second 

group. in which they appeared closcr in relationship with the pathogen population from 

Jmiinagar than that from Jalna. 

The dendropram based on entry niran DM1 ( O h )  values from screens of 164 

common Fz 4 self-bulks against each of the eight pathogen populations also depicted two 

clear-cut groups, each group containing four pathogen populations (Figure 13b). The first 

one included pathogen populations from Jodhpur. Janlnagar, Durgapura (all pathogen 

populations from India) and Bamako (a pathogen population from Africa). With this 

group, pathogen populations from Jamnagar and Durgapura exhibited the greatest 

similarities for DM1 among the F2.4 mapping population progenies under study. The 

degree of relatedness decreased as pathogen populations from Jodhpur and Bamdio were 

added in first group. The second group included two less virulent pathogen populations 



Figure 13. Dendrograms showing relationships among eight S. graminicola populations 
from India and Africa based on % similarity in mean disease incidence for F2 4 self bulks 
derived from pearl millet cross (ICMB 891 11-P6 x ICMB 9011 1-P6), when screened 
against severe inoculum pressure of the individual pathogen populations under 
greenhouse conditions 

a. Based on entry mean DM1 (%) values from screens against six Indian pathogen 
populations (172 F2 4 self-bulks) 
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- one from Maiduguri (Africa) and the other from Jalna (India) - along with two more 

virulent Indian pathogen populations from Patancheru and New Delhi. Within this second 

group, the closest similarities were between the two pathogen populations from 

Patancheru and New Delhi, while relatedness decreased as Maiduguri and Jalna were 

added. Two most virulent pathogen populations included in this study, (Jodhpur and 

Bamako) were relatively distanced from each other in the first group of this dendrogram, 

while the two least virulent pathogen populations observed (Maiduguri and Jalna) were 

found relatively closerlsimilar in causing DM1 among mapping population progenies in 

second group of the dendrogram. 

4.1.6.2. Based on spearman rank correlations 

Spearman rank correlations calculated from ranks of entry mean downy mildew incidence 

(%) among F 2 4  self-bulks from in each of eight screens (see 'Tables 6 ,  10 and 11)  were 

used to construct two separate dendrograms. The first dendrogram (Figure 14a) was 

constructed using Spcarman correlation matrix values based on 172 F2 self-bulks 

screened against each of the six Indian pathogen populations. The second dendrogram 

(Figure 14b) was constructed using S p e m a n  correlation matrix values based on ranks of 

entry mean DM1 values among 164 Fz 4 mapping population progenies screened against 

each of these six Indian and two additional African pathogen populations of S. 

grc~rninicolrr. The first dendrogram depicted two clusters. the first consisting of five more 

virulent pathogen pclpulations (Durgapura, New Delhi, Jamnagar. Patancheru and 

Jodhpur), and second cluster containing only one less virulent pathogen population 

(Jalna). Atnong Indian pathogen populations those from I'atancheru and Jamnagar were 

found to be the most similar. The degree of relatedness decreased as  the pathogen 

population from New Delhi, Durgapura. and Jodhpur were added to this first cluster, with 

increased dissitnilarity in ranks of mean disease reactions of the 172 Fza mapping 

population progenies. 

Clustering of Indian and African pathogen population using Spearman rank 

correlation matrix values based ranks of DM1 (%) for 164 Fzl mapping population 

progenies from screens against each of eight pathogen populations depicted a continuunl 

(Figure 14b). The core of this consists of five more closely related Indian (Durgapura. 

Jamnagar, New Delhi. Patancheru, and Jhodhpur). Two African (Maiduguri and Bamako) 

pathogen populations and the less Indian virulent Indian pathogen population from Jalna 



Figure 14. Dendrograms showing relationships among eight S graminicola populations 
from India and Africa based on % similarity in rank order of entry mean disease 
incidence for 172 F2.4 self bulks derived from pearl millet cross (ICMB 891 114% x 

ICMB 901 11-P6), when screened against severe inoculum pressure of the individual 
pathogen populations under greenhouse conditions 

a. Based on Spearman rank correlations among six Indian pathogen populations (1 72 Fz 
self-bulks) 

b. Based on Spearman rank correlations among eight Indian and African pathogen 
populations (I 72 F2 4 self-bulks) 
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rounded out the continuum. In the core group, pathogen populations from Patancheru and 

New Delhi (both from India) exhibited considerable similarity and the degree of 

relatedness decreased as those from Jamnagar, Durgapura and Jodhpur (all from India) 

were added. Maiduguri and Bamako (both from Africa), and the very less virulent 

pathogen populations from Jalna were placed very far from the pathogen population from 

Patancheru in this dendrogram. The two most highly virulent pearl millet downy mildew 

pathogen populations used in this study, one from Jodhpur (India) and the other from 

Bamako (Mali), were observed to be relatively dissimilar to each other based upon 

Spearman rank correlations, so it is expected that the host resistance genes effective 

against these two pathogen population are different. 

4.2. PARENTAL POLYMORPHISM 

Pcarl millet mapping population parental lines ICMR 89111-P6 and lCMB 90111-P6 

were screened against 80 SSR (microsatellite) and 35 selected RFLP (140 probe-enzymes 

combinations from 35 probes x 4 restriction enzymes) markers to identify polymorphic 

combinations. 'This study included both single-copy and multi-copy markers, the majority 

of which were single-copy SSR and RFLP markers that had been mapped previously (Liu 

e/ ul., 1994 and Qi et nl., 2004). PAGE gels and auto-radiograms showing results from 

screens of these parental lines against a set of SSR markers and RFLP probe-enzyme 

combinations have been given as Figures 15-1 7. 

Out of the total 115 markers screened (80 SSRs and 35 RFLPs). approximately 

45% showed good polymorphism between these two parental lines. 'The restriction 

enzyme Hind11 gave more polymorphic combinations (35%) with the set of 35 RFLP 

probes used in study followed by EcoRV (30%), EcoRI (25%) and DruI (10%). 

Larger numbers of polymorphic probe-ensyme combinations were obtained with Drul. 

but most of these gave highly distorted segregation ratios or produced autoradiograms 

for which scoring was difficult, so these were not pursued further. A total of 26 SSR 

markers (Table 2) and 20 RFLP markers (Table 3). found polymorphic between two 

parental lines were used to screen the mapping population of 172 Fz, self-bulks. 





Figure 16. Screening of parental lines of the cross ICMB 891 11-P6 x ICMB 901 11-P6 and their F1 for SSR (microsatellite) 
marker polymorphism using vaious primer pairs 
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PI = Homozygous for susceptible parent ICMB 891 1 I-P6 allele, denoted as A 
P2 = Homozygous for resistance parent ICMB 901 1 1-P6 allele, denoted as B 
FI (=PI x P?) = Heterozygote. denoted as H 
M/PPS = Molecular marker ladder ( 100 hase pair)/PCR product size 
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SSR Locus: Xpsmp2267 1 
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4.3. SEGREGATION OF MARKERS AND THEIR DISTORTION 

The segregation ratios of the marker loci were calculated using Chi square ( 2 )  formula 

[X2 =x (Observed - Expected)/Expected . The calculated X2 values were then compared 
,-I 

with tabulated values for 1 degree of freedom. The segregation pattern of marker loci 

(SSRs and RFLPs) for the mapping population of 172 F2 progenies was compared with 

the expected ratio of 1:2:1 (1 homozygote from Parent PI : 2 hetrozygote : 1 homozygote 

from P2). The calculated x2 values using observed frequency of A : H : B and its expected 

frequency for each and every individual marker locus are presented in the Table 12. The 

calculated 2 values were compared with tabulated values for 5% and 1% probability 

levels at 1 degree of freedom. Eighteen out of 46 co-dominant marker loci (including both 

SSR and RFLP) revealed non-significant 2 values when compared with table values of 

3.84 at the 5% and 6.64 at the 1% probability levels. The remaining 28 markers deviated 

significantly from expected ratios at both probability levels. The significant 2 values 

ranging from 6.66 to 20.81 recorded the highest degree of distortion at 1% level for 21 

marker loci on LG1, LG2, LG4, LG5, LG6 and 1.G7. The most distorted marker loci were 

placed in an order o f  (from the most deviated to the least deviated) Xpsm588 > 

.Ypsrnp2018 > Xp.sm696 > Xpsnt575 > Xpsmp2080 > 'Yp.tmp2263 > Xpsmp2072 in terms 

of higher 2 values to lower ones. 

All four marker loci on LG6 exhibited highly significant segregation distortion 

while none of four marker loci on I,G3 showed such segregation distortion. Ten RFLP 

loci and eighteen SSR loci showed segregation distortion. RFLP loci on LG6 showed the 

highest degrees of segregation distortion. The silver-stained PAGE gels of PCR products 

and the autoradiograms from Southern hybridization showing examples of scoring of 

mapping population progenies with some of the SSR and RFLP markers are presented in 

Figures 18-25. 

4.4. GENETIC LINKAGE MAP BASED ON CROSS ICMB 89111-P6 x ICMB 90111-P6 

Genotypic data generated for a total of 46 marker loci (26 SSRs and 20 RFLP probe- 

enzyme combinations) were used to COnStNCt a linkage map of the pearl millet mapping 

population of 172 Fyderived F4 progenies based on the cross ICMB 891 11-P6 x ICMB 

901 1 I-P6. A previously constructed integrated consensus pearl millet linkage map (Qi et 



Figure 18. Multiplex PAGE gel obtained from genotyping of the segregating Fz mapping 
population progenies using two different SSR loci differing in size of PCR-amplified 
DNA of plant entries 
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Figure 19. Monoplex PAGE gel obtained from genotyping of the segregating F2 mapping 
population progenies using PCR-amplified DNA of plant entries from single SSR locus 
Xp.smp226 1 

SSR locus: Xpsmp2261 
M 

F2 mapping population progenies 

PI = Homozygous for susceptible parent ICMB 891 1 I-P6 allele. denoted as A 
Pz = Homozygous for resistance parent ICMB 901 1 I-P6 allele, denoted as B 
FI (=PI x Pz) = Heterozygote, denoted as H 
M = Molecular marker ladder ( 100 base pair) 



Figure 20. Monoplex PAGE gel obtained from genotyping of the segregating F2 mapping 
population progenies using PCR-amplified DNA of plant entries from single SSR locus 
Xpsmp226 1 

SSR locus: Xpsmp2201 

- 

i 
F2 mapping population progenies 

Figure 2 1. Monoplex PAGE gel obtained from genotyping of the segregating Fz mapping 
population progenies using PCR-amplified DNA of plant entries from single SSR locus 
X11.stnp2276 

M 
SSR locus: Xl1sni112276 

I F2 mapping population progenies I 
PI  = Homozygous for susceptible parent ICMB 891 1 I-P6 allele. denoted as A 
Pz = Homozygous for resistance parent ICMB 901 I 1-P6 allele, denoted as B 
FI (=PI x P?) = Heterozygote. denoted as H 
M/l'PS = Molecular marker ladder (100 base pair)/PCR product size 



Figure 22. Autoradiogram obtained from genotyping of the segregating F2 mapping 
population progenies based on cross ICMB 89111-P6 x ICMB 90111-P6 with RFLP 
locus Xpsm344. 

- 
Probe: P W S M 3 4 4  Restriction endonuclease: EcoRI 

M A B H A H A H B B  H H - A H H H H  B H  H - B B B A  

b 

"w-0 * - m m m  
-)a- rw -rV*)- l*r 

PI P ! k  I ? 1 . 1  5 0 7 X 9 10 1 1  I2 I ?  1 5  1 0  17 I X  1 9 2 0 2 1  2 2 2 4  

LY Parental hnes ' C 
Fz mapplng populat~on progenies 

Figure 23. Autoradiogram obtained from genotyping of the segregating Fz mapping 
population progenies based on cross lCMB 891 11-P6 x lCMB 901 11-P6 with RFLP 
locus X/,sr?r344 

Probe: PgXPSM344 Restriction endonuclease: EcoRI 
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F2 mapping population progenies 

PI = Homozygous for susceptible parent ICMB 89 1 1 I -P6 allele, denoted as A 
Pz = Homozygous for resistance parent ICMB 901 1 I-P6 allele, denoted as B 
FI (=PI x Pz) = Heterozygote. denoted as H 
M = Molecular marker ladder of HincflII-digested lambda (A) DNA 



Figure 24. Autoradiogram obtained from genotyping of the segregating Fz mapping 
population progenies based on cross ICMB 891 11-P6 x ICMB 901 11-P6 with RFLP 
locus Xpsm344 

Probe: PgXPSM344 
Restriction endonuclease: EcoRI 
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Figure 25. Autoradiogram obtained frorli genotyping of the segregating F? mapping 
population progenies based on cross ICMB 891 11-P6 x ICMB 901 11-P6 with RFLP 
locus Xpsm492 

Probe: PgXPSM492 Restriction endonuclease: EcoR1 
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F1 mapping population progenies 

PI = Homozygous for susceptible parent ICMB 891 I I-Pb allele, denoted as A 
P l =  Homozygous for resistance parent ICMB 901 11-P6 allele, denoted as B 
FI (=PI x P?) = Heterozygote, denoted as H 
M = Molecular marker ladder of HindIII-digested lambda (A) DNA 





... contd. Table 12. Chi square estimates and segregation distortion observed among 172 Fz pearl millet mapping population progenies 
based on cross ICMB 891 11-P6 x ICMB 901 11-P6 across 46 polymorphic marker loci (including SSKs and RFLPs) as compared to 
expected Mendelian 1 :2: 1 segregation ratios 

Linkage Marker Observed F: data segregation Total Chi square Expected F2 data Excess (+)I Deficit (-) 
group locus calculated segregation of 

A  H  B C D Missing A H B A H B  

LC 5 Xpsmp2202 36 98 30 0 0 8 172 6.68** 41.0 82.0 41.0 - + - 
Xp~mp2274 33 98 29 1 4 7 172 8.30** 41.3 82.5 41.3 - + - 

Xpsmp2220 34 90 26 2 4 16 172 6.85" 39.0 78.0 39.0 - + - 
Xpsmp2078 33 92 28 2 3 14 172 6.61* 39.5 79.0 39.5 - + - 
Xpsmp2208 35 83 28 3 1 22 172 3.41 37.5 75.0 37.5 
Xpsmp2276 34 90 33 0 2 13 172 3.38 39.8 79.5 39.8 
Xp.smp22 7 7 40 84 37 4 0 7 172 0.42 41.3 82.5 41.3 

Xpsmp226 I 33 _ 95 32 0 0 12 172 5.64' 40.0 80.0 40.0 - + - 
LG6 Xpsm588 15 90 52 9 4 2 172 20.81** 42.5 85.0 42.5 - + + 

Xpsm696 14 92 42 8 12 4 172 19.35** 42.0 84.0 42.0 - + 
Xpsmp20 18 22 80 62 3 0 5 172 19.61" 41.8 83.5 41.8 - - + 
Xpsm575 25 85 57 2 2 1 172 12.32" 42.8 85.5 42.8 - + 

LC 7 Xpsm7 I8 33 92 36 2 3 6 172 3.40 41.5 83.0 41.5 

Xpsm269 27 89 28 2 1 25 172 8.04** 36.8 73.5 36.8 - + - 
Xpsmp2224 30 91 28 1 2 20 172 7.36** 38.0 76.0 38.0 - + - 
Xpsmp2074 28 86 24 6 7 21 172 8.61** 37.8 75.5 37.8 - + - 
Xpsmp2263 30 93 23 4 10 12 172 11.63** 40.0 80.0 40.0 - + - 

Xpsnip2203 38 93 33 1 2 5 172 3.26 41.8 83.5 41.8 

Xpsm I60 40 64 36 9 5 I8 172 1.26 38.5 77.0 38.5 

Xpsm I90 39 86 39 3 1 4 . - .. 172 - 0.39 42.(L 84.0 42.0 
', " significant at 0.05 and 0.01 levels of probability, respectively 



aL, 2004) based on RFLP and SSR markers was used as a reference for marker linkage 

group assignment and initial marker ordering in this study. 

A linkage map of seven linkage groups with a total map length of 747.9 cM was 

constructed using data from 46 marker loci for 172 F2 progenies. The map lengths of 

individual linkage groups ranged from a minimum of 30.2 cM (LG3) to a maximum of 

195.2 cM (LG7), as shown in Figures 26-27. Polymorphic marker loci on the distal ends 

of several linkage groups were included in this study enhancing the total length of the 

map. 'The total mapped genome and linkage group lengths for seven pearl millet mapped 

populations. including the one used in this study and LGD 1-B-10 x lCMP 85410 (Liu el 

al., 1994) used pearl millet base linkage maps are presented in Table 48 for their 

comparison across linkage groups. 

4.4.1 MapMakerIExp 

MapMakerlExp version 3.0 multipoint analysis was used to construct the linkage map 

using a LOD threshold value of 2.0 and recombination fraction of 0.5, After making 

seven linkage groups, markers were placed based on "group". "sequence" and "map" 

commands. Unlinked markers were thcn placed in appropriate linkage groups using the 

"build" command. Markers with satisfactory orders were then anchored in each linkage 

group and the framework command was used. Marker orders with fewer candidate errors 

and higher log likelihood (LOD) valucs were preferred for anchoring and frame working 

of each linkage group. IJtmost care was taken particularly to properly place marker loci 

detected by multiple-copy RFLP probes while assigning them to appropriate linkage 

groups. 

4.4.1.1. Linkage group 1 

Linkage group 1 accon~n~odated seven loci detected by three SSRs (,Yp,smp2273. 

xp~m/~2080  and Xpsmp2030) and four RFLPs (,Ypsm280. .Ypsm492. .Ypsm17 and 

Xp.~m196.1). The total map length of this linkage group is 139.6 cM with comparatively 

higher negative LOD value (-354.72) than other linkage groups and a small number of 

candidate errors (putative double crossovers). The "compare" command of MapMaker 

predicted the best marker order of Xpsm280. Xpsm492, X>smp2273, Xpsml7. 

Xpsmp2080, Xpsmp2030 and Xpsm196.1 in this linkage group (Figure 26). 



4.4.1.2. Linkage group 2 

The total length of Linkage group 2 is 192.3 cM, which is second longest among the seven 

linkage groups (Figure 26). It consists of seven SSRs and only one RFLP (on the top of 

this linkage group). The best order predicted by "compare" command of MapMaker is 

Xpsm708.1, Xpsmp2237, Xpsmp2072, Xpsmp2077, Xpsmp2201, Xpsmp2232.2, 

Xpsmp2225 and Xpsmp2089 and this gave the most highly negative LOD value (-429.34) 

with few putative double crossovers. 

4.4.1.3. Linkage group 3 

This is the shortest linkage group among the seven in this skeleton map. It has a total 

length of 30.2 cM and consists of four markers (two SSRs and two RFLPs). These 

markers were placed in the order of Xpsm37, Xpsm18. Xp.~mp2070 and Xpsmp2267 with 

inter-marker distances of 17.9, 7.1 and 5.2 cM, respectively (Figure 26). A negative log 

likelihood value of -183.21 was obtained for this locus order, with only a few candidate 

errors. 

4.4.1.4. Linkage group 4 

Seven markers (six RFLPs and one SSRs) were placed in this linkage group with an order 

of .Ypsm409.1, Xpsm648. Xpsm344. Xpsm84, Xj~smp2084. Xpsm837.2 and Spsm416.3 

(Figure 26). This linkage group has a total map lenbqh of 98.3 cM with a log likelihood 

value of -285.12 and a few putative double crossovers. Marker locus ,Yp.~m409.1 was 

placed on top of this linkage group. with a very large map distance of 65.9 cM to the 

nearest marker, Xpsm648. The remaining loci in this linkage group were located close to 

each other with optimum inter-marker intervals (ranging from 2.4 cM to 9.6 cM) for 

QTI,s detection. 

4.4.1.5. Linkage group 5 

This linkage group consisted of eight SSRs markers. A total Haldane map length of 50.1 

cM was observed with the best marker order of ,l~smp2202, Xpsmp2274. Xpsmp7220. 

Xpsmp2078, Xpsmp2208, Xpsmp2276, and .Ypsmp2261. This marker order gites a 

negative LOD value of -285.12 with a number of putative double crossovers. Marker 

locus Xpsmp2261 (which was not mapped earlier) was placed at the botton~ of this 

linkage group at map distance of 20.5 cM from Xpsmp2277. The inter-marker distance 





Figure 27. Genetic linkage map of pearl millet linkage groups (5-7) based on cross lCMB 891 1 I-P6 x ICMB 901 11-P6. Left side of the map 
of each linkage group are inter-marker distances in  cM (Haldane) and on right \ide is the name of markers (green color denotes RFLP probes 
and blue color denotes SSR primers). 

Linkage group 5 Linkage group 6 Linkage group 7 
Distance = 50.1 cM Distance = 42.2 cM Distance = 195.1 cM 



ranged from 1.3 cM between Xpsmp2276 and Xpsmp2277 to 20.5 cM between 

Xpsmp2277 and Xpsmp2261 (Figure 27) which are near optimal for QTL detection. 

4.4.1.6. Linkage group 6 

Linkage group 6 was second smallest linkage group for the mapping population with four 

markers (including three RFLPs and one SSR), placed in best order of Xpsm588. 

Xpsm696, Xpsmp20 18 and Xpsm575 with inter-marker map distances of 13.0, 19.9 and 

9.3 cM, respectively (Figure 27). A total map distance of 42.2 cM was obtained with a 

negative LOD score of -207.18 with a few putative double crossovers. 

4.4.1.7. Linkage group 7 

This was the largest linkage group for this mapping population with a tialdane map 

length of 195.2 cM. This linkage group consists of fbur SSR markers centrally placed and 

four WLPs, of which two RFLPs are located on each of the distal ends. ?'he inter-marker 

distances between the centrally placed SSRs were much lower than the distally located 

RFLPs. This linkage group recorded a negative log likelihood value of -421.38. with 

marker ordcr of ,Ypsm718, Xp.sm269, Xp.tmp2224. Xpsmp2074, Xp.vmp2263, Xpsmp2203, 

Xp.c.ml60 and Xpsml90 (Figure 27). a reasonably accepted number of putative double 

crossovers. 

4.5. QTL MAPPING BASED ON CROSS ICMB 89111-P6 x lCMB 901 11-P6 

The 748 cM (Haldane) linkage map constructed for 172 F2 4 self-bulk progenies from the 

cross ICMB 891 11-1'6 x ICMB 901 11-P6 was used for QTL analysis of phenotypic data 

for downy mildew incidence (%) generated from seedling green house screen of 164 to 

172 of the F2 self-bulks against eight pearl millet downy mildew pathogen populations. 

MapMakeriExp 3.0b was used for constructing linkage map (descrikd above) and then 

two software packages, first MapMakeriQTL ver. I. l h (Lincoln el ul.. 1992b) and second 

PlabQTI, ver. 1.1 (Utz and Melchinger, 2000), were used for Q'TL mapping. A linkage 

map output data file from MapMakerIExp was used for the PlabQTL analysis. 

4.5.1. Simple interval mapping as implemented in MapMakerIQTL 

MapMakerIQTL was used for simple interval mapping with a LOD score of 2.0 as the 

threshold value for detecting significant QTLs. As the phenotyping was done in F, 4 self- 



bulks, this software calculates weight (additive), dominance and recessive genetic effects 

and gives estimates of the proportion of observed phenotypic variation explained by 

individual QTLs. The commands "sequence [all]", "list loci", "show linkage maps", "list 

traits", "show traits", "scan", "show peaks' and "map" were used for QTL analysis to 

calculate the above mentioned effects of individual putative QTLs. Based on estimated 

single QTL map positions, combined effects of two or more QTLs were calculated for 

two-QTL, three-QTL, four-QTL models etc. The qualifying criteria for accepting a 

multiple-QTL model was a LOD score of at least 2.0 units more than the highest LOD 

score of the best model having one less QTL: 

LODn ? LOD (,.I) + 2.0 

where 

LOD, = minimum qualifying LOD score for acceptance in a multiplc-QTL model 

with 'n' QTLs, 

LOD (,.I) = maximum LOD score for any observed model with n-1 QTLs. 

4.5.2. Composite interval mapping as implemented in PlabQTLs 

Composite interval mapping as implemented in PlabQTL (Utz and Melchinger, 2000) 

was used with a threshold likelihood ratio of 2.5 for declaration of QTL significance. 

Weight (additive) and dominance effects were calculated for each QTL detected by this 

software package. 

In this study. genotypic data was generated in FZ 3 self-bulks (representing each of 

172 F2 individuals from which the mapping population was derived) and phenotypic data 

from DM screening of F2 derived F4 self-bulk families produced by selfing individual Fz 

plants for two successive generations. 'Therefore, the dominance effect observed in the 

F2F4 families were reduced to 25% of that expected in the Fz generation. So for the 

estimation of the mode of inheritance, the degree of dominance has to be calculated using 

the following ratio: 

where 

D = Dominance 

W = Weight (= additive effect) 



Depending on the absolute value 4D/W ratio, the inheritance patterns were assessed as 

00.0-0.20 = Additive inheritance 

0.21-0.80 = Partially dominant inheritance 

0.80-1.20 = Dominant inheritance 

> 1.20 = Over-dominant inheritance 

in this mapping population, the male parent (marker allele homozygote scored as 

B) was ICMB 901 11-P6 (downy mildew resistant) and female parent (marker allele 

homozygote scored as A) was ICMB 891 11-P6 (downy mildew susceptible). If weight is 

negative, the alleles from resistant parent (ICMB 901 11-P6) decrease DM incidence and 

hence contribute to DM resistance. Similarly if weight is positive, the alleles from lCMB 

901 11-P6 increase disease incidence ( i  e . ,  the alleles from ICMB 8911 1-P6 increase DM 

resistance or decrease DM susceptibility). This fully depends upon the marker genotype 

scoring codes and the software used. In this study, the more susceptible female parental 

line ICMB 89 1 11 -P6 was scored as A and the more resistance male parental line ICMB 

90 1 1 1 -P6 was scored as B, so the above explanation holds good for both MapMakerfQ'TL 

and PlabQTL. 

Data on total and diseased plant counts per replication for each pathogen 

population was converted into disease incidence (%) and across replication mean disease 

incidencc values were used for mapping QTLs for downy mildew resistance. Both 

analyses (simple interval mapping and composite interval mapping) detected donmy 

mildew resistance QTLs on LGI, LG2. LG3. LG4 and LG7 (Figures 28-30) with major 

significant effects, which are described in detail below and the comparison of DM 

resistance QTI, 1,OD peaks for each pathogen populations from India and Africa mapped 

on each the seven linkage groups of the linkage map using composite interval mapping 

(CIM) are presented in Figures 3 1-37. 

4.6. QTLS FOR DOWNY MILDEW RESISTANCE (DMR) 

4.6.1. Downy mildew resistance QTLs for the Jodhpur (Sg139) pathogen population 

Four DMR QTLs were identified by PlabQTL, each one on LG2 and LG3 and two on 

LG4 (Table 13). However, MapMakerIQ'rL detected five putative QTLs, each one on 

[.GI, LG2, LG3, LG4 and LG7. Simple interval mapping indicated the QTL on LG4 

(between Xpsm409.1 and Xpsm648) to be a major one. with a large phenotypic effect 





Figure 29. QTLs positions on genetic linkage map of pearl millet based on the cross ICMB 891 1 I-P6 x ICMB 901 11-P6 detected by simple interval and 
composite interval mapping on LG3 and LG4 for resistance to downy mildew pathogen populations from India and Africa 

a - QTL detected by simple interval mapping as implemented in MapMakerIQTL 
b - QTL detected from highest qualified multiple-QTIL model 
c - QTL detected by PlabQTL 

- QTLs of major effect 

Flanking markers are placed on left side of the map. Markers in peen color are RFLP probes 
and in blue color are the SSR (micro\atellite) primers. 
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Figure 30. QTLs positions on genetic linkage map of pearl millet based on the cross ICMB 891 11-P6 x ICMB 901 11-P6 detected by simple interval and 
composite interval mapping on LG7 for resistance to downy mildew pathogen populations from India and Africa 

m Jodhpur 

m Jalna 

a Durgapura 

0 Patancheru 

Jamnagar 

a New Delhi 

0 Maiduguri 

m Bamako 

d - QTL detected by clmple ~nterval mapplng a\ ~mplemented In MapMakerIQTL 
b - QTL detected from h~ghest qualified mult~ple-QTL model 
c - QTL detected by PldbQTL 
F - Q T L  of major effect 

Flanking markers are placed on left side of the map. Markers in green color are RFLP 
probes and in hlue color are the SSR (microsatellite) primers. 



Figure 31. Comparison of downy mildew resistance (DMR) QTL LOD peaks obtained for 
pathogen populations from India and Africa mapped on linkage group 1 of the newly 
constructed genetic linkage map based on the cross ICMB 891 11-P6 x ICMB 901 11-P6 
using composite interval mapping method as implemented in PlabQTL 
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Figure 32. Comparison of downy mildew resistance (DMR) QTL LOD peaks obtained for 
pathogen populations from India and Africa mapped on linkage group 2 of the newly 
constructed genetic linkage map based on the cross ICMB 891 1 I-P6 x lCMB 901 11-P6 
using composite interval mapping method as implemented in PlabQTL 
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Figure 33. Comparison of downy mildew resistance (DMR) QTL LOD peaks obtained for 
pathogen populations from India and Africa mapped on linkage group 3 of the newly 
constructed genetic linkage map based on the cross ICMB 891 11-P6 x ICMB 901 11-P6 
using composite interval mapping method as implemented in PIabQTL 
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Figure 34. Comparison of downy mildew resistance (DMR) QTL LOD peaks obtained for 
pathogen populations from India and Africa mapped on linkage group 4 of the newly 
constructed genetic linkage map based on the cross ICMB 891 11-P6 x ICMB 901 11-P6 
using composite interval mapping method as implemented in PlabQTL 

I -Jodhpur 

- Jalna 
Durgapura 

-- Palancheru 

- Jamnagar 
-New Delh~ 

- Maldugurl 
-Bamako 

0 I 0  ?I1 

I)~\ldncr ~n CM 



Figure 35. Comparison of downy mildew resistance (DMR) QTL LOD peaks obtained for 
pathogen populations from India and Africa mapped on linkage group 5 of the newly 
constructed genetic linkage map based on the cross ICMB 891 11-P6 x ICMB 901 11-P6 
using composite interval mapping method as implemented in PIabQTL 
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Figure 36. Comparison of downy mildew resistance (DMR) QTL LOD peaks obtained for 
pathogen populations from India and Africa mapped on linkage group 6 of the newly 
constructed genetic linkage map based on the cross ICMB 891 11-P6 x ICMB 901 1 I-P6 
using composite interval mapping method as implemented in PlabQTL 
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Figure 37. Comparison of downy mildew resistance (DMR) QTL LOD peaks obtained for 
pathogen populations from India and Africa mapped on linkage group 7 of the newly 
constructed genetic linkage map based on the cross ICMB 891 11-P6 x ICMB 901 11-P6 
using composite interval mapping method as implemented in PlabQTL 
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accounting for 65.3% of observed variation and a high LOD score of 11 .O. The best two- 

QTL model which explained 72.1% of observed phenotypic variation and had a high 

LOD value of 14.6, (>11.0+2.0 = 13.0) was accepted as better than the best single-QTL 

model. Further to this, a superior three-QTL model, significantly better than the best two- 

QTL model, explained about 83.2% of phenotypic variation in disease reaction among 

172 mapping population progenies and had a very high LOD score of 19.2 (>14.6+2.0 = 

16.6). The inheritance of these QTLs showed additive and over-dominant resistance, with 

susceptible parent ICMB 891 11-P6 providing the resistance alleles for the QTL on LG3, 

and resistant parent ICMB 901 11-P6 providing the resistance alleles for the remaining 

resistance QTLs detected using the Jodhpur pathogen population. In addition inheritance 

was recessive for putative DMR QTL identified on LGI, LG4 and LG7. 

4.6.2. Downy mildew resistance QTLs for the Patancheru (Sg153) pathogen 

population 

For this pathogen population a total of five DMR QTLs were placed using both interval 

mapping method implemented in MapMakeriQTL and composite interval mapping 

method implemented in PlabQTL. PlabQTL detected four DMR QTLs, two QTLs located 

on LG2, and one each on LG3 and LG4. MapMakerlQTL identified three putative QTLs. 

one each on LG2. LG4 and LG7. The best single-QTL model based on the LG4, QTL had 

a high critical LOD value of 12.9 and explained 70.5% observed phenotypic variation 

('Table 14). 

In contrast, PlabQTL identified as best for DM resistance against Patanchem 

pathogen population a QTL located on LG2 (8.0 cM proximal to Xpsmp2237) with a 

likelihood of 5.9 that accounted for 14.6 % a less observed phenotypic variation. 

The best two-QTL model recorded a higher LOD value of 19.4, significantly 

better than the best single-QTL model (14.9 = 12.9+2.0). A total of 76.4% of phenotypic 

variation in downy mildew incidence was explained among the 172 F24 self-bulk 

progenies screened against this pathogen population. Among other multiple-QTL n~odels 

the best three-QTL and four-QTL models had high LOD values of 2 1.9 (> 19.412.0) and 

25.1 (>21.9+2.0 = 23.9), respectively. The later explained 90.4% of observed phenotqpic 

variation for downy mildew incidence in this particular DM screen. The mode of 

inheritance for majority of QTLs identified by single- as well as multiple-QTL models 







was dominant to over-dominant, with the more resistant alleles being contributed by 

resistant parent ICMB 901 11-P6 for all QTLs except that mapping to LG3, for which 

susceptible parent 891 11-P6 contributed the resistance allele. 

