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Abstract Botrytis grey mould (BGM) caused by

Botrytis cinerea Pers. ex. Fr. is the second most

important foliar disease of chickpea (Cicer arietinum

L.) after ascochyta blight. An intraspecific linkage

map of chickpea consisting of 144 markers assigned

on 11 linkage groups was constructed from recombi-

nant inbred lines (RILs) of a cross that involved a

moderately resistant kabuli cultivar ICCV 2 and a

highly susceptible desi cultivar JG 62. The length of

the map obtained was 442.8 cM with an average

interval length of 3.3 cM. Three quantitative trait loci

(QTL) which together accounted for 43.6% of the

variation for BGM resistance were identified and

mapped on two linkage groups. QTL1 explained

about 12.8% of the phenotypic variation for BGM

resistance and was mapped on LG 6A. It was found

tightly linked to markers SA14 and TS71rts36r at a

LOD score of 3.7. QTL2 and QTL3 accounted for

9.5 and 48% of the phenotypic variation for BGM

resistance, respectively, and were mapped on LG 3.

QTL 2 was identified at LOD 2.7 and flanked by

markers TA25 and TA144, positioned at 1 cM away

from marker TA25. QTL3 was a strong QTL detected

at LOD 17.7 and was flanked by TA159 at 12 cM

distance on one side and TA118 at 4 cM distance on

the other side. This is the first report on mapping of

QTL for BGM resistance in chickpea. After proper

validation, these QTL will be useful in marker-

assisted pyramiding of BGM resistance in chickpea.

Keywords Botrytis grey mould � Chickpea �
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Introduction

Chickpea (Cicer arietinum L.), also called garbanzo,

is globally the third most important food legume,

used mainly for human consumption and highly

valued for its nutritive value, particularly as a good

source of protein (17–24%), fibre, minerals
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(phosphorus, calcium, magnesium, iron, zinc) and

vitamins (Williams and Singh 1987). It is grown in

over 50 countries and imported by over 140 countries

(FAOSTAT 2008). During 2008, chickpea was grown

in 11.55 million ha with production of 8.77 million

metric tons and 81.2% of this area was in Southern

Asia, 6.7% in Western Asia, 1.7% in South-Eastern

Asia, 3.2% in Eastern Africa, 1.0% in Northern

Africa, 2.6% in Oceania, 1.9% in Northern America,

1.0% in Central America and 0.4% in Europe

(FAOSTAT 2008). The global average yield of

chickpea is about 760 kg per ha, while a well-

managed chickpea crop, which is free from abiotic

and biotic stresses, yields about 3,000–3,500 kg per

ha. Abiotic and biotic stresses are the major con-

strains to chickpea production (Gaur et al. 2008).

Botrytis grey mould (BGM) caused by Botrytis

cinerea Pers.ex.Fr. is the second most important

foliar disease of chickpea after ascochyta blight

caused by Ascochyta rabiei (Pande et al. 2006). The

incidences of BGM on chickpea has been reported in

many countries, including Argentina, Australia, Ban-

gladesh, Canada, Columbia, India, Nepal, Pakistan,

Spain and USA (Nene et al. 1984; Haware and

McDonald 1992, 1993; Bakr et al. 1993; Dhar et al.

1993; Karki et al. 1993; Malik et al. 1993; Haware

1998; Pande et al. 2002, 2006; Davidson et al. 2004).

BGM can cause complete yield loss in years with

extensive rains and high humidity (Pande et al. 2002,

2006). BGM as an epidemic form was first reported

from Argentina in 1965 (Carranza 1965) and from

Northern India during 1978/79 (Grewal and Laha

1983). BGM is the most serious constraint to

chickpea production in Nepal and it can reach

to epidemic form in wet winters. This disease is

considered to be the major cause for decline in

chickpea area in Nepal and Bangladesh (Bakr et al.

2002). Serious BGM epidemics were also observed in

Western Australia during 1997 and 1998 (MacLeod

and Sweetingham 2000).

The severity of the disease depends largely on

weather conditions and inoculum levels of the

pathogen (Pande et al. 2006). The disease is favored

by warm humid conditions and can occur at any

growth stage. Infected seed is often the primary cause

of infection (Cother 1977; Burgess et al. 1997).

