PULSE PATHOLOGY SUB-PROGRAM (PIGEONPEA)

STAFF

Dr. Y.L. Nene		Principal Plant Pathologist (Pulses
Dr. M.V. Reddy		Plant Pathologist S-2
Dr. J. Kannaiyan		Plant Pathologist S-l
Mrs. Sheila Vijayakumar		Technical Assistant
Mr. T.N. Raju		Technical Assistant
Mr. P. Radhakrishna	••••	Technical Assistant (From December 1978)
Mr. K. Prabhakara Reddy		Field Assistant
Mr. P. Rama Murthy		Secretary-I (Up to December 1978)
Mr. A. Chandar		Secretary-I (From April 1979)
Mr. R. Narsing Rao		Stenographer
Md. Sharfuddin Khan		Driver-cum-General Assistant
Mr. M.M.S. Ali Baig		Driver-cum-General Assistant

PULSE PATHOLOGY SUB-PROGRAM (PIGEONPEA)

LIST OF APPROVED PROJECTS

(1978-1980)

Sub-program Leader : Y.L. Nene

<u>No.</u>	<u>Title</u>	<u>Project Scientist</u>	Cooperators
PP-Path-1	Studies on pigeonpea wilt	J. Kannaiyan	K.B. Saxena L.J. Reddy S.C. Gupta
PP-Path-2	Studies on sterility mosaic of pigeonpea	M.V. Reddy	D.V.R. Reddy W. Reed R.Jambunathan K.B. Saxena L.J. Reddy S.C. Gupta
PP-Path-3	Studies on Phytophthora blight of pigeonpea	J. Kannaiyan	K.B. Saxena L.J. Reddy S.C. Gupta
PP-Path-4	International survey of pigeonpea diseases	Y.L. Nene	M.V. Reddy J. Kannaiyan J.M. Green D. Sharma

PROJECT: PP-PATH-1 (78): STUDIES ON PIGEONPEA WILT

1.	SUMM	ARY		• • • •	1
ΙΙ.	INTR	ODUCTIO	N	• • • •	2
ΙΙ.	FIEL	D STUDI	ES		2
	Α.	Further	development of sick plots		2
	В.	Surviva	l of the pathogen		4
	С.	Screeni	ng in sick plots	• • • •	6
		1. Bree	ders' material		6
		(a)	F ₂ bulks		6
		(b)	F ₃ progenies		7
		(c)	F ₄ progenies		8
			F ₅ progenies	• • • •	9
		(e)	F ₆ and F ₇ progenies		9
			Triple and top cross progenies		10
		(g)	Germplasm selections		11
		(h)	Parental and crossing block entries		14
		(i)	Selective mating population selections	to day to	16
		(j)	Selections from M-1 field	• • • •	16
		(k)	Selections from RA-28 field and wilt nursery	• • • •	16
		(1)	Male sterile lines		16
		2. Germ	plasm		17
		3. A11	India coordinated trial entries	0 % 6 0	17
		4. Nati	onal (All India) Uniform Wilt trial	• • • •	17
		5. Mult	ilocation testing of ICRISAT entries		19
		6. Mate	rial collected in surveys		19
		7. Prog	enies promising against Phytophthora ht		21
		8. Prod	menies resistant to sterility mosaic	9 4 6 6	22

	Ρ	age No
9. Progenies promising against wilt	u c •	23
10 Progenies promising against wilt and resistant to sterility mosaic		29
IV. LABORATORY/NET HOUSE STUDIES	0 0 0 U	31
A. Identification and grouping of Fusarium udum isolated from samples collected in surveys	v • • •	31
B. Pot screening technique		32
<pre>Development of sick pots</pre>		32
2. Germplasm screening	0 0 • 6	32
C. Adoption of 'sand culture' technique		33
PROJECT: PP-PATH-2(78): STUDIES ON STERILITY MOSAIC OF PIGEO	NPEA	
I. SUMMARY	0 • 3 0	34
II INTRODUCTION		36
III. ETIOLOGY AND EPIDEMIOLOGY	uano	36
A. Transmission		36
1. Graft	U 6 6 7	37
2. Dodder	• 0 0 •	37
3. Mechanical		37
(a) From host tissue	• • • •	37
(b) From mite vector		38
B. Virus-vector relationship	0 9 0 6	38
<pre>1. Influence of number of mites</pre>	* 200	38
Influence of acquisition access period	9 10 0	. 38
C. Maintenance of non-viruliferous mite colony		. 39
D. Host range		40
E Purification		41
F. Disease spread		41
G. Effect of Bavistin on symptom expression		43

			Page No
IV.	ESTIMATION OF LOSSES	• • • •	43
	A. Incubation period	• • • •	43
	B. Percent infection	• • • •	44
	C. Effect on yield	• • • •	45
	 Yield based on total plants 	• • • •	45
	Yield based on infected plants	• • • •	45
	D. Effect on yield components	• • • •	45
	 Primary branches 	• • • •	45
	Secondary branches	• • • •	45
	Tertiary branches	••••	49
	4. Pod number	• • • •	49
	Hundred seed weight	• • • •	49
	6. Harvest index	••••	49
٧.	NATURE OF RESISTANCE	• • • •	49
	A. Methodology	• • • • •	49
	B. Results and discussion	••••	53
VI	INFLUENCE OF PLANTING DATE		53
VII.	SCREENING FOR DISEASE RESISTANCE	• • • •	54
	A. Screening nursery	• • • •	54
	B. Screening	• • • •	55
	1. Germplasm	• • • •	55
	2. Germplasm selections		55
	(a) 1975-76 selections		55
	(b) 1976-77 selections		57
	(c) 1977-78 selections		57
	(d) Promising selections		58
	3. Breeding materials	• • • •	59
	(a) F_1 and F_2 materials	• • • •	59
	(b) F ₃ progenies	• • • •	59
	(c) F _A progenies		60

					Page	No.
		(d)	F ₅ progenies	9 • 0 0	61	
		(e)	Promising breeding and germplasm materials		62	
		(f)	Advanced triple cross progenies	0 0 6	63	
		(g)	Preliminary triple cross progenies		64	
		(h)	F ₄ Progenies from generation tests		65	
		(i)	Triple cross progeny bulks		65	
		4 Male	steriles		66	
		5. ACT ((All India trials) materials	0 0 11 6	66	
		(a)	EACT		66	
		(b)	ACT-1	U 0 9 0	67	
		(c)	ACT-2	• • · •	68	
		(d)	ACT-3	0 2 0 •	69	
		6. Mater	rials from other research centres		69	
		7. Steri	ility Mosaic National Uniform Nursery	y	70	
		8. Phyto	ophthora blight promising lines	• • • •	71	
		9. Wilt	National Uniform Nursery	4449	71	
PROJECT:	PP-PA	TH-3(78):	: STUDIES ON PHYTOPHTHORA BLIGHT OF	PIGEO	ONPEA	
Ι.,	SUMM	ARY		0 0 0 0	73	
П	INTR	ODUCTION		0066	74	
Ш.	FIEL	D STUDIES	S		74	
	Α.	Breeder	s' material		74	
		1 F ₃ ai	nd F ₄ progenies		74	
		2. Prog	enies from West Indies lines	0 0 0 0	75	
		3. Male	sterile lines		75	
		4. Cros	sing block entries		76	
	В.,	Progenie and par	es from blight promising germplasm ental lines	onae	77	
	C .	Progeni	es from blight promising lines		78	
	D.	Wilt pr	omising progenies	0 6 3 9	80	

			Page	e No.
	Ε.	Sterility mosaic resistant progenies	8	32
		1. Germplasm selections	8	32
		2. Breeding material	8	32
	F.	Sterility mosaic resistant and wilt promising progenies	8	3 4
	G.	Materials collected from Madhya Pradesh	8	35
	н.	ACT (All India trials) materials	8	36
	I.	Blight in the sterility mosaic screening nursery $% \left(1\right) =\left(1\right) \left(1$	8	36
IV.	LAB	ORATORY/NET HOUSE STUDIES	8	37
	Α.	Isolation and identification of ${\it Phytophthora}$ from material collected in survey trips and at ICRISAT Center	i 8	37
		1. Growth rate	8	38
		2. Morphological studies	8	39
		3. Sporangia	8	39
		4. Mating studies	9	3 3
		5. Pathogenicity tests	9	9 4
		6. Designation of the causal agent of blight of pigeonpea as <i>P. drechsleri</i> f. sp. <i>cajani</i>	10)2
	В.	Screening	10)2
		1. Germplasm	10)2
		2. Sterility mosaic resistant lines	10	03
		 Reaction of blight promising lines (against P2 isolate) to P3 (Delhi) and P4 (Kanpur) isolates 	10)4
	С.	Growth of five pigeonpea <i>Phytophthora</i> isolates on five media	10) 5
	D.	Fungicidal seed treatment studies	10) 5
	Ε.	Longevity of Phytophthora culture in vitro	10	07
	F.	Growth of Phytophthora on media incorporating	10	07

PROJECT: PP-PATH-4(78): INTERNATIONAL SURVEY OF PIGEONPEA DISEASES

Ι.	SUMMARY	9 ♦ ∞ 0	108
11	INTRODUCTION	0 n o r	108
111	SURVEYS	0.000	109
	A. Uttar Pradesh	6 · 3 · 6	109
	B. Phytophthora blight in Delhi and Kanpur	6 11 6 6	130
IV.	YELLOW MOSAIC	a o 6 o	130
	A Introduction	u • e c	130
	B. Incidence at ICRISAT Center	2 * ^ *	131
	C. Incidence in monthly plantings	0 2 / 0	131
٧.	POWDERY MILDEW AND STERILITY MOSAIC	6.0 • •	132
	A Introduction	, * a •	132
	B. Materials and Methods	b e e	132
	C. Results	u n e e	133
	D. Discussion		137
	E. Powdery mildew in ACT materials		137
۷1.	INTERACTION BETWEEN STERILITY MOSAIC AND SPIDER N	MITES	138
PROJECT:	SPECIAL PROJECT: MULTIPLE DISEASE RESISTANCE IN PI	GEONPEA	
I	SUMMARY	6 0 6 E	139
11	INTRODUCTION	c	139
111	DEVELOPMENT OF SCREENING NURSERY	6 A 6 U	139
IV.	PROPOSED SCREENING PROCEDURE	e u , u	141
٧	MATERIALS SCREENED DURING 1978-79	6 6. 6	141

PENDIX		Page No.
I.	Screening of F_3 progenies (10 crosses) for wilt resistance in Vertisol sick plot- A	144
II.	Screening of F4 progenies (from BA-2) for wilt resistance in Vertisol sick plot - A	156
III.	Screening of F ₄ progenies (5 crosses) for wilt resistance in Vertisol sick plot - A	160
IV.	Screening of F_5 progenies for resistance to wilt in Vertisol sick plot - A	171
٧.	Results of screening selective mating population selections for wilt resistance in Vertisol sick plot- B	173
VI.	Results of screening selections from M-1(DC-F3) A for wilt resistance in Vertisol sick plot - B	178
VII.	Results of screening selections from M-1(DC-F ₃) B for wilt resistance in Vertisol sick plot-B	187
VIII.	Results of screening of F_4 progenies selected from M-1 for wilt resistance in Vertisol sick plot - B	196
IX.	Results of screening of F_4 & F_3 progenies (select ed from wilt nursery, 1976) for wilt resistance in Vertisol sick plot- B	198
х.	Results of screening of selections (F $_4$) from RA-28 for wilt resistance in Vertisol sick plot - B	201
XA.	Results of screening of selections from RA-28 (F $_4$ & F $_5$) for wilt resistance in Vertisol sick plot - B	204
XI.	Results of screening of germplasm lines for wilt resistance in Vertisol sick plot - B	207
XII.	Results of screening of ACT pigeonpea lines aga inst wilt in sick plot B during 1978 K	209
XIII.	Results of screening of Phytophthora blight pro mising progenies against wilt in Vertisol sick plot - B	211
XIV.	Results of screening of sterility mosaic resis tant germplasm selections against wilt in Vertisol sick plot - B	217

XV .	Results of screening of single plant progenies of sterility mosaic resistant materials for wilt resistance in Vertisol sick plot - B	220
XVI.	Results of screening of progenies resistant to sterility mosaic against wilt in Vertisol sick plot - A	229
XVII &. XVIII	Screening of single plant progenies for resis tance to wilt in Alfisol sick plot - A	231
XIX	Screening of single plant progenies for resistance to wilt in Vertisol sick plot - A	235
XX.	Screening of single plant progenies from sick field wilt tolerant lines for resistance to wilt in Vertisol sick plot - A	243
XXI .	Screening of sterility mosaic resistant and/ wilt promising progenies for resistance to wilt in Vertisol sick plot - A	248
XXII.	Results of screening germplasm against pigeonpea \dots wilt in pots	250
XXIII.	Results of screening of pigeonpea germplasm acces sions for sterility mosaic resistance during 1978-79	259
XXIV	Results of screening of pigeonpea germplasm select tions made in 1976-77 for sterility mosaic resistance during 1978-79	268
XXV.	Results of screening of pigeonpea germplasm sel ections made in 1977-78 for sterility mosaic resistance during 1978-79	294
XXVI.	Results of advanced selections of germplasm for sterility mosaic resistance during 1978-79	316
XXVII	Results of screening of pigeonpea material for inheritance of resistance to sterility mosaic during 1978-79	327
XXVIII.	Results of screening of F_3 progenies of pigeon pea from 1977-78 sterility mosaic nursery to sterility mosaic during 1978-79	337
XXIX.	Results of screening of F ₄ progenies of pigeon pea from 1977-78 sterility mosaic nursery for sterility mosaic resistance during 1978-79	356

APPENDIX		Page No.
XXX.	Results of screening of F_5 progenies of pigeon pea from 1977-78 sterility mosaic nursery for sterility mosaic resistance during 1978-79	365
XXXI.	Results of screening of advanced selected germ plasm and breeding materials for sterility mosaic resistance during 1978-79	387
XXXII.	Results of screening of advanced F_4 & F_5 triple cross progenies of pigeonpea for sterility mosaic resistance during 1978-79	393
XXXIII.	Results of screening of F_3 , F_4 , & F_5 triple cross progenies of pigeonpea for sterility mosaic resistance during 1978-79	398
XXXIV.	Results of screening of F_4 progenies of pigeonpea from generation tests for sterility mosaic resistance during 1978-79	406
XXXV.	Results of screening of F ₄ triple cross progeny bulks of pigeonpea for sterility mosaic resistance during 1978-79	418
XXXVI	Results of screening of F_3 and F_4 progenies for Phytophthora blight resistance in RA-9 nursery	427
XXXVII.	Results of screening of West Indies lines (single plant progenies) \underline{a} / for resistance to Phytophthora blight \underline{b} /	441
XXXVIII.	Results of screening of progenies of germplasm and parental lines for Phytophthora blight \underline{a} /	442
XXXIX.	Screening of single plant progenies of promising lines to Phytophthora blight in RA-9 nurserya/	443
XL.	Screening of wilt promising progenies for Phytoph thora blight resistance in RA-9 nurserya/	446
XLI &. XLII.	Screening of sterility mosaic resistant progenies (Germplasm selections & Breeding materials) for Phytophthora blight in RA-9 nurserya/	449
XLIII.	Results of screening of $ACT^{\underline{a}/}$ pigeonpea lines against Phytophthora blight in the field (RA-9) during 1978 K	456

APPENDIX		۲	age No
XLIV	Screening of pigeonpea germplasm for Phytophthora blight resistance in pot culture	• • • •	458
XLV .	Screening of sterility mosaic resistant (SMR) germplasm selections against Phytophthora blight of pigeonpea (pot culture)		475
XLVI.	Trip report of Dr. J. Kannaiyan	• • • •	478
XLVII.	Results of screening sterility mosaic resistant progenies (F_3 & F_4) in multiple disease nursery	••••	480
XLVIII.	Results of screening of Phytophthora resistant F ₃ progenies of pigeonpea for sterility mosaic resistance during 1978-79	• • • •	500
XLIX.	Brief report on trips to Parbhani, Jabalpur, Dharwar, Hissar, Kanpur, Varanasi, and Faizabad Y.L. Nene	• • • •	509
L.	Report on visit to Dholi, Bihar (April 4-6, 1979) M.V. Reddy	• • • •	515
LI.	Publications		518

PROJECT: PP-PATH-1(78): STUDIES ON PIGEONPEA WILT

I. SUMMARY

- 1. The incidence of wilt in the susceptible check in sick plots was higher than in the last year. The level of "sickness"in Vertisol sick plots 'A' and 'B' and Alfisol sick plot 'A' as determined by wilt incidence in susceptible check line ICP-6997 was 93.5, 93.3 and 99.6 percent, respectively. The newly developing Alfisol sick plot 'B' had 72.2 percent wilt incidence.
- 2. Onset of wilt was noticed in July, a month earlier than observed last year. Marked increase in wilt incidence occurred in September in Alfisol sick plot 'A' and in November in Vertisol sick plot 'A' and 'B'.
- 3. The wilt fungus Fusarium udum could not be isolated from stubble buried three and half and four years ago in both Alfisol and Vertisol. The average loss in weight during the four years since burial of stubble in Vertisol and Alfisol was 99.8 and 93.3 percent, respectively.
- 4. A large number of breeding material was screened in the sick plots. This included F_2 bulks, F_3 , F_4 , F_5 , and F_6 progenies, triple crosses, top crosses, germplasm selections, selective mating population selections, male sterile lines, parental and crossing block entries. Promising materials are being advanced for further study/screening.
- 5. One hundred and fifty-three germplasm accessions were screened in a Vertisol sick plot and all were susceptible to wilt.
- 6. Out of 58 ACT (All India trial) entries screened, only one entry (BDN-1) showed low wilt incidence.
- 7. In the National Uniform Wilt Trial, out of 12 ICRISAT entries 6 showed low wilt in both Alfisol and Vertisol sick plots. Twenty-seven entries received from cooperators in National Uniform Wilt Trial were also screened in both the sick plots. Amongst the better ones were: AWR-74/15 and Purple-1.
- 8. Twelve ICRISAT pigeonpea entries were tested at nine locations (including two locations in ICRISAT Center, Vertisol and Alfisol sick plots) in National Uniform Wilt Trial in cooperation with All India Coordinated Pulse Improvement Programme. One entry, ICP-8863 (15-3-3-sel)showed less than 10% incidence at all locations. Other two entries; ICP-8859 and -8860 performed well at most locations.

- 9 Two hundred and sixty-four Phytophthora blight promising progenies were screened for wilt in sick plots. Out of these, only three progenies showed low wilt.
- 10. One hundred and six sterility mosaic resistant germplasm selections were screened in wilt sick plot. Of these only six progenies showed low wilt. Another set of four hundred and twelve sterility mosaic resistant progenies were screened for wilt. Of these twenty-seven progenies showed low wilt.
- 11. Seven hundred and fifteen progenies from wilt promising lines were screened. Of these 325 progenies recorded low wilt.
- 12. Only Fusarium udum was isolated from wilt specimens collected during the survey in Uttar Pradesh state of India.
- 13. A 'wilt sick pot' technique was developed for large screening of germplasm and other materials.
- 14. Over 700 germplasm accessions were screened for resistance by the 'sick pot' technique. Three accessions showed less than 10% wilt incidence, whereas the susceptible check line, ICP-6997, recorded more than 75% incidence.

II. INTRODUCTION

During this year we continued studies on survival, development of sick plots and screened a large number of breeding and other materials in sick plots. We developed 1000 wilt sick pots for screening large number of germplasm round the year.

III. FIELD STUDIES

A. Further development of sick plots

We now have four wilt sick plots at ICRISAT Center; i.e., two in Vertisol ('A' and 'B') and two in Alfisol ('A' and 'B'). The total area of these sick plots is 3.50 ha (3.00 ha in Vertisol and 0.50 ha in Alfisol). The following steps were taken to further increase and/or maintain the 'sickness' of these plots.

Vertisol sick plot 'A' (approx. 1 5 ha)

July 3, 1978 : The susceptible check line, ICP-6997, was planted after every four test nows Rest of field planted with breeding materials.

March 3, 1979 (observation)		The wilt incidence was 93.5% in ICP-6997
May 15, 1979	:	All the stubble below the soil level were chopped and incorporated into soil.
Vertisol sick plot 'B	· (ap	prox 1.5 ha)
Ju ¹ y 4, 1978	7	The susceptible check line, ICP-6997, was planted after every four test rows. Rest of the field was planted with germplasm and breeding materials.
March 4, 1979 (observation)	;	The wilt incidence was 93.3% in ICP-6997
May 15, 1979	:	All the stubble below the soil level were chopped and incorporated into soil.
Alfisol sick plot 'A'	(0 1	ha)
June 22, 1978		The wilt susceptible check line, ICP-6997 was planted after every four test rows. Rest of the plot was planted with breeding materials.
January 22, 1979		The susceptible check, ICP-6997, showed 99 6% wilt.
May 10, 1979	•	All the stubble below soil level were chopped and incorporated into soil.
Alfisol sick plot 'B'	(0 4	ha)
July 14, 1978	:	Two rows of susceptible check line, ICP-6997, were planted after every two test rows.
March 14, 1979		The susceptible check, ICP-6997, showed 72.2% wilt
May 10, '979	:	All the stubble were chopped and incorporated into soil.

In the Alfisol sick plots 'A' and 'B', planting was done on June 22, and July 14, 1978, respectively. Planting in the two Vertisol sick plots 'A' and 'B' was done on July 3 and 4, 1978. Monthly counts of wilted plants were taken in susceptible check line, ICP-6997, in all plots except in Alfisol 'B' and the results have been summarised in Table 1 and Figure 1.

The results in Table 1 indicate that the wilt development was more in Alfisol 'A' than Vertisol sick plots in the early crop growth period. Alfisol 'A' showed more than 90% wilt incidence within four months after planting. Whereas the incidence was less than 50% in Vertisol sick plots for the same period. There was no marked difference in wilt incidence between Vertisol sick plots 'A' and 'B'...

Table ! Monthly incidence (percent) of wilt in ICP-6997 in sick plots during 1978-79<u>a</u>/

Manth		Vertisol-'A'	Vertisol-'B'	Alfisol -A
August	1978	Not recorded	Not recorded	25 . 0
September		24.0	27.1	81.7
Oc tober		36 5	45 .8	92.3
November		57.8	63.9	96.7
December		68.7	78.3	99.1
January	1979	79.4	85.8	996
February		85 2	89.0	Harvested
March		935	93,3	-

Sowing was done on June 22nd, July 3rd and 4th, 1978 in Alfisol-'A', Vertisol · 'A' & 'B', respectively.

B. Survival of the pathogen

This 5-year study was initiated on November 18, 1974. On May 17 and November 17, 1978 the seventh and eighth sets of stubble, buried in Vertisol and Alfisol soils, were removed for detecting the presence of Fusarium udum. The isolations were made on modified Czapek's Dox agar selective medium. The results are presented in Table 2 and 3.

The results indicate that the pigeonpea wilt pathogen could not be isolated either in seventh (42 months after burial of stubble) or in eighth (48 months after burial of stubble) sampling. The wilt pathogen survived up to 30 months and 36 months in stubble buried in Vertisol and in Alfisol, respectively. There was 99.8% loss in weight of stubble burried in vertisol at the end of 48 months. The temperature during these 4 years (November 1974 - November 1978) ranged from 5.4 to 26.8°C (minimum) and 25.8° to 42.6°C (maximum). The total rainfall has been 3,746 mm during these 4 years.

Czapek's-Dox agar containing, in addition to normal ingredients, PCNB-500 mg, malachite green-25 mg, Dicrysticin-S (Streptopenicillin of Sarabhai Chemi-cals Ltd; Baroda, India) - 750 mg, and yeast extract-2 g per litre of medium

: 3-7-78 : 4-7-78 FIGURE 1. MONTHLY PIGEONPEA (ICP-6997) WILT INCIDENCE IN SICK PLOTS (ALFISOL-'A', VERTISOL-'A' AND -'B') DURING 1978-79 : 22-6-78 Mar Vertisol - '3' Alfisol - 'A' Sowing dates Vertisol Feb Jan Vertisol - 'A' Dec MONTHS Vertisol - 'B' No. Oct Alfisol - 'A' Sep Aug 100 90 8 70.7 40 -30 20-10 50 -- 09 Percent Wilt

Table 2. Detection of Fusarium udum from stubble of wilted plants of pigeonpea 42 months after burial ♣/

Soil type	Repli- cation	Weight of st At the time of burial	ubble (g) After 42 months		Average loss in weight (%)	No. of isola- tions made	No. of isola-tions which yielded F. udum
	Rį	117.0	16.4	86.0		20	0
Alfisol	R_2	81.0	6.6	91.9	88.2	20	0
(Red)	R ₃	150.0	20.1	86.6		20	0
	В ₁	201.0	11.1	94 . 5		20	0
Vertisol	B ₂	39.0	0.1	99.7	96.1	20	0
(Black)	^B 3	225.0	13.4	94.0		20	0

The stubble were buried in Alfisol and Vertisol in large pots. See Pulse Pathology (Pigeonpea) Annual Reports 1974-75, 1975-76, 1976-77 and 1977-78.

Table 3. Detection of Fusarium udum from stubble of wilted plants of pigeonpea 48 months after burial $\underline{a}/$

Soil type	Repli- cation	Weight of st At the time of burial	ubble (g) After 48 months		Average loss in weight (%)	No. of isola- tions made	No. of isola-tions which yielded F. udwn
	R ₁	85.0	8.5	90.0		20	0
Alfisol	R_2	63.0	1,1	98.3	93.3	20	0
(Red)	R_3	225 . 0	18.6	91.7		20	0
	B ₁	64.0	0.2	99.7		20	0
Vertisol	B ₂	101.0	0.1	99.8	998	4	0
(Black)	^B 3	390.0	0,2	99.9		15	0

The stubble were buried in Alfisol and Vertisol in large pots. See Pulse Pathology (pigeonpea) Annual Reports 1974-75, 1975-76, 1976-77, and 1977-78.

C. Screening in sick plots

During the year under report, we planted pigeonpea materials to be screened for wilt in one Alfisol sick plot ('A') and in two Vertisol sick plots ('A' and 'B'). The Alfisol 'B' plot was not used for wilt screening because it is still being developed. In Kharif 1978, we have screened breeders' materials, germplasm, ACT (All India Trials) lines, materials received from National Uniform Trial for wilt, single plant selections from wilt promising lines, sterility mosaic resistant lines and Phytophthora blight resistant lines to identify resistant materials. The level of sickness as indicated by wilt in the susceptible line ICP-6997 during 1978-79 in the three sick plots is again given below for a ready reference.

Alfisol 'A' : 99.6% Vertisol 'A' : 93.5% Vertisol 'B' : 93.3%

In all the screening tests, the criterion used for selecting promising lines/progenies was based on low wilt incidence (0.0 to 20.0%). In advancing the selected lines/progenies, agronomically desirable characters were also considered by breeders and such plants were selfed and the seeds collected for further studies.

l. Breeders' material

Materials received from the Breeding subprogram of ICRISAT were planted mainly in two Vertisol sick plots and the results are presented below. The selection of wilt-free plants for further testing was done by breeders

(a) F₂ bulks

Three F_2 bulks involving the 'resistant' lines, either NP(WR)-15 or BDN-1 and other desirable but susceptible parents, were screened in Vertisol sick plot 'A'. The resistant and agronomically desirable plants were selfed and seeds were collected. The results of screening and also the number of plants selected in each cross are given in Table 4. The data have been passed on to breeders to draw conclusions, if any.

Table 4. Results of screening \$\frac{\mathbf{F}}{2}\$ population for resistance to wilt in Vertisol sick plot 'A'

Cross No.	Pedigree	No. of plants .	No. wilted	% wilt	No. selected
76088 76094 76111	ICP-7979 x BDN-1 ICP-7979 x NP(WR)-15 ICP-8504 x BDN-1	1344 1481 1456	667 871 1171	49.6 58.8 80.4	· 1 0

(b) F₃ progenies

Eight progenies (about 20 seeds each) from ICP-6997 (Susc.) x NP(WR)-15 (Resistant) cross were screened in Alfisol sick plot 'A'. The results of the screening and the number of plants selected have been given in Table 5. Of the eight progenies tested, only two showed low wilt incidence. Only from these two progenies, resistant and agronomically desirable plants were selfed and seeds were collected for further screening.

Table 5. Results of screening F₃ progenies of the Cross no.74342 for resistance to wilt in Alfisol sick plot 'A'

Pedigree	No. of plants	% wilt	No. of plants selected
74342-SW1 Q (ICP-6997 x NP(WR)-15)	21	95.2	0
-SW2 Q	28	53.2	0
-SW3 Q	15	46.7	0
-SW4@	25	64.0	0
-SW50	16	25.0	0
-SW6Q	22	36.4	0
-SW70	24	12.5	15
-SW8@	25	20.0	9

Another set of 475 progenies from ten crosses were screened in Vertisol sick plot 'A'. The F_2 bulks of these crosses were tested in same plot in 1977 K. The summarised results are given in Table 6 (see Appendix-I for details). The wilt incidence in these F_3 progenies ranged from 0 to 100%. Out of 475 progenies screened, 123 showed low wilt incidence. Only from these 123 progenies, the resistant and desired plants were selected for further testing.

Table 6. List of F_3 progenies which showed low wilt incidence in Vertisol sick plot 'A' \underline{a} /

Cross	No. Pedigree	No. of progenies tested	No.of progenies with low wilt incidence	
75216	ICP-7035 x -6902	59	12	27
75224	ICP-7035 x -6915	52	14	6
75236	ICP-7035 x -7183	18	10	33
75239	ICP-7035 x -7189	18	15	10
75456	ICP-3783 x -6909	47	6	3
75463	ICP-3783 x -6929	18	1	0
75470	ICP-3783 x -7183	52	2	0
75493	ICP-7118 x -6907	74	18	7
75513	ICP-7118 x -6897	76	14	13
75519	ICP-7118 x -7336	62	31	0

a/ Low wilt incidence = 0 to 20%.

(c) F₄ progenies

Nine progenies from ICP-6997 x ICP-102 cross and two progenies from 10 x 10 group diallel crosses were screened in Vertisol sick plot 'A'. The results of screening are presented in Table 7. The wilt incidence in these progenies was above 20% and therefore no selection was made.

Table 7 Results of screening F4 progenies to wilt in Vertisol sick plot 'A'

Pedigree		No. of plants	% wilt
74246-31-W10	(ICP-6997 x -102)	12	33.3
-W2 0	•	10	70.0
-33-W1 0		12	58.3
-W2 @		31	87.5
-34-W10	•	38	86.7
-W2 9		12	91.7
-35-W1Q		10	90.0
-W20		11	63.6
-41-W10		23	39.3
74456-2-10-W1	Q (10 x 10 group diallel)	27	33.3
16-W1		13	38.5

Another set of one hundred and thirty-five progenies from 5 crosses (both determinate and non-determinate) were planted for screening in Vertisol sick plot 'A'. The summarised results are given in Table 8 (see Appendix-II for details). The resistant plants were selfed and seeds were collected from the selected plants.

Table 8. Summary of the screening of single plant progenies of F4 wiltfree progenies (BA-2) for resistance to wilt in Vertisol sick plot 'A' a/

Cross No.	Pedigree	No. of progenies tested	No.of progenies with low wilt incidence	
74130-DT7	PAx ICP-4234	1	0	0
74131-DT8	ICP-7175x PA	20	0	0
74134-DT1	PAx ICP-4711	11	2	13
74137-DT7	PAx ICP-7105	31	0	0
74140-DT5	PAx ICP-4741	17	0	0
74130-NDT7	PAx ICP-4234	8	0	0
74131-NDT8	ICP-7175 x PA	9	Ö	0
74134-NDT1	PAx ICP-4711	18	0	٠0
74137-NDT7	PAx ICP-7105	14	2	4
74140-NDT5	PAX ICP-4741	6	0	0

a/ Low wilt incidence = 0 to 20%.

Four hundred and fifty-six progenies from five crosses were screened in Vertisol sick plot 'A'. The summarised results are presented in Table (see APPENDIX III for details). The wilt incidence in these progenies ranged from 0 to 100%. Out of 456 progenies screened, only 76 showed low wilt incidence. Only from these progenies the resistant and desired plants were selected for further testing.

(d) F₅ progenies

Forty-eight progenies from C-11 x ICP-6997 cross were screened in Vertisol sick plot 'A'. The summarised results are given in Table 9 (see APPENDIX IV for details). No selection could be made in these progenies.

Table 9. Results of screening of F4 and F5 progenies for wilt resistance in Vertisol sick plot 'A' a/

Pedigree	No. of proge- nies tested	No. of proge- nies with low wilt incidence	No. of plants selected
es			
NP(WR)15 x ICP-1	76	11	7
ICP-102 x -7035	99	27	21
ICP-6997 x -7035	77	12	8
Pant-A2 x NP(WR)15	5 78	14	7
ICP-7065 x -7035	126	12	3
es			
C-11 x ICP-6997	48	2	0
	es NP(WR)15 x ICP-1 ICP-102 x -7035 ICP-6997 x -7035 Pant-A2 x NP(WR)15	nies tested es NP(WR)15 x ICP-1 76 ICP-102 x -7035 99 ICP-6997 x -7035 77 Pant-A2 x NP(WR)15 78 ICP-7065 x -7035 126 es	nies tested nies with low wilt incidence es NP(WR)15 x ICP-1 76 11 ICP-102 x -7035 99 27 ICP-6997 x -7035 77 12 Pant-A2 x NP(WR)15 78 14 ICP-7065 x -7035 126 12 es

a/ Low wilt incidence = 0 to 20%.

(e) F₆ and F₇ progenies

Eleven progenies (3 F_6 + 8 F_7) involving a 'resistant' parent (JA-275) and two early maturing desirable parents (T-21 and Pusa Ageti) were screened in Vertisol sick plot 'A' and the detailed results of screening have been presented in Table 10. Since all progenies showed more than 20% wilt incidence, selection was not done.

Table 10. Results of screening F₆ and F₇ progenies to wilt in Vertisol sick plot 'A'

Pedigree	Generation	No. of plants	% wilt
73054-61-1-5-W1₩	F ₆	23	25.8
-W2 @	F ₆ .	12	50.0
-W3 6 r	F ₆ F ₇	20	45.0
73047-14-6-B II-1-W10	F ₇	15	93.3
-2-W2 @	F ₇	15	60.0
3054-67-2-4-1-W1Q ·	F ₇	15	66.7
-W20	F ₇	5	60.0
-2-6-4-1-W10	F ₇	17	59.1
-5-5-5-W1@	F ₇	18	27.8
-W2 Q	F ₇	35	30.9
-W3 @	F ₇	13	38.5

(f) Triple and top cross progenies

Three triple cross progenies and nine top cross progenies were screened in Vertisol sick plot 'A' and the detailed results are presented in Table 11. Because of the poor plant types, very few plants were selected for further testing.

Table 11 Results of screening triple cross and top cross progenies to wilt in Vertisol sick plot 'A'

Pedigree	No. of plants	% wilt	No. selected
76073-W10 (ICP-7118x-7336x JA-275)	16	12.5	2
76048-W10 (ICP-7035x-7189x BDN-1)	24	0.0	3
76048-W2@ (ICP-7035x-7189x BDN-1)	8	75 . 0	0
75210-W10 (ICP27035x-6892)	10	10.0	0
75237-W1@ (ICP-7035x-7186)	22	22.7	0
75237-W20 (ICP-7035x-7186)	16	25.0	0
75238-W1@ (ICP-7035x-7187)	17	11.8	0
75238-W20 (ICP-7035x-7187)	10	50.0	0
75448-W10 (ICP-3783x-6900)	5	0.0	0
75458-W10 (ICP-3783x-6915)	11	36.4	0
75480-W19 (ICP-3783x-7336)	34	17.4	5
75480-W20 (ICP-3783x-7336)	26	33.9	0

(g) Germplasm selections

Eighty-nine progenies from germplasm selections were screened in Vertisol sick plot 'A'. Sixteen progenies from these germplasm selections were also screened in Alfisol sick plot 'A'. These progenies were previously screened in the wilt sick plots. The detailed results of screening have been given in Tables 12 and 13. Only progenies from ICP-5174 and ICP-7336 germplasm selections showed low wilt incidence in both Vertisol and Alfisol sick plots.

Table 12. Screening of germplasm progenies for wilt resistance in Vertisol sick plot - 'A'

Sl. <u>No.</u>	Pedigree	No. of plants	% wilt
1.	ICP-1-6-W20-W30	22	22.7
	-W4@	22	36.4
2. 3.	-₩5 Q	23	39.1
4.	-W6 0	13	77
5.	-W3 Q -W5 Q	22	18.2
6. 7.	-W6 Q	19	15.8
7.	-W7 Q	20	10.0
8.	-W8 W	21	14 3
9.	-W5 @- W2 @	20	40.0
10.	-W3 0	18	11.1
11.	-W4 @	23	13.0
12.	₩5 @	20	10.0
13.	ICP-4745-4-W4Q-W1Q	9	22.2
14.	-W2 Q	8	12.5
15.	-W3 @	9	00
16.	-W4 ₽	14	28.6
17.	-W5@-W1@	14	78.6
18.	~W2 @	6	100.0
19.	-₩3₩	10	100.0
20.	-W4 :	20	85.0
21.	ICP-6426-W40-W30	20	60.0
22,	-W4 ₽	20	55.0
23.	-W5 @	25	36.0
24.	-W6 0	24	58 3
25.	HY-3C-12-W3Q-W2Q	20	20.0
26.	W3 9	20	5.0
27.	-W4 ⊗	12	25 . 0
28.	-W5Ø	4	25 0
29.	-W5Q-W3Q	15	0.0
30.	-W2 @	18	16.7
31.	-W3 @	19	21.1
32.	-W49	17	11.8

Contd

S1. No.	Pedigree	No. of plants	%wilt
33.	ICP-2812-W10	22	0.0
34.	-W2 @	18	22.2
35.	-W3 @	22	9.1
36 .	-W4 ₽	20	30.0
37 .	ICP-4698-W1@	21	33.3
38。	-W2 ₩	23	21.7
39	-W3 @	44	56.7
40.	ICP-5174-W1₩	18	0.0
41.	-W2 @	21	33.3
42	-W3 @	24	8.3
43.	-W4Q	22	27.3
44.	ICP-5579-W2@	19	78.9
45.	-W3 @	16	43.8
46.	-W4Q	21	28.6
47.	-W5 Q	26	50.0
4 8.	NP(WR)-15-W1@	26	57.7
49.	-W2 Q	14	21.4
50 .	-W3 Q	51	38.7
51.	ICP-6524-W2₩	21	57.1
52.	-W3 ₽	21	61.9
53.	-W4 Ω	10	40.0
54 .	-W5 @	10	90.0
55.	ICP-6588-W2@	18	11.1
56.	-W3 @	15	100.0
57.	-W4 £	14	92.9
58.	-W5 @	16	43. _B
59.	ICP-6812-W20	13	61.5
60.	-W3 . @	15	0.0
61	4 -W4.0	27	59.3
62.	-W5 ®	19	57.9
63.	ICP-6815-W1@	20	65.0
64·.	-W2 ®	15	40.0
65 .	−W3 @	15	0.0
66.	গ <i>ল</i> াশাল –₩4 ৯	6	100.0
67.	ICP-6915-W1@	12	91.7
68.	-W2 2	6	83.3
69 .	-W3 Ø	17	94.1
70,	-W4:0	17	100.0
71.	ICP-6927-W1@	10	80.0
72.	· -W3Q	14	100.0
73.	-W40	27	81.3
74.	ICP-7336-W20	17	5.9
75.	-W3 Q	15	6.7
76.	-W4 ®	11	9.1
77.	-W5 Q	9	0.0

Contd.

S1. No.	Pedigree	No. of plants	% wilt
78.	ICP-7424-W2Q	23	8.7
79.	-W3 Q	21	23.8
80.	-W4 	21	19.1
81.	-W5 @	18	33.3
82.	ICP-7549-W1@	11	0.0
83.	-W2 Q	18	83.3
84.	-W3 Q	27	81.5
85.	-W4 Q	21	80.9
86.	ICP-6897-W2Q	7	0.0
87.	-W3 Q	17	0.0
88.	-W4 Q	17	23.5
89.	-W5 @	14	28.6

Table 13. Results of screening germplasm selections for resistance to wilt in Alfisol sick plot - 'A'

Pedigree	No. of plants	% wilt	No. of plants selected
ICP-1-6-W3Q-W1Q	24	62.5	0
-W2 ®	24	54.2	0
ICP-4745-4-W4Q-W1Q	6	66.7	0
-W2 :	9	77.8	0
HY-3C-12-W3Q-W1Q	13	69.2	0
-W2 Q	18	50.0	0
-W50-W20	24	37.5	0
-W4 Q	21	42.9	0
ICP-5174-W10	20	10.0	7
-W2@	12	16.7	5
ICP-6812-W10	24	91.7	0
-W2Q	18	88.9	0
ICP-7336-W20	20	5.0	9
-W40	22	13.6	13
ICP-7424-W10	21	85.7	0
-W4@	22	90.9	0

(h) Parental and crossing block entries

Thirty-nine parental lines and twenty-four crossing block entries obtained from the Breeding subprogram were planted in Vertisol sick plot 'A'. Wilt incidence was recorded and the results are presented in Tables 14 and 15. Except one crossing block entry, 73081-40D2-19-19 (13.6%), all were susceptible to wilt.

Table 14. Results of screening some parental lines to wilt in Vertisol sick plot - 'A'

S1. No.	ICP No.	No. of plants	% wilt
1.	659	27	66.7
2.	885	29	75.9
3.	3783	38	89.5
	4109	19	84.2
4. 5. 6. 7.	4234	18	88.9
6.	4711	34	64.7
7.	4741	21	85.7
8.	6523	29	55.2
9.	6524	33	45.5
10.	6525	24	79.2
11.	6892	24	70.8
12.	6897	29	89.7
13.	6902	32	50.0
14.	6907	39	82.1
15.	6915	26	61.5
16.	6929	30	100.0
17.	7029	31	80.6
18.	7065	12	100.0
19.	7105	35	65.7
20.	7175	19	57.9
21.	7183	43	44.2
22.	7186	22	54.5
23.	7187	31	64.5
24.	7189	32	59.4
25.	7201	32	53.1
26.	7887	19	84.2
27.	7889	34	64.7
28.	7894	23	82.6
29.	7950	21	66.7
30.	7952	4	100.0
31,	7956	18	83.3
32.	7962	34	94.1

Contd.

S1. No.	ICP-No.	No. of plants	% wilt
33.	8021	15	93.3
34.	8023	17	88.2
35.	8257 @	29	72.4
36.	8426	22	86.4
37.	8 6452	29	79.3
38.	8646₩	26	76.9
39.	86479	27	74.1

Table 15. Results of screening crossing block entries to wilt in Vertisol sick plot - $^1A'$

S1. No.	Pedigree	No. of plants	% wilt
1.	ICP-6973-690-40-70-60-B0-B0-B0	36	50.0
1. 2. 3.	-26-35 @-6@-7@-2@- B @- B @- B @	32	93.8
3.	-28-24 0-10-30-20- B 0- B 0- B 0	38	100.0
4.	-1-150-50-10-20	43	81.4
5.	-7120-910-10-10-30	40	50.0
6.	-7118-60Q-1Q-BQ	40	42.5
6. 7.	-102-369-49-19-59	50	86.0
8.	-7182-89@-2 @ -B @	44	43.2
9.	-7035-37@-5@-4@-B@	42	64.3
10.	-7119-13 9 -3 9 -14 9 -8 9	29	24.1
11.	-7855 (AS-71-37-21@-4@)	29	20.7
12.	MS-3A (Sibs)	31	54.8
13.	MS-4A (Sibs)	18	27.8
14.	ICP-6344 (7.7 Q)	23	82.6
15.	ICP-1641 (T-170)	31	80.7
16.	ICP-8518 (LRG-30@)	31	100.0
17.	-7979 @ `	21	57.1
18.	73081-40D2-19-19	22	13.6
19.	-20	7	71.4
20.	-30	16	81.3
21.	-20-10	27	59.3
22.	-30	23	47.8
23.	73081-11D2-2 9 -2 9	20	45.0
24.	ICP-8504@	35	60.0

(i) Selective mating population selections

One hundred and ninety-one selective mating population (SMP) selections were screened in Vertisol sick plot 'B'. The detailed results of screening are given in APPENDIX V. The wilt incidence in these progenies ranged from 22.3% to 100.0% and hence no selections were made.

(j) Selections from M-1 field

Three hundred and sixty-two progenies from double cross F_3 - 'A' were planted in Vertisol sick plot 'B'. The detailed results of screening are presented in APPENDIX VI. The wilt incidence in these progenies ranged from 18 to 100%. The resistant and agronomically desirable plants were selfed and seed were collected for further tests.

Another set of three hundred and seventy-nine progenies from double cross F_3 - 1 B' (DCF3B) were screened for wilt in Vertisol sick plot 'B'. The detailed results are given in APPENDIX VII. The wilt incidence in these DC-F3 'B' progenies ranged from 11.1% to 100.0%. Resistant and desirable plants were chosen, selfed and seeds collected from them for further tests.

Sixty-six F4 progenies selected from M-1 were screened in Vertisol sick plot 'B'. The results of screening are presented in APPENDIX VIII. All progenies showed more than 20.0% wilt incidence and hence no selection was possible.

(k) Selections from RA-28 and wilt nursery

Ninety-four progenies (F_4 and F_3) selected from wilt nursery 1976 were planted in Vertisol sick plot 'B' again for wilt resistance screening. The results are given in APPENDIX IX. Except one progeny (74243-9-W3@), all other showed more than 20.0% wilt incidence.

Seventy-six F4 progenies selected from RA-28 were planted in Vertisol sick plot 'B'. The results of screening are presented in APPENDIX X. All progenies showed more than 20.0% wilt incidence.

Another set of ninety-two F_4 and F_5 progenies from RA-28 were also screened in Vertisol sick plot 'B'. The wilt incidence in these progenies ranged from 7.5% to 97.1% (APPENDIX XA). The resistant and agronomically desirable plants were selfed and seeds were collected for further studies.

(1) Male sterile lines

Six male sterile lines obtained from breeders were screened for wilt in Vertisol sick plot 'B'. The results of screening are given in Table 16. All six male sterile lines were highly susceptible to wilt.

Table 16. Results of screening of male sterile lines to wilt in Vertisol sick plot 'B'

lale sterile lines	No. of plants	% wilt
MS-3A	26	88.5
MS-3B	43	86.0
MS-3C	25	85.0
MS-3D	51	98.0
MS-3E	40	100.0
MS-4A	46	95.6

2. Germplasm

During 1978 kharif, 153 germplasm accessions were screened in Vertisol sick plot 'B'. The detailed results are presented in APPENDIX XI. All the accessions showed more than 20.0% wilt and hence no selection was made.

3. All India coordinated trial entries

Seeds of 58 entries included EACT, ACT-1, ACT-2, and ACT-3 trials were received from the All India Coordinated Pulses Improvement Programme (AICPIP) for wilt screening. All the four trials were planted in Vertisol sick plot 'B'. The detailed results of screening and grain yield data are given in APPENDIX XII. Only BDN-1 showed low wilt incidence. The range of wilt incidence in ACT lines varied from 7.6% (BDN-1) to 95.2% (GS-1).

4. National (All India) Uniform Wilt Trial

Thirty-nine lines including 12 ICRISAT lines were screened in Alfisol sick plot 'A' and Vertisol sick plot 'A'. The results of screening are given in Table 17 Among the 12 ICRISAT lines, 6 showed less than 20.0% wilt in Alfisol sick plot 'A'. Whereas in Vertisol sick plot 'A' eight lines came under this group. In the remaining 27 lines, only two (Purple-1 and AWR-74/15) recorded 'low' wilt in Alfisol sick plot 'A' In Vertisol sick plot 'A' only AWR-74/15, NP(WR)-15 and Banda palera recorded low wilt. The screening seemed to be more severe in Alfisol sick plot 'A' since the wilt incidence in individual lines was greater in the former than in the latter with few exceptions.

Table 17. Results of screening of national uniform trial for wilt in $\frac{\text{Alfisol} - \text{'A'}}{\text{and Vertisol} - \text{'A'}}$

Pedigree	Alfiso	1 - 'A'	Vertiso	l - 'A' % wilt
	No. of plants	% wilt	No. of plants	% wilt
ICP-8858	44	40.9	37	10.8
-8859	42	9.5	33	12.1
-8860	28	10.7	46	10.9
-8861	42	21.4	34	14.7
-8862	33	45.5	37	21.6
-8863	40	5.0	39	2.6
-8864	39	33.3	46	23.9
-8865	36	5.6	37	13.5
-8866	32	28.1	29	34.5
-8867	40	5.0	27	14.8
-8868	34	32.0	37	21.6
-8869	38	13.2	27	11.1
TS-136-1 (Kar)	16	93.8	44	68 . 2
Bori-1	24	70.8	16	68.8
MAU-W-1	21	90.5	36	83.3
MAU-E-175	19	78.9	39	56.4
KWR-1-1	21	90.5	17	70.6
AS-29 (KPR)	19	79.0	14	42.9
DL-74-1	18	100.0	18	94.4
15-3-3 (JBR)	9	66.7	10	80.0
15-3-3 (MAU)	18	83.3	48	35.4
AWR-74/15 (KPR)	19	15.8	19	5.3
NP(WR)-15	11	90.9	15	20.0
C-11	14	85 7	11	45.5
BDN-1 (MAU)	15	93.3	28	39.3
BDN-1 (KPR)	18	88.9	16	25.0
BDN-1 (JBR)	17	82.4	17	64.7
BDN-2 (MAU)	21	95 . 2	23	65 , 2
70 (KPR)	22	45.5	14	50.0
K-28	7	100.0	8	50.0
K-73	18	83.3	13	38 . 5
Beitul-1	6	100.0	2	100.0
Shivpuri-2	8	100.0	10	80.0
Indore-7	13	92.3	6	83.3
Banda Palera (KPR)	18	55.6	16	6.3
JA-3A	12	83.3	16	81.3
Ben-1	11	72.7	11	27,3
Purple-1 (134A)	16	0.0	19	26.3
Purple-2	18	100.0	12	75.0

5. Multilocation testing of ICRISAT entries

Twelve ICRISAT pigeonpea entries selected for wilt resistance from sick plots here were screened at nine locations (including two at ICRISAT, viz., Vertisol and Alfisol sick plots) in wilt sick plots during 1978 kharif in India (Table 18). Along with test entries, susceptible check lines were planted at regular intervals. The wilt incidence was recorded both in test entries and susceptible checks and the results are presented in Table 19. The results in Table 19 indicate that at all centres, the susceptible checks showed more than 50% wilt incidence except at Kanpur (36%). Out of 12 entries tested only ICP-8863 (15-3-3 selection) showed less than 10.0% wilt incidence at all the nine locations. The entry ICP-8863 did not show any wilt at 4 out of 9 locations tested. The entries ICP-8859 and ICP-8860 showed more than 20.0% wilt at one location each. Only at Parbhani all 12 entries showed less than 20.0% incidence. At the same location, the susceptible check line No. At ICRISAT location, six entries showed less 1258 showed 82.1% wilt. than 20.0% wilt incidence in both Vertisol and Alfisol sick plots.