4.6.3. Downy mildew resistance QTLs for the New Delhi (Sg298) pathogen 

population 

Composite interval mapping using PlabQTL detected three downy mildew resistance 

QTLs effective against the pathogen population from IAN, New Delhi; two QTLs on 

LG2 (at loci Xpsm708.1+0.0 cM and Xpsm2237+10 cM) and one on LG4 (at locus 

Xp.~m648+8.0 cM). Single-QTL models using simple interval mapping implemented in 

MapMakeriQTL also detected three QTLs but these were distributed across on LG2, LG4 

and LG7. The best single-QTL model had a I.OD score of 10.5, and explained 63.6% of 

variation in DM reaction among 172 F24 self-bulks of the mapping population progenies 

that were screened against this pathogen population (Table 15). The mode of inheritance 

for all of these DMR QTLs was over-dominance except that PlabQTI. indicated additive 

to partially dominant inheritance of one QTL on LG2 and one QTL on LG4. In all cases 

resistance alleles for these QTLs were contributed by the resistant parental line ICMB 

901 l l-P6. 

The LOD score for the best two-QTL model (17.0) was significantly better than 

that for the best single-QTL model (10.5). I'he best two-QTL model included QTL on 

LG2 and LG4 that together explained 82.1% of observed phenotypic variation in disease 

reaction to this pathogen population with over-dominant resistance from ICMB 901 11-P6 

at both QTLs. The best three-QTL model (LOD = 18.8) was not significantly bener than 

the best two-QTL model of tne inheritance of downy mildew resistance effective against 

the New Delhi pathogen population. 

4.6.4. Downy mildew resistance QTLs for the Jamnagar (Sg2OO) pathogen 

population 

Single QTL-model in simple interval mapping with MapMakerIQTL identified three 

QTLs for DM resistance effective against this pathogen population, one each on LG2. 

LG4 and LG7 (Table 16). The first two QTLs on LG2 and LG4 were confirmed by 

MapMaker/QT~ in a two-QTL-model with an acceptable LOD score of 19.8. which was 

greater than the critical value of 14.7 = 12.7+2.0. The portion of observed phenotypic 







variation explained by this two-QTL model was 71.2%, with over-dominant inheritance 

of resistance from resistant parent ICMB 901 1 1-P6 for both QTLs. 

Three- and four-QTL models were not significantly better than this. The 

composite interval mapping implemented in PlabQTL detected two DM resistance QTLs 

on LG2 that were effective against the Jamnagar pathogen population, one potentially 

recessive to additive in its mode of inheritance and the other over-dominant, with 

resistance alleles in both cases inherited from resistant parent ICMB 901 1 1-P6. 

4.6.5. Downy mildew resistance QTLs for the Durgapura (Sg151) pathogen 

population 

MapMakerlQTL intcrval mapping method identified three DMR QTLs on LG2, LG4, and 

I,G7. PlabQTI. composite interval mapping detected four significant QTLs, two Ql'1.s 

each on LG2 and LG4 located between two consecutive marker intervals. This best 

single-QTL model detected by interval mapping on LG4 (,Ypsm409.1+39.1) (Table 17) 

recorded a high LOD score of 10.1 and explained 68.5% of recorded phenotypic variation 

in DM incidence among 172 F24 self-bulk progenies against this pathogen population. 

The best two-QTL model explained 71.2% of this phenotypic variation with significantly 

better LOD score (>I 2.1 = 10.1 + 2.0) than the best single-QTI, model. MapMakerIQTL 

interval mapping also identified a valid three-QTL model significantly better than the best 

two-QTL model with a LOD score of 15.0 p14.1 = 12.1+2.0) and accounting for 82.3% 

of observed phenotypic variation. Dominant to over-dominant inheritance of resistance 

from resistant parent ICMB 901 11-P6 was observed for the DM resistance QTLs 

identified by simple interval mapping of the data from screen against this pathogen 

population. 

4.6.6. Downy mildew resistance QTLs for the Jalna (Sg150) pathogen population 

For this pathogen population, three downy mildew resistance QTLs have been mapped on 

LG2, LG4, and LG7; with two DMR QTLs detected by each software package. One 

common QTL on LG4 was detected by both analyses (Table 18). A major QTL located 

on LG4 was detected by simple interval mapping with the single-QTL model for this 

having a LOD value of 10.2 and accounting for a large part of the observed phenotypic 

variation (62.9%) in the screen of the mapping population progenies against this pathogen 

population. The best two-QTL model proved to be significantly better than the best 







single-QTL, model with a higher LOD value of 13.9 (212.2 = 10.2+2.0) and explaining a 

larger portion (66.8%) of the observed phenotypic variation among progenies in this 

screen. 

MapMakerJQTL single-QTL models indicated dominant to over-dominant 

resistance with governing the favorable alleles from the resistance parent ICMB 901 1 1 -  

P6. However, the best two-QTL model included a QTI, governed by recessive resistance 

alleles coming from susceptible parental line lCMB 891 11-P6. This recessively inherited 

QT1, on LG7 was also detected by composite interval mapping implemented in PlabQTL, 

but its single-QTL model was not detected as significantly by simple interval mapping 

implemented in MapMakeriQTI,. 

4.6.7. Downy mildew resistance QTLs for the Maiduguri pathogen population (UWB 

screen 43) 

MapMakerJQ'I'L detected only one DMK QTL effective against this pathogen population 

on LG2 (Xpsm708.1+29.2 cM). But composite interval mapping implemented in 

PlabQTL identified three QTLs, two DMR QT1.s on LG2 (Xpsm708.1+0 cM and 

X>smp2237+10 cM) and one on LG4 (Xpsm409.l+22.0 cM). The highest LOD score 

recorded was 16.2 by best single-QTL by interval mapping method which accounted for 

69.5% of observed phenotypic variation for DM reaction with over dominant from ICMB 

891 11-P6 (Table 19). The best two-QTL model was not accepted, as its LOD score of 

18.1 was slightly less than the required critical value of 16.27-2.0 = 18.2. 

4.6.8. Downy mildew resistance QTLs for the Bamako pathogen population (UWB 

screen 45) 

Four putative DMR QTLs effective against the pathogen population from Bamako, Mali 

identified by simple interval mapping as implemented in MapMalierIQTL, on LGI, LG2, 

LG4 and LG7. Composite interval mapping confirmed the position of two of these QTL 

on LG4 and LG7. The best single-QTL model for simple interval mapping was that for 

1.G4 which had a LOD value 15.5, and accounted for 73.9% of observed phenotypic 

variation among 164 F2 self-bilks mapping population progenies screened against this 

pathogen population (Table 20). The best two-QTL model recorded a LOD score of 17.2, 

which was slightly lower than the critical level (15.2c2.0 = 17.5); but the best three-QTL 

model was accepted with a LOD value of 19.6. which was significantly better than the 







best single-QTL and best two-QTL models (critical value = 19.2 = 15.2+2.0+2.0). This 

three-QTL model explained 80.3% of observed phenotypic variation among the 164 

progenies of the mapping population when screened against this DM pathogen 

population. The mode of inheritance for the resistances detected by this three-QTL model 

ranged from recessive for the QTL on LG2, to partially dominant for that on LG4 and 

over-dominant for that on LG7, with resistant parent ICMB 901 11-P6 contributing the 

more resistant allele in each case. However, composite interval mapping results suggest 

that the LG4 resistant QTL is recessive while that on LG7 is dominant. 

4.7. AGRONOMIC PERFORMANCE OF HHB 94-LIKE HYBRIDS FROM 

MULTILOCATION TRlALS 

4.7.1. Analysis of variance 

Eleven entries including nine HHR 94-like hybrids and two hybrid controls (HHB 94- 

original and HHB 181) were sown in replicated trials in ten test environments (location x 

year combinations) in India during kitcrrjf seasons of 2002 and 2003. The test 

environments different from states were grouped into three major clusters viz. Andhra 

Pradesh and Haryana (trials conducted in four test environments each) and Rajasthan 

(trials conducted in two test environments). The data recorded from these 5-replication 

randomized complete block design trials for 15 important agronomic traits, including 

grain and stover yield and their components were subjected to analysis of variance 

(ANOVA) using Genstat version 6.0. Separate ANOVAs for each of the ten individual 

test environments, pooled data across each of the three state-wise multiple-test 

environment clusters and pooled data across all ten test environments were performed to 

study variation among the genotypes. the test environments and their genotype 

environment (G x E) interactions for each of the traits under study. 

ANOVA Table 21 presents estimates of the mean sums of squares for all among 

genotypes, among environments and G x E interactions for each of the traits from the 

replicated data from all the ten test environments. Mean sums of squares were highly 

significant for genotypes, environments and G x E interactions for all traits except in case 

of G x E interactions for effective plant stand. The test environments represented the 

major source of variation in this experiment followed by genotypes and G E 

interactions. In order to better understand the nature of the G x E interactions, ANOVAs 





were also performed for three state-wise clusters of the test environments and for each of 

the ten individual test environments. 

Results from the state-wise pooled analyses for all the three multiple-test 

environment clusters are presented in the Tables 22-24. 

ANOVA performed for the Andhra Pradesh test environment cluster (Table 22) 

revealed significant variation among genotypes for all traits except effective plant stand, 

among environments for all traits except panicle diameter. However, genotype x 

environment (G x E) interactions were significant only for time to 50% flowering, panicle 

length, and 1000-grain mass. As in case of pooled analysis across all ten test 

environments, the environmental variances were highest followed by genotypic variances 

and G x E interaction variances for all observed traits in Andhra Pradesh test environment 

cluster. 

ANOVA performed for FIaryana test environments cluster (Table 23) showed a 

slightly different pattern from Andhra Pradesh. For Haryana test environments significant 

differences were detected among genotypes for all traits except grain yield, panicle yield, 

1000-grain mass and total above-ground biomass yield, among environments for all traits. 

and G x E interactions for all traits except effective plant stand, panicle grain number and 

harvest index. Environmental variances were observed to be highest for all traits, 

followed by genotypic variances (except for grain yield, effective tillers number, panicle 

yield, 1000-grain mass and total above-ground biomass yield where G x E interaction 

variances were larger than genotypic variances. 

ANOVA performed for the Rajasthan test environment cluster trials conducted 

during kharif 2003 at only two locations (Table 24) revealed significant differences 

among genotypes for traits time to 50% flowering, plant height, panicle length and 

panicle diameter only, and among test environment variances for all traits except harvest 

index. Significant G x E interactions within this environment cluster were also obtained 

only for except grain yield, panicle length and harvest index. The pattern of distribution 

of observed variation across test environments, genotypes and genotype x environment 

interactions within this Rajasthan test environment cluster was similar to that for Haryana 

The variation contributed by G x E interactions was observed to be higher than that from 

genotypes only for grain yield and for harvest index. However, for time to 50% 



Table 23. Analysis of variance showing mean sums of squares of grain and stover yield and their component traits for nine HHB 94-like 
hybrids and two control hybrids (HHB 94 and HHB 181) across four test environments in Haryana during kharif2002 and 2003 

Replication 4 2763 13.83 15.39 249.75 1.28 0.93 147932 44121 41.83 22.42 1 1  114 0.34 241812 87828 8.17 

Genotype 10 7281 30.33.' 14.67" 333.36" 40.31** 24.10" 261443'. 106036" 75.93" 59.51" 12787 0.59 222041. 86918 79.46" 

Environment 3 193717" 1042.55** 81.23'' 7504.87': 26.15** 429.32** 1480235" 627920.' 213.52" 501.37" 435917" 40.3It* 11258010" 2068100" 236.89'' 

G x E  30 9515'' 4.17** 2.96 93.17' 3.45:' 11.88** 247291" 80681** 37.17" 61.61** 17226" 1.01" 153327 163826'' 16.89 

Poolederror I72 4570 2.01 3.25 53.53 0.74 0.96 106847 30364 19.38 16.02 8661 0.50 117480 62689 14.22 

Source of 
variation df 

Table 24. Analysis of variance showing mean sums of squares of grain and stover yield and their component traits for nine HHB 94-like 
hybrids and two control hybrids (HHB 94 and HHB 181) across two test environments in Rajasthan during kharif2003 

Mean sums of squares 

GY FT EPS PH PL PD FSY DSY SMC ETN PY IOOOGM PGN TAGBY HI 

*, ** significant at the 0.05 and 0.01 levels of probability, respectively 

Source of 
variation 

GY - grain yield (g/m2), FT - time to 50 %flowering, EPS - effective plant stand (plants/m'), PH -plant height (cm), PL - panicle length (cm), PD - panicle diameter (nun), 
FSY - fresh straw yield (!&irn2), DSY - dry straw yield (dm2), SMC - straw moisture content (%), ETN - effective tiller number (tillenlm2), PY - panicle yield (dm'), 
IOOOGM - thousand grain mass (g), PGN - panicle grain number, TAGBY - total above-ground biomass yield (dm'), HI -harvest index (%); df - degree of freedom 

Mean sums of squares 
df 

GY FT EPS PH PL PD FSY DSY SMC ETN PY lOOOGM PGN TAGBY HI 

Replication 4 5839 12.38 6.34 319.81 3.55 2.98 160298 20868 50.81 14.54 7380 2.15 190314 45971 80.37 

Genotype 10 2957 48.001* 3.33 187.49" 17.36** 25.84" 17281 4740 9.22 5.13 2768 0.74 85026 9638 48.72 

Environment 1 469782** 1094.63** 19.49;' 3 1728.83** 157.44.; 13 1.56** 2929179** 1833349" 7032;. 395.96** 539826** 45.98** 7063120** 4362759': 57.75 

G n E 10 4490. 3.09 1.44 51.05 3.48** 3.00 19985 4579 17.45 6.49 3036 0.68 111688 11204 80.80** 



flowering, plant height, panicle length and diameter, genotypic variances were greater 

than G x E interaction variances within this test environment cluster. 

4.7.2. Mean performance of HHB 94-like hybrids in multilocation trials 

The mean performance of nine HHB 94-like hybrids and two hybrid control entries were 

tested and compared against grand mean for each trait pooled across each of the three 

state-wise test environment clusters and across all ten test environments. The nine 

experimental hybrids were developed by using as female parents three pairs of sub- 

selections of ICMA 891 11, ICMB 891 1 1 and ICMB 901 11 (where the ICMB 891 1 1 and 

ICMB 90 11 1 have been used to generate pear millet mapping populations) and crossing 

these to a common pollinator (G731107). In general, the comparisons made among HHB 

94-like hybrids, revealed no significant differences in grain or stover yield performance 

for pooled data sets within any of state-wise test environment clusters or across all ten test 

environments (Tables 25-28). 

4.7.2.1. Grain yield (g/m2) 

The mean performance among HHB 94-like hybrids pooled across the ten test 

environments revealed no significant differences in grain yield which ranged from a 

minimum of 279 g/m2 (ICMH 02005) to a maximum of 351 g/m2 (HHB 181). None of 

the experimental hybrid could significantly exceed the grain yield performance of the 

hybrid control entries HHB 94-original (334 glm2) and HHB 181 across these ten trials. 

Hybrids produced on sub-selections of ICMA 891 11-P2, ICMA 891 11-P5 and ICMA 

891 11-P6 produced numerically higher grain yields than those on the corresponding sub- 

selections of ICMB 891 11 and ICMB 901 11. Very low to low (0.00 to 0.25) operational 

heritabilities (calculated on plot basis) were observed for grain yield in for each of the test 

environment clusters as well as for the pooled analysis across all ten test environments 

but operational heritability values (calculated on mean entry basis) were very high for 

Andhra Pradesh and across all ten test environments (0.87 and 0.72, respectively). 

Trial mean grain yield performance was highest for Andhra Pradesh test 

environment cluster (410 g/m2) followed by Haryana (291 &n2) and Rajasthan (184 

g/m2). In Andhra Pradesh and Haryana, HHB 94-like hybrids based on the sub-selections 

of ICMA 891 11 recorded marginally higher grain yields than those based on sub- 

selections of ICMB 891 11 and ICMB 901 11, suggesting an effect of cytoplasm on this 



trait. In contrast, in Rajasthan, HHB 94-like hybrids based on the sub-selections of ICMB 

891 11 were observed to have marginally higher grain yields than their ICMA 891 11- and 

ICMB 901 11- sub-selection-based counterparts. Among the nine experimental hybrids in 

this trial HHB 94-P5A produced the highest grain yield both in Andhra Pradesh (435 

gm2) and Haryana (307 g/m2), as well as across all test environments (378 g/m2) while 

HHB 94-P2B had numerically highest grain yield (198 dm2) in Rajasthan. A larger 

proportion of G x E interactions for grain yield were due to poor performance of the HHB 

94-original and HHB 95-P5A to larger extent and ICMH 02006, HHB 181 and HHB 94- 

P2B to smaller extent (Figure 38) in Rajasthan test environment cluster. 

4.7.2.2. Time to 50% flowering 

The mean flowering time of the 11 entries in these trials ranged from 45 days to 5 1 days. 

with a grand mean of 49 days pooled across ten test environment (Table 25). 

Experimental versions of HHB 94-based on sub-selections of ICMA 891 11 recorded a 

uniform mean time of 49 days to reach 50% flowering followed by test hybrids based on 

ICMB 891 11 (49-51 days) and ICMB 901 11 (50-51 days). Relatively early flowering was 

observed for HHB 1 8 1 (45 days). 

Significant differences in flowering time were noticed among HHB 94-like 

hybrids in Andhra Pradesh test environment cluster, where this ranged from 43 days 

(HHB 181) to 50 days (ICMH 02005 and ICMH 02006) with a grand mean of 47 days. In 

the Haryana and Rajasthan test environment clusters, control entry hybrid HHB 181 

flowered significantly earlier than all other HHB 94-like hybrids included in this trial and 

test environment cluster grand mean flowering times ranged from 50 to 51 days. 

Moderate to high operational heritabilities (calculated on plot mean basis) were recorded 

within each test environment cluster varying from 0.35 (Haryana cluster) to 0.62 (Andhra 

Pradesh test environment cluster) as well as for the pooled analysis across all ten test 

environments in this trial (0.45). Five HHB 94-like hybrids (HHB 94-P5A, HHB 94-P2B, 

HHB 94-P5B, ICMH 02002 and ICMH 02006) in Haryana test environment cluster 

deviated from the mean values across all ten test environments, and thus were the major 

contributors to G x E interactions for time to 50% flowering (Figure 39). 



Table 25. Comparisons of  mean performances of HHB 94-like hybrids for grain and stover yield and their component characteristics (1-4) 
across three environment clusters and across all ten test environments during Wzarif2002 and 2003 

Genotypes 

HHB 94-P2A 

HHB 94-P5A 

HHB 94-P6A 

HHB94-Original 

lCMH 02002 

Grain yield (g/m3 

AP HRY RAJ All 

427.8 305.3 163.2 325.9 

ICMH 02005 

lCMH 02006 

HHB 94-P2B 

HHB 94-P5B 

435.3 306.8 154.2 327.7 

423.0 298.1 184.8 325.4 

426.0 309.2 198.4 333.7 

397.3 277.2 171.3 304.0 

HHB 94-P6B 

Time to 50% flowering 

AP HRY RAJ All 

47 51 50 49 

357.5 248.5 182.6 278.9 

369.4 282.7 180.4 296.9 

415.7 285.8 197.7 320.1 

402.7 294.1 194.2 317.6 

Grand mean 

Mimimum 

Maximum 

SE (+I-) 

CV (%) 

AP and HRY indicate mean performance across four test environments each in Andhra Pradesh and Haryana respectively; RAJ indicates mean 
performance across two test environments in Rajasthan; All indicates mean performance across all ten test environments in Andhra Pradesh, Haryana and 
Rajasthan; HSD - honestly significant difference 

47 52 49 49 

46 51 49 49 

46 51 49 49 

48 51 52 50 

400.8 281.2 182.8 309.4 

HSD 1 94.7 141.6 103.2 118.7 1 2.0 3.0 4.3 3.1 1 2.8 3.8 2.9 3.3 1 15.6 15.3 17.1 16.2 

Effective plant stand (plants /m2) 

AP HRY RAJ All 

11.9 11.6 11.3 11.7 

50 52 52 51 

50 51 53 51 

47 52 50 49 

47 52 50 50 

409.9 291.3 184.1 317.3 

357.5 248.5 154.2 278.9 

453.9 315.7 214.9 350.8 

20.8 31.1 22.7 26.1 

11.4 23.9 27.6 18.4 

Plant height (cm) 

AP HRY RAJ All 

180 201 188 190 

12.2 12.6 11.5 12.2 

12.0 12.4 11.7 12.1 

12.2 12.7 11.4 12.3 

12.0 13.2 11.2 12.3 

46 51 49 49 

176 186 174 I80 HHBI81(Control) 

h2 @lot basis) 

174 201 179 186 

171 196 183 183 

175 197 176 184 

191 198 187 193 

11.8 10.8 9.6 11.0 

12.3 12.5 11.2 12.2 

12.4 12.5 11.3 12.3 

12.2 13.1 10.9 12.3 

47 51 50 49 

43 48 45 45 

50 52 53 51 

0.4 0.7 0.9 0.7 

2.0 2.9 4.2 3.1 

0.62 0.35 0.53 0.45 0.25 0.00 0.01 0.07 

191 199 185 193 

193 199 183 194 

181 198 183 188 

175 198 186 186 

12.4 12.9 10.8 12.3 

453.9 315.7 214.9 350.8 

174 194 180 183 

12.0 12.3 11.0 12.0 

11.1 10.7 9.6 10.8 

12.4 13.2 11.7 12.3 

0.6 0.8 0.6 0.7 

11.3 15.1 13.0 13.6 

0.02 0.16 0.09 0.09 

43 48 45 45 

180 197 182 187 

171 186 174 180 

193 201 188 194 

3.4 3.4 3.8 3.6 

4.2 3.8 4.6 4.3 

0.50 0.16 0.17 0.20 

11.1 10.7 10.4 10.8 
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4.7.2.3. Effective plant stand (plants/m2) 

Effective plant stands ranging from 10.8 plants/m2 to 12.3 plants/m2 with a grand mean of 

11.9 plants/m2 were observed across all ten test environments (Table 25). No significant 

differences were noticed among trial entries for effective plant stand based on pooled 

means across the ten test environments as well as each of the state-wise test environment 

clusters (Andhra Pradesh, Haryana and Rajasthan). HHB 94-like hybrids produced on 

sub-selections of ICMB 891 11 demonstrated a uniform and slightly numerically higher 

numbers (pfantsim2) in the pooled analysis across all ten test environments as well as 

across the Andhra Pradesh test environment cluster. In contrast, HHB 94-like hybrids 

based on sub-selections of ICMA 891 11 recorded slightly numerically better means for 

this trait than did other versions of this hybrid in Rajasthan. Effective plant stand was 

recorded with minimum and maximum values of 1 1.1 plants/mz and 12.4 plants/m2 with a 

grand mean of 12.0 plants/m2 for the Andhra Pradesh test environment cluster; 10.7 

plants/m2 and 13.2 plants/m2 with a grand mean of 12.3 plantsim2 for the Haryana test 

environment cluster; and 9.6 plants/m2 and 11.7 plants/mZ with a grand mean 11 plantsim2 

for the Rajasthan test environment cluster. Hence there were no obvious differences for 

this trait among the experimental entries in this trait in any of the state-wise subsets of test 

environments. High operational heritability (on an entry mean basis) were observed for 

the pooled analysis of effective plant stand across all ten test environments (0.83), across 

Haryana (0.80), and Rajasthan (0.57) test environment clusters, as well as moderate for 

the Andhra Pradesh cluster (0.23), while more narrowly calculated operational 

heritabilities (on a plot basis) were very low for all test environment clusters (0.02 to 

0.16). Relatively uniform effective plant stand was recorded for most of the HHB 94-like 

hybrids across test environment clusters except HHB 94-P2A, HHB 94-P5A, HHB 94- 

P6A, HHB 94-P5B and HHB 94-P6B in Rajasthan test environment cluster and ICMH 

02002 in Andhra Pradesh test environment cluster, and hence these hybrids largely 

contributed to G x E interactions (Figure 40). 

4.7.2.4. Plant height (em) 

The mean performance of HHB 94-like hybrids for plant height across ten test 

environments is presented in the Table 25 and revealed no significant differences. 

Similarly, few differences for plant height were observed between trial entries across 

state-wise test environment clusters for Andhra Pradesh, Haryana and Rajasthan. Plant 



height ranged from 180 cm to 194 cm with a grand mean of 187 cm from pooled data 

across ten test environments. Hybrids based on sub-selection of ICMB 901 11 (ICMH 

02002, ICMH 02005 and ICMH 02006) recorded numerically the highest mean plant 

heights across the Andhra Pradesh test environments. Across the Haryana test 

environment cluster, hybrids HHB 94-P2A and HHB 94-P5A recorded significantly 

greater mean plant heights (201 cm) than HHB 18 1 (184 cm) which was the shortest trial 

entry across these test environments. Control hybrid HHB 181 had the numerically 

shortest plant height across the Haryana and Rajasthan test environment clusters and 

across all ten test environments, but for the Andhra Pradesh test environment cluster HHB 

94-P6A (171 cm) was numerically the shortest hybrid. Plant height recorded high 

operational heritability (calculated on plot basis) values at Andhra Pradesh test 

environment (0.50) but was low for other test environment clusters as well as for the 

pooled analysis across all ten test environments. The operational heritability (calculated 

on an entry mean basis) values were very high for this trait ranging from 0.72 to 0.94 

across the three state-wise test environment clusters. The deviation in ranks based on 

mean values of most of test hybrids across test environments in three individual clusters 

from the ranks based on mean values across all ten test environmcnts was much less for 

plant height except deviations of the test entry HHB 181 in Andhra Pradesh, HHB 94- 

P5A in Haryana and ICMH 02006 in Rajasthan test environment cluster which 

contributed much of the G x E interactions (Figure 41). 

4.7.2.5. Panicle length (em) 

ICMH 02002, ICMH 02005, ICMH 02006 and HHB 181 produced shorter panicle length 

than other HHB 94-like hybrids as indicated by the pooled analysis across all ten test 

environments and across the state-wise clusters for Andhra Pradesh, Haryana, and 

Rajasthan (Table 26). The pooled means showed a range from 17.6 cm for ICMH 02006 

to 20.5 cm for HHB 94-P2A, with an over all grand mean of 19.4 cm, and a minimum 

honestly significant difference between entry means of 2.0 cm. Panicles of HHB 94-like 

hybrids produced on sub-selections of ICMA 891 11 were marginally longer than other 

test entries but these differences were only significant for the three experimental hybrids 

produced on sub-selections of ICMB 901 11. HHB 94-original recorded marginally higher 

mean panicle lengths than the second control hybrid, HHB 181, for the over all grand 

mean across all ten test environments as well as for each of the state-wise test 



environment clusters, but these differences were only significant in case of the H q a n a  

test environment cluster. The highest entry mean panicle length of 22.4 cm was observed 

for HHB 94-P5B across the Haryana test environment cluster. Moderate to high 

operational heritability values calculated on plot basis ranging from 0.35 to 0.59, were 

observed for panicle length in this trial while the broader operational heritability values 

calculated on an entry mean basis ranged from 0.80 to 0.95 for this trait. Although Table 

21 showed statistically significant but small and of little practical importance G x E 

interactions for panicle length, only one test hybrid (HHB 94-P5B) in Rajasthan test 

environment cluster performed poorly and the deviation in rank based on mean value of 

this entry across this cluster from across pooled data contributed to the observed G x E 

interactions (Figure 42). 

4.7.2.6. Panicle diameter (mm) 

The mean panicle diameter ranged from 23.2 mm to 26.2 mm with an observed grand 

mean of 24.3 mm and a minimum honestly significant difference between entries of 2.3 

mm over all ten test environments (Table 26). Mean values of panicle diameter recorded 

in state-wise test environment clusters were marginally higher for Andhra Pradesh 

followed by the Rajasthan and Haryana clusters of test environments, with overall grand 

means of 24.5 mm, 24.2 mm and 24.1 mm, respectively. HHB 94-like hybrids based on 

sub-selections of ICMB 901 11 produced panicles with marginally greater diameter than 

those sub-selections of based on ICMA 891 11 and ICMB 891 11 and several of these were 

had significantly greater panicle diameters than control entry HHB 181 in the pooled 

analysis across the Haryana and Rajasthan test environment clusters as well as in the 

pooled analysis across all ten test environments. High operational heritability (calculated 

on plot basis) was observed for this trait across the Rajasthan test environment cluster 

(0.50), with much lower values for the Andhra Pradesh (0.19) and Haryana (0.16) test 

environment clusters resulting in a moderate value for pooled analysis across all ten test 

locations. The observed operational heritability values calculated ranged from 0.51 for the 

Haryana cluster to 0.88 for the Rajasthan cluster. Two test hybrids (HHB 181 and HHB 

94-P6A) showed variation in their ranks based on mean performance of panicle diameter 

across Andhra Pradesh test environment cluster and hence contributed to statistically 

significant but of relatively smaller portion of G x E interactions for this trait (Figure 43). 



Table 26. Comparisons of  mean performances of  HHB 94-like hybrids for grain and stover yield and their component characteristics (5-8) 
across three environment clusters and across all ten test environments during !&orif2002 and 2003 

Dry straw yield (g/m2) 

AP HRY RAJ All 

482 777 317 567 

499 825 331 5% 

HHB 94-P6A 

HHB94-Original 

ICMH 02002 

ICMH 02005 

SE (+I-) 0.4 0.4 0.5 89.6 150.5 92.2 120.0 30.2 80.2 38.2 57.7 

CV (W) 1 5.2 4.2 6.2 1 1 18.8 23.5 16.6 / 13.2 21.8 25.1 21.4 

Genotypes 

HHB 94-P2A 

HHB 94-P5A 

ICMH 02006 

HHB 94-P2B 

HHB 94-P5B 

HHB 94-P6B 

HHB 181 (Control) 

Grand mean 

Minimum 

Maximum 

Panicle diameter (mm) 

AP HRY RAJ All 

24.5 23.9 23.5 24.0 

24.0 23.9 23.6 23.9 

Panicle length (cm) 

AP HRY RAJ All 

18.7 22.3 20.4 20.5 

18.6 21.9 20.0 20.2 

18.2 22.2 20.5 20.2 

18.2 22.2 19.6 20.1 

16.9 19.5 18.1 18.2 

16.6 18.9 17.3 17.7 

AP and HRY indicate mean performance across four test environments each in Andhra Pradesh and Haryana respectively; RAJ indicates mean 
performance across two test environments in Rajasthan; All indicates mean performance across all ten test environments in Andhra Pradesh, Haryana and 
Rajasthan; HSD -honestly signiticant difference 

Fresh straw yield (gim2) 

AP HRY RAJ All 

1751 1797 819 1583 

1750 1829 884 1608 

16.7 18.9 16.8 17.6 

17.8 20.7 20.1 19.4 

18.5 22.4 19.9 20.3 

18.2 21.7 20.3 20.0 

18.0 19.8 18.6 18.8 

17.9 20.9 19.2 19.4 

16.6 18.9 16.8 17.6 

18.7 22.4 20.5 20.5 

HSD 

h2 @lot basis) 

h2 (mean basis) 

24.0 24.0 24.1 24.0 

24.4 23.8 23.4 24.0 

25.5 26.3 27.1 26.2 

25.1 25.8 27.0 25.8 

24.5 24.6 25.3 24.7 

25.1 24.0 23.4 24.3 

24.0 23.8 23.3 23.8 

24.0 22.8 23.3 23.4 

24.4 22.7 22.0 23.2 

24.5 24.1 24.2 24.3 

24.0 22.7 22.0 23.2 

25.5 26.3 27.1 26.2 

1.9 1.8 2.5 2.0 

0.35 0.59 0.44 0.47 

0.88 0.91 0.80 0.95 

1663 1662 865 1503 

1684 1699 880 1529 

1927 1901 828 1697 

2042 2009 960 1812 

455 756 325 549 

470 768 365 569 

601 883 326 659 

565 925 376 671 

1953 1876 880 1708 

1846 1742 881 1611 

1852 1819 935 1655 

1761 1649 868 1537 

1654 1674 846 1500 

1808 1787 877 1613 

1654 1649 819 1500 

2042 2009 960 1812 

2.0 2.0 3.0 2.3 

0.19 0.16 0.50 0.25 

0.80 0.51 0.88 0.85 

581 964 341 686 

525 800 342 598 

501 816 376 602 

453 728 332 539 

504 823 320 595 

512 824 341 603 

453 728 317 539 

601 964 376 686 

407.6 684.9 419.6 545.9 

0.24 0.01 0.00 0.09 

0.83 0.05 0.00 0.76 

137.4 365.1 173.9 262.5 

0.32 0.03 0.00 0.08 

0.88 0.24 0.03 0.72 
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4.7.2.7. Fresh straw yield (g/m2) 

HHB 94-like-hybrids did not differ significantly for mean fresh straw yield when 

compared against grand means of all ten test environments and the three state-wise test 

environment cluster. Fresh straw yield ranged from 1500 d m 2  to 1812 g/m2 with a grand 

mean of 1613 g/m2 and a minimum honestly significant difference between entry means 

of 546 g/m2 across test environments. Hybrid based on sub-selection of ICMB 901 11 

(particularly ICMH 02005) produced slightly greater fresh straw yields (Table 26) than 

those produced on the sub-selections of ICMA 891 11 and ICMB 891 11, but the pair-wise 

differences were not significant for the pooled analysis across all ten test environments. 