Infected plants produce masses of spores, which may

become air-borne (MacLeod and Sweetingham 2000)

and spread the disease rapidly. Drooping of the

affected terminal branches is a common field symp-

tom (Haware and McDonald 1992) and branches may

break off at the point of infection (Grewal et al.

1992). The flowers are most severely affected and

leads to poor or no pod setting. The seeds, if formed,

are generally shriveled and covered with grey fungal

mat (Knights and Siddique 2002).

The limited reports available on genetics of

BGM resistance suggests that the resistance is

controlled by few genes. A single dominant gene

‘Bor1’ for resistance was identified by Tiwari et al.

(1985), while two genes with dominant and recessive

epistasis (13:3 ratio) were reported by Rewal and

Grewal (1989) and duplicate dominant epistasis (15:1

ratio) by Chaturvedi et al. (1995).

There has been rapid advancement in development

of genome map of chickpea and molecular mapping

of genes/QTL controlling agronomically important

traits, such as drought avoidance root traits (Chandra

et al. 2004; Gaur et al. 2008), fusarium wilt resistance

(Mayer et al. 1997; Ratnaparkhe et al. 1998; Tullu

et al. 1998; Winter et al. 2000; Sharma et al. 2004)

and ascochyta blight resistance (Santra et al. 2000;

Tekeoglu et al. 2002; Collard et al. 2003; Flandez-

Galvez et al. 2003; Udupa and Baum 2003; Cho et al.

2004; Lichtenzveig et al. 2005; Cobos et al. 2006;

Tar’an et al. 2007; Kottapalli et al. 2008). There was

no report available on mapping of QTL conferring

resistance to BGM. Thus, this study was conducted to

identify and map QTL for BGM resistance in

chickpea.

Materials and methods

Mapping population and its phenotyping

The mapping population comprised of 126 F10

derived recombinant inbred lines (RILs) of a cross

between a kabuli chickpea cultivar ICCV 2 which is

moderately resistant to BGM and a desi chickpea

cultivar JG 62 which is highly susceptible to BGM.

The RILs were developed in the chickpea breeding

unit of the International Crops Research Institute for

the Semi-Arid Tropics (ICRISAT), Patancheru, India

following a single seed descent (SSD) method. The

disease severity was scored on a 1–9 scale, where

1 = no infection on any part of the plant; 2 = minute

water-soaked lesions on emerging tender leaves,
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usually not seen; 3 = minute water-soaked lesions on

1–5% emerging and upper-most tender leaves, usu-

ally seen after careful examination; 4 = water-

soaked lesions on 6–10% upper-most tender leaves

and tender shoots; 5 = water-soaked lesions; soft

rotting of 11–25% of tender leaves and shoots;

6 = water-soaked lesions and soft rotting of 26–40%

of top leaves and shoots; 7 = soft rotting and fungal

growth on 41–55% of the leaves and branches;

8 = soft rotting, fungal growth on 56–70% of the

leaves, branches, and stems; 9 = extensive soft

rotting, fungal growth on above 70% of the leaves,

branches and stems. On this scale, ICCV 2 and JG 62,

the two parents of the RILs, had BGM scores of 6 and

9, respectively.

The RILs were screened for BGM resistance under

controlled environment conditions twice, with three

replications in each screening. The RILs were planted

in rows in plastic trays (30 9 20 9 5 cm) filled with

sterilized sand and vermiculate (4:1) with one row of

susceptible cultivar JG 62 after every nine rows of

RILs. Pure culture of B. cinerea was multiplied on

sterilized Mary gold (Tagetus erecta) flowers for

10 days at 20�C in Perceival incubator. Ten-day-old

seedlings of test lines, along with susceptible check

were inoculated with conidial suspension of B.

cinerea @ 3 9 105 conidia ml-1. Inoculated plants

were incubated at 15 ± 2�C and 100% RH with a

12 h photoperiod, 2,500–3,000 lux intensity (Pande

et al. 2006) till the end of the experiment. Final

disease score on a 1–9 scale was recorded at 18 days

after inoculation or when the disease severity on

susceptible parent showed a disease score of 9.

Genomic DNA of the RILs and the parental

cultivars was extracted from fresh young leaves (2 g)

collected from 14-day old seedlings following the

modified CTAB method described by Mace et al.

(2003). In order to test the quality and quantity of

DNA, the extracted genomic DNA along with the

standard and undigested k DNA in various concen-

trations was run on 0.8% agarose gel (containing

Ethidium bromide) and was visualized on gel docu-

mentation system.

