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ABSTRACT: To develop genetic improvement strategies to modulate raffinose family oligosaccharides (RFO) concentration in
chickpea (Cicer arietinum L.) seeds, RFO and their precursor concentrations were analyzed in 171 chickpea genotypes from
diverse geographical origins. The genotypes were grown in replicated trials over two years in the field (Patancheru, India) and in
the greenhouse (Saskatoon, Canada). Analysis of variance revealed a significant impact of genotype, environment, and their
interaction on RFO concentration in chickpea seeds. Total RFO concentration ranged from 1.58 to 5.31 mmol/100 g and from
2.11 to 5.83 mmol/100 g in desi and kabuli genotypes, respectively. Sucrose (0.60—3.59 g/100 g) and stachyose (0.18—2.38 g/
100 g) were distinguished as the major soluble sugar and RFO, respectively. Correlation analysis revealed a significant positive
correlation between substrate and product concentration in RFO biosynthesis. In chickpea seeds, raffinose, stachyose, and
verbascose showed a moderate broad sense heritability (0.25—0.56), suggesting the use of a multilocation trials based approach in

chickpea seed quality improvement programs.

KEYWORDS: chickpea, Cicer arietinum, raffinose family oligosaccharides (RFO), myo-inositol, galactinol, raffinose, stachyose,

verbascose, genotype X environment (G x E)

B INTRODUCTION

Chickpea (Cicer arietinum L.) is the second most important pulse
crop after dry beans, cultivated over 11.98 million hectares with a
total production of 1.09 million tonnes around the world during
2010."* Chickpea is broadly classified into two clusters, (a) the
kabuli type (white flower and large, cream-colored seeds) is
usually grown in temperate regions, whereas (b) the desi type
(purple flower and small, dark, angular seeds) is mainly produced
in semiarid tropical regions of the world.>* Chickpea seeds make
an important nutritional contribution to the population of
developing countries as they are excellent sources of
carbohydrate (40—59%), protein (13.5—31.7%), vitamins, and
minerals. In addition, chickpea seed constituents such as
polyunsaturated fatty acids (PUFA), saturated fatty acids
(<1%), and dietary fibers (about 10%) have been associated
with several beneficial health-promoting properties.” Hence,
chickpea is considered as part of a health-promoting diet.®
However, the presence of some antinutritional factors such as
raffinose family oligosaccharides (RFO) or a-galactosides reduce
chickpea’s acceptability in food products, particularly in Western
countries.” In legume seeds, total a-galactosides vary from 0.4 to
16.1% of dry matter and in chickpea seeds range from 2.0 to
7.6%.° Raffinose is the first member of this family followed by
stachyose and verbascose.” Some alternative RFO such as
lychnose and manninotriose have been recently reported from
Caryophyllacean'® and Lamiaceae'' plants, respectively, but
their presence in chickpea seeds has not yet been reported. RFO
represent a class of soluble but nonreducing and nonstructural
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oligosaccharides having a(1—6) linkage between sucrose and
galactosyl subunits.'> Therefore, these sugars are indigestible in
human and monogastric animals as they lack a-galactosidase, a
hydrolyzing enzyme responsible for RFO breakdown.'>'*
Consequently, RFO escape digestion and absorption in the
small intestine, but large intestinal microflora metabolize RFO
and produce carbon dioxide, hydrogen, and small quantities of
methane, causing flatulence, diarrhea, and stomach discomfort in
humans.>~"7 As RFO act as substrate for intestinal bacteria, they
are also considered as prebiotics. These oligosaccharides also
participate in important plant processes such as desiccation
during seed maturation, carbon sourcing in the early stages of
germination, translocation of photoassimilates, and abiotic stress
tolerance.*"®*° Utilization of RFO may also support the growth
of root nodulating bacteria (e.g., Rhizobium meliloti) in the
rhizosphere of legume plants, thus helping in nitrogen fixation.”!
Therefore, to increase the acceptability of chickpea in human and
animal diets, RFO concentration needs to be reduced without
affecting their physiological role in plants and beneficial effect on
human health. Different treatments such as soaking, enzyme
treatment, and y-radiation exposure can be used to reduce RFO
in legume seeds.”>~>* Exposure to such mechanical and chemical
treatments can reduce the nutritional quality of seeds. Therefore,
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it is desirable to develop genetic strategies to reduce RFO
concentration in chickpea seeds. In this study we show that there
is natural variation in RFO concentrations in chickpea seeds.
Both genotype and environment affect the accumulation of REO
concentration in chickpea seeds.