Similar results were observed individually across the Andhra Pradesh, Haryana and 

Rajasthan clusters of test environments. The highest grand mean of 1806 g/m2 was 

recorded for Andhra Pradesh followed by Haryana (1 787 g/m2) and Rajasthan (877 g/m2). 

Neither of the control hybrid entries could perform significantly better than any of the 

nine experimental hybrids in even one of the state-wise clusters of test environments. 

Operational heritabilities calculated on plot basis for fresh straw yield were low, ranging 

from 0.00 (Rajasthan) to 0.24 (Andhra Pradesh), but when calculated on an entry mean 

basis, operational heritability estimates were very high for Andhra Pradesh (0.83) and 

across all ten test environments (0.76), but very low (0.05) for trials conducted in 

Haryana and Rajasthan. The larger deviation in ranks based on mean for fresh straw yield 

of test hybrids (mainly HHB 94-P2A and ICMH 02002) in Rajasthan and HHB 94-P6B in 

Haryana test environment cluster largely contributed G x E interactions for this trait 

(Figure 44). 

4.7.2.8. Dry straw yield (g/m2) 

Dry straw yield entry means ranged from 539 g/m2 to 686 g/m2 with an over all grand 

mean of 603 g/m2 and a minimum honestly significant difference between entry means of 

263 g/m2 across all ten test environments (Table 26), so that none of the observed 

differences between entry means from this pooled analysis for dry straw yield were 

significant. Among the state-wise clusters of test environments Haryana (824 urn2) 

recorded the highest grand mean for dry straw yield followed by Andhra Pradesh (512 

g/m2) and Rajasthan (341 g/m2). Hybrids produced on sub-selection of ICMB 901 11 

recorded numerically higher dry straw yields in pooled analysis across all ten test 

environments as well as across Andhra Pradesh and Haryana test environment clusters but 



for the lowest yielding Rajasthan test environment these were at par with hybrids based 

on sub-selection of ICMB 891 11 and only slightly numerically higher than hybrids of 

sub-selections of ICMA 891 11. All hybrids tested exhibited higher mean dry straw yields 

across the Haryana test environment cluster than across either the Andhra Pradesh or 

Rajasthan clusters. The calculated operational heritabilities (on an entry mean basis) were 

greater from Andhra Pradesh (0.88) and across all ten test environments (0.72) than 

across the state-wise test environment clusters for Haryana (0.24) and Rajasthan (0.03) as 

shown in Table 26. The more narrowly calculated plot basis operational heritabilities 

indicated that only across the trials conducted in Andhra Pradesh was, if possible, to 

detect significant genetic variation between the 11 trial entries, and this is borne out by 

the significant dry stover yield superiority of entry ICMH 02002 over HHB 94-P6B, 

which was the only honestly significant difference detected for this trait. The 

inconsistency in mean performance of five HHB 94-like hybrids (HHB 94-P2B, ICMH 

02002 and ICMH 02006) in Rajasthan test environment cluster resulting in deviation of 

their rank orders from ranks based on mean performance of these test hybrids across all 

ten test environment cluster largely contributed to G x E interactions for dry straw yield 

(Figure 45). 

4.7.2.9. Straw moisture content (%) 

A grand mean of 62.3%, with a range of 59.9% to 64.3% (Table 27), and a minimum 

honestly significant difference between entry means of 7.8% was recorded for the pooled 

analysis across all ten test environments for straw moisture content. Among the three 

state-wise test environment clusters, the grand mean was highest for Andhra Pradesh 

(70.6%) followed by Rajasthan (62.4%) and Haryana (54.0%) with minimum to 

maximum entry means ranging from 67.7% to 73.4%, 61.0% to 63.3% and 49.6% to 

56.5%, respectively. These results suggest that stover samples for the Haryana and 

Rajasthan test environments, which were sun-dried, were not fully dry when dry straw 

yield measurements were made. Hence the dry stover yields for these test environments 

are likely to be systematically over-estimated and their stover moisture contents are likely 

to be systematically under-estimated in this study. Hybrid HHB 94-P6B recorded the 

numerically highest straw moisture content in the pooled analysis across all ten test 

environments, across the state-wise test environments cluster for Andhra Pradesh and 

Rajasthan, but only in case of Andhra Pradesh did this translate into a statistically 



significant higher straw moisture content than any other entry in the trial (ICMH 02002 

had a straw moisture content of only 67.7% for this test entry cluster). Straw moisture 

contents had the highest operational heritability (calculated broadly on an entry mean 

basis) for Andhra Pradesh (0.89), but were only moderate for Haryana (0.51) and zero for 

Rajasthan. The more narrowly calculated plot basis operational heritabilities for straw 

moisture content were moderate for Andhra Pradesh, low for Haryana and across the ten 

test environments, and zero for Rajasthan. HHB 94-like hybrids (ICMH 02006, HHB 181, 

HHB 94-original, HHB 94-P5B and HHB 94-P2B) showed larger deviation in their ranks 

based on hybrid mean performance in Rajasthan test environment cluster than the two test 

environment clusters in Andhra Pradesh and Haryana which collectively contributed to 

the observed significant G x E interactions for straw moisture content (Figure 46) in the 

present study. 

4.7.2.10. Effective tiller number (tillers/mz) 

The mean effective tiller number, a major component of yield, ranges from 16 to 32 for 

the pooled analysis across all ten test environments with a grand mean of 29 and a 

minimum honestly significant difference be entries of 8.7 tillerslm2 (Table 27). The mean 

performance of both the controls, HHB 94-original (32) and HHB 181 (32). were the 

highest observed across all ten test environments, but were not statistically significantly 

superior to any other trial entry. This trend was also followed in across test environment 

clusters for Andhra Pradesh, Rajasthan and Haryana except that for Andhra Pradesh, 

HHB 181 did have significantly more effective tillers (42) than did ICMH 02005 (31). 

HHB 94-like hybrids produced on sub-selections of ICMB 891 11 had slightly more 

numbers of effective tillers than did those HHB 94-like hybrids produced on sub- 

selections of ICMA 891 11 or ICMB 901 11 (Table 27). The overall grand mean for 

effective tiller number was higher for the Andhra Pradesh test environment cluster (37) 

than for Haryana (29) and Rajasthan (17). The lowest operational heritabilities (on an 

entry mean basis) for effective tiller number were observed for the Rajasthan (0.02) and 

Haryana (0.00) test environment clusters, while these values were high for the Andhra 

Pradesh test environment (0.91). In case of the more narrowly estimated plot basis 

heritability values, only that for the Andhra Pradesh test environment was high enough 

(0.31) to suggest significant differences between test entry means, which was borne out 

by the observed significant difference in entry mean effective tiller number for HHB 18 1 



Table 27. Comparisons of mean performances of HHB 94-like hybrids for grain and stover yield and their component characteristics (9-12) 
across three environment clusters and across all ten test environments during kharif2002 and 2003 

Genotypes 

HHB 94-P2A 

HHB 94-P5A 

HHB 94-P6A 

HHB 94-Original 

ICMH 02002 

Straw moisture content (%) 

AP HRY RAJ All 

71.3 56.5 61.7 63.5 

ICMH 02005 

ICMH 02006 

HHB 94-P2B 

HHB 94-P5B 

HHB 94-P6B 

HHB 181 (Control) 
Grand mean 
Minimum 
Maximum 

Ih2 (mean basis) 0.89 0.51 0.00 0.75 0.91 0.00 0.00 0.79 0.80 0.00 0.00 0.67 0.88 0.00 0.08 0.76 

70.6 54.9 63.5 62.9 

71.5 54.7 63.9 63.3 

71.0 54.9 61.5 62.6 

67.7 53.6 61.8 60.9 

SE (+I-) 

CV (W) 

HSD 

h2 @lot basis) 

AP and HRY indicate mean performance across four test environments each in Andhra Pradesh and Haryana respectively; RAJ indicates mean 
performance across two test environments in Rajasthan; All indicates mean performance across all ten test environments in Andhra Pradesh, Haryana and 
Rajasthan; HSD - honestly significant difference 

Effective tillers number 
(tillers/m2) 

AP HRY RAJ All 

37 29 15 29 

71.3 53.7 61.8 62.4 

68.9 49.6 62.5 59.9 

70.6 54.0 62.2 62.3 

71.7 55.2 61.0 63.0 

73.4 55.6 63.4 64.3 

68.3 51.5 63.3 60.6 

70.6 54.0 62.4 62.3 

67.7 49.6 61.0 59.9 

73.4 56.5 63.9 64.3 

38 28 15 29 

39 29 16 30 

40 31 17 32 

34 26 15 27 

31 27 15 

33 27 15 

34 31 16 

39 31 15 

39 30 17 

42 30 17 

37 29 16 

31 26 15 

42 31 17 

1.2 2.0 1.7 1.7 

3.8 8.4 6.1 6.1 

5.5 9.2 7.7 7.8 

0.27 0.08 0.00 0.08 

Panicle yield @m2) 

AP HRY RAJ All 

548 497 219 462 

1000-grain mass (g) 

AP HRY RAJ All 

8.93 7.18 7.28 7.90 

548 482 220 456 

544 479 245 458 

547 489 251 465 

523 463 224 439 

2.2 1.8 1.1 1.9 

13.6 14.2 16.1 14.5 

10.2 8.4 5.1 8.7 

0.31 0.00 0.00 0.12 

9.08 7.38 7.44 8.07 

9.36 7.04 7.73 8.11 

8.78 7.31 7.50 7.94 

8.38 7.40 7.34 7.78 

23.8 42.9 26.9 33.7 

10.1 20.0 24.9 16.7 

108.4 195.0 122.3 153.2 

0.20 0.00 0.00 0.06 

0.28 0.32 0.32 0.31 

7.2 10.0 9.5 8.9 

1.27 1.46 1.46 1.41 

0.37 0.00 0.01 0.10 



Rgures 46-49. Rank line graph baqed on mean performance of yield and yield components (9-12) of nine HHB 94-like hybrids and two hybrid 
controls in three state-wise test environment clusters during kharif2002 and 2003. For each trait, 11 HHB 94-like hybrids are placed along x- 
axis and the ranks of their state-wise mean performance on y-axis. 
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(42) and ICMH 02005 (31) in this sub-set of test environment. Effective tiller number 

recorded relatively consistent rank orders for most of HHB 94-like hybrids across all test 

environment clusters except ICMH 02005 and HHB 94-P5B in Rajasthan and HHB 94- 

P2B in Haryana test environment cluster, that altogether significantly contributed to G x 

E interactions for this trait (Figure 47). 

4.7.2.11. Panicle yield (g/mZ) 

No significant differences were observed among the eleven trial entries for panicle yield, 

which ranged from 41 5 g/m2 to 499 g/m2 with grand mean of 452 g/m2 and a minimum 

honestly significant difference between entry means of 153 d m 2  in the pooled analysis 

across all ten test environments (Table 27). HHB 181 (499 dm2) recorded the 

numerically highest mean panicle yield followed by HHB 94-original (465 g/m2) and 

HHB 94-P2A (462 g/mZ). Similar trends were observed for Andhra Pradesh, I-Iaryana and 

Rajasthan. In general, HHB 94-like hybrids based on sub-selections of JCMA 89111 

performed marginally better than others in all test environment clusters except Rajasthan 

where hybrids based on ICMB 891 11 had numerically longer panicle yields. None of the 

multiple-test environment clusters showed any significant differences for panicle yield 

among genotypes, except that HHB 18 1 had marginally significantly greater panicle yield 

than ICMH 02005 across the Andhra Pradesh test environments. Lower trial mean values 

for panicle yield were recorded across the Rajasthan test environments than for those in 

Andhra Pradesh and Haryana. High operational heritability (on entry mean basis) was 

observed for this trait across the four Andhra Pradesh test environments (0.80), but 

operational heritabilities for it dropped to zero for the Haryana and Rajasthan test 

environment clusters. The inconsistent performance of ICMH 02005, HHB 94-P6B, HHB 

94-P5A and HHB 94-P2A in Rajasthan test environment cluster largely contributed to 

significant G x E interactions for panicle yield (Figure 48). 

4.7.2.12. 1000-grain mass (g) 

Entry means 1000-grain mass ranged from 7.13 g to 8.13 g with an overall grand mean of 

7.82 g and a minimum honestly significant difference of 1.41 g across ten locations 

(Table 27). HHB 94-P5B recorded the numerically highest mean value followed by HHB 

94-P6A (8.00 g) for this trait, while ICMH 02006 (7.13 g) recorded the lowest, but these 

across-environment entry mean values were not significantly different. Similar trends 



were observed for the pooled analyses across the four Haryana test environments and 

across the two Rajasthan test environments, with no significant differences being in entry 

mean performance for 1000-grain mass. However, across the four Andhra Pradesh test 

environments, HHB 94-P6A (9.36 g), HHB 94-P5A (9.08 g), HHB 94-P2A (8.93 g) and 

HHB 94-P5B (8.93 g) recorded entry mean 1000-grain mass values that were 

significantly greater than that of ICMH 02006 (7.48 g). Very high operational 

heritabilities (calculated on entry mean basis) were obtained across the ten test 

environments (0.76) and for Andhra Pradesh (0.88) while very low values were obtained 

for Haryana (0.00) and Rajasthan (0.08). Most of the HHB 94-like hybrids showed larger 

deviations in rank orders based on their mean performance of 1000-grain mass in 

Rajasthan test environment cluster (Figure 49) from their rank orders of mean pooled data 

across all ten test environments which contributed to major portion of G x E interactions. 

4.7.2.13. Panicle grain number (grainslpanicle) 

Panicle grain numbers did not significantly differ among the eleven hybrids evaluated in 

this experiment (Table 28). Panicle grain number ranged from 1309 to 1553 with a grand 

mean of 1410 and minimum honestly significant difference of 576 in the pooled analysis 

across ten test environments. ICMH 02006 (1553) produced highest average number of 

grains per panicle across these ten test environments followed by HHB 181 (1464), and 

HHB 94-P2A (1456) while HHB 94-P6B (1309) recorded lowest mean value for this trait. 

but these differences were not statistically significant. 

Across the Andhra Pradesh test environment cluster, only ICMH 02006 (1552) 

had a significantly larger mean panicle grain number than HHB 94-P5B (1 173). which 

had the lowest entry mean for this trait. Across both the Haryana and Rajasthan test 

environment cluster, no significant differences in entry mean panicle grain number were 

detected in this experiment. Moderately low to kery high (0.31-0.93) broad-sense 

operational heritabilities (calculated on an entty mean basis) were obtained for this trait 

from all test environment clusters except Rajasthan (0.00). Andhra Pradesh test 

environment also had moderate heritability estimated (0.33) for the more narrowly 

calculated plot basis operational, while those for the other test environment clusters were 

near zero for panicle grain number (Table 28). This variable performance of majority of 

the HHB 94-like hybrids for panicle grain number across test environment clusters, 

especially in Hiuyana and Rajasthan resulted in deviation in rank orders from the ranks 



based on mean entry across all ten test environment leading to significantly large G x E 

interactions (Figure 50). 

4.7.2.14. Total above-ground biomass yield @lm2) 

The HHB 94-like hybrids in this experiment exhibited no significant differences for total 

above grained biomass yield in the pooled analysis across all ten test environments and 

any of them state-wise test environment clusters. With a grand mean of 1054 d m 2 ,  

biomass yield ranged from 984 d m 2  to 1109 gjm2 with a minimum honestly significant 

difference of 384 d m 2  across all test environments (Table 28). Grand means across 

individual test environment clusters were observed to be higher for Andhra Pradesh (1042 

g/m2) and Haryana (1302 dm2)  than Rajasthan (582 dm2), but none of the pair-wise 

differences between trial entry means across a cluster of test environments was 

statistically significant. 

In general, HHB 94-like hybrids produced on sub-selection ICMB 901 1 1  gave 

higher biomass yields than those produced on sub-selections of either ICMA 891 11 or 

ICMB 891 11. HHB 94-P6B (984 dm2)  recorded the numerically lowest mean biomass 

yield across the ten test environments. HHB 94-like hybrids produced significantly less 

total above-ground biomass yield in the Rajasthan test environment than in those of 

Andhra Pradesh and Haryana. Extremely low plot-basis operational heritabilities for 

biomass yield were obtained for each of the three state-wise test environment clusters 

(0.00 to 0.07), indicating the lack of any heritable variation for this trait among the test 

entries in this experiment. The large variation in rank order of HHB 94-like hybrids for 

total above-ground biomass yield in Rajasthan along with small variation in rank order of 

hybrids planted in Andhra Pradesh and IIaryana test environment cluster together 

contributed to larger G x E interactions for this trait (Figure 51). 

4.7.15. Harvest index ( O h )  

Across the ten test environments in this experiment, entry mean harvest index ranged 

from 26.7% to 33.5%, with a grand mean of 31.1% and a minimum honestly significant 

difference of 8.0%. Thus no significant pair-wise differences in entry mean harvest index 

values could be identified from this pooled analysis. Similar patterns were observed for 

pooled analysis across the test environment cluster for harvest index of Haryana and 

Rajasthan. However, in case of the Andhra Pradesh test environment cluster, the three 



Table 28. Comparisons of mean performances of HHB 94-like hybrids for g a i n  and stover yield and their component characteristics (13-15) 
across three environment clusters and across all ten test environments during kharif2002 and 2003 

Genotypes 

HHB 94-P2A 

HHB 94-P5A 

HHB 94-P6A 

HHB94-Original 

ICMH 02002 

ICMH 02005 

HHB 94-P5B I337 / 1031 I306 627 1 39.3 22.9 30.6 31.0 

HHB 94-P6B 1210 1379 1368 1309 975 1189 594 984 41.4 23.4 30.1 32.0 

Panicle grain number 
AP HRY RAJ All 

1335 1567 1474 1456 

1287 1567 1348 1411 

1195 1497 1473 1371 

ICMH 02006 

1256 1392 1498 1359 

1413 1451 1481 1442 

1453 1295 1494 1398 

I Minimum I309 1 975 1189 537 984 / 34.5 I79 28.9 

Maximum 1 I553 1124 I417 627 I109 42.3 24.5 36.6 33.5 

Total above ground biomass yield @m2) 

AP HRY RAJ All 

1031 1274 537 1029 

1048 1307 551 1052 

999 1236 570 1008 

HHB 94-P2B 1 1 4 6 4  1267 1594 1411 1 1 0 5 0  1268 588 1045 1 39.8 23.0 32.8 31.7 

1552 1537 1588 1553 

HHB 181 (Control) 1 1299 1531 1659 1464 1 1082 1360 585 1094 / 42.1 23.5 36.6 33.5 

Harvest index (%) 

AP HRY RAJ All 

41.5 23.7 30.9 32.3 

41.7 23.1 29.2 31.8 

42.3 23.8 33.0 33.1 

1018 1258 616 1033 

1124 1346 550 1098 

1030 1363 624 1082 

AP and HRY indicate mean performance across four test environments each in Andhra Pradesh and Haryana respectively; RAJ indicates mean 
performance across two test environments in Rajasthan; All indicates mean performance across all ten test environments in Andhra Pradesh, Haryana and 
Rajasthan; HSD -honestly significant difference 

42.0 24.5 32.3 33.1 

35.5 20.6 30.4 28.5 

34.5 17.9 28.9 26.7 

1072 1417 565 1109 

59.5 22.4 31.3 31.1 Grand mean 

HSD 

h2 @lot basis) 

h2 (mean basis) 

34.6 20.2 30.0 27.9 

1331 1444 1501 1410 

373.4 738.2 524.5 576.3 

0.33 0.03 0.00 0.03 

0.93 0.31 0.00 0.51 

1042 1302 582 1054 

219.5 524.6 266.8 384.3 

0.07 0.00 0.00 0.01 

0.56 0.00 0.00 0.14 

6.0 7.9 10.5 8.0 

0.54 0.17 0.00 0.22 

0.96 0.79 0.00 0.91 



Figures 50-52. Rank line graphs based on mean performance of yield and yield components (13.15) of nine HHB 94-like hybrids and two hybrid 
controls in three state-wise test environment clusters during khnrif2002 and 2003. For each trait, 1 I HHB 94-like hybrids are placed along x- 
axis and the ranks of their state-wise mean performance on y-axis. 

Figure 50. Panicle grain number 
I' 

Figure 52. Harvest index (%) 

F~gure 5 1 Total above ground biomass yield (g/m2) 
- -- 

I ,  

Legends 

.- All - all India 

-- -I - - AP - Andhra Pradesh 

- - HRY -Haryana 

- - - - RAJ - Rajasthan 



HHB 94-like hybrids produced on sub-selections of lCMB 901 11 had significantly lower 

harvest index values than any of the five A1 cytoplasm hybrids (HHB 94-P2A, HHB 94- 

p5A, HHB 94-P6A, HHB 94-original and HHB 181). A grand mean harvest index of 

39.5% was recorded across the four test environments in Andhra Pradesh which was 

higher than the test environment cluster means for Rajasthan (31.3%) and H q a n a  

(22.4%). The two hybrid control entries (HHR 94-original and HHB 181) recorded mean 

harvest index values at par with each other across all three of the state-wise test 

environment clusters. Across the Andhra Pradesh and the Haryana test environment 

clusters high operational heritabilities (on an entry mean basis) for harvest index were 

observed (0.96 and 0.79, respectively), but harvest index was not heritable across the 

Rajasthan test environment (0.00). The more narrowly operational heritability (calculated 

on entry mean basis) estimate for harvest index was also high across the Andhra Pradesh 

test environments (0.54) and moderate across all ten test environments (0.22) and across 

the four Haryana test environments (0.17). but zero for the Rajasthan test environments 

(Table 28). No major variation was observed in ranks based on mean values of HHB 94- 

like hybrids for harvest index across all test environment clusters except for three hybrids 

(HHB 94-P2B, HHB 94-P5A and HHB 94-P6B) from ranks based on mean entry across 

all ten test environment which resulted in statistically significant G x E interactions 

(Figure 52). 

4.8. MEAN PERFORMANCE FROM INDIVIDUAL TEST ENVIRONMENTS 

4.8.1. Grain yield (g/rn2) 

Among all ten individual test environment trials, that conducted in field RCE 24 at 

ICRISAT-Patancheru during the 2002 khnrifseason (RCE 24 K02) produced the highest 

trial mean grain yield (465 g/m2), with entry means ranging between 397 d m  to 520 d m 2  

(Table 29). At the same time, the trial conducted at Nagaur during the 2003 kharifseason 

(NGR K03) produced the lowest trials mean grain yield (119 dm2) with entry means 

ranging from 89 d m 2  to 142 gimz. All other test environments produced trials with 

moderate to good trial mean grain yield levels (233 to 406 dm2). Entry mean-based 

operational heritability for grain yield in these trials was highest (0.73) for trials in RP 9A 

KO2 (conducted at ICRISAT-Patanchem, Andhra Pradesh during kharif2002) and lowest 

(zero) in the low-yielding kharif2003 in Nagaur test environment (Rajasthan) (Table 29). 

The observed F values for trials conducted at all individual test environments revealed 



significant differences in grain yield among genotypes except at Nagaur and Bawal 

during the kharifseason of 2003. HHB 94-like hybrids based on sub-selections of ICMB 

901 11 produced higher grain yields and had lower rank orders than other entries in this 

trial in most test environments except Bawal and Hisar in 2002 and Durgapura in 2003. 

Control entries HHB 181 and HHB 94-original had among the lowest mean grain yields 

except for HHB 181, which performed very well at Bawal in both 2002 and 2003, and 

Hisar in 2003 in most test environments (mean data of each location is given in Appendix 

3). 

4.8.2. Time to 50% flowering 

HHB 94-like hybrids in this experiment recorded an early trial mean time to complete 

50% flowering (41 days) in the RF' 6B KO3 test environment, with entry means ranging 

from 37 to 47 days. Trials conducted at RCE 24 K02, Hisar K03, Nagaur KO3 and Bawal 

KO3 took time 51-55 days to reach 50% flowering, where as at other test environments 

less time (<50 days) was required. The entry mean-based operational heritability values 

for this trait ranged from 0.62 (Hisar K03) to 0.99 (RP 6 8  K03) across the ten test 

environments, with high values (>90%) for HHB 94-like hybrid versions in the RP 9A 

K02, RCE 24C KO3 and Hisar KO2 test environments (Table 30). HHB 181 completed 

50% flowering much earlier than any other hybrid in this trial, and was the earliest 

flowering entry in each of the ten test environments, and was followed by HNB 94- 

orignial, HHB 94-P6A and HHB 94-P6B in most of these environments. ICMH 02005 

was consistently one of the latest flowering entries in each of the ten test environments 

(Appendix 3). These consistence performances contributed to the relatively high 

operational heritabilities observed for this trait (Table 30). 

4.8.3. Effective plant stand (plant/m2) 

The individual test environment trial means for effective plant stand were greater than 

10.5 ~ l a n t ~ m ~  in all test environments except RP 9A KO2 (9.5 ~ l a n t / m ~ )  (Table 3 1). The 

highest entry mean plant stands (15 plants/m2) were recorded in the RCE 24C KO3 and 

Hisar KO3 test environments, with the minimum entry mean value (8.0 plants /m2) being 

observed in the RP 9A KO2 test environment. The Bawal KO2 trial had the highest entry 

mean-based operational heritability (0.76) for this trait, suggesting difficulties in stand 

establishment for one or more trial entries in this particular test environment. In trial test 



Table 29. ANOVA summary for grain yield (gIm2) from HHB 94-like hybrids trial conducted in ten 
individual test environments 

Trait 

Test environment 

Mean 

CV (%) 111.0 12.1 9.6 8.8 13.6 23.8 21.0 21.4 21.1 30.7 

F ratio / 3.29" 2.62' 3.75'' 2.40' 3.54*' 1.54 3.16** 2.21' 2.22' 0.96 

- 
Grain yield (dm2) 

RCE 24 RCE 24 RP9A RP 6B BWL BWL HSR HSR DGR NGR 
KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 
464.8 386.0 382.6 406.3 319.0 252.4 361.1 232.8 249.4 118.7 

Minimum 

Maximum 

SE (+I-) 

397.4 315.8 321.6 358.8 263.3 206.0 294.7 178.9 178.4 89.3 
519.7 445.7 420.6 439.8 367.2 303.3 480.7 278.3 295.2 141.6 
22.8 20.9 16.4 16.0 19.4 26.9 33.8 22.2 236 16.3 

h2 (on plot basis) 

h2 (on mean basis) 

Table 31. ANOVA summary for effective plant stand from HHB 94-like hybrids trial conducted in ten 
individual test environments 

0.31 0.25 0.35 0.22 0.34 0.10 0.30 0.20 0.20 0.00 
0.70 0.62 0.73 0.58 0.72 0.35 0.68 0.55 0.55 0.00 

Table 30. ANOVA summary for time to 50% flowering (d) from HHB 94-like hybrids trial conducted in 
ten individual test environments 

Trait 

'Test environment 

Mean 

Minimum 

Maximum 

SE (+I-) 

CV ( O h )  

F ratio 

h2 (on plot basis) 

h2 (on mean basis) 

Minimum 

Time to 50 % flowering (d) 
RCE 24 RCE24 RP9A RP6B BWL BWL HSR HSR DGR NGR 
KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 

51 47 49 41 46 55 49 54 47 53 

48 43 45 37 44 50 46 51 42 47 

52 50 52 47 47 58 51 56 49 57 

0.4 0.4 0.4 0.3 0.3 0.9 0.3 0.7 0.7 1.0 

1.8 1.8 2.0 1.6 1.5 3.5 1.3 2.9 3.3 4.2 

5.89'' 26.21'1 15.09** 107.77"' 8.27** 6.42" 22.10" 2.61' 6.97'' 7.13" 

0.50 0.83 0.74 0.96 0.59 0.52 0.81 0.24 0.54 0.55 

0.83 0.96 0.93 0.99 0.88 0.84 0.96 0.62 0.86 0.86 

Trait 

Testenvironment 

Mean 

Maximum 

SE (+i-) 

cv (%) 

F ratio 

h2 (plot basis) 

Effective plant stand (plantsim2) 
RCE24 RCE 24 RP9A RP 6B BWL BWL HSR HSR DGR NGR 
KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 

12.0 13.6 9.5 12.8 105 12.9 13.2 12.3 10.5 115 

h2 (mean basis) 
' significant at 0. 

0.00 0.67 0.00 0.04 0.76 0.00 0.56 0.58 0.39 0.27 
05 and 0.01 levels of probability, respectively 

Note: RCE 24, RCE 24, RP 68, and RP 9A are field locations at ICRISAT-Patanchem (Andhra Pradesh); KO2 and 
KO3 indicate kharif2002 and khorif2003, respectively. BWL and HSR indicate field locations at CCS HAU RRS, 
Bawal and CCS HAU Hisar, respectively (Haryana); and DGR and NGR indicate field locations at RAU RRS 
Dwgapura and RAU RRS Nagaur, respectively (Rajasthan) 



environments RP 6B K03, PR 9A K02, RCE 24 KO2 and Bawal K03, operational 

heritabilities less than 0.04 for effective plant stand indicate that management of the trials 

during stand establishment was very good. The calculated F ratio were observed to be 

significant only for the Hisar K03, Hisar KO2 and Bawal KO2 test environments where 

trial management during stand establishment of these over-sown trials appears to have 

been less than optimal (Table 31). ICMH 02005 achieved low ranks for entry mean 

effective plant stand in most of the test environments and was often closely followed by 

HHB 181. 

4.8.4. Plant height (cm) 

Trials in the Patanchem RP 9A K02, Patanchem RCE 24 K02, Hisar K03, Hisar K02, 

Bawal KO2 and Durgapura KO3 test environments had tall entries having a maximum 

height equal to or greater than 200 cm. Nagaur KO3 and RCE 24C KO3 recorded a 

minimum entry mean plant heights of 157 cm and 150 cm, respectively. All four 

individual test environments at Patanchem as well as the Hisar KO3 trial had high entry 

mean-basis operational heritability estimates >0.85 for this trait, while in other test 

environments these values were moderately high, with a minimum of 0.39 in the 

Durgapura KO3 test environment (Table 32). Significant values for F ratios were recorded 

for plant height in all test environments except Bawal KO2 and Durgapura K03. Lower 

plant height was observed among HHB 94-like hybrids produced on sub-selections of 

ICMB 901 11 at most of the test environments and for hybrid HHB 94-P5A in the Bawal 

KO2 and Bawal KO3 test environments (Appendix 3). 

4.8.5. Panicle length (cm) 

HHB 94-like hybrids produced larger panicles at Bawal K02, Bawal K03, Hisar K02, 

Hisar K03, and Durgapura KO3 with trial mean panicle lengths more than 20 cm while RP 

9A KO2 recorded the lowest trial mean panicle length of 16.8 cm and the lowest 

operational heritability (0.56) for this trait. Higher operational heritability estimates 

(>0.86) were recorded for this trait at all individual test environments in Haryana, at 

Durgapura KO3 and at all individual test environments at Patanchem (A.P.) except RP 9A 

KO2 (0.56). Table 33 revealed significant differences as indicated by for F ratios of all ten 

individual test environments. The three hybrids of sub-selections of ICMB 901 11 

registered the greatest panicle lengths in most of these test environments. HHB 94-P2B 



Table 32. ANOVA summary for plant height (cm) from HHB 94-like hybrids trial conducted in ten 
individual test environments 

Trait 

Testenvir~llment 

Mean 

CV (%) 13 .1  4.2 3.1 4.5 4.2 3.9 2.7 3.0 3.8 4.1 

F ratio 1 7.74" 6.47" 11.99" 8.94" 1.31 2.27' 2.84" 8.85** 1.88 2.85"' 

Plant height (cm) 
RCE24 RCE 24 RP 9A RP 6B BWL BWL HSR HSR DGR NGR 
KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 
195 164 192 170 194 182 208 204 199 165 

Minimum 

Maximum 

SE (+I-) 

188 150 182 160 186 172 201 184 190 157 
207 177 207 190 200 188 214 212 207 174 

2.7 3.1 2.6 3.4 3.6 3.2 2.5 2.7 3.4 3.0 

h2(on plot basis) 

h2(on mean basis) 

0.57 0.52 0.69 0.61 0.06 0.20 0.27 0.61 0.15 0.27 
0.87 0.85 0.92 0.89 0.23 0.56 0.65 0.89 0.47 0.65 

Table 33.  ANOVA summary for panicle length (cm) from HHB 94-like hybrids trial conducted in ten 
individual test environments 

Table 34. ANOVA summary for panicle diameter (mm) from HHB 94-like hybrids trial conducted in ten 
individual test environments 

Trait 

Test environment 

Mean 

Minimum 

Maximum 

SE (+I-) 

CV (%) 

F ratio 

h2(on plot basis) 

h2 (on mean basis) 

Panicle length (cm) 
RCE 24 RCE24 RP 9A RP 6B BWL BWL HSR HSR DGR NGR 
KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 

17.2 18.6 16.8 18.7 21.3 20.8 20.1 21.7 20.4 18.0 

15.6 17.3 15.9 17.0 18.6 18.1 18.1 19.0 17.5 16.0 

18.5 19.6 17.7 19.8 23.9 22.6 214 23.2 22.0 19.5 

0.4 0.3 0.4 0.3 0.5 0.4 0.3 0.4 0.3 0.6 

5.5 3.1 4.9 4.2 4.8 4.1 3.1 4.0 3.7 7.7 

6.91" 10.11** 2.26' 7.77" 16.66** 20.15" 20.60" 14.33" 26.87" 2.76" 

0.54 0.65 0.20 0.58 0.76 0.79 0.80 0.73 0.84 0.26 

0.86 0.90 0.56 0.87 0.94 0.95 0.95 0.93 0.96 0.64 

Minimum 

Maximum 

SE (+I-) 

3.9 4.4 2.4 4.4 

F ratio 2.75.' 2.65' 2.1 I* 6.66" 12.61** 11.74** 20.60'1 31.73" 4.84" 7.56.' 