Optimization for the five major components in a

PCR (concentrations of primer, template DNA,

Mg??, dNTP and enzyme) was carried out for every

primer following a modified (5 9 5) grid (Cobb and

Clarkson 1994). Optimal touch-down temperature

and number of amplification cycle were also

determined for each primer pair. Three different

‘‘Touch-down’’ PCR programs were designed with

Cp 55-45, Cp 60-55, Cp 65-60 depending on the Tm

value of the microsatellite primers (SSRs) (Buhari-

walla et al. 2005; Kottapalli et al. 2008). PCR was

setup in 5 ll reaction volume on a Gene Amp Model

9700 thermocycler (Perkin Elmer-Applied Biosys-

tems, Germany).

The parental cultivars ICCV 2 and JG 62 were

screened with SSR primers developed by Winter

et al. (1999) to identify polymorphic markers. PCR

reaction was setup in a 5 ll reaction volume using the

appropriate optimized protocol for each primer. The

PCR products were run on 1.5% agarose gel

containing ethidium bromide after adding bromophe-

nol blue dye. The amplification products were

visualized in a gel documentation system. The SSR

primers, which exhibited polymorphism between the

parental cultivars ICCV 2 and JG 62, were used for

genotyping the RILs. PCR was setup using the

appropriate optimized protocol and PCR program.

The total reaction volumes of 5 ll was setup in 96

and 384 well PCR plates and were amplified in a

Gene Amp Model 9700 thermocycler (Applied

Biosystems, Germany).

The PCR products were separated on non-dena-

turing PAGE (Polyacrylamide Gel Electroproresis).

Generally, 6% PAGE was used for the primers whose

separation was very distinct in the parents. For the

primers where the polymorphic bands were closer, a

higher percentage of gel 8–9% non-denaturing PAGE

(Biorad and Owl sequencing gel units) was used for

separation of PCR amplified products. The primers

that showed polymorphic bands in the parents with

only a few base pair (bp) difference were separated

on 4% denaturing urea-sequencing gel (Biorad

sequencing gel unit) after denaturing for 5 min at

94�C. Bands were visualized through a modified

silver staining protocol (Tegelstrom 1992, Buhari-

walla 2005). Gels were immersed in water for 3 min,

followed by 20 min in 0.1% CTAB solution and

0.3% ammonia solution for 15 min on a mechanical

gel shaker. Freshly prepared silver staining solution,

consisting of 0.1% (w/v) AgNO3 in 4 mM NaOH

solution, to which 0.5–0.6 ml of 25% ammonia was

titrated until the cloudy suspension became clear.

Gels were gently agitated in the silver nitrate solution

for 30 min, and developed in 1.5% (w/v) sodium

carbonate and 0.02% (v/v) formamide solution until
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bands appeared. The gels were rinsed in water, fixed

in 1.5% glycerol solution and scanning and docu-

mentation of marker data was carried out.

QTL analysis

Join map� version 3.0 software (Van Ooijen and

Voorrips 2001) was employed for linkage analysis.

Genetic distances were computed using Kosambi

(1944) function and LOD score of 3.0 was in

construction of linkage map. Plab QTL (Utz and

Melchinger 1996) and iMAS (Integrated marker-

assisted selection system) were the software utilized

and composite interval mapping (Jansen and Stam

1994; Zeng 1994) was used to compute ‘QTL

likelihood plots’ covering the entire genome. A

default LOD score was fixed at 2.5 to identify the

QTLs on linkage groups. Estimates of R2 value for

explaining the phenotypic variance were computed

from the ANOVA table using the software Plab QTL

(Utz and Melchinger 1996).