Table 18. Locations and cooperators in the 1978 kharif National Uniform Wilt Trial from whom results were received

Locations \underline{a}	Cooperator
Andhra Pradesh - Hyderabad - Rajendranagar Patancheru - ICRISAT	R. Baner Raj Y.L. Nene & J. Kannaiya
Bihar - Dholi	M. Mahmood
Karnataka - Annigeri	R.V. Hiremath
Madhya Pradesh - Jabalpur	S.R. Kotasthane
Maharashtra - Parbhani	K.K. Zote
Uttar Pradesh - Kanpur	P Shukla
- Varanasi	U.P. Singh

 $[\]underline{a}$ / Two sets were planted at ICRISAT and one each at all others.

Material collected in surveys

Eight materials collected during pigeonpea disease survey in Madhya Pradesh and three entries given by ICRISAT Pigeonpea Breeding unit were screened in Alfisol sick plot 'A'. The results are presented in Table 20. Except HY-3A all other materials were highly susceptible to wilt.

Locations		ICRISAT		ICRISAT	Karne	Karnataka	Madhya	Madhya Pradesh	Andhre	Andhra Pradesh	Mahar	Maharashtra	Uttar	Uttar Pradesh	Uttar	Uttar Pradesh	Bihar	S.I
/	W.	isol	, Ve	Vertisol	Annigeri	Jeri	Jai	Jabalpur	Ra jeno	Rajendranagar	Part	Parbhani	Kar	Kanpur	Vara	Varanasi	Dholi	·1
ICP.No.	TPT	TPT Swilt	TPT	TPT %Wilt	TPT	%wilt	TPT	%wilt	TPT	%wilt	TPT	gwilt.	TPT	%wilt	TPT	8wilt	TPT	%wilt
8858	44	40.9	37	10.8	22	25.5	42	7.1	27	7.4	82	1.2	22	45.4	37	78.4	•	23.5
8859	45	9.5	33	12.1	20	20.0	38	0.0	54	16.6	83	2.4	15	80.0	37	5.4	•	8.7
8860	78	10.7	46	10.9	63	28.6	20	0.0	84	4.1	87	2.3	22	6.6	42	4.7	•	18.8
1988	45	21.4	8	14.7	19	9.9	22	10.9	39	30.7	81	1.2	4	*	41	0.0		50.0
8862	33	45.5	37	21.6	9	15.0	49	22.5	42	28.5	79	2.5	_	*	41	65.0	•	50.0
8863	40	5.0	33	2.6	78	1.1	46	2.2	54	0.0	11	0.0	32	0.0	37	0.0	•	2.9
8864	39	33.3	46	23.9	89	42.6	28	0.0	45	15.5	78	12.8	33	25.5	34	2.9	•	20.0
8865	36	5.6	37	13.5	72	23.6	55	5.5	62	25.8	82	8.5	47	36.1	41	8.92	•	6.3
8866	32	28.1	53	34.5	99	35.7	51	23.5	88	60.5	78	15.4	61	73.6	36	30.8		20.0
8867	40	5.0	27	14.8	99	15.2	55	1.8	82	21.4	82	2,4	12	*	36	13.8	1	44.0
8988	34	32.0	37	21.6	11	32.4	51	0.0	34	32.3	82	2.4	24	*	37	5.4	•	13.8
8869	88	13.2	27	1.1	62	25.8	52	32.7	33	15.3	98	1.2	24	*	41	58.5	•	2.8
Susceptible checks	e check	છા																
ICP-6997	٠	9.66	•	93.5	•	•		•		93.0		ı		36.0		1	•	53.0
No.1258	•	•		•	1	100.0		76.3	•	100.0	•	82.1				80.0	•	•
Others	•	•	•	•	•	•		ı	1	100.0 (HY-2)		i	1	•		91.9 (T-21)	ı	•

Results of performance of ICRISAT pigeonpea entries in national uniform wilt trial 1976 K

Table 19.

TPI - indicates total plants tested.
* These entries died in early stage either due to Phytophthora or excess water.

Table 20. Incidence of wilt in materials collected in Madhya Pradesh (MP) and given by ICRISAT Pigeonpea Breeding Unit (Alfisol sick plot 'A')

Particulars	Source	No. of plants	% wilt	
Hoshangabad	M.P. coll.	21	100.0	
Bairagarh	II	23	100.0	
Bhaura	Ш	17	100.0	
Akalpur	H	20	100.0	
Pathrota	II	22	100.0	
Ratanpur	H	15	100.0	
Tanda	II .	16	100.0	
Deshgoan	H	4	100.0	
ICP-7086	Breeding Ur	nit 43	95.3	
T-15-15 (Aujarat)	11	38	100.0	
Hy-3A	II .	36	8.3	

7. Progenies promising against Phytophthora blight

Thirteen Phytophthora blight promising progenies screened for wilt reaction in Alfisol sick plot 'A'. The results are presented in Table 21. The wilt incidence in these progenies ranged from 50.0% to 100.0%.

Table 21. Results of screening some Phytophthora blight promising progenies to wilt in Alfisol sick plot 'A'

Pedigree	No. of plants	% wilt
Pusa Ageti-P100	20	85.0
ICP-113-P50	21	100.0
-231-P50	17	100.0
-339-P50	21	95 . 3
-758-P5 Q	19	100.0
-1209-P10	22	100.0
-1522-P20	23	100.0
-1529-P5 0	24	95.8
-1643-P2 0	23	100.0
-2376-P5 9	20	100.0
-3753-P50	20	50.0
Pant-A3-P50	10	80.0
ICP-7065-P5@	17	100.0

Two hundred and fifty-one Phytophthora blight promising progenies from three crosses were screened for wilt in Vertisol sick plot 'B'. The detailed results of screening are presented in APPENDIX XIII, and the summarised results are given in Table 22. The wilt incidence in these F_3 progenies ranged from 13.6% to 100.0% and only three progenies showed 'low'wilt incidence.

Table 22. Summary of the screening of Phytophthora blight promising progenies in Vertisol sick plot 'B'

Cross No.	Pedigree	No. of pro- genies tes- ted	No. of progenies with low wilt in- cidence <u>a/</u>	No. of plants selected
74290	C-11 x ICP-7065	100	1	43
74360	ICP-7035 x ICP-7065	69	1	0
74363	HY-3C x ICP-7065	82	1	26

 $[\]underline{a}$ / Low wilt incidence = 0 to 20%.

8 Progenies resistant to sterility mosaic

One hundred and six sterility mosaic resistant germplasm selections were screened for wilt in Vertisol sick plot 'B'. The summarised results are presented in Table 23 (see APPENDIX XIV). The wilt incidence in these progenies ranged from 11.5% to 100.0%. Only six progenies showed low wilt incidence. The resistant and agronomically desirable plants were selected for further study.

Another set of three hundred and sixty-two sterility mosaic resistant progenies (from 8 crosses) and three parents were planted in Vertisol sick plot 'B'. The summarised results are given in Table 24(see APPENDIX XV for details). The results in Table 24 indicate that only sixteen progenies from two crosses (ICP-6997 x C-11 and JA-275 x ICP-1) showed low wilt incidence. The resistant and agronomically desirable plants were selected from these sixteen progenies only.

Fifty progenies from three sterility mosaic resistant lines (ICP-3783, -7035 and HY-3C) were screened in Vertisol sick plot 'A'and the results ar given in APPENDIX XVI. The resistant and agonomically desirable plants were selected for further studies.

Table 23. List of sterility mosaic resistant germplasm selections which showed low wilt in Vertisol sick plot 'B' a/

Pedigree	No. of plants	% wilt	No. of plants selected
ICP-4769-3-S30	22	13.6	5
-5097-1-S3 ₽	26	11.5	7
-5701-1-S1 0	20	15.0	4
-6831-1-S2 0	34	11.8	9
-7194-1-S4 0	35	20.0	ì
-7217-1-S1@	21	19.0	0

a/ Low wilt = 0 to 20%.

Table 24. List of single plant progenies (SPP) of sterility mosaic resistant materials which showed low wilt incidence in Vertisol sick plot 'B' a/

Cross No.	<u> </u>	No. of pro- genies tes- ted	No. of progenies with low wilt incidence	No. of plants selected
74243	ICP-6997 x C-11	263	10	143
74254	ICP-1 x HY-3C	14	0	0
73070	JA-275 x JCP-1	12	6	68
73088	JA-275 x P-334	5	0	0
74240	ICP-6997 x ST-1	31	0	0
74245	ICP-3773 x ICP-6997	5	0	0
74024	$(T-21 \times JA-275) \times ICP-70$	35 8	0	0
73054	JA-275 x C-11	24	0	0

 $[\]underline{a}$ / Low wilt = 0 to 20%.

9. Progenies promising against wilt

One hundred and twenty-six progenies selected from Vertisol sick plot were screened for the first time in Alfisol sick plot 'A'. The summarised results are given in Table 25 (see APPENDIX XVII). Of the 126 progenies screened in Alfisol sick plot 'A', 57 showed low wilt incidence. Some progenies from ICP-6970, NP(WR)-15 and T-17 showed no wilt at all. The resistant and agronomically desirable plants were selfed and seeds were collected for further study.

BR 58640

These progenies were also screened for sterility mosaic by "leaf stapling" technique and the results are given in APPENDIX XVIII.

Another set of 332 progenies from 10 lines found less susceptible to wilt in Vertisol sick plots were further screened in Vertisol sick plot 'A'. The summarised results are given in Tables 26 and 27 (see APPENDIX XIX).

The wilt incidence in these progenies ranged from 0 to 100%. One hundred and fifty-six progenies showed low wilt incidence. Many progenies from ICP-6970 did not show any wilt. Selfed seeds were collected from resistant and desired plants for further study.

Table 25. Summary of screening of single plant progenies for resistance to wilt in Alfisol sick plot - 'A'

Pedigree	No. of plants	%wilt	No. of plants selected
T-17-W19-W179-W29	19	15.8	5
-W2Q-W1Q-W2Q	24	12.5	5 6
-W3 Q- W1 Q	23	17.4	12
-W29	23	0.0	11
-W79-W19	· 26	19.2	
-W3&-W9&-W2&	22	13.6	6
NP(WR)-15-W1Q-W1Q-W2Q	16	18.8	3 6 5 8
-W7Q-W1Q	15	13.3	8
-W2®	20	15.0	10
-W120-W10	17	11.8	5
-W190-W20	22	136	5 5 12
-W2]@-W]@	21	9.5	12
-W2 0	25	16.0	6 7
-W2@-W3@-W1@	21	14.3	
-W140-W10	18	5.6	9
-W2 9	25	8.0	20
-W15Q-W1Q	20	200	4
-W2Ø	17	0.0	5
-W16Q-W1Q	26	15.4	8
-W2 Q	19	0.0	12
-W19@-W1@	20	10.0	4 5 8 12 5 5
-W2 0	17	17.7	5
-W20 0 -W1 0	20	0.0	10
-W20	22	18.2	7
-W3 @- W6 @-W1 <u>@</u>	20	0.0	12
-W7 @ -W1 @	20	5.0	14
. - ₩2 Q	19	5.3	13
-W8Q-W1Q	20	0.0	11
-W20	20	15.0	8

Pedigree	No. of plants	%wilt	No. of plants selected
ICP-6970-S10-W10	26	0.0	11
-W2 Q	26	0.0	19
-S20-W10	16	6.3	ğ
-W2 @	17	5.9	10
-S3 @ -W5 @	23	8.7	8
-Sl -Wl@	20	10.0	12
-W20	22	9.1	14
-S4-W2Q	16	6.3	8
-S5-W1@	27	18.5	19
-W3 ₽	23	4.4	18
-S6-W1 Q	23	17.4	19
-W2 ®	19	0.0	8
-S7-W1@	27	18.5	9
-W2 0	20	5.0	17
-S8 - W1 @	24	4.2	12
-S9-W1@	23	0.0	13
-W2Ø	20	0.0	12
-S10-W1₩	27	11.1	11
-W2 Q	20	0.0	15
15-3-3-W2Q-W13Q-W1Q	20	20.0	2
-W2 : 0	20	15.0	6
-W102-W1602-W100	21	9.5	2
-W3 @	25	20.0	4
20-1-W1@-W1@	21	19.1	2 6 2 4 8 9
-W2 @	18	11.1	9
73039-RbB-W4@-W1@-W1@	20	10.0	10
-W2Q-W1Q	20	20.0	3 5
Early x Early-RbB-W50-W10-W10	12	16.7	5

Table 26. Summary of screening of single plant progenies (SPP) of promising lines in Vertisol sick plot $^{\rm IA}$

Pedigree	No. of SPP screened	No. of SPP showed low wilt incidence a/
T-17	72	12
NP(WR)-15	120	49
KWR-1	52	23
ICP-6970	56	48
C-11	4	3
No.1258	4	1
15-3-3	8	8
20-1	4	3
F ₅ 73039 (T-21 x NPWR-15)	8	7
F ₆ Early x Early	4	2

Table 27. List of single plant progenies (SPP) of promising lines which showed 'low' wilt incidence in Vertisol 'A'.

Pedigree	No. of plants	%wilt	No. of plants selected
[-17-W19-W29-W59	15	13.3	0
-W80	13	0.0	2
-W50-W20	14	0.0	$\bar{2}$
-W3 @	15	0.0	2
-W4Q	12	0.0	2
-W90-W60	32	12.5	0
-W120-W40	18	0.0	2
-W29-W19-W89	15	6.7	2
			4 7
-W9Q-W4Q	22	13.6	,
-W3@-W3@-W4@	18	16.7	2
-W6Q-W5Q	16	18.8	0 2 2 2 2 0 2 4 7 2 4 2
-W120-W20	19	15.8	2
NP(WR)-15-W10-W10-W50	18	11.1	0
-₩6₽	20	10.0	0
-W7. ⊗	22	18.2	0
-W8 Q	15	13.3	0
-W3@-W4@	18	0.0	10
-W4 Q -W4 Q	16	18.8	5
-W7 Q- W4 Q	20	5.0	8
-W60	21	14.3	6
-W7.0	17	17.7	7
-W12Q-W5Q	15	0.0	2
₩ 72	15	13.3	3
-W130-W60	22	13.6	Õ
-W149-W59	16	0.0	5
-W6 Q	21	9.5	3
-W170-W20	13	0,0	5
	13 17	5.9	5
-W3 <u>@</u>			ິນ E
-W4 <u>@</u>	10	20.0	ט ר
-W198-W68	22	13.6	2
-W21 ₽ -W5 ®	15	0.0	4
-W20-W102-W70	18	0.0	5 8 6 7 2 3 0 5 5 5 5 5 5 4 3 4 6 4
-W3@-W5@	14	14.3	4
-W5 Q -W8 Q	15	0.0	6
-W12Q-W5Q	15	6.7	4
-W60	18	0.0	4
-W8 @	18	11.1	6
-W149-W5₽	16	12.5	4 6 4 3 4
-W6 Q	20	15.0	3
-W7@	18	16.7	4
-W8 W	23	17.4	2

Pedigree	No. of plants	%wilt	No. of plants selected
NP(WR)-15-W20-W150-W50	10	0.0	5
-W8 2	14	7.1	5
-W20 @- W5 @	16	0.0	5 5
-W6 2	14	0.0	3
-W7 Q	19	15.8	2
-W3 Q -W6 Q -W8 Q	16	6.3	8
-W7@-W5@	22	0.0	11
-₩7@	20	15.0	13
-W8 @- W5 @	20	5.0	9
-₩6₽	21	4.8	9
-W7 @	21	4.8	8
-W8 Q	21	9.6	3
-W9 @ -W8 Q	21	19.1	4 5 2 2 5
-W1 5 0 -W6 0	22	1.8.2	5
-W7 @	23	17.4	2
-W8 Q	18	16.7	2
-W1 700-W30	22	13.6	5
-₩6₩	16	18.8	3
-W18@-W7 @	19	158	13
-W8 @	22	4.6	16
KWR-1-W1Q-W2Q-W5Q	23	17.4	5
-W8 Q	18	16.7	4
-W3Q-W5Q	22	9.1	4
-W2Q-W2Q-W5Q	13	15.4	4 7
-W6 №	12	16.7	
-W7Q-W5Q	16	12.5	3 5 5 5 4
~W6 &	24	16.7	5
-W11@-W5@	18	0.0	5
-W7 Q	20	20.0	5
-W8 Q	21	14.3	4
-W13 № -W5 №	21	19.1	4
-W3 Q- W1 Q -W8 Q	16	6.3	4
-W5@-W3 @	16	12.5	4
-W4 Q	14	7.1	4
-W5 ®	11	18.2	5
-W6 ®	22	18.2	8
-W11&-W5@	15	6.7	4 5 8 5 5 3 5 6 7
-W6 @	12	16.7	5
-W7 @	18	5.6	3
-W8 @	13	0.0	5
-W13@-W1@	17	17.7	6
-W3 @	23	8.7	7
-W5 Q	23	17.4	6

Pedigree	No. of plants	%wilt	No. of plants selected
ICP 6970-S10-W20	16	6.3	3
-W3 Q	25	16.0	15 7
-W4 Q	20	5.0	7
-W50	22	4.6	5
-S20-W20	15	00	5 5
-W4@	17	0.0	6
-S30-W20	18	0.0	18
-W3 Q	19	10.5	.11
-W4 ₽	16	12.5	10
-W5Q	17	5.9	11
-S4Q-W4Q	20	150	0
-S1-W2 Q	23	4.4	. 2
-W3 Q	18	5.6	14
-W4@	17	0.0	12
-W5Q	22	0.0	12
-S2-W2Q	18	0.0	. 9
W38	21	0.0	. 17
-W5Q	16	0,0	9
-S3-W30	24	0.0	9 1
-W40	16	12.5	Ö
-W5 Q	20	0.0	. 7
-S4-W1@	19	0.0	14
-W3 Q	18	11.1	9
-W4@	21	4.8	13
-W5 Q	18	0.0	13
-S5-W29	19	15.8	12
-W30	20	00	4
-W40	16	0.0	4 5 5 3
-W50	22	4.6	5
-S6-W2 0	20	15.0	3
-30- w29 -W3 9	23	4.4	4
- w 3 w - w 4 Q	21	14.3	9
-W5@	19	5.3	10
-w5w -S7-W30	17	5.9	4
-37-w3w -W40	20	5.9 5.0	4
-W50	16	12.5	3
	20		5
-S8-W2Q		10.0	e E
-W3Q	16 15	0.0	3 6 5 5 5 5 3 4
-W4@		0.0	S E
-W5Q	20	0.0	5
-S9-W2@	19	0.0	2
-W3@	20	0.0	5
-W4Q	15	0.0	3 1
-W5 @	21	4.8	4

Pedigree	No. of plants	%wilt	No. of plants selected
ICP-6970-S10-W1Q	20	0.0	11
-W3Q	22	13.6	12
-W4₽	24	0.0	
-W5₩	17	0.0	9 5
C-11-W2@-W10@-W2@	18	5.6	Ō
-W3 @	18	11.2	0 2
-W4 . Ø	23	13.0	0
No.1258-W2 Q- W5 Q -W4 Q	12	16.7	2
15-3-3-W1Q-W16Q-W2Q	18	167	2 9
-W3 0	22	9.1	9
-W4 @	18	5.6	11
-₩5 Q	24	4.2	10
-W2Q-W13Q-W2Q	19	0.0	9
-W3 @	14	14,3	-
-W4 Q	15	6.7	4
-W5@	15	6 7	4 5 7
20-1-W1Q-W3Q	21	4.8	
-W4@	15	6.7	5
-W5 2	14	7.1	5 2 2 2 2 2 2 2
73039-RbB-W4Q-W1Q-W5Q	18	0.0	2
-W6 Q	24	8.3	2
-₩7₽	21	4.8	2
-₩8₩	18	167	2
-W2Q-W2Q	17	17.7	2
-W3 Q	18	16.7	2
-W50	30	13.3	2
E x E-RbB-W5Q-W1Q~W5Q	17	5.9	2 2
-W6 9	19	0 0	2

One hundred and eighty-nine progenies from six field tolerant lines against wilt were planted for the second time in Vertisol sick plot 'A'. The progenies which recorded low wilt incidence and also number of plants selected from each such progeny are indicated in Table 28 (see APPENDIX XX). Out of the 189 progenies screened, 65 showed low wilt incidence.

10. Progenies promising against wilt and resistant to sterility mosaic

Twenty progenies from sterility mosaic resistant and wilt promising lines were screened in Alfisol sick plot 'A'. The results of screening and the number of plants selected from each progeny are presented in Table 29. Seventeen progenies recorded low wilt of which two progenies (JA-275-SIQ-S2Q-SW11Q and NPWR-15- W2Q-W14Q-SW1Q) were completely free of wilt incidence.

Another set of 44 progenies from sterility mosaic resistant and wilt promising lines were screened in Vertisol sick plot 'B'. The wilt incidence and number of plants selected are presented in APPENDIX XXI.

Table 28. Summary of the screening of single plant progenies of field tolerant lines in Vertisol sick plot 'A'

Pedigree	No. of SPP screened	No. of SPP showed low wilt incidence a/	No. of plants selected
NP(WR)-15	20	14	18
ICP-7035	37	8	0
HY-3C	4	2	0
C-11	6	5	11
No 148	88	22	25
BDN-1	34	14	27

SPP - Single plant progenies Low wilt = 0 to 20%

Table 29 Screening of sterility mosaic resistant and wilt promising progenies for resistance to wilt in Alfisol sick plot 'A'

Pedigree	No. of plants	%wilt	No. of plants selected
ICP-2376-SW10	20	10.0	9
-SW20	17	23.5	0
JA-274-SW1@	16	6.3	
-SW190	18	16.7	4 3 6
JA-275-S10-S20-SW110	20	0.0	6
-SW160	19	5.3	9
NPWR-15-W20-W140-SW10	12	00	9 2 4
- \$ W5 Q	15	67	4
ICP-6970-S20-SW30	21	9.5	11
-SW23@	20	50	15
ICP-7035-S34Q-S29Q-SW18Q	15	26.7	0
-SW210	20	20.0	0 7
HY-3C-S2510-S150-SW10	15	13.3	5
-SW2@	15	20.0	5 5
BDN-1-W10-SW10	27	100.0	0
-SW4@	27	92.6	
KWR-1-W30-W10-SW10	22	63.6	0
-SW2@	17	17.7	6
15-3-3-W20-W160-SW20	13	7.7	4
-SW17₽	21	14.3	9
ICP-7867-SW10	21	42.,9	4
-SW30	23	43.5	5
ICP-7942-SW10	24	12.5	16
- SW69	15	6.7	7

IV. LABORATORY/NET HOUSE STUDIES

A. <u>Identification</u> and grouping of *Fusarium udum* isolated from samples collected in surveys

We collected wilted plant specimens from 56 locations in Uttar Pradesh during the extensive roving surveys. Isolations were made from these specimens on potato-dextrose-agar medium. All cultures were identified as $F.\ udum$ based on their 'hook shaped' macroconidia. All the pure cultures were sub-cultured at one time on potato-dextrose-agar medium and incubated at 28° to 30° C for 25 days. These cultures were then classified into different cultural groups [following the criteria described in Pulse Pathology (Pigeonpea) Annual Reports 1975-76 and 1976-77]. The groups thus obtained from Uttar Pradesh collections have been presented in Table 30. Groups 'B' and 'A' were most frequently encountered than others.

Table 30. Grouping of Fusarium udum isolated from the samples collected in Uttar Pradesh during 1978-79 survey trip

Group	Culture numbers <u>a</u> /	% frequency
A	UP-6, -7, -8, -10, -16, -22, -30 -33, -34, -38, -43, -45, -55, -56, -88, -91	28.5
В	UP-5, -12, -17, -19, -24, -26,-27, -28, -32, -57, -63, -64, -67, -71, -72, -86, -89, -99, and -105	33.9
С	UP-11 and -77	3.6
Ε	UP-20	1.8
G	UP-59 and -76	3.6
Н	UP-65	1.8
J	UP-1, -13, -49, -73, -75, -78, -85, and 100	14.3
K	UP-29, -36, -54, -66, -69, -70	10.7
L	UP-90	1.8

a/ UP - Uttar Pradesh

B Pot screening technique

The need for a 'pot technique' was appreciated to enable handling large number of germplasm accessions round the year and for use in inheritance studies. We plan to use the technique to supplement field screening. Efforts were therefore made to develop such a technique for wilt 'resistance screening.

Development of sick pots

The following steps were found suitable for a 'pot screening technique':

- (a) Alfisol (non-autorlaved) is filled in large (35 cm) earthen pots.
- (b) Fusarium udum is multiplied on sand:pigeonpea flour (9:1) medium (SPM) for 15 days
- (c) Fungus on SPM (200 g) and autoclaved pigeonpea stem bits (200 g) are mixed with top 15 cm of soil in pots.
- (d) A susceptible cultivar (ICP-6997) is raised (about 50 seeds) in each pot. All plants wilting withing 60 days are chopped and incorporated in the same pot.
- (e) Step 'C' 's repeated once
- (f) Step 'D' is repeated twice

By these steps we get over 90 percent wilt in most of the pots. This way we have developed 1000 such pots.

2 Germplasm screening

Seven hundred and twenty germplasm accessions were screened in sick pots. About 30 seeds of each accession were planted in each pot. To monitor the sickness in each pot, about 10 seeds of wilt susceptible line ICP-6997 were planted in a row in the center of each pot. The wilt incidence in susceptible check and also in the germplasm accession was recorded after 60 days. The results are presented in APPENDIX XXII. The wilt incidence in the susceptible check line ICP-6997 varied from 50 to 100%. In the germplasm accessions the wilt incidence ranged from 0 to 100%. Only three germplasm accessions, ICP-974 (9.9%), ICP-976 (0.0%) and ICP-995 (0.0%) showed low wilt while the susceptible check ICP-6997 in the same pots showed 75.0% to 100.0% wilt.

C. Adoption of 'Sand culture' technique

During 1975-76, we developed a 'water culture' technique (see Pulse Pathology (Pigeonpea) Annual Report, 1976-77) for use in laboratory screenings. However, this technique did not work satisfactorily. Therefore, attempts were made to evolve an efficient technique for use in green-house screening. The 'sand culture' technique was adapted by which we get above 95.0% wilt on wilt susceptible line, ICP-6997, within a month's period. Alfisol and Vertisol, instead of sand, gave 93.3% and 80.0% wilt, respectively (Table 31).

The steps involved in the 'sand culture' technique are given below:

- 1. Fusarium udum isolate 'A' is used.
- 2. Inoculum is multiplied in flasks containing potato-dextrose broth for 10 days in a shaker.
- 3. Inoculum from 4 flasks is filtered through Whatman No.42 filter paper and washed with sterilized distilled water twice.
- 4. The content (mycellium + conidia) from a filter paper is collected with 100 ml of sterilized distilled water and blended intermittently with Waring blendor for 1-2 minutes.
- Roots of seven to 10-day old seedlings, raised in autoclaved riverbed sand in polythene bags, are dipped in the inoculum for 10 minutes and transplanted into a pot containing autoclaved sand.
- 6. Final observation is taken one month after inoculation.

Table 31. Influence of soil type on the incidence of Fugarium Wilta/

Soil tune	No.of p	No.of plants tested %wilt			. %wilt	
Soil type	Test-1	Test-2	Test-1	Test-2	(avg. of 2 tests)	
Vertisol	15	15	93 . 3	66.7	80.0	
Alfisol	15	15	93.3	93.3	93.3	
Sand	15	15	100.0	93.3	96.7	

 $[\]underline{a}/$ Seedlings grown in autoclaved sand were inoculated by dipping roots in inoculum and then transplanted in autoclaved soil/sand.

PROJECT: PP-PATH 2(78): STUDIES ON STERILITY MOSAIC OF PIGEONPEA

T. SUMMARY

- Reports of severe occurrence of sterility mosaic from several pigeonpea producing areas were received.
- 2. Transmission through dodder and graft could not be relied because of the problem of contamination with the mite vector.
- Hopes of transmission of the causal agent through sap inoculation have brightened. Addition of Polyclar AT at the time of extraction seems to help.
- 4. The efficiency of transmission of the causal agent of sterility mosaic increased with the increase in the number of mites. With 20 mites, 60% transmission was obtained. The mites were able to acquire the causal agent within 5 minutes.
- 5. The non-viruliferous mite colony isolated was found to transmit sterility mosaic indicating it is same as *Aceria cajani*.
- Several collections of Atylosia scarabaeoides were found to be susceptible to sterility mosaic and also supported mite multiplication.
- 7. Considerable progress was made in isolation and characterisation of the causal agent of sterility mosaic.
- 8. In two months period, the sterility mosaic was found to spread up to a distance of 35 m during June to August months from the source of inoculum.
- 9. Inoculations in seedling and mid-vegetative stages resulted in 100% infection in susceptible BDN-1; in tolerant ICP-2376 it was 93 8 and 94.62%, respectively. In mild mosaic NPWR-15 the infection was very low even in seedling inoculation.
- 10. In BDN-1, inoculation in seedling stage resulted in 58.81% decrease in yield. Inoculation in mid-vegetative stage and later did not cause any decrease in yield; rather it increased slightly. In the tolerant ICP-2376, inoculation at all stages resulted in significant increase in yield. It was as high as 88.02% when inoculated in seedling stage. The results in mild mosaic NPWR-15 were not reliable as the percent infection was low.
- 11. The number of secondary and tertiary branches increased in inoculated plants.

- 12. No major morphological and anatomical differences between resistant and susceptible lines were observed. However, the tannin layer in the resistant line appears to be comparatively thicker than in the susceptible line. It appears that the changes brought out in the host as a result of sterility mosaic infection are playing major role in the multiplication of mites.
- 13. A large amount of breeding material and germplasm was screened in 6.0 ha plot under 'infector row' system.
- 14. In 4 generations of rigorous screening and selection, 29 out of 30 single plant progenies of 4 germplasm lines selected in 1975-76 showed uniform resistance.
- 15. A total of 2092 single plant progenies of resistant plants selected from germplasm during 1976-77 and 1977-78 were screened and 931 of them were found to show uniform resistance.
- 16. Several F_1 and F_2 materials involving resistant and susceptible parents were screened in order to help the breeders in understanding the nature of resistance.
- 17. A total of 781 F₃ progenies from 11 crosses were screened; 4 progenies were selected for yield trial and single plant selections were made from 52 promising progenies.
- 18. Out of a total of 346 F₄ progenies screened, two progenies were selected for yield trial and single plant selections were made from 39 promising progenies.
- 19. Out of 841 F₅ progenies screened, five were selected for yield trial and single plant selections were made from 66 promising progenies.
- 20. Out of 172 advanced germplasm and breeding materials screened, two germplasm lines were selected for yield trial and single plant selections were made from two more.
- 21. Out of 174 advanced triple cross progenies screened, four were selected for yield trial and single plant selections were made from 37 promising progenies.
- 22. Out of 227, F₃, F₄, and F₅ triple cross progenies screened, for the first time, 4 progenies showing low disease incidence were selected for yield trial and single plant selections were made from 13 progenies.
- 23. A total of 442 F₄ progenies from generation tests were screened for the first time and single plant selections were made from 17 promising progenies

- 24. A total of 331 F_4 triple cross progeny bulks were screened for the first time and single plant selections were made from 10 promising progenies.
- 25. All the six male steriles tested were found highly susceptible.
- 26. Of the 58 ACT materials tested only 1234 and NPWR-15 showed low infection. Hy-2 showed uniform ringspot symptom.
- 27 None of the six materials sent by Dr. B. Baldev of IARI, New Delhi was found promising.
- 28. All the 12 resistant lines included in the Sterility Mosaic National Uniform Trial developed severe infection at Dholi, Bihar.
- 29. Of the 13 Phytophthora blight promising lines tested ICP-6974-PQ and ICP-2376 showed promise against sterility mosaic.
- 30. Of the 39 lines in the Wilt National Uniform Trial, five lines were found resistant to sterility mosaic also.

II. INTRODUCTION

ICRISAT surveys and reports from other places revealed that sterility mosaic has become a serious problem in several pigeonpea producing areas. It has resulted in more requests for seed of resistant materials from ICRISAT. Starting of large scale screening and resistance breeding program at ICRISAT proved to be a right decision. The work started giving good materials when they are most needed. A wide variety of resistant materials is available.

The major activity during the year has been the large scale screening of germplasm and breeding materials and identification of the causal agent involved in sterility mosaic. Work on estimation of yield losses and multilocation testing of the resistant materials was continued.

III. ETIOLOGY AND EPIDEMIOLOGY

A. Transmission

Efforts to transmit the causal agent of sterility mosaic through means other than eriophyid mite continued. Anatomical studies conducted by Mr. S.S. Bissen of ICRISAT revealed presence of a layer of tannin on the leaf surface in pigeonpea. Since tannins are known to be the strong inhibitors of plant viruses, it was thought that the failure of mechanical transmission may be due to interference by tannins. Emphasis was placed on use of tannin binders in the extraction media.

1. Graft

In the earlier years transmission through wedge grafting failed probably because of the failure of graft itself. This year approach grafting was tried. The diseased plants before grafting were thoroughly sprayed with Karathane to eliminate the mites. After 30 days, 1 out of 10 plants grafted, showed symptoms.

The leaves from infected plants when observed showed no mites. The plants were kept for further observation. When observed three months later 2 more plants showed symptoms. But the leaves of all the three plants also showed mite colonisation leading to the suspicion that the mite contamination has occurred. Hence, the results can not be considered reliable.

Dodder

The usual procedure of colonising dodder on the diseased plants first and then connecting it with the healthy plants resulted in development of infection in 3 out of 10 plants colonised within 40 days. Even though the diseased plants were thoroughly drenched with Karathane before infestation, mites re-appeared on them, again leading to the suspicion of contamination. To avoid this problem, dodder from diseased plants were treated with 2% parafin oil with little liquid soap for 5 minutes. The dodder then was washed thoroughly in water with liquid soap to remove the excess parafin oil. It was colonised on susceptible pigeonpea to see whether if any causal agent present in the dodder get transmitted to them. The plants were kept under observation for 3 months. No symptoms could be seen even though the dodder colonised on them extensively.

3. Mechanical

Efforts to transmit the disease through sap inoculation were continued. Leaves from diseased plants and mites from the infected ones were used as inoculum source. Emphasis was placed on the use of tannin binders in the extraction medium.

(a) From host tissue

Young leaves from diseased plants with clear symptoms were ground in 0.1MKPO4 buffer pH 7.0 with 0 02M, 2-mercaptoethanol and Polyclar AT using pestle and mortar in cold. The concentration of Polyclar AT used was 50% of the weight of leaf tissue. Inoculations were made by rubbing the juice on the carborundum dusted primary leaves and then the leaves were washed with tap water. Faint circular chlorotic lesions of about 2-3 mm in diameter appeared on the inoculated primary leaves within 7 days after inoculation. The trifoliate leaves also showed symptoms of stunting, malformation and faint mottle. The plants are being observed further and this needs to be confirmed.

(b) From mite vector

Several individual mites were picked from the infected leaves and placed in a drop of cold $0.1 \rm MKPO_4$ buffer pH 7.0. They were ground thoroughly and the extract with Celite was used for inoculation. None of the inoculated plants developed infection.

B. Virus-vector relationship

The influence of acquisition access period and number of mites per plant on the transmission of the causal agent of sterility mosaic was studied.

1. Influence of number of mites

Mites from sterility mosaic infected BDN-1 plants were used. The test variety was also BDN-1 (19-day old seedlings). The number of mites per plant tried were 1, 5, 10 and 20. A batch of plants without inoculation were kept as control. The results are presented in Table 32.

Even with one mite per plant 40% transmission was obtained. With 5, 10 and 20 mites per plant the transmission was 60%. It shows that a higher number per plant is needed for obtaining 100% transmission.

Table 32. <u>Influence on number of mites on the transmission of the causal</u> agent of sterility mosaic

No. of mites per plant	No. of plants inoculated	No. of plants infected	Percent infection
1	5	2	40.00
5	5	3	60.00
10	5	3	60.00
20	5	3	60.00
Control (no mites)	5	0	0.00
Control (no mices)	· ·	•	0.00

2. Influence of acquisition access period

The minimum acquisition access period needed by the eriophyid mite to acquire the causal agent of sterility mosaic was studied using the healthy mite colony. Detatched young leaves from infected plant, thoroughly sprayed 15 days earlier with Karathane to completely eliminate the mites, were used for mite feeding. The leaves before use were

examined under stereo binocular microscope to make sure that there were no mites. One cm² discs floated in water were used for feeding. The acquisition access periods tried were; 5 min., 30 min., 1 hr., 2 hr., 4 hr., and 6 hr. Test seedlings used were of BDN-1 (11-day old). The number mites used per seedling was 10. The results are presented in Table 33.

The results were erratic but it is interesting to note that transmission could be obtained with 5 min. acquisition access period. Lack of transmission with longer acquisition access periods could be due to residual Karathane left on the diseased leaf used for acquisition access. At the time of transfer it was observed that the mites became inactive in case of longer acquisition access periods.

Table 33. Influence of acquisition access period on transmission of pigeonpea sterility mosaic by Aceria cajani.

Acquisi per	tion access iod	No. of seedlings inoculated	No. of seedlings infected	Percent infection
5	min.	10	4	40.00
30	min.	10	0	0.00
1	hr.	10	0	0.00
2	hr.	10	1	10.00
4	hr.	10	0	0.00
6	hr.	10	0	0.00

C. Maintenance of non-viruliferous mite colony

The mite colony isolated from healthy BDN-1 plant during 1977-78 and proved to be non-viruliferous is successfully maintained. The colony is maintained by repeated transfers on to young seedlings of BDN-1 in an Incubator, with flourescent lights, maintained at $30^{\circ}\text{C}_{\odot}$

It was found essential to prove whether these mites are vectors of the causal agent or not before they are used in further studies. For this purpose individual mites were transferred on to 1 cm² diseased leaf discs, free from mites, and floated in water. The mites were allowed to feed for 6 hr. and then transferred on to healthy seedlings of BDN-1 in batches of 10 per plant. Within 3 weeks 4 out of 6 inoculated seedlings developed clear symptoms of sterility mosaic. This indicates the mite in the healthy colony being maintained is the vector of sterility mosaic.

Similar results were obtained in repeated experiments.

The successful and continuous maintenance of the non-viruliferous mite colony on the susceptible variety without symptoms of sterility mosaic conclusively negates the possibility of mite toxaemia being the cause of sterility mosaic.

D. Host range

The role of $Atylosia\ spp.$ in the epiphytology of pigeonpea sterility mosaic was further investigated. In the host range study some of the $Atylosia\ spp.$ were inoculated last year but the results were not clear because of severe iron deficiency symptoms in the plants. This year again seven of the $Atylosia\ spp.$ and one species of Rhyncosia were inoculated with sterility mosaic to see their susceptibility to the virus and also vector. The results are presented in Table 34.

The collections of A. scarabaeoides, A. platycarpa and A. cajanifolia only were found susceptible. The collections of other species screened did not show symptoms. The three susceptible species were observed for mite colonisation. A. scarabaeoides and A. cajanifolia showed the presence of mites. The mite number was comparatively more on A. cajanifolia.

Since among the wild species, *A. scarabaeoides* is more commonly present in pigeonpea growing areas, it is expected to play a major role in harbouring the causal agent and the mite vector during the off-season. To get more information on this, all the collections of *A. scarabaeoides* available in the Genetics Resources Unit of ICRISAT were inoculated and observed for sterility mosaic reaction and mite colonisation. The results are presented in Table 35.

Table 34 Reaction of Atylosia spp. and Rhyncosia minima to sterility mosaic

Species	Total plants	Infected plants
l. albicans (JM-2337)	9	0
l. scarabaeoides (JM-1818; IC-7467)	8	3
I. platycarpa (LJR Coll.)	9	2
1. lineata (IC-7225)	3	0
I. cajanifolia (JM-2739)	8	8
1. volubilis (JM-1984)	6	0
1. sericea (IC-7470)	6	0
?. minima	4	0

The reaction to the collections to the disease varied. Most of the collections did not develop 100% infection indicating heterogeneity in the collections. The susceptible collections were checked for mite colonisation. Most of them showed presence of mite, but the number was very low.

Some of the collections A. scarabaeoides planted in the Pulse Entomology area, close to the sterility mosaic affected pigeonpeas, also showed symptoms of mottling and colonisation with eriophyid mites. Back inoculations from A. scarabaeoides to pigeonpea are in progress.

E. Purification

The work on the isolation and characterisation of the causal agent is in progress. We have got some positive leads during the year.

F. Disease spread

The extent of spread of sterility mosaic under field conditions was studied. On June 30, 1978, one pot containing sterility mosaic infected plants with mites was kept on western end of each of the 16 rows of BDN-1 planted in east-west direction on 23rd June 1978. After 38 days, the number of plants showing infection at different distances from the pots were counted in all the 16 rows. The results are presented in Table 36. Infected plants were observed only up to a distance of 35 m. The infected plants were more towards the source of inoculum and the number gradually decreased with the increase in the distance. The frequency of rows with infected plants also decreased with increase in the distance from inoculum source.

Table 35. Reaction of different collections of A. scarabaeoides to sterility mosaic

S.No.	Collection No.	Total plants	Infected plants
1.	LJR Coll.	7	0
2.	EC-1212341	2	2
3.	EC-1212344	8	3
4.	JM-2958	10	2
5.	RJW Coll.	7	0
6.	JM-1965	6	2
7.	JM-1967	6	1
8.	EC-1212342	4	1
9.	Hayatnagar Coll.	10	4
10.	EC-121206	6	-
11.	ICRISAT Site coll.	10	4
12.	JM-2323	8	0

S . No .	Collection No.	Total plants	Infected plants
13.	JM-2289	5	0
14.	EC-12107	6	Ĩ
15.	JM-1988	7	_
16.	JM-2865	6	2
17.	JM-2939	8	7
18.	JM-2881	8	7
19.	ANM-557	6	2

Table 36. Spread of sterility mosaic of pigeonpea under field conditions

Row No.	No. o	finfec	ted plan	ts at di	stances	from infec	tion sour	ce a/
	5 m.	10 m.	15 m.	20 m.	25 m.	30 m.	35 m.	40 m.
1	1	3	2	2	1	2	0	0
2	4	1 .	0	1	1	2	0	0
3	10	4	0	1	0	0	1	0
4	1	2	3	1	0	0	1	0
5	. 1	3	0	0	0	0	0	0
6	4	0	0	0	0	0	0	0
7	4	3	1	2	0	1	0	0
8	4	2	0	1	1	0	0	0
9	7	2	1	1	0	0	0	0
10	2	2	0	1	0	0	0	0
11	, 0	0	1	0	0	0	1	0
12	٠ 2	1	1	1	0	0	0	0
13	4 .	2	1	1	2	0	1	0
14	1	3	0	0	0	0	1	0
15	. 7	5	3	0	0	0	0	0
16	3	2	11	0	00	0	0	0_
Rows wit infected plants		14	9	10	4	3	5	0
Total in fected p		35	14	12	5	5	5	0

a/ The number of plants given in the table represent counts in 5 meter lengths.

G. Efffect of Bavistin on symptom expression

There are recent reports indicating that drenching with Bavistin has resulted in both symptom reduction and inhibition of RNA-synthesis in some plant viruses. The effect of Bavistin on sterility mosaic was studied mainly to get some information on the nature of the causal agent. The experiment was carried out in pots. The concentration of Bavistin used was 0.5%. The dose was 500 ml. per 8" pot with 5 seedlings. It was applied at 3 stages; 5 days before inoculation, at the time of inoculation and 5 days after inoculation. Surprisingly the treated plants showed more severe symptoms than the controls. The experiment needs to be repated before drawing conclusions.

IV. ESTIMATION OF LOSSES

Studies on the estimation of losses in pigeonpea due to sterility mosaic were continued. A field trial with 3 cultivars representing one each of susceptible (BDN-1), ring spot (tolerant - ICP-2376) and mild mosaic (less susceptible - NPWR-15) types was conducted. Inoculations were carried out at 4 different growth stages (i) seedling (35 days), (ii) mid-vegetative (62 days), (iii) pre-flowering (111 days), and (iv) post-flowering (148 days).

The experiment was laid out in such a way that the blocks to be inoculated at different stages were isolated from each other by at least 50 m. These plots were separated by a mixed crop of maize and resistant pigeonpea (HY-3C). Each block consisted of 12 plots of 75 m 2 (3 cultivars x 4 replications). Randomized block design was followed in each block. Pigeonpea was planted in broad beds at 150 x 30 cm spacing. In between two rows of pigeonpea there were 2 rows maize.

The four stages selected applied only to BDN-1 and ICP-2376 and not to NPWR-15 which is a late cultivar. Separate inoculations for it were not possible because of the contamination problem. Inoculations at each stage were carried out on the top five leaves of the central branch by leaf-stapling technique. Observations on incubation period, percent infection, yield, primary, secondary and tertiary branches, pods, 100-seed weight and harvest index were taken.

A. <u>Incubation period</u>

For each stage of inoculation, the time taken for symptom development was recorded. The results are presented in Table 37. It varied with the stage of inoculation but there was no particular trend. It appears that the weather conditions prevailing at the time of inoculation also played a role in it. But the incubation period at all the stages of inoculation was same for all the 3 cultivars.

B. Percent infection

The percent infection based on the observations made at the maturity stage of the crop was calculated. The results are presented in Table 38. The infection in BDN-1 and ICP-2376 was very high when inoculated before mid-vegetative stage. Infection in NPWR-15 was very low. Inoculation at pre-flowering stage resulted in low infection even in BDN-1 and ICP-2376 and it was negligible after post-flowering stage. The low infection in NPWR-15 appears to be due to use of a seed lot which had a high level of resistance.

Table 37. Effect of age of pigeonpea at inoculation on incubation period of sterility mosaic

Age at inoculation	Cultivar	Incuba	tion pe	riod i	n days	5
	1	R1	R2	R3	R4	Average
Seedling (35 days age)	BDN-1 ICP-2376	11 11	11 11	11 11	11 11	11 11
(co mayo myo,	NPWR-15	ii	11	ii	ii	11
Mid-vegetative (62 days age)	BDN-1 ICP-2376 NPWR-15	19 19 19	19 19 19	19 19 19	19 19 19	19 19 19
Pre-budding (111 days age)	BDN-1 ICP-2376 NPWR-15	15 15 15	15 15 15	15 15 15	15 15 15	15 15 15
Post-flowering (148 days age)	BDN-1 ICP-2376 NPWR-15	20 20 20	20 20 20	20 20 20	20 20 20	20 20 20
Control (No inoculation)	BDN-1 ICP-2376 NPWR-15	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0

C. Effect on yield

The effect on yield was calculated on the basis of both total plants (plot yield) and 10 infected plants. The second observation was taken with the intention of having a better comparison since there was considerable variation in the plant population in different plots.

1. Yield based on total plants

The yield data based on the total plants (infected and healthy) is presented in Table 39. Because of low percent of infection in NPWR-15 even in the early stages of inoculation, the yield data may not be reliable. But the results of ICP-2376 and BDN-1 are very surprising. There was reduction in yield (58.81%) only in case of BDN-1 when inoculated in the seedling stage. The yields increased in ICP-2376 and BDN-1 when inoculations were made in mid-vegetative, pre-flowering and post-flowering stages. The increase in BDN-1 was marginal but in ICP-2376 the increase in yield was as high as 88.02% (seedling stage inoculation). The reasons for this unexpected increase in yield might become clear when the data on the various yield components are analysed.

2. Yield based on infected plants

The yield data based on 10 infected plants is presented in Table 40. As in the previous case, the data in case of NPWR-15 is not reliable as 10 infected plants were not available. So the percent yield loss was not calculated for this variety. In this case also the trend was same as in case of total plant yields except that the increase in yield in BDN-1, when inoculated at pre-flowering and post-flowering stages, was also considerable.

D. Effect on yield components

Data on the number of primary, secondary, and tertiary branches, number pods, 100 seed weight and harvest index were collected. These data were collected from the 10 infected plants of the cultivars except NPWR-15 (Table 41).

1. Primary branches

There was not much effect of inoculation at all the stages on the number of primary branches in BDN-1 and ICP-2376. In NPWR-15 there was an increase in the inoculated compared to control.

Secondary branches

There was a significant increase in the number of secondary branches in the inoculated plants of all the three cultivars. The extent of increase varied with cultivar. The increase in BDN-1 was more pronounced in seedling and mid-vegetative stage inoculations.

Age at inoculation	Cultivar		Total plants	olants P3	78		Infected plants	plants R3		6	Percent infection	ection R3	84	Average	1
			١	2			•				!				1
Seedling	BDN-1	189	183	88	178	189	183	188	178	100.00	100.00	100.00	100.00	100.00	
	ICP-2376	214	195	237	228	202	194	224	198	94,39	99.48	94.51	86.84	93.80	
	NPWR-15	224	221	592	228	24	54	88	91	10.71	10.85	14.33	7.01	10.72	
Mid-vegetative	BDN-1	247	183	245	181	247	182	245	181	100.00	100.00	100.00	100.00	100.00	
	ICP-2376	204	245	217	235	200	214	203	234	98.03	87.34	93.54	99.57	94.62	
	NPWR-15	242	427	275	211	æ	8	25	=	15.70	7.02	9.09	5.21	9.25	
Pre-budding	BDN-1	360	308	285	329	113	102	26	23	31.38	33.11	19.64	15.50	24.90	
	ICP-2376	331	344	355	270	13	-	70	2	3.92	0.29	5.97	3.70	3.47	
	NPWR-15	342	410	390	274	24	54	1	21	7.01	5.85	1.79	7.66	5.57	
Post- flowering	BDN-1	258	305	235	319	0	_	2	4	0.00	0.32	0.85	1.25	09.0	
	ICP-2376	569	249	225	270	0	0	0	0	0.00	0.00	0.00	0.00	0.00	
	NPWR-15	235	882	235	233	0	_	_	0	0.00	0.34	0.42	0.00	0.19	
Control	BDN-1	456	325	311	380	ო	က	2	2	0.70	0.92	0.64	0.52	69.0	
(NO INOCUIACION)	ICP-2376	306	460	341	310	0	0	0	0	0.00	0.00	0.00	0.00	0.00	
	NPWR-15	280	277	237	301	0	0	0	-	0.00	0.00	0.00	0.33	90.0	

Effect of age of pigeonpea at inoculation on the incidence of sterility mosaic

Table 38.

Effect of sterility mosaic on yield in pigeonpea when inoculated at different ages $^{ extbf{a}/ extbf{c}}$

Table 39.