* **  -:-:c --..A -. A r.< --.In A ,  3 - .  - 8 -  -'---,.,.",.:,:.., "a" ..--, :.,-I<, 

Trait 

Test environment 

Mean 

Note: RCE 24, RCE 24, ~p 6 ~ ,  and RP 9A are field locations at ICRlSAT-Patanchem (Andhra Pradesh); KO2 and 
KO3 indicate khorif2002 and kharif2003, respectively. BWL and HSR indicate field locations at CCS HAU RRS, 
Bawal and CCS HAU Hisar, respectively (Hiuyana); and DGR and NGR indicate tield locations at RAU RRS 
Dwgapura and RAU RRS Nagaur, respectively (Rajasthan) 

Panicle diameter (mm) 
RCE 24 RCE 24 RP 9A RP 6B BWL BWL HSR HSR DGR NGR 
KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 

24.3 24.7 24.4 24.6 24.5 25.9 20.1 26.1 25.3 23.1 



and HHB 181 had the largest entry-mean panicle lengths in the RP 9A KO2 and Hisar 

KO3 test environments, respectively (Appendix 3). 

4.8.6. Panicle diameter (mm) 

The mean panicle diameter of hybrids in this trial ranged from 20.1 mm in the trial 

conducted at Hisar in kharif2002 to 26.1 mm in the trial conducted at this same location 

in kharif 2003. The four individual test environments in Haryana recorded higher 

operational heritability values for this trait (0.92 to 0.95). Moderate operational 

heritability values calculated most broadly on an entry-mean basis ranging from 0.85 and 

0.87 were observed at RP 6B KO3 and Nagaur K03, respectively, while the minimum 

value of 0.53 was observed for the PR 9A KO2 test environment. F values were 

significant for this trial in all ten test environments (Table 34). HHB 94-like hybrids 

based on ICMA 891 11, including both controls, were ranked higher for panicle diameter 

than these based on ICMB 901 11 across individual test environments (Appendix 3) 

except for Hisar K02. 

4.8.7. Fresh straw yield @/m2) 

In the most of the test environments in Andhra Pradesh and H q a n a  fresh straw yields 

were high with trial means 21502 g/m2. However, the two Kajasthan test environments 

exhibited much lower values for this trait, with Nagaur KO3 having the minimum trial 

mean value (714 g/m2). HHB 94-like hybrids recorded the highest entry-mean-based 

operational heritability value at RP 6 8  KO3 (0.90) for this trait. RP 9.4 K02, Nagaur KO3 

and Durgapura KO3 had operational heritability values of zero for this trait (Table 35), SO 

no differences in entry-means were detectable in these test environments. For the other 

test environments, moderate operational heritability values were observed for this trait. F 

ratios were non-significant for fresh straw yield at RP 9A K02, Nagaur K03, Bawal KO3 

and Durgapura K03. Entry mean data (Appendix 3) shows lower ranks for fresh straw 

yield for HHB 94-P6A and the two control entries at a majority of test environments. 

Hybrids based on ICMB 901 11 (ICMH 02002, ICMH 02005 and ICMH 02006) produced 

lower fresh straw yields and so had higher ranks. 



4.8.8. Dry straw yield (g/m2) 

Variation in methods used to dry straw samples prior to estimation of dry straw yields 

resulted in dramatically different estimates for the four test environments at ICRISAT- 

Patanchem (where over-drying of sub-samples was used to determine straw moisture 

contents, which was then used to calculate dry stover yields from fresh stover yields) and 

the remaining six test environments where stover samples were weighed after several 

weeks of sun-drying in the field in order to estimate dry stover yields (Table 36). These 

procedures resulted in low trial mean dry stover yields at Patanchem, with moderate 

operational heritability estimates for this trait. The remaining six test environments could 

be divided into two groups-those in Haryana, which had very high trial means and 

moderate operational heritability estimates, and those in Rajasthan, which had low trial 

means, operational heritabilities of zero, and no significant differences between entries. 

Across test environments, the version of HHB 94 produced on ICMA 891 11-P6 was 

consistently among the best in this trial for dry straw yield while experimental hybrids 

produced on sub-selections of ICMB 901 11 were often among the worst (Appendix 3). 

4.8.9. Moisture content (%) 

For reasons described in the previous paragraph trial mean straw moisture content values 

were higher for all the four individual test environments at Patancheru all >70% (except 

RCE 24C K03, 60.5%) than for most of the other six test environments (all except Nagaur 

K03, 70%). Lower mean values were observed for this trait in all Haryana test 

environments and for Durgapura KO3 where it ranged between 52% and 56% due to 

relative ineffective sun-drying. Entry mean based operational heritability values were 

highest for the trial conducted at Hisar KO2 (0.81) and lowest for Durgapura KO2 (0.00). 

Moderately high operational heritability was recorded for this trait in the rest of the test 

environments (Table 37). Three test environments namely Hisar K03. Bawal KO3 (both 

from Haryana test environment cluster) and Durgapura KO3 (Rajasthan) had non- 

significant F ratios for this trait and there are the lowest operational heritabilities and 

among the least trial mean values for this trait. Hybrid ICMH 02006 was consistent 

among the entries with the highest straw moisture content in most test environments for 

this trait followed by ICMH 02002 and HHB 181 for this trait. HHB 94-P6B had poorer 

ranking orders for straw moisture content in most test environments (Appendix 3). 



Table 35. ANOVA summary for fresh straw yield (g/ml) from HHB 94-like hybrids trial conducted in ten 
individual test environments 

Trait ( Fresh straw yield (g/m2) 
Test environment I R C E  24 RCE 24 RP 9A RP 6B BWL BWL HSR HSR ncR NCR - --.. 

1 ~ 0 2  KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 

Mean 

Minimum 

Maximum 

SE (+I-) 

2647 1286 1795 1502 1695 1717 2033 1703 1040 714 
2425 1118 1648 1253 1472 1361 1747 1072 908 632 
2919 1424 1962 2000 1917 2196 2564 2088 1129 793 
106.4 63.5 94.8 69.2 80.6 156.8 144.8 115.9 96.7 68.2 

CV (%I 

'Table 37. ANOVA summary for moisture content (%) from HHB 94-like hybrids trial conducted in ten 
individual test environments 

9.0 11.0 11.8 10.3 10.6 20.4 15.9 15.2 20.8 21.4 

Table 36. ANOVA summary for dry straw yield (g/m2) from HHB 94-like hybrids trial conducted in ten 
individual test environments 

Trait 

'Test environment 

Mean 

Minimum 

Maximum 

SE (ti-) 

CV (%) 
F ratio 

h2(onplotbasis) 

h' (on mean basis) 

Note: RCE 24, RCE 24, RP 6B, and RP 9A are field locations at ICRISAT-Patanchem (Andhra Pradesh); KO2 and 
KO3 indicate Wlarr2002 and khorf2003, respectively. BWL and HSR indicate field locations at CCS HAU RRS, 
Bawal and CCS HAU Hisar, respectively (Haryana); and DGR and NGR indicate field locations at RAU RRS 
Dwgapura and RAU RRS Nagaw, respectively (Rajasthan) 

F ratio 

Dry straw yield (g/m2) 
RCE24 RCE24 RP9A RP6B BWL BWL HSR IiSR DGR NGR 

KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 
641 456 514 439 803 740 980 774 470 212 

547 390 457 349 642 544 784 533 419 182 

805 547 592 566 947 959 1357 915 549 240 

36.7 27.1 26.5 22.9 49.9 64.3 91.9 61.0 46.0 22.9 

12.8 13.3 11.5 11.7 13.9 19.4 21.0 17.6 21.9 24.1 

3.73' 3.108* 2.38* 9.37** 3.33" 2.71" 4.49" 3.26" 0.75 0.51 

0.35 0.30 0.22 0.63 0.32 0.26 0.41 0.31 0.00 0.00 

0.73 0.68 0.58 0.89 0.70 0.63 0.78 0.69 0.00 0.00 

Trait 

Test environment 

Mean 

Minimum 

Maximum 

SE (+I-)  

CV (%) 

F ratio 

h2(onplotbasis) 

h2 (on mean basis) 
* ** -:....:c --..a -. " 

2.75'' 2.19* 0.99 10.45** 2.24' 1.99 3.01'' 5.51" 0.50 0.61 

Straw moisture content (%) 

RCE24 RCE24 RP9A RP 60  BWL BWL HSR HSR DGR NGR 
KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 

75.8 64.5 71.3 70.7 52.8 56.7 52.3 54.3 54.4 70.4 

72.4 60.5 68.9 66.5 49.6 53.7 44.1 49.6 51.8 68.3 

78.6 67.1 72.8 75.3 56.7 61.0 57.9 58.3 57.4 71.3 

1.1 1.4 0.8 1.2 1.5 2.2 1.7 2.2 2.2 0.6 

3.2 4.8 2.6 3.9 6.5 8.9 7.4 9.0 9.1 1.9 

2.44' 2.62. 2.20' 3.45'' 3.17" 1.14 5.37". 1.73 0.92 2.42' 

0.22 0.25 0.19 0.33 0.30 0.03 0.47 0.13 0.00 0.22 

0.59 0.62 0.55 0.71 0.68 0.12 0.81 0.42 0.00 0.59 
n< "..An A ,  8 ," -*---!-"!-:I;... .~*..~,.,;,,c.l" 



4.8.10. Effective tiller number (tillerslm2) 

Highest numbers of effective tillers were obtained from HHB 94-like hybrid trial 

conducted at RP 6B KO3 Patanchem (A.P.), which had entry mean ranging from 36 to 49 

tillers/m2 and a trial mean of 43.2 tillers/m2. Hybrids in the Nagaur KO3 test environment 

produced smallest' effective numbers of tillers with a trial mean of 13.7 tillers/m2. 

Moderate numbers of effective tillers, with a trial mean from 27.5 tillers/mz to 36.4 

tillers/m2 were observed. Operational heritability (on plot basis) values were high (0.62) 

in Hisar KO2 test environment and zero at Durgapura K03. At other locations, moderate 

operational heritability values were observed for this trait. F-tests revealed significant 

differences among genotypes for all test environments except Bawal K02, Nagaur KO3 

and Durgapura KO3 (Table 38). Appendix 3 shows higher rank orders for this traits across 

many test environments among hybrids produced on ICMA 891 1 1  (including controls) or 

ICMB 891 11 and lower ranks for this trait for hybrids produced on ICMB 901 11, which 

suggests that ICMB 901 11 could be used to improve the tillering ability of the ICMAIB 

891 11 and its hybrids. 

4.8.11. Panicle yield (g/m2) 

Highest trial mean panicle yield was obtained from the HHB 94-like hybrid trial 

conducted at Hisar KO2 (595 g/m2) where entry means ranged from 5 16 d m 2  to 839 dm2.  

The trial conducted at Nagaur recorded the minimum mean panicle yield of 171 g/m2, 

with a range among entries of 140 g/mZ to 190 dm2.  Mean panicle yield ranged from 409 

g/m2 to 595 g/m2 for individual test environments both in Haryana and Andhra Pradesh, 

hut were lower in the two Rajasthan test environments (Table 39). The highest entry- 

mean basis operational heritability (0.82) was observed for this trait in a trial conducted at 

Patanchem (RCE 24 K02), and the lowest (0.00) from trial conducted in Rajasthan 

(Nagaur K03). Operational heritability calculated on plot basis also followed this pattern. 

Non-significant F-test values were obtained for panicle yield from trials conducted at RP 

6B K03, Hisar K03, Nagaur K03, Bawal KO3 and Durgapura K03. In most trial data sets, 

better ranks for panicle yield were observed for experimental hybrids ICMH 02002, 

ICMH 02005, ICMH 02006 (HHB 94-like hybrids based on sub-selection ICMB 901 11) 

and for HHB 94-P2B, while hybrids based on ICMA 891 11 displayed poorer ranks for 

this trait (Appendix 3). Again this suggests that ICMB 901 11 could be used to improve 

the panicle yields of hybrids produced on ICM- 89111 with pollinator G 73/107. 



Table 38. ANOVA summary for effective tiller number (tillers/m2) from HHB 94-like hybrids trial 
conducted in ten individual test environments 

Trait 

 sten environment 

Mean 

Effective tiller number (tillerslm2) 
RCE24 RCE24 RP9A RP6B BWL BWL HSR HSR DGR NGR 

KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 
36.4 34.9 32.9 43.2 25.6 27.5 30.3 32.6 17.5 13.7 

Minimum 

Maximum 

SE (+I-) 

32.0 27.1 28.6 36.4 24.0 21.6 26.0 28.0 15.2 12.0 
40.8 44.2 37.4 49.0 29.0 33.4 42.0 39.5 19.0 15.0 

1.9 2.2 2.1 2.5 1.8 1.6 1.4 1.7 1.3 0.8 

CV (%) 

Table 39. ANOVA summary for panicle yield (dm2)  from HHB 94-like hybrids hial conducted in ten 
individual test environments 

Trait Panicle yield (gim2) 

Mean 

Minimum 488 448 405 514 448 341 516 356 260 140 

Maximum 633 593 524 581 567 462 839 498 355 190 

SE (+I-) 21.2 26.8 17.9 19.4 25.7 35.4 42.1 31.5 22.9 23.6 

11.7 14.2 14.0 12.8 15.8 13.3 10.3 11.6 16.0 13.0 

h2 (on plot basis) 

h2(onmeanbasis) 

CV (%) 1 8.3 11.5 8.4 7.9 11.4 19.3 15.8 17.3 16.4 30.7 

F ratio 15.56" 2.25' 4.15** 1.40 2.84** 1.20 4.36" 1.79 1.84 0.36 

0.24 0.38 0.22 0.27 0.04 0.53 0.62 0.33 0.00 0.09 
0.61 0.76 0.58 0.65 0.18 0.85 0.89 0.71 0.00 0.33 

h'(onplotbasis) 0.48 0.20 0.39 0.07 0.27 0.04 0.40 0.14 0.14 0.00 

h2 (on mean basis) 0.82 0.56 0.76 0.28 0.65 0.17 0.77 0.44 0.46 0.00 

F ratio 

'Table 40. ANOVA summary for 1000-grain mass (g) from HHB 94-like hybrids trial conducted in ten 
individual test environments 

2.57' 4.12" 2.37' 2.84" 1.22 6.61'' 8.98" 3.43" 0.87 1.50 

Trait I 1000- Grain mass (g) 

Test environment IRCE 24 RCE 24 RP 9A RP 6 0  BWL BWL HSR HSR DGR NGR 

Mean 

Minimum 

Maximum 

SE (+I-) 

h2(on plot basis) / 0.58 0.23 0.34 0.66 0.17 0.20 0.15 0.12 0.04 0.1 1 

KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 

8.74 8.48 8.70 8.48 6.26 8.14 7.71 6.80 8.1 1 6.82 

7.27 7.76 7.72 7.16 5.42 6.95 7.17 6.30 7.44 5.77 

9.44 9.29 9.54 9.47 6.85 8.78 8.40 7.50 8.56 7.54 

0.24 0.30 0.30 0.23 0.35 0.33 0.25 0.26 0.28 0.34 

CV (a) 

h2(on mean basis) 10.87 0.60 0.72 0.91 0.50 0.56 0.46 0.41 0.18 0.38 
* **":"..:'?---.-.A 0.e --A A A ,  7 8 -  A'---nL"L:,:k, .a*..ec,:.,nl.# 

6.07 7.83 7.61 5.97 12.37 9.09 7.18 8.59 7.78 1128 

Note: RCE 24, RCE 24, Rp 6B, and RP 9A are field locations at ICRISAT-Patanchem (Andhra Pradesh); KO2 and 
KO3 indicate khorif2002 and khorif2003, respectively. BWL and HSR indicate field locations at CCS HAU RRS, 
Bawl and CCS HAU Hisar, respectively (Haryana); and DGR and NCR indicate field locations at RAU RRS 
Durgapura and RAU RRS Nagaur, respectively (Rajasthan) 

F ratio 7.78" 2.48' 3.57" 10.63" 2.01' 2.27' 1.85 1.70 1.21 1.61 



4.8.12. 1000-grain mass (g) 

~ l l  test environments in the Patancheru cluster, along with Bawal KO3 and Durgapwa 

KO3 recorded mean 1000-grain mass (TGM) between 8.1 1 g to 8.74 g. However, Bawal 

K02, Hisar KO3 and Nagaur KO3 trials had mean TGM values of 6.26 g, 6.80 g and 6.82 

g respectively, with a slightly higher value for the Hisar KO2 (7.71 g) trial. High mean- 

basis operational heritability values were obtained for trials conducted at Patancheru (Rp 

6B KO3 was highest, 0.91) for TGM, and these were higher than those obtained in 

Haryana (moderate, 0.40-0.50) and Rajasthan (low 0.1 8 to 0.38), as presented in Table 

40. Significant differences among entries were recorded in the most test environments 

except Hisar K02, Hisar K03, Nagaur KO3 and Dwgapura K03. The hybrid produced on 

sub-selections of ICMB 901 11 (ICMH 02002, ICMII 02005 and ICMH 02006) ranked 

among the best for TGM in most test environments while HHB 94-P5A and HHB 94-P5B 

ranked consistently poor (Appendix 3). 

4.8.13. Panicle grain number (grainslpanicle) 

The highest trial mean panicle grain number (2046) was observed in the Bawal KO2 test 

environment, but this trait was not heritable in that particular test environment. All 

individual test environments in the Patancheru test environment cluster recorded trial 

mean values between 1138 and 1486, while Nagaur KO3 and Durgapura KO3 had trial 

mean panicle grain numbers of 1247 and 1754, respectively (Table 41). Operational 

heritability values for panicle grain number were higher for Patancheru (A.P.) test 

environments than Haryana and Rajasthan. F-test indicated significant differences among 

trial entries across all locations except Bawal K02, Hisar KO3 and Nagaur K03, where 

operational heritability for panicle grain number was very low. In many of the individual 

test environments HHB 94-P6A, HHB 94-P6B, and the original HHB 94 ranked best for 

panicle grain number, while in most test environments lCMH 02006 ranked worst for this 

trait (Appendix 3). 

4.8.14. Total above-ground biomass yield (g/m2) 

Trial means for total above-ground biomass yield (TAGBY) ranged from 383 g/m2 in the 

Nagaw KO3 test environment to 1575 g/m2 in the Hisar KO2 test environment, but this 

trait was not heritable in three of the ten trials and poorly heritable in another two, so 

significant differences between e n w  means were detected for this trait in only half of the 



Table 41. ANOVA s u m m w  for panicle grain number from HHB 94-like hybrids trial conducted in ten 
individual test environments 

Trait 

~ e s t  environment 

Mean 

Minimum 

Maximum 

SE (+I-) 

CV (%) 

F ratio 

hi (on plot basis) 

h3 (on mean basis) 

Panicle grain number 
RCE24 RCE 24 RP9A RP6B BWL BWL HSR HSR DGR NOR- 

KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 
1486 1332 1367 1138 2046 1145 1534 1052 1754 1247 
1291 1160 1182 926 1726 879 1227 933 1474 1049 
1729 1603 1579 1437 2469 1380 1930 1209 2006 1398 

87.6 78.9 76.5 69.7 241.8 94.5 133.1 85.0 1191 93.6 
13.2 13.2 12.5 13.7 26.4 18.5 19.4 18.1 15.2 16.8 

2.62' 2.79' 2.58' 4.59" 1.09 2.95" 2.32' 0.76 2.02* 1.22 
0.24 0.26 0.24 0.42 0.02 0.28 0.21 0.00 0.17 0.04 
0.62 0.64 0.61 0.78 0.08 0.66 0.57 0.00 0.50 0.18 

Table 42. ANOVA summary for total above ground biomass (dm2)  yield from HHB 94-like hybrids trial 
conducted in ten individual test environments 

Table 43. ANOVA summary for harvest index (%) from HHB 94-like hybrids trial conducted in ten 
~ndividual test environments 

Trait 

Test environment 

Mean 

Minimum 

Maximum 

SE (+I-) 

CV (%) 

F ratio 

h2(onplotbasis) 

h? (on mean basis) 

Trait 

Test environment 

Total-above-ground-biomass yield (g/m2) 
RCE 24 RCE 24 RP 9A RP 6B BWL BWL HSR HSR DGR NGR 

KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 
1214 976 990 987 1305 1146 1575 1182 782 383 

1082 885 922 880 1102 933 1325 888 684 349 

1369 1083 1064 1108 1426 1332 2195 1362 884 425 

49.4 49.6 40.9 37.8 69.4 86.2 126.9 86.5 60.7 45.2 

9.1 11.4 9.2 8.6 11.9 16.8 18.0 16.4 17.4 26.4 

2.33' 1.78 1.00 2.73.. 2.21' 1.67 4.56** 2.56' 1.02 0.20 

0.21 0.14 0.00 0.26 0.20 0.12 0.42 0.24 0.00 0.00 

0.57 0.44 0.00 0.63 0.55 0.40 0.78 0.61 0.02 0.00 

Mean 

Minimum 

Maximum 

SE (+I-) 

cv (%) 

F ratio 

h2 (on plot basis) 

h2 (on mean basis) 
* **  ":-:c ,, 

Harvest index (%) 

RCE 24 RCE24 RP9A RP6B BWL BWL HSR HSR DGR NGR 
KO2 KO3 KO2 KO3 KO2 KO3 KO2 KO3 KO3 KO3 

38.4 39.6 38.7 41.5 24.6 22.0 23.4 19.7 32.1 30.6 

Note: RCE 24, RCE 24, RP 6B, and ~p 9A are field locations at ICRISAT-Patanchew (Andhra Pradesh); KO2 and 
KO3 indicate khorij2002 and kharf2003, respectively. BWL and HSR indicate field locations at CCS HAU RRS, 
Bawal and CCS HAU ~ i ~ ~ ~ ,  respectively (H~yana);  and DGR and NGR indicate field locations at RAU RRS 
Dwgapura and RAU RRS Nagaw, respectively (Rajasthan) 



test environments (Table 42). No consistent trends in relative performances of the trial 

entries could be detected across the ten test environments (Appendix 3). 

4.8.15. Harvest index (%) 

Trial mean harvest index values ranged between 38.4% and 41.5% in the Andhra Pradesh 

test environments, which were moderately higher than those observed in the two 

Rajasthan test environments (30.6% and 32.1%) and markedly higher than those observed 

for the four Haryana test environments (19.7% to 24.6%). All individual test 

environments at Patanchem recorded high operational heritabilities for harvest index 

ranging between 0.80-0.90, followed closely by Nagaur KO3 (0.82) and Bawal (0.74 in 

KO2 and 0.69 in K03). Hisar KO2 (0.36) had the lowest operational heritability for this 

trait. Harvest index recorded significant differences among genotypes in all test 

environments except Hisar K03, Hisar KO2 and Durgapura KO3 (Table 43). Hybrid 

1CMH 02005, ICMH 02006 and ICMH 02002 had the best ranks for mean HI in most of 

the individual test environments. In contrast to this, the ICMAIB 891 1 1-based hybrids, 

including the two checks, had poorer ranks in most of these trials (Appendix 3). This 

suggests that it should be possible to use ICMB 901 11 as a donor parent to improve the 

harvest index of ICMB 891 1 1-based hybrids. 

4.9. CHARACTER ASSOCIATIONS 

4.9.1. Grain yield 

Correlation studies among quantitative traits provides knowledge of the intensity of 

linkage and pleiotropic effects of genes controlling these traits, and thus help the pearl 

millet breeder in assessing the feasibility of joint selection for two or more than two traits 

and evaluating the effect of selection for secondary trait(s) on genetic gain in the primary 

trait. The replicated mean data from ten locations across three regions of the country 

(Andhra Pradesh, Haryana and Rajasthan) was computed and Spearman rank correlations 

were calculated using Genstat version 6.0. Grain yield was taken as the dependent 

variable and all other traits were correlated with it. Fresh straw yield, straw moisture 

content, effective tillers number, panicle yield, 1000-grain mass, panicle grain number, 

total above-ground biomass yield, and harvest index had significant positive correlations 

with grain yield. Among these traits, panicle yield (0.885) followed by effective tiller 

number (0.778), harvest index and 1000-gain mass recorded very strong and highly 



significant associations with grain yield (Table 44). At the same time, traits like time to 

50% flowering, plant height. panicle length and panicle diameter were negatively 

correlated with grain yield. Among these traits time to 50% flowering (-0.486) registered 

the highest significant negative correlation followed by panicle length (-0.306) and 

panicle diameter (-0.221). Effective plant stand and dry straw yield were found to have 

positive but non-significant relationships with grain yield. 

4.9.2. Dry straw yield 

Time to 50% flowering, plant height, panicle length, fresh straw yield, effective tiller 

number, panicle yield, 1000-grim mass and total above-ground biomass yield exhibited 

positive correlations with dry straw yield. Amongst all positively correlated traits, total 

above-ground biomass yield (0.826) followed by fresh straw yield (0.758) and plant 

height (0.71 5) revealed highly significant association with dry straw yield (Table 44). On 

the other hand, only harvest index showed a significant negative correlation (<0.05 

probability level), and other traits like grain yield. effective plant stand, panicle diameter, 

straw moisture content and panicle grain number displayed a positive but non significant 

associations with dry straw yield. 

4.9.3. Harvest index 

Grain yield (0.651), straw moisture content (0.751), effective tiller number (0.472), 

panicle yield (0.352), and 1000-grain mass (0.680) not only had positive correlations but 

some of them also had highly significant associations with harvest index (Table 44). In 

contrast to this, time to 50% flowering (-0.546), plant height (-0.524), panicle diameter 

(-0.182) panicle length (-0.490), dry straw yield (-0.678) and total above-ground 

biomass yield (-0.446) were found to have significant negative relationships with harvest 

index. Non-significant correlations were observed for effective plant stand and panicle 

grain number with harvest index. 

4.9.4. Time to 50% flowering 

Significantly positive associations were observed for plant height, panicle diameter, fresh 

and dry straw yield with time to 50% flowering (Table 44). Effective plant stand, straw 

moisture content and total above-ground biomass yield showed positive yet non- 

significant correlations with time to 50% flowering. Very highly to moderately significant 



Table 44. Spearman rank correlations for grain and stover yield and their component traits computed from ranks of across-location entry means among 
eleven HHB 94-like hybrids 

FSY 0.517** 0.206. 0.125 0.560** -0.106 -0.031 1 

DSY 1 0.080 0.249" 0.137 0.715** 0.345" 0.071 0.758** 1 

SMC 041  I** 0.024 -0.038 -0.445** -0.617;' -0.115 0.065 -0.561'' 1 I 
ETN 0778** -0.273" 0.348** -0.127 -0.113 -0.035 0.445" 0.061 0.381** 1 I 

GY - grain yield (g/m2), FT - time to 50 % flowering EPS - effective plant stand (plan~m'), PH - plant height (cm). PL - panicle length (cm), PD - panicle diameter 
(mm), FSY - fresh stravi yield (g/m'), DSY - dry snaw yield (g/m2), SMC - s w w  moisture content (%), ETN - effective tiller number (tillers/m2), PY - panicle yield 
(g/m2), IOOOGM -thousand grain mass (g), PGN -panicle grain number, TAGBY - total above-ground biomass yield (dm'), HI - harvest index (%) 

TAGBY 

HI 

0.348" 0.097 0.246** 0.577** 0.269** -0.072 0.826" 0.930** -0.371** 0.293;' 0.622" -0.139 0.198* 1 

0.651** -0.546" -0.030 -0.524" 4.490a* -0.182* -0.182* -0.678** 0.717:' 0.472" 0.352** 0.680" 0.031 -0.446** 1 

GY FT EPS PH PL PD FSY DSY SMC E'SN PY IOOOGM PGN TAGBY HI 

*and  **, significant at  0.05 and 0.01 probability levels, respectively 



negative associations of time to 50% flowering was registered with harvest index (- 

0.546), grain yield (4.486), panicle yield (4.421), 1000-grain mass (4.224), panicle 

grain number (4.360) and effective tiller number (-0.273). 

4.10. YIELD QTL POTENTIAL FROM MULTILOCATION TRIALS 

Eleven HHB 94-like hybrids and control entries, developed by pollination of three 

different types sub-selections (ICMA 891 11, ICMB 901 11 and ICMB 891 11) with a 

common pollinator G 731107, were subjected to various tests based on the replicated 

mean data for grain yield from multilocation trials depending upon the genetic 

background of female parents as presented in Table 45. 

4.10.1. Pair  wise comparisons between HHB 94-like hybrids based on their mean 

performance 

4.10.1.1. Test of cytoplasmic effects on grain yield within the HHB 94 background 

The ANOVA to test the significant of cytoplasmic effects on grain yield in HHB 94 

background demonstrated little significance differences in grain yield due to use of the A I  

male-sterility inducing cytoplasm of the A-lines compared with the normal male-fertile 

cytoplasm of the B-lines. Majority of locations and their state-wise multiple-test 

environment clusters did not reveal any significant differences in mean grain yield 

between sub-selections of two cytoplasms based on ICMA 891 11 and ICMB 891 11 

except from a trial conducted at Bawal KO2 and Durgapwa K03. Markedly significant 

differences in grain yield were observed between the hybrid versions HHB 94-P6A 

(ICMA 891 11-P6) and HHB 94-P6B (ICMB 891 11-P6) at Bawal KO2 (Table 45-46). 

Other HHB 94-like hybrids, HHB 94-P2A and HHB 94-P5A differed significantly from 

HHB 94-P2B and HHB 94-P5B in a trial conducted at Durgapura during khar!f 2003, 

indicating the variation in the grain yield performance among these hybrids based on 

these two different cytoplasm sources. 

4.10.1.2. Tests of effects of selection for downy mildew reaction within ICMAlS 

89111 on HHB 94 grain yield performance 

HHB 94-like hybrids trials conducted at Durgapura during kharif 2003 indicated 

significant variation in mean grain yield between HHB 94-like hybrids developed from 

various sub-selections of male sterile line ICMA 891 11 and HHB 94-original, using a 





common pollinator G73t107. Significant differences were also noticed between average 

of three hybrids based on sub-selections (-P2A, -P5A and -P6A) and HHB 94 original at 

Durgapura, confirming the effectiveness of selection with in genetic background of 

ICMA/B 891 11 (Table 46). 

4.10.1.3. Comparison between HHB 94 and HHB 181 (control entries) 

Two hybrid control entries (HHB-94 and HHB 181) produced with a common male- 

sterile line (ICMA 891 11) and different pollinators (G 731107 and H 771833-2) were 

compared for mean grain yield across ten test environments. Significant differences were 

recorded for mean grain for these two hybrids from trials conducted at Bawal KO2 

(Haryana test environment cluster), Durgapura KO3 (Rajasthan test environment cluster), 

RP 9A K02, (Andhra Pradesb test environment cluster), and pooled entry means across 

all ten test environment cluster (Table 46). 

4.10.1.4. Potential of ICMB 90111 to improve grain yield of HHB 94 (tested in 

normal fertile cytoplasm) 

A test of grain yield QTL potential in cytoplasmic background of ICMB 901 11 was 

conducted by subtracting the average grain yield of all three HHB 94-like hybrids based 

on ICMB 891 11 from average grain yield of all three hybrids based on ICM 9011 1. 

Strikingly high differences were observed from multilocation trials at Bawal K03, 

Durgapura K03, Patanchem (Andhra Pradesh test environment cluster) and pooled across 

all ten test environments. The marked difference obtained is because of cytoplasm 

indicating possibility of potential yield QTLS in ICMB 901 1 1 to improve HHB-94 (Table 

46). 

4.10.2. Pair-wise comparisons between H H B  94-like hybrids based on ANOVA 

Analysis of variance was performed based on replicated yield data for comparing pairs of 

HHB 94-like hybrids based on different sub-selections of ICMA 891 11, ICMB 891 11 and 

ICMB 901 11 used a female lines, at single degree of freedom contrasts using Genstat 

version 6.0 (Table 47). The results of comparison of mean performance of grain yield 

(from multilocation trials) were confirmed by tests of contrast at single degree of 

freedom. 