Results and discussions

The frequency distribution of RILs for BGM disease

incidence (recorded on 1–9 score) depicted a normal

distribution indicating that resistance to BGM was

quantitative in nature (Fig. 1). Analysis of variance of

disease score data suggested significant variation in

the genotypes for reaction to botrytis. The coefficient

of variation observed was low for both the screening

(0.17 and 0.19) and the correlation between scores of

two screening was significant (r = 0.56) indicating

the consistency of the disease score data. A total of

204 marker data consisting of 91 SSR, 33 RAPD, 43

DAF, 5 MP-PCR, 11 RMMFP, 17 AFLP and 4 ISSR

markers and 12 morphological markers were utilized

for construction of linkage map. Of these, 77.5% of

the markers segregated in the ratio of 1:1 as expected

for an RIL population and 22.5% of markers showed

distorted segregation. The markers, which showed

distorted segregation, were excluded from the map. A

linkage map consisting of 144 markers was con-

structed comprising of 11 linkage groups with 8

major and 3 minor groups. The 8 major linkage

groups (LG 1–LG 8) are in accordance with the basic

chromosome number of chickpea. Among minor

linkage groups, two linkage groups LG 1 and LG 6

had fragments named as LG 1B and LG 6B,

respectively, and another linkage group found

unlinked was designated as LG 9. The length of the

map obtained was 442.8 cM with an average interval

length of 3.3 cM.

There has been a slow progress in development of

a dense linkage map of chickpea because of limited

number of markers available for chickpea and low

level of polymorphism exhibited by the cultivated

species for the available markers. As to overcome the

latter constraint of lower polymorphism in the

cultivated chickpea, many studies (Gaur and Slinkard

1990a, b; Kazan et al. 1993; Simon and Muehlbauer

1997; Tekeoglu et al. 2000; Winter et al. 2000;

Collard et al. 2003; Pfaff and Kahl 2003; Millan et al.

2006) used interspecific mapping populations in

development of a linkage map of chickpea that

integrated majority of marker loci onto map (Cobos

et al. 2006; Nayak et al. 2010) and enabled mapping

genes/QTL for important traits. However, a majority

of markers identified from interspecific mapping

populations are likely to be monomorphic in intra-

specific crosses and, thus, would have limited appli-

cation in the applied breeding programs which

largely use intraspecific crosses. Keeping this in

view, several studies (Cho et al. 2002; Flandez-

Galvez et al. 2003; Udupa and Baum 2003; Cho et al.

2004; Tar’an et al. 2007: Kottapalli et al. 2008) used

intraspecific mapping populations for linkage map-

ping in chickpea. The number of markers mapped in

these studies varied from 52 (Udupa and Baum 2003)

to 144 (Tar’an et al. 2007). The intraspecific linkage

map of 144 markers developed in this study is

equivalent to the largest intraspecific linkage map of
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Fig. 1 Frequency distribution of BGM disease scores in ICCV

2 9 JG 62 RILs
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chickpea reported so far by Tar’an et al. (2007). The

present linkage map was compared with the earlier

reported linkage maps (Winter et al. 2000; Cho et al.

2002; Kottapalli et al. 2008) and linkage groups 1–8

were numbered based on homologies.

Using composite interval mapping (Jansen and

Stam 1994; Zeng 1994), three QTL were identified

(at a minimum LOD score of 2.5) for resistance to

BGM (Figs. 2 and 3a, b). QTL1 explained about

12.8% of phenotypic variation for BGM resistance

and was identified on LG 6A with peak position at

36 cM. It was found to be tightly linked to markers

SA14 and TS71rts36r at a LOD score of 3.74. QTL2

explained 9.5 of the phenotypic variation for BGM

resistance and was found on LG 3 at LOD 2.73

having peak position at 26 cM. It was flanked by the

markers TA25 and TA144 and is positioned at 1 cM

away from TA25. QTL3 was the strongest QTL for

BGM resistance (explained 48.0% of the phenotypic

variation) and was detected on LG 3 at a LOD score

of 17.74 with peak position of the QTL at a distance

of 56 cM. QTL3 was flanked by TA159 at 12 cM

distance on one side and TA118 at 4 cM distance on

the other side (Fig. 2). The total combined pheno-

typic variance explained by these three QTL was

43.6% (Table 1). It is noteworthy that the QTL were

obtained at the same position irrespective of the

software used in our study. To our knowledge, this is

the first report on identification and mapping of QTL

for BGM resistance in chickpea.

The earlier mapped disease resistance genes/QTL

in chickpea included those for resistance to ascochyta

blight and fusarium wilt. The largest number of

genes/QTL for disease resistance has been reported

on LG 2. These include six genes for resistance to

different races of fusarium wilt (Mayer et al. 1997;

Ratnaparkhe et al. 1998; Tullu et al. 1998; Winter

et al. 2000; Sharma et al. 2004; Sharma and

Muehlbauer 2007; Halila et al. 2009) and two QTL

for resistance to ascochyta blight (Udupa and Baum

2003; Cho et al. 2004; Cobos et al. 2006; Iruela et al.