Age at			Total	Total plants	v	Tota	Total vield (orams)	(orams)			 >-	Yield/clant (orams)	(arams)			/ssol 3	increase
inoculation	Cultivar	E.	R2	83	R4	RI	R2	R3	R4 <i>H</i>	Average	RI	R2	R3	R4	Average	Yield/ plant	Yield/ Yield/ plant plot
Seedling	BDN-1	189	183	188	178	1876.6	1427.2	1155.6	3916.1 3093.8	3093.8	9.95	7.79	6.14	22.00	11.46	- 58.81	- 78.70
	ICP-2376	214	195	237	228	8301.6	9752.6	9465.7	9613.5	9283.3	38.79	50.01	39.93	42.16	42.72	+ 88.02	+ 18.22
	NPWR-15	224	221	265	228	5415.5	5212.2	5022.5	5292.1	5235.5	24.17	23.58	18.95	23.21	22.47	- 7.53	- 21.64
Mid-vegetative	BDN-1	247	187	245	181	6451.4	6015.7	7352.5	8797.2	7154.2	26.11	21.40	30.01	48.60	31.53	+ 13.37	- 27.24
	ICP-2376	204	245	217	235	6305,4	8639.2	8070.5	5717.0 7	7183.0	30.90	35.26	37.19	24.32	31.91	+ 40.44	8.88
	NPWR-15	242	427	275	211	6137.5	8182.4	7892.3	7452.6 7	7416.2	25.36	19.16	28.69	35.32	27.13	+ 11.64	+ 10.99
Pre-budding	3DN-1	360	308	582	329	9555.4	9555.4 10024.7	7985.2	8033.1 8	9.6588	26.54	32.54	10.82	24.46	27.87	+ 0.21	- 9.42
	ICP-2376	331	344	335	270	4295.0		9627.1 13006.3	8039.1	8039.1	12.97	27.98	38.82	30.84	25.41	+ 11.83	+ 2.38
	NPWR-15	342	410	390	274	5633.1	5169.6	5000.0	5670.5	5368.3	16.47	12.60	12.82	50.69	15.64	- 35.63	- 19.08
Post-flowering	60N-1	258	305	235	319	7916.1	8332.6	7923.4	8027.6	8049.0	30.68	27.32	33.71	25.16	12.52	+ 5.03	- 18.13
	ICP-2376	269	249	225	270	7239.9	7818.1	6043.9	7301.0	7100.7	26.91	31.59	36.36	27.04	28.10	+ 23.67	9:26 -
	NPWR-15	235	588	235	233	4752.8	4900.0	5454.6	5100.0	5051.8	20.22	17.61	23.21	21.88	20.58	- 15.72	- 24.39
Control (Mo inchitation)	BDN-1	426	325	311	380	9483.2		9062.5 10963.5	9825.8	9833.5	22.26	27.88	35.25	25.85	27.81	•	
(יים וווסכפון פרוסיון)	ICP-2376	305	460	341	310	8265.3	8172.9	7327.8	7642.4 7	7852.1	27.01	17.76	21.48	24.65	22.72		•
	NPWR-15	280	277	237	301	7500.0	7057.3	5050.0	7.119,7 6681.7	6681.7	26.78	25.47	21.30	23.65	24.30		

+ = Increase in yield. - = Loss in yield. $\underline{a}/$ yields based on total plants.

Effect of sterility mosaic on yield in pigeonpea when infected at different ages

Table 40.

Age at inoculation Cu	Cultivar	RI	Yield/10 plants (grams) R2 R3	ants (grai R3	ms) R4	2	Yield/p R2	Yield/plant (grams) R2 R3	s) R4	Average	Percent loss/increase	se
Seedling BI	BDN-1	33.71	68.00	28.00	80.50	3.37	6.80	2.80	8.05	5.25	- 77.52	
ĭ	ICP-2376	301.60	452.62	265.79	413.51	30.16	45.26	26.57	41.35	35.83	+ 46.48	
Z	NPWR-15	165.50	212.20	272.50	192.10	16.55	21.22	27.25	19.21	21.05	•	
Mid-vegetative B	BDN-1	201.40	115.70	452.50	147.20	20.14	11.57	45.25	14.72	22.92	- 1.79	
ũ	ICP-2376	505.40	489.20	470.50	317.00	50.54	48.92	47.05	31.70	44.55	+ 82.13	
N	NPWR-15	137.60	132.40	142.30	202.60	13.76	13.24	14.23	20.26	15.37	•	
Pre-budding B1	BDN-1	555.40	424.70	385.20	283.10	35.54	42.47	38.52	28.30	36.21	+ 55.00	
Ä	ICP-2376	295.00	427.10	406.30	428.30	29.50	42.71	40.63	42.83	38.91	+ 59.07	
Z	NPWR-15	199.40	88.90	•	97.05	19.94	8.89		9.70	12.84	•	
Post-flowering B	BON-1	416.10	332.60	373.40	277.60	41.60	33.20	37.30	27.70	34.95	+ 49.61	
ā	ICP-2376	339.90	368.10	343.90	301.00	33.99	36.81	34.39	30.10	33.82	+ 38.26	
Ñ.	NPWR-15	28.00	0.00	546.50		28.00	•	54.65		28.72	•	
	BDN-1	233.20	262.50	213.00	225.80	23.32	26.25	21.30	22.58	23.36	•	
(NO INOCAIACION)	ICP-2376	265.30	222.90	253.10	237.30	26.53	22.29	25.31	23.73	24.46	•	
Z	NPWR-15	ı	57.30	0.00	02.69	•	5.73		6.97	6.35	•	

+ = Increase in yield; - = Loss in yield.

3. Tertiary branches

There was tremendous increase in the number of tertiary branches in BDN-1 when inoculated in seedling and mid-vegetative stages. There was no effect in pre and post-flowering stage inoculations. In ICP-2376 also there was considerable increase in seedling and mid-vegetative stage inoculations. In NPWR-15 there was no marked effect.

4. Pod number

In BDN-1 the number decreased when inoculated in seedling and mid-vegetative stages and increased in pre and post-flowering stage inoculations. In ICP-2376 inoculations in all the stages resulted in about 2-fold increase in pod number. In NPWR-15 the pod number increased.

5. 100-seed weight

Data on 100-seed weight was also recorded to see if the inoculations were causing any effect (Table 42). There was a slight increase in BDN-1 and ICP-2376 in seedling and mid-vegetative stage inoculations.

6. Harvest index

The harvest index in BDN-1 reduced drastically in seedling and mid-vegetative stage inoculations (Table 43). But it increased in pre and post-flowering stage inoculations. In ICP-2376 it increased in all the stages of inoculation. In NPWR-15, it is not reliable as the plant number considered for this observation was low.

V. NATURE OF RESISTANCE

Investigations into the morphological and anatomical differences of the resistant and susceptible lines continued. The work was carried out in close collaboration with Mr. S S. Bissen of Pulse Physiology.

A Methodology

The fresh, healthy leaf samples of different ages of the variety BDN-1 (susceptible) and ICP-7119 (resistant) were fixed in 4% glutaral-dehyde prepared in phosphate buffer of 6.8 $_{\rm p}$ H for 48 hrs. The leaf samples were then washed in phosphate buffer twice by giving the changes of 15-minute intervals. The samples were then post-fixed in 1% osmium tetraoxide prepared in phosphate buffer of 6.8 $_{\rm p}$ H for 20 minutes.

The samples were then thoroughly washed in phosphate buffer of 6.8 $_{\rm pH}$ and dehydrated by passing through the series of 100% methylcellosolve, 100% ethanol, 100% n-propanol, and 100% n-butanol. The

50

Age at inoculation	Cultivar		•	o.of p s/plan	rimary t	Averag		age no.	of secon		verage		ge no.o anches/			verage	Avera	ige no. plant	of pods		Average
mocuration	Carcival	RT	R2	R3	R4	Arciug	RT	R2	R3	R4		RT	R2	R3	R4		RT	R2	R3	R4	
Seed1 ing	BDN-1	5.5	7.3	6.0	9.3	7.02	35.3	36.1	31.2	46.1	37.17	91.5	54.4	51.2	53.7	62.70	7.1	35.9	9.2	43.2	23.8
	ICP-2376	6.6	7.7	8.2	5.8	7.07	21.7	27.9	27.2	29.1	26.47	2.4	11.2	8.6	7.6	7.45	102.9	196.9	186.3	151.6	159.4
	NPWR-15	3.1	5.5	3.2	3.9	3.92	31.1	29.0	28.5	45.3	33.47	51.7	49.9	58.6	44.7	51.22	90.1	99.0	146.6	165.2	125.2
Mid-vegetative	BDN-1	7.6	6.0	3.5	6.4	5.87	38.4	31.2	37.1	38.3	36.25	45.5	51.2	35.5	57.3	47.37	55.5	9.2	123.8	49.8	59.5
	ICP-2376	7.4	8.2	7.6	6.2	7.35	27.4	27.2	23.5	24.4	25.62	6.0	8.6	7.0	10.0	7.90	126.7	186.3	171.2	165.7	162.4
	NPWR-15	1.3	1.9	1.8	2.5	1.87	20.2	37.7	23.4	30.6	27.07	45.4	62.5	72.6	61.5	60.50	89.3	80.3	145.9	173.8	122.3
Pre-budding	BDN-1	5.3	9.2	11.6	12.3	9.60	15.1	30.7	18.8	11.3	18.97	1.7	0.0	0.0	0.2	0.47	110.3	127.6	133.1	94.7	116.4
	ICP-2376	8.6	6.4	8.5	7.9	7.85	20.6	37.1	27.8	26.1	27.90	4.0	2.1	0.9	3.0	2.50	142.0	150.6	122.4	158.2	143.3
	NPWR-15	1.1	1.8	2.7	1.5	1.77	36.8	21.8	26.7	20.5	26.45	19.0	39.3	20.7	59.1	34.52	129.5	131.8	111.5	128.5	125.3
Post-flowering	BDN-1	6.3	5.0	4.2	6.1	5.40	24.0	21.3	24.1	13.4	20.70	0.2	1.6	0.0	0.0	0.45	116.7	118.0	105.4	76.7	104.2
	ICP-2376	5.2	5.0	4.4	5.5	5.02	24.8	27.5	27.0	22.0	25.32	0.0	0.0	0.0	0.1	0.02	113.9	128.9	186.8	106.4	134.0
	NPWR-15	1.0	-	4.0	-	3.00	30.0	-	87.0	-	58.50	26.0	-	72.0	-	49.00	77.0	-	94.0	-	85.5
Control (No	BDN-1	6.1	7.0	5.6	5.9	6.15	16.9	15.3	15.0	12.5	14.92	0.0	0.2	0.5	1.2	0.47	54.9	74.6	55.3	69.5	63.5
inoculation)	ICP-2376	6.C	5.6	7.3	7.5	6.60	21.2	16.0	21.2	17.8	19.05	0.0	0.0	0.0	1.0	0.25	90.8	75.2	89.5	81.8	84.3
	NPWR-15	-	1.0	-	1.0	1.00	-	10.0	-	20.0	10.33	-	100.0	-	15.0	57.50	-	148.0	-	4.0	76.0

 $[\]underline{a}/$ Results based on 10 infected plants of each cultivar

Table 42. Effect of sterility mosaic on 100 seed weight of pigeonpea when infected at different ages

Age at inoculation	Cultivar		100 se	eed weig	ht (grams	s)
		R1	R2	R3	Ř4	Average
Seedling	BDN-1 ICP-2376 NPWR-15	10.0 11.7 12.0	10.30 11.70 8.33	10.0 9.9 12.0	10.00 11.40 12.00	10.75 11.17 11.08
Mid-vegetative	BDN-1 ICP-2376 NPWR-15	13.0 13.6 12.6	12.60 11.50	8.4 12.3 12.2	10.66 13.00 13.00	11.16 12.60 12.60
Pre-budding	BDN-1 ICP-2376 NPWR-15	10.1 8.8 -	9.10 8.60 11.00	9.9 10.0 -	9.40 9.10 11.60	9.62 9.12 11.30
Post-flowering	BDN-1 ICP-2376 NPWR-15	10.4	8.80 9.10 10.10	10.2 8.6 12.0	10.20 8.70	9.90 8.80 11.00
Control (No inoculation)	BDN-1 ICP-2376 NPWR-15	9.5 8.9 -	10.60 8.70	10.5 8.3	8.60 8 .30	9.80 8.55 -

samples were then kept 12 hr in each solvent by giving two changes of 6 hr interval. The complete process of dehydration was carried out in cold at 10°C. The samples were then transferred into 1:1 mixture of n-Butanol and Glycol methacrylate monomer mixture (GMA) The percentage of GMA was increased gradually. Finally the sample were transferred into a pure GMA; for a week, changing the GMA at 24 hrs intervals

After the infiltration, the samples were transferred into the gelatin capsules filled with the GMA mixture and were kept in the incubator at 60°C for the polymerisation. The temperature of the incubator was raised slowly from 50°C to 60°C , to avoid the formation of air bubble.

Average 0.13 0.05 0.18 9.08 0.25 9.08 0.25 0.17 0.19 0.17 0.02 0.26 0.22 0.27 0.0 0.15 0.13 0.26 0.26 8.0 0.29 0.20 0.13 0.12 \$ 0.37 0.07 0.21 0.0 Effect of sterility mosaic on harvest index of pigeonpea when infected at different ages (on the basis of 10 plants) 0.19 0.18 0.18 0.26 0.0 0.01 9.08 0.24 0.23 0.27 0.25 0.33 Harvest index 91.0 0.03 0.25 0.09 0.04 0.21 0.05 0.24 0.22 0.26 0.30 0.0 0.18 0.02 • 0.25 90.0 0.0 0.20 8.0 0.27 0.20 9.08 9.23 0.25 0.23 0.21 0.0 \overline{z} 16.10 192.18 103.10 317.00 202.63 283.15 428.32 97.05 277.64 301.06 142.40 415.51 225.81 84 Weight of 10 plant grain 265.79 272.53 49.73 470.59 128.09 385.23 406.39 343.95 213.04 227.80 5.60 373.41 109.31 212.20 489.29 105.92 424.79 427.16 862.53 222.90 27.20 452.62 46.00 332.62 368.11 3.80 6.97 295.15 23.60 301.60 165.50 504.56 96.35 355.49 233.26 265.30 141.00 53.34 416.11 339.91 ~ 1373.00 1608.30 1032.50 1094.50 1493.73 2095.00 1057.30 933.70 1381.00 1168.00 1544.08 1127.00 1084.00 Total weight of 10 plants (gms) 1514.3 1603.3 1758.0 1020.0 1375.0 1033.4 2090.0 2561.6 1348.3 1360.2 325.3 1152.0 1170.2 837.0 1799.4 2337.0 970.0 2247.0 1775.0 1731.6 1878.8 1235.4 1192.6 271.3 1416.0 1332.2 320.0 1081.0 1261.3 1408.0 1176.8 2552.0 1466.0 2433.0 1276.6 1427.3 593.74 1419.6 1320.0 975.0 Cultivar ICP-2376 1CP-2376 ICP-2376 [CP-2376 ICP-2376 NPWR-15 NPWR-15 NPWR-15 NPWR-15 NPWR-15 BON-1 BDN-1 BON-1 BON-1 BDN-1 Post-flowering Mid-vegetative Age at inoculation inoculation) Pre-budding Control (No Table 43. Seedling

The gelatin capsules containing the polymerised GMA were kept in water for 5-10 min, to dissolve the gelatin. The samples were then cut at 1.5 to 2 μ by glass knives. The individual sections were picked by a fine forcep and were arranged on a slide in a drop of water. The slides containing the sections were then kept on a hot plate at 45-50°C for spreading and drying

The dried sections were stained with 0.05% Toluidine blue prepared in phosphate buffer of 6.8 pH for 1 min. The sections were stain differentiated by washing in water, and again dried on the hot plate. After drying, the sections were mounted in permount. Before putting the mountant it is desirable to breathe on the sections which helps in proper differentiation of the stain colour. The sections were then observed under the microscope, both in bright light and phase contrast.

B. Results and discussion

The anatomical study of the leaves of these susceptible and resistant varieties did not reveal any marked structural difference.

There was not much difference in the cuticle thickness, in the compactness of palisade tissue. There were no crystals in the epidermal cells. There were apparent differences in the density of hairs on the lower epidermis, but the scanning electron microscopic studies did not show any considerable difference in the hair density, and also in cuticle thickness, or pattern of wax on the surface of the leaf.

The only difference which can be concluded with anatomical study is the presence of continuous line of tannin on the epidermal layer of these varieties. It is more prominent in ICP-7119 than BDN-1. The quantitative estimation is not possible under the microscope. It will be worthwhile to assess the total tannin contents of the leaves of these varieties.

It appears that the changes brought out in the host as a result of sterility mosaic infection probably play a major role in the more multiplication of mites in the susceptible lines. This hypothesis is supported by the fact that even the healthy plants of highly susceptible pigeonpea do not generally support mite multiplication.

VI. INFLUENCE OF PLANTING DATE

The experiment on the effect of date of planting on the incidence of sterility mosaic under infector row system was repeated. The disease incidence and mite population in the infector rows was very low because the inoculations were done in summer months. The disease spread was also very much affected as the infector rows were planted in the direction of the wind. Because of these two drawbacks the experiment was discarded after 5 months. The results for the first five months are presented in Table 44.

The data show that both infection and mite number in the infector rows was low resulting in very low disease incidence in the test plantings. The experiment will be repeated next year.

Table 44. Sterility mosaic incidence in monthly plantings of BDN-1 under infector row system in relation to disease incidence and mite vector population in infector rows

Date of planting	Percent incidence after 4 weeks	Percent infection in infector rows	Average no. of mites/leaf
19-07-1978	0.26	47 . 05	0 00
18-08-1978	0.00	56.73	0 - 65
18-09-1978	6.74	85 58	0.40
18-10-1978	0.10	52.54	0.10
18-11-1978	0.00	2400	0 00

VII. SCREENING FOR DISEASE RESISTANCE

A large amount of breeding materials and germplasm was screened in the field. The work was carried out in very close collaboration with the breeders. The materials found resistant to wilt and Phytophthora blight were also screened to identify lines with multiple disease resistance

A. Screening nursery

The entire screening was done in 6.0 ha field (Vertisol) under "infector row" system. BDN-1, a highly susceptible cultivar to sterility mosaic but resistant to wilt and Phytophthora blight, was planted in paired rows on one ridge on April 10, 1978 after every 10 ridges. It was inoculated with sterility mosaic following "leaf stapling" technique when the seedlings were 10-20 days old. Because of very high temperatures prevailing at the time of inoculation (about 40°C) both infection and mite population was low in the beginning of kharif season. But by July-August the infection developed to almost 100 percent. The mite population also increased resulting in high disease development in the nursery.

The test materials were planted on June 25, 1978. BDN-1 was planted as susceptible check (indicator row) after every 20 rows. The plants not showing symptoms after one month of planting were staple inoculated final observations were taken when the crop was in flowering and podding; i.e., when the susceptible check showed near 100 percent infection. In each material the number infected plants showing severe mosaic, mild mosaic and ring spot symptoms were recorded separately. In the selected

material/progeny, 2-10 resistant plants were selfed using muslin cloth bags and seed collected for further use/evaluation. In cases where selfed seed was not available, open pollinated seed was collected.

B. Screening

1. Germplasm

Additional 1083 germplasm accessions including mostly introductions and recent collections by Genetic Resources Unit were screened. For each accession 25 seeds were planted in a single 4 m row. Because of continuous water logging in the field immediately after germination the stand was adversely affected. Only in few accessions some plants survived. The results are presented in APPENDIX XXIII. Because of very low plant number the results are not reliable and the screening of these entire lines will be taken up next year.

2. Germplasm selections

The process of selecting the resistant plants from the segregating germplasm lines, selfing them and re-testing their progenies continued. The objective is to obtain as many pure resistant lines as possible. To avoid increase in the material to be handled, from each germplasm two progenies showing uniform resistance or those looking agronomically good were selected. From each progeny two resistant and agronomically good looking plants were selfed. The seed of the plants was harvested individually. The seed of the plants from uniformly resistant progeny is stored in the cold room and will be made available for breeders/pathologists. The seed of the plants from still segregating progenies will be sown progeny-wise and re-selection carried out.

(a) <u>1975-76 selections</u>

The results of screening of 30 single plant progenies of 4 germplasm lines selected during 1975-76 are presented in Table 45. Except one progeny, all others showed uniform resistance indicating that after 4 years, the lines are now fixed for resistance.

Table 45. Results of screening of pigeonpea germplasm selections made in 1975-76 to sterility mosaic during 1978-79

Particular	Total plants	Infected plants	Percent infection
CP-85-1-1-S10	23	0	0.00
-S2 9	16	0	0.00
-\$30	10	0	0.00
-S4 Q	8	0	0.00
-S5 0	34	0	0.00

Particular	Total plants	Infected plants	Percent infection
ICP-85-1-2-S1@	7	0	0.00
-\$20	16	0	0,00
-3-\$10	7	.0	0.00
- \$2 0	26	.0 '0	0 00 •
-\$30	• 14	0	0.00
-S4 @	15 ·	0	0.00
-S5 Q	11	•• 0	0.•00
BDN-1	17	17	10000
ICP-85-1-3-S60	6•	·6	0 00
ICP-95-1-2-S10	6 6	.0	000
-3-S10	6	0	000
-S2@	11	0	0 ., 00
-4-S1 @	16	0	0 , 00
-S2 0	13	1	3.03
-830	8	0	0.00
BDN-1	4 8	4	10000
ICP-2828-1-1-S1@	8	0	0.00
- S2 Q	16	0	0.00
- S3 ₽	8	0	0 ., 00
-S4₽	7	0	0.00
ICP-7942-1-2-S10	7	0	0 ~ 00
-S2 	3	0	0.00
-S3₽	8 7 7 3 5 5	0	0.00
-S4₽	5	0	0,00
-S5₩	10	0	0.00
-3-S1 @	3	0	0 - 00
-S2 №	-	-	-
BDN-1	17	17	100.00

BDN-1 = Susceptible check

(b) 1976-77 selections

A total of 1138 single plant progenies generated from germplasm selections made in 1976-77 were screened. The detailed results are presented in APPENDIX XXIV. The summarised results are presented in Table 46. About 50% of the progenies did not develop any infection. Only 0.56% of the progenies developed 100% infection. Other progenies segregated with more number of resistant plants than susceptibles. The method of selection in the segregating progenies was same as described earlier. The seed of the progenies which showed 100% resistance will be stored in cold room.

Selections were made by the breeders based on both disease reaction and other agronomic characters. Five lines; ICP-7197-43-S30, ICP-8120-5-S10, ICP-8120-5-S60, ICP-4152-1-S20 and ICP-4395-3-S10 were selected for yield trial. Single plant selections were made from 34 lines for further evaluation.

Table 46. Summary of results of screening of pigeonpea germplasm selections made in 1976-77 to sterility mosaic during 1978-79.

Percent infection range	Total no. of entries	Percent of entries
0.00	541	47.53
0.01-10.00	155	14.47
10.01-20.00	121	11.29
20.01-30.00	49	4.57
30.01-40.00	41	3.82
40.01-50.00	` 33·	3.08
50.01-60.00	21	1.96
60.01-70.00	22	205
70.01-80.00	10	0.93
80.01-90.00	5	046
90.01-99.99	0	0.00
100.00	6	0.56
No germination	67	5.88

(c) 1977-78 selections

A total of 954 progenies of single plants selected during 1977-78 were tested. The detailed results of screening are presented in APPENDIX XXV. The summarised results are presented in Table 47. No infection was observed on 40.88 percent of the progenies. The seed of the progenies with no infection was collected for storing in cold room. From the segregating prognies as usual two resistant plants from each of the two progenies per accession were selected for further evaluation.

Breeders made selections based on disease reaction and agronomic characters. Seven lines were selected for yield trial. These were ICP-1644-S50, ICP-2812-S40, ICP-7281-S20, ICP-8022-S40, ICP-8072-S60, ICP-8105-S30 and ICP-8221-S10. Single plant selections were made from 52 lines for further evaluation.

Table 47. Results of screening of pigeonpea germplasm selections made in 1977-78 against sterility mosaic during 1978-79.

Percent infection range	Total no. of entries	Percent of entries
• 0.00.	390	40.88
0 01 10 00	102	10.69
10.01-20.00	88	9 22
20.01-30.00	73	7 65
30.01-40.00	79	8 28
40.01-50.00	65	6 81
50 01-60 00	39	4.08
60.01-70 00	33	345
70.01-80.00	23	2 41
80.01-90.00	16	1 67
90.01.99.99	6	0 - 62
10000	15	1.57
No germination	61	6.39

(d) Promising selections

A total of 469 single plant progenies of germplasm selections found promising for yield were also evaluated both for disease reaction and yield. The detailed results are presented in APPENDIX XXVI. The summarised results are presented in Table 48. Most of the progenies remained highly resistant to disease. Based on yield, the breeders made re-selection and two lines have been selected for yield trial (ICP-504-1-4-S33@ and ICP-2795-1-1-S1@) Single plant selections were made from 42 progenies for further evaluation.

Table 48 Summary of results of screening of promising selections of germplasm to sterility mosaic during 1978-79.

Percent infection range	No. of entries	Percent entries
0 89	368	78 . 46
0.01-10 00	53	11.30
10.01-20.00	17	3 62

Percent infection	No. of entries	Percent entries
20.01-30.00	8	1.70
30.01-40.00	5	1.06
40.01-50.00	2	0.42
50.01-60.00	0	0.00
60.01-70.00	1	0.21
70.01-80.00	0	0.00
80.01-90.00	i	0.21
90.01-99.99	0	0.00
100.00	Ō	0.00
No germination	7	1.49

3. Breeding materials

Screening of the various breeding materials was carried out in close collaboration with the breeders. The materials screened involved $\mathsf{F}_1\mathsf{s}$ and $\mathsf{F}_2\mathsf{s}$ for understanding the nature of resistance and progenies in F_3 to F_7 generation. Most of the materials in F_3 to F_7 generations were planted in two 4-meter rows.

(a) F_1 and F_2 materials

The F_1 and F_2 material generated by the breeders was screened. In each material the number of plants showing no infection, ring spot, and severe mosaic symptoms were recorded separately. The infection was recorded twice; once in mid-vegetative stage and again in flowering and podding stage. The detailed results are presented in APPENDIX XXVII. The information is with the breeders and is being analysed.

(b) F₃ progenies

A total of 760 F_3 progenies selected from 11 F_2 bulks in the las year's screening nursery were screened (Table 49). The detailed results of screening are presented in APPENDIX XXVIII. The summarised results are presented in Table 50. The progenies showed very high degree of resistance. Few progenies showed a low level of susceptible plants. The results indicate the high level of disease pressure that they have been subjected to last year and efficiency of the selection. One screening has practically eliminated the susceptible plants. Rigorous selections were made by the breeders. Only four progenies were selected based on yield data for preliminary yield trial. These were:75248- F_2 B-S470, 75268- F_2 B-S370, 75275- F_2 B-S49 and 75275- F_2 B-S60. Single plant selections were made from 52 promising progenies.

Table 49. Parentage of F₃ progenies screened against sterility mosaic during 1978-79

S No	Cross No.	Pedigree	No. of SPP screened
1	75209	7035 x 6891	56
2	75248	6997 x 6891	83
3.	75443	3783 x 6891	92
4	75229	7035 x 6929	71
5 .	75268	6997 x 6929	61
6	75463	3783 x 6929	50
7,	75236	7035 x 7183	96
8	75275	6997 x 7183	67
8 9	75470	3783 x 7183	61
10.	75276	6997 x 7186	43
11.	75471	3783 x 7186	60

SPP · Single plant progenies.

Table 50. Summary of results of screening of F_3 progenies of pigeonpea to sterility mosaic during 1978-79

Percent infection range	No. of	Percent
	entries	entries
000	692	89 98
0 01-10 00	25	3 28
10.01-20 00	16	2.10
20.01-30.00	6	0 78
30 . 01 - 40 . 00	9	1. 18
10 . 01 –50 . 00	3	0.39
50 .01 -60 00	2	0.26
50.01-70.00	0	0 . 00
70.01-80.00	2	0.26
30 .01-90 .00	0	0 - 00
90 01-99.99	1	0.13
100.00	1	0.13
No germination	2	0.26

(c) F₄ progenies

A total of 345 F4 progenies selected from 2 F3 bulks in the last year's screening nursery were screened. The parentage of the crosses involved is presented in Table 51. The detailed results of screening

are presented in APPENDIX XXIX. The summary of results is presented in Table 52. The trend of the results was the same as in F_3 progenies. Rigorous selections were made by the breeders. Only two progenies; 74348- F_3B -S1280 and 74321- F_3B -S140 were selected for yield trial. Single plant selections were made from 39 progenies.

Table 51. Parentage of F4 progenies screened against sterility mosaic during 1978-79

S.No.	Cross No.	Pedigree	No. of SPP screened
1.	74348	7035 x 7086	170
2.	74321	7035 x 102	176

SPP - Single plant progenies

Table 52. Summary of results of screening of F₄ progenies of pigeonpea to sterility mosaic during 1978-79

Percent infection range	No. of entries	Percent entries	
0.00	249	71.96	
0.01-10.00	21	6.10	
10.01-20.00	25	7 22	
20.01-30.00	18	5.23	
30.01-40.00	9	2.60	
40.01-50.00	10	2.90	
50.01-60.00	1	0.29	
60.01-70.00	3	0.87	
70.01-80.00	1	0.29	
80.01-90.00	0	0.00	
90.01-99.99	1	0.29	
100.00	4	1.16	
No germination	2	0.57	

(d) F₅ progenies

A total of 859 F_5 progenies selected from 3 F_4 bulks in the last year's screening nursery were screened. The parentage of the crosses involved is given in Table 53. The detailed results of screening are presented in APPENDIX XXX. The summary of results is presented in

Table 54. More than 50% progenies showed uniform resistance. Five progenies; $73076-F_4$ B-S330, $73076-F_4$ B-S1310, $73076-F_4$ B-S1180, $73070-F_4$ B-S3930, and $74240-F_4$ B-S770 were selected for yield trial. Single plant selections were made from another 66 promising progenies.

Table 53. Parentage of F₅ progenies screened against sterility mosaic during 1978-79

S. No.	Cross No.	Pedigree	No. of SPP screened
1.	74240	6997 x ST-1	192
2 .	73076	JA-275 xGW-3-191	-1 264
3.	73070	JA-275 x 1	393

Table 54. Summary of results of screening of F₅ progenies of pigeonpea to sterility mosaic during 1978-79

Percent infection range	No. of entries	Percent entries	
0.00	452	53.74	
0.01-10.00	62	7.37	
10.01-20.00	90	10.70	
20.01-30.00	37	4 . 39	
30.01-40.00	37	4.39	
40 01-50.00	21	2.49	
50.01-60.00	15	178	
60.01-70.00	8	0.95	
70.01-80.00	10	1.18	
80 01-90.00	1	0.11	
90.01-99.99	1	0.11	
100,00	11	1.30	
No germination •	96	11.41	

(e) Promising breeding and germplasm materials

Preliminary selections for yield were made last year by breeders in advanced breeding and germplasm materials. Single plant progenies of these were planted in four 4-meter row plots for further evaluation and selection. The detailed results of screening are presented in APPENDIX XXXI. The summary is presented in Table 55. Most

of the progenies remained highly resistant to the disease. Further selections were made by the breeders and the selected lines are proposed for preliminary yield trials. The germplasm lines selected for yield trial are; ICP-7249-1-1-S30 and ICP-7249-1-1-S80. Single plant selections were made from ICP-6491-1-S90 and 74041-11-4-S200 for further evaluation.

Table 55. Summary of results of screening of promising advanced germplasm and breeding materials to sterility mosaic during 1978-79

Percent infection range	Total No. of entries	Percent entries
0.00	104	60.46
0.01-10.00	29	17.15
10.01 20.00	18	10.65
20.01-30.00	6	3.55
30.01-40.00	5	2.95
40.01-50.00	2	1.18
50.01-60.00	2	1.18
60.01-70.00	0	0.00
70.01-80.00	2	1.18
80.01-90.00	1	0.59
90.01-99.99	0	0.00
100.00	0	0.00
No germination	3	1.74

(f) Advanced triple cross progenies

A total of 175 F_4 and F_5 triple cross progenies selected from last year's screening nursery were further evaluated. The detailed results of screening are presented in APPENDIX XXXII. The summary is presented in Table 56. Most of the progenies have attained uniform resistance. Four progenies; 74038-26-1-7-550, 74041-1-4-500, 74041-10-3540, and 74054-1-3-550 were selected for yield trial. Single plant selections were made from 37 promising progenies for further evaluation.

Table 56. Summary of results of screening of advanced F_4 and F_5 triple cross progenies of pigeonpea to sterility mosaic during 1978-79

Percent infection range	Total No. of entries	Percent entries
0.00	103	59.19
0.01-10.00	34	19.54
10.01-20.00	24	13.79
20.01-30.00	6	3.44
30.01-40.00	2	1.14

Percent infection range	Total No. of entries	Percent entries
40.01-50.00	1	0.57
50.01-60.00	0	0.00
60.01-70 00	2	1.14
70.01-80.00	1	0.57
80.01-90.00	0	0.00
90.01-99.99	0	000
100.00	0	0.00
No germination	1	0.57

(g) Preliminary triple cross progenies

An additional 226 triple cross progenies in F_3 , F_4 and F_5 generation were screened. The detailed results are presented in APPENDIX XXXIII. The summary is presented in Table 57. Most of the progenies segregated. Few progenies showed uniform resistance. Four progenies; 74038-74-4-5, 74038-74-6-4, 75093-14-2 and 75093-17-1 showing low disease incidence were selected for yield trial. Single plant selections were made from 13 promising progenies for further evaluation

Table 57. Results of screening F₃, F₄ and F₅ triple cross progenies of pigeonpea to sterility mosaic during 1978-79

Percent infection range	Total No. of entries	Percent entries	
0,00	20	881	
0.01-10.00	44	19.38	
10.01-20.00	. 42	18.50	
20.01-30.00	34	14.97	
30 01-40.00	19	8.37	
40 01-50.00	11	4.84	
50.01-60.00	14	6.16	
60.01-70.00	15	6.60	
70.01-80.00	8	3 , 52	
80.01-90.00	10	4.40	
90 01-99 99	3	132	
100.00	3	1.32	
No germination	2	0.88	

(h) F_4 progenies from generation tests

A total of 432 F_4 progenies from generation tests were also screened. The detailed results are presented in APPENDIX XXXIV. The summary is presented in Table 58. Most of the progenies were found segregating. Single plant selections were made from 17 promising progenies for further evaluation (3-5 plants/progeny).

Table 58. Summary of results of screening of F_4 progenies of pigeonpea from generation tests to sterility mosaic during 1978-79

entries	Percent entries
4	0.90
19	4.29
28	6.33
29	6.56
40	9.04
38	8.59
37	8.37
63	14.25
56	12.66
64	14.47
43	9.72
21	4.75
	19 28 29 40 38 37 63 56 64

(i) Triple cross progeny bulks

A total of 331 F₄ triple cross progeny bulks were screened. These were planted in late August—The detailed results are presented in APPENDIX XXXV. The summary is presented in Table 59. Single plant selections from 10 promising progenies were made for further evaluation.

Table 59. Summary of results of screening of F₄ triple cross progeny bulks of pigeonpea to sterility mosaic during 1978-79

Percent infection range	Total No. of entries	Percent entries
0.00	2	0.60
0.01-10.00	4	1.20
10.01-20.00	4	1.20
20.01-30.00	4	1.20
30.01-40.00	5	1.51
40.01-50.00	8	2.41

Percent infection range	Total No. of entries	Percent entries	
50.01-60.00	, 15	4,53	
60.01-70.00	27	8.15	
70.01-80.00	38	11.80	
80.01-90.00	73	22 05	
90.01-99.99	117	35 34	
100.00	34	10.27	

4. Male steriles

Six of the male steriles supplied by the breeders were screened. The results are presented in Table 60. All the male steriles were found 100% susceptible indicating the need to incorporate resistance in them.

Table 60. Results of screening of pigeonpea male steriles to sterility mosaic during 1978-79

Particulars	Total plants	Infected plants	Percent infected	Symptom severity
MS-3A	19	19	10000	Severe mosaic
MS-3B	32	32	100.00	11
MS-3C	14	14	100.00	II
MS-3D	14	14	100.00	II .
MS-3E	23	23	100.00	II
MS-4A	11	īī	100.00	II

5. ACT (All India trials) materials

As in the earlier years, the entries in the All India Arhar Coordinated Trials were tested for their reaction against the sterility mosaic. For each line information on percent infection, symptom severity and yield/plant was recorded.

(a) EACT

The results are presented in Table 61. All were found highly susceptible and showed severe mosaic symptoms. The yield from them was negligible.

Table 61. Reaction of EACT materials to sterility mosaic at ICRISAT Hyderabad 1978-79

Entry	Total plants	Infected plants	Percent infection	Symptom severity	Total yield (grams)	Yield/ plant (grams)
ICPL-1	18	18	100.00	Severe mos- aic	17.39	0.96
ICPL-2	45	45	100.00	u II	0.00	0.00
ICPL-3	45	45	100.00	II .	10.00	0.23
ICPL-4	4	8	100.00	11	0.00	0.00
H-73-20	58	58	100.00	II .	6.79	0.11
H-76-19	70	70	100.00	11	2.50	0.03
H-76-20	27	27	100.00	11	3.10	0.11
H-76-35	20	20	100.00	11	0.00	0.00
H-76-53	36	36	100.00	н	3.00	0.08
HPA-2	10	10	100.00	n	0.00	0.00
Prabhat	7	7	100.00	II .	1.12	0.16
UPAS-120	18	18	100.00	н	0.00	0.00

(b) ACT-1

The results are presented in Table 62. Except ICPL-5 and ICPL-6 all others showed 100% infection. All showed severe mosaic infection and the yield was negligible.

Table 62. Reaction of ACT-1 materials to sterility mosaic at ICRISAT Hyderabad 1978-79

Entry	Total plants	Infected. plants	Percent infection	Symptom severity	Total yield (grams)	Yield/ plant (grams)
ICPL-5	42	40	95.23	Severe mos-	55.76	1.32
ICPL-6 ICPL-7 ICPL-8 HY-5	13 38 47 5	11 38 47 5	84.61 100.00 100.00 100.00	aic " "	25.12 46.07 78.70 0.00	1.93 1.21 1.67 0.00

J	Total plants	Infected plants	Percent infection	Symptom severity	Total yield (grams)	Yield/ plant (grams)
4-84	39	39	100.00	Severe mosai	c 1.80	0 04
DL-74-1	46	46	100 00	II	5.78	0 12
TT-4	26	26	100 00	II .	10.65	0.40
TT-5	31	31	100.00	II	7 81	0.25
TT-6	38	38	100.00	H	9.08	0.23
Sehore-68	12	12	100.00	и	0 - 00	0.00
Sehore- 197	27	27	100.00	11	9 50	0 35
JA-9-19	30	30	100.00	11	6.11	0 20
T-21	16	16	100.00	II	0.00	0 00

(c) ACT-2

The results are presented in Table 63. All the lines showed near 100% infection. Except HY-2, which showed ring spot reaction all others showed severe mosaic symptoms

Table 63. Reaction of ACT-2 materials to sterility mosaic at ICRISAT Hyderabad 1978-79

Entry	Total plants	Infected plants	Percent infection	Symptom severity	Total yield (grams)(Yield/ plant (grams)
HY - 2	38	38	100.00	Ring spot	338 88	8 91
HY-4	60	59	98.33	Severe mosaic	220.13	3 66
BDN-1	71	71	100.00	11	0.00	0 00
BDN-2	72	72	100 00	11	5 12	0.07
No 148	76	76	100 00	II.	0 00	0 00
JA-3	61	61	100.00	н	0.00	0.00
JA-5	48	48	100.00	II	20 46	0.42
JA-15	59	59	100 00	11	9 27	0 15
GS-1	35	35	100.00	H .	4.86	0 13
AS-71-37	62	62	100.00	tt	32 91	0 53
Sehore-75-4	61	61	100 00	u	39.18	0.64
C-11	55	55	100.00	H .	18 26	0 33
ICPL-42	44	44	100.00	H	5050	1.14
ICPL-43	59	59	100.00	ti .	0 00	0.00
ICP-1	72	72	100.00	II	0 00	0 00
JA-8	46	46	100.00	II .	8 18	0.17

(d) ACT-3

The results are presented in Table 64. Compared to lines in other trials, the lines in ACT-3 showed less susceptibility. Two lines; 1234 and NPWR-15 particularly showed low susceptibility. The infected plants in these two lines and in AS-29 showed mild mosaic symptoms. All others showed severe mosaic symptoms.

Table 64. Reaction of ACT-3 materials to sterility mosaic at ICRISAT Hyderabad 1978-79

Entry	Total plants	Infected plants	Percent infection	Symptom severity	Total yield	Yield/ plant
					(grams)	(grams)
10.00	43	4.0	07.50		^	
AS-29	41	40	97.56	Mild mosaic	2.98	0.07
PS-41	31	31	100.00	11	3.41	0.11
PS-43	13	13	100.00	Severe mos-	27.18	2.09
				aic	* '	
PS-65	52	39	75.00	II .	63.10	1.21
PS-66	47	39	82.97	11	69.45	1.47
Gwalior-3	34	32	94.11	II	67.81	1.99
1234	42	12	28.57	Mild mosaic	80.66	1.92
1258	9	7	77.77	III III III III III III III III III II	0.00	0.00
T-7	36	31	86.11	H'	83.50	2.31
			84.21	Coulone mos		
K-16	114	96	04.21	Severe mos-	326.87	2.86
	7.4	70	00.64	aic "	7.47 20	1 00
K-23	74	73	98.64		147.39	1.99
K-28	42	42	100.00	II	28.65	0.68
NPWR-15	68	29	42.64	Mild mosaic	97.73	1.43
Composite-4	20	20	100.00	Severe mos-	10.30	0.51
				aic		
Group-8	69	64	92.75	11	80.08	1.16
Group-10	45	42	93.33	n	8.15	0.18
ar oup-10	70	76	55.55		00	J

6. Materials from other research centres

Six lines sent by Dr. B. Baldev of IARI, New Delhi were tested for their reaction against sterility mosaic. The screening was done in the pots and inoculations were made by leaf stapling procedure. The results are presented in Table 65.

Table 65. Reaction of pigeonpea lines sent by Dr. B. Baldev of IARI, New Delhi to sterility mosaic at ICRISAT

Cultivar	Total plants	Infected plants	Percent infection
BS-1 (1977)	42	42	100.00
BS-5 "	73	71	97.26
BS-12 "	78	78	100.00
BS-15 "	85	83	97.64
BS-18 "	47	45	95.74
BS-20 "	64	64	100.00

All the lines showed very high infection and severe mosaic symptoms indicating none of them is promising. Most of them also showed wilt in the pot; BS-l particularly showed more wilt.

7. Sterility Mosaic National Uniform Nursery

A set of twelve germplasm lines that were found resistant/
tolerant for at least two seasons at ICRISAT were sent for testing at
6 different locations in India through sterility mosaic National Uniform
Nursery. The nursery was jointly operated by All India Coordinated Pulse
Improvement Project and ICRISAT. The locations to which the nurseries
were sent are Pantnagar, Faizabad, Varanasi, Dholi (Bihar), Dharwar
(Karnataka) and Hyderabad. Results were obtained only from Dholi and
Faizabad (Table 66).

Table 66. Reaction of some pigeonpea sterility mosaic at different location in India (Kharif 1978)

I CP . No .	Pe	Percent infection				
ICF ANO	Hyderabad	Faizabad	Dholi			
3847	0.00	0.00	100.00			
3848	0.00	0 00	90 . 88			
3849	94.50	0 ~ 00	100.00			
3850	6.55	0.00	100.00			
3851	0.00	0 00	55.90			
3852	0.00	0.00	100.00			
3853	0.00	0.00	100.00			
3854	1.23	0.00	100.00			
3855	0.00	0.00	100.00			
8856	12.32	0.00	100 00			
8857	15.25	0 ~ 00	100 00			
8501	1.00	0.00	100 00			
BDN-1 (Check)	100.00	29 21	100 00			

At ICRISAT, Hyderabad ICP-8849, ICP-8854 and ICP-8857 showed ring spot symptoms and ICP-8850 showed mild mosaic symptoms.

From the data it is clear that the lines resistant at Hyderabad and Faizabad are highly susceptible at Dholi. The problem is under investigation.

8. Phytophthora blight promising lines

Some of the germplasm lines found promising against the Phytophthora blight were screened against sterility mosaic to find out lines with promise for both the diseases. The lines were screened in the field by 'staple inoculation'. The results are presented in Table 67. Except ICP-6974-P50, all developed very high infection. Except ICP-2376-P50 all showed severe mosaic symptoms. Since ICP-2376 does not suffer any yield loss, it can also be considered highly promising for both the diseases.

9. Wilt National Uniform Nursery

The lines in Wilt National Uniform Nursery were also tested for their reaction against the sterility mosaic. Screening was done in the field and inoculations were done through "leaf stapling". The results are presented in Table 68. Seven lines; ICP-8861, ICP-8862, ICP-8867, ICP-8869, Purple-1 (134 A), Purple-2 and K-28 did not show any infection. Purple-2 and K-28 need to be checked again because of the low plant number. AWR-74/15 (KPR) and 70 (KPR) showed low infection. Among others; ICP-8858 and ICP-8860 showed ring spot symptoms.

Table 67. Reaction of Phytophthora blight promising progenies of pigeonpea to sterility mosaic during 1978-79

S.No.	Particular	Total plants	Infected plants	Percent infection	Symptom severity
1.	ICP-28-P100	٠ <u>٠</u> ٠٠	10	100.00	SM
2	-113-P50	10	9	90.00	11
3.	-231-P50	11	ון	100.00	ĮI .
4.	-339-P50	20	20	100 00	II.
5.	-758-P5Ø	5	5	10000	II .
6.	-1209-P10	14	14	100.00	II
7.	-1522-P20	10	10	100.00	li .
8.	-1529-P50	10	10	100.00	ti .
9.	-1643-P29	6	6	100.00	11
10.	-2376-P50	5	4	90.00	RS
11.	-3753-P5 0	15	14	93.33	SM
12.	-6974-P5 0	6	0	0.00	-
13.	-7065-P59	4	4	100.00	SM

RS = Ring spot; SM = Severe mosaic; - = No symptom.

Reactions of pigeonpea lines in wilt national uniform nursery to sterility mosaic during 1978-79

S.No.	Particular	Total plants	Infected plants	Percent infection	Symptom severity
1,	ICP-8858	29	17	58.62	RS
2.	-8859	42	33	78.57	MM
3.	-8860	28	19	67.85	RS
4.	-8861	40	0	0 . 00	-
5.	-8862	33	0	0 / 00	-
6 .	-8863	40	40	100.00	SM
7	-8864	34	29	85.29	"
8.	-8865	34	34	100.00	11 11
9.	-8866	28	28	100.00	
10.	-8867	38	0	0.00	. - MM
11. 12.	-8868	33 38	33	100 00	MM
13.	-8869 Purple-1 (134A)	36 18	0 0	0 00 0.00	-
14.	Purple-2	5	0	0.00	-
15.	TS-136-1 (Kar)	9	9	100.00	SM
16.	Bori-1	15	12	80.00	11
17.	MAU-W-1	8	8	100.00	n
18	MAU-E-175	11	10	90 90	H
19.	KWR-1-1 (KPR)	13	12	92.30	ti.
20	AS-29 (KPR)		8	8888	п
21	DL-74-1	9 2 5	1	50 . 00	II .
22.	15-3-3 (JBR)		5	100.00	II .
23.	15-3-3 (AAU)	11	11	100.00	u
24	AWR-74/15 (KPR)	18	2	11,11	MM
25.	NP(WR)-15	4	2	50 00	SM
26	C-11	5	4	90.00	#I
27	BDN-1 (AAU)	11	11	100 00	" "
28	BDN-1 (KPR)	10	10 6	100 00 75.00	
29 30	BDN-1 (JBR) BDN-2 (MAUR)	8 11	11	100.00	и
31	70 (KPR)	18	Ì	5.55	n
32	K-28	4	ò	0.00	_
33	K-73	11	10	90.90	SM
34	Beitul-1	4	4	100.00	"
35	Shivpuri-2	5	4	90.00	II
36	Indore-7	8	8	100.00	u
37	Bandapalera (KPR)	13	10	76 92	#
38.	JA-3A	10	10	100 00	u
39	Ben-1	10	10	100 00	u

RS = Ring spot; MM = Mild mosaic; SM = Severe mosaic; - = No symptoms

PROJECT: PP-PATH-3(78): STUDIES ON PHYTOPHTHORA BLIGHT OF PIGEONPEA

I. SUMMARY

- A large number of breeding material was screened by following a field screening technique. This included 1109 F₃ progenies, 91 F₄ progenies, 20 progenies of lines from West Indies, 6 male sterile lines and 26 crossing block entries. Promising materials are being advanced for further studies.
- Over 160 blight promising progenies were screened in the field. Out of these 105 progenies showed low blight incidence (0 to 20%). Twenty-eight lines promising in 'pot culture' were tested in field and good correlation between the two tests was obtained.
- Over 100 wilt promising progenies were tested for blight reaction. Fifty-eight progenies which showed low blight incidence were advanced for further testing.
- 4. One hundred and six sterility mosaic resistant germplasm selections and 174 sterility mosaic resistant progenies (F_4 to F_7) were screened for blight reaction in the field. Of them one hundred and twenty progenies showed low blight incidence.
- 5. Fifty-eight lines received from the All India Coordinated Pulse Improvement Project were tested for blight reaction. Out of these, nine lines showed low blight incidence.
- 6. Five Phytophthora isolates were collected from Hyderabad, Delhi, Kanpur, Kalyanpur and Deeg. A detailed study on these isolates revealed that the causal organism of pigeonpea blight is Phytophthora drechsleri f. sp. cajani.
- 7. More than 1400 germplasm accessions were screened for resistance to blight by 'pot culture' technique. Fifty-two accessions showed less than 10% blight.
- 8. One hundred and seven sterility mosaic resistant germplasm selections were screened for blight in 'pot culture' and 14 selections were found resistant in 'pot culture', of which 9 showed resistant reaction to blight in the field test also.
- 9. Thirty blight promising lines (against the Hyderabad isolate, P2) were tested against P3 (Delhi) and P4 (Kanpur) isolates. All the 30 lines showed susceptible reaction to both P3 and P4 isolates, indicating possibility of the existence of different races.

- 10. A seed treatment trial was conducted in 'pot culture' with Ridomil (25 WP) for controlling pigeonpea blight. Good control of blight was achieved with 0.5% Ridomil seed treatment.
- 11. Phytophthora isolate (P2) could be stored for a long period (105-133 days) at 15° C than at above or below this temperature.

II. INTRODUCTION

During 1978-79 season we carried out work mainly on screening of germplasm and breeding materials. The causal agent of blight was identified as Phytophthora drechsleri f. sp. cajani.

III. FIELD STUDIES

Field screening for Phytophthora blight resistance was carried out in RA-9. In this area about 300 cu ft of blight affected pigeonpea stubble were incorporated during the land preparation. Further steps in providing inoculum were described under method - II in the Pulse Pathology (Pigeonpea) Annual Report 1977-78. Isolate P2 was used instead of P1. The blight susceptible check cv. HY-3C was planted after every ten test rows. The average blight incidence on cv. HY-3C was 87.8%. All test and check materials were planted on the slope of the ridge. This type of planting enabled the plant collar region to be in touch with irrigation/rain water after inoculations.

The materials screened in the blight nursery were: F_3 and F_4 progenies, ACT (All India trials) materials, blight promising progenies, wilt promising progenies, sterility mosaic resistant progenies, male sterile lines, crossing block entires, and parental lines.

In all the screening tests, the criterion used for selecting less susceptible lines/progenies was based on low blight incidence (20.0% or less). In advancing the selected lines/progenies, agronomically desirable characters were also considered by the breeders and such plants were selfed and seeds were collected for further studies.

A. Breeders' material

$1. F_3$ and F_4 progenies

One thousand and fifty-eight progenies in F_3 and ninety-one progenies in F_4 generations from crosses involving a resistant parent (ICP-7065) were screened in the blight nursery. These progenies were advanced from 1977-78 blight nursery for further testing. In addition to these, 51 progenies from one F_3 selected from the wilt nursery were also screened in the blight nursery. The summarised results are given in Table 69 (see APPENDIX XXXVI). The blight incidence in these progenies varied from

0 to 100%. Of the 1058 progenies screened in 11 F_3 s, 438 showed low blight. In F_4 only 10 progenies recorded low blight incidence out of 91 screened. Only four progenies showed low blight out of 51 progenies selected from wilt nursery. From all these, the breeders along with us selected blight resistant and agronomically desired plants for further test/study.