Table 46. Comparisons as single degree of freedom contrasts based on mean performance of grain yield for individual test environments as well as across 
state-wise test environment clusters, and across all ten test environments in Haryana, Rajasthan and Andhra Pradesh during khorif2002 and 2003 

Test of cvto~lasmic effect on GY within HHB 94 background 

ComparisonsofHHB 
94-like hybrids 

TRI -TR8 

M-U1(1'2'3)- 142.6 / 4 .6  1 9.4 1 181 1 16.4 1 -61.9 1 13.6 1 -24.2 1 14.3 1 14.3 / 10.6 1 25.5 I 22.3 1 10.6 1 
Mean (8.9.10) 

Test effect of selection within ICMA 891 I I for downy mildew disease resistance on grain yield performance 

Comparison between HHB 94 and HHB 181 

BWL 
KO2 

12.2 

TR11- TR4 

BWL 
KO3 

-19.0 

6.5 5.6 

Yield potential in ICMB 901 11 to improve HHB 94 (tested in the normal fertile cytoplasm) 

HSR 
KO2 

89.1 

16.4 -60.9 

- 

Mean (8,9,10) 

SE (+I-) 

LSD 

HSR 
KO3 

4 .1  

16.6 

Note: RCE 24, RCE 24, RP 6B, and RP 9A are field locations at ICRISAT-Patancberu (Andhra Pradesh); KO2 and KO3 indicate Ahorif2002 and khorif 
2003, respectively. BWL and HSR indicate field locations at CCS HAU RRS, Bawal and CCS HAU Hisar, respectively (Haryana); and DGR and NGR 
indicate field locations at RAU RRS Durgapura and RAU RRS Nagaur, respectively (Rajasthan); All indicates mean performance across all ten test 
environments in Andhra Pradesh, Haryana and Rajasthan 

-42.8 

20.61 

57.50 

151.0* 

-3.4 

19.43 

55.53 

HRy 

19.6 

16.5 -69,7* 

-142.2* 

26.90 

76.90 

-204.7* 

23.56 

67.34 

DGR 
KO3 

-75.4* 

63.4' 63.4 

-1 18.1* 

27.58 

77.43 

-31.4 

16.31 

46.62 

10.6 

43.70 

126.20 

NGR 
KO3 

6.4 

24.0 

-20.2 

20.93 

59.82 

-36.2 

22.23 

63.55 

RAJ 

-34.5 

12.3 

-39.8 

22.83 

65.27 

RCE 24 
KO2 

21.7 

27.9 

-55.6* 

16.37 

46.80 

17.1 

RCE24 
KO3 

21.7 

-33.8 

15.98 

45.69 

RP9A 
KO2 

-28.6 

-37.4' 

12.62 

35.20 

-55.7. 

16.59 

46.10 

RP 6B 
KO3 

25.5 

Ap 

12.1 

All 

5.8 



4.10.2.1. Test of significance of cytoplasmic effect on grain yield within HHB 94 

background 

ANOVA for test of significance of cytoplasmic effect on grain yield within HHB 94 

background demonstrated no significance differences in grain yield in most of the test 

environments except Bawal, Durgapura K03, and the cluster at Patanchem (Andhra 

Pradesh), confirming that there was no cytoplasm effect on grain yield. The comparison 

made between two HHB 94-like hybrids based on sub-selections, ICMB 891 11-P6 and 

ICMB 901 11 -P6 exhibited remarkably significant differences in grain yield at Bawal KO3 

(at pz0.01, level of significance). Even further to this, significance differences were also 

recorded for grain yield comparison made between average performances of the three 

hybrids, HHB 94 -P2, -P5 and -P6 and hybrid based on sub-selections of ICMA 891 11 

and ICMB 891 11 backgrounds at Bawal K02, Durgapura K03, and Multiple-test 

environment cluster Patanchem. HHB 94-P2A and HHB 94-P5A also differed from HHB 

94-P2B and HHB 94-P5B respectively at Durgapura KO3 exhibiting variation in grain 

yield due to cytoplasmic differences. 

4.10.2.2. Test of selections within ICMB 89111 

Analysis of variance for test of selections within ICMB 891 11 at single degree of freedom 

between HHB 94-like hybrids based on sub-selections within ICMA 891 11 background 

showed no significant differences in grain yields at any of the locations except at 

Durgapura. Not only this, the average performances of hybrids from three sub-selections 

(HHB 94-P2A, -P5A and -P6A) when tested against the original version of HHB 94-like 

hybrids reveled no remarkable differences at any of the individual or group of test 

environments except Durgapura K03. 

4.10.2.3. Comparison between the two control entries hybrids, HHB 94 and HHB 

181 

ANOVA of the pair-wise comparison between two control hyhrids HHB 94 and HHB 

181, developed by pollinating male-sterile line ICMA 891 11 with different restorer lines 

(G 731107 and H 771833-2, respectively), revealed significant differences only in trials 

conducted in three test environments: Hisar K03, RP 9A K02, and RP 6B KO3 (Table 47). 



Table 47. Analysis of variance of pair-wise comparisons based on replicated yield data at single degree of freedom contrasts for individual test 
environments as well as across state-wise test environment clusters, and across all ten test environments 

Test effect of selection within lCM.4 891 1 I for downy mildew disease resistance on grain yield performance 

Test effect of selections within 891 1 1 

Comparison between HHB 94 and HHB 18 1 

All 

2707 

18513 

RCE24 
KO2 

4928 

5746' 

RP6B 
KO3 

714 

3066* 

Ap 

2102 

16086" 

NGR 
KO3 

4697 

1275 

Sourceofvariation 

Replication 

Treahnent 

TR11-TR4 

and Rajasthan; df - degree of freedom 

RCE 24 
KO3 

19% 

8574" 

RA, 

5842 

2957 

Df 

4 

10 

Mean (8.9.10) 

Error 

RP 9A 
KO2 

8193 

5020" 

i:: 
24238 

6682.' 

Yield wtential in ICMB 901 11 to imorove HHB 94 (tested in the normal fertile cvto~lasm) 

1 

pot 
17555 

14486 

BW3L 

5565 

Note: RCE 24, RCE 24, RP 6B, and RP 9A are field locations at ICRISAT-Patancheru (Andhra Pradesh); KO2 and KO3 indicate hharif2002 and hharr/2003, 
respectively. BWL and HSR indicate field locations at CCS HAU RRS, Bawal and CCS HAU Hisar, respectively (Haryana); and DGR and NGR indicate tield locations 
at RAU RRS Durgapura and RAU RRS Nagaur, respectively (Rajastllan); All indicates mean performance across all ten test environments in Andhra Pradesh, Haryana 

I 

136 

HSR 
KO3 

9252 

5467* 

77 

1887 

9257 

HRy 

2193 

6868 

267lO** 

3619 

DGR 
KO3 

12059 

6171* 

1407 

45602* 

7631 

12131. 

3533 

2472 

1 1  

l063l 

8074 

674 1 2707 1 1362 4651 

467 1 688 2712 

7606 2775 

7554 

1330 

10041' 

2190 

13399** 

360 

2607 

5792' 

I444 

1340 

7795 5038 1 

376 

1277 

30097** 

3188 

39428 

13494 



4.10.2.4. Potential of ICMB 90111 to improve grain yield of HHB 94 (tested in 

normal fertile cytoplasm) 

The average grain yield performance of three HHB 94-like hybrids (HHB 94-P2B, HHB 

94-P5B and HHB 94-P6B) produced by crossing pollinator G 731107 on sub-selections of 

ICMB 891 11 was tested against the average of three HHB 94-like hybrids onto sub- 

selections of ICMB 9011 1 (ICMH 02002, ICMH 02005, ICMH 02006) (Table 46 and 

47). ANOVA for these single-degree of freedom comparisons showed significant 

differences only at Bawal K03, Hisar K02, and RCE 24C K02, and for Andhra Pradesh 

test environment cluster. Results were inconsistent but in general the versions of HHB 94 

tended to be marginally out-yield their counterpart produced on sub-selections of ICMB 

901 1 1 (Table 47). 





5. DISCUSSION 

5.1. DOWNY MILDEW SCREENING 

5.1.1. Downy mildew inheritance studies 

Downy mildew is a menace to pearl millet production in SAT regions of the world. It 

causes devastating losses and last century has witnessed pearl millet downy mildew 

epidemics many times in India. The parental lines ICMB 891 11-P6 (susceptible to downy 

mildew) and ICMB 9011 1-P6 (resistant to downy mildew) and their F14 mapping 

population progenies were screened against six Indian and two African pathogen 

populations of S. graminicola under greenhouse conditions in the present study. Parental 

line ICMB 901 11-P6 was found to be highly resistant and exhibited no symptoms of 

infection against pathogen populations from Patancheru, Maiduguri and Bamako but it 

showed moderate susceptibility to those from Jamnagar, New Delhi, Durgapura, Jalna 

and Jodhpur. At the same time, parental line ICMB 891 11-P6 recorded very high downy 

mildew incidence (DMI) in screens against pathogen populations from Durgapura. 

Jamnagar and Patancheru. Moderately high downy mildew disease incidence was 

observed on this parental line when screened against pathogen populations from Bamako, 

Maiduguri, Jodhpur and New Delhi. 

Downy mildew susceptible control cntry (70423) exhibited a high degree of 

susceptibility across all of the pathogen populations used in this study ranging between 

75% and 100% DMI. On the other hand, resistant control entry P1449-2 showed high 

levels of resistance against all six Indian pathogen populations used in this study. For rest 

the rest of the control entries (resistant and susceptible), variable downy mildew disease 

reactions were observed in screens across the various pathogen populations. This 

differential reaction of PT 732B is a clear case of pathogen population-specific host-plant 

resistance as described by van der Plank (1963, 1968), Day (1974) and many others. 

The Mendelian segregation for downy mildew disease reaction among the 172 F2 4 

mapping population progenies when screened against pathogen populations from 

Patanchem, New Delhi, Durgapura (India) and Maiduguri and Bamako (Africa) gave 

good fits to 3 resistant : 1 susceptible (single dominant resistance gene) at natural DM1 



breakpoints of 30%, 25% 40%, 20% and 50% respectively, indicating role of single 

major dominant gene controlling a major portion of resistance to each of these pathogen 

populations from Jodhpur. But interestingly, the mapping population under study also 

segregated in a Mendelian segregation ratio of 1 resistant : 3 susceptible in the screen 

against the pathogen population from Jodhpur at breakpoint of 15% DM1 (Table 9). In a 

previous study, Azhaguvel (2001) observed a resistant : susceptible segregation ratio 3:l 

(monogenic dominant resistance) against a pathogen population from Jodhpur, and a 1 :3 

(monogenic recessive resistance) ratio against pathogen populations from Jamnagar 

(India) and Sadore, Niger (Africa). Appadurai el ul. (1975) indicated the role of a single 

resistance dominant gene, which was supported by a non-significant z2 test for goodness 

of fit from Fa segregating data to the 3:l ratio. Furthermore, Dass el 01. (1984), Thakur et 

01. (1992) and Singh (1995) also reported resistance to be dominant over susceptibility 

and largely controlled by one or a few major genes. Except in one case where resistance 

was reported to be recessive (Singh el ul., 1978), pearl millet downy mildew resistance 

has generally been observed to be dominant and variation in segregating populations is 

typically continuous (Singh el al., 1993a). 

Mendelian segregation among the 172 F24 self-bulks for downy mildew disease 

reaction against the pathogen population from Jodhpur showed a best fit to the digenic 

ratio of 13:3 at the natural breakpoint of 55% DMI, indicating the presence of two 

dominant genes (one basic gene and one inhibitor gene). Similar segregation ratios were 

also obtained in DM screens against pathogen populations from Patanchem, Durgapura, 

Jamnagar and Bamako, Mali at natural breakpoints 40%. SO%, 50% and 60% DMI, 

respectively in the present study. 

The 172 F2 4 mapping population progenies screened against four Indian pathogen 

populations from (ICRISAT Patancheru; MAHYCO Jalna; JAU MRS Jamnagar and IARl 

New Delhi) and two African pathogen populations (from Maiduguri, Nigeria and 

Bamako, Mali) exhibited segregation patterns that fit digenic ratios of 15:l (resistant : 

susceptible) at DM1 natural breakpoints ranging between 30% and 85%, indicating the 

involvement of duplicate dominant genes governing resistance to each of these downy 

mildew pathogen populations from India and Africa. In previous study, Deswal and 

Govila (1994) reported that host plant resistance to downy mildew was controlled by 

complementary gene action for the pathogen from New Delhi (9:7) and duplicate for the 



pathogen from Tamil Nadu (15:l). Such variable response of the host to pathogen 

populations from different production environments was also reported earlier by Joshi 

and Ugale (2002) who observed differential digenic Mendelian ratios (13:3 and 15:l) in 

two different screening environments for a single segregating host population. Duplicate 

dominant factors controlling pearl millet host-plant resistance to downy mildew have 

been reported by Singh (1974), Shinde et a/. (1984) and Kataria et a / .  (1993). 

Mendelian segregation among these 172 Fz:? self-bulk also recorded good fits to a 

55:9 ratio at a DM1 breakpoint of 65%, and 9:55 ratio at a break point of 5% DMI, in 

screens against pathogen populations from Jodhpur, India and Bamako, Mali, 

respectively, indicating that resistance to these pathogen populations is not simply 

inherited in this segregating host population and suggesting the role of epistatic 

interactions of two or three major genes in control of disease reaction in this cross. This is 

in complete agreement with an earlier report (Azhaguvel, 2001), based on progeny of 

cross IP 18293 x Tift 238D1 screened against a pathogen population from Bamako, Mali. 

However, it is not clear from this analysis whether the segregating resistance genes 

conferring disease reaction to these pathogen populations were necessarily the same. A 

9 5 5  ratio indicates the presence of either a dominant inhibitor of resistance conferred by 

two duplicate dominant genes, or the presence of a recessively inherited resistance 

modified by two additional duplicate genes. An alternate description of this genetic 

architecture is that the population is segregating for a failed major dominant resistance 

gene that now confers sufficient susceptibility to the particular pathogen population so 

that two dominant resistance genes of similar effects are only expressed when the 

recessive susceptibility allele is homozygous at the failed resistance locus. A possible 

parallel for this was observed by Wells and Hanna (1988), who reported four independent 

genes including duplicate dominant resistance genes and a recessive inhibitor of 

resistance controlling reaction to pearl millet leaf spot disease caused by Bipolaris 

serariae. Segregation of progenies from the Fz.4 mapping population in the current study 

was slightly skewed toward the resistant parent, ICMB 901 11-P6, against DM screens 

against both of these two pathogen populations. 

The population of pearl millet downy mildew from MAHYCO, Jalna found to be 

much less virulent than the other seven pathogen populations used in screening the 

mapping population in this study. This pathogen population displayed extreme 



skewedness of segregating mapping population progenies towards the disease reaction of 

resistance parent ICMB 9011 14'6. In contrast, pathogen population of S. graminicola 

from Bamako, Mali was observed to be the most virulent included in this study. Other 

pathogen populations for which the mapping population progenies exhibited segregating 

panem highly skewed towards the resistant parent included those from Maiduguri 

(Nigeria), and Patancheru, Jarnnagar, and New Delhi (India), where in each case the 

majority of 172 F2.4 mapping population progenies showed DM1 values less than 20%. In 

contrast, screen of this set of mapping population progenies against two highly virulent 

pathogen populations of S. graminicola (one from Jodhpur, India and other from Bamako, 

Mali), exhibited more nearly normal segregation patterns suggesting that inheritance of 

resistance to these two pathogen population is more complex. Pathotype specificity of 

host resistance is considered a common feature of obligate biotrophs (Sidhu, 1986) and 

previously has been described for pearl millet downy mildew (Thakur et ul., 1992). 

The mapping population of F2 F4 self-bulks derived from the cross of susceptible 

and resistance parental lines of ICMB 891 11-P6 and ICMB 901 11-P6 also gave good fits 

to 63:l ratios (triplicate dominant resistance genes) at DM1 breakpoint levels of 40%, 

60% 75%, 90% and 95% when screened against pathogen populations from Jalna, New 

Delhi, Maiduguri, Durgapura and Jodhpur, respectively. Four gene interaction with 

Mendelian segregation ratios of 255:l (resistant : susceptible) were also suggested from 

screens against Indian pathogen populations from Jalna and New Delhi at natural 

breakpoints of 55% and 85% DMI, respectively. However, two dominant and duplicate 

homozygous allele played important role in favoring resistance against these pathogen 

population from India. Such trigenic (55:9) and tetragenic (229:27) control of the 

inheritance of pearl millet downy mildew resistance has also been reported by Joshi and 

Ugale (2002). Wells and Hanna (1988) also reported four independent genes including 

duplicate resistance genes and a recessive resistance inhibitor of resistance controlling 

reaction to a pearl millet leaf spot disease caused by Bipolaris serariae. Similarly, 

Basavaraju (1978) and Basavaraju et al. (1980) concluded that resistance to pearl millet 

downy mildew is not simply inherited, but is due to a complex series of non-allelic 

interactions. Many authors like Tyagi and Iqbal Singh (1989), Deswal and Govila (1994), 

and Kataria et al. (1994) have concluded that such non-additive gene action is responsible 

for much of the heritable variability for host plant reactions of downy mildew, agreeing 

with simpler studies that show resistance to often be dominant or partially dominant. 



In the present study, many of the host plant resistances detected were found to be 

dominant. Most previous genetic studies of downy mildew resistance in pearl millet have 

found dominance to be important (Appadurai et al., 1975; Gill et al., 1975; Pethani eta/ . ,  

1980, Basavaraju et al., 1981b; Mehta and Dang, 1987). The QTLs detected for resistance 

to pearl millet downy mildew in the present study were found to be over-dominant. Over- 

dominance has also been detected in previous studies (Singh et a[.. 1978; Basavaraju et 

al., 1981b; Dass et al., 1984; Jones et ul., 1995) and could be explained in terms of 

buffering effects of heterozygosity. Several previous studies have concluded that downy 

mildew resistance in pearl millet is quantitative in nature (Singh et al., 1978; Singh el al., 

1980; Kenneth, 1981; Basavaraju et al., 1981a), which simply implies that several genes 

of small individual effect are segregating and the trait is essentially polygenic in its 

inheritance. 

5.1.2. Spearman rank correlation 

Spearman rank correlations based on ranks of entry mean disease reactions of the 172 F2- 

derived F4 families screened against each of the eight pathogen populations from India 

and Africa (Table 10 and 11) showed very strong similarities between pathogen 

populations from Patancheru and New Delhi, as well as those from Patancheru and 

Maiduguri. A general trend of stronger correlation was observed amongst the six 

pathogen populations from India than between the two African pathogen populations. 

Pathogen populations from northern India (Jodhpur, New Delhi, Durgapura and 

Jamnagar) were more highly correlated among themselves than were the two pathogen 

populations from southern India (Patancheru and Jalna). Similar results have been 

reported by Azhaguvel (2001) in DM screens of mapping population progenies derived 

from cross IP 18293 x Tift 238D1 against the same six Indian pathogen populations. 

5.1.3. Cluster analysis 

The dendrograms (Figures 14a and 14b) based on Spearman rank correlation coefficients 

depicted essentially the same relationships as the correlations themselves (Table 10 and 

11) and hence gave similar inferences. Two highly virulent pathogen populations 

(Jodhpur and Bamako) showing relatively poor correlation were clustered into one group 

but far away from each other. The less virulent pathogen population from Jalna formed a 

separate group, relatively more dissimilar from other pathogen populations in all 



dendrograms (Figures 13 and 14) and also exhibited very poor correlation with those 

from the rest of Indian and African pathogen populations (Tables 10 and 11). Among the 

Indian pathogen populations, those from Jamnagar and Patancheru were found to be 

closely associated to each other than to the rest of pathogen populations. This could 

possibly be because of greater genetic similarity of virulency among these two pathogen 

populations in spite of the large physical distance between the research stations on-which 

they were originally collected. Other possible reasons could be the allogamous nature of 

pathogen populations (Thakur el  al., 1992) and host-pathogen specificity breaking such 

geographical barriers in terms of virulencyipathogenocity. The observed strong 

correlation between Indian and African pathogen populations also supports the same 

hypothesis. Significant differences have been noticed between the two types of 

dendrograms constructed in this study. Among Indian pathogen populations, those from 

Patanchew and New Delhi, and from Jodhpur and Durgapura, have displayed close 

relationships when entry mean DM1 values of the 172 F2 4 mapping population progenies 

(Figure 13a) were used as the basis of the comparisons. Among all eight pathogen 

populations from India and Africa, Jamnagar has shown very close similarity with 

Durgapura and Patancheru has shown with New Delhi when comparisons were based on 

entry mean DM1 values (Figure 13b). These correlation studies and cluster analyses have 

provided useful groupings of the downy mildew pathogen populations of S. graminicola 

that could be used by plant breeders and plant pathologists in chalking out future downy 

mildew resistance gene deployment strategies for pearl millet in India. 

5.1.4. Host plant-pathogen population variability 

The analyses of variance for each of the eight individual screens against pathogen 

populations used in this study have indicated significant variability in downy mildew 

reaction among the 172 F24 self-bulks. The pathogen population from Jodhpur (India) 

was observed to be most virulent (37.3% trial mean DMI), followed by that from Bamako 

(Mali, West Africa) (34.9% trial mean DMI). Previous studies have indicated that West 

African host genotypes were potentially more susceptible to Indian than West African 

pathogen populations and conversely some Indian hosts were more vulnerable to pearl 

millet downy mildew pathogen populations of West African than to those from India 

(Ball et al., 1986). The pathogen populations from Jalna and Maiduguri were found to be 

the least virulent among the eight included in this study. Pathogen populations of Indian 



origin exhibited higher virulence than pathogen populations from Africa in present study. 

Similar observations on host plant and pathogen variability in pearl millet downy mildew 

screening studies have been earlier discussed by Ball (1983), who reported that West 

~f r ican  isolates of S. graminicola were generally more pathogenic than Indian isolates. 

All screens against individual pathogen populations in current study have exhibited very 

high operational heritabilities on entry-mean basis [ranging between 0.80 (Jalna) and 0.94 

(Maiduguri)] and relatively lower operational heritabilities on plot basis [ranging between 

0.58 (Jalna) and 0.64 (Jodhpur)], as expected from theory. 

5.1.5. Genotype x pathogen population interactions 

Downy mildew caused by S. graminicola is a serious disease of FI hybrid cultivars of 

pearl millet. The pooled ANOVA from replicated data of 172 F2.4 mapping population 

progenies screened against six pathogen populations from India and two pathogen 

populations from Africa, revealed no significant variability in downy mildew incidence 

(DMI, %), arcsin-transformed values of DM1 (DMA, radians) and downy mildew disease 

plant count (DMC) among pathogen populations from the two continents. However, 

significant variability in DMI, DMA, TPC, and DMC, was detected between pathogen 

populations from Asia and between pathogen populations from Africa (except TPC) 

(Table 7). Intercontinental variation among pathogen populations of S graminicola has 

been discussed by Ball and Pike (1984). The major reason for this variation in DM 

disease reaction of the mapping population progenies in screen against different pathogen 

populations from India and Africa is considered is the existence of physiological 

specialization within S. graminicola (ICRISAT, 1989; Thakur and Rao, 1997) and 

differences in the geographical distribution and differentiation of pearl millet downy 

mildew pathogen populations. Significant effects of entries and entries x pathogen 

populations (across both continents, and within Asia and Africa individually) were 

observed for downy mildew incidence (DMI, DMA, TPC and DMC) except for Africa 

pathogen population for total plant count (TPC). Similar results have been reported by 

Thakur et al. (2001) from a screen of pearl millet A-lines against different pearl millet 

downy mildew populations from India in greenhouse conditions as well as in field 

conditions. 

The variance component analysis (Table 8) has also revealed significant 

variability among 172 F2:4 mapping population progenies in DMI, DMA, TPC and DMC 



~ooled  across all eight Indian and African pathogen populations. At the same time, non- 

significant variability was recorded in DM1 entries pooled across pathogen populations 

from within India compared to entries pooled across pathogen populations from Africa. 

Pathogen variability of pearl millet downy mildew populations measured in terns of their 

host cultivar reactions to different pathogen populations has previously been studied by 

Ball (1983), Ball and Pike (1984) and Thakur et 01. (1997). Genotype x pathogen 

population interactions were significant for DMI, DMA, TPC (but not across the six India 

pathogen populations) and DMC across all pathogen populations from India. The 

breeding behaviours of both the pathogen and the host are allogamous, so both are highly 

variable (Thakur e t  a[., 1992). which consequently has hampered studies of the 

inheritance of downy mildew disease resistance and ultimately breeding of DM resistant 

pearl millet cultivars. Variation within S. graminicola has also bees reported on the basis 

of differences in size of the asexual structures, number of nuclei, seed borne nature and 

soluble proteins in the pathogen (Shetty et al., 1980). Among the sources of variation in 

current study (genotype, pathogen population and genotype x pathogen population), the 

largest proportion of variability in downy mildew incidence was accounted for largely by 

mapping population progeny genotypes followed by genotype x pathogen population 

interactions and least by variation between the pathogen populations themselves. Similar 

observations have also been reported by Thakur et al. (2001) from screens of pearl millet 

A-lines against pathogen populations from Patanchem, Mysore, Durgapura and Jalna. A 

few earlier studies (Sastry et al., 1995; Thakur et 01, 1999) have shown that these four 

pathotypes are quite diverse for their virulence and genetic makeup, and that they are 

representative of such variation prevalent in major pearl millet growing areas of India. 

Very high entry-mean basis operational heritability (>0.94) has been recorded for 

all four variables (DMI, DMA, TPC and DMC) from screens against the six Indian 

pathogen populations, which were conducted at ICRISAT-Patancheru. But screens 

against pathogen populations from Africa (which were conducted at the University of 

Wales, Bangor) recorded comparatively low entry-mean basis operational heritabilities 

for DM1 (>0.69). All eight pathogen populations altogether showed very high broad-sense 

heritability (~0.93) for all four variables under study. In previous studies, Jones et 01. 

(2002) also recorded high operational heritabilities ranging from 0.75 to 0.90 and 

significantly high variation between F4 family means for each screen. Greenhouse 

evaluation of 172 FZr4 self-bulks against most of the eight pathogen populations provided 



results skewed more towards the resistant parent (ICMB 901 11-P6) and recorded high 

coefficients of variation (CV). However, heritability estimates and F ratios for genotypes, 

and for genotypes and pathogen interaction variances were highly significant for the 

various measures of disease reactions, despite the high CV values for these traits. An 

earlier study of DM screening of F2.4 mapping population progenies against these same 

pathogen populations, carried out by Azhaguvel (2001), also showed skewedness of 

mapping population progeny values towards resistant parent. 

5.2. PARENTAL POLYMORPHISM 

The parental lines ICMB 891 11-P6 and ICMB 901 11-P6 when screened for marker 

polymorphism against a set of SSR primer pairs and RFLP marker probe-enzyme 

combinations. Although they exhibited a high level of polymorphism (r55%) as 

expected, only about 40% of these were very clear and scorable polymorphisms could be 

used in this study to genotype the 172 Fz mapping population progenies across 46 marker 

loci including 26 SSRs and 20 RFLPs. Cross pollinated species tend to have high levels 

of DNA polymorphism and virtually all crosses which don't involve closely related 

individuals will give sufficient maker polymorphism for linkage map development 

(Helentjaris, 1987). In general the level of polymorphism found in inbreeding species is 

lower than in the out-crossing species such as pearl millet (Miller and Tanksley, 1990). 

This is the expected level of polymorphism from the SSR and RFLP markers assessed 

was higher than that normally found in predominantly self-pollinating cereal crops like 

rice (McCouch ri al., 1988) and wheat (Chao et al., 1989; Devos et a!., 1992). The 

amount of observed RFLP polymorphism in barley was less than 28% (Graner et a l .  

1991; Heun et a[., 1991). 

In pearl millet, Liu et al. (1994) reported 56% average pair-wise polymorphism 

for RFLP probe-enzyme combinations among elite parental hybrid lines. In the present 

study, the percentage of polymorphism varied with type of markers. The amount of RFLP 

polymorphism also differed with the four different restriction enzymes used. The highest 

level of polymorphism was recorded with restriction enzymes Hind11 followed by 

EcoRV, EcoRI and DraI. Azhaguvel (2001) obtained a slightly different order of 

HindII>DraI>EcoRV>~coR1 for high level of polymorphism for a different pearl millet 

cross. In fact DraI exhibited polymorphism for number of probe-parental line 

combinations but because of high-distorted segregation or unclear scoring they were 



excluded from the present study. Simple sequence repeats SSRs are abundant in 

eukaryotic genomes and provide a co-dominant, usually highly polymorphic markers 

system (Tautz and Ranz, 1984; Bryan el al., 1997). Out of 80 pearl millet SSR primer 

pairs screened against the parent lines of the cross under study, only 26 SSR (33%) 

revealed good scorable polymorphisms. 

Microsatellites have proven informative to study genetic relationship among 

closely related plant species as well as among sub-populations of single species 

(Bowcock et ul., 1994) because of their exceptionally high level of polymorphism. In 

addition, microsatellites exhibit co-dominant inheritance and their detection can be 

automated (Hernandez el al., 2002). These factors are essential for effective 

discrimination between closely related lines (Akkaya el a[.,  1992). Plant SSRs are 

reported to exhibited high levels of polymorphism with as many as 37 alleles at individual 

loci in barley (Hordeum vulgure L.) (Sanghai-Maroof el al., 1994) and 26 alleles in 

soybean (Rongwen er al., 1995). In plants, the level of SSR polymorphism has been 

shown to be 10 times higher than with RFLP markers (Akkaya er al., 1992; Senior and 

Heun, 1993; Bell and Ecker, 1994). Although relationships between degree of 

polymorphism and number of repeats have been reported in some species (Sanghai- 

Maroof el ul., 1994; Fisher et ul., 1998), theoretically number of repeats is in correlation 

with mutation rate not with degree of polymorphism (Brink-Mann el al., 1998; Xu el al., 

2000). The degree of polymorphism detected by recently developed pearl millet SSR 

primer pairs did not correlate with the number of repeats (Budak er al., 2003). 

5.2.1. Segregation of marker loci and their distortion 

Distorted segregation of molecular marker loci appears to be a common phenomenon in 

many crop species. It has been reported in a number of previous studies [Cloutier el al. 

(1991); Bentolila et al. (1992); Cloutier and Landry (1994), Rivard el al. (1996) and 

Yarnagishi el al. (1996)l but no universally accepted satisfactory explanation has been 

offered for this phenomenon. In present study, about 40% of the marker loci (including 

both SSRs and RFLPs) segregated as per the expected ratio of 1 :2: 1 among the 172 F2 4 

self-bulks. The remaining 60% of loci exhibited significant segregation distortion in this 

mapping population. Segregation distortion can be consequences of genetic elements that 

exhibit the phenomenon of meiotic drive that is a mechanism of the meiotic division 

cause one member of a pair of heterozygous alleles or heteromorphic chromosomes to be 



transmitted to the progeny in excess of the expected Mendelian ratio of 50% (Sandier 

Novitski, 1957; Sandler and Golic, 1985; Lyttle, 1991). Segregation distortion can occur 

due to gamete selection (especially among male gametes of selfed F, plants that 

contributed to F2 seed production or through selective influence of the gynoecium 

including genetic incompatibility), environmental effects both biotic and abiotic, and 

differential competitive ability of genetically variable pollen (Lyttle, 1991; Xu, 1997). 

Segregation distortion have been reported in wide range of organisms, including plants in 

which species or strains hybrids have exhibited preferential dysfunction of gametes 

canying one chromosomal class. This can occur in either microspores (Cameron and 

Moav, 1957; Endo, 1982; Tsujimoto and Tsunewaki, 1985), or megaspores (Scoles and 

Kibirge-Sebunya, 1983), or both (Rick, 1966). Segregation distortion is most commonly , , 
observed in interspecific crosses; however, pervious studies showed distortion 

phenomenon also occur in intraspecific pearl millet crosses (Liu et 01.. 1994; Busso et al., 

1995). As an extreme example, a rice intraspecific recombinant inbred population (C0391 

Mori berekan) was reported to have 98.8% of marker loci skewed towards the indica 

parent (Wang et al., 1994). Variation in the timings of stigma emergence and anthesis 

under the selfing bag among F2 plants in protogynous pearl millet provide additional 

factors that can contribute to the distorted segregation patterns observed in this 

population. 

The phenomenon of segregation distortion is one of the limitations in the present 

map constructed from 172 selfed individuals F2. This is because of the fact that it may 

affect both the establishment of linkage groups and estimation of recombination , 
frequencies. Calculations of linkage distance usually assume no segregation distortion, 

which could cause over-estimation of recombination frequency between linked markers 

(Paran et al., 1995). Segregation results among 172 F2 progenies based on cross ICMB 

891 11-P6 x ICMB 901 11-P6 are presented in Table 12. Out of total 46 polymorphic 

marker loci screened for this mapping population. 28 marker loci showed segregation 

distortion. The significant 2 values ranges from 4.40 (Xpsmp2089 on LG2 at 5% 

significance level) to 20.81 (Xpsm588 on LG6 at 1% significance level). The degree of 

segregation distortion varied among marker types (SSRs and RFLPs) and segregation of 

SSR markers was generally more distorted than that of RFLPs in the present study. 