B MATERIALS AND METHODS

Plant Material and Growing Conditions. A set of 171 chickpea
genotypes (116 desi types and SS kabuli types, Supporting Information
Tables 1 and 2) was selected from the gene bank of International Crops
Research Institute for the Semi-Arid Tropics, Patancheru, India
(ICRISAT) on the basis of geographic origin. These genotypes
represented eight different geographic regions including chickpea’s
center of origin and center of diversity (Table 1). These genotypes were

Table 1. Geographical Origin of Chickpea Genotypes Used in
the Study

no. of genotypes

region desi kabuli
1. Europe 10 8
2. meso-America 4 1
3. North Africa 9 10
4. North America 1 0
S. South America 0 2
6. South Asia 68 18
7. southwestern Asia 13 11
8. sub-Saharan Africa 11 S

grown in the field as well as under greenhouse conditions in two
biological replications. The field trials were conducted at ICRISAT (17°
53’ N latitude, 78° 27" E longitude and 545 m altitude, Patancheru,
India) for two seasons: 2008—2009 and 2009—2010 (from October to
mid-March). For 2008—2009, the mean daily minimum and maximum
temperatures were 15.0 and 31.1 °C, respectively. The average bright
sunshine hours were 8.9 with approximately 352.1 uM m™>s™" of solar
radiation. The daily mean minimum and maximum temperatures during
2009—2010 were 16.2 and 30.0 °C, respectively, along with an average of
8.1 h of bright sunshine and approximately 333.4 uM m™>s™" of solar
radiation. These genotypes were also grown under controlled
greenhouse (GH) conditions at the University of Saskatchewan (52°
07’ N latitude, 106° 38’ W longitude and 481.5 m altitude, Saskatoon,
SK, Canada) from March to July 2010. In the greenhouse, the average
daily minimum and maximum temperatures were 18 and 23 °C with an
18 h photoperiod and 385 uM m™ s™! of photosynthetically active
radiation.

Total RFO Determination. Total RFO concentration in chickpea
seed meal (500 + S mg) was determined by stepwise enzymatic
hydrolysis of complex RFO into p-galactose, p-fructose, and D-glucose
molecules using a-galactosidase (from Aspergillus niger) and invertase
(from yeast) using a commercial assay kit (Megazyme International
Ireland Ltd., Wicklow, Ireland). The resulting p-glucose concentration
was determined using glucose oxidase/peroxidase reagent (GOPOD)
that produced a red quinoneimine, the concentration of which was
determined at A ,, using a spectrophotometer (DU 800, Beckman
Coulter Inc, Fullerton, CA, USA). This method determined all
oligosaccharides including raffinose, stachyose, and verbascose concen-
tration as a group. Total RFO concentration was calculated on a molar
basis as 1 mol of each oligosaccharide contains 1 mol of p-glucose.

HPAEC-PAD Analysis of Chickpea Seeds’ Soluble Sugars.
Soluble sugars from chickpea seed meal (S00 + S mg) were extracted
using a method described by Frias et al.*® and Sanchez-Mata et al.*® with
some modifications.”” For quantification of each member of the
raffinose family, a recently optimized analytical method was followed
using high-performance anion exchange chromatography [ion chroma-
tography system (ICS 5000), Thermo Fisher Scientific, Stevens Point,
WL, USA] coupled with a disposable gold electrode, a Ag/AgCl
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reference electrode, and a CarboPac PA100 (4 X 250 mm) analytical
column (unpublished). Raffinose (16.1 min), stachyose (17.0 min), and
verbascose (19.5 min) were determined along with myo-inositol (1.7
min), galactinol (2.0 min), glucose (7.4 min), fructose (8.8 min), and
sucrose (10.8 min) within 20 min of run time.