2. Progenies from West Indies lines

Twenty progenies of lines from West Indies (vegetable type) which showed some tolerance to blight in 1977-78 field screening were again tested in 1978-79 blight nursery. The detailed results are given in APPENDIX XXXVII. The blight incidence in these progenies varied from 31 to 100%. Hence none of them was selected for further tests.

3. Male sterile lines

Six male sterile lines obtained from the Pigeonpea Breeding sub-program were tested for the blight reaction in RA-9 nursery and in'pot culture'. The results are presented in Table 70. In field screening, all the six lines showed low blight. Whereas in 'pot culture' they were susceptible to blight. In both the tests, MS-4A showed the least blight incidence.

Table 69. Summary of the screening of F_3 and F_4 progenies for Phytophthora blight resistance a/

Cross No	. Pedigree	Genera- tion	No. of SPP tested	No. of SPP showed 'low' blight	No. of plants selected
Progenie	s from Blight nursery				
74143 74171 74185 74248 74262 74290 74318 74332 74332 74360 74363 74369 Progenie	Prabhat x ICP-7065 UPAS-120 x ICP-7065 ICP-6 x ICP-7065 ICP-1 x ICP-7065 No.148 x ICP-7065 C-11 x ICP-7065 ICP-102 x ICP-7065 ICP-6997 x ICP-7065 ICP-6997 x ICP-7065 ICP-7035 x ICP-7065 HY-3C x ICP-7065 NP-69 x ICP-7065 s from Wilt nursery	F3333 3334 333 F53 F53 F53 F53 F53	100 87 99 100 91 100 99 93 91 97 97	34 41 33 43 48 53 35 24 10 38 24 65	3 0 6 132 25 222 67 64 81 81 123 116
74332	ICP-6997 x ICP-7065	F ₃	51	4	53

 $[\]underline{a}/$ The percent blight in susceptible check, HY-3C, was 85.7%.

Table 70. Incidence of Phytophthora blight in male sterile lines in field nursery and in 'pot culture'

Pedigree	Field nurs	ery	Pot c	ulture
	No. of plants	% Blight	No. of plants	% Blight
MS-3A	46	10.9	18	61.1
-3B	50	12.0	20	90.0
-3C	13	7.7	17	100.0
-3D	23	16.3	21	95.2
-3E	40	12.5	20	95.0
-4A	24	4.2	16	56.3

4. Crossing block entries

Twenty-six crossing block entries were screened in RA-9 blight nursery and the results are given in Table 71. All ICP-231, ICP-6974 (Pant A-3), ICP-28 (Pusa Ageti), ICP-7182 (BDN-1) and ICP-7065 progenies showed uniformly low blight incidence, whereas all ICP-6915, ICP-7120 (No. 148), ICP-6971, ICP-6997, ICPL-1 and ICPL-2 progenies recorded more than 20% blight incidence. Only ICP- 4779 (NP-69) showed intermediate type of reaction. All resistant, intermediate and susceptible lines are being used in the breeding program to understand the pattern of inheritance and to evolve cultivars with blight resistance character.

Table 71. Incidence of Phytophthora blight in crossing block entries in the field nursery

Pedigree	No. of plants	% Blight
ICP-6915-P10	19	73.7
-231 (2366-1-P5 <u>0</u>)	22	0.0
-6974-28 0 -1 0 -8 0 -8 0 -8 0	44	9,1
-360-10-B0-B0-B0	35	8.6
-99 0 -2 0 -B 0 -4B 0 -B 0	34	8.8
28-24-0-10-30-20-B0-B0-B0	47	8.5
-3 0 -B 0 -B 0	33	12.1
-8 0 -B 0 -B 0	22	0.0
-7120-(No.148-350-10-40-B0)	45	956
-51 0-40-10 -B 0	41	56.1
-84 Q -4 Q -B Q	46	28.3

Pedigree	No. of plants	% Blight
ICP-7182-890-20-B0	49	6.1
-9C 0- 20-B 0	47	8.5
-91 @- 1 @ -B @	45	0.0
-7065-22 0- 3 0 -5 0 -B 0	34	8.8
-29 0- 3 0-10 -B 0	38	10.5
-33 0 -60-10-B0	51	0.0
-4779-(NP-69-73@-1@-3@-B@)	49	10.2
-73 0 -85 0 -6 0 -2 0 -8 0	33	6.2
-92 @ -4 @ -3 @ -B @	28	32.1
-6971-320-60-70-50-B0	25	36.0
ICPL-1 (6971-320-830-30-50-30-B0-B0-B0-B0		37.8
ICPL-2 (ICP-6971-830-50-90-B0-B0-B0)	23	60.9
ICP-6997-50-30-30-B0	44	100.0
-87 0- 2 0- 1 0- B 0	32	100.0
-108 Q -2 Q-1Q -B Q	38	97.4

B. Progenies from blight promising germplasm and parental lines

Thirty-three progenies from germplasm and parental lines selected in 1977-78 blight nursery were again tested for the blight reaction in 1978-79 season in RA-9 field. The list of progenies showed low blight and number of plants selected are given in Table 72 (see APPENDIX XXXVIII). Of the 33 progenies screened, 13 showed low blight. From these, individual resistant and agronomically desirable plants were selfed and seeds were collected for further tests.

Table 72. <u>List of progenies of germplasm and parental lines which</u> showed 'low' blight in field nursery <u>a</u>/

S1. No.	Pedigree	No of plants	% Blight	No. of plants selected
1.	ICP-3-P10	23	4.3	10
2.	-31-P10	22	18.2	0
3.	-102-P1@	24	0.0	0
4.	-301-P10	26	0.0	10
5.	-309-P1Q	14	0.0	10
6.	-1204-P10	24	8.3	10
7.	-3868-P1 9	27	3.7	4
8.	-4234-P10	25	16.0	0
9.	-6526-P2 9	19	15.8	0
10.	-6929-P10	23	4.4	8
11.	-7175-P1 @	31	0.0	7
12.	-7199-P10	26	3.9	9
13.	-K-28-P1₩	30	3.3	6

 $[\]underline{a}$ / The susceptible check, Hy-3C, showed 87.8% blight incidence.

C. Progenies from blight promising lines

One hundred and twenty-nine progenies from Phytophthora blight promising lines were screened in the blight nursery, RA-9. The progenies were selected either from field or from pot screenings conducted during 1977-78. The list of progenies which showed low blight and the number of plants selected are presented in the Table 73 (see APPENDIX XXXIX). Of the 129 progenies tested, 92 seemed promising against the blight.

Twenty-eight lines were selected as blight resistant through 'pot culture' screening and they were planted in the field. Confirmation of their resistance to Phytophthora blight was obtained in the field.

Table 73 List of progenies of promising lines which showed low blight in RA-9 nursery a/

Dadiawaa	Na af	0/ D1:	No. of -14-
Pedigree	No. of plants	% Blight	No. of plants selected
ICP-24-P1Q	22	0.0	8
-P20	23	4 . 4	10
-2376-P1 Q	16	6.3	9
-P20	14	7.1	11
-3753-P10	21	4 .8	19
-P2 ₽	21	0.0	15
-P3₽	25	8.0	8 5 10
-P4@	18	0.0	5
Pant-A3-P1@	24	8.3	10
-P20	13	7.3	8 6 .4 10 12 9
-P3@	27	3.7	6
-P4 9	25	4 .0	.4
ICP-7065-P1Q	15	0.0	10
-P2 9	24	8.3	12
-P3 0	17	5.9	9
-P4 9	21	9 5	11
BDN-1 -P10	31	3.2	16
-P2 Q	26	7.7	20
-P3@	18	0.0	16 6 15 18
-P4@	19	5.3	6
Pusa Agetı-Pl@	23	8.7	15
-P2®	27	7.4	18
-P30	20	0.0	17
-P49	24	8.3	0
- P60	24	8.3	21
-P7@	22	4 6	20
-P8 @	26	0.0	22
-P9 Q	24	0.0	12

Pedigree	No. of plants	% Blight	No. of plants selected
ICP-113-P1@	19	0.0	19
-P2 @	27	0.0	15
-P3 @	17	0.0	12
-P4@	14	7.1	10
-231-P1@	26	3.8	9 9 8 7 13 5 0 9 1 5
-P2@	22	0.0	9
-P3@	23	8.7	8
-P4 ®	23	4.3	7
-339-P1Q	28	3.6	13
-P2®	22	9.1	5
-P3₩ -P4₩	29	3.5	0
-74W -758-P10	25	4.0	9
-750-P189 -P289	15 16	0.0	l E
-P30	21	0.0 9.5	.4
-P40	20	0.0	10
-1175-P2 Q	22	9.1	4
-1173-12 4 -P3 9	24	8.3	10
-P4@	26	7.7	12
-1208-P1 Q	13	0.0	. 8
-P2 0	8	0.0	6
-P30	22	9.1	8 6 15 5
-1209-P3 Q	25	8.0	5
-P40	21	0.0	13 7
-1510-P2 0	17	0.0	7
-1522-P5 @	19	0.0	16
-1529-P2 @	17	5.9	3 6 9
-P3 @	30	6.7	6
-P5@	20	5.0	9
-1531-P1@	20	0.0	11
-P3 @	26	7.7	10
-P4Q	22	9.1	17
-1535-P3 0	28	3.6	.5
-P4Q	30	10.0	10
-P50	21	9.5	8
-1587-P2 9	25	0.0	16
-P30	22	0.0 7.4	7 16
-1622-P2 @	27 2 2	7.4 9.1	
-P3@	16	12.5	7
-P4 Q	6	0.0	9 7 6
-1643-P1@	13	7.7	10
-P2@	21	4.8	7
-P3@	31	6.5	7 6
-1686-P3 2	31	0.5	Ŭ

Pedigree	No. of plants	% Blight	No. of plants selected
ICP-1708-P29	26	3.9	7 6
-P4 9	13	0.0	6
-214	33	9.1	15
- 580	43	4.7	12
- 752	40	5.0	12
-913	41	9.8	11
-934	46	8.7	12
-1088	47	8.5	12
-1090	51	9.8	12
-1120	46	0.0	10
-1123	51	9.8	12
-1149	49	8.2	11
-1150	50	10.0	12
-1151	48	8.3	10
-1258	50	10.0	12
-1321	47	8.5	12
-1529	48	6.3	10
-1535	46	8.7	12
-1570	42	7.1	
			12 7
-1586	49	8.2	/

a/ The susceptible check, Hy-3C, showed 87.8% blight incidence.

D. Wilt promising progenies

One hundred and four progenies selected from the wilt sick plot for wilt resistance were tested in the blight nursery to identify the progenies having wilt and blight resistance. The list of wilt promising progenies which showed low blight are given in Table 74 (see APPENDIX XL). Fifty-eight progenies showed low blight out of 104 tested. From these, resistant and agronomically desired plants were selfed and seeds were collected for further studies.

Table 74. List of wilt promising progenies which showed low Phytophthora blight in field nursery 4/

Pedigree	No. of plants	% Blight	No. of plants selected
T-17-W1 0-W20-W10	25	8.0	5
-W30-W10	24	0.0	4
-W5Q-W1Q	25	0.0	4
-W9 Q -W1 Q	24	4.2	3
-W12Q-W1Q	24	8.3	4

Pedigree	No. of plants	% Blight	No. of plants selected
T-17-W10-W130-W10	23	4.3	5
-W17₽-W1₽	25	4.0	i
-W2 @-W1@-W3 @	27	0.0	4
-W70-W10	20	20.0	4
-W9 @ -W2 @	27	0.0	3
-W3 @- W3 @ -W2 @	29	6.9	3
-W4 @ -W2 @	22	9.1	3 5 5 5 5 0 5 6
-W6Q:-W1 Q	17	0.0	5
-W7Q-W1Q	27	3.7	5
-W9Q-W1Q	25	8.0	5
NP(WR)-15-W1Q-W7Q-W1Q	23	8.7	0
-W12Q-W2Q	30	10.0	5
-W17 @- W3 @	25	8.0	6
-W20 Q 1-W 7Q	22	18.2	0
-W21@-W1@	27	18.5	0 5 3 0 5 0 5 4
-W2Q-W3Q-W1Q	23	13.0	5
-W5Q-W1Q	23	4.5	3
-W1 2Q-W1Q	24	4.2	0
-W3 Q -W8 Q -W] Q	25	16.0	5
-W9Q-W1Q	19	15.8	0
-W149-W19	27	3.7	5
-W15@-W1@	27	11.1	
-W17@-W7@	24	4.2	0
-W18Q-W1Q	22	9.1	0
E x E-RbB-W5Q-W1Q-WAQ	19	0.0	10
73039-RbB-W4Q-W1Q-W19Q	28	10.7	10
-W2Q-W3Q	25	4.0	9
ICP-6970-S1Q-W3Q	24	8.3	4
-W4 ®	26	0.0	5
-S2Q-W3Q	26	3.9	4
-S7Q-W1Q	24	8.3	5
-S10@-W1@	26	3.8	4 5 4 5 2 6 5 0
No.1258-W2Q-W5Q-W3Q	26	0.0	5
15-3-3-W2Q-W13Q-W4Q	25	0.0	2
20-1-W1Q-W4Q	24	0.0	b
KWR-1-W19-W59-W39	26	0.0	0
-W20-W20-W10	26	7.7	0
-W7Q-W8Q	26 25	19.2	5
-W1 3@-W2@	25	20.0	0
-W30-W10-W30	22	13.6	5 5
-W11@-W4@	27 16	14.8 12.5	0
ICP-1-6-W2@-W1@	16	8.3	4
-W30-W10	24 26	3.9	5
-W5Q-W2Q	26	3.9	J

Pedigree	edigree No. of % Blight plants		No. of plant selected	
ICP-4745-4-W5Q-W3Q	7	0.0	0	
-W4 Q	22	0.0	4	
-6426-4-W4Q-W8Q	23	0.0	5	
-2812-W40	26	7.7	5	
-4698-W10	26	7.7	4	
-5174-W1Q	30	0.0	5	
-6927-W10	22	9.1	Ŏ	
-7424-W30	23	8.7	3	
-7549-W30	25	20.0	5	

a/ The susceptible check, Hy-3C, showed 87.8% blight incidence.

E. Sterility mosaic resistant progenies

1. Germplasm selections

One hundred and six germplasm selections resistant to sterility mosaic were screened for Phytophthora blight resistance in RA-9. The list of twenty-seven germplasm selections which showed low blight are presented in Table 75 (see APPENDIX XLI). From these, the resistant and agronomically desired plants were selfed and seeds were collected for further studies. These 106 selections were also screened in 'pot culture' and the results are presented elsewhere in this report.

2. Breeding material

One hundred and seventy-four sterility mosaic resistant progenies from F4, F5, F6 and F7 generations and one parent were screened in the blight nursery. The summary of the results and number of plants selected are given in Table 76 (see APPENDIX XLII). Ninety-three progenies showed low blight. The resistant and agronomically desired plants were selected and selfed seeds were collected for further testing.

Table 75. List of sterility mosaic resistant progenies (germplasm selections) which showed low Phytophthora blight in field nursery

Pedigree	No. of plants	% Blight	No. of plants selected
ICP-4866-1-S3₩	26	0.0	5
-4885-1 - S1 0	39	7.7	5 5 2 4 5 5 5 5 5 0 5 0 0 0 2 2 5 4
-5097 - 1∸S3 2	31	9.7	2
-5436-1-S2 Q	22	9.1	4
-5651-1-S3 Q	27	7.4	5
-5656-1-S2 9	31	3.2	5
-7185-1-S1 Q	37	5.4	5
-7194-1-S4 ₽	28	0.0	5
-7246 - 2-S9 Q	10	10.0	0
-7414-1-S3 0	26	0.0	5
-7445-4-S5 @	28	7.1	0
-7864-1-S5 @	23	9.6	0
-8075-2-S2 0	24	8.3	2
-8094-1 - S2 ₽	34	8.8	2
-8101-2-S2 0	21	9.5	5
-8102-5-S1 0	24	0.0	4
-8103-3-S2 0	30	0.0	4
-8106-2-S5 0	32	00	5
-8111-2-S1 0	30	0.0	4 5 4 2 2 4 2
-8121-2-S1 0	30	3.3	2
-8130-5-S4 0	20	5.0	2
-8132-2-S3 Q	. 25	4.0	4
-8137-4 - S4 ₽	28	7.1	2
-8144-3-S3 @	29	3.5	4
-8147-1-S2 Q	34	0.0	2 2 2
-8151-7-S4 ®	24	0.0	2
-8161-1-S1 @	42	4.8	2

Table 76. List of sterility mosaic resistant progenies (breeding material) which showed low Phytophthora blight in field nursery

Cross No.	Pedigree	Genera- tion	No. of SPP tested	No. of SPP showed 20% and less blight	No of plants selected
74360	ICP-7035 x ICP-7065	F,	66	29	255
74363	HY-3C x ICP-7065	5 F ₄ F4	21 '	9	56
73047	Pusa Ageti x JA275	F ₅	36	29	74
73047	ĬĬ	F ⁵	15	15	92
73047	11	F ₇	26	11	89
74236	ICP-6997 x No.148	F ₅	10	0	0

F. Sterility mosaic resistant and wilt promising progenies

Eighteeen progenies which were identified as promising against sterility mosaic and wilt were screened for blight resistance in RA-9. The resistance i

Table 77. Results of the screening of sterility mosaic resistant and wilt promising progenies for Phytophthora blight in RA-9 nursery

Pedigree	No. of plants	% B ¹ 1ght
JA-275-S10-S270-W20	16	100.0
-S390-W20	13	92.3
-S42Q-W1Q	15	100.0
-S450-W30	22	81.8
-S460-W50	26	96.2
-S30-S120-W40	12	100.0
-S150-W30	11	100.0
-S160-W30	21	100.0
ICP-7035-S450-S60-W20	11	100.0
-S200-W20	23	100.0
-S230-W20	13	100.0

Pedigree	No. of plants	% Blight	
HY-3C-S50-S10-W20	11	100.0	
-S30-W30	25	100.0	
-S4Q-W1Q	25	100.0	
-S80-W50	21	100.0	
-S9 Q -W2 Q	25	100.0	
-S250-S10-W30	25	100.0	
-S110-W20	27	96.3	

G. Materials collected from Madhya Pradesh

Seven pigeonpea materials collected from Madhya Pradesh during disease survey and two lines given by Pigeonpea Breeding unit were screened for blight resistance in RA-9 nursery and the results are presented in Table 78. The blight incidence in these materials varied from 5 to 80%. Of the 9 materials screened, seven showed low blight incidence.

Table 78. Results of screening materials collected in surveys in Madhya Pradesh and elsewhere to Phytophthora blight in the field nursery

Pedigree		No. of plants	% Blight	
Hoshangabad	(M.P.)	25	4.0	
Bairagarh	H	26	11.5	
Bhaura	II	22	63.6	
Akalpur	H	26	15.4	
Pathrata	II .	23	4.3	
Ratanpur	и	14	21.4	
Tanda	п	10	80.0	
ICP-7086	(Breeding unit)	20	5.0	
T-15-15	(Aujarat) M.S.	42	14.3	

H. ACT (All India trials) materials

Fifty-eight lines received from the All India Coordinated Pulse Improvement Project (includes EACT, ACT-1, ACT-2 and ACT-3) were screened for blight reaction in the RA-9 nursery. The detailed results are presented in APPENDIX XLIII. In EACT out of 12 lines screened, only one H-73-20 showed least blight (8.9%) and recorded more grain yield/plant (22.1 g). All the ACT-1 lines were susceptible to blight. The grain yield/plant was more (24.88) in ICPL-6. Out of 16 ACT-2 lines screened, four lines showed low blight incidence. The least blight incidence (5.1%) coupled with higher grain yield/plant (41.0 g) was recorded in cv BDN-1. Four ACT-3 lines out of 16 screened also showed less than 20% blight. AS-29 recorded higher grain yield/plant (61.3 g) and least blight incidence (11.3%).

I. Blight in the sterility mosaic screening nursery

During 1978-79 sterility mosaic screening work was carried out in M-4 (Vertisol) field. The rainfall was unusually more during the early crop growth period and there was water stagnation in that field for a longer period. These conditions being favourable for Phytophthora blight, caused considerable damage to many of test lines.

Observations were made on 2244 germplasm single plant progenies and 145 sterility mosaic promising lines for the blight incidence. The reaction of lines/progenies was classified into 10 groups based on percent blight. The results are given in Table 79.

Table 79. Grouping of sterility mosaic promising germplasm lines/progenies based on Phytophthora blight incidence in M-4 field

Blight	No. of SPP of germplasm	No. of promising lines from germplasm
0-10%	1443	104
11-20%	280	29
21-30%	185	9
31-40%	137	2
41-50%	85	1
51-60%	31	0
61-70%	25	0
71-80%	23	0
81-90%	5	0
91-100%	30	0

IV. LABORATORY/NET HOUSE STUDIES

A. <u>Isolation and identification of Phytophthora from material collected</u> in survey trips and at ICRISAT Center

During 1978 rainy season, a survey trip was made to Delhi and Kanpur in northern India to observe the Phytophthora blight incidence and to obtain fungus isolates. The details of the survey trip are presented elsewhere in this report. All the isolations were made either on PVPa/ or PDA media and identified as species of Phytophthora based on mycelial swellings and sporangial characters. All isolates were maintained either on PDA or V-8 juice agar.

As regards the identification of the species of Phytophthora causing blight on pigeonpea, Pal \underline{et} al (Indian Phytopath. 23:583-587, 1970) had identified the organism as P. drechsleri Tucker var. Cajani Pal, Grewal, and Sarbhoy. In a later investigation of the same disease in India by Amin \underline{et} al (Mycologia 70: 171-176, 1978) the causal organism was reported as P. cajani, Amin, Baldev and Williams, a new species. When ICRISAT Phytophthora isolates were sent to Dr. D.J. Stamps, Phytophthora taxonomist at the Commonwealth Mycological Institute, Kew, England, she opined that the pigeonpea Phytophthora sp. was close to P. vignae. To proceed with the present breeding program for resistance in pigeonpea cultivars at ICRISAT it was important to resolve the confusion as to the identity of the causal organism of the blight of pigeonpea. We therefore undertook a detailed study of several isolates of Phytophthora from blighted pigeonpea collected from several locations in India to critically determine whether one or more species of the genus involved.

Most of this work was done by Dr. J. Kannaiyan during a brief visit with Dr. Donald C. Erwin and his colleagues at the Department of Plant Pathology, University of California, Riverside, California, where more than 1000 Phytophthora type culture collections are available for comparative studies.

The Phytophthora isolates used in this study were obtained from the following locations in India: P2 (ICRISAT - Hyderabad), P3 (Delhi), P4 (Kanpur), P5 (Kalyanpur), and P6 (Deeg). These cultures have been deposited in the culture collections of the Department of Plant Pathology, University of California, Riverside and of the Commonwealth Mycological Institute, Kew, England. Pal et al's type culture, P. drechsleri var. cajani, was also collected from the Indian Agricultural Research Institute, Delhi type culture collections. Various experiments were conducted with

a/ PVP - Cornmeal (infusion from solids) - 2g; agar - 15 g; Pimaricin -10-ppm; Vancomycin - 200 ppm; and PCNB - 100 ppm. pH adjusted to 6.0.

these six isolates and four type cultures, viz., P. cryptogea (P-1088), P. drechsleri (P-1087), P. megasperma (P-1057) and P. vignae (P-606).

1. Growth rate

The growth rates of the six pigeonpea isolates and four type cultures were studied on clear V-8 juice agar (CV-8JA), at the following temperatures: 5, 9, 15, 21, 24, 27, 30, 33, 36 and 39° C. For this a plug (5 mm dia) of inoculum from each culture was placed in the center of 90 mm sterilized plastic petri dishes containing the solidified CV-8JA medium. The final data on the colony diameter (minus 5 mm initial plug) was recorded on 5th day and the results are presented in Table 80 and Figs. 2 and 3.

Table 80. Comparison of the effect of temperature on radial growth (mm) of several isolates of Phytophthora from Cajanus cajan with several known species on clarified V-8 juice agar a/

Isolates				To	emper	ature	(°C)			
	5	9	15	21	24	27	30	33	36	39
P2	0	1	30	56	72	79	80	80	56	0
Р3	0	3	32	57	71	79	80	79	48	0
P4	0	1	31	58	71	76	76	64	35	0
P5	0	1	28	56	66	74	72	63	37	0
P6	0	2	32	60	67	76	77	67	50	0
Phytophthora drechsleri var. cajani	0	2	19	53	71	78	80	74	45	0
P. drechsleri	2	15	3 8	55	65	70	68	68	34	0
P. cryptogea	8	19	41	64	69	68	41	7	0	0
P. megasperma	6	19	42	61	72	78	75	3	0	0
P. vignae	0	0	21	38	41	44	37	25	0	0

a/ Average of 4 replications.

The optimum temperature for growth of all six pigeonpea isolates was $27-33^{\circ}\text{C}$, minimum 9°C and maximum 36°C . Comparative studies made with cultures of P. cryptogea, P. drechsleri, P. megasperma, and P. vignae indicated that the growth rate of pigeonpea isolates resembled that of the P. drechsleri culture.

FIGURE 3. COMPARATIVE CARDINAL TEMPERATURES FOR GROWTH OF ONE PIGEONPEA ISOLATE (P2) AND FOUR TYPE CULTURES OF PHYTOPHTHORA

2. Morphological studies

The morphology of six pigeonpea isolates and four type cultures was studied on potato-dextrose-agar (PDA), cornmeal agar (CMA), CV-8JA and 2% malt agar. A 5-mm mycelial plug of each culture from CV-8JA was placed on the center of 90 mm petri dishes containing solidified medium and were incubated at 26° C. Observations were made 7 days after incubation and details are given in Table 81. The observations revealed that the colony morphology of pigeonpea isolates and four type cultures varied considerably on four media.

3. Sporangia

Sporangia were obtained by transferring 5 mm inoculum plugs from the outer edge of a growing colony on CV-8JA to petri dishes (50 mm in dia) containing 5 ml of diluted clarified V-8 juice broth (1:5). The plates were then incubated under Westinghouse 40 Watt fluorescent lamps at an intensity of 1300 μ Wcm² (12 hr light/12 hr dark cycle), after which the medium was removed and replaced by fresh distilled water. The cultures were then incubated for a further 24 hr period after which abundant sporangia were formed.

Proliferating sporangia were produced by all pigeonpea isolates. Size of sporangia in all isolates were similar, ranging from 42-83 x 29-48 μ m (avg. 61.8 x 37.3 μ m). The measurements are also comparable to published data on sizes of sporangia of P. cryptogea, P. drechsleri (Tucker, C.M. 1931. Taxonomy of the genus Phytophthora de Bary. Univ. Missouri Expt. Sta. Bull. 153: 208 pp; Waterhouse, G.M. 1963. Key to the species of Phytophthora de Bary. Mycol. Pap. 92: 1-22), and P. cajani (Amin et al. 1978. Phytophthora cajani, a new species causing stem blight on Cajanus cajan. Mycologia 70: 171-176) and P. drechsleri var. cajani (Table 82). The sporangial stalk of our isolates was either narrowly tapered or widened somewhat at the base of the sporangium.

All six pigeonpea isolates had sporangium morphology similar to that described by Waterhouse (1963) for both *P. cryptogea* and *P. drechs-leri*. Although *P. cryptogea* and *P. drechsleri* are similar in general morphology, these two species have been separated by Waterhouse (1963) based on the following characteristics: *P. cryptogea* has smaller sporangia (avg. size 37-40 x 23 µm, max. 55 x 30 µm) than *P. drechsleri* (avg. size 36-50 x 26-30 µm, max. 70 x 40 µm). *P. cryptogea* produces sporangia sympodially and the sporangia have conspicuous vacoules. Also sporangia of *P. cryptogea* are less variable in shape than *P. drechsleri*. *P. drechsleri* sporangia have been described as broadly obpyriform to elongated obpyriform, some times asymmetrical and tapering at the base. Based on these criteria, our isolates resemble *P. drechsleri* more closely than *P. cryptogea*.

Table 81. Morphological characters of several isolates of Physophishora from Cajanus cajan with several known species on four different media

Isolates	Cornmeal agar	Morphological ch 28 Maltagar	aracters on CV-8JA	PDA
1	2	3	4	5
P2 (Hyderabad)	Colony amorphous, not finely radiate, margin entire, no pattern, colony fairly aerial throughout, hyphae very thick, very small irregular hyphal swellings, distance between branch irregular and no spores.	Colony amorphous, no pattern, moderately aerial throughout, margin entire, hyphae stout, thick, branching not all at right angles to the parent hyphae. No spores.	Colony densely aerial, amorphous , hyphae smooth.	Amorphous, dense aerial, hyphae irregular in width, generally smooth.
P3 (Delhi)	Colony appears finer than P2. No definite colony pattern, colony slightly fluffy at the centre, hyphae smoother at the margin of the colony than at the centres, hyphae at centres of colony very irregular with hyphal swellings adorned with small projections. Distance between branches irregular. No spores.	Colony pattern like a flower with small, pointed petals. Aerial hyphae slight to moderate. Hyphae generally smooth, some times slightly coraloid with small hyphal swellings. Branching not always at right angles to the parent hyphae. No spores.	Colony with dense aerial mycelium, a slightly stellate pattern faintly visible. Hyphal smooth and branching irregular.	Strong camellia. Definite flower pattern, small petals with points. Hyphae always coraloic but not botryoidal, small projections.
24 (Kanpur)	Very similar or identical in morphology to P3.	Colony pattern like a flower, but with fewer points than P3. Growth slightly slower than P3, colony margin scalloped. Hyphae stout, generally smooth, some few small swellings. Branching not generally at right angles. No spores.	Colony not quite as densely aerial as above, slightly radial. Hyphae smooth. Branching irregular. Growth in a pattern of faint concentric rings.	
P5 (Kalyanpur)	Very similar to P3. Growth perhaps a little slower, colony slightly stellate or exhibiting a faint flame pattern. No spores.	Colony pattern more or less identical to that of P3. Hyphae slightly more coraloid than those of P4. Hyphae with small projections, not botryoidal. No spores.	Less aerial mycelium than P3. Colony somewhat radiate, but still very dense. Hyphae generally smooth, with some slightly coraloid. Branching irregular, concentric rings visible.	

	2	3	4	Ď.
P6 (Jeeg)	Growth slower than P3, P4, and P5. Nore amorphous, less fine. Aerial hyphae moderate to abundant in elsewhere. Abundant small hyphal swellings. Branching very ir- regular. No spores.	Pattern more or less like that of P4, slightly less obvious flower pattern than P3 and P5. Hyphae stout, smooth. Hyphae some times slightly coraloid with irregular projections, but not botryoidal. Branchings somewhat irregular. No spores.	Aerial mycelium moderate. Colony somewhat radiate to very slightly stellate, generally amorphous. Hyphae stout, generally smooth. Some hypnae slightly coraloid. Branching not generally at right angles.	Partern as above
5. अपूर्वकारू (P-1088)	•	:	Colony with no strong pattern. Growth rate much slower than others. Margin of colony slightly irregular, Marcoscopic appearance of the colony coares. More aerial than F. 2020/2006, but still much less aerial growth than any of pigeorpea isolates. Hypnae coralloid to bottyoical with some swollen Appeae. Branching of Typhae Caraching of Typhae Ofter not at right angles to parent nypha.	Amorphous, margin slightly irregular, bran- ching not at right angles. Hypher rugose, but not really as cor- al as 2. Americani.
7. Bestalor (P-1087)	Finely stellate/petal, slightly fluffy at center, finely radiate. Hyphae fairly smooth, only slightly irregular. Branching distance slightly irregular not always in right angles.	Definite flower, many small petals (like Chrysanthemur). Mostly appressed, usually aerial at center. Hyphae slightly coral, small projections, angles variables.	Colony with a definite stellate battern, like small petals with points slightly derial in center of colony. Hyphae slightly coraloid, with small projections and unever thickness, Branching of typhae often at or near right angles to the parent hyphae.	Very definite flower, but not same as pigenopea isolates, srall, rounded petals. Hyphae coraloid appearance similar to P3.

	2		4	,
E. 1783.12; eimtz. (P-1057)	:	:	:	Very gense aerial. Margin entire, amorphous, slower than P2. Bran-ches not generally in right and
टे. गर्डुक्ट (P-606)	ı	;	:	yes, siignily rugose. Very slow growing, very dense aerial, amorphous, fine edge. Hyphae generally smooth, not
				branching at right angles. 'ery slightly coraloid.

Table 82. Comparison of the size of sporangia of several isolates of Phytophthora from Cajanus cajan with several known species

Isolates	/m) <u>a</u> (Length:Breadth ratio
P2 P3 P4 P5 P6 Phytophthora drechsleri var. cajani	42-83 (66) x 29-46 (37) 50-76 (64) x 29-42 (36) 46-74 (61) x 31-48 (40) 48-64 (54) x 29-42 (35) 50-73 (62) x 33-48 (38) 56-73 (64) x 32-46 (38)	1.7:1 1.7:1 1.7:1 1.5:1 1.5:1 1.6:1
P. cajani <u>b/</u> P. cryptogea <u>C/</u> P. drechsleri <u>C/</u>	49-82 (60) x 19-44 (32) Avg.37-40 x 23 (max. 55 x 3 Avg.36-50 x 26-30(max.70x 4	1.7:1 0) 1.7:1 0) 1.7:1

<u>a/</u> Data in parentheses is the mean based on 50 measurements for each value.

4. Mating studies

Observations on oogonial and antheridial formation were made on carrot agar medium and a modified CV-8JA which contained β -Sitosterol (30 mg/l), Tryptophan (20mg/l), CaCl₂, H₂O (100 mg/l) and Thiamine (1 mg/l) A plug (5 mm dia) of each pigeonpea Phytophthora isolate was placed in 90 mm petri dishes containing the solidified medium opposite (20 mm apart) to a 5 mm plug of the A^l or A² mating type of either P. drechsleri(P-1087) P. cinnamomi(Pc-40 and Pc-140), P. cryptogea (P-1016) or P. cambivora (P-592). All cultures were incubated at 25°C in darkness for 3 weeks before observations were made. All media used are described in the review by Ribeiro (A sourcebook of the genus Phytophthora. J. Cramer, Lehre, W. Germany. 420 pp, 1978).

Mating experiments with A^1 and A^2 mating types of above species of Phytophthora indicated that all of ICRISAT pigeonpea isolates were of the A^1 mating type. The isolate designated as P. drechsleri var. cajani was also A^1 mating type. The greatest number of oogonia and oospores occurred in matings with the A^2 type of P. cryptogea. Antheridia and oogonia differed in these interspecific matings. Bicellular antheridia was noted in some interspecific crosses with P. cinnamomi (Table 83 and 84). Variation in oogonial sizes was noted when interspecific crosses were made with the A^2 mating type of P. cinnamomi on the modified CV-8JA and

 $[\]frac{b}{}$ Amin et al. (1978)

 $[\]frac{c}{}$ Waterhouse (1963)

on carrot agar. Oospores sizes however varied little (Table 83, 84, 85, 86 and 87). A greater number of bicellular antheridia was observed on carrot agar medium than on the modified CV-8JA. Oospores were not formed in cross P5 x Pc-40 on carrot agar. Oospores were formed in the modified CV-8JA in the modified CV-8JA in cross P5 x Pc-140 (Table 84). Oogonia with a verrucose outer wall were observed only in certain crosses with A^2 mating type of P. cambivora (Table 85). The frequency of oogonia with verrucose walls varied in crosses with different pigeonpea isolates. A majority of the oogonia were verrucose in cross P5 x P. cambivora while there were none in the cross P3 x P. cambivora (Table 85).

A few deeply pigmented oospores were observed in single cultures of pigeonpea isolates, when incubated on oatmeal agar at 30° C for 3 weeks. No sexual structures were observed at any other temperature on any other medium.

The formation of oospores has also been used as a criterion for separating *P. cryptogea* and *P. drechsleri*. Waterhouse (†963) reported that *P. drechsleri* did not form oospores when crossed with *P. cinnamomi*. Our studies indicate that oogonia formed readily in crosses with *P. cinnamomi*, but the number produced varied with the isolate of *P. drechsleri* used. Shepherd (1978) recently reported a detailed study of inter and intraspecific mating behaviour of several *Phytophthora* species. He found that Al isolates of *P. drechsleri/P. cryptogea* readily formed oogonia when mated with *P. cinnamomi*, but not crossed with the A2 mating type of *P. drechsleri* or of *P. cryptogea*. Our mating tests agree in general with Shepherd's findings.

5. Pathogenicity tests

For these studies, 'pot culture' technique was used. Pathogenicity tests using 28 plant species indicated that representative pigeonpea isolates P2, P3 and P4 were specific to pigeonpea and some Atylosia spp., a closely related wild species commonly found in India (Table 88).

In another test, 30 Phytophthora isolates (5 ICRISAT isolates + P. drechsleri var. cajani + P. parasitica, a Puerto Rico pigeonpea isolate) were tested on two pigeonpea lines; viz., ICP-7065 and HY-3C by following 'pot culture' technique. The results presented in Table 89 indicate that ICP-7065 showed resistant reaction (within 10% blight) to only two pigeonpea isolates (P2 and P. drechsleri var. cajani) and to all non-pigeonpea isolate. But HY-3C was susceptible to all seven pigeonpea isolates and to one pine isolate, P. drechsleri (this isolate was non-pathogenic in a repeat test). It remained free from all other non-pigeonpea isolates. This indicates the probability that races of Phytophthora exist within the collection of isolates from pigeonpea.

Shepherd, C.J. 1978. Mating behaviour of Australian isolates of *Phytoph-thora species*. I. Inter- and intra-specific mating. Aust.J.Bot. 26: 123-138.

Table 83. Formation of sexual organs in crosses between Phytophthora isolates from pigeonpea & an A2 mating type of P. cinnamomi (Pc40) on carrot agar medium

Matings	Sex organs ^a	/ Oogonia (μm)	Antheridia ^b / (μm)	Oospores (µm)	Thickness of oospo- re wall (µm)
P2 x Pc40	++	37-48 (43)	17-37(24) x 15-20(17)	34-44(38)	3-5 (4)
P3 x Pc40	+++	29-48 (40)	15-29(18) x 12-21(16)	25-44(35)	2-5 (4)
P4 x Pc40	+	35-42 (39)	17-29(22) x 12-21(16)	29-40(34)	2-4 (3)
P5 x Pc40	0				
P6 x Pc40	++	27-37 (32)	15-19(16) x 15-19(16)	23-31 (27)	2-3 (2)
Pdc ^{<u>C</u>/} x Pc40	++	29-37 (32)	17-29(21) x 15-19(16)	25-32(28)	2-4 (3)

Number of oogonia are indicated:+ = 1-10 ooginia; ++ = 11-20 oogonia and +++ = above 20 ooginia per low power microscope field (100X).

On crosses P3 x Pc40 and P4 x Pc40 a few bicellular antheridia were present; and in crosses P2 x Pc40 and Pdc x Pc40 about 50% of the antheridia were bicellular.

C/
Pdc = P. drechsleri var. cajani.

Table 84. Formation of sexual organs in crosses between Phytophthora isolates from pigeonpea and an A2 mating type of P.cinnamomi(Pc140) on a modified clarified V-8 juice agar medium

Matings	Sex <u>a/</u> organs	Oogonia (µm)	An theridia <u>b/</u> (µm)	Oospores (μm)	Thickness of oospo- re wall (µm)
P2 x Pc140	+++	35-46 (40)	15-25 (19) x 15-21 (17)	31-40 (35)	2-5 (4)
P3 x Pc140	+++	25-35 (31)	10-19 (15) x 10-21 (15)	21-31 (26)	2-4 (3)
P4 x Pc140	++	29-46 (34)	12-23 (17) x 12-19 (16)	25-42 (31)	2-4 (3)
P5 x Pc140	++	27-35 (32)	12-19 (15) x 10-19 (15)	21-31 (27)	2-4 (3)
P6 x Pc140	++	33-42 (37)	15-25 (19) x 15-21 (18)	29-37 (34)	2-4 (3)
Pdc ^{<u>C</u>/} x Pc14	0 +++	29-44 (37)	15-31 (19) x 12-19 (16)	25-34 (31)	2-4 (3)

Number of oogonia are indicated: ++ = 11-20 oogonia and +++ = above 20 oogonia per low power microscopic field (100X).

b/ On crosses P2 x Pc140, P4 x Pc140, and P6 x Pc140 a few bicellular antheridia were present; and in cross Pdc x Pc140 about 50% of the antheridia were bicellular.

C/ Pdc = P. drechsleri var. cajani.

Table 85. Formation of sexual organs in crosses between *Phytophthora* isolates from pigeonpea and an A² mating type of *P. cambivora* (P592) on a modified clarified V-8 juice agar medium

Matings	Sex <u>a/</u> organs	Oogonia ^{<u>b</u>/ (µm)}	Antheridia (μm)	Oospores (μm)	Thickness of oospore wall (µm)
P2 x P592	0				
P3 x P592	+++	27-44 (35)	12-21 (16) x 12-19 (16)	21-38 (30)	2-4 (3)
P4 x P592	+	33-42 (38)	17-40 (26) x 15-23 (19)	31-38 (34)	2-4 (3)
P5 x P5 92	+	33-42 (36)	12-21 (16) x 12-19 (16)	27-35 (31)	2-5 (3)
P6 x P592	0				
Pdc ^{<u>C</u>/} x P592	+	37-40 (38)	12-19 (16) x 12-17 (15)	31-33 (32)	3-3 (3)

Number of oogonia are indicated: + = 1-10 oogonia and +++ = above 20 oogonia per lower microscopic field (100X).

 $[\]underline{b}/$ On crosses P5 x P592 and Pdc x P592 about 50% of the oogonia were with verrucose walls.

C/
Pdc = P. drechsleri var. cajani.

Table 86. Formation of sexual organs in crosses between *Phytophthora* isolates from pigeonpea and an A2 mating type of *P. drechs-leri* (P1087) on a modified clarified V-8 juice agar medium

Matings	Sex <u>a</u> / organs	Oogonia (µm)	Antheridia (µm)	Oospores <u>b</u> / (µm)	Thickness of oospore wall (µm)
P2 x P1087	+	29-40 (35)	12-17 (15) x 12-17 (15)	27-35 (31)	2-4 (3)
P3 x P1087	++	24-35 (31)	12-21 (17) x 15-19 (16)	20-29 (25)	2-3 (2)
P4 x P1087	+	27-40 (34)	10-17 (15) x 12-17 (14)	23-35 (39)	2-5 (3)
P5 x P1087	++	27-35 (30)	12-19 (15) x 12-19 (15)	21-29 (26)	2-5 (2)
P6 x P1087	++	29-37 (33)	12-19 (15) x 12-17 (15)	23-31 (27)	2-3 (2)
Pdc ^{<u>c</u>/} x P1087	+++	29-44 (35)	12-21 (15) x 12-15 (13)	23-35 (28)	2-4 (3)

a/
Number of oogonia are indiated: + = 1-10 oogonia, ++ = 11-20 oogonia and
+++ = above 20 oogonia per low power microscopic field (100X).

 $[\]underline{b}$ / On crosses P3 x P1087 and P6 x P1087 oospores were aplerotic.

Pdc = P. drechsleri var. cajani.

Table 87. Formation of sexual organs in crosses between *Phytophthora* isolates from pigeonpea and an A2 mating type of *P. crypto-gea* (P1016) on a modified clarified V-8 juice agar medium

Matings	Sex <u>a</u> / organs	Oogonia (µm)	Antheridia (μm)	Oospores (µm)	Thickness of oospore wall (µm)
P2 x P1016	+++	26-41 (34)	10-17 (13) x 12-19 (15)	22-34 (28)	2-5 (3)
P3 x P1016	+++	29-41 (34)	12-19 (15) x 12-22 (17)	22-34 (27)	2-5 (3)
P4 x P1016	+++	31-41 (35)	12-17 (16) x 12-1 9 (16)	22-36 (27)	2-5 (3)
P5 x P1016	+++	31-38 (34)	12-19 (15) x 10-22 (16)	22-31 (26)	2-4 (3)
P6 x P1016	+++	26-36 (31)	12-17 (15) x 12-22 (17)	19-29 (23)	2-4 (3)
Pdc <u>b</u> / x P1016	6 +++	29-38 (32)	12-19 (16) x 12-24 (17)	19-30 (23)	2-4 (3)

Number of oogonia are indicated: +++ = above 20 oogonia per low power microscopic field (100X).

 $[\]underline{b}$ /
Pdc = P. drechsleri var. cajani.

Table 88. Pathogenicity of Phytophthora isolates from pigeonpea (Cajanus cajan) to various plant species

Plant species	Phytop P2	hthora P3	isolates <u>a/</u> P4
Cajanus cajan (Cv. HY-3C) (pigeonpea)	+	+	+
Cajanus cajan (ICP-7065) (pigeonpea)	_	+	+
Osteospermum sp. (african daisy)	-	-	_
Medicago sativum cv. Moapa (alfalfa)	-	_	-
Persea indica (wild avocado)	-	-	_
Citrus sinensis cv. mv sweet (citrus)	-	-	-
Vigna sinensis L. (cowpea)	-	-	-
Cucumis sativus L. cv. Straight-8 (cucumber)	-	-	-
Solanum melongenum L. cv. Black Beauty (eggplant)	-	-	-
Capsicum annuum L. (pepper)	-	-	-
Vinca minor L. (periwinkle)	-	-	-
Solanum tuberosum L. cv. White Rose (potato)	-		-
Carthamus tinctorius L. cv. N-10 (safflower)	-	-	-
Glycine max. L. (soybean)	-	-	-
Helianthus annuus L. cv. Summer Beauty (sunflower)	-	-	-
Lycopersicum esculentum L. cv. Pearson (tomato)	-	-	-
Crotalaria juncea L. (sunn-hemp)	-	-	-
Phaseolus vulgaris L. (french bean)	-	-	-
Phaseolus sp. (valor bean)	-	-	-
Pisum sativum L. (pea)	-	-	=
Cicer arietinum L. cv. White panish (chickpea)	-	-	-
Atylosia sericea (wilt plants related to pigeonpea)	-	-	-
A. platycarpa "	-	-	-
A. VOLUDI LI 8	+	+	+
A. scaravaeotaes	+	+	+
A. lineata	+	+	+
A. Cajanijolia	T 1	+	∓
A. albicans "	+	Т	т

 $[\]underline{a}/$ The + sign indicates the plants were susceptible. The - sign indicates the plants were resistant.

Table 89. Reaction of cultivars HY-3C and ICP-7065 of Cajanus cajan (pigeonpea) to different Phytophthora species

Phytophthora isolates tested	and hosts	Pigeonpo HY-3C	ea lines <mark>a</mark> , ICP-7065
22	(pigeonpea)	+	-
23	() ()	+	+
24	n	+	+
25	n	+	+
P6	u	+	+
lrechsleri var. cajani	n	+	_
eactorum (Blackwell's type) (P715)	-	-
eolocasiae(P356)		-	-
eryptogea (P 187)		-	-
eryptogea (P637)		_	-
ryptogea (P1016)	•	-	-
ryptogea Pethybridge type (P	1088)	-	-
eapsici type (P1091)		-	-
eitricola type (P716)		-	-
eitrophthora (P479) (citrus)		-	-
rinnamomi (PC40) (avocado)		-	-
eambivora (P592)		-	-
lrechsleri (P568)		-	-
drechsleri (P852)		+ <u>b</u> /	-
drechsleri (P1076)		+	-
rechsteri (P1087)		-	-
negasperma (P1057) (alfalfa)	ata (D220) (alfalfa)	-	-
negasperma high temp. isol	ate (P236) (dilalia)	-	-
megasperma var. sojae (P406)	ata (n240) (alfalfa)	-	~
negasperma high temp. isol	ate (p240) (allalla)	-	-
parasitica (P991) Parasitica (P1070)		_	_
arasitica (P1070) Parasitica (P968) <u>C</u> / (pigeo	nnoa l	_	-
palmivora (P550)	iihea)	_	_
<i>'</i> GG GG G G G G G G G G G G G		_	_

 $[\]underline{\underline{a}/}$ The + sign indicates the plants were susceptible. The - sign indicates the plants were resistant.

b/ Isolate was non-pathogenic in a repeated test.

 $[\]underline{c}/$ Isolate from Puerto Rico.

6. Designation of the causal agent of blight of pigeonpea as P. drechsleri f. sp. cajani

We cannot state unequivocally that the isolates described as *P. cajani* by Amin et al. (1978) is the same as our isolates since the culture of this fungus have apparently been lost. However, the morphology and size of sporangia of this isolate designated as *P. cajani* as reported by Amin et al. (1978) was similar to our isolates. Homothallism as cited by Amin et al. (1978) does not differentiate *P. cajani* from *P. drechsleri* since homothallic isolates of *P. drechsleri* have previously been described by Tucker (1931). Our studies showed that the isolates P2, P3, P4, P5 and P6 were Al mating type when crossed with test A2 isolates but at 30°C on OMA these isolates were homothallic.

Pal et al (1970) described chlamydospores. Our close observation by light microscopy indicated that the hyphal swellings were not delimited by a septum. Therefore what we saw were not chlamydospores.

Our data support that the isolates P2, P3, P4, P5 and P6 should be classified as P. drechsleri since they closely resemble the comparative isolate of that species and with characteristics of sporangia described by Tucker (1931). Although the 'forma speciales' concept has not previously been used to classify host specific isolates of Phytophthora, it appears to be appropriate here. The data in tables 88 and 89 indicate that the isolate from pigeonpea are host specific. Therefore, P. drechsleri f. sp.cajani is presented as the name for the Phytophthora causing blight of pigeonpea. The designation is in conformity with the International Rules of Botanical Nomenclature, Article 4 (Stafleu et al. 1972. International Code of Botanical Nomenclature. Utrecht, Netherlands, 426 pp). The term "variety" (eg. var. cajani) has been used by Pal et al. (1970). The "variety" should be based on morphological differences and not on host specificity. The use of forma speciales was recently proposed by Kuan and Erwin (1978) in designating host specific isolates of P. megasperma.

B. <u>Screening</u>

1. Germplasm

More than 1400 germplasm accessions were screened by 'pot culture' technique. Planting, screening and recording observations were done as described in Pulse Pathology (Pigeonpea) Annual Report, 1977-78. The results are presented in APPENDIX XLIV.

Kuan, Ta-Li., and D.C. Erwin. 1978. The use of formae speciales to subdivide *Phytophthora megasperma* Drechsler. Phytopathology News. 12: 147 (Abstr.).

The percentage of blight varied from 0.0 to 100.0%. A list of 52 lines that recorded less than 10% blight is given below:

ICP-1788, -1950, -2153, -2376, -2505, -2673, -2682, -2719, -2736, -2974, -3008, -3259, -3367, -3741, -3753, -3868, -3891, -3899, -3937, -4135, -4141, -4168, -4699, -4752, -4882, -5450, -5860, -6865, -6952, -6953, -6956, -6974, -7057, -7065, -7151, -7182, -7185, -7196, -7200, -7232, -7269, -7273, -7483, -7533, -7624, -7657, -7672, -7692, -7701, -7746, -7749, and -7754.