Analysis of allelic distribution at the marker loci exhibiting significant segregation 

distortion revealed some clear tendencies for abundance of one or another of parental 



allele homozygote or of heterozygote alleles. Interestingly, significant segregation 

distortion favoring male parent (ICMB 901 11-P6) alleles over those of female parent 

(ICMB 89111-P6) were observed for eight marker loci (Xpsmp2273, Xpsml7, 

Xpsmp2080, Xpsmp2030, Xpsmp2089, Xpsm588, Xpsmp2018 and Xpsm696) and vice 

versa for only four loci (Xpsmp2072, Xpsmp2077, Xpsmp2201 and Xpsm409.1) when 

tested with 2 against expected Mendelian ratio of 1: 1 between male and female parent 

alleles. This pattern of segregation distortion favoring the allele from a male parent has 

previously been reported in pearl millet by Liu et al. (1994), Azhaguvel (2001) and 

Kolesnikova-Allen (2001). 

In the present study, six marker loci each on LGI and LG2 (highest in number on 

any linkage group), and three marker loci on LG4 (least in number) exhibited distorted 

segregation among the 172 F2 mapping population progenies. Surprisingly, all the 

markers located on LG6 exhibited highly distorted segregation skewed towards alleles 

from male parent ICMB 901 11-P6 (Table 12). LG5 and LG7 accommodated five and four 

marker loci, respectively exhibiting segregation distortion in this mapping population. It 

has been reported that such segregation distortion is highly possible in pearl millet 

because of its protogynous nature (Liu et al., 1994). Unexpectedly high abundance of 

heterozygotes was also observed for 22 segregation distorted marker loci on LG1, LG2. 

LG4, LG5, LG6 and LG7. Such segregation distortion can be caused by a number of 

reasons. One possible reason could be that markers with distorted segregation are tightly 

linked with genes that inhibit plant development and cause lower than expected 

frequencies of certain genotypes in the experimental population due to lower numbers of 

surviving individuals of those genotypes (Tai et a[., 2000). Further more, distortion 

favoring heterozygotes could be due to natural selection (O'Donoughue el al., 1992) so 

that the sample of F2 plants used to provide tissues for DNA isolation might not be a true 

representative sample of the individual F2 plant from which they were derived and/or 

certain genotypes were present in lower than expected frequencies among the F2 plants 

themselves. In the present study, it is liked that ICMB 891 11 has alleles at one or more 

loci that contribute to poor germination and/or stand establishment in the F2 generation, 

this would result in segregation distortion patterns similar to those observed in this study. 

Another reason that could be contributed to segregation distortion in this study is 

mainly a mechanical or operational one due to difficulties in scoring page gels and 



autoradiographs. In the process of Southern hybridization for RFLP data generation, 

multiple use of limited numbers of filters with multiple stripping of the used filters for 

each set of plants, as used in this study, caused some DNA to be removed from the filter, 

consequently hybridized bands get weaker with each use and can ultimately give blank 

spots on the autoradiograph leading to some data points scored as C or D or gaps. The 

different electric currents and texture of PAGE gel affect movement of PCR-amplified 

DNA during electrophoresis and may also lead to similar problems of scoring of bands in 

case of genotyping the mapping population with SSR markers. Large numbers of such 

gaps were scored in the current study either because of very faint bands difficult to score, 

non-digestion of DNA samples for RFLP, or poor amplification of DNA samples of 

particular plants in the population. All these activities might have lead to segregation 

distortion for some of the marker loci. Such events were also experienced by 

Kolesnikova-Allen (2001) and Azhaguvel (2001) in pearl millet. 

5.2.2. Selection of Marker loci 

The polymorphic RFLP and SSR markers used in this study were primarily selected 

based on maintaining a minimum inter-marker linkage distance of 15-20 cM in the 

consensus map of Qi et al. (2004). This is because most of the SSR and RFLP marker 

available at present have been mapped in this consensus map. But final selection of 

markers used for genotyping the mapping population in the present study was for clear 

and scorable polymorphism between the two parents and their FI. The reason to select the 

markers with linkage distance roughly of 15-20 cM, is that what is detected as a QTL is a 

segment of chromosome of this length that may contain several loci affecting the trait not 

necessarily in the same direction (Tanksley, 1993), and QTL detection is not greatly 

enhanced by spacing more closely than 15-20 cM for which marker data generation is 

much more costly. However, in the present study, the marker analysis could not confirm 

the expected linkage relationships for some of the marker loci. This may be because of 

the relatively small population size used, genome lack of polymorphic markers in some 

genomic regions, use of marker loci present at distal ends leading larger map distances 

and limited genome coverage by marker used, and multiple-copies of some of marker loci 

(especially RFLPs) in the pearl millet genome. 



5.3. GENETIC LINKAGE MAP FOR CROSS ICMB 89111-P6 x ICMB 90111-P6 

A linkage map of 747.9 cM (Haldane) was constructed using 46 marker loci, which 

include both SSR and RFLP markers in the present study. The base map of pearl millet 

(Figure 53) has a genome length of 287.7 cM (Kosambi) produced from an F1 mapping 

population from cross LGD 1-B-10 x ICMP 85410 (Liu el a/., 1994) based on RFLP 

markers only. Azhaguvel (2001) constructed a linkage map of 561.8 cM (Haldane) from 

33 well-distributed RFLP markers, having comparatively smaller mapped genome length 

for his mapping population than the present mapping population study. Studying pearl 

millet cross W 504-1-1 x P310-17-B, Kolesnikova-Allen (2001) constructed an even 

smaller linkage map of 421 cM (Haldane) from a population of 175 F2 individuals using 

38 RFLP markers. Despite substantial increases over the base map, these three studies 

still continue to confirm that pearl millet has a short map in terms of genome length 

compared to all major cereals. There are number of examples showing higher genome 

lengths than pearl millet viz. RFLP-based genetic linkage map of rice constructed with 

more than 800 probes, had a length of 1491 cM (Causse et a/., 1994) and with addition of 

new markers has later reached a length of 1680 cM (Price et a/., 2000). In cowpea, the 

genetic map consists of 11 linkage groups spanning a total of 2670 cM, with an average 

distance of 6.43 cM between markers (Ouedraogo el ul., 2002). In barley a 1453 cM 

linkage map has been reported (Graner el al., 1991: Heun et a/., 1991). O'Donoughue er 

al. (1992) constructed an oat (Avena sativa) linkage map using 194 RFLP probes with a 

length of 614 cM. An RFLP-based linkage map of sorghum of 1530 cM length has been 

constructed using maize and sorghum genomic probes (Pereira et al., 1994; Subudhi and 

Nguyen, 2000). An RFLP-based genetic linkage map of rye (Secale cereals L.), a cross 

pollinated diploid species like pearl millet, has recently been extended to 1140 cM by 

addition of RAPD and isozyme markers (Masjoe et a/., 2001). In the current study 

skeleton map of less than 50 probe-enzyme combinations and primer pairs polymorphic 

between parental lines has been constructed with an average map of <20 cM inter- 

markers distance in pearl millet as per the suggestion of Liu era/.  (1994), to locate QTLs 

of our interest. 

The inclusion of polymorphic RFLP and SSR markers located on both, upper and 

lower distal ends of several linkage groups, quite far from putative centromeric regions 

has resulted in the increase in total map distance of the cross ICMB 891 11-P6 x ICMB 



901 11-P6, under study. Such marker loci have been mapped in this course of study on top 

of LG4, and on both ends of LG2 and LG7 as shown in Figures 26 and 27. Large inter- 

marker distances (>SO cM Haldane) have been recorded for several of these distally 

located maker loci leading to enhancement of total map length. Liu er al. (1994) (Figure 

53) expected such increases in the length of the pearl millet linkage map. This expectation 

has been strengthened by subsequent mapping studies in pearl millet using different 

parental combinations. This increase in map length is because of adding new RFLP 

markers from pearl millet and other cereal crops (Devos er ul., 2000) along with AFLP 

and SSR markers. Qi el ul. (2004) from John Innes Centre, UK has recently reported an 

update consensus map of pearl millet. The most recent version is readily accessible 

through the website http:lljii05.jic.bbsrc.ac.uk.8000icgi-bidwebace?db=millet. 

Seven linkage groups (LGs) were obtained from this mapping population under 

study. The marker order and map length are essentially as expected based on comparison 

with the published pearl millet base map of Liu et ul. (1994) and pearl millet consensus 

map (Qi et al., 2004). Along with this, other recently constructed pearl millet RFLP- 

marker-based genetic linkage maps based on different populations (Table 48) have been 

compared with the map obtained from this study. The total genome length of those 

previously constructed maps ranged from 287.7 cM (LGD 1-B-10 x ICMP 85410) to 

695.7 cM (81B-P6 x ICMP 451-P6) with an average map length of 546.0 cM, which is 

moderately less than the newly constructed map in this study. 

5.3.1. Mapping of linkage group 1 

Linkage group 1 (LGI) in the present study has a clear-cut tendency of increasing its map 

length with addition of flanking markers to both distal regions. The order of markers 

located on LGI is the same as mentioned in pearl millet consensus map and across all 

previously studied populations. The cross ICMB 891 11-P6 x ICMB 901 11-P6 under 

study has a comparatively larger map length, 139.6 cM (Figure 26), for LGI than all 

previously studied populations except PT 732B x P1449-2 (172.6 cM) (Nepolean, 2002). 

The possible explanation for this could be use of both SSR and RFLP markers from 

centromeric as well as distal regions of the linkage group in the present study. The 

shortest map length for LGI was recorded for population IP 18293 x Tift 238D1 

(Azhaguvel, 2001) possibly because of use of only RFLP probes in his study. Other 

alternative reasons could be the sizes of the various mapping populations, genetic 



Figure 53. First published RFLP-based genetic linkage map of pearl millet based on cross 
LGD 1-B-10 x ICMP 85410 (Liu et a[., 1994). On left side of each linkage group are the 
map distances in cM (Kosambi) between marker loci and on the right side are the 
abbreviated locus names (the prefix Xpsm has been dropped for RFLP loci based on pearl 
millet probes from John Inn Centre). 



constitution of their parental lines, and number and polymorphism of marker loci 

obtained for these parental lines. A total of seven marker loci including SSR and RFLP 

markers, with an average distance of 19.9 cM between markers, are found in LGI of the 

newly developed map. The occurrence of highly significantly distorted segregation 

encountered for marker loci mapped on this LG could be another probable reason for its 

increased map length. The markers are fairly well distributed across this linkage group 

except near the upper end. In the original base map (Liu et al., 1994) psendo-linkage of 

LG1 and LG2 was observed, but the present study witnessed a clear separation of LGI 

and LG2. 

5.3.2. Mapping of linkage group 2 

This linkage group also has shown an increasing tendency of map length ranging from 

31.6 cM (W 504-1-1 x P310-17-B) to 179 CM (841B x 863B) in previous studies. The 

observed map length for LG2 in the present study is the highest (192.3) yet reported. This 

increase in map length of LG2 is due to the use of RFLP marker Xpsm708.1, and 

microsatellite SSR marker Xpsmp2089 for genotyping and mapping the F2 population. 

These two loci map on upper and lower distal ends, respectively, on this LG with larger 

inter-marker distances between these distal markers and the centromeric region of LG2. 

These two distally located marker loci were not genotyped and mapped on LG2 in most 

of the previous studies, and hence the map length for this linkage group has been 

extended in this study. A map length of 36.2 cM (Kosambi) for LG2 have been reported 

for the base map of pearl millet (Liu el al., 1994) from a cross LGD 1-B-10 x ICMP 

85410. Two loci (Xpsm708.1 and Xpsm708.2) together have added over 160 cM 

(Haldane) to the length of LG2 in a cross 841B x 863B. Basically the marker order 

recorded in present study is in perfect agreement with the consensus integrated linkage 

map of pearl millet (Qi et al., 2004). Without addition of these two markers in the present 

study, the map distance becomes almost equal to the LG2 in a population (PT 732 P 

1449.2) studied by Nepolean (2002). 

5.3.3. Mapping of linkage group 3 

This linkage group has been recorded as the shortest among all seven linkage pearl millet 

groups in this study, which is in complete agreement with previous studies in crosses 

841B x 863B (Yadav et al., 2004), 81B-P6 x ICMP 451-P6 (Devos et al., 2000; Qi et a[., 



2004), W 504-1-1 x P310-17-B (Kolesnikova-Allen, 2001) and PT 7328 x ~ 1 4 4 9 2  

O'Jepolean, 2002). No differences have been detected in order of marker loci on this 

linkage group as compared to the consensus integrated linkage map of pearl millet and 

other previously mapped populations. One good thing for this LG3 was that there was no 

observed segregation distortion across all marker loci included in this study. 

5.3.4. Mapping of linkage group 4 

The total map length of LG4 recorded from the present study is 98.3 cM (Haldane), 

which is relatively larger than the length of LG4 of the base map from population (LGD 

I-B-10 ICMB 85410) on one hand, but shorter than that from other recently mapped 

pearl millet populations. All the marker loci are well dispersed across length of LG4 

except one marker locus which is located on far upper distal end of this linkage group at a 

map distance of 65.0 cM. Comparatively larger map distances between Xp.sm409.1 and 

Xpsm648 have been reported by Azhaguvel(2001) and Kolesnikova-Allen (2001) for this 

linkage group (Table 48). But the base map has exhibited shorter map distance between 

the two markers as 46.0 cM. This can be explained, at least partly by the presence of 

segregation distortion for the two marker loci in present study, presence of putative 

double crossovers, and the different genetic constitution of the population under study. 

Marker order is also same as that of the base map LGD 1-8-10 x ICMP 85410 except that 

one multiple-copy marker locus, Xpsm416.3, is mapped to LG4 in present study. The 

marker loci, Xpsm416.3 was placed at the distal end of LG4 for this cross ICMB 891 1 1- 

P6 x ICMB 901 11-P6 under study because of very tight linkage of this marker locus to 

other marker loci mapped on LG4. The recombination level in this region is so low that 

there is no chance of separation of these markers more distinctly without dramatically 

increasing the size of the mapping population. The mapping population size in cross LGD 

1-8-10 x ICMP 85410 was 133 individuals compared to 172 individuals in present 

mapping population, so it is expected that the present mapping population may give 

slightly more accurate estimation of marker locus order, genetic distances, and 

recombination frequencies. The other reason for the big gap between Xpsm409.1 and 

Xpsm648 is limited genome coverage in this mapping population by markers on LG4 and 

lack of marker polymorphism of any type in this region. The other reasonable explanation 

to this could be done to the use of the Kosambi mapping function in earlier studies, and 

use of the Haldane function in present study, but this is not sufficient to explain the 





increased map length for LG4 in the present study. 

5.3.5. Mapping of linkage group 5 

LG5 is one of the shortest, with a total map length of 50.1 cM (Haldane) in the newly 

developed map. This is in complete agreement with the pearl millet integrated consensus 

map (Qi et al., 2004) constructed using SSR and RFLP and other markers. which is based 

on four different pearl millet mapping populations. In the present study LG5 contains 

only SSR markers, which are very well dispersed across its entire length, including a 

newly mapped SSR marker (Xpsmp2261) that is located on the lower distal end of LG5 

and has added 20.5 cM to the length of this linkage group. This marker locus displayed 

very good polymorphism between parental lines and tight linkage to other marker loci 

present on LGS in present study. In addition to Xpsmp2261, three other SSR markers 

Xpsmp2208, ,Ypsmp2276 and Xpsmp2277 have been mapped with inter-marker distances 

of 4.7 cM and 1.3 cM, suggesting very close and tight linkage among them. The observed 

average distance between any two markers is equal to 6.3 cM, which is ideal inter-marker 

distance to detect QTL and initiate MAS. A previously mapped population (8419 x 

863B) had a map length of 102.8 cM for LG5, largest among all pearl millet populations 

mapped to date (Yadav et al., 2004). The base map (Liu et a[., 1994) had a map length of 

30.9 cM, which is the shortest amongst all populations except that based on cross PT 

732B x PI4492 (30.2 cM). 

5.3.6. Mapping of linkage group 6 

A slight increase of map length has been observed in present study (42.2 cM, Haldane), as 

compared to the published base map of 32.5 cM for LG6 (Liu er al., 1994). The length of 

LG6 has kept increasing in newly mapped populations and reached upto 113.1 cM in 

841B x 8639 because of the newly linked marker Xpsm870, for which linkage to 

Xpsm713 was only detectable following the addition of intervening SSR marker 

Xpsmp2002. A majority of marker loci on LG6 are mapped in the centromeric region and 

the marker order remains intact as shown in the integrated consensus map (Qi et al., 

2004). There is shortage of markers to be mapped in both the upper and lower distal 

regions away from the centromere of this linkage group. 



5.3.7. Mapping of linkage group 7 

This was the largest linkage group (195.1 cM, Haldane) among all seven with eight 

marker loci for the population under study. There is a clear indication of increase in the 

map length of LG7 since the pearl millet base map was first published because more 

markers have been added to this linkage group in later studies compared to the originally 

published map (13.3 cM) of Liu el a[. (1994). Surprisingly a more than 14-fold increase 

in map length of LG7 has been noticed in the present study compared to the pearl millet 

base map. In cross 841B x 8638, RFLP marker loci Xpsm269, Xpsm718 and SSR locus 

Xpsmp2203 added 100 cM to LG7 (Yadav r t  al., 2004). Further to this, linking of two 

RFLP markers (Xpsml6O and Xpsml90) to the distal end of LG7 of pearl millet linkage 

map from cross based on ICMB 89111-P6 x ICMB 9011 1-P6 under study has 

subsequently provided a further increase of 102.1 cM in the total map length of LG7. In 

earlier study by Liu et al. (1994), these two linked RFLP markers have been mapped 

separately forming a sub-linkage group that segregated independently from the seven 

expected major linkage groups in pearl millet. The additional fragment, having these two 

marker loci, was mapped with 5.9 cM as intermarker distance between them. 

5.4. QTL MAPPING FOR DOWNY MILDEW RESISTANCE 

The phrase QTL mapping is no longer a new terminology in the 21" century, as QTL 

mapping has been established as an extremely powerful technique for detecting and 

locating specific regions of chromosomes that contribute to the control of host plant 

disease resistance or other quantitative traits of interest. It has enabled the independent 

segregation of resistance to different pathogen populations of S graminicola to be 

demonstrated in pearl millet (Jones el al., 1995. 2002; Kolesnikova-Allen, 2001; 

Azhaguvel, 2001; Breese et al., 2002 and Nepolean, 2002). Pearl millet downy mildew 

has conventionally been considered as a quantitative trait having a significant effect of 

screening environment (both biotic and abiotic) on its expression. The QTL mapping 

approach can be used by plant breeders to predict quantitative effects of genomic regions 

controlling a trait having continuous variation, for specific genotypes by analysis of their 

DNA marker profiles. Continuous variation among the F2.4 mapping population progenies 

has been found for host plant resistance against downy mildew in the present study 

(Figures 5-12). This has also been reported in various previous studies on the genetics of 

Pearl millet downy mildew resistance (Singh et al., 1980; Basavaraju et al., 1981a & b; 



 ass et al., 1984; Shinde et al., 1984). However, this does not necessary imply that its 

inheritance is complex and that many resistance genes are segregating. To obtain accurate 

and unbiased data points for this type of quantitative trait is usually very difficult and 

cumbersome. But generating accurate phenotypic data minimizing the influence of the 

abiotic environment is an indispensable prerequisite for precise host plant resistance QTL 

mapping (Paterson el al., 1991a). The larger the environmental and genotype x 

environment interaction effects on a character (i.e. lower heritability), the less likely it is 

that statistically significant QTLs will be detected. Proper randomization, suitable number 

of replications and controlling other environmental variation are important factors for 

precise and accurate estimates of phenotypic values for use in QTL mapping. So, in the 

present study an improved downy mildew inoculation method was used with three 

replications of progenies and control entries screened in time (at Patancheru) or in space 

(at Bangor) in order to reduce environmental or mechanical effects. The segregation of 

even two host plant resistance genes can result in a continuous distribution of disease 

incidence among progenies in a mapping population, even with fairly high heritability. 

The progenies of the mapping population screened against pathogen populations in this 

study were F Z 4  self-bulks in which segregation of heterozygotcs would result in less 

distinct classes than if the F2 population itself have been screened under conditions of 

perfect heritability (but no replication) or fully homozygous random inbred lines derived 

from the F2 population had been screened as reported by Jones ei al. (1994). 

The largest number of single QTLs has been detected using data from the screen 

against the pathogen population from Jodhpur. QTLs for host-plant resistance to this 

pathogen population were detected on LGI, LG2, LG3, LG4 and LG7. One QTL detected 

on LG4 was considered as the best single-QTL model with a LOD score of 11.0 for this 

pathogen population. Approximately 65% of observed phenotypic variation in this 

particular screen was found to be under the control of this major QTL (Xpsm409.1 + 3 1.0 

cM) on LG4. To assess the effect of a specific locus on a particular trait, the percentage of 

phenotypic variation under control of each locus is estimated. According to the 

classification of major and minor gene traits in rice by Mackill and Junjian (2001), QTL 

controlling 25-50% of variation would be classified as major QTLs. In the present study, 

QTLs controlling downy mildew resistance explaining more than 50% observed 

phenotypic variation in a particular screen and having comparatively high LOD score 

values are considered as major resistance QTLs. One major QTL has been detected 



against each of the six Indian pathogen populations and one of the two African pathogen 

populations (Bamako, Mali only, not Maiduguri, Nigeria) on LG4 of ICMB 901 11-p6 

near the vicinity of marker loci Xpsm409.1. All the detected QTLs are placed at distance 

ranging from 20 CM to 40 CM from Xpsm409.1 with significantly high LOD scores 

ranging for 10.1 to 15.5. High proportion of observed phenotypic variance (>65%) 

explained by these QTLs established them to be QTLs of major effect for downy mildew 

resistance (Table 13). The best two-QTL model was accepted with a higher LOD score. 

as qualified by the formula mentioned in Chapter 4 (Experimental Results), which 

explained observed phenotypic variance of 72.1%. The proportion of observed 

phenotypic variation explained by the best three-QTL model (83.2%) was substantially 

higher than that for the best two-QTL model for downy mildew disease reaction among 

172 F2.4 progenies, indicating detection of host plant resistance QTLs on LG2, LG3, and 

LG4. In earlier QTL mapping studies in pearl millet, Kolesnikova-Allen (2001) and 

Azhaguvel (2001) have also separately identified downy mildew resistance QTLs with 

major effects using similar multiple-QTL models. 

QTL mapping analysis of phenotypic data sets from DM screens against pathogen 

populations from Durgapura, Patancheru, Jamnagar and New Delhi detected three QTLs 

mapped on LG2, LG4 and LG7 (Table 49). The marker locus Xpsm708.1 has been 

observed as a common flanking marker where QTLs for downy mildew resistance against 

these pathogen populations have been detected and located at distances varying from 27.3 

CM distance to 29.9 cM. These QTLs have been identified as major host plant resistance 

QTLs with varying LOD scores (5.6 to 12.7). They control high proportions of the 

observed phenotypic variation (from 56.2% to 67.2%) for disease reaction among 

progenies of the mapping population under study. The results obtained from QTL 

mapping suggested no marked differences in genetic constitution of virulence in these 

three pathogen populations of different origins. But detection of QTLs on different 

linkage groups, on different positions of same linkage groups against some other 

pathogen populations of S, gmminicola showed significant differences in the genetic 

structure of pathogenicity and virulence in pathogen populations from India and Africa. 

This fact has been supported by previous studies by Ball and Pike (1984), Azhaguvel 

(2001) and Kolesnikova-Allen (2001), where the differences between pathogen 

Populations from India and Africa were found. There differences were attributed to the 

separate centres of diversity, established by divergent co-evolution of the host and the 







following their introduction from Africa into India around 3000 years ago 

(Purseglove, 1976). 

The highest qualified multiple-QTL model achieved for the screen against the 

Durgapura pathogen population was a three-QTL model with a LOD score of 15.0. This 

QTL model detected two QTLs on LG2 and one QTL on LG4, which altogether 

explained 82.3% of observed phenotypic variance. But for the pathogen population from 

Patancheru, a four-QTL model was accepted as the highest qualified multiple-QTL model 

with a LOD score of 25.1 (>12.9+2+2+2=18.9), which explained the highest amount of 

observed phenotypic variation (90.4%) across screens of any of the eight pathogen 

populations from India and Africa included in the present study. LG2 (2 QTLs), LG3 and 

LG4 accommodated the QTLs detected by four-QTL model near the marker loci 

Xpsm708.1+26.2 cM, Xpsmp225+39.2 cM, Xp.sm37+5.4 cM and Xpsm409.1+36.7 cM 

respectively. Possible explanations for the location of detected QTLs at larger map 

distances from the flanking marker loci is lack of availability of polymorphic markers to 

the mapping population parental lines in these genomic regions, occurrence of putative 

double crossovers and sparse genome coverage of markers in those regions of the pearl 

millet genetic map. The best single-QTL model explained 50% observed phenotypic 

variance for the screen against the pathogen population from Patanchem, as well as for 

the other pathogen populations used in this study. Over-dominant effects were observed 

for most of the identified QTLs and the resistance was inherited from male parent ICMB 

901 11-P6. Azhaguvel (2001) have also mentioned similar results from his study of QTL 

mapping for resistance to downy mildew in pearl millet cross IP 18293 x Tift 238D1. 

The total downy mildew disease resistance variation among 172 F2 F4 self-bulk 

progenies, contributed by best two-QTL models for screen against pathogen populations 

from Jamnagar and New Delhi were 88.8% and 82.1%. respectively, with acceptable and 

qualifying LOD scores of 19.8 and 17.0. The positions of detected QTL on LG2 

(Xpsm708.1) and LG4 (Xpsm409.1) controlling resistance against these two pathogen 

populations from India were similar to those detected for resistance to pathogen 

populations from Durgapura, J-agar, Patancheru and New Delhi. Two QTLs were 

detected for DM resistance effective against the pathogen population from Jalna, on LG2 

(Xpsmp2225+30.8 cM) with LOD 4.5 and LG4 (Xpsm409.1+40.9 cM) with LOD 10.2. A 

total of 62.9% of observed phenotypic variation among progenies of 172 F24  mapping 



population for downy mildew reaction in screen against the Jalna pathogen population 

was explained by these two QTLs. However, the distribution of diseased progenies of 

mapping population was skewed toward one side and surprisingly, the resistant parent 

(ICMB 90111-P6) showed more DM infestation in screening against this pathogen 

population than the susceptible parent (ICMB 891 11-P6) of the mapping population 

under study (Figure 10). 

In the present study, for the pathogen population from Maiduguri (Nigeria, West 

Africa), only a single major QTL on LG2 (Xpsm708.1+29.2 cM) was detected. The 

distributions and segregation of individuals of mapping population progenies were 

skewed towards resistant parent for this pathogen population. The level of observed 

phenotypic variance explained by the QTL was 69.5% with a LOD value of 16.2, which 

qualifies it as a major QTL resistance QTL. None of multiple-QTL models could meet the 

criteria to be accepted for the screen against this pathogen population. The reasons for 

only a single QTL could be because of the effect of other QTLs of small effects were 

masked by the epistatic interaction of the genes, the number of marker loci may not be 

sufficient to locate the resistance QTLs, or the power and precision of the analysis may be 

insufficient to detect QTLs of more larger effect because of the relatively small mapping 

population size and short map length. Moreover, in this study, only those detected QTLs 

are included which recorded a minimum LOD score of 3.0 and above and QTLs below 

this LOD score are not reported. 

In contrast to the above African pathogen population, four QTLs were identified 

from phenotypic data obtained from the screen against another pathogen population from 

Bamako (Mali, West Africa). These were located on LG1 (Xpsm492+12.3 cM), LG2 

(Xpsmp2201+14.2 cM), LG4 (Xpsm409.1+20.8 cM) and LG7 (Xpsm160+42.1 cM). The 

highest LOD score for the best single-QTL identified on LG4 was 15.5 and for other 

single-QTLs detected varied from 3.2 to 5.9. The largest amount of observed phenotypic 

variation (73.9%) was contributed by this QTL detected on LG4. A three-QTL model 

with an acceptable LOD score of 19.6, detected QTLs on LG2, LG4 and LG7, and 

explained 80.3% of phenotypic variation of among progenies of the mapping population 

under study for DM reaction against this particular pathogen population. 

It was very much clear from this study that a quite good number of different 

resistance QTLs effective against the Indian and African pathogen populations of S. 



g r a m i n i ~ ~ l a  were detected. But interestingly, one DM resistance QTL common across all 

screen against the six pathogen populations from India and one from Africa (Bamako, 

Mali) was identified on LG4. Azhaguvel(2001) also mentioned a common DMR QTL on 

L G ~  for both African pathogen populations in his study. In addition to the above results, 

there were other major DMR QTLs detected against these pathogen populations, which 

are either common to a particular position on a given linkage group or on different 

positions on different linkage groups. 

Although the resistance and virulence factors studied here are not likely to be 

representative of the pearl millet downy mildew host-plant pathogen system as a whole, 

these results suggest that there are distinct geographical differences in the vimlence and 

pathogenicity of S. graminicola populations. Ball and Pike (1983) showed that pearl 

millet host cultivars responded differently to different sources of downy mildew 

inoculum. Ball and Pike (1 984) reported intercontinental variation of S graminicola. The 

factors like level of resistance and virulence and trends of host pathogen population 

relations obtained in this study may differ across mapping populations. Jones et al (1995) 

reported several downy mildew resistance QTL segregating in the (LGD 1 -B- 10 x ICMP 

84510)-based mapping population that were effective against individual pathogen 

populations, but found only one possible block of resistance QTLs effective against more 

than one African downy mildew pathogen population. Azhaguvel (2001) and 

Kolesnikova-Allen (2001) also have reported similar common blocks of resistance QTLs 

effective against more than one pathogen population of S graminicola in pearl millet. 

For the pearl millet pathogen populations from India and Africa used in this study, 

a minimum of nine major host plant resistance QTL have been identified on linkage 

goups LG1, LG2, LG3, LG4, LG7 in the mapping population based on parental lines 

ICMB 891 11-P6 and ICMB 901 11-P6. The summary of these QTLs is presented in Table 

49. Although, the previous studies have reported independent inheritance of DM 

resistance to different populations of S. graminicola across India and Africa, a common 

DMR QTL was obtained in this study against all six Indian and one of the two African 

Pathogen populations in the present study. This common QTL was located on LG4 in the 

vicinity of marker locus Xpsm 409.1 with its position varying across pathogen 

populations with wide range 20 cM to 40 cM. The map positions of this QTL could not be 

more precisely located because of a shortage of polymorphic marker loci between two 



flanking it on linkage group 4 in the consensus pearl millet map. For this 

common QTL as well as for many other QTLs, the mode of resistance was recorded to be 

over-dorninance (except partially dominance in case of the pathogen population from 

Bamako). Failure to detect this QTL in the screen against the moderately virulent 

population from Maiduguri, Nigeria, may have been due to the lack of an 

appropriate virulence gene to overcoming the allele of susceptible parent ICMB 891 11-p6 

at this locus or due to presence in the pathogen population of virulence gene capable of 

overcoming the resistant allele from resistant parent ICMB 901 11-P6. Further study will 

be required to determine which of these two alternatives best accounts for the phenotypic 

data set in hand. Several other studies (Singh et al., 1978; Dass et al., 1984; Jones et 01.. 

1995; Azhaguvel, 2001) have also revealed over-dominance as a component of downy 

mildew resistance inheritance in pearl millet. Recessive inheritance of resistance was also 

witnessed for QTLs effective against pathogen populations from Bamako (LG2, 

Xpsmp2201 + 14.2 cM) and Jodhpur (LGI, Xpsm280 + 36.2 cM and LG7, Xpsml60 + 
40.2 cM), with additive and dominance modes of inheritance for two DMR QTLs 

effective against the pathogen population from Bamako (LC1 and LG7). Singh et a[. 

(1978) studied downy mildew inheritance in pearl millet and reported a recessive 

resistance gene. This type of resistance has also been observed in other plant-pathogen 

systems (Day, 1974; de Wit 1992) and in pearl millet downy mildew QTL studies 

(Azhaguvel, 2001). Most previous reports on downy mildew resistance in pearl millet 

have suggested dominance as an important component of resistance (Appadurai el 01. 

1975; Gill rt al., 1975; Pethani et al., 1980; Basavaraju el ol., 1981b; Shinde, 1984; 

Mehta and Dang, 1987). Interval mapping procedures implemented in MapmakerIQTL 

along with composite interval mapping implemented in PlabQTL were used for QTL 

analysis in the present study. There were no major differences recorded in QTL maps 

obtained by these two procedures except minor differences in position of QTLs and 

changes of inheritance pattern in case of a few pathogen populations. There were few 

QTLs detected by MapMakerIQTL but not detected by PlabQTL and vice-versa because 

of the difference in algorithms of the two software packages. Jones (1994) observed 

significant differences between QTL maps produced by MapMakerIQTL and linear 

regression analysis. But the earlier studies (Paterson et al., 1988; Stuber el a!., 1992; 

Bubeck et al., 1993; P& el a[., 1993; van Ooijen, 1994) compared different methods of 

identification of QTLs and observed no major differences in the QTL maps produced. 