Data and Statistical Analysis. Box plot analysis was employed to
represent variation among geographical regions for selected seed
constituents (Figures 1 and 2). Shannon—Weaver diversity index (SDI)
was calculated to analyze the diversity present in each geographical
region (Tables 2 and 3). For both SDI and box plot analysis, pooled data
from all three growing environments were used.

General linear model was applied to calculate analysis of variance
(ANOVA) using MINITAB 14 statistical software (Minitab Inc., State
College, PA, USA). Mean sum of squares (MSS) from ANOVA was
utilized to calculate heritability (h*).”® To determine the SDI, the
following formula was used:*®

SDI = (—ZR X log P)/log n

i=1

n represents the total number of phenotypic classes, and P; is the
proportion of total number of entries in the ith class. Phenotypic classes
were prepared by using MINITAB 14 statistical software.

B RESULTS AND DISCUSSION

Diversity Pattern among Geographical Regions. On the
basis of their origin, desi and kabuli genotypes were grouped into
seven geographical regions. In desi genotypes, the South Asian
region showed the highest diversity index (0.33—0.87) for all of
the selected seed constituents, as this region has maximum
representation (68 genotypes contributing about $59% to total
desi genotypes) in the germplasm collection (Figure 1).
Consequently, South Asian genotypes showed the highest
variation in seed constituents, ranging from 0.01 to 0.10 g/ 100
g, from 0.03 to 0.31 g/100 g, from 0.03 to 0.42 g/100 g, from 0.01
to 0.05 g/100 g, from 0.60 to 2.93 g/100 g, from 0.09 to 1.19 g/
100 g, from 0.18 to 2.36 g/100 g, and from 0.01 to 0.13 g/100 g
for myo-inositol, galactinol, glucose, fructose, sucrose, raffinose,
stachyose, and verbascose, with average values of 0.05, 0.17, 0.22,
0.01, 1.72, 0.74, 1.33, and 0.06 g/100 g of chickpea seed meal,
respectively (Figure 1). Southwestern Asia is one of chickpea’s
primary centers of origin, whereas sub-Saharan Africa contained
genotypes from Ethiopia considered to be a secondary center of
genetic diversity for chickpea. Therefore, the second highest SDI
values for all traits were expressed by genotypes either from
southwestern Asia or sub-Saharan Africa. SDI ranged from 0.29
to 0.76, from 0.13 to 0.68, from 0.15 to 0.68, from 0.27 to 0.68,
and from 0.23 to 0.51 for southwestern Asia, sub-Saharan Africa,
North Africa, Europe, and meso-America, respectively. This
germplasm collection had no desi genotype from South America,
whereas only one and four from North America.

In kabuli genotypes, the South Asian region showed the
highest SDI values for most chickpea seed constituents, such as
fructose (0.67), raffinose (0.86), stachyose (0.89), verbascose
(0.89), and total RFO (0.92). In South Asian genotypes,
concentrations of fructose, raffinose, stachyose, verbascose, and
total RFO varied from 0.01 to 0.05 g/100 g, from 0.48 to 1.13 g/
100 g, from 0.80 to 2.28 g/100 g, from 0.02 to 0.12 g/100 g, and
from 2.27 to 5.83 g/100 g with mean values of 0.01, 0.79, 1.46,
0.07, and 3.96 g/100 g (mmol/100 g for total RFO) of chickpea
seed meal, respectively (Figure 2). The highest SDI values for
myo-inositol (0.88) and sucrose (0.77) were observed for North
African genotypes with concentrations ranging from 0.02 to 0.09
g/100 g and from 1.29 to 3.59 g/100 g with mean values of 0.05
and 2.41 g/100 g of chickpea seed meal, respectively. Galactinol
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Figure 1. Box plot analysis for desi genotypes showing variation for selected chickpea seed constituents in different geographical regions using pooled

data from different growing environments. Upper and lower error bars represent the lowest and highest concentrations. Black and gray boxes indicate
third and second quartiles, whereas the middle line shows the median of the data set.