2. Sterility mosaic resistant lines

One hundred and seventeen sterility mosaic resistant germplasm selections were screened for blight resistance in 'pot culture' and the results are presented in APPENDIX XLV. The 15 selections which showed less than 10% blight incidence in the first test were screened again and the results are given in Table 90. Average of two tests results indicated that 14 germplasm selections (only ICP-7185-1-6SQ showed more blight in the second test) recorded less than 10% blight.

Most of these sterility mosaic resistant germplasm selections were screened in the blight nursery and the results are presented elsewhere in this report. Out of these 14 selections found resistant in the 'pot culture', 9 showed resistant reaction to the blight in field screening also.

Table 90. Summary of pot screening of sterility mosaic resistant germplasm selections for resistance to Phytophthora blight

	lst	Test	2nd	Test			
Particular	No. of	No.	No. of	No.	Total	Total	Average
	plants	blighted	plants	blighted	no.of	no.	percent
	tested		tested		plants tested	bligh- ted	blight
ICP-4765-3-5S₩	8	0	7	0	15	0	0.0
ICP-4866-1-6S@*	10	0	18	0	28	0	0.0
ICP-5656-1-2S@*	8	0	13	0	21	0	0.0
ICP-7185-1-6S@*	10	0	10	6	20	6	30.0
ICP-7197-3-S10	11	0	5	1	16	1	6.2
ICP-7414-1-4S@*	11	0	9	0	20	0	0.0
ICP-8101-5-1S@*	16	0	8	0	24	0	0.0
ICP-8106-2-550*	10	0	10	1	20	1	5.0
ICP-8120-1-15@	9	0	6	1	15	1	6.7
ICP-8127-8-158	10	0	17	0	27	0	0.0
ICP-8132-2-35@*	10	0	12	0	22	0	0.0
ICP-8139-3-150	14	0	10	0	24	0	0.0
ICP-8144-3-3S@*	10	0	19	2	29	2	6.9
ICP-8147-1-25@*	10	0	11	0	21	0	0.0
ICP-8151-7-350*	15	0	13	0	28	0	0.0
HY-3C (Susceptible		13	12	10	27	23	85.2

^{*} Also resistant in field screening.

3. Reaction of blight promising lines (against P2 isolate) to P3 (Delhi) and P4 (Kanpur) isolates

Thirty blight promising lines from 1977-78 screening were tested against P3 (Delhi) and P4 (Kanpur) isolates along with P2 in 'pot culture'. The test was repeated once and the results are presented in Table 91.

All the 30 lines showed susceptible reaction to both P3 and P4 isolates. Against P2 however, only 3 lines showed around 30% blight and the remaining were resistant. More than 90% blight was recorded in all the 30 lines against P4 whereas against P3 most of the lines showed less than 50% blight.

Table 91. Results of pot screening of Phytophthora blight promising lines (to P2 isolate) against P3 (Delhi) and P4 (Kanpur) isolates^a/

		P2	De	lhi	Kai	npur
ICP.No.	No. of	% Blight	No. of	% Blight	No. of	% Blight
	plants		plants		plants	
ICP-28	129	3.9	132	55.3	123	100.0
-113	122	4.9	.124	45.2	110	97.3
-214	145	27.6	112	87.5	132	100.0
-231	129	8.5	124	36.3	123	99.2
-339	141	8.5	145	42.8	129	100.0
-580	129	9.3	131	35.9	133	98.5
-752	135	8.9	133	29.3	123	99.2
-913	113	9.7	123	52.8	104	96.2
-914	123	29.3	111	52.3	126	100.0
-934	129	5.4	126	46.0	122	100.0
-1088	104	5.8	113	46.9	104	98.1
-1090	128	1.6	122	41.8	125	98.4
-1120	122	6.6	126	41.3	123	98.4
-1123	126	1.6	127	26.8	114	97.4
-1149	131	3.8	130	41.5	138	99.3
-1150	121	8.3	124	40.3	118	97.5
-1151	128	10.9	122	50.8	122	100.0
-1258	124	11.3	132	49.2	135	99.3
-1321	106	1.9	106	40.6	92	97. 8
-1529	125	2.4	124	34 .7	105	99.1
-1535	1 30	9.2	140	57.1	114	99.1
-1570	120	30.8	106	35.9	118	983
-1586	97	6.2	97	24.7	109	99.1
-1950	121	7.4	115	33.0	99	98.9
-2153	131	9.2	142	42.9	114	94.7
-2376	129	6.9	133	39.9	118	99.2
-3753	110	8.2	120	24.2	99	98.9
-6974	126	4.8	135	27.4	80	98.8
-7065	127	6.3	135	54.8	84	100.0
-7182	102	4.9	122	36.1	69	98.6
HY-3C (Sus-	30	100.0	36	100.0	35	100.0
ceptible che						
- / 0						

 $[\]underline{a}$ / Average of two tests.

C. Growth of five pigeonpea Phytophthora isolates on five media

The objective of this study was to find out suitable solid medium for the growth of 5 pigeonpea isolates. Five solid media used in this study were Corn meal agar (CMA)+Pimaricin - Vancomycin - PcNB (PVP), Potato-dextrose agar (PDA), V-8 juice agar (V-8JA), Pigeonpea stem extract dextrose agar (PPDA) and CMA. Five mm inoculum plugs of each of five isolates (P2 to P6) were placed on the center of solidified medium in petri dishes and incubated at 30° C for 7 days. The colony diameter (minus initial 5 mm inoculum plug) was recorded and presented in Table 92. The results indicate that CMA is the best soild medium for all the five isolated followed by pigeonpea stem extract dextrose agar and V-8JA. The other two media (CMA + PVP and PDA) supported moderate growth for all the five isolates.

Table 92. Colony diameter (cm) of five pigeonpea Phytophthora isolates on five media a/

Isolate No.	Corn meal agar + Pimaricin - Van- comycin -PCNB	Potato dex- trose agar	V-8 Juice agar	Pigeonpea stem ex- tract dex- trose agar	-
P2 (Hyderabad)	4.7	4.0	5.8	7.1	9.0
P3 (Delhi)	4.8	6.1	8.0	6.7	9.0
P4 (Kanpur)	4.6	5.7	7.4	8.7	9.0
P5 (Kalyanpur)	5.2	4.2	7.3	9.0	9.0
P6 (Deeg)	5.4	5.1	8.2	8.2	9.0

a/ Average of 4 replications.

D. Fungicidal seed treatment studies

Recently a group of acylalanine derivatives, which systemically control various diseases caused by fungi of the Oomycetes, has become available from CIBA-GEIGY Corporation for experimentation. Diseases caused by species of Phytophthora, Pythium, Bremia, Plasmopara, Pseudoperonospora and Sclerospora are among those controlled by these compounds. One acylalanine analogue was inhibitory to Phytophthora parasitica var. nicotianae in vitro and gave good control of black shank of tobacco in preliminary

field tests in 1976 (Mitchell and Kannwischer, unpublished). This compound, which has the systematic chemical name of N- (2, 6-dimethylphenyl)-N-(methoxyacetyl)- alanine methylester, was tested as CGA 48988 (=GA-1-82) and given the trade name, Ridomil.

A seed treatment trial was conducted in 'pot culture' with Ridomil (25 WP) to control the blight of pigeonpea. Seeds of HY-3C, a blight susceptible cultivar, were used in seed treatment studies. Seeds were dry dressed at five rates - 0.1%, 0.2%, 0.3%, 0.4% and 0.5% fungicide. Four replications were kept for each treatment. Proper checks were also maintained during the experimentation. About 25 seeds were sown in each pot (= replication). The first inoculation was done 6 days after sowing and the same treatments received second inoculation 15 days after the first inoculation to find out the persistence of the fungicidal effect in the treated seedlings. The percent blight incidence was recorded 15 days after 1st inoculation as well as 15 days after 2nd inoculation. The results are presented in Table 93.

With the first inoculation control of blight in 'pot culture' was accomplished (from 0.2% to 0.5% Ridomil seed treatment). When the same treatments were subjected to second inoculation, the control of blight (within 10% blight) was achieved only with higher rate (0.5%). There was no adverse effect on germination and seedlings. The experiment will be repeated in 'pot culture'.

In 1979 kharif, a field trial will be conducted in blight nursery to see the performance of this chemical.

Table 93. Effect of pigeonpea seed treatment with Ridomil on the Phytophthora blight incidence 15 days after 1st and 2nd inoculations.

		R.			R2			RS	3		R4		Avera	
Treatment	TPT		ight	TPT		ight	TPT		ight	FPT		ight	%B1	
		Α	В		Α	В		Α	В		Α	В	Α	В
0.1% 0.2%	25 26	24.0			19.2 0.0	38.5 26.9		15.4 25.0	38.5 35.7	26 26	23.1	53.8	20.4	44.7
0.3%	26 24	7.7	19.2	30	0.0	6.7	28	7.1	14.3	29 26	0.0	3.4	3.7	10.9
0.5%	29	0.0	3.4	23	0.0 100.0	8.7	26 26	0.0	7.7	27	0.0	7.4	0.0	6.8
Non-trea- ted (lst inocula- tion)	22	100,0	-	20	100.0	-	20	100.0	-	23	90.0		99.0	-
Non-trea- ted (2nd inocula- tion) <u>b</u> /	25	-	36.0	26	-	11.5	23	-	8.7	25	-	18.7	-	18.7

a/ HY-3C, a blight susceptible cultivar was used. b/ Less blight is observed when old seedlings are inoculated. R1 to R4: Replications. TPT: Total Plants Tested. A: % Blight 15 days after 1st inoculation. B: % Blight 15 days after 2nd inoculation.

E. Longevity of Phytophthora culture in vitro

In initial stages we faced some difficulties in storing our <code>Phytophthora</code> cultures at lower temperatures. So, a simple experiment was conducted to find out optimum temperature and proper medium for storing <code>Phytophthora</code> cultures over long periods <code>in vitro</code>. The P2 isolate was sub-cultured on both V-8JA (V-8 juice agar) and PDA (potato-dextrose-agar) media and kept at four different temperature ranges; viz., 10° , 15° , 22° , and 28° C. The viability of the culture was tested at weekly intervals on V-8JA (a favourable medium for <code>Phytophthora</code>) and the results are presented in Table 94.

The results clearly indicate that the P2 isolate of pigeonpea Phytophthora survives for a longer period at 15° C. It survives only for a week (on PDA) or two (on V-8JA) at 10° C. Among the two media tested V-8JA is better than PDA, but the pattern on temperature effects remains the same.

The Phytophthora cultures could be stored at $15^{\circ}\mathrm{C}$ on V-8JA for a longer period.

Table 94. Influence of temperature on the survival of *Phytophthora* drechsleri f. sp. cajani on two growth media

「emperature (°C)	V-8JA	PDA	
	Days	Days	
10	14	7	
15	133	105	
22	77	77	
28	63	56	

V-8JA - V8 Juice agar PDA - Potato-dextrose-Agar

F. Growth of Phytophthora on media incorporating different tissues of pigeonpea

Since the pigeonpea <code>Phytophthora</code> does not attack the root system, we wondered if root tissues contains inhibitory substances. An experiment was conducted in which leaf, stem and root tissue extracts with dextrose were used for growing <code>Phytophthora</code>. V-8 juice broth and potato-dextrose broth served as checks. Mycelial weights were compared after three weeks. No marked difference in growth was noticed between the different pigeonpea tissue media. Thus the roots, under the conditions of this test, did not show any inhibitory effect on the fungus.

PROJECT: PP-PATH-4(78): INTERNATIONAL SURVEY OF PIGEONPEA DISEASES

I. SUMMARY

- 1. Roving surveys in the Indian state of Uttar Pradesh were carried out. Total locations surveyed were 108 in 44 districts. The average incidence of wilt and sterility mosaic for the state was 8.2% and 15.4%, respectively. The ranges of incidence for the two diseases were 0 to 86% and 0 to 93%.
- 2. Macrophomina stem canker, Yellow mosaic and Phytophthora blight were important at certain locations.
- 3. During September 1978 Delhi, Kanpur, Kalyanpur and Deeg were surveyed for the incidence of Phytophthora blight. The disease was observed in all four locations surveyed. Higher incidence of blight was noticed in Deeg Farm on Cv. T-21 (50%). Isolates of Phytophthora were obtained from Delhi, Kanpur, Kalyanpur and Deeg.
- 4. More incidence of yellow mosaic was observed at ICRISAT in rabi pigeonpea plantings than in kharif plantings. The maximum incidence observed was only 5.87 percent.
- 5. Plants infected with sterility mosaic showed more susceptibility to powdery mildew than the healthy plants Plants with ring spot or mild mosaic symptoms behaved similar to healthy or apparently immune plants.
- 6. Most of the ACT (All India trials) materials showed high susceptibility to powdery mildew. HY-2, 1238 and T-7 were comparatively less susceptible.
- 7. Plants infected with sterility mosaic also showed more susceptibility to spider mites.

II. INTRODUCTION

This year, in cooperation with the C.S. Azad University of Agriculture and Technology, Kanpur; N.D. University of Agriculture and Technology, Faizabad, and the Banaras Hindu University, Varanasi, we conducted roving surveys in major pigeonpea growing districts of the state of Uttar Pradesh in northern India. A short trip was also made to Delhi and Kanpur to study Phytophthora blight situation. The observations made during these surveys are presented in this report. We did not undertake any survey trip outside India.

TII. SURVEYS

A. <u>Uttar Pradesh</u>

The survey trip was made by Dr. J. Kannaiyan. Mr. A.N. Mishra, Senior Research Assistant, C.S. Azad University of Agriculture and Technology, Kanpur (New Delhi to Kanpur); Dr. R.N. Singh, Junior Plant Pathologist, N.D. University of Agriculture and Technology, Faizabad (Faizabad to Sultanpur) and Dr. U.P. Singh, Pulse Pathologist, Banaras Hindu University, Varanasi (Varanasi to Jaunpur) cooperated and accompanied him.

Dr. Kannaiyan's schedule was as follows:

January 29: Travelled from Hyderabad to New Delhi

New Delhi to Pantnagar via Moradabad and Rampur

January 30 : Pantnagar to Shajahanpur via Bareilly and Pilibhit

January 31: Shajahanpur to Bahraich via Lakhimpur, Sitapur,

Lucknow, and Barabanki

February 1 : Bahraich to Deoria via Faizabad and Gorakpur

February 2: Deoria to Varanasi via Azamgarh and Ghazipur

February 3: Varanasi to Allahabad via Mirzapur and Jaunpur

February 4: Allahabad to Kanpur via Sultanpur and Raebareli

February 5: Kanpur to Mahoba via Banda

February 6: Mahoba to Agra via Etawah, Mainpur and Etah

February 7: Agra to New Delhi via Mathura and Aligarh

February 8: New Delhi to Hyderabad

In Uttar Pradesh (border to border) the distance covered was approximately 3100 Km by road with stops at 108 locations for the observations of pigeonpea diseases; i.e. an average of one stop for every 29 Km. In this trip 44 pigeonpea growing districts of Uttar Pradesh were covered.

The size of the fields observed varied from 0.20 to 3.00 ha. More than 90% of the fields observed had some inter- or mixed crop(s). The percentage of pigeonpea in inter- or mixed crop(s) varied from 10 to 90.

The overall incidence in the field and also the incidence based on 500 plants in random rows were recorded for wilt, sterility mosaic (SM), Macrophomina stem canker (MSC), yellow mosaic (YM) and Phytophthora blight (PB). Incidence of foliar diseases was recorded on 3-point scale (low, medium and severe). Samples of wilted plants were collected from each place for the purpose of isolation. In addition, G.B. Pant University of Agriculture and Technology, Pantnagar; N.D. University of Agriculture and Technology, Faizabad; Banaras Hindu University, Varanasi; and C.S. Azad University of Agriculture and Technology, Kanpur were visited and similar observations were recorded on the pigeonpea crop there. The results are presented in Tables 95 and 96 and Figs. 4 and 5.

District-wise summary

1. Ghaziabad

Pigeonpea was cultivated mostly in loamy soils along with pearl millet. The crop was in flowering and podding stage. The average incidence of wilt, SM, YM and PB was 3.0%, 20.0%, 2.1%, and 6.3%, respectively. Cercospora leaf spot was observed at one location.

2. Meerut

The crop was cultivated in loamy soil along with maize and was in flowering and podding stage. The incidence of SM and YM was 46.2% and 6.4%, respectively.

3. Moradabad

Pigeonpea was raised mainly in clayey loam and was intercropped with sorghum or pearl millet. The incidence of wilt, SM and YM was low.

4. Rampur

The crop was cultivated in clayey loam soils and was in flowering and podding stage. SM and YM incidence was low but more wilt was seen. Cercospora leaf spot was also observed.

5. Nainital

The crop was in flowering and podding stage. SM incidence was high (35.0%). Very low incidence of wilt, YM, PB and Cercospora leaf spot was observed in some fields. Pigeonpea experimental plots at the G.B. Pant University of Agriculture and Technology, Pantnagar were also visited.

6. Bareilly

The crop was cultivated in clayey loam soils and was in flowering and podding stage. Moderate incidence of SM was seen. The incidence of other diseases was low.

Locationwise data on incidence of pigeonpea diseases in Uttar Pradesh (1978-79)

Table-95

Remark	8						Black leaf spo at loca-		
Grey mildew	19	00	0	0	000	0	α - ¯ σ+		Contd.
Phyl- los- ticta sp.	∞	00	0	0	000	0	00	0	3
sples -	=	0+	0.20	+	0++	0.67	+0	0.5	
ght Company Power Soon S	16	12.60	6.30	00.00	0.00	0.00	0.00	0.00	
% Blight Over- Wi all 5	15	0.00	7.50	0.00	0.00	0.00	0.00	0.00	
% YMV Over- Within all 500	14	3.60	2.10	6.40	0.60 7.20 2.60	3.47	0.00	0.80	
1	13	3.00	2.00	5.00	1.00 5.00 2.00	2.67	1.00	0.50	
Macrophomina Stem canker Over- Within	12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	=	0.00	9.0	0.00	0.00	0.00	0.00	0.00	
SM Within 500	2	12.00	20.00	46.20	5.60 0.60 5.60	3.93	0.00	2.10	
Over- all	6	10.00 30.00	20.00	50.00	5.00	3.33	0.00	2.50	
ilt Within 500	&	2.40 3.60	3.00	0.00	0.00	0.53	8.60	7.10	
% Wilt Over- With all 500	7	1.00	3.00	0.00	0.00	0.67	10.00 5.00	7.50	
Stage	9	ዖጴፑ F		78,9 T	표 표 전 42 표		P 88 የ		
Crop- ping pat- tern	5	1PP:1PM		MI:1901	1PP:1PM 3PP:1S 1PP:1S		1PP:1S 1PP:1S		
Net PP area obser- ved	4	1.12		0.56	0.12 0.37 0.37		0.56		
Total Narea obser-	3	1.50		0.75	0.25 0.50 0.50		0.75		
Soil type	2	ب ب			ದರರ		ಕಕ		
District and location	-	GHAZIABAD 1. Ghaziabad 2. Gopalpur	Average	MEERUT 3. Garhmuktes- war	MORADABAD 4. Rajabpur 5. Baksar 6. Ghat	Average	RAMPUR 7. Rampur 8. Bilaspur	Average	

rtnagar CL 1.00 1.00 Sole chha CL 0.50 0.37 2PP: 1 chha CL 0.50 0.37 2PP: 1 chha CL 0.50 0.25 2PP: 1 chipura CL 0.50 0.12 Sorde in Glipura CL 0.50 0.12 Sorde in Glipura CL 0.50 0.15 2PP: 1 chipura CL 0.50 0.15 2PP: 1 chipura CL 0.50 0.15 2PP: 1 chipura CL 0.50 0.25 1PP: 1 chipura CL 0.50 0.25 1PP: 1 chipura CL 0.50 0.25 1PP: 1 chipura CL 0.50 0.37 1PP: 1 chipura CL 1.00 0.75 1PP: 1 chipura C	-		1	~	4	5	9	7	8	6	10	=	12	13	14	. 91	16	17 18	19	8
Therefore CL 1.00 1.00 Sole P 1.00 0.00 75.00 65.80 0.00 0.00 1.60 1.60 10.00 8.40 ++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-																			
Average Buildagam CL 0.50 0.37 2PP:1S PMF 0.00 0.00 5.00 4.22 0.00 0.00 0.00 0.00 0.00 0.00 0	¥		ē	5	5	Sola	۵	1.00	08.0	75.00	65.80								0	
Average Highlith CL 0.50 0.25 2PP:1S:1C PMF 1.00 1.40 15.00 16.80 0.00 0.00 0.00 0.00 10.00 9.20 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pantnag GBPUAT	E	. .	8 5	5 6	200.16	D & C	9	00.0	5.00	4.20				00.				0	
Litt C			ತ	06.0	6.5	21.17	5				000	- (ĺ	00	5	20	0	0	ı
Higheria CL 0.50 0.25 2PP:1S:1C PAF 1.00 1.40 15.00 16.80 0.00 0.00 0.00 10.00 3.20 + 0 0 Brojipura CL 0.50 0.12 2PP:1S:1C PAF 2.00 2.60 5.00 3.60 2.00 2.00 0.00 0.00 10.00 3.20 + 0 0 Brojipura CL 0.50 0.12 10.01 2 2.00 1.20 5.00 3.60 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Average							0.50	0.40	40.00	35.00	1	i	1	8	3	2			l
Bhojipura (1 0.50 0.25 2PP;1S:1C Paf 1.00 1.40 15.00 16.80 0.00 0.00 0.00 10.00 3.20 + 0 0 0 0.00 10.00 0.00 0.00 0.00 0.00	BAREILLY																;		•	
Navabagan CL	ll. Baheri		ರರ	0.50	0.25	2PP:1S:1C Border crop	P&F P&F	1.00	1.40	15.00	16.80 3.60				•—		3.20		00	
rage Tibrit CL 0.20 0.15 2PP:1S P&F 5.00 6.80 5.00 5.80 0.00 0.00 0.00 1.00 0.60 0.00 Aspur RPUR CL 0.75 0.56 3PP:1PM P&F 5.00 6.80 5.00 5.00 0.00 0.00 0.00 1.00 0.60 0.00 Z.50 3.40 3.50 3.60 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0	73. Nawabganj		: ರ	0.50	0.37	in GN 3PP:1S	P&F	2.00	1.20	5.00	3.80				0.40		0.00		0	
Arbit CL 0.20 0.15 2PP:1S P&F 5.00 6.80 5.00 5.80 0.00 0.00 0.00 1.00 0.00 1.00 0.00 0	Average							1.67	1.73	8.33	8.07	[]			0.13	1 1	4.13	0	0	11
Average Migori CL 0.25 0.35 3PP:1PM Average Midnandi SL 0.35 0.37 1PP:1S P&F 5.00 6.80 5.00 1.40 0.00 0.00 0.00 1.00 0.00 0.00 0	PILIBHIT																;		•	
CL 0.50 0.25 1PP:1S P&F 0.00 0.00 5.00 6.00 0.00 0.00 0.00 10.00 7.60 + 0 0 0 0 0.00 0.00 0.00 0.00 0.00 0	14. Pilibhit 15. Bilaspur		ರರ	0.20	0.15 0.56	2PP:1S 3PP:1PM	P&F P&F	5.00	0.00	5.00	5.80				0.00		0.60 2.20		90	
CL 0.50 0.25 1PP:1S P&F 0.00 0.00 5.00 6.00 0.00 0.00 0.00 10.00 7.60 + 0 10.00 0.25 1PP:1S P&F 5.00 3.60 5.00 5.00 0.00 0.00 0.00 0.00 0.00 0	Average							2.50	3.40	3.50	3.60	1 1	11	11	0.00	2.50	1.40	11	0	11
Nigohi CL 0.50 0.25 1PP:1S P&F 0.00 0.00 5.00 6.00 0.00 0.00 0.00 1.60 4.0 9 Shahjahanpur CL 0.50 0.25 1PP:1S P&F 5.00 3.60 5.00 6.00 0.00 0.00 0.00 4.0 0.00 <td< td=""><td>SHAHJAHANPUR</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	SHAHJAHANPUR																			
Average	16. Nigohi 17. Shahiaha	uou	ಕಕ	0.50	0.25	1PP:1S 1PP:1S	P&F P&F	0.00	3.60	5.00	6.00				0.0		0.00	+ +		
Muhamdi SL 0.75 0.37 1PP:1S P&F 0.00 0.00 2.00 2.80 1.00 1.20 0.00 0.00 0.00 4.0 0 Muhamdi CL 0.50 0.37 1PP:1S P&F 0.00 0.00 5.00 7.20 0.00 0.00 0.00 0.00 4.00 4.00 4.00 4.00 4.00 0.	Average	Ļ				٠		2.50	.80	5.00	5.90	1 1	11	11	0.00	1 1	3.80	0		1_1
Muhamdi SL 0.75 0.37 1PP:1S P&F 0.00 0.00 2.00 2.80 1.00 1.20 0.00 0.00 0.00 4 0 Gola CL 0.50 0.37 1PP:1S P&F 0.00 0.00 5.00 7.20 0.00 <td>LAXHIMPUR</td> <td></td> <td>,</td> <td></td> <td></td>	LAXHIMPUR																	,		
Average 5.00 4.53 5.67 5.80 0.33 0.40 0.00 0.00 0.00 0.67 0 0.00 0.00 0.00 0	18. Muhamdi 19. Gola 20. Lakhimpu	£	ದರದ	0.75 0.50 1.00	0.37 0.37 0.75	1PP:1S 1PP:1S 1PP:1S	P&F P&F P&F	0.00	0.00	2.00 5.00 10.00	2.80 7.20 7.40				0.00		888			
Contd.	Average							2.00	4.53	5.67	5.80	1 1	0.40		0.00	1 1	1 1	1 1		احا
																		Cont	9	

1 2 3 4 5 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	3				ıv	9	7	ω	6	01	=	12	13	14	15	16	17	18	61	50
gaon CL 0.25 0.22 3PP:1S P&F 5.00 apur CL 1.00 0.75 1PP:1S P&F 0.00 inisharanya SL 1.00 0.50 1PP:1S P&F 0.00	CL 0.25 0.22 3PP:15 P&F 5.00 CL 1.00 0.75 1PP:15 P&F 0.00 SL 1.00 0.50 1PP:15 P&F 0.00	0.22 3PP:15 P&F 5.00 0.75 1PP:15 P&F 0.00 0.50 1PP:15 P&F 0.00	3PP:15 P&F 5.00 1PP:15 P&F 0.00 1PP:15 P&F 0.00	P&F 5.00 P&F 0.00 P&F 0.00	5.00 0.00 0.00		900	0.00	10.00 2.00 10.00	8.40 2.80 8.60	0.00	0.00 7.83 0.00	0.00	0.00	0.00	0.00	+00	000	000	
Average 1.66 2.							2	2.27	7.33	09.9	3.33	2.60	0.00	0.00	0.00	0.00	0.33	0	0	
HARDOI 24. Hemganj SL 1.50 0.75 IPP:1S P&F 5.00 4. 25. Sandila SL 1.50 1.12 IPP:1S P&F 0.00 0.	1.50 0.75 1PP:1S P&F 5.00 1.50 1.12 1PP:1S P&F 0.00	0.75 1PP:1S P&F 5.00 1.12 1PP:1S P&F 0.00	1PP:1S P&F 5.00 1PP:1S P&F 0.00	P&F 5.00 P&F 0.00	5.00	88	4.0	4.20	1.00	1.40	0.00	0.00	1.00	0.60	0.00	0.00	+ 0	00	00	
Average <u>2.50 2.</u>							2	2.10	5.50	5.30	1.00	0.80	1.00	0.60	0.00	0.00	0.50	0	0	
LUCKNOW 26. Malihabad SL 2.00 1.50 1PP:1PM P&F 1.00 1.60 27. Lucknow L 2.50 1.87 1PP:1S P&F 0.00 0.00	2.00 1.50 1PP:1PM P&F 1.00 2.50 1.87 1PP:1S P&F 0.00	1.50 1PP:1PM P&F 1.00 1.87 1PP:1S P&F 0.00	1PP:1PM P&F 1.00 1PP:1S P&F 0.00	P&F 1.00 P&F 0.00	P&F 1.00 P&F 0.00		-0.0	88	3.00	2.80	0.00	0.00	1.00	1.20	0.00	0.0	+ +	00	00	
Average 0.50 0.80							0.0	<u>@</u>	1.30	1.40	0.00	0.00	0.50	09.0	0.00	0.00	00.	0	0	
BARABANKI 28. Barabanki SL 0.75 0.56 2PP:1PM F 20.03 17.80 29. Rammagar SL 1.50 1.12 1PP:1S P&F 25.00 22.40	0.75 0.56 2PP:1PM F 20.03 1.50 1.12 1PP:1S P&F 25.00	0.56 2PP:1PM F 20.03 1.12 1PP:1S P&F 25.00	2PP:1PM F 20.00 1PP:1S P&F 25.00	F 20.03 P&F 25.00	F 20.03 P&F 25.00		17.8	22	1.00	1.40 0.60	00.00	0.00	0.00	0.00	0.00	0.00	+ +	00	0+	
Average 22.50 20.10	20	20	20	20	20	20	20.10		1.00	1.00	0.00	0.00	00.0	0.00	0.00	0.00	1.00	0	0.50	
AICH Kaiserganj St 0.50 0.37 !PP:15 P&F 15.00 13	0.50 0.37 PP.15 P&F 15.00 13	0.50 0.37 PP.15 P&F 15.00 13	19P5:15 P&F 15.00 13	P&F 15.00 13	15.00 13	00 13	13.2	0.0	20.00	17.80	0.00	0.00	0.0	9.6	0.00	8.6	+ +	00	00	
31. Bahraich St. 1.50 1.12 19971S P&F 15.00 12.00 32. Payagpur St. 2.00 1.50 199:18 P 20.00 21.80	1.50 1.12 1PP:15 P&F 15.00 12 2.00 1.50 1PP:15 P 20.00 21	1.50 1.12 1PP:15 P&F 15.00 12 2.00 1.50 1PP:15 P 20.00 21	1PP:15 P&F 15.00 12	P&F 15.00 12 P 20.00 21	20.00 21	21 00 01	21.8	20	0.00	9.6	0.00	0.00	0.00	9.0	8.0	88.	+		°‡	
Average 15.67 15.87							15.8		6.67	5.93	0.67	0.47	0.00	0.00	0.00	0.00		0	0.67	
1A Bancain St. 1.00 0.50 1PP;2S P&F 0.30	1.00 0.50 1PP;2S P&F 0.30	1.00 0.50 1PP;2S P&F 0.30	1PP;2S P&F 0.00	P&F 0.30	0.00		0.0	0	2.00	2.40	0.00	00.00	0.00	0.00	0.00	0.00	+	0	+	
34. Gonda St. 1.50 1.12 1PP:1S P&F 10.00 8.60 35. Nawabganj St. 1.00 0.75 2PP:1S P&F 5.00 4.60	1.50 1.12 1PP:15 P&F 10.00 1.00 0.75 2PP:15 P&F 5.00	1.50 1.12 1PP:15 P&F 10.00 1.00 0.75 2PP:15 P&F 5.00	1PP:1S P&F 10.00 2PP:1S P&F 5.00	P&F 10.00 P&F 5.00	10.00 5.00		8.6 4.6	00	0.00	0.00	0.0	9.0	0.0	0.0	2.00 2.00	2.40 1.60	+ +	00	+ 0	
Average 5.00 4.	4	4	4	4	4	4	4	9	1.33	1.27	0.00	0.00	0.00	0.0	1.33	1.33	1.00	0	0.67	
																			Contd.	

1						,	-	α	0	5	=	12	13	14	15	16 17	7 18	19	20
	_	2	m	4	6	ь		s		2	:	!							
FAIZ	FAIZABAD																		, c
36.	Faizabad NDUAT Farm	S	0.75	0.75	Sole	P&F	5.00	3.20	10.00	9.60	0.00	0.00	2.00.2	2.40	0.00		+	+	une plant infected with phyllody.
37.	Faizabad	SI	0.75	0.56	1PP:15	P&F	0.00	0.00	25.00	22.80	0.00	0.00	0.00	0.00	0.00	00.0	+	+	
	Average						2.50	.60	17.50	16.20	0.00	0.00	1.00	1.20	0.00	0.00	00.	1.00	
BASTI																9			
88. 40.	Kolepur Basti Khaliabad	ននន	0.75 2.00 0.50	0.56 1.50 0.37	1PP:15 2PP:15 1PP:15	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20.00 0.00 40.00	18.80 0.00 37.20	5.00 50.00 5.00	3.80 46.20 3.40	0000	000	888	0.00	888	0.00	+++	+ ‡ +	
	Average						20.00	18.67	20.00	17.80	0.00	0.00	0.00	0.00	0.00	0.00	0 00.	1.33	lm l
60RA	GORAKPUR																		
41. 42.	41. Gorakpur 42. Jangalesikari	ಚ ಚ	1.00	0.75	2PP:1S 1PP:1S	P&F P&F	0.00	0.00	50.00 10.00	45.4 0 13.60	0.0	0.00	0.0	0.00	0.0	0.00	+ +	+ ‡	Observed wet leaf spot.
	Average						0.00	0.00	30.00	29.50	0.00	0.00	0.00	0.00	0.00	0.00	00.	0 1.5	1.1
DEORIA	8IA																		
43. 45.	Gauribazar Deoria Bhagalpur	정정정	1.50	1.12 0.93 1.50	1PP:1S 2PP:1S 2PP:1S	P & ዋ ተልዋ ተልዋ	0.00	0.00 0.00 4.20	60.00 50.00 20.00	57.20 46.80 18.80	0.00	0000	0.00	0.00	888	0.00	+++	000	Observed wet leaf spot.
46.	Pindi	SL	0.50	0.37	2PP:1S	L L	0.00	0.00	10.00	10.60	5.00	4.20	0.00	0.0	2.00	4.20	+	+	Observed Bact erial canker.
	Average						1.25	1.05	35.00	33.35	1.25	1.05	0.25	0.15	1.25	1.05	.00 0	0.75 0.	0.25
BAL	BALLIA																		
47. 48.	47. Thurthipar 48. Narapathpur	공공	1.50	1.50	Sole 1PP:2P	P.85 P.87	0.00	0.00	20.00	72.60 18.80	0.00	9.0	0.0	88.	0.00 0.00	0.00 8.20	+ +	+ +	
	Average						0.50	0.30	47.50	45.70	0.00	0.00	0.00	0.00	5.00	4.10	00.1 05.0 00.1	50	00
																			Contd.

	-	2	8	4	5	9	7	80	6	10	=	12	23	4	15	16	7.1	18	19	92
AZA	AZAMGARH																			
49.	49. Ghosi	ರ	1.50	0.25	IPP:1S 1BG:11M	P&F	0.00	0.00	75.00	75.60	00.00	0.00	0.00	00.00	2.00	1.60	+	0	+	Observed wet leaf
50. 51. 52.	. Mau . Azamgarh . Chirayyakot	ಸಸರ	1.00 1.50 0.50	0.75 1.12 0.37	2PP:1S 2PP:1S 1PP:1S	P&F P&F P&F	0.00 5.00 0.00	0.08 0.00 0.00	90.00 60.00 50.00	87.60 56.60 49.20	0.00	0.00	0.00	0.00	2.00	1.80	+ + +	+ + +	000	spot.
	Average						1.25	0.95	68.75	67.25	0.00	0.00	0.00	00.00	1.25	1.00	1.00	0.75	0.25	
Æ	GHAZIAPUR																			
53. 55.	. Dullanpur . Ghaziapur . Saidpur	ឧឧឧ	0.25 1.00 1.50	0.19 0.75 1.12	2PP:15 2PP:15 1PP:15	<u> </u>	0.00	0.00	10.00 20.00 30.00	7.40 18.80 27.00	0.00	0.00	5.00 5.00 0.00	3.10 3.60 0.00	0.00	00.00	++0	+ 0 +	0++	
	Average						0.00	0.00	20.00	17.73	0.00	0.00	3.33	2.23	0.30	0.00	0.67	19.0	0.67	
VAF	VARANASI																			
56. 57.		SI SI	1.50	0.75	Sole Sole	P&F P	20.00	17.20	10.00	3.60	00.00	0.00	2.00	1.40	00.00	0.00	+ +		+ +	
58. 59.	. Ratenpur . Fatenpur	ರಸ	1.50	1.12	1 <i>PP</i> :1 <i>PM</i> 1 <i>PP</i> :1 <i>S</i>	u_ u_	25.00	24.20 18.20	0.00	0.00	0.00	0.00	0.00	8.60	0.00	0.00	00		+ +	
	Average						28.75	26.70	4.00	3.85	2.50	2.05	3.00	2.50	0.25	0.10	0.50		8	
E	MIRZAPUR																			
60. 61.	. Parsoda . Pandari	ನ ನ	0.50	0.25	2PP:3S 1PP:1PM	P.SF	26.00	17.60	60.00	57.40 4.20	0.00	00.00	2.00	3.40	15.00 1	13,60	+0	00	+0	
	Average						10.00	8.80	32.50	30.80	0.00	00.00	3.50	2.40	12.50 1	7.30	0.50	0	0.50	

		,	~	4	r.	9	7	ω	6	2	=	12	13	14	15	16	17	18	61	20
5	didwint.	,	,	-																
62.	odourok 62. Rampur	75	1.00	0.50	₩dl:1PM	P&F	0.00	0.00	1.00	09.0	0.00	0.00	2.00	1.60	0.00	0.00	00.00	00.0	0.00	Black leaf spot at one loc- ation.
63. 64.		ತ ಸ	0.25	0.18	2PP:1S 1PP:1S	P P&F	0.00	0.00	5.00	3.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	sha I pur Average						0.00	0.00	3.67	2.87	0.00	0.00	9.00	7.93	19.9	0.00	0.33	0.00	0.00	
ALL! 65.	ALLAHABAD 65. Phulpur 66. Allahabad	3.3	1.00	0.75	MPI: API MPI: API	92 T	10.00	8.60	0.00	0.00	0.00	0.00	5.00	4.60	0.00	3.60	00.0	0.00	0.00	Die-
<u>;</u> ;		7	00 [0.50	188:15		2.00	1.40	5.00	4.20	0.00	00.0	10.00	7.80	2.00	1.80	+	0.00	0.00	one lo- cation.
5	Average	}					7.33	5.87	1.67	1.40	0.00	0.00	6.67	5.53	2.33	1.80	0.67	0.00	0.00	
PRA	PRATAPGARH																			
68. 69.	. Chandpur . Bella	당당	0.50	0.25	2PP:3PM 1PP:1S:1G:1MR	F P&F	90.00 10.00	86.20 8.60	5.00	3.40	2.00	1.60	10.00	3.20	0.00	0.00	0.00	0.00	+ ‡	
	Average						50.00	47.40	5.00	3.60	7.00	0.80	7.50	9.00	2.50	2.00 (0.00	0.00	1.50	
SUL	SULTANPUR																			
70. 71.	. Bhada . Sultanpur . Gauriganj	ೱೱೱ	0.75 1.00 1.50	0.37 0.75 1.20	1PP:1S 1PP:1S 1PP:1S	P&F P&F P&F	0.00 25.00 20.00	0.00 21.40 19.00	50.00	48.20 3.60 4.60	2.00 0.00 0.00	0.00	5.00 5.00 2.00	4.60 4.40 1.80	0.00 5.00 0.00	0.06.0	0.00	888	0.0	
	Average						15.00	13.47	20.00	18.80	0.67	0.47	4.00	3.60	1.67	1.53	0.33	0.00	0.67	
																			+	

	_	2	3	tar	S	9	7	ω	6	2	-	12	13	1	15	16 1	17	18 19	6	50
RAEBARELI	RELI																			
73. 74.	Jais Raebareli	강강	1.00	0.75	1PP:1S 2PP:3S	P&F P&F	25.00 90.00	23.80 86.20	2.00	0.30	0.00	0.00	2.00	1.20	0.00	0.00	++	0.00	0.00 + Obs	Observed wet leaf spot:
75.	Lalganj	ಸ	1.00	0.75	1PP:1S	P&F	30.00	22.80	0.00	00.00	0.00	0.00	4.00	3.40	0.00	00.00	+	00.0	+	į
	Áverage						48.33	44.27	0.67	0.47	6.67	5.47	2.00	1.53	0.00	0.00	0 00.	0.00	0.67	
UNNAO		;	;					6			6	ć							9	
76. 77.	Tabia Achalganj	공공	0.75	0.56	2PP:1S 1PP:1S	P.8F	0.00 80.00	0.00	0.00	20.00	0.00	300	20.0	0.00	30.0	38. 38.	+ +	0.00	3.+	
	Average						40.00	38.60	0.00	00.0	0.00	00.0	1.50	02.1	0.00	3.00	0 00.	0.00	0.50	
KANPUR	œ																			
78.	Kanpur	S	05.50	0.50	Sole	PSF	50.00	47.60	5.30	\$.60	3.30	0.00	0.00	0.00	20.03	18.20	0 +	0.00	00.0	
79. 80. 81.	Comban Farm Maharajpur Bhognipur Sikandra	272	0.25 0.75 0.50	0.18 0.56 0.37	1PP:1S 1PP:1S	9-9-9-	5.00 20.00 30.00	3.20 18.40 27.20	5.00 50.00 50.30	87.23 87.40	0.00	0.00 0.00 0.00	5.00 3.00 5.00	3.80 2.00 4.00	0.00	0.0000	0.00	0.00	3.00 + 0.00	
	Average						26.25	24.10	37.50	36.13	00.30	3.00	3.25 2	2.45	5.00	4.55 0	0.50 0	0.00.0	0.25	
FATEHPUR	₽UR																			
88.83 8.83	Salapur Kuraua Lalauii	នសស	1.30	0.50	2PP:3S 1PP:1S:1SH 2PP:2S:1Ca	1. 6. c.	22.33 0.00 0.30	9.53 0.00 0.00	5.00 20.00 0.00	4.60 18.60 0.00	6.30 6.80 25.00	0.00	9000	3.80 18 4.40 2.30	5.90	0.20 0.00 0.00 0	0.00	0.00	+ + +	
	Àverage						6.67	9	8.33	7.73	8.33	7.37	3.25	3.40	5.00	4.73	0.33 0	00.00	00	
BANDA																				
85.	Dohtara	Si	2.03	1.00	198:18	U.	() ()	0.00	5.00	3.60	25.00	22.60	3.00 2	2.40	8:5	0.00.0	0.00	0.00.0	0.00 Obse	Observed Bacterial
. 36.	Banda	ŝ	2.30	1.33	3pv: 3pv	ć.	0.00	00.0	0.00	9:30	10.36	e. 60	0.00	0.30	00.0	3.00	+	0.00.0	0.00	D
	Average						0.00	3.93	2.50	3.80	17.50	15.60	1,50	1.20	00.0	0.00	.50	8	0.00	
İ																			Contd.	

											:	2	2	12	15	92	11	18	19 20	
	_	2	m	4	ري د	9	7	ω	6	2	=	71	2	:	:					
HAMIRPUR	PuR						;	6	S			7.00	0.00	00.0		0.00			-	
87. 88.	Kabrai Kulpanar Kalbanda	ಕಕಕ	1.00	0.12	1PP:AS 1PP:1G 2PP:1IM:1S	g	30.05	28.08	30.05	80.5	25.00	16.80 23.60 18.20	888	80.0 80.0 80.0	0.00 0.00 0.00	9000	+ + +	0.00 0.00	000	
 80 .	Gohand	22	0.50	0.25	1PP:26	7-	00.01	00.7	5		1	75 21	00	00.0	00.0	0.00	00.1	0.25 0.25	ايدا	
	Average						10.00	9.05	3.75	3,33	06./	2								
JALAUN	N.					ć	ć	5	9	0.00		45.80	4.00	3.20	0.00	0.00	+ +	0.000.00		back
91. 92.	Dakur Kalpi	15 25	0.75	0.37	1PP:1S:1G 1PP:1S	- -	5.00	3.40	0.00	0.00	10.00	8.60	5.00	3.80	0.0	9.0	-			in one location.
							2.50	1.70	0.00	0.00	30.00	27.20	4.50	3.50	0.00	0.00	1.00	0.00 0.	0.50	
	Average																			
ETAWAH	ХH				;		9		50 00	47.40	15.00	12.80	0.00	0.00	0.0	0.00	0.00	0.00	00	
93.	Auraiya Bakewar	ىـ بـ	0.50	0.75	1PP:1S 1PP:1S	7.87 7.87 7.87	90.0	200	25.00	23.40	0.00	0.0	5.00	3.60	00.0	38.	+		0.00	
95.	Ravaiyapura		0.50	67.0					i	10	5	4.27	3.00	2.33	0.00	0.00	0.67	0.00	0.33	
	Average						13.33	12.40	25.67	70.47	3									
MAIN	MAINPURI							Ċ	r.			4.00	2.00	1.60	00'0	0.0	+ +	0.00	0.00	
96.	Ladwanpur Kurawali	22	0.75	0.37	1PP:1S 2PP:3PM	787 785	30.0	0.08	20.00	17.80	0.00	0.00	3.00	2.60	0.00	3 8	.	00 0 00 0		
							0.00	0.0	12.50	01.10	2.50	2.00	2.50	2.10	9	3.	3.			
ETAH	ar.													1.20	0.00	0.00	+ -	0.00	0.00	
98.	Malawan	ನ 7	1.00	0.75	1PP:1PM 2PP:3PM	789 789	9.0	0.00	75.08	7.60	0.00	0.00	2.00	1.80	0.00	9.0	+	8.0	3	
99.		7					c	00	62 50	01.09	00.0	0.00	2.00	1.50	0.00	0.00	1.90	0.00	0.00	
	Average						3		1	1										
																		Contd.		

			,	-		4		~	0	٩	=	15	13	14	15	16	12	18	19	20
	-	~	~	-	P	>	-	,												
AGRA 100. 101.	Sikandar Sikandra	2 J	9.5	0.75	1PP:2PM 1PP:2PM	7.84 7.84	0.00	0.00	0.00	0.00	0.00	0.00	3.00	19.00	0.00	0.00	0.00	0.00	0.00	
	Average						20.00	19.30	2.50	2.30	0.00	0.00	11.50	10.60	0.00	0.00	0.50	0.00	0.0	
MATHURA 102. 103.	A Farah Raya	ಕಕ	2.00 0.75	1.50	1PP:1PM P Border crop P&F to wheat	P 9 P&F	25.00	23.20	15.00	14.20	40.00	37.20	0.00	0.00	0.00	00:00	+ +	0.00	0.00	
	Average				.		12.50	11.60	17.50	15.70	20.00	18.60	1.00	0.60	0.00	0.00	1.00	0.00	0.00	
AL IGARH	H) inequality	<i>-</i>	3 00			P.8F			30.00	27.60	5.80	3.80	5.00	4.20	0.00	0.00	+ +	0.00	+ +	
105	Bhayananyang SL Aligarh SL	검장	0.50	0.25	1PP:3PM	P&F				93.20	96.00	8.	00.0	07.4	00.0		Į			
	Average								62.50	60.40	7.50	6.30	2.00	4.20	0.00	8	3	20.0	9	
BULAN	BULANDSHAHAR								;		•	6	6	,	0	5	0.00	00.0	0.00	
106.	Khurja	ರ	0.50	0.37	1PP:2PM				15.00	13.80	20.50	0.00	7.00	00.	3.					
	Average								15.00	13.80	0.00	0.00	2.00	1.60	0.00	0.00	0.00	0.00	0.00	
																		ŭ	Contd.	

black leaf spot (?) at one locati-on. Observed (Remarks 8 0.00 0.0 Contd. 0.00 0.00 0.0 0.00 0.0 0.00 0.0 9.0 8.9 0.0 0.50 0.67 7 Phyl-los-ticta 0.00 0.00 0.00 0.00 0.0 0.00 0.0 0.00 9.00 0.00 0.00 8.0 0.0 0.00 9 Cercos-pora 0.50 9. 0.67 0.50 9. 1.00 0.00 9. 0.33 0.50 8. 9. 0.67 8. 5 % Blight Over- Within all 500 6.30 0.0 8.0 0.00 4.20 4.13 1.40 3.80 0.00 0.0 8. 9.0 0.0 9.0 7 7,50 9.0 8.0 0.00 5.03 5.00 2.50 5.0 0.0 0.0 0.0 0.0 8.9 8.0 33 mithin 500 6.40 3.47 8.8 0.13 0.00 0.00 0.0 0.80 0.0 0.0 8 0.60 8.5 2 Over-0.33 5.8 5.00 2.67 0.50 0.50 0.00 0.00 0.0 0.0 0.00 8. 0.50 9.0 = stem canker Over- Within all 500 1.13 8. 3Mi crophomina 9.0 0.0 0.00 8.0 9.0 0.00 0.40 2.60 0.80 9.0 8. 0.47 9 9.0 0.0 0.0 0.00 0.00 1.30 0.00 0.00 0.33 3.33 8. 8. 9.0 0.67 σ Within 500 . 20.00 46.20 35.00 3.60 5.80 9.60 5.30 5.93 3.93 2.10 8.07 5.90 9. 8 ₹, ક જ Over-all 40.00 20.00 8.33 7.33 5.50 1.50 8. 6.67 50.00 3.30 2.50 3.50 5.00 5.67 ~ % Wilt Over- Within all 500 20.10 1.73 3.40 4.53 2.10 0.80 15.87 3.00 0.0 0.53 7.10 0.40 1.80 2.27 ဖ 3.00 7.50 0.50 1.57 2.50 2.50 5.00 99'! 2.50 0.50 22.50 16.67 0.0 0.67 ഹ obser-ved (ha) 0.74 0.50 1.49 1.47 1.87 3.37 .68 2.99 0.56 98.0 1.37 0.71 1.37 1.31 4 obser-0.95 2.25 2.25 4.50 2.25 4.00 1.50 3. 3.8 2.00 0.75 1.25 1.75 1.50 yed (ha) m loca-tions exa-mined N \sim Shahjahanpur Ghaziabad Lakhimpur Moradabad Barabanki Bahraich Bareilly Pilibhit District Vainital Sitapur Lucknow Hardoi Rampur Meerut

Districtwise Summary of data on PP disease incidence in Uttar Pradesh

Table-96.