Dudley (1993) suggested that this was due to the normal distribution of data so that 

maximum likelihood estimates were reduced to least squares estimates. In present study, 

non-normal distribution of DM1 value for several of the phenotypic data sets may 

therefore have contributed to the differences observed between results from simple 

interval mapping and composite interval mapping. 

In the present study, it has been noticed that for some QTL loci, the mode of 

inheritance varied across different pathogen populations. The resistance QTL on LG4 

(Xpsm409.1) was over-dominant for all pathogen populations under study, except against 

Bamako, where it was partially dominant. Other example is a QTL on LG7 (Xpsml60). 

for which resistance was recessively governed against the pathogen population from 

Jodhpur. This QTL showed additive inheritance of resistance against the Bamako 

pathogen population and over-dominant inheritance against that from Durgapura. In 

general, resistance against the pathogen population from Bamako showed different modes 

of inheritance for the DMR QTL detected at similar map positions in screens against 

other pathogen populations. This was repeated in multiple-QTL models for resistance 

against the pathogen populations from Bamako, Durgapura and Patancheru. The logical 

and possible explanations to such effects was the observed differences between putative 

and significant QTLs, the estimation of mode of inheritance theoretically explains this 

due to error in assessing QTLs of small effect, or due to effects of closely linked genes, 

different alleles at the same locus or inter-allelic dominance interactions affecting the 

apparent inheritance of resistance (Jones, 1994), and differences in the virulence of 

pathogen populations used to detect these QTLs. 

5.5. MULTILOCATION TRIALS OF DIFFERENT VERSIONS OF HHB 94-LIKE 

HYBRIDS 

5.5.1. Genotype x environment interaction studies 

Genotypic-by-environment interactions (GEI) are almost unanimously considered to be 

among the major factors limiting response to selection and, in general, the efficiency of 

the plant and animal breeding programs. That is why the study of genotype-by- 

environment interactions has become imperative in crop cultivarshybrids evaluation. GEI 

is Composed of G x Location, G x Year and G x L x Y constituents but in the present 

study, sums of squares for genotypes, environments, and genotype environment 



interactions have been calculated, with year being confounded within the locations 

components. Significant GEI tends to hinder genetic progress in breeding programs, in 

particular, the crossover type of GEI makes it difficult to unambiguously select promising 

materials that perform consistantly better across a wide range of environmental 

conditions. The first step in dealing with the consequences of GEI is to assess its relative 

importance through pooled analysis of data across the testing sites. 

Trials conducted at different locations to identify or elucidate the effect of the 

environment and assess the relative importance of genotype x environment interaction 

effects and genotypic effects, because differential expression of a phenotypic trait by 

genotypes across environments, or genotype x environment interaction, is an old problem 

of primary importance for quantitative genetics and plant breeding trials (Eberhart and 

Russell, 1966; Falconer, 198 1; Via and Lande, 1987; Tiret el al., 1993). 

The estimates of mean sums of squares from eleven HHB 94-like hybrids and 

controls for yield and yield components were found statistically to be highly significant 

for genotypes, environments and G x E interactions (except for effective plant stand per 

square meter) across all the ten test environments (Table 21) suggesting the presence of 

genetic variability and environmental differences. Based upon analysis of the pooled data 

in this study, the environment represented the major source of variation. followed by 

genotypes and G x E interactions. 

Results (Table 21-24) of cluster-wise pooled analyses carried out to assess the 

extent of G x E interactions in three different clusters of test environments (made 

depending upon the environmental similarity and physical closeness of locations as 

described in earlier studies by Rachaputi (2003) and Nigam et al. (2003) in groundnut). 

The multiple-test environment cluster for Andhra Pradesh revealed significant variation 

among genotypes (all observed traits except for effective plant stand), environments (all 

observed traits except for panicle diameter) and G x E interactions (for time to 50% 

flowering, panicle length and 1000-grain mass) (Table 22). The results of this study are 

slightly different from the usual pattern followed, where a major portion of variation is 

contributed by environment followed by G x E interaction and genotypes, as is usually 

been observed in multi-environmental trials in most crops. Similar results were obtained 

in the study earlier reported by Ali er al. (2001) in pearl millet. In contrast, the multiple- 

test environment clusters for Haryana and Rajasthan exhibited slightly different patterns 



of sources of variation. For both the clusters. the environmental variance was greater than 

both those attributable to G x E and genotypes (as usual) but G x E variance was higher 

than the genotypic variance for some of the traits in this study. Consequently, the 

operational heritability (on both entry-mean basis and plot basis) values were observed to 

be surprisingly and strikingly variable ranging from some negative values (all of which 

were considered to be poor estimates of zero for the purposes of this study) to very high 

p0.95) for many traits. The variation among G x E interactions across the multiple-test 

environment clusters was non-significant for most traits except grain yield. panicle length 

and harvest index in Rajasthan. Haryana test environments exhibited non-significant G x 

E interactions only for effective plant stand, panicle grain number and harvest index 

(Tables 23-24). 

In previous studies G x E interactions were found to be significant for pearl millet 

grain yield and its component traits except for time to 50% flowering, plant height, and 

total and effective numbers of tillers per plant (Chikurte et a[., 2003). Similar results were 

also reported by Tyagi et ul. (1979), Dass er al. (1985), Dahiya et ul. (1987). Bhaviskar 

(1990). Suryavanshi et al. (1991) and Anarase ei al. (2000) in pearl millet. Gupta et al. 

(1975) have observed occurrence of environmental (seasonal) and G x E interactions in 

pearl millet for fodder yield and its component traits. The presence of significant G x E 

interactions has been further reported by Gupta (1979), Mangat (1992), and Wilson et al. 

(1993). However, such studies simply give preliminary information about the phenotypic 

stability of genotypes, as is the objective of the present study. 

In addition to estimating G x E interactions and agronomic mean performance of 

several HHB 94-like hybrids, the present multilocation trials study also aims at assessing 

cytoplasmic effects contributing to grain yield between hybrids of different sub-selections 

of ICMA 891 11, ICMB 891 11 and ICMB 901 1 1 across multilocation trials. 

Coefficient of variation (CV) were <20% for all multiple-test environment clusters 

for all traits except grain yield in Haryana and Rajasthan, fresh straw yield in Rajasthan, 

dry straw yield in the pooled analysis across all ten test environments in India and across 

the Haryana and Rajasthan clusters, panicle mass in Rajasthan, effective tiller number 

across all ten test environments and Haryana, and fresh straw yield, dry straw yield and 

total above-ground biomass yield in the Rajasthan test environment cluster. CV values 

were higher in Rajasthan than Haryana for most of traits, perhaps because of differences 



in agroclimatic conditions in these test environment clusters for example, heavy rain on 

10-15 days old crop, preventing maintenance of plant population and terminal drought 

stress cause heavy losses in yield and its component traits. Similar patterns were observed 

when close attention was given to test entry differences individual test environments. In 

contrast to these results, Ali et al. (2001) have reported CV values less than 18% for all 

grain and stover yield component traits from multilocation trials of pearl millet conducted 

in India. 

Such multilocation/phenotypic studies help plant breeders in two ways: (1) to 

identify genotypes that perform better over a range of environments, and those that 

perform best under specific environmental conditions, and (2) to minimize the bias 

caused by genotype x environmental interactions in the estimates of different components 

of genetic variation (Khairwal and Singh, 1999). Regression procedures have been used 

to study multilocational performance of pearl millet populations, which allow partitioning 

of G x E interactions into linear (predictable) and non-linear (unpredictable) components. 

5.5.2. Mean performance of HHB 94-like hybrids 

The efficiency of any breeding program mainly depends upon the choice of parents. 

While choosing the parents of hybrids, high mean value is considered as the main 

selection criterion. In this study, the mean performance of HHB 94-like hybrids revealed 

no significant differences among genotypes across test environments, or across clusters of 

test environments among traits except for time to 50% flowering. The significance of any 

pair of two genotypes depends on difference of two genotypic means exceeding a critical 

value LSD (p=0.05) (Baker, 1990) irrespective of sign. But in this study, differences were 

compared with HSD (honestly significant differences, Tukey's test) for a more 

conservative testing of the significance of performance differences among genotypes 

across test environments. 

G x E interactions become important when ranks of the genotypes changes in 

different environments. These changes in rank are defined as cross over G x E (Baker, 

1988). Changes in ranking make it difficult for plant breeders to decide which genotypes 

to be selected (Nguyen et al., 1980). The various versions of HHB 94-like hybrids in 

present study changed the ranks of mean performances for most traits in the different 

individual test environments as depicted in Figwes 38-52 for grain and stover yield and 



their component traits. Better rank orders (first, second and third etc.) were observed for 

hybrid versions based on ICMB 901 11 for traits like grain yield, effective plant stand 

(ICMH 02005), panicle length, straw moisture content, effective tiller number, panicle 

yield, 1000-grain mass (ICMH 02005), and harvest index in most of the individual test 

environments, while hybrids based on sub-selections of ICMA 891 11 scored better rank 

orders for fresh straw yield, dry straw yield and 1000-grain mass in some of these test 

environments. ICMB 89111-based hybrids could performed better for time to 50% 

flowering (HHB 94-P6B), plant height, panicle yield, panicle diameter, fresh straw yield, 

dry straw yield (HHB 94-P6B), panicle grain number and total above-ground biomass 

yield. In an earlier study (Rai et a[., 2000), combined analysis of variance for grain yield 

revealed highly significant differences among genotypes as well as G x E interactions 

(p<0.01) where FI  hybrids had ICMB 891 11 in their parentage. Closer inspection (from 

results of individual test environments) revealed the causes of G x E interactions were 

primarily related to changes in the magnitude but also included genotype rank changes. 

In comparison to these nine hybrid versions of HHB 94-like hybrids, both hybrid 

control entries (HHB 94 original and HHB 181), involving ICMA 891 11 in their 

parentage for F I  hybrids, performed either better thanlor at par with all/some of the new 

versions of HHB 94-like new hybrid versions for grain yield, time to 50% flowering, 

effective plant stand (HHB 94-original), plant height, straw moisture content, effective 

tiller number, panicle yield, 1000-grain mass, panicle grain number (Rajasthan and 

Haryana test environment clusters), total above-ground biomass yield (HHB 94-original), 

and harvest index in most of test environments. The mean performance of the HHB 94- 

like hybrids in these multi-environment trials conducted in ten different test environments 

as well as their multiple-test environment clusters varied for different traits. 

Mean grain yield was higher at Patancheru followed by Haryana, and lowest in 

Rajasthan, without revealing any significant differences among HHB 94-like hybrids, but 

showing large differences because of the better performance of one location over the 

other. HHB 94-like hybrids based on sub-selections of ICMA 891 11 (HHB 94-P5A) 

performed better at Patancheru and in Haryana than in Rajasthan (Table 25). In a previous 

study in sorghum, the comparison of F, hybrids and A-lines has shown that high yielding 

A-lines do not necessarily produce high yielding FI hybrids (Hookstra and Ross, 1982; 

Gorz et al., 1984). In one of such study Rai et a1 (2000) have reported that the least 



responsive FI hybrids involved at least one least responsive inbred line in their parentage. 

 his suggests the possibility of producing more responsive FI hybrids can be considerably 

increased by including in their parentage at least one highly responsive inbred line or by 

excluding lines having poor responsiveness. Hybrid control entry HHB 181 was superior 

in grain yield to all of the newly developed versions of HHB 94 across all test 

environments included in this study. The observed differences in trial mean performance 

in the different test environments and test environment clusters were mainly because of 

environmental factors viz. sowing time, amount and time of rains, type of soil, weather 

conditions at different stages of the crop, agronomic practices followed at different test 

environments, and, of course, poor adaptation of hybrids to the harder production 

environments in Rajasthan. 

As the trials were over sown and thinned to a uniform stand in each of the test 

environments, no differences between entries were expected for effective plant stand and 

the observed lack of significant pair-wise differences between entries in the pooled 

analysis across each of the state-wise clusters of these (Tables 25-28) can be taken as an 

indication that the crop establishment was well managed in each of the trial test 

environment s, despite ANOVAs suggesting significant genotypic variation for this trait 

in Haryana test environment cluster (Table 23) and across all ten test environment (Table 

2 1). 

Within a test environment cluster, differences were noticed in mean grain yield 

between different hybrid versions and control entries in spite of physical closeness and 

similarities of the locations and seasonal effects. Nagaw (Rajasthan) had the lowest grain 

yield because of lack of uniform and adequate plant population and numbers of effective 

tillers due to heavy rains when the crop was 10-15 days old followed by a pro-longed dry 

spell (terminal drought) in later stages of crop growth. HHB 94-like hybrids took 

comparatively less mean time to complete 50% flowering at Patanchem than in Haryana 

and in Rajasthan, mainly because of environmental and location effects which include 

photoperiod, temperature, wind velocity etc. Bawal and Hisar in kharf2003 required 55 

and 54 days, respectively, to complete 50% flowering followed by Nagaur (53 days) and 

RCE 24C (51 days) at Patanchem, also in kharf2003. 

The mean performance for effective plant stand was almost uniform with out any 

significant differences among HHB 94-like hybrids within each of the three clusters and 



across India as a whole (Table 25). But across individual test environments, effective 

~ l a n t  stand had a wide range from 8.0 plants m** (RP 9A K02) to 15.0 plants m-' (Hisar 

K03). Hybrids based on ICMB 891 11 produced slightly higher effective plant stands at 

Patancheru and in Haryana, but in Rajasthan ICMA 891 11-based hybrids had higher plant 

stands. Mean performance for effective tiller number differed significantly across test 

environment clusters and individual test environments, but not among the HHB 94-like 

hybrids themselves. This trend indicated mainly environmental differences for this trait 

because of location effect and poor adaptability of the genotypes to a specific 

environment with no genotypic differences. The number of effective tillers ranged from 

13.7 tillers m'2 (Nagaur) to 43.2 tillers mW2 (RP 6B K03) across individual locations and a 

grand mean of 16 tillers m'2 (Rajasthan cluster) to 37 tillers m.* (Patancheru cluster) 

across clusters due to variation in plant stand, adaptability of genotypes and location 

effects. Effective tiller number of any cereal crop is of great importance for grain yield. 

In a previous study of yield and its components in pearl millet in Botswana by Karikari 

and Mosekiemang (2002) it has been stated that as the population increased, the 

development of tillers terminated earlier in growth of the plant resulting in reduced tiller 

survival rates therefore reduced number of productive tillers per plant. Consequently, 

grain yield per plant declined owing to reduced panicle numbers and also to lower grain 

numbers per panicle. The observed increase in grain yield as tiller numbers increased is in 

agreement with Kassam (1976) who reported that tillers contributed about 25% of the 

total grain yield. Carberry et al. (1985) and Crawfurd and Bidinger (1989) reported that 

primary pearl millet grain yield component affected by population was tiller numbers per 

plant. Karikari and Ngwako (1999) have advocated maintaining three tillers to have grain 

yield advantages. 

After effective plant stand and effective tiller number, it is the plant height, which 

influences plant fresh and dry weight yields. In the present study, firstly HHB 94-like 

hybrids based on ICMB 891 11 had slightly shorter plant heights compared to other 

versions across test environment clusters. Secondly, trials conducted at Patanchem 

recorded shorter plant height (perhaps due to earlier flowering induced by the shorter 

photoperiods in this lower latitude location) followed by the Rajasthan and Haryana test 

environment clusters. Fresh straw yield, dry straw yield and straw moisture content 

exhibited significant variation across test environment clusters and within clusters across 

the ten test environments. But the differences for fresh straw yield among genotypes were 



not significant. RCE 24 KO2 (Patanchem) and Nagaur (Rajasthan) were ranked as first 

and last, respectively, for fresh straw yields. The main reasons for the differences in trial 

mean performances for these three straw related traits included location effects, 

adaptation of the genotypes to different target locations, differences in effective plant 

stands and tiller numbers, and lastly, the agronomic practices followed along with 

different procedures used in taking dry straw weights. In test environments at ICRISAT- 

Patancheru, the dry straw weight was taken after over-drying the samples for 60 hours. 

But in Haryana and Rajasthan, the harvested material was left as such in the field and 

sun-dried for 2-3 weeks, which is a very crude method of estimating dry weight and 

calculating straw moisture content. 

Traits like panicle length and diameter are important to achieve good mean 

performance of panicle yield. ICMB 891 11 based hybrids demonstrated better mean 

performance for panicle diameter while hybrids based on sub-selections of lCMA 891 1 1  

had better performance for panicle length across all test environment clusters and pooled 

across all ten test environments in the present study. Higher panicle yields were observed 

from HHB 94-like hybrids based on ICMA 891 11 across the Patancheru and Haryana test 

environment clusters but ICMB 891 1 1-based hybrids gave higher values across the 

Rajasthan cluster. Reasons of the large variation in panicle yields were the variation in 

effective tiller numbers, plant populations, panicle diameter and length, and location 

effects. Rajasthan registered the lowest trial mean 1000-grain mass values, with terminal 

drought during grain-filling being the reason particularly at Nagaur KO3 (Tables 25-28). 

Among the three different region-wise test environment clusters, Patanchem gave highest 

1000-grain mass. HHB 94-like hybrids based on sub-selections lCMA 891 11 recorded 

higher 1000-grain mass values than hybrids based on sub-selections of ICMB 891 11 or 

ICMB 901 11. 

The calculation of average panicle grain number, total above-ground biomass 

yield, and harvest index values depend upon other component traits like plant stand, 

effective tiller numbers, grain yield, 1000-grain mass, and fresh and dry straw yields. In 

this study, Bawal KO2 recorded the largest panicle grain number while Hisar KO3 had the 

minimum. Among all test environment clusters, Rajasthan had the largest panicle grain 

number (Table 28). Total above-ground biomass yield was higher at Hisar KO2 because 

of more vegetative growth due to early sowing and favorable growing conditions. Harvest 



index values ranged from 19.7% (Hisar K03) to 41.5% (RP 6 8  K03, Patanchem). The 

patanchem (AP) test environment cluster recorded a higher harvest index mean than did 

Haryana. In comparison to the experimental HHB 94-like hybrids, both control hybrids 

(which involve ICMA 89111 in their parentage) performed better for time to 50% 

flowering, effective plant stand, plant height, panicle diameter, fresh straw yield, dry 

straw weight (HHB 94-original), straw moisture content, and total above-ground biomass 

yield (HHB 94-original) in many of the test environments. 

5.5.3. Character associations 

Correlation studies among quantitative traits provides knowledge of intensity of linkage 

and pleiotropic effects occurring among traits, and thus facilitates assessment of the 

feasibility of joint selection for two or more traits and opportunities for selection for more 

highly heritable secondary trait(s) to achieve genetic gain for primary traits. The trial 

means from ten different test environments and across three clusters of these (ICRISAT- 

Patanchem, Haryana and Rajasthan) were computed and Spearman rank correlations were 

calculated using Genstat version 6.0. 

Grain yield was taken as the dependent variablc and all other traits were correlated 

with it. Fresh straw yield, straw moisture content, effective tiller number, panicle yield 

(Rao and Damodaran, 1964), 1000-grain mass, panicle grain number, total above-ground 

biomass yield, and harvest index had significant positive Spearman rank correlation with 

grain yield. Among these traits, panicle yield (0.885) and effective tiller number (0.778) 

recorded very strong and highly significant associations with grain yield. The positive 

correlations between effective tiller number and grain yield are in complete agreement 

with earlier studies [Ayyangar et al. (1936), Burton (1951), Ahluwalia and Patnaik 

(1963), Mahadevappa and Ponnaiya (1967), Gupta (1968), Gupta and Nanda (1971), Phul 

et al. (1974), Rao (198 l) ,  and Bhamre and Harinarayana (1992b)l. Shankar el al. (1963), 

Pokhriyal et al. (1967), Rao (1981), Burton (1983), Jindla and Gill (1984), Bidinger et al. 

(1993), and Bhamre and Harinarayana (1992b) have reported positive correlations 

between panicle size and grain yield which is in agreement with observations in the 

present study. 

At the same time traits like time to 50% flowering, plant height, panicle length 

and diameter were negatively correlated with grain yield. Among these traits time to 50% 



flowering (-0.486) registered the highest significant negative correlation followed by 

panicle length (-0.306) and panicle diameter (-0.221) (Table 44). These results conform to 

the findings of earlier studies by Gupta (1968), Gupta and Dhillon (1974) and Rao (1981) 

for negative correlations between days to heading and grain yield. But significantly 

positive correlations have been reported by Mahadevappa and Ponnaiya (1967) and Patil 

el a[. (1989) in pearl millet. These differences are likely due to differences in the 

genotypes, photo period-temperature regimes, and period for which moisture availability 

was adequate in these various studies. Negative correlations between plant height and 

grain yield have also been reported by Mahadevappa and Ponnaiya (1967). But between 

these traits earlier workers have indicated a positive association between these two traits 

[Ayyanger et 01. (1936), Burton (1951), Shankar et ul. (1963), Rao and Damodraran 

(1964), Pokhriyal et al. (1967), Gupta and Sidhu (1972), Gupta and Dhillon (1974) and 

Rao (1981)l. Positive correlation between panicle number per plant and grain yield per 

plant have been reported by Pokhriyal ef a1 (1967), Burton (1983) and Jindla and Gill 

(1984). Virk (1988), Balakrishna and Vijendra Das (1995) and Khainval and Singh 

(1999) have summarized the correlations between various quantitative y~eld-related traits 

in pearl millet. 

Time to 50% flowering, plant height, panicle length, fresh straw yield, effective 

tiller number, panicle yield, 1000-grain mass and total above-ground biomass yield 

exhibited a positive correlation with dry straw yield. Manga and Saxena (1988a. b) also 

have reported positive correlation between dry shoot yield and total dry matter. In the 

present study, effective plant stand and dry straw yield were found to have positive but 

non-significant relationships with grain yield. Amongst all positively correlated traits, 

total above-ground biomass yield (0.826), fresh straw yield (0.758), and plant height 

(0.715) exhibited highly significant associations with dry straw yield. On the other hand, 

only harvest index showed a significant negative correlation (<0.05 probability level) 

with dry straw yield and other traits like gain yield, effective plant stand, panicle 

diameter, straw moisture content and panicle grain number displayed positive but non- 

significant associations with dry straw yield. 

Grain yield (0.651), straw moisture content (0.751), effective tiller number 

(0.472), panicle yield (0.352), and 1000-grain mass (0.680) not only had positive 

correlations with harvest index but some of them also had highly significant associations. 



~n contrast, time to 50% flowering (-0.546), plant height (-0.524), panicle diameter (- 

0.182) and panicle length (-0.490), dry straw yield (-0.678) and total above-ground 

biomass yield (-0.446) were found to have significant negative relationships with harvest 

index (Table 43). 

Significantly positive yet non-significant correlations were observed for time to 

50% flowering with plant height, panicle diameter, and fresh and dry straw yields. 

Although effective plant stands, straw moisture content and total above-ground biomass 

yield. Very highly to moderately significant negative associations were observed for time 

to 50% flowering with harvest index (-0.546), grain yield (-0.486), panicle yield (-0.421), 

1000-grain mass (-0.224), panicle grain number (-0.360). and effective tiller number (- 

0.273). Among earlier workers Phul (1963) reported a positive correlation between days 

to heading and plant height, while Gupta (1968), Gupta and Dhillon (1974), and Rao 

(1981) have reported the negative correlations between days to heading and grain yield, 

which are in agreement with the results of the present study. 

5.6. YIELD QTL POTENTIAL FROM MULTILOCATION TRIALS 

'The multilocation trials of HHB 94-like hybrids conducted across ten different test 

environments (including both individual test environments and multiple-test environment 

clusters) exhibited no significant differences in entry mean grain yield performance 

except in a few test environments. The differences in mean grain yield between the 

hybrids based on different types of female parents suggest significant contribution of 

cytoplasm to grain yield within the HHB 94 background. This information in turn, could 

finally help in estimating the potential of yield QTLs from ICMB 901 11 to improve the 

elite hybrid parental A-/B- pair ICMBAIB 891 11 and thus finally improve HHB 94. 

The ANOVA to test the significance of a single degree of freedom contrast for 

cytoplasmic effects on grain yield in HHB 94 background demonstrated little significance 

of differences in grain yield due to use of the A! male-sterility inducing cytoplasm of the 

A-lines compared with the normal male-fertile cytoplasm of the B-lines except significant 

differences between average performance of three hybrids based on sub-selections of 

ICMA 891 11 (HHB 94-P2A, -P5A and -P6A) and average performance of three hybrids 

based on sub-selections of ICMB 89111 (HHB 94-P2B, -P5B and -P6B) from trials 

conducted at Bawal K02, Durgapura KO3 and Patancheru, RCE 24 KO3 (Table 47). The 



comparison made between mean grain yield performance of HHB 94-P6A and HHB 94- 

p6B exhibited significant differences in grain yield at Bawal during kharif2002 while 

between HHB 94-P2A and -P5A, and HHB 94-P2B and -P5B at Durgapura during kharif 

2003 suggested that the AI male-sterile cytoplasm had a positive effect on grain yield in 

both of these test environments (Tables 45-47). 

Similarly, no significant variation in grain yield was observed when comparison 

was made between each hybrid version based on ICMA 891 11 and HHB 94-original, and 

between the average of HHB 94-P2, -P5A, and -PGA and the original HHB 94 in a 

majority of the test environments except at Durgapura during kharif 2003 for testing of 

the effect of selection for downy mildew resistance within ICMA background on grain 

yield performance. These results were confirmed by ANOVA for the single degree of 

freedom contrast between the grain yield of hybrid versions based on each of three sub- 

selections of ICMA 8911 1 and the original HHB 94. These results suggested that the 

contribution of cytoplasm to grain yield not large enough to cause significant differences 

between the two cytoplasm versions of hybrids of the thee  sub-selections of 

ICMMCMB 891 11 within a location, but that this small effect of cytoplasm to grain 

yield was significant in the pooled analysis across locations. This indicates a major role of 

environment and G x E interactions rather than genotypes for the observed fluctuations in 

grain yield performance of the closely related hybrids in this trial across test 

environments. The single degree of freedom comparison made between the two hybrid 

controls (HHB 94-original and HHB 181) produced on a common CMS line (ICMA 

89111) using different pollinators (G731107 and H 771833-2, respectively). showed 

significant differences in grain yield in trials conducted at Hisar (KO2 and K03), and at 

Patancheru (RP 9A KO2 and RP 6B K03) (Tables 45-47) with superior performance of 

HHB 181. The probable explanation for the observed variation in differences between 

these two control hybrids could be to due pollinator's effect and its interaction with 

environmental forces working differently in the different test environments. 

Another comparison was carried out testing for yield potential QTL in the normal 

male-fertile cytoplasmic-genetic background of ICMB 901 11 to contribute grain yield 

QTLs to ICMB 8911 1 that will in turn enhance the performance of HHB 94 (in the 

normal male-fertile cytoplasm). The ANOVA for this single degree of &eedom contrast 

assessing the potential of ICMB 901 11 demonstrated significant difference in grain yield 



in three individual test environments (Bawal K03, Hisar K02, RCE 24 K02) and across 

the Patancheru multiple-test environment cluster. Significant differences were also 

recorded for mean performance across individual test environments at Bawal K03, 

Durgapura and RP 9B KO3 and across multiple-test environments clusters for Rajasthan 

and Patancheru as well as for the pooled analysis across all ten test environments. The 

marked differences obtained were due to nuclear factors contributing to grain yield. These 

results indicated that ICMB 901 11 had high yield potential QTLs that could be used to 

improve HHB 94 and use this as a parent in hybrids breeding program and as a parent in 

developing mapping populations based on its cross with ICMB 891 11 (as in other parts of 

this study) could enhance the possibility of improving HHB 94 by marker-assisted 

selection to introgress QTLs from ICMB 901 11 into the background of ICMB 891 11 and 

its male-sterile counterpart ICMA 891 11, which is the seed parent of the original HHB 

94. 

5.7. GENERAL DISCUSSION AND FUTURE PROSPECTS 

5.7.1. QTL Mapping 

QTL mapping in the present study has lead to the detection of about nine major QTLs for 

resistance to pearl millet downy mildew resistance that are individually effective against 

one or more of six Indian and two African pathogen populations of S. graminicola. A 

number of resistance QTLs effective against these pathogen populations were suggested 

to be common across them and some of these QTLs were found to confer resistance that 

is potentially non-specific and effective across pearl millet downy mildew pathogen 

populations. Such QTLs have been placed on LG2, LG4 and I,G7 in present study. This 

kind of disease resistance has, in some other host-pathogen systems, proven to be durable 

(i.e. to maintain its effectiveness in time and space despite with speedy deployment). That 

is why these resistance QTLs with potentially greater durability are of considerable 

interest to plant breeders and plant pathologists. Durability is often conferred by 

polygenic or non-pathotype-specific resistance (Johnson, 1984). 

At the same time, MapMakerIQTL and PlabQTL have also detected some DM 

resistance QTLs from the present mapping population based on cross ICMB 891 11-P6 x 

ICMB 90111-P6 that appeared to be effective only against specific to pathogen 

populations. These host plant pathogen-specific DM resistance QTLs have been detected 



on LGI, LG2, LG3 and LG7. This kind of disease resistance QTL is generally less likely 

to confer durable resistance because of host plant-pathogen specificity. Therefore, 

stability of such disease resistance QTL alleles, when transferred to different genetic 

backgrounds of our interest and evaluated across environments, is a matter of concern 

because of the limited knowledge about distribution patterns of virulence genes within 

and between S. grarninicola populations. Tanksley and Hewitt (1988) and Witcombe and 

Hash (2000) have suggested breeding programs based on marker-assisted selection 

(MAS) and the implications of this kind of QTL into desired agronomically superior 

genetic backgrounds. 

QTLs are considered to be a chromosomal segment containing individual genes of 

large effect or group of genes that together influence complex traits (Stuber et al., 1999) 

like grain yield, downy mildew disease reaction and many others. Though a QTL is 

implicitly understood to represent a single genetic determinant (or a factor). but there are 

examples of individual QTLs that have been resolved into multiple-genetic factors by 

recombination (Graham et al., 1997; Yamamoto et  a/., 1998). Therefore, it may not be 

important to decide whether the QTL stands for a single genetic factor or cluster of tightly 

linked genes for manipulation of identified QTLs in applied plant breeding programs. 

However, if cloning of specific QTLs is vital to their utilization, then chromosomal 

locations must be limited to a convenient piece of DNA (Paterson et al., 1988). QTL 

mapping has proven to be an extremely powerful technique for localizing QTLs 

contributing towards host plant disease resistance to particular regions of the 

chromosomes of crop species. This has enabled the identification of independent 

segregation of resistance to different pathogen populations of pearl millet downy mildew, 

as demonstrated in previous studies (Jones, 1994; Jones et al., 1995, 2002; Kolesnikova- 

Allen, 2001 and Azhaguvel, 2001). 

Simple interval mapping as implemented in MapmakerIQTL detected a total of 24 

single-QTLs for downy mildew resistance using phenotypic data generated by greenhouse 

seedling screens of 172 Fz mapping population progenies against eight pathogen 

populations of S. gmminicola of Indian (six) and African (two) origin. The detected DMR 

QTLs exhibited LOD score values of at least 3, included QTLs of both major and minor 

effect, and were placed across all pearl millet linkage groups except LG5 and LG6. 

Composite interval mapping as implemented in PlabQTL, a software package using a 



different algorithm than MapmakerIQTL, has also detected almost an equal number of 

DMR QTLs and confirmed those QTL identified by MapMakerIQTL with slightly 

changed ~osi t ions between the same pair of flanking markers. A few putative QTLs, 

which were not identified by PlabQTL, have been detected in the present study by 

interval mapping with MapMakeriQTL, using single-QTL models as well as multiple- 

QTL models. The total estimates of observed phenotypic variation explained for downy 

mildew disease reaction among 172 F2 4 mapping population progenies were higher by 

those single-major QTL detect by MapMakeriQTL than for QTL detected by PlabQTL. 

This is probably due to systematic over-estimation of the additive effects of individual 

QTLs (and multiple-QTL models) by the interval mapping procedure. MapMakeriQTL 

have also detected QTLs explaining as much as 90% of total observed phenotypic 

variation in particular screens even in case of qualified multiple-QTL models involving 

QTLs on LG2, LG3, and LG4 against the pathogen population from ICRISAT- 

Patancheru, India (Sgl53). 

The accepted multiple-QTLs models have passed a qualifying test indicating they 

were at least 100 times as probable as the best available model having oneior fewer 

QTLs, and recorded very high LOD values (as high as 25.1 against the ICRISAT- 

Patancheru pathogen population). If these multiple-QTL peaks were not false positives 

then concentration of QTLs along the linkage groups may be a result of tandem 

duplication. It has been suggested that tandem duplication, translocation and intra-allelic 

recombination are major components of evolution of multiple-resistance genes in plant 

(Crute, 1992). Tanksley and Rick (1980) found evidence for tandem duplication in tomato 

and suggested that diploid higher plants use tandem duplication in absence of ploidy to 

increase genome size. Linkage and allelism observed for pearl millet downy mildew 

resistance are commonly observed in other host-pathogen systems. For example, many 

resistance genes map to LGl in lettuce against downy mildew (Crute. 1992), to the short 

arm of LGlO in maize against rust (Hooker, 1985). and to chromosome 5 in barley 

against powdery mildew (J8rgensen, 1992). 