concentration ranged from 0.05 to 0.30 g/100 g in European seed meal that resulted in the highest SDI of 0.89 among all
genotypes with a mean concentration of 0.17 g/100 g of chickpea geographical regions. However, the highest SDI for glucose
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Figure 2. Box plot analysis for kabuli genotypes showing variation for selected chickpea seed constituents in different geographical regions using pooled
data from different growing environments. Upper and lower error bars represent the lowest and highest concentrations. Black and gray boxes indicate
the third and second quartiles, whereas the middle line shows the median of the data set.

Table 2. Shannon—Weaver Diversity Index (SDI) of Selected Chickpea Seed Constituents in Different Geographical Regions for
Desi Genotypes

SDI as per geographical region

seed constituent Europe meso-America North Africa South Asia southwestern Asia sub-Saharan Africa
myo-inositol 0.59 0.29 0.61 0.76 0.62 0.38
galactinol 0.58 0.26 0.43 0.75 0.46 0.67
glucose 0.51 0.50 0.68 0.85 0.76 0.68
fructose 0.27 0.23 0.15 0.33 0.29 0.13
sucrose 0.68 0.51 0.64 0.80 0.56 0.68
raffinose 0.54 0.21 0.48 0.74 0.68 0.62
stachyose 0.56 0.38 0.64 0.68 0.67 0.46
verbascose 0.57 0.39 0.64 0.87 0.56 0.62
total REO 0.61 0.42 0.67 0.74 0.69 0.66

(0.75) was calculated for southwestern Asian genotypes with value of 021 g/100 g of chickpea seed meal. South Asian
concentrations ranging from 0.11 to 0.31 g/100 g with a mean genotypes had the highest representation in the germplasm
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Table 3. Shannon—Weaver Diversity Index (SDI) of Selected Chickpea Seed Constituents in Different Geographical Regions for

@ *¥% significant at P < 0.001; ns, nonsignificant.

Kabuli Genotypes
SDI as per geographical region
seed constituent Europe South America North Africa South Asia southwestern Asia sub-Saharan Africa
myo-inositol 0.64 0.33 0.88 0.68 0.80 0.46
galactinol 0.89 0.36 0.87 0.75 0.86 0.35
glucose 0.63 0.32 0.54 0.65 0.75 0.43
fructose 0.62 0.36 0.33 0.67 0.58 0.00
sucrose 0.71 0.32 0.77 0.66 0.73 0.61
raffinose 0.60 0.32 0.71 0.86 0.82 0.61
stachyose 0.60 0.33 0.65 0.89 0.80 0.51
verbascose 0.62 0.36 0.73 0.89 0.78 0.35
total RFO 0.65 0.30 0.70 0.92 0.56 0.41
Table 4. Analysis of Variance and Heritability of Chickpea Selected Seed Constituents
mean sum of squares®
seed constituent genotype (G) environment (E) replication GXE heritability (h?)
Desi
myo-inositol 3.3 X 1074k 7.5 X 1072 5.7 X 10~ns 2.4 X 107k 0.10
galactinol 5.8 X 1073 0.5k 1.8 X 10 °ns LS X 107 ¥k 0.55
glucose 5.2 X 107 ¥k 0.27% 4.4 X 107°ns 3.2 X 107 ¥k 0.16
fructose 1.5 X 107 ek 1.8 X 1073%%* 2.8 X 10~°ns 1.2 X 107 ##% 0.05
sucrose 0.47%%% 7.2%%% 2.8 X 10~*ns 0.1k 0.37
raffinose 0.1%:%* 1.3%%% 6.0 X 10™*ns 1.0 X 1072k 0.56
stachyose 0.2 10.3%5 7.1 X 10™*ns 4.6 X 107k 0.52
verbascose 8.0 X 10 Hek 3.7 X 1072k 1.4 X 10™* ns 3.7 X 107 Hewx 025
total RFO 1.3 354 42 X 10’ns 0.2k 0.61
Kabuli
myo-inositol 3.8 X 107 Hksek 4.0 X 1072k 7.0 X 107ns 2.7 X 107 sk 0.10
galactinol 6.2 X 10735 0.3k 12X 107 ns 2.5 X 1073k 0.31
glucose 3.5 X 107k 0.1 1.6 X 10™*ns 3.3 X 1073k 0.02
fructose 5.4 X 1075k 1.1 X 107+ 1.5 X 10™°ns 4.1 X 107S#%% 0.07
sucrose 0.8%%* 10.1%%* 7.9 X 10~°ns 0.2 %%k 0.53
raffinose 5.5 X 1075 2.2%%% 2.4 X 107%ns 1.8 X 1072%%* 0.39
stachyose 0.2 13245 32X 107ns 6.0 X 1072k 0.39
verbascose 9.5 X 107 H#% 4.1 X 107 B8k 3.1 X 10™°ns 2.9 X 1074 0.39
total RFO 1.1%F%% 47, 1%%* 0.4 X 10™°ns 0.37%%% 0.45