	2	ო	4	ഹ	9	7	×	חכ	10	-	21	2	14	5	و	=	22
	3	3.50	2.37	5.00	4.40	1.33	1.27	00.0	0.00	0.00	0.00	1.33	1.33	1.00	0.00	0.67	
Faizabad	2	1.50	1.31	2.50	1.60	17.50	16.20	0.00	0.00	1.00	1.20	0.00	00.0	1.00	00.00	1.00	
	٣	3.25	2.43	20.00	18.67	20.00	17.80	0.00	0.00	0.00	00.0	0.00	00.0	1.00	00.0	1.33	
Gorakpur	2	3.00	2.25	0.00	0.00	30.00	29.50	0.00	0.00	00.00	0.00	0.00	0.00	1.00	00.00	1.50	Observed wet leaf spot (?) at one location.
Deoria	4	5.25	3.92	1.25	1.05	35.00	33.35	1.25	1.05	0.25	0.15	1.25	1.05	1.00	0.75	0.25	Observed wet leaf spot (?) and bacterial stem canker at 2 different locations.
Ballia	2	1.75	1.62	0.50	0.30	47.50	45.70	0.00	0.00	00.0	0.00	5.00	4.10	1.00	05.0	1.00	
Azamgarh	4	3.50	2.49	1.25	0.95	68.75	67.25	0.00	00.00	00.00	00.0	1.25	1.00	1.00	0.75	0.25	Observed wet leaf spot (?) at one location
Ghaziapur	ო	2.75	2.06	00.0	00.0	20.00	17.73	0.00	0.00	3.33	2.23	0.00	0.00	0.67	0.67	0.67	
Varanasi	4	5.75	4.87	28.75	26.70	4.00	3.85	2.50	2.05	3,00	2,50	0.25	0.10	0.50	0.00	1.00	
Mirzapur	2	2.50	1.25	10.00	8.80	32.50	30.80	0.00	0.00	3.50	2.40	12.50	11.30	0.50	0.00	0.50	
Jaumpur	ო	2.75	1.80	0.00	0.00	3.67	2.87	0.00	0.00	9.00	7.93	29.9	90.9	0.33	0.00	0.00	Observed black leaf spot (?) at one location

122

-	2	m	4	5	9	7	8	6	10	=	12	13	14	15	91	=	18
Allahabad	ო	3.50	2.00	7.33	5.87	1.67	1.40	0.00	0.00	6.67	5.53	2.33	1.80	0.67	0.00	0.00	Observed Die- back at one location.
Pratapgarh	2	1.50	1.00	50.00	47.40	5.00	3.60	1.00	08.0	7.50	9.00	2.50	2.00	0.00	0.00	1.50	
Sultanpur	က	3.25	2.32	15.00	13.47	20.00	18.80	0.67	0.47	4.00	3.60	1.67	1.53	0.33	0.00	0.67	
Raibareli	m	2.50	1.75	48.33	44.27	0.67	0.47	6.67	5.47	2.00	1.53	0.00	0.00	1.00	0.00	29.0	Observed wet leaf spot (?) at one loca- tion.
Unnao	2	1.50	1.12	40.00	38.60	00.0	00.00	00.00	0.00	1.50	1.20	0.00	0.00	1.00	0.00	0.50	
Kanpur	4	2.00	1.61	26.25	24.10	37.50	36.10	00.00	00.0	3.25	2.45	5.00	4.55	0.50	0.00	0.25	
Fatehpur	က	3.25	1.62	29.9	6.40	8.33	7.73	8.33	7.87	3.25	3.40	5.00	4.73	0.33	0.00	1.00	
Banda	2	4.00	2.00	0.00	00.00	2.50	1.80	17.80	15.60	1.50	1.20	0.00	0.00	0.5c	0.00	3.30	Observed bacterial stem canker at one location.
Hamirpur	4	4.30	2.62	10.00	3.75	3.75	3.35	17.50	15.65	00.00	0.00	0.00	00.0	1.30	0.25	0.25	
Jalaun	2	1.75	1.12	2.50	1.70	0.00	0.00	30.00	27.20	4.50	3.50	0.00	0.00	1.00	00	0.50	Observed Die- back at one location.
Etawah	m	2.00	1.25	13.33	12.40	25.67	24.07	5.00	4.27	3.00	2.33	00.0	00.00	0.67	00.0	0.33	
Mainpuri	2	1.75	0.87	0.00	0.00	12.50	11.10	2.50	2.00	2.50	2.10	0.30	00.00	1.00	0.00	0.00	
Etah	61	1.50	1.00	0.00	0.00	62.50	60.10	0.00	0.00	2.00	1.50	0.00	0.00	1.8	0.00	0.0	

	2	m	4	5	9	7	∞	6	2	=	12	13	14	15	91	11	18
Agra	2	2.00	1.25	20.00	19.30	2.50	2.30	0.00	0.00	11.50	10.60	0.00	0.00	0.50	0.00	0.00	
Mathura	2	2.75	1.58	12.50	11.60	17.50	15.70	20.00	18.60	1.00	09.0	0.00	0.00	1.00	0.00	0.00	
Aligarh	7	3.50	1.75	0.00	0.00	62.50	60.40	7.50	6.30	2.00	4.20	0.00	0.00	1.00	0.00	1.00	
Bulandshahar	-	0.50	0.37	0.00	0.00	15.00	13.80	0.00	0.00	2.00	1.60	0.00	0.00	0.00	0.00	0.00	
Jhansi	-	0.25	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	
Lalitpur	-	2.00	0.20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00	
Average				8.83	8.19	16.32	15.41	2.88	2.56	2.13	1.89	1.59	1.35	0.74	0.03	0.36	
	e -	PP - Pigeonpea	1				Range:	<u>;</u>									
	æ ₹	SM - Sterility mosaic YMV - Yellow Mosaic Virus	y mosaic Mosaic Vi	irus			Wilt SM	• ;	0-93% 0-93%	Macropl YMV Phytopl	Macrophomina stem canker - YMy - Phytophthora blight -	em canke ight	r - 0-46% - 0-22% - 0-18%	\$3 \$4 \$8			

7. Pilibhit

Two locations were observed and the incidence of wilt, SM and PB was very low.

8. Shahajahanpur

Pigeonpea was mainly cultivated in clayey loam soils and was intercropped with sorghum. The crop was in flowering and podding stage. The incidence of wilt, SM, PB and Cercospora leaf spot was low.

9. Lakhimpur

The crop was cultivated either in clayey or sandy loam soils and was in flowering and podding stages. The average incidence of wilt and SM was 4.5% and 5.8%, respectively. The incidence of other diseases was very low.

10. Sitapur

The crop was grown in clayey and sandy loam soils intercropped with sorghum. The average incidence of SM was 6.6%.

11. Hardoi

Sampling involved two locations and the crop was cultivated mainly in sandy loam soils along with sorghum. It was in flowering and podding stage. The average SM incidence was 5.3%. Incidence of other diseases was low.

12. <u>Lucknow</u>

Pigeonpea crop was cultivated in loamy and sandy loam soils and was in flowering and podding stage. Incidence of diseases was very low.

13. Barabanki

Most of the crop was cultivated in sandy loam soils. Incidence of wilt averaged 20.1%. Incidence of other diseases was low.

14. Bahraich

Generally pigeonpea was observed in sandy loam soils, intercropped with sorghum. The average wilt incidence was 15.8%.

15. Gonda

The crop was in podding and flowering stage. The average wilt incidence was 4.4%. Very low incidence of SM and PB was observed.

16. Faizabad

The survey was made in only a part of this district. Crop was grown in sandy loam and was in podding and flowering stage. The average incidence of SM was 16.2%. Incidence of other diseases was low. Visited pigeonpea experimental plots at N.D. University of Agriculture and Technology, Faizabad.

17. Basti

The crop was grown in sandy loam and intercropped with sorghum. The average incidence of wilt and SM was 18.6% and 17.8%, respectively.

18. Gorakhpur

The tour was made in only a part of this district. The crop was intercropped with sorghum and was in podding and flowering stage. The average SM incidence was 29.5%.

19. Deoria

Most of the crop was cultivated in sandy loam along with sorghum. The incidence of SM alone was 33.3%. Low incidence of other diseases was recorded.

20. Ballia

Pigeonpea crop was cultivated in sandy loam soils and was in podding and flowering stage. The average incidence of SM was 45.7%.

21. Azamgarh

The crop was generally intercropped with sorghum and was in podding and flowering stage. The average incidence of SM was 67.2%. The incidence of other diseases was low.

22. Ghazipur

In this district, pigeonpea was in podding and flowering stage and was intercropped with sorghum. The average incidence of SM was17.7%.

23. Varanasi

The crop was cultivated either in sandy loam or in clayey loam soil. The average wilt incidence was 26.7%. The incidence of other diseases was low. Visited Banaras Hindu University pigeonpea experimental plots including National Uniform Wilt Trial where ICRISAT lines were also tested for wilt resistance.

24. Mirzapur

The crop was cultivated in sandy loam soils. The average incidence of wilt, SM and PB was 8.8%, 30.8% and 11.3%, respectively.

25. <u>Jaunpur</u>

The average incidence of YM and PB was 7.9% and 6.0%, respectively. The highest incidence of YM was observed at Mungrabudshalpur (22.2%). Incidence of SM was low (2.8%).

26. Allahabad

Pigeonpea was cultivated in sandy loam soils either with sorghum or pearl millet. The average incidence of wilt and YM was 5.8% and 5.5%, respectively. The incidence of other disease was low.

27. Pratapgarh

The average wilt incidence was 47.4%. The highest incidence of wilt was observed at Chandpur (86.2%). Sterility mosaic, MSC, YM, PB and grey mildew were observed. However, their average incidence was low.

28. Sultanpur

The crop was grown in sandy loam soils along with sorghum and was in flowering and podding stage. The average incidence of wilt and SN was 13.4% and 18.8%, respectively. The incidence of other diseases was low.

29. Raebarelli

The crop was cultivated in sandy loam soils and was in flowering and podding stage. It was intercropped with sorghum. The average wilt incidence was 44.2%. Presence of SM, MSC, YM, PB, Cercospora leaf spot and grey mildew were also recorded.

30. Unnao

Stopped at two locations for observing the disease incidence. The average wilt incidence was 38.6%. At one location 77.2% wilt was noticed. Incidence of other diseases was low.

31. <u>Kanpur</u>

The crop was in flowering and podding stages. Generally it was intercropped with sorghum. The average incidence of wilt and SM was 24.1% and 36.1%, respectively. Pigeonpea experimental plots at C.S.Azad University of Agriculture and Technology farm, Kanpur were also visited.

32. Fatehpur

Pigeonpea was cultivated in sandy loam soils and was in flowering or podding stage. Incidence of diseases was low.

33. Banda

The pigeonpea crop was generally poor in this district. It was cultivated in sandy loam soils either with sorghum or pearl millet and was in podding stage. Macrophomina stem canker was the major problem.

34. Hamirpur

The crop cultivated mainly in clayey loam soils and was in flowering or podding stage. Here also the average incidence of MSC was high (15.6%). The average incidence of wilt was 9.0%. The incidence of other diseases was low.

35. Jalaun

In this district pigeonpea crop growth was poor. It was cultivated in sandy loam and was in podding stage. The average incidence of MSC was 27.2%. The highest incidence of MSC was observed at Dakur (45.8%).

36. Etawah

The crop was grown in loamy soils and was in flowering and podding stage. The average incidence of wilt and SM was 12.4% and 24.0%, respectively. The incidence of other diseases was low.

37. Mainpuri

The crop was in flowering and podding stage. The average SM incidence was 11.1%. Macrophomina stem canker, YM and Cercospora leaf spot were also recorded.

38. Etah

Pigeonpea crop was cultivated in sandy loam soils along with pearl millet and was in flowering and podding stage. The average SM incidence was 60.1%. The incidence of YM and Cercospora leaf spot was low.

39. <u>Agra</u>

The crop was intercropped with pearl millet and was in flowering and podding stage. The average wilt and YM incidence was 19.3% and 10.6%, respectively.

40. Mathura

The crop was cultivated in clayey loam soils. The average incidence of wilt, SM and MSC was 11.6%, 15.7% and 18.6%, respectively. The incidence of other diseases was low.

41. Aligarh

Pigeonpea was grown in sandy loamy soils along with pearl millet and was in flowering and podding stage. The average SM incidence was 60.4%. The highest incidence of SM was recorded at Aligarh (93.2%). The incidence of other diseases was low.

42. Bulandshahar

The area under pigeonpea crop was very low. The crop was cultivated in clayey loam along with pearl millet and was in flowering and podding stage. The average SM incidence was 13.8%.

43. Jhansi

Travel limited to only a part of this district. The crop was grown in clayey soil and was in flowering and podding stage. Only Cercospora leaf spot could be observed.

44. Lalitpur

The crop was cultivated in clayey soil along with sorghum and was in flowering and podding stage. Here also, only Cercospora leaf spot was noticed.

<u>Isolations</u>

Wilt disease was observed at 56 locations out of 108 surveyed. Fusarium udum was isolated on PDA medium from all the samples collected. Macrophomina stem canker samples yielded Rhizoctonia bataticola.

Conclusions

Roving surveys conducted in Uttar Pradesh revealed sterility mosaic, wilt, Macrophomina stem canker, yellow mosaic and Phytophthora blight as the important disease problems.

The incidence of wilt ranged from 0.0 to 86.2% with an overall average of 8.2%. Wilt was noticed in 33 out of 44 districts surveyed. Maximum incidence of wilt was in Pratapgarh district; i.e., an average of 47.4%. The wilt was 20.0% and more in Barabanki, Varanasi, Pratapgarh, Raebareli, Unnao, and Kanpur districts.

Sterility mosaic was observed in 40 out of 44 districts surveyed. The incidence of SM varied from 0.0 to 93.2% with an overall average of 15.4%. The highest overall incidence of SM (67.2%) was observed in Azamgarh district. Sterility mosaic incidence was 20% and more in Ghaziabad, Meerut, Nainital, Gorakhpur, Deoria, Ballia, Azamgarh, Mirzapur, Kanpur, Etawah, Etah and Aligarh districts.

The next important problem was Macrophomina stem canker (MSC). It was observed in 18 out of 44 districts surveyed. The incidence ranged from 0.0 to 45.8% with an overall average of 2.5%. Maximum incidence of MSC was noticed in Jalaun district (27.2%).

The Yellow mosaic (YM) was recorded in 30 out of 44 districts surveyed. The incidence ranged from 0.0 to 22.2% with an overall average of 1.8%. The highest overall incidence of YM was in Agra district (10.6%).

The Phytophthora blight was observed in 17 out of 44 districts surveyed. The Phytophthora blight incidence varied from 0.0 to 18.2% with an overall average of 1.3%. The highest overall incidence of blight was in Mirzapur district (11.3%).

Low incidence of Cercospora leaf spot, Phyllosticta leaf spot, and bacterial canker was observed.

This survey indicated that SM and wilt are the major problems of pigeonpea in Uttar Pradesh. Macrophomina stem canker, YM and Phytophthora blight are potentially important problems.

B. Phytophthora blight in Delhi and Kanpur

This survey trip was undertaken by Dr. J. Kannaiyan.

The objective of the survey was to study the relative incidence of the Phytophthora blight in Delhi and Kanpur and to obtain isolates of *Phytophthora* from those areas. The incidence was moderate in Delhi and high at Deeg. The trip report is in APPENDIX XLVI.

IV. YELLOW MOSAIC

A. Introduction

Yellow mosaic in pigeonpea is caused by Mungbean yellow mosaic transmitted by <code>Bemisia tabaci</code>. During the normal season (kharif), its incidence in pigeonpea is very low. However in the rabi pigeonpea experimental plots at ICRISAT, its incidence was more conspicuous. The reason for comparatively higher incidence in rabi plantings than the kharif plantings could be that in kharif the vector has several other crop and weed hosts that are more preferred by it than the pigeonpea. In rabi, the vector has not

much choice and is forced to feed on pigeonpea and consequently more disease. At present cultivation of pigeonpea in rabi is very much limited. But it may become popular if the experimental results prove encouraging. In that case yellow mosaic is likely to become a problem.

B. Incidence at ICRISAT Center

Before taking up any resistance screening work, it is necessary to find out the extent of its incidence and effect on yield. This year the incidence of the disease in different experimental plots at ICRISAT was estimated. The results are presented in Table 97.

Table 97. Occurrence of yellow mosaic in different experimental plots of rabi pigeonpea at ICRISAT during 1978-79

Field	Date of planting	Total plants	Infected plants	Percent infection
Campus-C B-8 BA-25 Manmool Castle field	4.1.1979 25.12.1978 October 1978 14.12.1978	1426 4228 1025 783	21 60 3 46	1.47 0.01 0.29 5.87

The data indicate that the incidence was not high in any of the fields surveyed even though visually the incidence appeared high.

C. Incidence in monthly plantings

The disease incidence in BDN-1 planted at monthly intervals from July 1978 through January 1979 was also estimated. The results are presented in Table 98.

Table 98. Incidence of yellow mosaic in monthly plantings of pigeonpea (BDN-1)

Date of planting	Total plants	Infected plants	Percent infection
19.7.1978	580	0	0.00
18.8.1978	173	2	0.15
18.9.1978	631	5	0.79
18.10.1978	456	12	2.63
18.11.1978	679	5	0.73
18.12.1978	929	8	0.86
18.1.1979	1160	0	0.00

Incidence was higher in October planted pigeonpea. It may be related to the vector behaviour, and conditions which need to be investigated.

V. POWDERY MILDEW AND STERILITY MOSAIC

A. Introduction

During this season severe infestation of powdery mildew was seen in sterility mosaic screening nursery. Closer observations revealed sterility mosaic susceptible plants were more severely infested with powdery mildew (Oidiopsis taurica) than resistant ones. Experiments were carried out to find interaction between the two.

B. Materials and methods

Field observations were taken on 7-month old plants in sterility mosaic screening nursery planted in Vertisol during the last week of June 1978.

Powdery mildew severity was compared on ten germplasm selections for each of resistant, mild mosaic and susceptible reaction types. Mildew severity on healthy and infected branches in the same plant was scored in three germplasm selections. One germplasm line ICP-2376 which shows ring spot reaction was also scored. Powdery mildew severity was rated on a 4-point scale; 1-No visible symptoms; 2-Symptoms on the lower surface of the older leaves; 3-Symptoms common on upper and lower surfaces of older and younger leaves; 4-Symptoms on older and younger leaves, stems, flowers, and pods. Curling and defoliation of leaves was common. For each genotype, rating on five randomly selected plants and overall rating was recorded.

Conidial production was compared on four genotypes of each with resistant, mild mosaic, ring spot and susceptible reactions. Conidial production on healthy and infected branches of one genotype was also studied. For conidial count, one gram of fresh leaf material from each reaction type was washed in 100 ml of sterile distilled water by keeping on shaker for one hour. Counts were taken using haemocytometer and the number of conidia per gram of tissue was calculated. The experiment was repeated twice.

Size of 100 conidia was measured for each reaction type. Germination was determined using cavity slides placed in humidity chambers. Counts were taken 12 hr after incubation at room temperature (23°C). For conidial germination test on detached leaves, one cm² leaf discs were cut from each of sterility mosaic reaction type. A drop of conidial suspension was placed on leaf disc and incubated for overnight. The experiment was repeated thrice. Spore suspension placed on plain glass surface served as control.

Leaf extracts were prepared by grinding 1 g of leaf material in 10 ml of sterile distilled water (SDW) using a pestle and mortar. The extract was centrifuged at 3000 RPM for five minutes and the supernatent was used. To a drop of extract, one drop of conidial suspension was added in cavity slides and incubated for 12 hr before taking the germination counts. The experiment was repeated thrice. Leaf washes were prepared by washing 1 g of fresh leaves in 10 ml of SDW by keeping on shaker for 1 hr. To each drop of leaf washing a drop of conidial suspension was added in cavity slides and incubated for 12 hr.

In artificial inoculations, BDN-1, a cultivar susceptible to sterility mosaic and to powdery mildew, was used. Seedlings were raised in 15 cm dia plastic pots filled with natural Alfisol. In each pot 5-8 seedlings were retained. When the seedlings were 14-day old, half of them were inoculated with sterility mosaic following leaf stapling procedure and the other half were left uninoculated. Fifteen days after sterility mosaic inoculation, one half of inoculated and the other half of uninoculated were dusted with powdery mildew conidia. Disease severity and conidial production were estimated.

C. RESULTS

Severe incidence of powdery mildew caused by *Oidiopsis taurica* was noticed on pigeonpea when the crop was in flowering and podding stage. Dry and warm weather prevailed during the months of January and February 1979 favoured mildew development. The severity of mildew infestation on different reaction types rated on 4-point scale is presented in Table 99. The rating in all the ten resistant, one ring spot and ten mild mosaic lines was 2. On the other hand the rating in the susceptible lines ranged from 3 to 4. In genotypes where plants showed partial sterility healthy and diseased branches showed a rating of 2 and 4, respectively.

To substantiate the visual scoring conidial production in genotypes with different sterility mosaic reaction types was calculated and the results are presented in Table 100. Conidial production in different reaction types varied. Highest production of conidia was found in susceptible genotype followed by partially sterile branch. The differences between these two and others were statistically significant. Conidial production in resistant, ring spot, mild mosaic and partial sterility healthy types was low and the differences among them were not significant.

The size of the conidia on different reaction types was measured. The results are presented in Table 101. It is clear that there are no differences in the size.

Severity of powdery mildew on pigeonpea genotypes different sterility mosaic reaction types.

Resistant " " " " " " " "	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
11 11 11 11 11 11	2 2 2 2 2 2 2
H H H H	2 2 2 2 2 2
11 11 11 11	2 2 2 2 2
H H H	2 2 2 2
H H H	2 2 2
H H	2 2
ti .	2
	a a
	۷
Ring spot	2
	2
	2
	2
	3
	2
	2
	2
	2
	2
	7
**	4
	4
	4
	4
	4
	4
	4
	3
	•
	2
Diseased	4
Healthy	2
	4
	2 4 2
Diseased	4
	Mild mosaic "" "" "" Susceptible "" "" "" "" Partial sterility Healthy Diseased Healthy Diseased Healthy

 $[\]underline{a}$ / Mean of five replications.

Table 100. Powdery mildew conidial production in different sterility mosaic reaction types

Reaction type	Mea nª/	
Ring spot Susceptible Resistant Mild mosaic Partial sterility - Healthy - Diseased	2826.0 25834.5* 1668.5 3724.0 1223.5 17263.0	

Powdery mildew conidial size in pigeonpea genotypes different Table 101. sterility mosaic reaction types

Reaction type	Conidial size <mark>a</mark> /(μ)			
reaction type	Length	Breadth		
Susceptible	57 (41-72)	18 (14-24)		
Resistant	55 (38-72)	18 (14-26)		
Ring spot	51 (41-65)	17 (12-24)		
Mild mosaic	54 (41-74)	18 (14-24)		
Partial healthy	57 (43-70)	18 (14-24)		
Partial diseased	56 (43-74)	18 (14-26)		

 $[\]frac{a}{100}$ Conidia measured for each group.

Germination of conidia from pigeonpea genotypes with different Table 102. sterility mosaic reaction types

Reaction type	% Conidial germination <u>a</u> /		
Susceptible	45.0		
Ring spot	32.0		
Mild mosaic	53.0		
Resistant	52.0		
Partial healthy	36.0		
Partial diseased	49.0		

 $[\]frac{a}{100}$ Conidia observed in each group.

 $[\]frac{a}{M}$ Mean of two replications. * Means were significant at P = 0.05.

Table 103. Germination of powdery mildew conidia on detached leaf discs of different sterility mosaic reaction types

Treatment	Mean ^a /	
BDN-1 (Healthy) BDN-1 (Diseased)	6.0 15.7*	
ICP-7194-2-1SQ (Resistant)	5.0	
Plain glass surface	6.3	

<u>a</u>/Mean of three replications.

Table 104. Effect of leaf washings from pigeonpea genotypes on conidial germination

Treatment .	% Average germinated <u>a</u> /		
BDN-1 (Healthy)			
BDN-1 (Diseased) ICP-7194-2-1SQ (Resistant)	23.0 7.0		

 $[\]frac{a}{100}$ conidia counted.

Germination of the conidia from different reaction types was also compared (Table 102). Conidia from susceptible, mild mosaic and partial diseased plants showed higher percent germination than conidia from resistant, ring spot and partial healthy plants.

To get information on the factors responsible for increased susceptibility in sterility mosaic infected plants, the effect of the leaf extracts from different reaction types on conidial germination was tried. The germination in leaf extracts of healthy (BDN-1), sterility mosaic diseased (BDN-1) and resistant (ICP-7194-2-1SQ) genotypes was 12.3, 18.0 and 2.0% respectively. Germination in distilled water was 5.0%. The differences were however not significant.

^{*}Means were significant at P = 0.05.

Germination of conidia on the detached leaf discs of different reaction types was compared. The results are presented in Table 103. Germination on the sterility mosaic diseased leaf discs was higher than the others and was statistically significant. No statistical differences in germination on healthy and resistant leaves and SDW were found.

The effect of leaf washings from the above reaction types on conidial germination was studied (Table 104). Germination in washings from sterility mosaic diseased leaves was more than in healthy and resistant leaves.

The interaction observed in the field was also tested in artificial inoculations in greenhouse. Sterility mosaic infected and healthy plants of BDN-1 were inoculated with powdery mildew conidia. Sterility mosaic infected and healthy plants without powdery mildew inoculation served as control. The average rating on sterility mosaic infected and healthy were 4 and 2, respectively.

D. Discussion

The severity of powdery mildew on lines with resistant, ring spot and mild mosaic reaction to sterility mosaic was consistently low when compared to the sterility mosaic susceptible lines. Even in the same plant, branches infected with sterility mosaic showed more severity than the healthy branches. These observations clearly indicate that infection by sterility mosaic causal agent increased susceptibility to powdery mildew pathogen. The visual reaction of the lines was in conformation with the results of fungus sporulation. Conidial morphology was not varied much but differences in viability were found.

Resistant, mild mosaic and ring spot types behaved similar to the healthy branches in partially infected susceptible plant indicating that the causal agent is possibly not directly involved in the phenomenon observed. It appears that the changes brought about by the causal agent in the physiology of infected plants are playing the role. The changes brought out in the infected plants appear to stimulate conidial germination by secreting some exudates as the conidial germination on the diseased leaf discs and in washings was found higher. The leaf extracts from different reaction types did not have significant differential effect on conidial germination pointing to the possibility of mainly the external factors in the infected plants playing the role in the phenomenon.

E. Powdery mildew in ACT materials

All the entries in the 4 ACT trials were susceptible. However, 2 rating was shown by HY-2, 1238, and T-7. All others showed 3 and 4 ratings.

VI. INTERACTION BETWEEN STERILITY MOSAIC AND SPIDER MITES

During summer (March-May) months severe infestation of spider mites was observed in the potted sterility mosaic infected plants (BDN-1) maintained in partial shade. A batch of resistant progenies were however found to show negligible amount of infestation. Studies in collaboration with pulse entomologists have been initiated on this aspect.

SPECIAL PROJECT: MULTIPLE DISEASE RESISTANCE IN PIGEONPEA

I. SUMMARY

- A procedure to screen pigeonpea for identifying resistance to the three major diseases; wilt, blight, and sterility mosaic, has been worked out.
- 2. Field screening has been initiated.

II. INTRODUCTION

At present all the three diseases; wilt, sterility mosaic and Phytophthora blight are important in few areas. But even if some of them are not serious at present they are likely to become serious when the more adapted local land races are replaced by improved genotypes. The local land races are highly heterogeneous and do not allow the disease build up. Also the present agronomic practices followed for pigeon-pea like intercropping and poor management do not favour disease epi-phytotics. But once high yielding varieties are available, the present agronomic practices are bound to change and there is every likely-hood of the present day non-important diseases becoming important in future.

At ICRISAT the disease resistance program is based on the above hypothesis. To start with the germplasm is screened against individual diseases. The lines found resistant to one disease are checked against other diseases to identify lines with multiple disease resistance. At present lines having resistance at least to two of the three diseases have been identified. There is hope of getting lines with resistance to all the three diseases. Experience so far with pigeonpea indicates that it is possible to develop lines with resistance to all the three diseases.

III. DEVELOPMENT OF SCREENING NURSERY

For testing the materials against all the 3 diseases a multiple disease screening nursery is being developed. A 1.3 ha red soil plot was selected for this purpose as it favours both wilt and Phytophthora blight. Since water stagnation is essential for blight development, a low-lying plot has been chosen. The plot is made wilt sick by repeated incorporation of pigeonpea wilted material and growing of high proportion of susceptible lines. Two Phytophthora inoculations are carried out on one and 2-month old seedlings by rubbing the inoculum on the stems. The infected plants are again incorporated in the plot at the end of the season. For sterility mosaic a susceptible cultivar is grown in advance and 'staple' inoculated to serve as infector rows. Since irrigations are known to help in the perpetuation of Phytophthora, from this season onwards the plot is frequently irrigated till the time of planting.

It is better to plant the infector rows well in advance of the onset of summer to provide enough time for the mites to build up sufficiently. The mite population needs build up to a high level, as the high temperatures during summer months are likely to reduce their population, which may result in late development of disease in the screening nursery.

The design in which the infector rows, susceptible checks and test materials are proposed to be planted is given in fig. 6. It is important to plant the infector rows across the wind direction in June-July months to enable proper spread of the disease. The 'infector rows' can be 'detopped' now and then to keep their growth under control and to provide fresh growth regularly to mites for better multiplication.

FIG.6.

LAYOUT OF THE DESIGN OF PLANTING INFECTOR ROWS,
SUSCEPTIBLE CHECKS AND TEST LINES IN A BLOCK
OF THE MULTIPLE DISEASE NURSERY

Test lines

Sterility mosaic infector row

xxxxxxxx Wilt susceptible check

+++++++ Sterility mosaic susceptible check

Phytophthora blight susceptible check

IV. PROPOSED SCREENING PROCEDURE

The test materials are planted in the last week of June. Immediately after germination the stand is recorded. It has been observed that the initial monsoon rains are generally heavy and cause water stagnation. It helps in development of sufficient Phytophthora blight in the infector rows and causes moderate seedling mortality in the test materials. Only the surviving seedlings are inoculated after one month. The final observations on Phytophthora blight and sterility mosaic are taken at the time of flowering and podding stage; i.e., before the onset of wilt. Wilt observations are taken at the time of maturity. Materials showing less than 20% wilt, sterility mosaic, and Phytophthora blight will be selected and selfed for further evaluation.

V. MATERIALS SCREENED DURING 1978-79

During 1978-79 season 866 F_4 and F_5 progenies from 4 crosses involving parents resistant to at least one disease were screened (Table-105). These progenies were selected from sterility mosaic nursery in 1977-78 and have resistance to it. 1258, BDN-1, and HY-3C were planted as susceptible checks to wilt, sterility mosaic, and Phytophthora blight, respectively. Because of some problem in the leveling of the field the sterility mosaic infector rows this year were planted in East-West direction. Since the wind direction during June-July months is also the same the spread of the disease was poor. But as the materials were already tested against sterility mosaic, it did not affect the screening. Incidence of both wilt and Phytophthora blight was very high. The incidence of wilt and Phytophthora blight in susceptible checks 1258 and HY-3C was 66.4 and 91.2%, respectively.

The detailed results of screening are presented in APPENDIX XLVII. Of all the 4 crosses tested only cross no. 74360 had parents with resistance to all the 3 diseases. As the materials were advanced as bulk up to F_4 without selfing, many progenies showed high disease incidence. But when compared to other crosses which have parents resistant to only one disease, progenies of the cross 74360 did well. The list of progenies selected for low disease incidence and agronomic characters are presented in Table-106. The work was done in close collaboration with the breeders.

In addition 367 (APPENDIX XLVIII) F_3 Phytophthora resistant progenies were screened in other plot against wilt and sterility mosaic. Since wilt incidence was very low only sterility mosaic observations were recorded. Progenies with no sterility mosaic and agronomically looking good were selected for further evaluation.

Table-105. Pigeonpea materials screened in pigeonpea multiple disease nursery during kharif 1978-79

Cross No.	Parents	Generation	No. of SPP
74360	7035 × 7065	F ₅	269
74236	6997 x No. 148	F ₅	109
74335	6997 x 7035	F ₅	332
75237	7035 x 7186	F ₄	156
Parent	Wilt	Sterility mosaic	Phytophthora blight
7035	Resistant	Resistant	Susceptible
7065	Susceptible	Susceptible	Resistant
6997	Susceptible	Resistant Susceptibl	
No.148	Susceptible	Susceptible Susceptible	
7186	Susceptible	Susceptible	Susceptible

Table-106. Summary of screening of single plant progenies of sterility mosaic (SM) resistant material for wilt, SM, and Phytophthora blight (PB) in multiple disease nursery

S.No	. Pedigree		No. of plants	% Blight	% SM	No. of plants	% Wilt	No. of plants selected
1.	74360-F ₄ B-S539	8NDT	57	10.5	0.0	51	37.3	4
2.	. - S68 ₽	7NDT	54	20.4	0.0	43	23.3	9 3
3.	-S74 Q	7NDT	65	56.9	0.0	31	51.6	3
4.	-S80 ₽	7NDT	47	23.4	0.0	39	48.7	2
5.	-S111 0	7NDT	35	40.0	0.0	22	4.6	4
6.	-\$1310	7NDT	50	40.0	0.0	32	18,8	7
7.	-S150 ₽	7NDT	39	25.6	0.0	33	33.3	3
8.	-S163 ₽	7NDT	42	19.1	0.0	35	5.7	8
9.	-\$1740	7NDT	51	29.4	0.0	37	8.1	7
10.	-S178 2	7NDT	43	37.2	0.0	32	12.5	9

S.No.	Pedigree	10.00	No. of plants	% Blight	% SM	No. of plants	% Wilt	No. of plants select- ed
11.	74360-F ₄ B-S195@	7NDT	48	35.4	0.0	32	0.0	4
12.	-S218 2	7NDT	55	23.6	0.0	42	9.5	8
13.	-S219 0	7NDT	39	33.3	0.0	27	0.0	5
14.	-S229 0	7NDT	53	41.5	0.0	35	42.9	7
15.	-S233 Q	7NDT	64	21.9	0.0	52	25.0	4
16.	-S2 35₽	7NDT	67	16.4	0.0	56	30.4	8
17.	-S251 Q	7NDT	49	16.3	0.0	42	30.9	7
18.	-S263 Q	7NDT	54	42.6	0.0	34	14.7	8
19.	74236-F4B-S688	7NDT	55	38.2	0.0	35	17.1	7
20.	-\$92₩	7NDT	39	38.5	0.0	25	4.0	7

APPENDIX-I

<u>Screening of F3 progenies (10 crosses) for wilt resistance</u>
<u>in Vertisol sick plot-A</u>

51 No .	Pedigree		No of plants	Percent wilt
1	2		3	4
١.	75216	-W1@	31	19.4
2	(ICP-7035x-6902)	-W2 Q	30	30 . 0
3		-W30	30	45.0
4		-W40	31	25.8
5.		-W5@	13	15.4
6		-W6 Q	7	28 6
6 . 7		-W7 Q	38	65.8
8		-W8 @	30	60.0
9.		-W9 Q	29	44.8
0.		-W10@	24	25 0
1.		-W110	11	45 5
2.		-W120	37	51.4
3		-W130	6	50.0
4		-W149	28	50.0
5		-W15₽	15	46.7
6.		-W168	40	22 5
7.		-W1 7 2	19	21 1
8		-W18 2	30	66.7
9		-W199	40	42 5
20		-W20 2	19	36 8
21.		-W21@	34	206
2		-W-220	ĭo	40.0
3		-W230	16	18.8
24		-W24®	25	44 0
25		-W25@	24	41.7
26		-W269	6	33 3
27 .		-W270	26	34.6
28		-W280	29	72 4
29		-W290	29	24 1
30		-W30₽	35	48.6
31		-W31 Q	41	146
32		-W320	21	47 6
33		-W330	45	37.8
34.		-W34 2	26	34 .6
35 .		-W35 Q	20	35.0
36		-W36 Q	36	33.3
37		-W370	39	28 .2

1	2		3	4	
38.	75216 (ICP-7035x-6902)	-W380	34	38.2	
39.	,	-W39 Q	44	59.1	
40.		-W40 Q	29	31.0	
41.		-W41Q	36	38.9	
42.		-W42 Q	12	25.0	
43.		-W430a	41	43.9	
44.		-W44@	5	0.0	
45.		-W45@	32	15.6	
46.		-W46 Q	36	13.9	
47.		-W47 Q	46	15.2	
48.		-W48 @	47	29.8	
49.		-W49 ₽	16	0.0	
50.		-W50 ₽	39	46.2	
51.		-W51 @	49	8.2	
52.		-W52 @	40	72.5	
53.		-W53Ø		germination	
54.		-W54Q	6	33.3	
55.		-W55 Q	38	5.3	
56.		-W56@	30	56.7	
57.		-W57Q	39	7.7	
58.		-W58 ₽	48	22.9	
59.	75004	-W59Q	45	35.6	
60.	75224	-W1Q	38	39.5	
61.	(ICP-7035x-6915)	1120	16	02.0	
62.		-W20	49	93.8	
63.		-W3Ω -W4Ω	49	57.1 31.8	
64.		-W40a -W50a	19	57.9	
65.		-W6₩	19	21.1	
66.		-W0M -W7M	28	42.9	
67.		-W80	9	66.7	
68.		-W90	15	13.3	
69.		-W100	23	13.0	
70.		-W11@	23	26.1	
71.		-W120	10	10.0	
72.		-W130	9	11.1	
73.		-W140	28	0.0	
74.		-W150	8	25.0	
75.		-W16Q	11	18.2	
76.		-W170	22	27.3	
77.		-W18Q	46	34.8	
78.		-W20₩	36	11.1	
79.		-W210	18	33.3	
80.		-W22@	20	15.0	

1	2		3	4
81	75224 (ICP-7035x-6915)	-W23 Q	34	26.5
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 110 110 111		-W249 -W259 -W269 -W279 -W289 -W309 -W319 -W329 -W339 -W359 -W359 -W369 -W370 -W389 -W409 -W419 -W429 -W429 -W449 -W459 -W559 -W	34 26 10 14 9 5 17 22 14 12 6 23 8 46 35 35 22 47 8 14 6 13 28 23 10 1 7 9 9 9 12 23	26.5 50.0 40.0 42.9 0.0 35.3 50.0 16.7 16.7 43.5 50.0 49.9 34.3 48.6 27.3 27.0 37.5 57.1 33.3 46.2 35.7 52.2 10.0 0.0 57.1 44.4 55.6 33.3 30.4
112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 122. 123. 124.		- W2 W - W3 W - W4 W - W5 W - W6 W - W7 W - W8 W - W9 W - W1 O W - W1 1 W - W1 2 W - W1 4 W	8 13 6 30 14 7 27 22 34 36 33 10 3	25.0 53.9 16.7 10.0 14.3 14.3 18.5 27.3 17.7 16.7 24.2 10.0 0.0

1	2		3	4	
125.	75236 (ICP-7035x-7183)	-W15Q	10	80.0	
126.	•	-W16 ₽	13	46.2	
127.		-W17 ₽	18	27.8	
128.		-W18 Q	6	0.0	
129.	75239 (ICP-7035x-7189)	-W1 Q	3	33.3	
130.		-W20	8	0.0	
131.		-W3 Q	45	2.2	
132.		-W4 ₽	14	7.1	
133.		-W5Q	35	8.6	
134.		-W6 9	12	16.7	
135.		-W7 Q	7	0.0	
136.		-W8 Q	21	4.8	
137.		-W9 Q	18	12.1	
138.		-W1OΩ	15	0.0	
139.		-W11@	19	5.3	
140.		-W12 Q	25	20.0	
141.		-W13 ₽	21	23.8	
142.		-W14 ₽	16	12.5	
143.		-W15 ₽	13	0.0	
144.		-W16 ₽	12	23.8	
145.		-W17 ®	18	16.7	
146.		-W18 @	10	0.0	
147.	75456 (ICP-3783x-6909)	-W1 @	33	12.1	
148.	•	-W2 ®	23	43.5	
149.		-W3 	44	25.0	
150.		-W4₽	30	40.0	
151.		-W5 ₽	26	33.3	
152.		-W6 2	33	33.3	
153.		-W7Q	23	65.2	
154.		-W8 @	23	30.3	
155.		-W9 Q	10	30.0	
156.		-W1 O Q	34	52.9	
157.		-W11@	25	36.0	
158.		-W1 20	13	46.2	
159.		-W130	36	41.7	
160.		-W149	42	14.3	
161.		-W15@	22	31 .8	
162.		-W160	44	16.3	
163.		-W17 @	25	8.0	
164.		-W18 ₽	32	65.6	
165.		-W1 9Q	12	83.3	

1	2		3	4
166	75456 (ICP-3783x-6909)	-W20 Q	35	40 0
167	(10. 0.00 0000)	-W210	36	278
168.		-W220	40	35.0
169		-W230	12	16 7
170		-W249	14	71.4
171.		-W25 0	22	36 4
172。		-W26 @	33	333
173		-W270	18	0.0
1 74		-W28 0	20	45 0
175		-W290	29	31 0
176.		-W30 ⊗	20	600
177		-W310	14	42 9
1.78.		-W32 @	36	33.3
179.		-W330	21	80 9
180.		-W34 ₽	38	23.7
181.		-W35@	15	46 . 7
182.		-W36@	41	48 . 8
183		-W370	31	32 3
184		-W380	33	48 5
185.		-W390	9	66 7
186.		-W40@	14	57 1
187		-W410	39	43 6
188		-W420	21	42 9
189. 190		-W430	30 21	40 0 90 5
190		-W44@	6	33 3
192.		-W45@ -W46@	6	50 · 0
192		-W4080 -W4780	18	94 4
194	75463	-W10	33	48.5
134	(ICP-3783x-6929)	- ning	33	40.5
195	(101 -5705X-0525)	-W20	10	60 0
196		-W30	9	100 0
197		-W40	24	70 . 8
198		- W50	22	54 6
199		-W60	23	39 1
200		-W7Q	34	70.6
201		-W8 9	40	42 5
202		-W9 Q	29	34 5
203		-W10 0	14	57 1
204		-W11@	7	0.0
205.	•	-W120	18	55 . 6
206		-W13Q	9	55.6
207		-W14@	6	66 . 7
208 .		-W15Q	10	70 .0

1	2		3	4	
209.	75463 (ICP-3783x-6929)	-W16@	9	44.4	
210. 211.	75470	-W1702 -W1802 -W102	13 15 17	76.9 100.0	
212.	(ICP-3783x-7183)			70.6	
213. 214. 215.		-W292 -W392 -W492	27 40 32	40.7 82.5 53.1	
216. 217. 218.		-W5Ω -W6Ω -W7Ω	48 14 45	39.6 92.9 53.3	
219. 220.		-W8 2 -W9 2	44 43	88.6 67.4	
221. 222. 223.		-W100 -W110 -W120	34 36 8	50.0 80.7 100.7	
224. 225. 226.		-W130 -W140 -W150	20 19 25	41.2 94.7 44.0	
227. 228.		-W16Ω -W17Ω	31 16	29.0 75.0	
229. 230. 231.		-W18Q -W19Q -W20Q	29 14 17	79.3 50.0 47.1	
232. 233. 234.		-W210 -W220 -W230	6 34 20	100.0 91.2 45.0	
235. 236.		-W24@ -W25@	21 48	95.2 56.3	
237. 238. 239.		-W26Ω -W27Ω -W28Q	14 47 22	92.9 53.2 40.9	
240. 241. 242.		-W290 -W300 -W310	31 57 36	100.0 45.9 61.1	
243. 244.		-W320 -W330	25 26	80.0 92.3	
245. 246. 247.		- W34@ - W35@ -W36@	27 32 42	59.3 81.3 73.8	
248. 249.		-W37 Q -W38 Q	42 33	26.2 15.2	
250.		-W39 Q	46	78.3	

1	2		3	4
251 .	75470 (ICP-3783x-7183)	-W40@	39	589
252		-W41Q	44	568
253		-W42Q	39	76.9
254		-W43Q	41	65.9
255		-W44Q	47	74.5
56.		-W45 №	43	51 2
57		-W46Q	42	57.1
58		-W470	44	88. 6
59		-W489	25	800
60		-W490	44	818
61		-W50Q	46	54.3
62		-W51@	42	28.6
63.		-W52 2	41	12.2
64	75493	-W1@	44	11.4
J.,	(ICP-7118x-6907)	** : **	73	a # y ⁻⁴
65	,	-W2 Q	48	500
66		-W3Q	38	21.1
67.		-W4Q	61	18.0
68.		-W50	41	26.8
69		-W69	45	200
70.		-W70	29	62.1
71.		-W8 @	31	129
72		-W90	23	43.5
73.		-W100	17	0 . 0
74		-W110	21	143
75		-W1 20	40	325
76		-W1 30	44	20.5
77		-W140	16	31.3
78		-W150	18	611
79		-W16Q	32	88 2
80		-W170	21	66.7
81		-W180	21	76.2
82.		-W19@	43	395
83		-W20®	44	47.7
84		-W210	31	387
85		-W220	40	375
86		-W23@	23	21.7
87		-W240	24	61.8
88		-W259	43	55.8
89		-W26 9	55	52.7
90		-W27@	42	47.6
91		-W289	39	25.6
92		-W290	37	32.4

1	2		3	4
293.	75493 (ICP-7118x-6907)	-W30 №	43	79.1
294.	(10c-1110X-030\)	-W31 Q	38	26.3
295.		-W32 Q	38	20.3
296.		-W33 ₽	36	30.5
297.		-W34 ₽	44	18.2
298.		-W35@	34	5.9
299.		-W36₽	36	11.1
300.		-W37 ₽	36	0.0
301.		-W38 ₽	38	15.8
302.		-W39 Q	19	26.3
303.		-W40 ₽	36	11.1
304.		-W41@	44	6.8
305.		-W42 Q	39	7.7
306.		-W43 @	31	35.5
307.		-W44Q	45	46.7
308.		-W45Q	35	31.4
309.		-W46 ₽	26	38.5
310.		-W47 @	63	42.9
311.		-W48 ₽	38	31.6
312.		-W49 @	33	36.4
313.		-W50 ₽	17	64.7
314.		-W51 @	17	23.5
315.		-W52 ₽	39	41.0
316.		-W53 @	34	38.2
317.		-W54 ₽	41	53.7
318.		-W55 Ω	50	64.0
319.		-W56 Ω	35	25.7
320.		-W57 Ω	21	90.5
321.		-W58 ₽	39	53.8
322.		-W59 Q	37	54.1
323.		-W60 ₽	54	79.6
324.		-W61@	25	20.0
325.		-W62 ₽	33	75.8
326.		-W63 @	43	58.5
327.		-W64 ₽	35	68.6
328.		-W65@	43	71.4
329.		-W66 ₽	28	32.1
330.		-W67 Ω	42	57.1
331.		-W68 @	27	22.2
332.		-W69 ₽	37	56.8
333.		-W70 Ω	38	44.7
334.		-W71 Ω	42	9.5
335.		-W72 9	41	58.5
336.		-W73 Ω	41	2.4

1	2		3	4
337.	75493	-W74 <u>₽</u>	16	50 0
338	75513 (ICP-7118x-68	-W100 97)	43	44 . 1
339	(20) / 110/1100	-W2 0	20	45 0
340		-W3 Q	35	57.1
341		-W4 ₩	28	42.9
342		-W5 ₽	48	54.2
343		-W6 ₽	45	53.3
344 .		-W7 Q	38	39 , 5
345		-W8 @	37	51 4
346.		-W90	45	75.6
347.		-W10@	36	361
348.		-W110	48	68.8
349		-W12 2 -W13 2	49 25	440 28.0
350 351		-W139 -W140	25 39	66.7
352		-W150	44	40 9
353		-W160	37	32.4
354		-W179	41	60.9
355		-W18Q	39	66.7
356		-W190	45	20.0
357		-W20 ₽	44	11.4
358	t .	-W210	19	66 . 7
359		-W22 0	41	48.8
360		-W23 @	1	1000
361		-W24 0	17	94 1
362.		-W25 ®	36	58 . 3
363		-W26 ⊗	50	10 0
364	•	-W27 Q	44	52.3
365		-W28 0	31	48 4
366		-W29 9	39	43 6
367.		-W30@	33	42.4
368		-W31 ₽	44	47.7
369		-W32₩	41	17.1 37.8
370		-W33 ®	37 27	
371.		-W349	27 19	81 . 5 36 . 8
372		-W35 £	45	53 3
373 374		-₩36 @ -₩37 @	45 44	63.6
374 375		-W38@	37	378
375 376		-W39 0	42	373 357
370. 377,		-W40@	41	21.9
378		-W41@	48	14.6
379		-W429	27	44 4
380		-W43@	12	41.7

1	2		3	4
381.	75513 (ICP-7118x-6897)	-W449	40	52.5
382.	(==: , : : : : ;	-W45@	37	51.4
383.		-W46@	28	60.7
384.		-W47 Q	34	44.1
385.		-W48 	42	52.3
386.		-W49 Q	10	10.0
387.		-₩50 @	40	25.0
388.		-W51@	38	5.3
389.		-W52₩	No germir	nation.
390.		-W53 Q	14	42.9
391.		-₩54₩	45	35.6
392.		-W55 	15	20.0
393.		-W56 Q	30	26.7
394.		-W57 Q	41	17.2
395.		-W58 ₽	15	20.0
396.		-W59 Q	29	41.4
397.		-W60₽	6	33.3
398.		-W61₩	41	46.3
399.		-W628	40	62.5
400.		-W63₽	22	81.8
401.		-W64₩	38	31.6
402.		-₩65₩	18	72.2
403. 404.		-W66Q -W67Q	18 9	11.1 55.6
405.		-w67& -W68&	36	72.2
406.		-w69&	13	15.4
407.		-W0924 -W708	36	44.4
408.		-W71@	34	58.8
409.		-W72₩	40	57.5
410.		-W73 ⊗	20	70.0
411.		-W74@	6	100.0
412.		-W75 ⊗	26	7.7
413.		-W76₩	23	8.7
414.	75519	-W1 😡	15	6.7
	(ICP-7118x-7336)			
415.	•	-W2 @	19	36.8
416.		-W3 Q	38	7.9
417.		-W4Q	18	0.0
418.		-W5 2	41	7.3
419.		-W60	15	26.7
420.		-W7@	12	16.7
421.		-W80	17	5.9
422.		-W9Q	35	17.1
423.		-W10@	12	25.0
424. 425.		-W110	16	18.8
443.		-W120	15	20.0

1	2	3	4
426	75519 -W13 (ICP-7118x-7336)	13	0.0
427.	-W14	I Ω 30	0 0
428	-W1 5		30,6
429	-W16		163
430	-W13		8.3
431.	-W18		00
432	-W19		13.2
433	-W20		4.6
434.	-W21		4.8
435	-W22		4 .8
436	-W23		00
437	-W24		25.0
438.	-W25		4 3
439.	-W26		11.1
440	-W23		ii.i
441	-W28		18.8
442	-W29		4 6
443.	-W3(41.7
444.	-W31		14.9
445	- W32		13.6
446	-W3:		00
447	-W34		22.9
448	-W3:		647
449	-W30		36 4
450.	-W33		47 1
450.	-W38		61.5
452	-w30		70 0
452. 453.	-W4		52 6
455. 454	- W4		66 7
455	-W4:		68.4
456	-W4:		87.5
457	-W4		82.9
458.	-W4:		54 3
459	-W4		85.7
460	-W4		45.7
461	-W4		14.3
462.	-W4:		29.3
463	-W5		18.2
464	-W5		273
465	-W5		20.7
466	-w5 -W5		38.9
467	-W5		25.0

1	2	3	4
468.	75519 -W55@ (ICP-7118x-7336)	36	36.1
469.	`_₩56 &	2	0.0
470.	-W57 @	16	50.0
471.	-W58 ₽	16	6.3
472.	-W59 &	23	38.5
473.	-W60 ₽	26	34.6
474.	-W61 @	20	25.0
475.	-W62 Q	15	40.0

APPENDIX- II

Screening of F4 progenies (from BA-2) for wilt resistance in Vertisol sick plot-A