2007). Thus, LG 2 of chickpea has been found to be a

hot spot for pathogen defense (Millan et al. 2006).

One gene for fusarium wilt resistance has been

mapped on LG 5 (Cobos et al. 2005; Sharma and

Muehlbauer 2007) and other QTL for ascochyta

blight resistance have been mapped on LG 3 (Tar’an

et al. 2007; Kottapalli et al. 2008), LG 4 (Tar’an et al.

2007), LG 6 (Cho et al. 2004; Tar’an et al. 2007) and

LG 8 (Flandez-Galvez et al. 2003; Lichtenzveig et al.

2005). The BGM resistance QTL identified in this
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NO_Y_1318
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TA322
TA3523
TS5724
TA2525 QTL 2

TA1066
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TA14432
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55
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TA2233
Seed size 35
SA14TS71rts36r36
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TA176S39
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QTL 3 TA44X42
TR1S47
TR3548
NO_87_3 opni18a49
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TR4060

NO_3985
TA14s64
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Fig. 2 Position of BGM resistance QTL on LG 3 (QTL 2 and

QTL 3) and LG 6A (QTL 1) of chickpea based on the study of

ICCV 2 9 JG 62 RILs

Fig. 3 a Graphical representation of QTL 2 (at LOD 2.73) and

QTL 3 (at LOD 17.74) for BGM resistance on LG 3 of

chickpea. b Graphical representation of QTL 1 (at LOD 3.74)

for BGM resistance on LG 6A of chickpea
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study and the fusarium resistance genes mapped

earlier are in different linkage groups, indicating ease

in combining resistance to these diseases. However,

combing QTL for resistance to BGM and ascochyta

blight which share the same linkage groups (LG 3

and LG 6) would require large population depending

on their position.

The three QTL identified for BGM resistance

together explained large phenotypic variation

(43.6%) for BGM resistance. This suggests that the

resistance to BGM is under control of few major genes.

In earlier studies on genetics of BGM resistance, a

single dominant gene ‘Bor1’ for resistance was

identified by Tiwari et al. (1985), while two genes

with epistatic interaction were reported by Rewal and

Grewal (1989) and Chaturvedi et al. (1995). When

we converted BGM disease score of 126 RILs into

two classes—resistant (score B 7) and susceptible

(score C 8), a ratio of 54 (resistant): 72 (susceptible)

was found. The goodness-of-fit test for a 1:1 ratio

(expected for a monogenic trait in RILs) gave a chi-

square value of 2.29 which was non-significant at

probability level of 0.1. This suggested presence of a

major gene for BGM resistance. When this major gene

was used in mapping it corresponded to the strongest

QTL (QTL3) which was identified by treating BGM

resistance as a quantitative trait and using disease

score in QTL mapping. Thus, QTL3 may indeed be a

major gene for BGM resistance and correspond to

single gene for resistance reported by Tiwari et al.

(1985).

Developing chickpea cultivars with high levels of

BGM resistance has been challenging due to lack of

sources of high levels of resistance in the cultivated

chickpea (Pande et al. 2006). There is a need to

identify diverse genes for resistance from different

sources so that these can be pyramided to obtain

higher levels of resistance. The markers closely

linked with BGM resistance QTL identified in this

study can facilitate identification of diverse genes and

their pyramiding in a single genotype. Sources with

higher levels of resistance, as compared to the

cultivated species, are available in some wild Cicer

species, including C. judaicum, C. bijugum, C.

echinospermum, and C. pinnnatifidum (Singh et al.

1991; Haware 1998; Pande et al. 2002). Of these wild

species, C. echinospermum is in the primary genepool

and being used in transfer of BGM resistance to the

cultivated species (ICRISAT 2007). As the wild

species posses many undesirable traits, several cycles

of backcrossing are required to recover the genome of

cultivated species. The QTL mapped in this study

would greatly facilitate marker-assisted backcrossing

for introgression of BGM resistance from wild

species and reduce number of backcrossing required,

particularly when both foreground and background

selections are used.

In conclusion, we constructed an intraspecific

linkage map of chickpea from ICCV 2 9 JG 62

RILs covering a genome length of 442.8 cM with an

average interval of 3.3 cM and mapped three QTL

which accounted for 43.6% of phenotypic variation

for BGM resistance. These QTL, after proper

validation, can be used for marker-assisted breeding

for BGM resistance in chickpea.
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