collection, sharing about 32.7% of total kabuli genotypes
followed by genotypes from southwestern Asia (20%), North
Africa (18.2%), Europe (14.5%), and sub-Saharan Africa (9%),
respectively. On the basis of SDI, these genotypes were
conjointly considered as a diverse collection and used further
to study variation in chickpea seed constituents.

Impact of Genotype and Environment Influencing
Seed Constituents’ Concentration. Analysis of variance
(ANOVA) showed significant effect (P < 0.001) of genotype
(G) and growing environment (E) on concentrations of myo-
inositol, galactinol, glucose, fructose, sucrose, raffinose, sta-
chyose, verbascose, and total RFO in both desi and kabuli
genotypes. The interaction between genotype and growing
environment (G X E) also exhibited a significant effect (P <
0.001) on these seed constituents (Table 4). These results
concur with the conclusions of Kumar et al.'* showing a
significant effect (P < 0.0S) of genotype X location on sucrose,
raffinose, and stachyose concentration in seven soybean
genotypes. Recently, Tahir et al.”” reported a significant (P <
0.0001) effect of cultivar, environment, and their interaction on
glucose, sucrose, and RFO concentrations in lentil seeds.
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Variation for Selected Seed Constituents in Desi and
Kabuli Genotypes. HPAEC-PAD analysis revealed the highest
concentration of sucrose among soluble sugars in chickpea seeds.
Stachyose was the predominant RFO found in chickpea seeds
followed by raffinose, whereas verbascose was present only as a
small fraction. Previously, Frias et al, El—Adawy,31 Aguilera et
al,*” and Berrios et al.** also reported stachyose as a major RFO
in chickpea seeds. In desi type (Figure 3), genotypes grown in
GH showed significantly lower (P < 0.001) total RFO
concentration (1.58—4.67 mmol/100 g) compared to genotypes
grown in field conditions during 2009 (1.88—5.31 mmol/100 g)
and 2010 (2.80—4.95 mmol/100 g). GH-grown genotypes had
total RFO with a mean concentration of 3.32 mmol/100 g,
whereas in the field in 2009 and 2010 it was 4.09 and 3.66 mmol/
100 g, respectively. A similar pattern of total RFO was observed
in kabuli type (Figure 4) showing lower concentration (2.11—
4.56 mmol/100 g) in GH-grown genotypes than in field-grown
genotypes during 2009 (3.46—5.83 mmol/100 g) and 2010
(3.01-5.35 mmol/100 g).

Individual RFO members also accumulated at significantly
lower concentration in GH-grown genotypes than their field-
grown counterparts. In GH-grown desi type, raffinose (0.27—

dx.doi.org/10.1021/jf3054033 | J. Agric. Food Chem. 2013, 61, 4943—4952
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2010. Upper and lower error bars represent the lowest and highest concentrations. Black and gray boxes indicate third and second quartiles, whereas the
middle line shows the median of the data set.