S1 No	Pedigree	No of plants	Percent wilt
1	2	3	4
1.	74130-DT7-B-W1@	24	878
2.	74131-DT8-B-W1@	12	25 . 0
3 ,	74131-DT8-B-W20	17	882
4.	74131-DT8-B-W3 №	29	49.8
5.	74131-DT8-B-W40	11	81.8
6.	74131-DT8-B-W5₽	26	76 .8
7.	74131-DT8-B-W6₩	26	91.9
8.	74131-DT8-B-W7₽	35	915
9.	74131-DT8-B-W8 №	30	92.2.
0	74131-DT8-B-W9 0	18	1000
1	74131-DT8-B-W10₩	27	85.9
12	74131-DT8-B-W11@	11	90 . 9
13	74131-DT8-B-W12₩	38	91.9
4	74131-DT8-B-W13 №	33	962
5	74131-DT8-B-W14 2	32	975
6	74131-DT8-B-W15 Q	22	100.0
17.,	74131-DT8-B-W160	39	100 0
8	74131-DT8-B-W17 Q	12	1000
19	74131-DT8-B-W18 Q	15	93.3
20	74131-DT8-B-W199	10	80 0
21.	74131-DT8-B-W20₩	26	100.0
22	74134-DT1-B-W1@	9	88 9
23 .	74134-DT1-B-W20	5	600
24 .	74134-DT1-B-W3₩	30	25 9
25 .	74134-DT1-B-W40	27	612
26	74134-DT1-B-W5₩	48	97.9
27	74134-DT1-B-W60	12	0.0
28	74134-DT1-B-W7@	36	44.2
29 .	74134-DT1-B-W8Q	9	667
30 /	74134-DT1-B-W9@	42	50.7
31	74134-DT1-B-W10@	11	45.5
32 .	74134-DT1-B-W119	35	14 7
33.	74137-DT7-B-W1@	33	60.8
34	74137-DT7-B-W39	34	96.9
35	74137-DT7-B-W49	23	65.2
36	74137-DT7-B-W5@	30	58. 7
37 . 20	74137-DT7-B-W6@	26 12	68.8 50.0
38 .	74137-DT7-B-W7₩	12	50.0

1					
40. 74137-DT7-B-W10@ 12 66.7 41. 74137-DT7-B-W10@ 12 66.7 42. 74137-DT7-B-W11@ 35 97.1 43. 74137-DT7-B-W12@ 26 96.2 44. 74137-DT7-B-W13@ 34 91.1 45. 74137-DT7-B-W14@ 32 28.1 46. 74137-DT7-B-W16@ 10 100.0 48. 74137-DT7-B-W16@ 10 100.0 48. 74137-DT7-B-W16@ 10 100.0 48. 74137-DT7-B-W16@ 27 77.8 49. 74137-DT7-B-W16@ 27 77.8 50. 74137-DT7-B-W16@ 24 70.8 50. 74137-DT7-B-W16@ 35 94.3 51. 74137-DT7-B-W20@ 43 81.4 52. 74137-DT7-B-W21@ 7 85.7 53. 74137-DT7-B-W22@ 41 56.1 54. 74137-DT7-B-W22@ 41 56.1 55. 74137-DT7-B-W22@ 37 89.2 55. 74137-DT7-B-W26@ 29 68.9 56. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 28 71.4 57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 37 86.5 59. 74137-DT7-B-W26@ 40 35.0 60. 74137-DT7-B-W26@ 40 35.0 61. 74137-DT7-B-W26@ 40 35.0 62. 74137-DT7-B-W26@ 40 35.0 63. 74137-DT7-B-W26@ 40 35.0 64. 74137-DT7-B-W26@ 40 35.0 66. 74137-DT7-B-W26@ 40 35.0 67. 74137-DT7-B-W26@ 40 35.0 68. 74140-DT5-B-W16@ 37 86.5 69. 74140-DT5-B-W16@ 29 96.6 63. 74140-DT5-B-W16@ 29 96.6 65. 74140-DT5-B-W16@ 37 86.5 67. 74140-DT5-B-W16@ 37 86.5 68. 74140-DT5-B-W16@ 37 86.5 67. 74140-DT5-B-W16@ 34 79.4 68. 74140-DT5-B-W16@ 34 79.4 69. 74140-DT5-B-W16@ 34 79.4 70. 74140-DT5-B-W16@ 34 79.4 71. 74140-DT5-B-W16@ 34 79.4 72. 74140-DT5-B-W16@ 34 79.4 73. 74140-DT5-B-W16@ 34 79.4 74. 74140-DT5-B-W16@ 34 79.4 74. 74140-DT5-B-W16@ 34 79.4 74. 74140-DT5-B-W16@ 39 79.5 74. 74140-DT5-B-W16@ 77.8 74. 74140-DT5-B-W16@ 77.7 74. 741	1	2	3	4	
40. 74137-DT7-B-W98 38 59.3 41. 74137-DT7-B-W108 12 66.7 42. 74137-DT7-B-W118 35 97.1 43. 74137-DT7-B-W128 26 96.2 44. 74137-DT7-B-W128 34 91.1 45. 74137-DT7-B-W138 34 91.1 46. 74137-DT7-B-W168 32 68.8 47. 74137-DT7-B-W168 10 100.0 48. 74137-DT7-B-W168 27 77.8 49. 74137-DT7-B-W188 24 70.8 50. 74137-DT7-B-W198 35 94.3 51. 74137-DT7-B-W198 35 94.3 51. 74137-DT7-B-W208 43 81.4 52. 74137-DT7-B-W218 7 85.7 53. 74137-DT7-B-W228 41 56.1 54. 74137-DT7-B-W228 41 56.1 54. 74137-DT7-B-W248 29 68.9 55. 74137-DT7-B-W268 7 85.7 58. 74137-DT7-B-W268 7 85.7 58. 74137-DT7-B-W268 7 85.7 58. 74137-DT7-B-W298 40 35.0 60. 74137-DT7-B-W298 40 35.0 61. 74137-DT7-B-W298 40 35.0 61. 74137-DT7-B-W298 40 35.0 62. 74137-DT7-B-W298 40 35.0 63. 74137-DT7-B-W308 37 86.5 69. 74137-DT7-B-W308 37 86.5 60. 74137-DT7-B-W308 37 86.5 61. 74137-DT7-B-W308 37 86.5 62. 74137-DT7-B-W308 37 86.5 63. 74137-DT7-B-W308 37 86.5 64. 74140-DT5-B-W308 37 86.5 65. 74140-DT5-B-W308 37 86.5 67. 74140-DT5-B-W308 37 86.5 68. 74140-DT5-B-W308 37 86.5 68. 74140-DT5-B-W308 37 86.5 69. 74140-DT5-B-W308 37 86.5 67. 74140-DT5-B-W308 37 86.5 68. 74140-DT5-B-W308 37 86.5 68. 74140-DT5-B-W308 37 86.5 67. 74140-DT5-B-W308 37 86.5 68. 74140-DT5-B-W308 37 86.5 69. 74140-DT5-B-W308 34 79.4 69. 74140-DT5-B-W308 37 79.5 69. 74140-DT5-B-W308 37 79.5 69. 74140-DT5-B-W308 39 79.5 60. 74140-DT5-B-W308 39 79.5 60. 74140-DT5-B-W308 39 79.5 61. 74140-DT5-B-W308 39 79.5 62. 74140-DT5-B-W308 39 79.5 63. 74140-DT5-B-W108 39 79.5 64. 74140-DT5-B-W108 39 79.5 65. 74140-DT5-B-W108 39 79.5 66. 74140-DT5-B-W108 39 79.5 67. 74140-DT5-B-W108 39 79.5 68. 74140-DT5-B-W108 39 79.5 69. 74140-DT5-B-W108 39 79.5 69. 74140-DT5-B-W108 39 79.5 60. 74140-DT5-B-W108	39.	74137-DT7-B-W8Q	14	42.9	
41. 74137-DT7-B-W100 12 66.7 42. 74137-DT7-B-W120 26 96.2 44. 74137-DT7-B-W120 26 96.2 44. 74137-DT7-B-W120 26 96.2 44. 74137-DT7-B-W130 34 91.1 45. 74137-DT7-B-W150 32 68.8 47. 74137-DT7-B-W150 32 68.8 8 47. 74137-DT7-B-W150 10 100.0 48. 74137-DT7-B-W150 27 77.8 49. 74137-DT7-B-W160 10 100.0 48. 74137-DT7-B-W180 24 70.8 50. 74137-DT7-B-W190 35 94.3 51. 74137-DT7-B-W190 35 94.3 51. 74137-DT7-B-W210 7 85.7 53. 74137-DT7-B-W220 43 81.4 56.1 56.1 56.1 56.1 56.1 56.1 56.1 56.1	40.	74137-DT7-B-W90	38		
42. 74137-DT7-B-W110 35 97.1 43. 74137-DT7-B-W120 26 96.2 44. 74137-DT7-B-W130 34 91.1 45. 74137-DT7-B-W140 32 28.1 46. 74137-DT7-B-W150 32 68.8 47. 74137-DT7-B-W150 10 100.0 48. 74137-DT7-B-W160 10 100.0 48. 74137-DT7-B-W170 27 77.8 49. 74137-DT7-B-W190 35 94.3 50. 74137-DT7-B-W190 35 94.3 51. 74137-DT7-B-W200 43 81.4 52. 74137-DT7-B-W200 43 81.4 52. 74137-DT7-B-W210 7 85.7 53. 74137-DT7-B-W220 41 56.1 54. 74137-DT7-B-W220 29 68.9 56. 74137-DT7-B-W250 29 68.9 56. 74137-DT7-B-W250 28 71.4 57. 74137-DT7-B-W260 7 85.7 58. 74137-DT7-B-W260 7 85.7 58. 74137-DT7-B-W260 7 85.7 59. 74137-DT7-B-W290 40 35.0 60. 74137-DT7-B-W290 40 35.0 61. 74137-DT7-B-W290 40 35.0 61. 74137-DT7-B-W290 40 35.0 62. 74137-DT7-B-W290 40 35.0 63. 74137-DT7-B-W290 40 35.0 64. 74140-DT5-B-W20 37 86.5 65. 74140-DT5-B-W300 37 86.5 66. 74140-DT5-B-W300 37 86.5 67. 74140-DT5-B-W300 37 86.5 68. 74140-DT5-B-W300 37 86.5 69. 74140-DT5-B-W300 37 86.5 67. 74140-DT5-B-W300 37 86.5 68. 74140-DT5-B-W300 37 86.5 67. 74140-DT5-B-W300 37 86.5 67. 74140-DT5-B-W300 37 86.5 68. 74140-DT5-B-W300 37 86.5 69. 74140-DT5-B-W300 37 86.5 61. 74140-DT5-B-W300 37 86.5 61. 74140-DT5-B-W300 37 86.5 61. 74140-DT5-B-W300 37 86.5 62. 74137-DT7-B-W300 37 86.5 63. 74137-DT7-B-W300 37 86.5 64. 74140-DT5-B-W300 37 86.5 65. 74140-DT5-B-W300 37 86.5 66. 74140-DT5-B-W300 37 86.5 67. 74140-DT5-B-W300 37 86.5 68.8 68.8 69. 74140-DT5-B-W300 37 86.5 69. 74140-DT5-B-W300 38 65.5 67. 74140-DT5-B-W300 39 79.5 68. 74140-DT5-B-W300 39 79.5 68. 74140-DT5-B-W100 39 39 79.5 68. 74140-DT5-B-W100 39 39 79.5 68.		74137-DT7-B-W100		66.7	
43. 74137-DT7-B-W120 26 96.2 444. 74137-DT7-B-W130 34 91.1 45. 74137-DT7-B-W140 32 28.1 46. 74137-DT7-B-W150 32 68.8 47. 74137-DT7-B-W150 10 100.0 48. 74137-DT7-B-W160 10 100.0 48. 74137-DT7-B-W170 27 77.8 49. 74137-DT7-B-W190 35 94.3 50. 74137-DT7-B-W190 35 94.3 51. 74137-DT7-B-W210 7 85.7 51. 74137-DT7-B-W210 7 85.7 53. 74137-DT7-B-W220 41 56.1 54. 74137-DT7-B-W220 41 56.1 54. 74137-DT7-B-W230 37 89.2 55. 74137-DT7-B-W240 29 68.9 56. 74137-DT7-B-W250 28 71.4 57. 74137-DT7-B-W250 7 85.7 58. 74137-DT7-B-W260 7 85.7 58. 74137-DT7-B-W260 7 86.5 59. 74137-DT7-B-W260 44 63.6 60. 74137-DT7-B-W290 40 35.0 61. 74137-DT7-B-W290 40 35.0 62. 74137-DT7-B-W290 40 35.0 66. 74137-DT7-B-W290 40 35.0 66. 74137-DT7-B-W300 37 86.5 62. 74137-DT7-B-W300 37 86.5 63. 74137-DT7-B-W300 37 86.5 64. 74140-DT5-B-W10 29 96.6 65. 74140-DT5-B-W10 29 96.6 66. 74140-DT5-B-W10 29 97.2 66. 74140-DT5-B-W10 29 97.2 67. 74140-DT5-B-W30 37 86.5 68. 74140-DT5-B-W30 37 86.5 69. 74140-DT5-B-W30 37 86.5 69. 74140-DT5-B-W30 37 86.5 69. 74140-DT5-B-W30 37 86.5 60. 74140-DT5-B-W30 38 60.5		74137-DT7-B-W11@			
44. 74137-DT7-B-W13@ 34 91.1 45. 74137-DT7-B-W14@ 32 28.1 46. 74137-DT7-B-W15@ 32 68.8 47. 74137-DT7-B-W15@ 10 100.0 48. 74137-DT7-B-W16@ 10 100.0 48. 74137-DT7-B-W19@ 27 77.8 49. 74137-DT7-B-W19@ 27 77.8 50. 74137-DT7-B-W19@ 35 94.3 51. 74137-DT7-B-W20@ 43 81.4 52. 74137-DT7-B-W20@ 43 81.4 52. 74137-DT7-B-W20@ 45 85.7 53. 74137-DT7-B-W20@ 41 56.1 54. 74137-DT7-B-W20@ 41 56.1 55. 74137-DT7-B-W20@ 29 68.9 56. 74137-DT7-B-W26@ 7 85.7 57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 7 85.7 59. 74137-DT7-B-W26@ 7 85.7 59. 74137-DT7-B-W26@ 7 85.7 59. 74137-DT7-B-W26@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W30@ 37 86.5 63. 74137-DT7-B-W30@ 37 86.5 64. 74140-DT5-B-W30@ 37 86.5 65. 74140-DT5-B-W19@ 29 96.6 66. 74140-DT5-B-W19@ 29 96.6 67. 74140-DT5-B-W30@ 29 97.3 68. 74140-DT5-B-W30@ 20 84.0 68. 74140-DT5-B-W30@ 21 95.2 67. 74140-DT5-B-W30@ 21 95.2 67. 74140-DT5-B-W30@ 34 79.4 68. 74140-DT5-B-W30@ 34 79.4 70. 74140-DT5-B-W30@ 34 79.4 71. 74140-DT5-B-W30@ 34 50.0 72. 74140-DT5-B-W30@ 34 50.0 74. 74140-DT5-B-W30@ 35 34 50.0 74. 74140-DT5-B-W30@ 37 38 65.5 71. 74140-DT5-B-W30@ 38 65.5 71. 74140-DT5-B-W30@ 39 79.5 71. 74140-DT5-B-W30@ 34 50.0 72. 74140-DT5-B-W30@ 34 50.0 73. 74140-DT5-B-W30@ 34 50.0 74. 74140-DT5-B-W30@ 34 50.0 74. 74140-DT5-B-W30@ 37 38 65.5 74. 74140-DT5-B-W30@ 38 65.5 74. 74140-DT5-B-W30@ 38 65.5 74. 74140-DT5-B-W30@ 38 65.5 74. 74140-DT5-B-W30@ 39 79.5 75. 74140-DT5-B-W10@ 79 89.5 76. 74140-DT5-B-W10@ 79 89.5 77. 74140-DT5-B-W10@ 79 89.5 78. 74140-DT5-B-W10@ 79 79.5 78. 74130-NDT7-B-W30@ 38 60.5	43.	74137-DT7-B-W12@			
45. 74137-DT7-B-W14@ 32 68.8 46. 74137-DT7-B-W15@ 10 100.0 48. 74137-DT7-B-W16@ 10 100.0 48. 74137-DT7-B-W17@ 27 77.8 49. 74137-DT7-B-W19@ 24 70.8 50. 74137-DT7-B-W19@ 35 94.3 51. 74137-DT7-B-W19@ 35 94.3 51. 74137-DT7-B-W20@ 43 81.4 52. 74137-DT7-B-W20@ 43 81.4 52. 74137-DT7-B-W20@ 41 56.1 54. 74137-DT7-B-W22@ 41 56.1 54. 74137-DT7-B-W23@ 37 89.2 55. 74137-DT7-B-W24@ 29 68.9 56. 74137-DT7-B-W25@ 7 85.7 58. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 7 85.7 59. 74137-DT7-B-W26@ 7 85.7 59. 74137-DT7-B-W26@ 7 85.7 59. 74137-DT7-B-W29@ 40 63.6 60. 74137-DT7-B-W29@ 40 63.6 61. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W29@ 40 35.0 62. 74137-DT7-B-W29@ 40 35.0 64. 74140-DT5-B-W19@ 2 100.0 65. 74140-DT5-B-W19@ 2 100.0 66. 74140-DT5-B-W19@ 2 100.0 66. 74140-DT5-B-W30@ 21 99.6 66. 74140-DT5-B-W30@ 21 99.5 67. 74140-DT5-B-W30@ 34 79.4 68. 74140-DT5-B-W30@ 34 79.4 70. 74140-DT5-B-W60@ 34 79.4 70. 74140-DT5-B-W60@ 34 79.4 70. 74140-DT5-B-W60@ 34 79.4 70. 74140-DT5-B-W19@ 38 65.5 71. 74140-DT5-B-W19@ 39 97.5 72. 74140-DT5-B-W10@ 19 89.5 74. 74140-DT5-B-W10@ 19 89.5 75. 74140-DT5-B-W10@ 19 89.5 76. 74140-DT5-B-W10@ 19 89.5 77. 74140-DT5-B-W10@ 19 89.5 78. 74140-DT5-B-W10@ 19 89.5 79. 74140-DT5-B-W10	44.	74137-DT7-B-W132			
46. 74137-DT7-B-W15\(\) 32 68.8 47. 74137-DT7-B-W16\(\) 10 100.0 48. 74137-DT7-B-W17\(\) 27 77.8 49. 74137-DT7-B-W18\(\) 27 77.8 49. 74137-DT7-B-W18\(\) 24 70.8 50. 74137-DT7-B-W19\(\) 35 94.3 51. 74137-DT7-B-W20\(\) 43 81.4 52. 74137-DT7-B-W21\(\) 7 85.7 53. 74137-DT7-B-W22\(\) 41 56.1 54. 74137-DT7-B-W22\(\) 41 56.1 54. 74137-DT7-B-W22\(\) 41 56.1 55. 74137-DT7-B-W23\(\) 37 89.2 55. 74137-DT7-B-W25\(\) 29 68.9 56. 74137-DT7-B-W26\(\) 7 85.7 58. 74137-DT7-B-W26\(\) 7 85.7 58. 74137-DT7-B-W26\(\) 7 85.7 58. 74137-DT7-B-W29\(\) 37 86.5 59. 74137-DT7-B-W29\(\) 40 35.0 60. 74137-DT7-B-W30\(\) 40 35.0 61. 74137-DT7-B-W30\(\) 37 86.5 62. 74137-DT7-B-W30\(\) 37 86.5 62. 74137-DT7-B-W30\(\) 37 86.5 63. 74137-DT7-B-W30\(\) 37 86.5 64. 74140-DT5-B-W10\(\) 29 96.6 65. 74140-DT5-B-W30\(\) 8 100.0 66. 74140-DT5-B-W30\(\) 8 100.0 66. 74140-DT5-B-W30\(\) 8 100.0 66. 74140-DT5-B-W50\(\) 8 100.0 67. 74140-DT5-B-W50\(\) 38 65.5 69. 74140-DT5-B-W50\(\) 38 65.5 71. 74140-DT5-B-W50\(\) 39 78 78 78 78 78 78 78 79 78 71 71 71 71 71 71 71 71 71 71 71 71 71	45.	74137-DT7-B-W14Q			
47. 74137-DT7-B-W16\(\) 10 100.0 48. 74137-DT7-B-W17\(\) 27 77.8 49. 74137-DT7-B-W17\(\) 27 77.8 50. 74137-DT7-B-W19\(\) 35 94.3 51. 74137-DT7-B-W20\(\) 43 81.4 52. 74137-DT7-B-W20\(\) 43 81.4 52. 74137-DT7-B-W20\(\) 43 85.7 53. 74137-DT7-B-W20\(\) 41 56.1 54. 74137-DT7-B-W22\(\) 41 56.1 54. 74137-DT7-B-W23\(\) 37 89.2 55. 74137-DT7-B-W23\(\) 37 89.2 55. 74137-DT7-B-W25\(\) 29 68.9 56. 74137-DT7-B-W25\(\) 29 68.9 57. 74137-DT7-B-W25\(\) 37 86.5 57. 74137-DT7-B-W25\(\) 37 86.5 59. 74137-DT7-B-W26\(\) 44 63.6 60. 74137-DT7-B-W28\(\) 44 63.6 60. 74137-DT7-B-W30\(\) 37 86.5 59. 74137-DT7-B-W30\(\) 37 86.5 62. 74137-DT7-B-W30\(\) 37 86.5 62. 74137-DT7-B-W30\(\) 37 86.5 63. 74137-DT7-B-W30\(\) 37 86.5 64. 74140-DT5-B-W30\(\) 37 86.5 65. 74140-DT5-B-W10\(\) 29 96.6 66. 74140-DT5-B-W10\(\) 8 100.0 66. 74140-DT5-B-W20\(\) 8 100.0 66. 74140-DT5-B-W20\(\) 38 65.5 67. 74140-DT5-B-W50\(\) 38 65.5 71. 74140-DT5-B-W50\(\) 39 79.5 71. 74140-DT5-B-W10\(\) 39 79.5 72. 74140-DT5-B-W10\(\) 39 79.5 73. 74140-DT5-B-W10\(\) 39 79.5 74. 74140-DT5-B-W10\(\) 39 79.5 75. 74140-DT5-B-W10\(\) 39 79.5 76. 74140-DT5-B-W10\(\) 39 79.5 77. 74140-DT5-B-W10\(\) 39 79.5 78. 74140-DT5-B-W10\(\) 39 79.5 78. 74140-DT5-B-W10\(\) 39 79.5 79. 74140-DT5-B-W10\(\) 39 79.5 79. 74140-DT5-B-W10\(\) 39 79.5 71. 74140-DT5-B-W10\(\) 39 79.5 72. 74140-DT5-B-W10\(\) 39 79.5 73. 74140-DT5-B-W10\(\) 39 79.5 74. 74140-DT5-B-W10\(\) 39 79.5 75. 74140-DT5-B-W10\(\) 39 79.5 76. 74140-DT5-B-W10\(\) 39 79.5 77. 74140-DT5-B-W10\(\) 39 79.5 78. 74140-DT5-B-W10\(\) 39 79.5 79. 74140-DT5-B-W10\(\) 39 79.5 70. 74140-DT5-B-W10\(\) 39 79.5 71. 74140-DT5-B-W10\(\) 39 79.5 72. 74140-DT5-B-W10\(\) 39 79.5 73. 74140-DT5-B-W10\(\) 39 79.5 74. 74140-DT5-B-W10\(\) 39 79.5 74. 74140-DT5-B-W10\(\) 39 79.5	46.	74137-DT7-B-W15Q			
48. 74137-DT7-B-W170 27 77.8 49. 74137-DT7-B-W180 24 70.8 50. 74137-DT7-B-W190 35 94.3 51. 74137-DT7-B-W200 43 81.4 52. 74137-DT7-B-W210 7 85.7 53. 74137-DT7-B-W220 41 56.1 54. 74137-DT7-B-W220 41 56.1 55. 74137-DT7-B-W220 29 68.9 56. 74137-DT7-B-W250 28 71.4 57. 74137-DT7-B-W250 7 85.7 58. 74137-DT7-B-W250 7 85.7 58. 74137-DT7-B-W260 7 85.7 58. 74137-DT7-B-W280 44 63.6 60. 74137-DT7-B-W280 44 63.6 61. 74137-DT7-B-W290 37 86.5 59. 74137-DT7-B-W290 40 35.0 61. 74137-DT7-B-W300 37 86.5 62. 74137-DT7-B-W300 37 86.5 63. 74137-DT7-B-W300 37 86.5 64. 74140-DT5-B-W300 29 96.6 65. 74140-DT5-B-W100 2 100.0 66. 74140-DT5-B-W100 2 100.0 66. 74140-DT5-B-W300 21 95.2 67. 74140-DT5-B-W300 21 95.2 67. 74140-DT5-B-W300 21 95.2 68. 74140-DT5-B-W300 21 95.2 69. 74140-DT5-B-W300 34 79.4 68. 74140-DT5-B-W300 34 79.4 70. 74140-DT5-B-W300 34 79.4 71. 74140-DT5-B-W300 39 79.5 71. 74140-DT5-B-W300 39 79.5 72. 74140-DT5-B-W300 39 79.5 73. 74140-DT5-B-W300 39 79.5 74. 74140-DT5-B-W300 39 79.5 75. 74140-DT5-B-W300 39 79.5 76. 74140-DT5-B-W100 39 79.5 77. 74140-DT5-B-W100 39 79.5 78. 74140-DT5-B-W100 79.8 79. 74140-DT5-B-W100 79.8 79. 74140-DT5-B-W100 79.8 71. 74140-DT5-B-W100 79.8 71. 74140-DT5-B-W100 79.8 71. 74140-DT5-B-W300 39 79.5 72. 74140-DT5-B-W100 79.8 73. 74140-DT5-B-W100 79.8 74. 74140-DT5-B-W100 79.8 75. 74140-DT5-B-W100 79.8 76. 74140-DT5-B-W100 79.8 77. 74140-DT5-B-W100 79.8 78. 74140-DT5-B-W100 79.8 79. 74140-DT5-B-W100 79.0 70. 74140-DT5-B-W100 79.0 71. 4140-DT5-B-W100 79.0 72. 74140-DT5-B-W100 79.0 73. 74140-DT5-B-W100 79.0 74. 74140-DT5	47.	74137-DT7-B-W16@			
49. 74137-DT7-B-N18Q 24 70.8 50. 74137-DT7-B-N19Q 35 94.3 51. 74137-DT7-B-W2QQ 43 81.4 52. 74137-DT7-B-W2QQ 7 85.7 53. 74137-DT7-B-W2QQ 41 56.1 54. 74137-DT7-B-W2QQ 41 56.1 55. 74137-DT7-B-W2QQ 29 68.9 56. 74137-DT7-B-W2QQ 28 71.4 57. 74137-DT7-B-W2CQ 37 86.5 59. 74137-DT7-B-W2QQ 37 86.5 59. 74137-DT7-B-W2QQ 40 35.0 61. 74137-DT7-B-W3QQ 37 86.5 59. 74137-DT7-B-W3QQ 37 86.5 60. 74137-DT7-B-W3QQ 37 86.5 61. 74137-DT7-B-W3QQ 37 86.5 62. 74137-DT7-B-W3QQ 37 86.5 63. 74137-DT7-B-W3QQ 37 86.5 64. 74140-DT5-B-W3QQ 29 96.6 63. 74140-DT5-B-W3QQ 21 95.		74137-DT7-B-W17@			
50. 74137-DT7-B-W19@ 35 94.3 51. 74137-DT7-B-W20@ 43 81.4 52. 74137-DT7-B-W21@ 7 85.7 53. 74137-DT7-B-W22@ 41 56.1 54. 74137-DT7-B-W23@ 37 89.2 55. 74137-DT7-B-W25@ 28 71.4 56. 74137-DT7-B-W26@ 7 85.7 57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 7 85.7 59. 74137-DT7-B-W28@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 59. 74137-DT7-B-W30@ 37 86.5 60. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W30@ 37 86.5 63. 74137-DT7-B-W30@ 37 86.5 63. 74137-DT7-B-W30@ 37 86.5 63. 74137-DT7-B-W30@ 37 86.5 63. 74137-DT7-B-W30@ 39 96.5 </td <td>49.</td> <td>74137-DT7-B-W180</td> <td></td> <td></td> <td></td>	49.	74137-DT7-B-W180			
51. 74137-DT7-B-W20@ 43 81.4 52. 74137-DT7-B-W21@ 7 85.7 53. 74137-DT7-B-W22@ 41 56.1 54. 74137-DT7-B-W23@ 37 89.2 55. 74137-DT7-B-W24@ 29 68.9 56. 74137-DT7-B-W26@ 7 85.7 57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 7 85.7 59. 74137-DT7-B-W26@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W31@ 29 96.6 63. 74137-DT7-B-W31@ 29 96.6 63. 74137-DT7-B-W32@ 50 84.0 64. 74140-DT5-B-W19@ 2 100.0 65. 74140-DT5-B-W19@ 8 100.0 66. 74140-DT5-B-W19@ 21 95.2 67. 74140-DT5-B-W19@ 34 79.4 70. 74140-DT5-B-W19@ 34 79.4 </td <td></td> <td>74137-DT7-B-W19@</td> <td></td> <td></td> <td></td>		74137-DT7-B-W19@			
52. 74137-DT7-B-W21@ 7 85.7 53. 74137-DT7-B-W22@ 41 56.1 54. 74137-DT7-B-W23@ 37 89.2 55. 74137-DT7-B-W24@ 29 68.9 56. 74137-DT7-B-W25@ 28 71.4 57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 7 86.5 59. 74137-DT7-B-W28@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W30@ 37 86.5 63. 74137-DT7-B-W30@ 39 76.6 64. 74140-DT5-B-W30@ 21 95.2 67. 74140-DT5-B-W40@ 45 84.0 68. 74140-DT5-B-W40@ 34 79.4<		74137-DT7-B-W20@			
53. 74137-DT7-B-W22@ 41 56.1 54. 74137-DT7-B-W23@ 37 89.2 55. 74137-DT7-B-W24@ 29 68.9 56. 74137-DT7-B-W25@ 28 71.4 57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 37 86.5 59. 74137-DT7-B-W28@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W30@ 37 86.5 63. 74137-DT7-B-W30@ 37 86.5 64. 74140-DT5-B-W30@ 29 96.6 63. 74140-DT5-B-W30@ 21 95.2 67. 74140-DT5-B-W30@ 21 95.2 67. 74140-DT5-B-W30@ 34 79.					
54. 74137-DT7-B-W23@ 37 89.2 55. 74137-DT7-B-W24@ 29 68.9 56. 74137-DT7-B-W25@ 28 71.4 57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W27@ 37 86.5 59. 74137-DT7-B-W28@ 44 63.6 60. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W31@ 29 96.6 63. 74137-DT7-B-W32@ 50 84.0 64. 74140-DT5-B-W32@ 50 84.0 65. 74140-DT5-B-W32@ 8 100.0 66. 74140-DT5-B-W32@ 8 100.0 66. 74140-DT5-B-W32@ 21 95.2 67. 74140-DT5-B-W32@ 21 95.2 67. 74140-DT5-B-W32@ 22 77.3 69. 74140-DT5-B-W32@ 34 79.4 70. 74140-DT5-B-W32@ 42 78.6 72. 74140-DT5-B-W32@ 34 50.			•		
55. 74137-DT7-B-W24@ 29 68.9 56. 74137-DT7-B-W25@ 28 71.4 57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W27@ 37 86.5 59. 74137-DT7-B-W28@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W31@ 29 96.6 63. 74137-DT7-B-W32@ 50 84.0 64. 74140-DT5-B-W32@ 50 84.0 64. 74140-DT5-B-W32@ 8 100.0 65. 74140-DT5-B-W32@ 8 100.0 66. 74140-DT5-B-W32@ 21 95.2 67. 74140-DT5-B-W32@ 34 79.4 68. 74140-DT5-B-W52@ 34 79.4 70. 74140-DT5-B-W60@ 34 79.4 71. 74140-DT5-B-W60@ 34 79.4 72. 74140-DT5-B-W10@ 19 89.5 74. 74140-DT5-B-W12@ 34 50.					
56. 74137-DT7-B-W25@ 28 71.4 57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W26@ 37 86.5 59. 74137-DT7-B-W28@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W31@ 29 96.6 63. 74137-DT7-B-W32@ 50 84.0 64. 74140-DT5-B-W1@ 2 100.0 65. 74140-DT5-B-W2@ 8 100.0 66. 74140-DT5-B-W2@ 8 100.0 66. 74140-DT5-B-W3@ 21 95.2 67. 74140-DT5-B-W4@ 45 84.4 68. 74140-DT5-B-W5@ 22 77.3 69. 74140-DT5-B-W6@ 34 79.4 70. 74140-DT5-B-W6@ 34 79.4 72. 74140-DT5-B-W1@ 45 97.8 75. 74140-DT5-B-W1@ 34 50.0 76. 74140-DT5-B-W1@ 39 79.5					
57. 74137-DT7-B-W26@ 7 85.7 58. 74137-DT7-B-W27@ 37 86.5 59. 74137-DT7-B-W26@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W31@ 29 96.6 63. 74137-DT7-B-W32@ 50 84.0 64. 74140-DT5-B-W32@ 50 84.0 65. 74140-DT5-B-W32@ 8 100.0 66. 74140-DT5-B-W32@ 21 95.2 67. 74140-DT5-B-W32@ 21 95.2 67. 74140-DT5-B-W52@ 34 79.4 70. 74140-DT5-B-W52@ 34 79.4 70. 74140-DT5-B-W60@ 34 79.4 70. 74140-DT5-B-W60@ 34 79.4 72. 74140-DT5-B-W10@ 19 89.5 74. 74140-DT5-B-W10@ 19 89.5 74. 74140-DT5-B-W12@ 34 50.0 76. 74140-DT5-B-W12@ 34 50.					
58. 74137-DT7-B-W27@ 37 86.5 59. 74137-DT7-B-W28@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W30@ 29 96.6 63. 74137-DT7-B-W30@ 50 84.0 64. 74140-DT5-B-W30@ 2 100.0 65. 74140-DT5-B-W20@ 8 100.0 66. 74140-DT5-B-W30@ 21 95.2 67. 74140-DT5-B-W30@ 21 95.2 67. 74140-DT5-B-W50@ 34 79.4 70. 74140-DT5-B-W60@ 34 79.4 70. 74140-DT5-B-W70@ 38 65.5 71. 74140-DT5-B-W80@ 42 78.6 72. 74140-DT5-B-W10@ 19 89.5 74. 74140-DT5-B-W10@ 19 89.5 74. 74140-DT5-B-W12@ 34 50.0 76. 74140-DT5-B-W15@ 21 85					
59. 74137-DT7-B-W28@ 44 63.6 60. 74137-DT7-B-W29@ 40 35.0 61. 74137-DT7-B-W30@ 37 86.5 62. 74137-DT7-B-W31@ 29 96.6 63. 74137-DT7-B-W32@ 50 84.0 64. 74140-DT5-B-W1@ 2 100.0 65. 74140-DT5-B-W2@ 8 100.0 66. 74140-DT5-B-W3@ 21 95.2 67. 74140-DT5-B-W3@ 21 95.2 67. 74140-DT5-B-W3@ 22 77.3 69. 74140-DT5-B-W5@ 22 77.3 69. 74140-DT5-B-W6@ 34 79.4 70. 74140-DT5-B-W6@ 34 79.4 72. 74140-DT5-B-W1@ 42 78.6 72. 74140-DT5-B-W1@ 19 89.5 74. 74140-DT5-B-W1@ 45 97.8 75. 74140-DT5-B-W1@ 34 50.0 76. 74140-DT5-B-W1@ 39 79.5 78. 74140-DT5-B-W1@ 39 79.5 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
60. 74137-DT7-B-W29\(\) 40 35.0 61. 74137-DT7-B-W30\(\) 37 86.5 62. 74137-DT7-B-W31\(\) 29 96.6 63. 74137-DT7-B-W32\(\) 50 84.0 64. 74140-DT5-B-W1\(\) 2 100.0 65. 74140-DT5-B-W2\(\) 8 100.0 66. 74140-DT5-B-W3\(\) 21 95.2 67. 74140-DT5-B-W3\(\) 45 84.4 68. 74140-DT5-B-W5\(\) 22 77.3 69. 74140-DT5-B-W6\(\) 34 79.4 70. 74140-DT5-B-W6\(\) 38 65.5 71. 74140-DT5-B-W8\(\) 42 78.6 72. 74140-DT5-B-W8\(\) 42 78.6 72. 74140-DT5-B-W1\(\) 38 65.5 71. 74140-DT5-B-W1\(\) 38 95.5 74. 74140-DT5-B-W1\(\) 45 97.8 75. 74140-DT5-B-W1\(\) 45 97.8 76. 74140-DT5-B-W1\(\) 45 97.8 77. 74140-DT5-B-W1\(\) 45 73.3 77. 74140-DT5-B-W1\(\) 39 79.5 78. 74140-DT5-B-W1\(\) 39 79.5 78. 74140-DT5-B-W1\(\) 39 79.5 78. 74140-DT5-B-W1\(\) 39 79.5 79. 74140-DT5-B-W1\(\) 39 79.5					
61. 74137-DT7-B-W30\text{\tex{\tex					
62. 74137-DT7-B-W31\(\text{9}\) 96.6 63. 74137-DT7-B-W32\(\text{9}\) 50 84.0 64. 74140-DT5-B-W1\(\text{9}\) 2 100.0 65. 74140-DT5-B-W2\(\text{9}\) 8 100.0 66. 74140-DT5-B-W3\(\text{9}\) 21 95.2 67. 74140-DT5-B-W4\(\text{9}\) 45 84.4 68. 74140-DT5-B-W5\(\text{9}\) 22 77.3 69. 74140-DT5-B-W6\(\text{9}\) 34 79.4 70. 74140-DT5-B-W6\(\text{9}\) 38 65.5 71. 74140-DT5-B-W8\(\text{9}\) 42 78.6 72. 74140-DT5-B-W9\(\text{9}\) 24 54.2 73. 74140-DT5-B-W1\(\text{9}\) 45 97.8 75. 74140-DT5-B-W1\(\text{9}\) 34 50.0 76. 74140-DT5-B-W1\(\text{9}\) 35 73.3 77. 74140-DT5-B-W1\(\text{9}\) 39 79.5 78. 74140-DT5-B-W1\(\text{9}\) 39 79.5 79. 74140-DT5-B-W1\(\text{9}\) 39 79.5 78. 74140-DT5-B-W1\(\text{9}\) 39 79.5 78. 74140-DT5-B-W1\(\text{9}\) 39 79.5 78. 74140-DT5-B-W1\(\text{9}\) 39 79.5 79. 74140-DT5-B-W1\(\text{9}\) 39 79.5					
63. 74137-DT7-B-W32\(\text{M} \) 50 84.0 64. 74140-DT5-B-W1\(\text{M} \) 2 100.0 65. 74140-DT5-B-W2\(\text{M} \) 8 100.0 66. 74140-DT5-B-W3\(\text{M} \) 45 84.4 68. 74140-DT5-B-W5\(\text{M} \) 34 79.4 69. 74140-DT5-B-W6\(\text{M} \) 38 65.5 71. 74140-DT5-B-W8\(\text{M} \) 42 78.6 72. 74140-DT5-B-W8\(\text{M} \) 42 78.6 72. 74140-DT5-B-W1\(\text{M} \) 45 97.8 73. 74140-DT5-B-W1\(\text{M} \) 45 97.8 75. 74140-DT5-B-W1\(\text{M} \) 45 97.8 75. 74140-DT5-B-W1\(\text{M} \) 45 73.3 77. 74140-DT5-B-W1\(\text{M} \) 39 79.5 78. 74140-DT5-B-W1\(\text{M} \) 39 79.5 78. 74140-DT5-B-W1\(\text{M} \) 39 79.5 78. 74140-DT5-B-W1\(\text{M} \) 39 79.5 79. 74140-DT5-B-W1\(\text{M} \) 39 79.5 70. 74140-DT5-B-W1\(\text{M} \) 39 79.5 71. 74140-DT5-B-W1\(\text{M} \) 39 79.5 71. 74140-DT5-B-W1\(\text{M} \) 39 79.5					
64. 74140-DT5-B-W19 2 100.0 65. 74140-DT5-B-W29 8 100.0 66. 74140-DT5-B-W39 21 95.2 67. 74140-DT5-B-W49 45 84.4 68. 74140-DT5-B-W59 22 77.3 69. 74140-DT5-B-W69 34 79.4 70. 74140-DT5-B-W89 42 78.6 71. 74140-DT5-B-W89 42 78.6 72. 74140-DT5-B-W99 24 54.2 73. 74140-DT5-B-W109 19 89.5 74. 74140-DT5-B-W119 45 97.8 75. 74140-DT5-B-W119 45 97.8 75. 74140-DT5-B-W129 34 50.0 76. 74140-DT5-B-W139 45 73.3 77. 74140-DT5-B-W149 39 79.5 78. 74140-DT5-B-W159 21 85.7 79. 74140-DT5-B-W169 7 71.4 80. 74140-DT5-B-W169 7 71.4 80. 74140-DT5-B-W179 10 90.0 81. 74130-NDT7-B-W199 17 29.4 82. 74130-NDT7-B-W29 9 88.9 83. 74130-NDT7-B-W399 38 60.5					
65. 74140-DT5-B-W29 8 100.0 66. 74140-DT5-B-W39 21 95.2 67. 74140-DT5-B-W49 45 84.4 68. 74140-DT5-B-W59 22 77.3 69. 74140-DT5-B-W69 34 79.4 70. 74140-DT5-B-W79 38 65.5 71. 74140-DT5-B-W89 42 78.6 72. 74140-DT5-B-W99 24 54.2 73. 74140-DT5-B-W109 19 89.5 74. 74140-DT5-B-W119 45 97.8 75. 74140-DT5-B-W129 34 50.0 76. 74140-DT5-B-W139 45 73.3 77. 74140-DT5-B-W149 39 79.5 78. 74140-DT5-B-W159 21 85.7 79. 74140-DT5-B-W169 7 71.4 80. 74140-DT5-B-W179 10 90.0 81. 74130-NDT7-B-W199 17 29.4 82. 74130-NDT7-B-W29 9 88.9 83. 74130-NDT7-B-W39 38 60.5					
66. 74140-DT5-B-W3\text{9} 21 95.2 67. 74140-DT5-B-W4\text{9} 45 84.4 68. 74140-DT5-B-W5\text{9} 22 77.3 69. 74140-DT5-B-W6\text{9} 34 79.4 70. 74140-DT5-B-W7\text{9} 38 65.5 71. 74140-DT5-B-W8\text{9} 42 78.6 72. 74140-DT5-B-W9\text{9} 24 54.2 73. 74140-DT5-B-W1\text{9} 19 89.5 74. 74140-DT5-B-W1\text{9} 45 97.8 75. 74140-DT5-B-W1\text{9} 45 97.8 75. 74140-DT5-B-W1\text{2} 34 50.0 76. 74140-DT5-B-W1\text{2} 34 50.0 76. 74140-DT5-B-W1\text{2} 39 79.5 78. 74140-DT5-B-W1\text{9} 39 79.5 78. 74140-DT5-B-W1\text{9} 39 79.5 78. 74140-DT5-B-W1\text{9} 21 85.7 79. 74140-DT5-B-W1\text{9} 21 85.7 79. 74140-DT5-B-W1\text{9} 7 71.4 80. 74140-DT5-B-W1\text{9} 10 90.0 81. 74130-NDT7-B-W1\text{9} 17 29.4 82. 74130-NDT7-B-W2\text{9} 9 88.9 83. 74130-NDT7-B-W2\text{9} 9					
67. 74140-DT5-B-W4\(
68. 74140-DT5-B-W5\(\text{9}\) 34 79.4 69. 74140-DT5-B-W6\(\text{9}\) 38 65.5 71. 74140-DT5-B-W8\(\text{9}\) 42 78.6 72. 74140-DT5-B-W9\(\text{9}\) 24 54.2 73. 74140-DT5-B-W10\(\text{9}\) 19 89.5 74. 74140-DT5-B-W10\(\text{9}\) 45 97.8 75. 74140-DT5-B-W12\(\text{9}\) 34 50.0 76. 74140-DT5-B-W12\(\text{9}\) 45 73.3 77. 74140-DT5-B-W13\(\text{9}\) 45 73.3 77. 74140-DT5-B-W14\(\text{9}\) 39 79.5 78. 74140-DT5-B-W15\(\text{9}\) 21 85.7 79. 74140-DT5-B-W16\(\text{9}\) 7 71.4 80. 74140-DT5-B-W16\(\text{9}\) 7 71.4 80. 74130-NDT7-B-W1\(\text{9}\) 10 90.0 81. 74130-NDT7-B-W2\(\text{9}\) 9 88.9 83. 74130-NDT7-B-W3\(\text{9}\) 38 60.5					
69. 74140-DT5-B-W69 34 79.4 70. 74140-DT5-B-W79 38 65.5 71. 74140-DT5-B-W89 42 78.6 72. 74140-DT5-B-W99 24 54.2 73. 74140-DT5-B-W109 19 89.5 74. 74140-DT5-B-W119 45 97.8 75. 74140-DT5-B-W129 34 50.0 76. 74140-DT5-B-W139 45 73.3 77. 74140-DT5-B-W149 39 79.5 78. 74140-DT5-B-W159 21 85.7 79. 74140-DT5-B-W169 7 71.4 80. 74140-DT5-B-W199 10 90.0 81. 74130-NDT7-B-W19 17 29.4 82. 74130-NDT7-B-W29 9 88.9 83. 74130-NDT7-B-W39 38 60.5					
70. 74140-DT5-B-W7\(\text{9}\) 38 65.5 71. 74140-DT5-B-W8\(\text{9}\) 42 78.6 72. 74140-DT5-B-W9\(\text{9}\) 24 54.2 73. 74140-DT5-B-W1\(\text{9}\) 19 89.5 74. 74140-DT5-B-W1\(\text{9}\) 45 97.8 75. 74140-DT5-B-W1\(\text{9}\) 34 50.0 76. 74140-DT5-B-W1\(\text{9}\) 45 73.3 77. 74140-DT5-B-W1\(\text{9}\) 45 73.3 77. 74140-DT5-B-W1\(\text{9}\) 45 79.5 78. 74140-DT5-B-W1\(\text{9}\) 21 85.7 79. 74140-DT5-B-W1\(\text{9}\) 7 71.4 80. 74140-DT5-B-W1\(\text{9}\) 10 90.0 81. 74130-NDT7-B-W1\(\text{9}\) 17 29.4 82. 74130-NDT7-B-W2\(\text{9}\) 9 88.9 83. 74130-NDT7-B-W3\(\text{9}\) 38 60.5					
71. 74140-DT5-B-W8\text{80} 42 78.6 72. 74140-DT5-B-W9\text{90} 24 54.2 73. 74140-DT5-B-W10\text{90} 19 89.5 74. 74140-DT5-B-W11\text{90} 45 97.8 75. 74140-DT5-B-W12\text{90} 34 50.0 76. 74140-DT5-B-W13\text{90} 45 73.3 77. 74140-DT5-B-W13\text{90} 45 73.3 77. 74140-DT5-B-W15\text{90} 21 85.7 78. 74140-DT5-B-W15\text{90} 21 85.7 79. 74140-DT5-B-W16\text{90} 7 71.4 80. 74140-DT5-B-W16\text{90} 7 71.4 80. 74140-DT5-B-W16\text{90} 10 90.0 81. 74130-NDT7-B-W1\text{90} 17 29.4 82. 74130-NDT7-B-W2\text{90} 9 88.9 83. 74130-NDT7-B-W3\text{90} 38 60.5					
72. 74140-DT5-B-W90 24 54.2 73. 74140-DT5-B-W100 19 89.5 74. 74140-DT5-B-W110 45 97.8 75. 74140-DT5-B-W120 34 50.0 76. 74140-DT5-B-W130 45 73.3 77. 74140-DT5-B-W140 39 79.5 78. 74140-DT5-B-W150 21 85.7 79. 74140-DT5-B-W160 7 71.4 80. 74140-DT5-B-W170 10 90.0 81. 74130-NDT7-B-W10 17 29.4 82. 74130-NDT7-B-W20 9 88.9 83. 74130-NDT7-B-W30 38 60.5					
73. 74140-DT5-B-W100 19 89.5 74. 74140-DT5-B-W110 45 97.8 75. 74140-DT5-B-W120 34 50.0 76. 74140-DT5-B-W130 45 73.3 77. 74140-DT5-B-W140 39 79.5 78. 74140-DT5-B-W150 21 85.7 79. 74140-DT5-B-W160 7 71.4 80. 74140-DT5-B-W170 10 90.0 81. 74130-NDT7-B-W10 17 29.4 82. 74130-NDT7-B-W20 9 88.9 83. 74130-NDT7-B-W30 38 60.5					
74. 74140-DT5-B-W11@ 45 97.8 75. 74140-DT5-B-W12@ 34 50.0 76. 74140-DT5-B-W13@ 45 73.3 77. 74140-DT5-B-W14@ 39 79.5 78. 74140-DT5-B-W15@ 21 85.7 79. 74140-DT5-B-W16@ 7 71.4 80. 74140-DT5-B-W17@ 10 90.0 81. 74130-NDT7-B-W1@ 17 29.4 82. 74130-NDT7-B-W2@ 9 88.9 83. 74130-NDT7-B-W3@ 38 60.5					
75. 74140-DT5-B-W12@ 34 50.0 76. 74140-DT5-B-W13@ 45 73.3 77. 74140-DT5-B-W14@ 39 79.5 78. 74140-DT5-B-W15@ 21 85.7 79. 74140-DT5-B-W16@ 7 71.4 80. 74140-DT5-B-W17@ 10 90.0 81. 74130-NDT7-B-W1@ 17 29.4 82. 74130-NDT7-B-W2@ 9 88.9 83. 74130-NDT7-B-W3@ 38 60.5					
76. 74140-DT5-B-W13\(\text{W}\) 45 73.3 77. 74140-DT5-B-W14\(\text{W}\) 39 79.5 78. 74140-DT5-B-W15\(\text{W}\) 21 85.7 79. 74140-DT5-B-W16\(\text{W}\) 7 71.4 80. 74140-DT5-B-W17\(\text{W}\) 10 90.0 81. 74130-NDT7-B-W1\(\text{W}\) 17 29.4 82. 74130-NDT7-B-W2\(\text{W}\) 9 88.9 83. 74130-NDT7-B-W3\(\text{W}\) 38 60.5					
77. 74140-DT5-B-W14\temperature 39 79.5 78. 74140-DT5-B-W15\temperature 21 85.7 79. 74140-DT5-B-W16\temperature 7 71.4 80. 74140-DT5-B-W17\temperature 10 90.0 81. 74130-NDT7-B-W1\temperature 17 29.4 82. 74130-NDT7-B-W2\temperature 9 88.9 83. 74130-NDT7-B-W3\temperature 38 60.5					
78. 74140-DT5-B-W15\(\text{Q} \) 21 85.7 79. 74140-DT5-B-W16\(\text{Q} \) 7 71.4 80. 74140-DT5-B-W17\(\text{Q} \) 10 90.0 81. 74130-NDT7-B-W1\(\text{Q} \) 17 29.4 82. 74130-NDT7-B-W2\(\text{Q} \) 9 88.9 83. 74130-NDT7-B-W3\(\text{Q} \) 38 60.5					
79. 74140-DT5-B-W16\(\text{M} \) 7 71.4 80. 74140-DT5-B-W17\(\text{M} \) 10 90.0 81. 74130-NDT7-B-W1\(\text{M} \) 17 29.4 82. 74130-NDT7-B-W2\(\text{M} \) 9 88.9 83. 74130-NDT7-B-W3\(\text{M} \) 38 60.5					
80. 74140-DT5-B-W170 10 90.0 81. 74130-NDT7-B-W10 17 29.4 82. 74130-NDT7-B-W20 9 88.9 83. 74130-NDT7-B-W30 38 60.5					
81. 74130-NDT7-B-W1\(\text{N} \) 17 29.4 82. 74130-NDT7-B-W2\(\text{N} \) 9 88.9 83. 74130-NDT7-B-W3\(\text{N} \) 38 60.5					
82. 74130-NDT7-B-W2\(\Omega\) 9 88.9 83. 74130-NDT7-B-W3\(\Omega\) 38 60.5					
83. 74130-NDT7-B-W3Q 38 60.5					
O4. /413U-NU1/-D-W4版 23 09.0					
	∪ ∓.	/ 4 I 3U=NU I / -D-W4型	23	03.0	