5.7.2. Marker-Assisted Selection 

After detection and location of putative QTLs by QTL mapping procedures, the presence 

and potential of resistance genes that they represent needs to be confirmed by 

backcrossing single putative QTLs into a susceptible genetic background and assessing 



the disease reaction of the introgression line@) under controlled conditions. The mode of 

inheritance of resistance genes, their contributions toward resistance across environments, 

and their pathogen population-specificity all need to be investigated. The creation of near- 

isogenic lines (NILS) proves useful as resistance genes can be characterized easily in 

terms of corresponding avirulence genes in the pathogen and selected NILS then used as 

differential lines to monitor virulence in pathogen populations. 

QTL mapping is usually considered to be a preliminary stage in detection of QTLs 

after successful construction of a genetic linkage map with a fairly good coverage of 

marker loci across the linkage groups. Marker-based methods applied to segregating 

populations have provided us with a means to locate QTLs to chromosomal regions and 

to estimate effects of QTL allele substitution (Lander and Botstein, 1989). The ability to 

estimate the effects for a qualitative trait can be very useful for designing and application 

of more efficient breeding strategies. Marker-assisted selection (MAS) for quantitative 

traits has been proposed by many authors (Tanksley, 1993; Lee, 1995; Kearsy and Pooni, 

1996). In backcrossing breeding programs, MAS can efficiently reduce linkage drag and 

optimize population size by permitting effective selection against the donor genome 

except for allele(s) in the genomic region to be introduced from the donor. 

Downy mildew resistance QTLs that individually explain a larger amount of 

observed phenotypic variation (250%) in disease reaction in screens against one or more 

pathogen populations are of considerable interest to plant breeders and plant pathologists. 

Subsequent marker-assisted introgression of several such QTLs into genetic backgrounds 

of agronomically elite pearl millet hybrid parental lines is likely to be required for durable 

resistance to pearl millet downy mildew disease. 

The greenhouse seedling downy mildew screens against most pathogen 

populations of S. graminicola in the present study have recorded high operational 

heritabilities. DMR QTLs identified on LG2, LG4 and LG7 explained high portions of 

the observed phenotypic variance for disease reaction among the 172 F2.4 mapping 

population progenies across the eight pathogen populations used in the present study. 

High operational heritabilities are of paramount importance for effective QTL detection, 

yet MAS is considered to be most efficient for the selection of poorly heritable traits 

(Paterson, 1991a). An added advantage of dealing with a highly heritable trait is that it is 

less likely to have variable expression in different genetic backgrounds and across 



different environments (Gale and Witcornbe, 1992). Soller and Beckmann (1990) stated 

that MAS for quantitative traits with high heritability would not necessarily be as efficient 

as conventional breeding. Hash et al. (2000) discussed alternate methods of marker- 

assisted backcross transfer of QTLs detected for downy mildew resistance as well as 

drought tolerance in pearl millet. Use of MAS has more advantages for the construction 

of NILS, compared to conventional breeding methods. As well as allowing transfer of 

resistance donor chromosomal segments of interest, markers covering the remaining 

genome ensure minimal introgression of other genome segments from the resistance 

donor. Segments other than those containing the target resistance gene could considerably 

confuse further studies (Zeven et al., 1983). 

Published reports of successful application of MAS to improve hybrid yield and 

disease resistance are just beginning to appear. The first successful application and 

achievement of public-sector MAS after rice, is being accomplished in pearl millet for 

improvement of downy mildew resistance of inbred pollinator line H 771833-2, elite 

parental line of popular pearl millet hybrid HHB 67 (Hash el al., 2003) from CCS 

Haryana Agricultural University Hisar, India. Sharma (2001) has developed several 

improved versions of this pearl millet pollinator by marker-assisted backcrossing, which 

has to be time and cost-effective for downy mildew resistance in pearl millet. 

Mainly two cultivar types, open pollinated varieties bred by random-mating sets 

of selected inbred lines or progenies from recurrent selection schemes, and single-cross 

hybrids based on the A ,  cytoplasmic-genetic male-sterility system provide the major 

stock of commercial seed production in pearl millet in India. In this regard, MAS will 

enable us to achieve great progress to be made through incorporation of additional disease 

resistance into the inbred parents of agronomically superior high yielding hybrids of 

similar maturity, but lacking resistance durability. Firstly, gene pyramiding where a 

breeding strategy to increase resistance durability is expected to require more than one 

resistance gene to be incorporated from various sources (Jones el a[., 1995) into a single 

male-sterile line and its hybrids. Secondly, an alternative to gene pyramiding is the 

Sequential deployment of resistance genes over a course of time developing 

hybrids/cultivars that are genetically heterogeneous for resistance genes (Witcombe and 

Hash, 2000). MAS can be utilized to establish the most appropriate resistant gene 

c0mbination/deplOyment strategy that will allow resistance durability across 



Similar studies have been proposed by Pederson and Leath (1988) to 

evaluate the effectiveness of pyramided resistance to control Puccinia graminis in wheat. 

'I'he parent ICMA 891 11 serves as a female parent for producing commercial hybrids 

(HHB 94, HHB 181 etc.) that have released from CCS Haryana Agricultural University, 

Hisar (India). Improving the combining ability for downy mildew resistance and yield 

potential of ICMB 89111 (seed parent maintainer of recently release hybrid HHB 94) 

may usher in new ways of improving hybrids released for Maryana and Rajasthan. 

Therefore, the DMR QTLs identified from this study can be used in a marker-assisted 

backcrossing program for hybrid parental line improvement. Yadav et 01. (2002) 

suggested a similar strategy in pearl millet to transfer a major drought tolerance QTL into 

elite pollinator inbred H 771833-2 (male parent of early-flowering released hybrid, HHB 

67) using marker-assisted backcrossing to introgress genomic regions from donor PRLT 

2/89-33. 

5.7.3. QTL-map-based cloning 

Genetic markers are invariably linked to the resistance gene rather being homologous to 

it. The prior knowledge of segregation pattern of DNA markers (e.g. RFLP and SSRs) 

linked to the resistance gene will enhance selection efficiency a great deal. However, the 

progress made in biotechnology for resistance gene cloning has the potential to provide a 

solution to this problem. A number of genes have been cloned over the last years (Martin 

et ul., 1993; Jones er al., 1994; Lawrence er al., 1994). The possibility of sequence 

homology between some of the resistance genes combined with QTL mapping studies 

will enable genes encoding resistance to pearl millet downy mildew to be cloned. Once 

clones have been sequenced, PCR-based markers could be constructed so that similar 

resistance genes can be quickly and efficiently detected and selected by the plant breeder 

using limited technology. 

The detection of precise and accurate location of QTLs by genetic linkage 

mapping provides a starting point for map-based cloning (Tanksley et al., 1995). In many 

plant species, several agronomically important genes have been isolated using map-based 

cloning techniques, for example the gene controlling photoperiod-sensitive flowering 

response in Arabidopsis (Putternil et ul., 1995). From high-density maps of molecular 

marker in crops species, one could explore new gene-cloning approaches and 

Op~ortunities, such as map-based cloning or positional cloning, which make it possible to 



really identify those particular gene(s) responsible for the QTL. For such successhl 

accomplishments, we need to have comprehensive genomic libraries of relatively large 

DNA fragments, especially BAC (Bacterial Artificial Chromosome) vectors, with closely 

linked DNA markers, ideally less than four hundred-kilo bases apart (Xu, 1997). Martin 

et a[. (1993) isolated the tomato gene Pto conferring resistance to the bacterial pathogen 

Psendomonas syringe, by this approach. 

The most recent advances in molecular biology will allow accelerating plant 

breeding programs but it will never completely substitute the techniques and 

methodologies of conventional plant breeding (Paterson et al., 1991b; Lande and 

Thompson, 1990). At the same time, DNA markers can be expensive to use, relatively 

time consuming to assay, and require a substantial and relatively sophisticated laboratory 

system (Gale and Witcombe, 1992). While development of new technologies like 

automated DNA extraction for larger number of samples at a stretch and different kind of 

PCR (polymerase chain reaction)-based molecular markers will largely alleviate these 

difficulties, the problem associated with stability of gene expression under variable 

genetic backgrounds and environments stdl needs to be addressed. Tanksley and Hewitt 

(1988) have described the several phenotypic expressions of a chromosomal segment of 

Lycopericon chmielewskii in differcnt genetic backgrounds. Environmental variation has 

also been observed to have significant effects on QTLs for yield and its components 

(Stuber et al., 1987; Paterson et ul., 1991a; Beavis el a[., 1991; Bubeck et 01.. 1993; 

Yadav et al., 2003). 

After considering the facts mentioned above, the need to look into the magnitude 

of these complications along with a multitude of other related characteristics that needs 

immediate solution, is obvious. The discerning eyes of plant breeders will retain their 

essential role in assessing phenotypic expression of improved varietieshybrids from the 

laboratory to field trials. In future with integration of the artistic, scientific and 

technological skills an efficient plant breeder will continue to play a vital role in bringing 

new green revolution products in a ever-increasing population of resource-limited SAT 

regions of the world of the twenty-first century. 

The first green revolution was targeted at few major crops and the major 

beneficiaries were the larger producers and consumers in western world and some parts of 

developing countries (e.g. the northern part of India), who possessed high operational and 



capital funds and ready-to-use natural resources, and could invest the required-inputs in 

cultivating the improved crop cultivars. But this second green revolution needs to be 

targeted at subsistence farmers and crops like pearl millet, which provides the livelihood 

of millions of marginal and resource-limited poor farmers in relatively less fertile SAT 

of the world. 





6. SUMMARY 

pearl millet [Pennisetum glaucum (L.) R. Br.] ranks 61h among cereals and is the staple 

food grain crop for about 90 million people living in the semi-arid tropical regions of 

Africa and the India sub-continent. It is better adapted than other cereals to marginal 

lands of low fertility that receive minimal application of inputs. It is a multi-purpose 

cereal grown for grain, stover and green fodder on about 27 million hectares, primarily in 

Asia and Africa (FA0 and ICRISAT, 1996). Pearl millet is also considered a good 

experimental plant for genetical studies because of its low-diploid chromosome number 

(2n = 14) with moderate high DNA content, short duration, large seed number, and 

protogynous flowering. 

Among diseases affecting pearl millet, downy mildew, also known as green ear 

disease, is most devastating. It is caused by systemic infection by the obligate biotrophic 

pseudo-fungus Sclerospora graminicola (Sacc.) J .  Schroet. The most efficient, 

environmental friendly and economical means to control pearl millet downy mildew is the 

use of resistant cultivars. Therefore, breeding for improvement of yield and resistance to 

downy mildew has been a prime concern of pearl millet breeders but the allogamous and 

highly variable nature of both the host and the pathogen have been considerable 

hindrance to breeding for host plant resistance to this disease. Earlier studies on this host- 

pathogen interaction have shown that resistance is polygenically controlled and often 

dominant with pathogen populations exhibiting host-specific virulence difference. 

Another major factor limiting response to selection and hence breeding efforts is 

Genotype-by-Environment interactions of which host specific virulence differences are an 

example. 

The present study was based on a cross of parental lines ICMB 891 11-P6 (d2 

dwarf, high tillering, maintainer with site-specific resistance to downy mildew) and 

ICMB 901 11-P6 (tall, and high tillering, with highly stable resistance to downy mildew). 

This study was designed to construct a skeleton linkage map, based on ICMB 891 11-P6 x 

1CMB 901 11-P6, to identify and map QTLs controlling downy mildew resistance (DMR), 

to study inheritance of DMR and finally, to assess agronomic performance of versions of 

HHB 94-like hybrids having their seed parents sub-selections of ICMA/B 891 11 and 



1CMB 901 11 in rnultilocation trials. TO fulfill these objectives, the two pearl millet inbred 

~arental  lines were crossed to F I ,  and the F I  progenies were selfed to produced 172 

segregating Fz mapping population Progenies for generating marker data using 46 SSR 

and RFLP markers exhibiting clear polymorphism between parental lines. The F2 

mapping population progenies were selfed and bulked for two generations to produce F2 

self-bulks for DM screening against eight pathogen populations from India and Africa. 

The downy mildew screening of segregating F2 4 population progenies based on ICMB 

891 11-P6 x ICMB 901 11-P6 against six downy mildew pathogen populations from India 

(Patanchew, Jodhpur, New Delhi, Jamnagar, Jalna and Durgapura) was done at 

ICRISAT-Patanchew and against two African pathogen populations (Maiduguri and 

Bamako) at Bangor, UK. The segregating F2q mapping population progenies showed a 

continuous variation for DM1 and inheritance patterns varied across the pathogen 

populations. Mendelian segregation patterns among the 172 F21 self-bulks screened 

against pathogen populations from India and Africa showed that at least one to four 

(monogenic to tetragenic) genes were controlling resistance to this range of pathogen 

populations. 

Spearman rank correlations revealed a general trend of stronger similarities among 

pathogen populations from India and between lndian and African populations than 

between the two African pathogen populations themselves. Pathogen populations from 

northern India were more highly correlated among themselves than those from southern 

India. The cluster analysis demonstrated that the pathogen population from Jalna was 

relatively dissimilar from all other pathogen populations included in this study. In 

contrast, the dendrogram based on entry mean DM1 values revealed that the pathogen 

population from Jamnagar was closely related with that from Durgapura and that from 

Patanchew with that from New Delhi. 

The construction of genetic linkage maps and QTL mapping for economical traits 

in fields crops are very important tools for studying genome structure, identifying 

introgression between genomes and localizing genes of interest in genomic regions. Co- 

dominant markers such as RFLPs and SSRs have simple genetic segregation patterns and 

are potentially abundant in number. The first RFLP-based genetic linkage map of pearl 

millet was constructed by Liu er 01. (1994). The parental lines were screened against a set 

of 80 SSR and 35 RFLP markers following standardized protocols and 40% of these 



exhibiting clear and storable polymor~hism was used to generate the mapping population 

marker data. 

Chi square estimates revealed the majority of selected polymorphic marker loci 

~ s e d  for genotyping the mapping population segregated as per expected Mendelian 

segregation ratios of 1 2 1 .  However, about 60% of marker loci exhibited distorted 

segregation, with the abundance of heterozygotes and homozygotes for alleles of the 

resistant male parent (ICMB 901 1 I-%). The marker data from 46 marker loci was used 

to construct a skeleton linkage map of pearl millet cross ICMB 891 11-P6 x ICMB 901 11- 

P6. The number of linkage groups and marker orders in each of the seven newly 

constructed linkage group were the same as that of base map (Liu el a/.. 1994), integrated 

consensus map (Qi et al., 2004), and other previously constructed pearl millet marker- 

based genetic linkage maps. 

A genetic linkage map of 747.9 cM (Ilaldane) was constructed for these 46 

marker loci using MapMakerExp version 3.0. Among seven linkage groups LG3 was the 

shortest and LG7 was the largest one. For QTL mapping, interval mapping implemented 

in MapMakerIQTL and composite interval mapping method as implemented in PlabQTL 

were used. A total of nine different major disease resistance QTLs were identified from 

eight screens of the Fz 4 mapping population agalnst pathogen populations from India and 

Africa. Among these, a common resistance QTL was identified on LG4, which was 

effective against all six Indian and one (Bamako) of the African pathogen populations. 

Another common QTL was identified on LG2, which was effective against four Indian 

(Durgapura, Patanchew, Jamnagar and New Delhi) and one African (Maiduguri) 

pathogen populations. Such disease resistance, appropriately backstopped by pyramiding 

with additional resistances, expected to be durable for longer periods. Several pathogen 

population-specific DM resistance QTLs were also identified on LGI, LG2, LG4 and 

LG7, but such disease resistances are not considered likely to be durable ones. 

Accurate knowledge of inheritance patterns of disease resistance is of paramount 

importance in breeding disease resistant cultivars. DNA markers (especially co-dominant 

markers) and QTL mapping provide insights into facets of quantitative inheritance 

Patterns. In present study, a majority of downy mildew resistance QTLs detected 

exhibited over-dominant modes of inheritance, and most of DMR resistant QTLs come 

from resistant male parent ICMB 901 11-P6. These identified DMR QTLs from ICMB 



9011 1-P6 can now be transferred to genetic backgrounds of elite pearl millet hybrid 

lines (e.g. ICMB 891 1 1) through marker-assisted backcrossing programs. 

Flanking markers of the identified QTLs can facilitate selection of resistant progenies 

during the backcrossing process, where as other marker loci can be used in reducing the 

length of the donor segments carried along with the introgressed DM resistance genes 

andlor selecting for recovery of recurrent parent alleles on non-carrier chromosomes. 

Marker-assisted selection can also be used to pyramid several disease resistance genes 

into a single male-sterile line (and its maintainer) or pollinator line. 

The pathogen populations elicited significantly different downy mildew reactions 

among the 172 F2 4 self-bulks across all screens against eight pathogen populations. The 

pathogen population from Jodhpur (India) and Bamako (Africa) were observed as the 

most highly virulent among all Indian and African pathogen populations included in this 

study. All screens against individual pathogen populations, as well as across all eight 

pathogen populations exhibited high heritabilities which were sufficient to permit the use 

of these in QTL mapping. The pooled ANOVA from 172 F2 4 self-bulks screened against 

six Indian (Asian) and two African pathogen populations revealed significant 

intracontinental pathogenic variability while variance component analysis revealed 

significant intercontinent variability in DMI. 

The agronomic performance of HHB 94-like hybrids in multilocation field trials 

in Haryana, Rajasthan and Andhra Pradesh showed highly significant differences among 

genotypes (HHB 94-like hybrids), genotype x environment interactions, and 

environments for grain, and stover yield and their component traits across all ten field 

environments and across four multiple-field environment clusters. Environments 

represented the major source of variation in this study, followed by genotypes and 

genotypes x environment interactions. The average performance of HHB 94-like hybrids 

Was observed to be better in the Andhra Pradesh multiple field-environment cluster 

followed by those for Haryana and Rajasthan. Hybrid versions based on sub-selections of 

ICMA 891 11 produced higher grain yield while performance of other yield components 

trait was found to be variable across sub-selections of ICMNB 891 11 and ICMB 901 11. 

Heritability estimates for a majority of traits ranged from high to very high across 

individual as well as across groups of field trial environments. 



Correlation studies provide estimates of the intensity of linkage and pleiotropic 

occuning among quantitative traits. In the present study, grain yield showed 

strong positive comelation with effective tiller numbers, panicle yield, 1000-grain mass, 

~anicle grain number and harvest index. Breeding efforts to improve these key 

components of grain yield can be expected to increase crop productivity and production. 

Negative correlations were recorded between grain yield and both time to 50% flowering 

and plant height. 

Test for yield potential QTL results indicated that ICMB 901 11 had high yield 

potential QTLs that could be used to improve HHB 94 and use this as a parent in hybrids 

breeding program and as a parent in developing mapping populations based on its cross 

with ICMB 89111 (as in other parts of this study) could enhance the possibility of 

improving HHB 94 by marker-assisted selection to introgress QTLs from ICMB 901 11 

into the background of ICMB 891 11 and its male-sterile counterpart ICMA 891 11, which 

is the seed parent of the original HHB 94. 

The use of markers in breeding programs can range from facilitating appropriate 

choice of parents for crosses, to mappingitagging of gene blocks associated with 

economically important traits. Molecular markers tightly linked to different disease 

resistance genes having potential importance in facilitating selection procedures 

particularly for pyramiding two or more resistance genes with the intension of producing 

a more durable and broad-spectrum resistance. In spite of these many uses, DNA markers, 

of course, have demerits, preventing their general use in breeding programs. They are 

more expensive, require a sophisticated laboratory set up, and consume a lot of time to 

setup in their initial stages. New technologies like automated DNA extraction, high 

through-put genotyping systems, and PCR based non-radioactive visualization techniques 

Can overcome many of these difficulties. Undoubtly, the most recent advances in 

molecular breeding, along with new innovations in bioinfomatics, will complement 

conventional plant breeding methods and permit their acceleration to realize crop 

improvement and enhance crop productivity in a more directed manner and in less time to 

hlfill the need of ever increasing human and livestock populations in a resource limited 

world, especially  for'^^^ regions in the twenty-first century. 
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Appendix 4. Preparation of stock solutions used during the present study 

CTAB (Cety Trimethyl Ammonium Bromide) (2%) buffer 
CTAB 
1 M Tris 
5 M NaCI 
0.5 M EDTA 40 mL 
Na2S0, 2.5 g 
Distilled Water 460 mL 
Make up volume to 1 litre and add Mercaptoethanol(O.l7%) while using CTAB (2%) 
solution only. 

Rnase (10 mg/mL) 
Dissolve RNase in double distilled water1 or RNase buffer (k~t), place in a tube in 
boiling water bath for I0 minutes Allow this to cool on a bench and store at -20°C 

Chloroform: isoamyl alcohol (24:l) 
Chloroform 240 mL 
lsoamyl alcohol I0 mL 
Make up required volume. Shake well and dispense the solution in a fumed chamber. 
Store in dark at room temprature. 

Ethanol (70%) 
Absolute alcohol 70 mL 
Distilled Water 30 mL 

NaCl 292.2 g 

d H 2 0  750 mL 

Make up volume to 1 litre, filter and autoclave. 

PhenoVchloroform 
Mix equal volumes of the buffered phenol and chloroform: isamyl alchohol (24: 1). 
Store at 4% Give gentle shake to mix properly just before use. 

Sodium acetate (2.5 M. pH 5.2) 
Sodium acetate 340.2 g 

dH20 500 mL 

Adjust pH to 5.2 with glacial acetic acid. Make up volume to I litre and autoclave. 

Tris  HCI ( 1 M, p H  8.0) 121.1 g 

Tris 800 mL 
dH,O 

Dissolve in water. Adjust pH to 8.0 with conc. HCI. Make up volume to 1 liter and 
autoclave. 
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EDTA (0.5 M, pH 8.0) 

Na2 EDTA 186.1 g 

dH20 800 mL 

Dissolve properly. Adjust pH to 8.0 with sodium hydroxide pellets. Make up volume 
to 1 liter and autoclave. 

TloE1 buffer 

0.5 M Tris HCI pH 8.0 10 mL 
0.5 M EDTA pH 8.0 I mL 
And make up volume to 1 liter with sterile distilled water. 

T S E , ~  buffer 
0.5 M Tris HCI pH 8.0 50 mL 
0.5 M EDTA pH 8.0 20 mL 
Make up volume to 500 mL with sterile distilled water. 

10X Tris-Borate Buffer (TBE) (per liter) 
Tris base 108 g 
Boric acid 55 'd 
EDTA (0.5 M) pH 8.0 40 mL 
dH20 Up to 1000 mL 
Mix well and store at 4°C. 

1% Agarose 
Agarose 2.5 g 
TAEtTBE 250 mL 
Ethidium bromide 8 PL 
Take TAE or TBE based on the tank buffer. 

6X Gel loading buffer (0.25% Bromophenol blue, 40% sucrose) 
Sucrose 4 g 
Bromophenol Blue 2.5 mL 
dH20 Upto 10 mL 
Store at 4'C. 

Ethidium bromide (10 mg/mL) 

Ethidium bromide 100 mg 

dHIO I0 mL 

Dissolve in distilled water gently, wrap tube in aluminium foil and store at 4'C. 

Caution: Ethidium bromide is extremely mutagenic. 
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Acrylamidehiacrylamide 29: 1 (wlw) 

Acrylamide 
Bisacrylamide 
Water (deionised distilled) 
Store at  4'C. 

10% (wlv) Ammonium per sulphate 
Ammonium per sulphate I g 
Water (deionised distilled) I0 mL 
Make fresh stock every week and store at 4OC. 

TEMED (N, N, N', N'-tetremethyl dehylene diamine 
Store at  4'C. 

Loading buffer for non-denaturing PAGE, 5X 
EDTA (0.5 M, pH 8.0) I0 mL 
NaCl(5 M) I mL 
Glycerol 50 mL 
Distilled Water 39 mL 

Binding silane buffer 
Binding silane buffer 1.5 pL 
Acetic acid 5 mL 
Ethanol 993.5 mL 
Store at 4OC. 

100 base pairs ladder (50 ng1mL) 
100 bp ladder (stock conc. I pglpL) 50 pL 
Blue (6X dye) 165 pL 
T,,E, buffer 785 pL 

Hybridization solution (For New England bio-lab kit) 
dNTP mixture (excluding dATP) 6 PL 
C I - ~ ~ P  dATP 5 PL 
Klenow fragments 1 PL 

7.5 Ammonium acetate 
Ammonium acetate 57.75 g 
Sterile dH20 75 mL 
Make up volume to I00 mL with dH,O. 

LB medium 500 m L  
NaCl 5 g 
Trypton 5 g 
Yeast extract 2.5 g 
Make up volume to 500 mL, adjust pH to 7.2 with I N NaOH and autoclave. 
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L B  + Agar medium 500 mL 
NaCl 5 g 
Trypton 5 g 
Yeast extract 2.5 g 
Agar 7.5 g 

Make UP volume to 500 mL, adjust pH to 7.2 with I N NaOH and autoclave. 

G T E  solution 
Glucose 0.5 M pH 8.0 2 mL 
Tris 0.5 M pH 8.0 5 mL 
Make up volume to 100 mL, filter it and store at 4OC. 

dNTP mixture (For New England bio-lab kit) 
dCTP 50 pL 
dTTP 50 pL 
dGTP 50 pL 

Sol. A (for plasmid extraction) 
Lysozyme 4 mg 
GTE solution I mL 
Everytime use freshly prepared and well dissolved solution and take 200 pllreaction. 

Ampicillin 50 mg/mL (5 mL) 
Ampicillin 250 mg 
Sterile d H 2 0  5 mL 
Make up required volume. 

Sol. B (for plasmid extraction) 
10% SDS I mL 
1 N NaOH 2 mL 
Sterile d H 2 0  7 mL 
Everytime use freshly prepared and well dissolved solution and take 300 pllreaction. 

Developer 
Developer A powder 172.5 g 
Developer B powser 10.0 g 
Warm sterile dHIO upto 52°C 700 mL 
Slowly add A and B make up volume to 1 liter with SDW. 

Stop bath (3% of Hac) 
Hac (acetic acid) 30 mL 
dH20 970 mL 

Rapid l k e r  
Rapid fixer powder 264.4 g 
AH-n 700 mL -- -'- 
Make up volume to I liter with sterile dH,O. 
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S Buffer for DNA extraction 
1M Tris ph 8.5 I00 mL 
5M NaCl 20 mL 
0.5 M EDTA pH 8.0 100 mL 
SDS 20 g 
Make up volume to I litre and autoclave it. 

20 X SSC 
NaCl 175.32 g 
Sodium citrate 88.23 g 
Disolve in distiiled water gently and make up volume to Ilitre. 

20% SDS 
SDS 200 g 
d H 2 0  700 mL 
Dissolve gently and make up volume to Ilitre. 

Pre-hybridisation solution 
Sodium Phosphate Dibase 71 g 
dH,O 800 mL 
SDS 70 Y 
Dissolve SDW and adjust pH 7.2 with orthophosphoric acid. 
Add BSA 10 g 
Make up volume to 1 litre. 

Salmon DNA (5 mg/mL) 
Salmon DNA powder 500 mg 
ddH*O 100 mL 
Dissolve it gently and properly and store in -20°C. 

32 P Blot washing (stripping) solution after hybridisation 
Solution 1 

20 X SSC I00 mL 
20% SDS 25 mL 

Solution 2 
20 X SSC 10 mL 
20% SDS 25 mL 

Stripping off solution 
20 X SSC 5 mL 
20% SDS 25 mL 

Proteinase K (10 mg/mL stock) 
Proteinase K powder I00 mg 
ddHIO I0 mL 

Make up the required volume. 





Appendix 6. The List of DNA markers techniques that have been developed over the years. Courtesy: Mohan etal. (1997) and Gupta and Varshney (2000) 

Reference 

Vos et 0 1 ,  1995. Nucl. Acids Res., 23: 4407-44 14. 

Ghareyazie et al., 1995. Theor. Appl. Genet., 91: 21 8-227. 

Welsh and McClelland, 1990. Nwl. Acids Res., 8: 72 13-72 18. 

Sarkar el aL, 1990. Anal Biochem., 186: 64-84. 

Lyamichev el ul.. 1993. Science, 260: 778-783. 

Caetano-Anolles el al., 199 1 .  Biu Technology., 9: 553-557. 

Changet 01.. 2001. Theor. Appl. Genet., 102(5): 773-781. 

Zietkiewiez el 01.. 1994. Genomics, 20: 176-1 83. 

Meyer et 01.. 1993.. J Clinical Biol., 31: 2274-2280. 

Ender et 01.. 1996. Mol. EcoL, 5: 437-447. 

Williams etal., 1990. Nucl. AcidRes., 18: 653 1-6535. 

Acronym 

AFLP 

ALP 

AP-PCR 

AS-PCR 

CAPS 

DAF 

IMP 

ISSA=ISSR 

Me-PCR 

RAMS 

RAPD 

Technique 

Amplified Fragment Length Polymorphism 

Amplicon Length Polymorphism 

Arbitrarily primed PCR 

Allele Specific PCR 

Cleaved Amplified Polymorphic Sequence 

DNA Amplification Fingerprinting 

Inter-Mite (Miniature Inverted-repeat Transposable Elements) 

Polymorphism 

Inter-SSR Amplification = Inter Simple Sequence Repeat 

Microsatellite Primed PCR 

Randomly Amplified Microsatellite 

Restricted Amplified Polymorphic DNA 
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Thesis abstract 

Pearl millet downy mildew, caused by pseudo-fungus Sclerospora graminicola, is the most 
devastating disease of pearl millet (Penniseturn glaucum L.) causing huge grain and straw 
production losses on single-cross hybrids in India. The allogamous and highly variable 
natures of both the host and pathogen are great hindrances to breeding for host plant 
resistance to this disease. DNA markers (especially co-dominant markers) and QTL mapping 
provide insights into facets of quantitative inheritance pattems in breeding disease resistant 
crop cultivars. The present study was undertaken at ICRISAT-Patancheru to construct a 
skeleton genetic linkage map for a pearl millet mapping population of 172 F2-derived FA 
progenies derived from a single FI plant from a plant x plant cross, ICMB 8911 1-P6 
(susceptible) x ICMB 901 11-P6 (resistant), to identify and map QTLs controlling downy 
mildew resistance (DMR), to study inheritance of DMR and finally, to assess the agronomic 
performance in multilocation trials of different HHB 94-like hybrids produced on sub- 
selections of ICMAiB 891 11 and lCMB 901 11. Bulks of each of 172 F2-derived F3 progenies 
were used to isolate nuclear DNA that was genotyped for 46 polymorphic SSR and RFLP 
marker loci. These 172 progenies were selfed to produce F2.4 self-bulks for seedling 
greenhouse DM screens against eight pathogen populations from India (six) and Africa (two). 
The pooled ANOVA from screens of these 172 F z : ~  self-bulks against six Indian (Asian) and 
two African pathogen populations revealed significant intracontinental pathogenic variability 
while variance component analysis revealed significant intercontinental variability in downy 
mildew mapping population progenies. ANOVA for all screens against individual pathogen 
populations, as well as across all eight pathogen populations, revealed high operational 
heritabilities, which were sufficient to permit the use of phenotypic data from these screens in 
QTL mapping. Mendelian segregation pattems among the 172 F2:4 self-bulks screened against 
these eight pathogen populations showed that at least one to fow genes were controlling 
resistance to this range of pathogen populations. The pathogen populations from Jodhpur 
(India) and Bamako (Mali, Africa) were observed to be the most highly virulent among the 
eight pathogen populations used in this study. S p e m a n  rank correlations revealed a general 



trend of stronger similarities among pathogen populations from India (northern India > 
southem India) and between Indian and Af3can populations than between the two African 
pathogen populations themselves. Cluster analysis demonstrated that virulence of the 
pathogen population from Jalna was dissimilar to that of all other pathogen populations used 
in this study and virulence of the pathogen population h m  Jarnnagar was closely related 
with that h m  Durgapura, and that virulence of the pathogen population from Patanchew 
with that from New Delhi. 

About 60% of polymorphic marker loci showed segregation distortion with higher than 
expected abundance of heterozygotes and homozygotes for alleles of the resistant male parent 
(ICMB 901 11-P6). A skeleton genetic linkage map of 748 cM (Haldane) was c o ~ c t e d  
using Mapmaker~Exp ver. 3.0. Simple interval mapping (MapMakerIQTL) and composite 
interval mapping (PlabQTL) were used to detect QTLs. Of nine major putative DMR QTLs 
detected, one mapping on LG4 was common for all pathogen populations except that from 
Bamako, Mali. A majority of the DMR QTLs detected exhibited over-dominant inheritance, 
and the more resistant alleles were nearly all from resistant parent ICMB 901 11-P6. At least 
one DMR QTL was detected and mapped for each of the eight pathogen populations used. 
Marker-assisted selection (MAS) and backcrossing can now be used for improving DMR of 
elite pearl millet hybrid parental line ICMB 891 11, as putative QTLs controlling resistance 
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