0.95 g/100 g), stachyose (0.43—1.86 g/100 g), and verbascose during 2009 had average values of 0.85, 1.57, and 0.07 g/100 g for
(0.01-0.11 g/100 g) had mean values of 0.68, 1.15, and 0.05 g/ raffinose, stachyose, and verbascose with ranges of 0.09—1.10,
100 g, respectively (Figure 3). Genotypes grown in the field 0.18—2.36, and 0.02—0.11 g/100 g, respectively, whereas

4948 dx.doi.org/10.1021/jf3054033 | J. Agric. Food Chem. 2013, 61, 49434952
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Table S. Correlation among Chickpea Selected Seed Constituents in Desi and Kabuli Genotypes®

myo-inositol galactinol glucose
galactinol 0.647%%%
glucose 0.39%:# 0.00ns
fructose —0.03ns 0.07ns 0.01ns
sucrose 0.36%+%% 0.03ns 0.56%%*
raffinose 0.40%%* 0.397%%%* 0.127%%
stachyose 0.50%:#* 0.53%:4:* —0.01 ns
verbascose 0.49%%%* 0.40%%* —0.03 ns
total RFO 0.46%+%% 0.47%%% —0.01 ns
galactinol 0.687%*#%*
glucose 0.47%%% 0.12%*
fructose 0.04ns 0.15%%* —0.01ns
sucrose 0.33%%%* 0.23%%%* 0.39%%*
raffinose 0.427%%% 0.55%3%* 0.11ns
stachyose 0.44%#% 0.647%+% 0.01ns
verbascose 0.47%%% 0.49%%% 0.09ns
total RFO 0.44%%% 0.627%%#%* 0.01ns

fructose sucrose raffinose stachyose verbascose
Desi
—0.07ns
0.07ns 0.15%%*
0.07ns 0.09%* 0.78%*%
0.08ns 0.18%%* 0.50%*3% 0.64%*3%
0.04ns 0.08%* 0.85%** 0.91%** 0.60%**
Kabuli
—0.08ns
0.05ns 0.41%%*
0.07ns 0.35%%%* 0.89%#%*
0.05ns 0.41%%% 0.66%** 0.72%%%
0.06ns 0.33%%* 0.89%#* 0.92°%#3% 0.69%#%*

@ wk % and * are significant at P < 0.001, P < 0.01, and P < 0.05, respectively; ns, nonsignificant.

genotypes grown in the field during 2010 showed variation from
0.40 to 1.19 g/100 g, from 0.78 to 1.99 g/100 g, and from 0.01 to
0.13 g/100 g for raffinose, stachyose, and verbascose with mean
values of 0.75, 1.35, and 0.06 g/100 g, respectively (Figure 3).
Kabuli type chickpea genotypes followed the same pattern for
variation among RFO members. In GH-grown kabuli type,
raffinose (0.27—0.95 g/100 g), stachyose (0.40—1.65 g/100 g),
and verbascose (0.01—0.11 g/100 g) showed mean values of
0.66, 1.12, and 0.05 g/100 g, respectively (Figure 4). Kabuli
genotypes grown in the field during 2009 contained raffinose,
stachyose, and verbascose with mean values of 0.94, 1.79, and
0.08 g/100 g that ranged from 0.69 to 1.17 g/100 g, from 1.31—
2.38 g/100 g, and from 0.05 to 0.13 g/100 g, respectively.
However, genotypes grown in the field during 2010 ranged from
0.58 to 1.08 g/100 g, from 1.06 to 2.17 g/100 g, and from 0.04 to
0.12 g/100 g for raffinose, stachyose, and verbascose with mean
values of 0.84, 1.59, and 0.08 g/100 g, respectively (Figure 4).
The lower concentration of RFO in controlled growing
environment (GH with less temperature variation, longer
photoperiod, and higher photosynthetically active radiation)
supports physiological roles of these oli%osaccharides in
providing tolerance against abiotic stresses.”>* RFO act as
reactive oxygen species scavengers, signaling molecules, and
osmo-protectants, thus providing protection against oxidative,
freezing, salinity, and drought stress.>> %

In desi genotypes, sucrose concentration varied from 0.84 to
2.84 ¢/100 g in GH-grown genotypes with a mean value of 1.79
g/100 g, whereas in field-grown genotypes it ranged from 0.60 to
2.93 g/100 g and from 0.81 to 2.64 g/100 g during 2009 and
2010, having average values of 1.87 and 1.52 g/100 g,
respectively. However, sucrose varied from 1.05 to 3.33 g/100
g, from 1.33 to 3.59 g/100 g, and from 1.07 to 2.94 g/100 g in
kabuli genotypes grown under GH and field conditions (2009
and 2010) with mean values of 2.11, 2.62, and 2.03 g/100 g,
respectively. Higher sucrose concentration can be due to its role
as a universal molecule to transport carbon and a substrate for
raffinose biosynthesis.*' =" Sosulski et al.** estimated sucrose
content in hull-free chickpea seeds with mean value 0f2.69 g/100
g, which was about 32% of total sugars and highest among soluble
sugars. Later, Xiaoli et al® reported the amount of sucrose,
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raffinose, stachyose, and verbascose in seeds of 19 chickpea
cultivars varied from 1.80 to 5.22 g/100 g, from 0.46 to 0.92 g/
100 g, from 1.60 to 3.10 g/100 g, and from 0.27 to 0.70 g/100 g,
respectively. The variations for important chickpea seeds’
constituents described in the present study concur with the
range reported in previous studies conducted by Sanchez-Mata et
al,*® Frias et al,* Alajaji and EI—Adawy,23 Aguilera et al,* and
Berrios et al.>* concluding varying ranges of mean values for
sucrose, raffinose, and stachyose from 0.79 to 3.53 g/100 g, from
0.32 to 1.45 g/100 g, and from 0.74 to 2.56 g/100 g, respectively.

Other minor components of chickpea seeds, such as myo-
inositol, galactinol, glucose, and fructose were also determined.
In desi type (Figure 3), myo-inositol and galactinol ranged from
0.01 to 0.10 g/100 g and from 0.03 to 0.37 g/100 g with mean
values of 0.05 and 0.17 g/100 g, respectively. Similarly, myo-
inositol in kabuli type (Figure 4) varied from 0.02 to 0.10 g/100 g
but with a relatively higher mean value of 0.03 g/100 g. Kabuli
genotypes showed variation from 0.05 to 0.32 g/100 g for
galactinol, having a mean concentration of 0.1 g/100 g. Desi and
kabuli genotypes showed variation from 0.03 to 0.42 g/100 g and
from 0.11 to 0.34 g/100 g for glucose concentration with
averages of 0.22 and 0.10 g/100 g, respectively, whereas fructose
concentration varied from 0.001 to 0.03 g/100 g and from 0.003
to 0.07 g/100 g in desi and kabuli genotypes with mean values of
0.01 and 0.006 g/100 g, respectively (Figures 3 and 4). Sosulski
et al** and Jukanti et al.* also reported low concentrations of
galactinol in chickpea seeds with mean values of 0.50 and 0.39%
of chickpea seed dry matter, respectively. These results
correspond to the concentrations of glucose (0.05—0.10% of
dry matter) and fructose (0.1—0.3% of dry matter) in chickpea
seeds reported earlier.>>*?

Correlation among Chickpea Seed Components. Total
RFO showed a positive correlation with raffinose (r=0.85/0.89),
stachyose (r = 0.91/0.92), and verbascose (r = 0.60/0.69) in
chickpea genotypes (desi/kabuli) significant at P < 0.001 (Table
5). Raffinose, stachyose, and verbascose were collectively
determined during total RFO assay; hence, the resulting
correlation confirmed the accuracy and precision of the
HPAEC-PAD method for the concentration of RFO members
with enzymatic assay for total RFO determination.
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myo-Inositol was significantly (P < 0.001) and positively
correlated with galactinol (r = 0.64/0.68), glucose (r = 0.39/
0.47), sucrose (r = 0.36/0.68), raffinose (r = 0.40/0.42),
stachyose (r = 0.50/0.44), and verbascose (r = 0.49/0.47) in
desi/kabuli genotypes. Galactinol also showed a significant (P<
0.001) positive correlation with raffinose (r = 0.39/0.55),
stachyose (r = 0.53/0.64), and verbascose (r = 0.40/0.49) in
chickpea genotypes (desi/kabuli). In desi genotypes, sucrose was
positively correlated with raffinose (r = 0.15; P < 0.001),
stachyose (r = 0.09; P < 0.05), and verbascose (r = 0.18; P <
0.001), whereas in kabuli types, sucrose showed positive
correlations with raffinose (r = 0.41), stachyose (r = 0.35), and
verbascose (r = 0.41) significant at P < 0.001. In previous studies
also, sucrose showed significant positive correlations with
raffinose and stachyose concentrations in soybean seeds.*”**

A significant positive correlation was observed between
substrate and product concentrations in RFO biosynthetic
pathway in chickpea seeds. The first committed step in RFO
biosynthesis is galactinol formation in which myo-inositol and
UDP-galactose act as substrates. Furthermore, galactinol in
conjunction with sucrose, raffinose, and stachyose participates in
the biosynthesis of raffinose, stachyose, and verbascose,
respectively. Correlation analysis suggested substrate concen-
tration as one of the main regulating factors for varying RFO
concentration in different chickpea genotypes. The other
regulatory factors might be expression of genes encoding RFO
biosynthetic enzymes and/or their activities that still need to be
studied. Such studies would be utilized to identify the key step of
RFO biosynthesis. As in the case of Brassica napus,* antisense
technology was used to down-regulate galactinol synthase, which
resulted in substantial reduction in galactinol and stachyose
concentrations in mature transgenic seeds. Such transgenic
approaches can also be followed in chickpea to develop varieties
with reduced RFO concentration.

Heritability of Important Chickpea Seed Constituents.
The significant impact of environment and genotype X
environment on the performance of a particular genotype
suggests complex genetic regulation of traits.***" Broad sense
heritability (h®) was estimated on the basis of the pooled
ANOVA of genotypes grown in the field and greenhouse
environments (Table 4). Ayele51 described high, medium, and
low heritability as >0.6, 0.3—0.6, and <0.3, respectively. The h* of
important chickpea seed constituent was estimated with a
maximum of 0.61 for total RFO and a minimum of 0.05 for
fructose in desi genotypes, whereas h* in kabuli genotypes
showed a minimum of 0.02 for glucose and a maximum of 0.53
for sucrose. The results for h* are in agreement with the
heritability ranges reported for sucrose (0.43—0.87), raffinose
(0.42—0.56), and stachyose (0.30—0.74) in soybean seeds.***>%*
McPhee et al.*° also estimated narrow sense heritability for
sucrose, raffinose, and stachyose in common bean seeds with
values of 0.22, 0.54, and 0.44, respectively.

The present study revealed significant impacts of genotype
(G), environment (E), and G X E on concentrations of raffinose
family oligosaccharides, suggesting their complex genetic
regulation in chickpea seeds. Sucrose and stachyose were
identified as predominant soluble sugars and RFO in chickpea
seeds. A significant positive correlation was observed between
substrate and product concentration in the RFO biosynthetic
pathway. Among all of the genotypes screened, some were
identified as having low RFO concentration. Desi genotypes
ICCV 07115, ICCV 07116, and ICCV 07117 showed the lowest
total RFO (1.58—2.46 mmol/100 g), raffinose (0.27—0.52 g/100
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g), and stachyose (0.43—1.05 g/100 g) in the field- as well as GH-
grown environments. Accession ICC 16528 performed stably in
different environmental conditions, and it is one of the kabuli
genotypes with low total RFO (2.11—-3.84 mmol/100 g),
raffinose (0.39—0.74 g/100 g), stachyose (0.90—1.46 g/100 g),
and verbascose (0.02—0.06 g/100 g). These genotypes can be
utilized in chickpea improvement programs to develop cultivars
with reduced RFO concentration. The moderate heritability of
RFO trait suggested the use of a multilocation trial based
approach while using germplasms for chickpea improvement
programs.
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