1	2	3	4
85	74130-NDT7-B-W5@	29	897
86	74130-NDT7-B-W69	16	813
87.	74130-NDT7-B-W79	39	89.7
88.	74130-NDT7-B-W89	17	765
89	74131-NDT8-B-W1Q	1	100.0
90	74131-NDT8-B-W29	8	100.0
91	74131-NDT8-B-W39	16	100.0
92	74131-NDT8-B-W49	3	100.0
93	74131-NDT8-B-W59	18	94.4
93. 94	74131-NDT8-B-W60	17	82 4
94 95	74131-NDT8-B-W79	32	84 . 2
95 . 96 .	74131-NDT8-B-W89	20	100.0
90 97	74131-NDT8-B-W99	20 24	978
97 98	74131-ND10-B-W989 74134-NDT1-B-W18	3	100.0
98 99		3 15	100.0
100	74134-NDT1-B-W29	16	56.3
100	74134-NDT1-B-W30 74134 NDT1 B W40	17	58.8
101	74134-NDT1-B-W4@ 74134-NDT1-B-W5@	17	100.0
102		19	750
103.	74134-NDT1-B-W6@	9	75.U 88.9
104	74134-NDT1-B-W7@	8	1000
105	74134-NDT1-B-W8@	8 9	77.8
106	74134-NDT1-B-W90 74134-NDT1-B-W100	10	50.0
107.	74134-NDT1-B-W10M 74134-NDT1-B-W11M	6	100.0
108	74134-NDT1-B-WT0	14	71 4
110	74134-NDT1-B-W128 74134-NDT1-B-W139	20	85 0
111	74134-NDT1-B-W138	34	100 0
112	74134-ND11-B-W148 74134-NDT1-B-W158	34 10	100 0
113	74134-NDT1-B-W1582 74134-NDT1-B-W1682	14	78.6
114	74134-NDT1-B-W178	28	100.0
115	74134-NDT1-B-W189	19	89 5
116	74137-NDT7-B-W10	24	66 7
117	74137-NDT7-B-W18	34	676
118	74137-NDT7-B-W28	33	51 5
119	74137-NDT7-B-W48	9	88.9
120	74137-ND17-B-W48	14	64.3
121	74137-NDT7-B-W69	• •	nation.
122	74137-NDT7-B-W79	22	59,1
123	74137-NDT7-B-W89	29	793
124	74137-NDT7-B-W99	30	46.7
125	74137-NDT7-B-W109	30	20.0
126	74137-NDT7-B-WIOM	14	57.1
127	74137-NDT7-B-W119	21	143
• • •	, HD; (TO HILE		v - v -

1	2	3	4
128.	74137-NDT7-B-W130	34	26.5
129.	74137-NDT7-B-W14₽	28	71.4
130.	74140-NDT5-B-W1@	16	68.8
131.	74140-NDT5-B-W20	30	73.3
132.	74140-NDT5-B-W30	32	57.1
133.	74140-NDT5-B-W4Q	23	56.5
134.	74140-NDT5-B-W5Q	37	78.4
135.	74140-NDT5-B-W6Q	39	69.2

APPENDIX-III

Screening of F4 progenies (5 crosses) for wilt resistance
in Vertisol sick plot- 'A'

51 No	Pedigree		No. of plants	Percent wilt
1	2		3	4
١,	74258	-B-W19	36	22.2
2.	[NP(WR)15 x ICP-	-W20	43	81.4
3.		-W3Q	51	21.6
4		-W40a	56	7.1
5		-W50	39	5,1
6.		-W6 Q	42	66.7
7		-W7Q	7	57.1
8		-W8 @	, 29	79.3
9.		-W9 9	33	84.8
0		-W10Ω	21	66.7
Ĭ.		-W110	25	76.0
2.		-W12 2	27	81.5
3.		-W13 2	39	33.3
4		-W149	31	74.2
5		-W15®	26	692
6.		-W1 6₩	34	64.7
7.		-W17 Q	31	48.4
8		-W189	26	731
9		-W190	34	58.8
0		-W20 0	58	359
1.		-W219	35	34.5
2.		-W220	33	512
23		-W23Q	41	829
24 。		-W24Q	34	64 . 7
25		-W25 @	12	100.0
26 .		-W26 9	35	28 . 6
27		-W27Q	50	30 . 0
28		-W28 @	35	25 7
29		-W29₽	39	46.2
30		-W30 ₽	38	576
31		-W31 @	20	45.0
32 .		-W32 0	32	31 . 3
33		-W33 @	45	17.0
34 .		-W34 Q	33	0.0
35 .		-W35 @	35	86

1	2		3	4
36.	74258 [NP(WR) 15 x ICP-1]	-B- W36@	38	5.3
37.	[11 (MK) 10 X 101-1]	-W37 Q	35	14.3
38.		-W38 2		nation
39.		-W39 ₽	17	76.5
40.		-W40 @	9	33.3
41.		-W41 @	15	86.7
42.		-W42 @	32	75.0
43.		-W43 ₽	22	54.6
44.		-W44@	26	42.3
45.		-W45₩	33	45.5
46.		-W46₩	12	91.7
47.		-W47₩	21	0.0
48.		-W48Q	38	39.5
49. 50.		-W49Q -W50Q	21 54	80.9
51.		-w50a -W51a	31	64.8 35.5
52.		-W51₩ -W52₩	19	84.2
53.		-W53₩	13	90.6
54.		-W54₽	18	77.8
55.		-₩55 Q	22	86.4
56.		-W56₽	19	47.4
57.		-W57 Q	35	65.7
58.		-W58 ₽	27	59.3
59.		-W59 Q	45	51.1
60.		-W60 ₽	16	18.8
61.		-W61 ₽	23	69.6
62.		-W62 ₽	26	88.5
63.		-W63 ₽	33	84.5
64.		-W64₩	15	93.3
65.		-W65₽	31	58.1
66.		-W66₩	44	95.5
67.		-W67₩	44	45.5
68.		-W68 ₽	37	45.9
69. 70.		-W69 @ -W70 @	2 37	100.0 64.9
70. 71.		-W71@	21	28.6
72.		-W/IB -W72Ω	16	37.5
73.		-W73₩	19	21.1
74.		-W74₩ -W74₩	23	69.6
75.		-W75@	13	0.0
76.		-₩76 9	45	15,6
77.	74321	-B-W1@	25	24.0
78.	(ICP-102 x -7035)	-W2₩	44	81.8

1	2		3	4
79.	74321 (ICP-102x-7035	-B-W3₩)	41	56.1
80 _°		-W4 ₽	42	429
81,		-W5 ₽	43	76.7
82.		-W6 Q	45	40.0
83.		-W7Q	45	33.3
84.		-W8 Q	45	55.6
85 a		-W9Q	44	20.5
86.		-W10Q -W11Q	33 39	45,5 28,2
87. 88.		-W120	41	48.8
89.		-W130	21	33.3
90.		-W142	44	34,1
91		-W1 50	33	66.7
92,		-W16 9	49	67.3
93.		-W1 7Q	3 8	60.5
94 .		-W18Q	48	75.0
95.		-W1 9 Q	42	33.0
96.		-W20 ₽	9	66.7
97。		-W21₽	37	459
98.		-W22 Q	39	30.8
99.		-W23 Q	38	31.6
100. 101.		-W249 -W259	34 29	2
101.		-W26 Q	40	15.0
102,		-W27 Q	29	31.0
104.		-W28 Q	34	14,7
105		-W29 Q	22	72.7
106.		-W30 ₽	24	54.2
107.		-W31 Q	35	20.0
108.		-W32 ₩	28	14,3
109.		-W33 Q	5	20,0
110.		-W34Q	37	37,8
111,		-W35 ₽	10	40.0
112.		-W36Q	30	23.3
113.		-W37@	17 26	41.2 26.9
114. 115.		-W38 @ -W39 @	20 5	40.0
116.		-w398 -W408	34	0.0
117.		-W41Q	6	16,7
118.		-W420	34	11.8
119.		-W43₩	33	12,1
120.		-W44@	11	36.4
121.		-W45₩	32	31,3
· — · •				

1	2		3	4
122.		-B-W46 Q	45	46.7
	(ICP-102x-7035)	114.70	^3	10.4
123.		-W47Q	31	19.4
124.		-W48Q	23	17.4
125.		-W49 Q	22	9.1
126.		-W50 @	38	39.5
127.		-W51Q	25	60.0
128.		-W52 Q	27	18,5
129.		-W530	39	7.7
130.		-W54 ₽	14	21.4
131.		-W55 Q	23	26.1
132.		-W56 ₽	16	93.8
133.		-W57 Q	39	17.9
134.		-W58 ₽	7	0.0
135.		-W59 @	24	29.0
136.		-W60 №	22	13,6
137.		-W61 Q	15	6.7
138.		-W62 Q	23	0.0
139.		-W63 №	12	25.0
140.		-W64 ₽	33	69.7
141.		-W65 Q	16	31.3
142.		-W66 ₽	36	41.7
143.		-W67 ₽	20	20.0
144.		-W68 №	13	46.2
145.		-W69 ®	16	25.0
146.		-W70 Q	37	72.9
147.		-W11Q	26	43.0
148.		-W72₩	22	59.1
149.		-W73 Q	44	31.8
150.		-W74Q	12	33.3
151.		-W75 ₽	13	69.2
152.		-W76₽	31	16.1
153,		-W77Q	21	42.9
154.		-W78@	33	3.0
155.		-W79 @	7	28.6
156.		-W80 9	8	75.0
157.		-W81@	13	38.5
158.		-W82 9	15	33.3
159.		-W83 Q	12	50.0
160.		-W849	41	60.9
161.		-W85 9	22	50.0
162.		-W86 9	9	88.9
163.		-W87 ₽	37	18.9
164.		-W88 9	24	33.3
165.		-woom -w89 2	10	50.0
100.		-W038	10	50.0
_				

1	2		3	4
166.	74321	_B-W90 2	17	0.0
167	(ICP-102x - 703	5)	1.0	
167.		-W91 ₽	19	0.0
168.		-W92 Q	10	30.0
169.		-W93 Q	10	50.0
170.		-W94 ₽	9	22,2
171.		-W95 ₽	No germ	
172.		-W96 ₽	36	41.7
173.		-W97 ₽	10	20.0
174.		-W98 ₽	19	26.3
175.		-W99 Q	38	65.8
176.	74335	-B-W1 @	29	48.3
	(ICP-6997x-70	35)		
177.		-W2 Q	46	58 . 3
178.		-W3 ₽	40	50.0
179.		-W4Q	40	92.5
180.		-W5 Q	33	39.4
181.		-W6 2	23	73.9
182.		-W7 Q	19	52.9
183.		-W8 Q	25	56.0
184.		-W9 2	38	47.4
185.		-W100	37	51 . 4
186.		-W110	12	75.0
187.		-W120	4	0.0
188.	•	-W130	34	55.9
189.		-W14Q	33	36.4
		-W150	14	42,9
190.				57.5
191.		-W1 6Q	40 14	
192		-W1 7Q		57.1
193.		-W180	51	76.5
194.		-W1 9Q	41	39.0
195.		-W20 @	33	45.5
196.		-W21 Q	29	68.9
197.		-W22@	5	80.0
198.		-W230	19	100.0
199.		-W24 ₽	12	75.0
200.		-W25 ₽	10	100.0
201.		-W26 ₽	41	75.6
202.		-W27 Q	28	92.9
203.		-W28 ₽	31	48.4
204.		-W29 @	23	73.9
205.		-W30 ₽	30	30.0
206.		-W31 @	36	0.0
207.		-W32 Q	22	72.7
208 .		-W33 ₽	46	56,5

1	2	3	4
209.	74335 -B-W34 Q	41	48.8
205.	(ICP-6997x-7035)	41	40.0
210,	-W35@	36	80.6
211.	-₩36 2	40	42.5
212,	-₩3 7@	41	68.3
213.	-W38 @	35	62.9
214.	-W39 @	41	82.9
215.	-W40Q	31	61.3
216.	-W41@	. 5	80.0
217.	-W42Q	27	70.3
218.	-W43Q	19	57.9
219. 220.	-W449	47	76.6
220.	-W45 @ -W46 @	18	16.7
222.	- W408 - W478	27 12	37.0
223.	- W47 M - W48 Q	12 40	41.7 47.5
224.	-W49Q	40 46	47.5 39.1
225.	-W50@	41	53.7
226.	-W51@		51.4
226. 227.	-W52 Q	37 21	51.4 33.3
228.	-₩53 Q	40	47.5
229.	-₩5 49	51	33.3
230.	-W55 @	38	28.9
231.	-W56 ₽	54	50.0
232.	-W57 Q	55	64.4
233.	-W58@	48	47.9
234.	-W59@	38	34.2
235.	-W60 9	17	11.8
236. 237.	-W61 <u>8</u>	35 15	5.7 20.0
237.	-W629a -W639a	12	18.5
239.	-w63± -W64₽	9	11.1
240.	-W65 Q	26	26.9
241.	-W66 0	12	41.7
242.	-W67 0	23	43.5
243.	-₩68 ₽	19	10.5
244.	-W690	20	35.0
245.	-W70 ₽	20	35.0
246.	-W71 Ω	25	24 0
247.	-W72 Q	9	44.4
248.	-W73 ₽	27	25.9
249.	-W74 Ω	19	10.5
250.	-W75 Q	7	14.3
251.	-W76₽	30	3.3
252.	-W77 Q	13	30.8

1	2		3	4
253.	74209 [Pant-A2 x NP(WR) 15	-B-W19	40	12.5
253 254. 255. 256. 257. 258. 260. 261. 262. 263. 264. 265. 266. 267. 270. 271. 272. 273. 274. 275. 276. 277. 278. 279. 280. 281. 282. 283. 284. 285. 286. 287. 279. 280. 281. 282. 283. 284. 285. 286. 287. 279. 288. 289. 280. 281. 282. 283. 284. 285. 286. 287. 279. 288. 289. 2	74209 [Pant-A2 x NP(WR) 15		40 38 13 24 7 18 40 43 16 25 33 27 23 28 34 36 31 30 39 26 19 32 16 30 25 42 24 34 34 33 43 43 45 42 47 32 19 40 41 42 43 43 43 43 43 43 43 43 43 43	12.5 39.5 61.5 39.5 61.5 14.3 11.1 23.8 40.0 21.2 39.1 17.9 14.7 6.5 26.7 23.1 31.6 850.0 64.3 75.6 950.7 25.5 48.0 17.8 50.0
	1			

1	2		3	4	
296.	74209	-B-W44 ₽	29	79.3	
007	[Pant-A2 x NP(WR)15]	11450	24	55.0	
297.		-W45₩	34	55.9	
298.		-W46₩	43	39.5	
299.		-W47₽	29	31.0	
300.		-W48Q	18	55.6	
301.		-W49₽	31	32.3	
302.		-W50₽	37	62.1	
303.		-W51@	13	100.0	
304.		-W520	26	92.3	
305.		-W53Q	27	77.8	
306.		-W54Ω	13	100.0	
307.		-W55 №	16	43.8	
308.		-W56 ₽	22	68.2	
309.		-W570	15	93.3	
310.		-W58 ₽	20	_ 30.0	
311.		-W59 Q	14	100.0	
312.		-W60 Q	12	100.0	
313.		-W61 Q	18	22.2	
314.		-W62 Q	3	66.7	
315.		-W63 ₽	12	83.3	
316.		-W64 ₽	19	68.4	
317.		-W65 ₽	12	100.0	
318.		-W66 ₽	30	6.7	
319.		-W67 Q	21	90.5	
320.		-W68 ₽	17	88.2	
321.		-W69 Q	36	63.9	
322.		-W70 	7	100.0	
323.		-W71@	26	46.2	
324.		-W72Q	52	7.7	
325.		-W73 @	25	28.0	
326.		-W74 ₽	34	52.9	
327.		-W75 @	22	59.1	
328.		-W76 ₽	18	83.3	
329.		-W77 Q	15	73.3	
330.		-W78Q	No	germination	
331.	74360	-B-W1@	30	20.0	
••	(ICP-7065 x -7035)		30		
332.	(10. 7000 % 7000)	-W2 	J	100.0	
333.		-W3 ®	20	0.0	
334.		-W4@	33	15.2	
335.		-W5 Ø	31	38.7	
336.		-W6 2	29	65.5	
500.		HOM	2,5	00.0	

1	2		3	4
337	74360	-B-W7@	37	18.9
220	$(ICP-7065 \times -7035)$		21	6 5
338.		-W8 Q	31 14	6.5
339.		-₩9 Q		8.3
340.		-W10Q	38	52.6
341.		-W110	20	95 . 0 38 . 2
342.		-W12Q	34	
343.		-W139	20	10.0 97.2
344.		-W149	36	77.8
345.		-W159	18	
346		-W16Q	32	53.1
347.		-W17Q	33	30.3
348		-W18Q	30 36	50.0
349.		-W19@	36	27.8
350		-W20₩	25 27	18.5
351.		-W21 Q	27	34 . 6 25 . 9
352.		-W22Q	44	
353.		-W23₩	13	92.3
354.		-W24₩	42	90.5
355		-W25₩	30	800
356.		-W26₽	28	96.4
357.		-W27Q	28	71.4
358.		-W28₽	21	66 7
359		-W29 ₽	13	923
360.		-W30@	18	833
361.		-W310	35	657
362		-W32@	45	51 1
363.		-W33Q	25 45	520 722
364.		-W34@	45	733
365.		-W35₽	8	62.5
366		-W36@	37	45.9
367.		-W37@	39	38.5
368.		-W38@	31	58.1
369		-W399	20	600
370		-W40₽	48	56.3
371		-W410	31	64.5
372.		-W42Q	38	34 . 2
373		-W43Q	45	51.1
374		-W44Q	45	60 .0
375.		-W450	41	68 . 3
376.		-W46@	44	79,5
377		-W47@	38	63.1
378.		-W48@	49	65.3
379		-W49Q	47	61.7
380 .		-W50 Q	44	56.8

1 2	3	4
381. 74360 -B-W510 (ICP-7065 x -7035)	46	86.9
382W52@	43	69.8
383W53@	45	82.2
384W54Q	44	54.5
385W55@	44	72.7
386W56 Q	37	48.6
387W57Q	47	
388W58Q		76.6
	14	71.4
	51	96.1
390W609	31	38.7
391W619	20	55.0
392W62 9	45	75.6
393 W630	11	81.8
394W64₽	38	84.2
395₩65 Q	34	67.6
396₩66₩	33	63.6
397₩6 72	32	15.6
398₩68 @	40	47.5
399. –W69 ₽	29	82.8
400. –W70@	33	51.5
401. –W71 @	18	33.3
402. –₩72 @	27	88.9
403. –₩73 Q	49	46.9
404. –W74Q	31	19.4
405W75@	16	25.0
406. – W76 Q	39	36.6
407W77@	29	6.9
408. – W78 0	36	47.2
409 W799	28	39.3
	30	
		30.0
	36	27.8
412W820 413W830	12	41.7
	24	58.3
414 W840	21	28.6
415. – W85 <u>Q</u>	9	66.7
416₩86 ₽	21	54.5
417W879	35	60.0
418W88@	40	60.0
419W89@	36	91.7
420₩90 @	36	58.3
421₩91 Q	39	76.9
422₩92 ₽	27	66.7
423W93Q	14	71.4
424W94@	22	59.1
_ · ·	35	68.6
425₩95 £	33	00.0

1	2		3	4
426.	74360	-B-W96 №	16	50.0
	$(ICP-7065 \times -7035)$			
427.		-W97 Q	33	66.7
428.		-W98 ₽	3	33 . 3
429.		-W99 Q	18	55.6
430.		-W100 ₽	29	72.4
431.		-W1010	18	44.4
432		-W1020	34	32.4
433.		-W1030	41	<i>78 .</i> 1
434.		-W104Q	31	51.6
435.		-W105 №	36	77.8
436		-W106₩	33	42.4
437.		-W107 Q	39	35.9
438 .		-W1 08 Q	39	41.0
439.		-W109 Q	44	43.2
440.		-W110Q	39	692
441.		-W111 Q	28	75 .0
442.		-W1120	20	90.0
443.		-W1130	43	74.4
444.		-W114 Ω	32	62 . 5
445.		-W115@	35	74.3
446.		-W116 Q	41	75 . 6
447.		-W117 Q	23	73.9
448.		-W118 0	38	55 3
449 .		-W1190	30	63.3
450.		-W1 20Q	33	78. 8
451.		-W121Q	44	636
452 .		-W122 Q	38	42.1
453		-W123 2	19	15.8
454		-W124₽	13	76 . 9
455 .		-W125 @	33	84 8
456.		-W1 26₽	26	<i>76</i> 9

APPENDIX- IV

Screening of F5 progenies for resistance to wilt in Vertisol sick plot- 'A'

S1. No.	Pedigree	No. of plants	Percent wilt
1	2	3	4
1.	74243-B-B-W1@	15	100.0
2.	-W2 Q	45	73.3
3.	-W3 £	35	80.0
4.	-W4 Q	10	100.0
5.	-W5 @	15	60.0
6.	−W6 Q	43	93.0
7.	-W7 . @	57	89.5
8.	–₩8 @	12	41.7
9.	-W9 @	24	41.7
10.	-W1 O Q	44	56.8
11.	-W11@	31	51.6
12.	-W1 20	5	60.0
13.	-W1 3 Q	11	100.0
14.	-W1 4Q	12	75.0
15.	-W15 Q	23	13.0
16.	−W16 Q	24	29.2
17.	-W1 7 Q	10	50.0
18.	-W18 Q	32	78.1
19.	-W19 @	17	52.9
20.	-W20 @	11	27.3
21.	-W2 1Ω	7	71.4
22.	-W22 Q	10	50.0
23.	-W23 Q	22	86.4
24.	-W24 Q	4	75.0
25.	-W25 @	32	78.1
26.	-W26 Q	22	68.2
27.	-W2 7₽	10	80.0
28.	-W28 Q	7	71.4
29.	-W29 Q	32	46.9
30.	-W30 ₽	7	28.6
31.	-W31 @	31	32.3
32.	-W32@	3 15	66.7
33.	-₩33 Q	15	53.3
34 ,	-W34 ₽	45	48.6
35 。	-W35 Q	22	40.6

1	2	3	4
36 .	74243-B-B-W369	11	27.3
36 . 37	-W37 Q	32	53,1
38 .	-W38 2	12	91 . <i>7</i>
39.	-W39 Q	11	54.5
40.	-W40 Q	12	66 7
41.	-W41 a	28	60.7
42	-W42@	5	80.0
43.	-W43 @	10	100.0
44.	-W44 ₽	9	11.1
45	-W45 ₽	21	44.9
46 .	-W46 ₽	17	100.0
47.	-W47 Q	7	42.9
48	-W48 Q	15	100.0

APPENDIX-V

Results of screening selective mating population selections for wilt resistance in Vertisol sick plot -'B'.

S1. No.	Pedigree	No. of plants	Percent wilt
1	2	3	4
1.	SMP-1-VI NDT-1	62	88.7
2.	-2	62	69.3
3.	-3	59	63.3
4.	-4	68	77.9
5.	-5	46	76.1
6.	- 6	65	81.5
7.	-7	49	81.6
8.	-8	64	89.1
9.	-9	48	58.3
ó.	SMP-3-VI NDT-1	57	47.4
1.	-2	5 <i>7</i>	93.0
2.	-2 -3	55	74.5
3.	-4	63	77.8
4.	- -5	60	61.7
5.	-6 -6	49	85.7
6.	-0 -7	46	79.2
7.	-7 -8	54	90.7
	-o -9	57 57	68.4
8.		57 54	72.2
9.	-10	61	65.6
?0.	-11	59	74.6
21.	-12		
22.	-13	62	90.3
23.	-14	54	83.3
4.	-15	68	77.9
25.	-16	68	58.6
26.	-17	52	59.6
27.	-18	63	90.5
28.	-19	42	63.4
29.	-20	64	76.6
30.	-21	61	73.8
31.	-22	55	59.2
32 .	-23	68	44.1
33.	-24	66	90.9
34.	- 25	51	88.1
35.	- 26	62	87.1

1	2	3	4
36.	SMP-4-VI NDT-	I 50	66.0
37.	-		80.5
38.	-	3 66	50.0
39.	-		82.3
40.	-		78 . 1
41.	-		92.2
42.	_	3 65	92 3
43,	-		88.8
44		10 89	96.6
45	SMP-5-VI NDT-		67.3
46.	-		60 . 4
47.	SMP-6-VI NDT-		48.0
48.	-		49.1
49.	-		59.7
50.	SMP-8-VI NDT-	1 22	72.7
51.	SMP-9-VI NDT-		94 . 9
52.	-		74 . 6
53.	_		73.7
54.	-		47.8
55.	-		80 . 0
56.	-		67.9
57.	-		98.1
58.	-		71.4
59.	<u>.</u>		80.6
60.	SMP-10-VI NDT-		70.7
61,	-		66.0
62	-		66.7
63.	-		87.5
64	-		62 . 1
65.	-		77.8
66	-		65.5
67.	-		87.8
68.	-		89.6
69.		10 50	96.0
70 .		11 60	71.7
71.		12 65	73 · 8
72.		13 58	56.9
73.		14 55	81.8
74.		15 47	72.3
75.		17 69	60.9
76 .		18 59	88.1
77.		19 49	89.8
78 .		20 62	51 . 6
79.		21 55	80.0
80,	SMP-11-VI NDT-	2 61	75.4

81. SMP-11-VI NDT-3 68 67.6 824 50 60.0 835 62 30.6 846 60 43.3 857 55 74.1 868 66 71.2 879 58 50.0 8810 44 27.3 89. SMP-12-VI NDT-4 50 42.0 907 53 64.1 939 54 59.2 9410 78 67.9 9511 55 81.8 9612 55 81.8 9612 55 81.8 9913 47 51.1 9814 51 60.4 9915 53 72.9 101. SMP-13-VI NDT-3 51 60.4 9916 54 75.9 101. SMP-13-VI NDT-3 51 60.8 1024 42 52.4 1035 44 65.9 1046 54 40.7 105. SMP-16-VI NDT-3 58 60.3 1064 49 22.4 1075 48 50.0 1067 57 77.7 109. SMP-17-VI NDT-1 50 64.0 1002 67 86.6 1113 73 79.4 1124 67 76.1 1135 78 76.9 1146 49 65.3 1157 66 50.0 1168 61 59.0 117. SMP-18-VI NDT-1 50 64.0 117. SMP-18-VI NDT-1 50 66.5 117. SMP-18-VI NDT-1 65 44.6 159.0 117. SMP-23-VI NDT-1 65 44.6 159.0 117. SMP-23-VI NDT-1 65 44.6 159.0 117. SMP-23-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 50 60.0 1224 69 71.0 1224 69	1	2	3	4
82.	81.	SMP-11-VI NDT-3	68	67.6
83.	82.			
85.	83.	-5	62	
86.	84.		60	43.3
87.	85.			74.1
88.			66	71.2
89. SMP-12-VI NDT-4 50 42.0 905 46 60.9 916 57 71.9 927 53 64.1 939 54 59.2 9410 78 67.9 9511 55 81.8 9612 55 81.8 9713 47 51.1 9814 51 60.4 9915 53 72.9 10016 54 75.9 101. SMP-13-VI NDT-3 51 60.8 1024 42 52.4 1035 44 65.9 1046 54 40.7 105. SMP-16-VI NDT-3 58 60.3 1064 49 22.4 1075 48 50.0 1087 57 87.7 109. SMP-17-VI NDT-1 50 64.0 1102 67 86.6 1113 73 79.4 1124 67 76.1 1135 78 76.9 1146 49 65.3 1157 66 50.0 1168 61 59.0 117. SMP-18-VI NDT-1 65 44.6 1182 57 29.8 1193 61 91.7 120. SMP-23-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 50 60.0 1222 61 39.3 1233 53 52.8	87 <i>.</i>			50.0
90.	88.			27.3
91.	89.		50	42.0
92.				60.9
93.		-6		
9410 78 67.9 9511 55 81.8 9612 55 81.8 9713 47 51.1 9814 51 60.4 9915 53 72.9 10016 54 75.9 101. SMP-13-VI NDT-3 51 60.8 1024 42 52.4 1035 44 65.9 1046 54 40.7 105. SMP-16-VI NDT-3 58 60.3 1064 49 22.4 1075 48 50.0 1087 57 87.7 109. SMP-17-VI NDT-1 50 64.0 1102 67 86.6 1113 73 79.4 1124 67 76.1 1135 78 76.9 1146 49 65.3 1157 66 50.0 1168 61 59.0 117. SMP-18-VI NDT-1 65 44.6 1182 57 29.8 1193 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 50 60.0 1222 61 39.3 1233 53 52.8				
9511 55 81.8 9612 55 81.8 9713 47 51.1 9814 51 60.4 9915 53 72.9 10016 54 75.9 101. SMP-13-VI NDT-3 51 60.8 1024 42 52.4 1035 44 65.9 1046 54 40.7 105. SMP-16-VI NDT-3 58 60.3 1064 49 22.4 1075 48 50.0 1087 57 87.7 109. SMP-17-VI NDT-1 50 64.0 1102 67 86.6 1113 73 79.4 1124 67 76.1 1135 78 76.9 1146 49 65.3 1157 66 50.0 1168 61 59.0 117. SMP-18-VI NDT-1 65 44.6 1182 57 29.8 1193 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 1222 61 39.3 1233 53 52.8				
9612 55 81.8 9713 47 51.1 9814 51 60.4 9915 53 72.9 10016 54 75.9 101. SMP-13-VI NDT-3 51 60.8 1024 42 52.4 1035 44 65.9 1046 54 40.7 105. SMP-16-VI NDT-3 58 60.3 1064 49 22.4 1075 48 50.0 1087 57 87.7 109. SMP-17-VI NDT-1 50 64.0 1102 67 86.6 1113 73 79.4 1124 67 76.1 1135 78 76.9 1146 49 65.3 1157 66 50.0 1168 61 59.0 117. SMP-18-VI NDT-1 65 44.6 1182 57 29.8 1193 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 50 60.0 1222 61 39.3 1233 53 52.8				
9713 47 51.1 9814 51 60.4 9915 53 72.9 10016 54 75.9 101. SMP-13-VI NDT-3 51 60.8 1024 42 52.4 1035 44 65.9 1046 54 40.7 105. SMP-16-VI NDT-3 58 60.3 1064 49 22.4 1075 48 50.0 1087 57 87.7 109. SMP-17-VI NDT-1 50 64.0 1102 67 86.6 1113 73 79.4 1124 67 76.1 1135 78 76.9 1146 49 65.3 1157 66 50.0 1168 61 59.0 117. SMP-18-VI NDT-1 65 44.6 1182 57 29.8 1193 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 1222 61 39.3 1233 53 52.8			55	
98.				81.8
9915 53 72.9 10016 54 75.9 101. SMP-13-VI NDT-3 51 60.8 1024 42 52.4 1035 44 65.9 1046 54 40.7 105. SMP-16-VI NDT-3 58 60.3 1064 49 22.4 1075 48 50.0 1087 57 87.7 109. SMP-17-VI NDT-1 50 64.0 1102 67 86.6 1113 73 79.4 1124 67 76.1 1135 78 76.9 1146 49 65.3 1157 66 50.0 1168 61 59.0 117. SMP-18-VI NDT-1 65 44.6 1182 57 29.8 1193 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 1222 61 39.3 1233 53 52.8		-13		51.1
100. -16 54 75.9 101. SMP-13-VI NDT-3 51 60.8 102. -4 42 52.4 103. -5 44 65.9 104. -6 54 40.7 105. SMP-16-VI NDT-3 58 60.3 106. -4 49 22.4 107. -5 48 50.0 108. -7 57 87.7 109. SMP-17-VI NDT-1 50 64.0 110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-23-VI NDT-1 50				
101. SMP-13-VI NDT-3				
102. -4 42 52.4 103. -5 44 65.9 104. -6 54 40.7 105. SMP-16-VI NDT-3 58 60.3 106. -4 49 22.4 107. -5 48 50.0 108. -7 57 87.7 109. SMP-17-VI NDT-1 50 64.0 110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61				
103. -5 44 65.9 104. -6 54 40.7 105. SMP-16-VI NDT-3 58 60.3 106. -4 49 22.4 107. -5 48 50.0 108. -7 57 87.7 109. SMP-17-VI NDT-1 50 64.0 110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8		SMP-13-VI NDT-3		
104. -6 54 40.7 105. SMP-16-VI NDT-3 58 60.3 106. -4 49 22.4 107. -5 48 50.0 108. -7 57 87.7 109. SMP-17-VI NDT-1 50 64.0 110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8		•		
105. SMP-16-VI NDT-3 58 60.3 106. -4 49 22.4 107. -5 48 50.0 108. -7 57 87.7 109. SMP-17-VI NDT-1 50 64.0 110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
106. -4 49 22.4 107. -5 48 50.0 108. -7 57 87.7 109. SMP-17-VI NDT-1 50 64.0 110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
107. -5 48 50.0 108. -7 57 87.7 109. SMP-17-VI NDT-1 50 64.0 110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
108. -7 57 87.7 109. SMP-17-VI NDT-1 50 64.0 110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
109. SMP-17-VI NDT-1 50 64.0 110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
110. -2 67 86.6 111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
111. -3 73 79.4 112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
112. -4 67 76.1 113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
113. -5 78 76.9 114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
114. -6 49 65.3 115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
115. -7 66 50.0 116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8		-5		
116. -8 61 59.0 117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
117. SMP-18-VI NDT-1 65 44.6 118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
118. -2 57 29.8 119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
119. -3 61 91.7 120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
120. SMP-20-VI NDT-1 50 60.0 121. SMP-23-VI NDT-1 46 56.5 122. -2 61 39.3 123. -3 53 52.8				
121. SMP-23-VI NDT-1 46 56.5 1222 61 39.3 1233 53 52.8				
1222 61 39.3 1233 53 52.8				
1233 52.8	121.			
1233 53 52.8 1244 69 71.0				
1244 69 /1.0	123.			
	124.	-4	69	/1.0

1	2		3	4
125.	SMP-24-VI		57	84,2
126.		-2	61	63 . 9
127		-3	59	42.4
128		-4	51	54 3
129.		-5	57	71.9
130.	SMP-25-VI	NDT-2	54	33 . 3
131		-3	55	23.,6
132.		-4	60	51.7
133.		- 5	67	851
134.		-6	63	460
135		-7	59	40.7
136.	SMP-26-VI	NDT-3	57	91.2
137.		-4	62	79.0
138.	SMP-27-VI	NDT-2	56	71.4
139.	SMP-28-VI	NDT-2	65	769
140		-3	65	38 . 5
141.		-6	57	80. 7
142		-7	62	37.1
143.		-8	72	68.0
144.		-9	70	60 ,0
145		-10	71	91.5
146.		-11	74	100.0
147.		-12	55	74.5
148	SMP-31-VI	NDT-1	59	94.9
149.		-2	67	85.1
150		-3	56	58.9
151		-4	56	62.5
152.		- 5	58	44.8
153		-6	6 8	779
154		-7	61	62.3
155	SMP-32-VI	NDT-1	75	880
156		-2	75	72.0
157.		-3	57	684
158		-4	65	47.7
159.	SMP-33-VI		52	596
160.	SMP-35-VI	NDT-1	72	69.4
161		-2	65	75.0
162		-3	69	739
163		-4	65	892
164	SMP-36-VI		56	67.8
165		-3	69	927
166		-4	56	96.4
167		-5	53	74 .4
168		-6	55	491
169		- 7	56	64 . 3
170.		-8	59	50 . 8

1	2	3	4
171.	SMP-36-VI NDT-9	61	90.2
172.	-10	40	90.0
173.	-11	52	90.4
174.	-13	36	63.9
175.	-14	63	74.6
176.	SMP-37-VI NDT-2	48	75.0
177.	-3	58	81.0
	-4	47	
178.			53.2
179.	-5	47	72.3
180.	-6	41	80.5
181.	-7	63	82.5
182.	SMP-41-VI NDT-1	57	78.9
183.	-2 -3	55	69.1
184.		72	70.8
185.	-4	71	71.8
186.	-5	57	75.4
187.	SMP-42-VI NDT-1	57	45.4
188.	-2	62	53.2
189.	SMP-43-VI NDT-1	63	68.2
190.	-2	72	59.7

APPENDIX-VI

Results of screening selections from M-1 (DC-F3) 'A' for wilt resistance in Vertisol sick plot-'B'.

S1 No	Pedigree	No. of plants	Percent wilt
1	2	3	4
1	75004-79-VI NDT-1	68	56.1
2.	-2	61	42.6
3	-3	71	84.5
4	-4	58	569
5.	-5	63	413
6.	- 6	55	78.2
7.	-7	74	27.8
8	-8	63	50 8
9.	75004-81-VI NDT-2	63	27.0
10.	75004-84-VI NDT-1	55	382
11.	-2	64	73.4
12.	75004-85-VI NDT-2	74	41.9
13.	-3	78	69.2
14.	-4	67	68 ⋄6
15.	- 5	64	78.1
16.	-6	77	42.8
17	-7	57	68.4
18.	-8	79	73 .4
19	-9	69	81.1
20	-10	75	<i>7</i> 6 .0
21	75004-88-VI NDT-1	65	43.1
22.	-2	75	893
23.	75004-91-VI NDT-1	76	88 .1
24	-2	55	80.0
25.	-3	73	86.3
26 .	-4	87	766
27	75004-92-VI NDT-1	67	82.1
28.	75004-94-VI NDT-1	72	58.3
29.	- 2	66	80 . 3
30 .	-3	68	58.8
31	75004-95-VI NDT-1	69	86 9
32 .	75004-96-VI NDT-1	66	65.1
33.	75004-97-VI NDT-1	61	94 8
34 。	-2	73	75 . 3
35 .	75004-98-VI NDT-1	61	65.6
36 .	75004-100-VI NDT-1	65	73 .8

1	2	3	4
37.	75013-25-VI NDT-1	43	37.2
38	-2	65	80.0
39.	75013-85-VI NDT-1	60	85.7
40.	-2	70	68 6
41.	-3	72	75.0
42.	75013-88-VI NDT-1	59	72.9
43.	-2	69	86.4
44.	-3	65	89.5
45.	75013-89-VI NDT-1	68	91.2
46.	75013-93-VI NDT-1	61	55.7
47.	75013-95-VI NDT-1	66	59.1
48.	-2	59	53.1
49.	75013-97-VI NDT-1	57	70.2
50.	-2	74	59.4
51.	75013-99-VI NDT-1	62	59.7
52.	75013-100-VI NDT-1	49	65.3
53.	75013-102-VI NDT-1	74	77.0
54.	75013-103-VI NDT-1	65	67.7
55.	-2	52	67.3
<u>56</u> .	75013-103-VI NDT-3	56	78.6
57.	-4	56	60.7
58.	-5	43	58.1
59.	-6	46	56.5
60.	75013-105-VI NDT-1	62	74.2
61.	75013-116-VI NDT-1	42	93.7
62 .	-2	30	50.0
63.	75020-83-VI NDT-1	52	100.0
64.	-2	62	82.2
65.	-3	58	96.5
66.	-4	54 53	77.8
67.	-5	53	90.6 98.6
68.	75020-84-VI NDT-1	71 50	
69.	-2	59	91.5 84.5
70 .	-3	71 76	
71.	75020-85-VI NDT-1	76 53	85.5
72.	75020-88-VI NDT-1		94.3
73.	75020-91-VI NDT-1	78 68	93.6 91.2
74 75	75020-94-VI NDT-1		
75.	75020-94-VI NDT-2	67 73	88.0 86.3
76. 77.	75020-94-VI NDT-3	73 77	88.3
77. 78.	75020-94-VI NDT-4	7 / 57	75.4
	75020-95-VI NDT-1	57 59	75.4 79.7
79. 80.	75020-101-VI NDT-1 -2	59 57	79.7 71.9
JU .	-2	57	/ 1 . 3

1	2	3	4
81.	75020-101-VI NDT-3	81	71.6
82 .	-4	63	77.8
83。	-5	65	90 .8 🕧
84 .	-6	66	80.3
85 .	- 7	72	94.4
86。	-8	71	63.4
87 .	-9	49	79.6
88.	-10	52	86.5
89 a	-11 '	70	64 3
90 "	-12	71	42.2
91.	75020-102-VI NDT-1	79	72.1
92.	-2	72	84.7
93.	-3	73	95∵9
94 .	75023-77-VI NDT-1	65	96.9
95.	75023-84-VI NDT-1	75	94.7
96	-2	61	82.0
97.	-3	58	87.9
98.	75023-92-VI NDT-1	63	68.2
99 .	75023-96-VI NDT-1	62	71.0
100:	-2	. 70	40.0
101.	-3	75	867
102.	75023-97-VI NDT-1	64	79. 7
103.	-2	56	76.8
104	75009-99-VI NDT-1	59	49.1
105.	73003=39=V1 NB1=1 -2	60	35.0
106	75009-100-VI NDT-1	60	43.3
107.	75009-100-VI NDT-1	72	77,8
108.	73009=102=V1 ND1=1 -2	62	51.6
100.	-3	67	65.7
110.	75009-104-VI NDT-1	62	82 .2
111.	73003=104=¥1 ND1=1 -2	56	92.8
112	-3	68 [,]	91.2
113.	-3 -4	49	69.4
114	75009-106-VI NDT-1	59	356
115.		59 59	64 . 4
116.	-2 75009-107-VI NDT-1	66	53.9
		74	81.1
117. 118.	-2 75009-111-VI NDT-1	74 57	73.7
110.	75009-111-VI ND1-1 -2	62	73.7 58.1
120.	-2 -3	63	71.4
120.	75009-112-VI NDT-1	65	35,4
122		61	35.4 78.7
123	-2 -3		787 617
	-3 -4	60 52	57.7
124 125	-4 -5	65	58.5
125.	- 3	00	30 _" 3

1	2	3	4
126.	75009-114-VI NDT-1	65	38,5
127.	-2	59	66.1
128.	-3	72	51.4
129.	-4	70	42.8
130.	75009-116-VI NDT-1	64	40.6
131.	-2	57	77.2
132.	75009-121-VI NDT-1	61	54 . 1
133.	-2	60	75.0
134.	75009-124-VI NDT-1	67	83.6
135.	- 2	68	77.9
136.	75028-76-VI NDT -1	59	78.0
137.	-2	57	75.4
138.	75028-78-VI NDT -1	64	60.9
139.	-2	60	86.7
140.	75028-81-VI NDT -1	76	89.5
141.	75028-82-VI NDT -1	63	84.1
142.	75028-83-VI NDT -1	57	77.2
143.	-2	62	90.3
144.	75028-84-VI NDT -1	60	75.0
145.	-2	62	85.5
146.	75028-85-VI NDT -1	80	78.7
147.	-2	60	73.7
148.	-3	54	77.8
149.	75028-87-VI NDT -1	61	60.6
150.	75028-88-VI NDT -1	62	61.3
151.	75028-92-VI NDT -1	46	76.1
152,	-2	47	42.5
153.	75028-93-VI NDT -1	52	57.7
154	-2	54	57.4
155.	-3	59	30.0
156.	-4	46	30.4
157.	· - 5	62	45,2
158.	75028-96-VI NDT -1	42	50.0
159.	-2	50	66.0
160.	-3	51	45.1
161.	-4	55	67.3
162.	75028-97-VI NDT -1	52	48.1
163.	-2	64	67.2
164.	-3	53	77.3
165.	75028-100-VI NDT-1	55	85.4
166.	-2	59	88.1
167	75028-102-VI NDT-1	54	75.9
168.	-2	58	50.0
169.	75028-104-VI NDT-1	64	62.5
170.	~2	66	62.1

171	1	2	3	4
173	171			49.1
174. 75028-106-VI NDT-1 66 66 7 1755 75028-108-VI NDT-1 65 89.2 176. 75028-109-VI NDT-1 55 65.4 177		-2	52	
175	173.	- 3	52	59 , 6
176	174.	75028-106-VI NDT-1	66	66 . 7
177	175.			89.2
178.	176.	75028-109-VI NDT-1		
179.			62	
180.			. 71	
181	179.	75028-111-VI NDT-1	61	
182	180.	-2	. 61	62.3
183.	181.	75028-115-VI NDT-1	63	
184.		•		483
185	183.	75028-119-VI NDT-1		
186.		• . -2		
187.	185	-3	. 67	50 . 7
188.	186.	75010-54-VI NDT -1		
189.	187.			
190.				83.3
191				
192.				
193. 75010-72-VI NDT -1 1942 195. 75010-74-VI NDT -1 1962 1970 68.6 197. 75010-75-VI NDT -1 198. 75010-76-VI NDT -1 199. 75010-77-VI NDT -1 2002 2013 202. 75010-78-VI NDT -1 2032 204. 75010-79-VI NDT -1 2052 206. 75010-87-VI NDT -1 2072 2083 2083 209. 75010-88-VI NDT -1 2102 211. 75010-91-VI NDT -1 2102 211. 75010-92-VI NDT -1 212. 75010-92-VI NDT -1 2132 214. 75059-34-VI NDT -1 2152 216. 75059-34-VI NDT -1 2172 218. 75059-34-VI NDT -1 2192 2102 211. 75059-34-VI NDT -1 2102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102 21102	191 .		55	
194	192.		69	
195. 75010-74-VI NDT -1 53 92.4 1962 70 68.6 197. 75010-75-VI NDT -1 69 94.2 198. 75010-76-VI NDT -1 58 93.1 199 75010-77-VI NDT -1 57 78.9 2002 54 90.7 201 -3 55 88.9 202. 75010-78-VI NDT -1 60 90.0 203 -2 59 91.5 204. 75010-79-VI NDT -1 67 76.1 2052 44 93.2 206. 75010-87-VI NDT -1 73 86.3 2072 64 70.3 2083 64 90.6 209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1				
196				
197. 75010-75-VI NDT -1 58 93.1 198. 75010-76-VI NDT -1 58 93.1 199. 75010-77-VI NDT -1 57 78.9 2002 54 90.7 201 -3 55 88.9 202. 75010-78-VI NDT -1 60 90.0 2032 59 91.5 204. 75010-79-VI NDT -1 67 76.1 2052 44 93.2 206. 75010-87-VI NDT -1 73 86.3 2072 64 70.3 2083 64 90.6 209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
198				
199. 75010-77-VI NDT -1 57 78.9 2002 54 90.7 201 -3 55 88.9 202. 75010-78-VI NDT -1 60 90.0 203 -2 59 91.5 204. 75010-79-VI NDT -1 67 76.1 2052 44 93.2 206. 75010-87-VI NDT -1 73 86.3 2072 64 70.3 2083 64 90.6 209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
200.				
201				
202. 75010-78-VI NDT -1 60 90.0 203 -2 59 91.5 204. 75010-79-VI NDT -1 67 76.1 2052 44 93.2 206. 75010-87-VI NDT -1 73 86.3 2072 64 70.3 2083 64 90.6 209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
203 204. 75010-79-VI NDT -1 67 76.1 2052 44 93.2 206. 75010-87-VI NDT -1 73 86.3 2072 64 70.3 2083 64 90.6 209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
204. 75010-79-VI NDT -1 67 76.1 2052 44 93.2 206. 75010-87-VI NDT -1 73 86.3 2072 64 70.3 2083 64 90.6 209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
205.				
206. 75010-87-VI NDT -1 73 86.3 2072 64 70.3 2083 64 90.6 209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
2072 64 70.3 2083 64 90.6 209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4			• •	
208 -3 64 90.6 209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
209. 75010-88-VI NDT -1 58 81.0 2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
2102 70 78.6 211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
211. 75010-91-VI NDT -1 62 95.2 212. 75010-92-VI NDT -1 75 85.3 2132 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
212 75010-92-VI NDT -1 75 85.3 213 -2 73 87.7 214 75059-34-VI NDT -1 61 57.4				
213 -2 73 87.7 214. 75059-34-VI NDT -1 61 57.4				
214. 75059-34-VI NDT -1 61 57.4				
C10" \QQQA-3Q-AT MM1 -1 QQ Q1"Q				
	215.	12023-32-A1 IA-1	00	01,0

1	2	3	4
216.	75059-35-VI NDT-2	71	40.8
217.	-3	74	43.2
218.	-4	47	46.8
219.	75059-39-VI NDT-1	67	82.1
220.	75059-43-VI NDT-1	72	62.5
221.	75059-45-VI NDT-1	58	74.1
222.	-2'	66	57.6
223.	-3	71	78.9
224.	-4	66	66.7
225.	- 5	67	91.0
226.	- 6	60	81.4
227.	-7	71	32,4
228.	-8	91	81.5
229.	75059-50-VI NDT-1	73	76.7
230.	-2	70	85.7
231.	-3	58	53.4
232.	75059-56-VI NDT-1	48	79.2
233.	75059-58-VI NDT-1	12	25.0
234.	75059-62-VI NDT-1	63	65.1
235.	75059-69-VI NDT-1	63	77.8
236.	75059-70-VI NDT-1	59	88.1
237.	-2	60	78.3
238.	75033-15-VI NDT-1	52	82.7
239.	-2	69	89.8
240.	-3	66	93.9
241.	-4	59	91.5
242.	-5	48	89.6
243.	75033-16-VI NDT-1	64	71.9
244.	-2	57	91.2
245.	75033-17-VI NDT-1	62	77.4
246.	-2	49	71.4
247.	-3	58	84.5
248.	75033-20-VI NDT-1	59 66	32.2
249.	75033-21-VI NDT-1	66	30.3
250.	-2	60	60.0
251.	75033-22-VI NDT-1	54	59.2
252.	-2	75 64	77.3
253.	-3	64	84.3
254.	75033-32-VI NDT-1	58 54	84.5
255.	-2	54	85.2
256.	-3	64	98.4
257.	75033-43-VI NDT-1	55 64	69.1
258.	-2	64	92.2
259. 260	-3	68	6 6. 2
260.	-4	70	80.0

1	2	3	4
261	75033-46-VI NDT-1	60	983
262	-2	74 50	81.1
263	-3	59 50	100.0
264	-4	52	71 .1
265	75033-50-VI NDT-1	68	85 · 3
266 .	75033-51-VI NDT-1 -2	66 56	72.7 69.6
267. 268.	-2 -3	64	79.7
269.	-4	58	96.5
270	- 7	74	66 , 2
271.	-8	65	60.0
272.	-9	63	68.2
273.	-10	59	55.9
274	-11	62	66.1
275。	-13	64	57.8
276 .	-16	59 °	28.8
277.	-17	44	31 .8
278.	-18	63	46 . 0
279.	-19	70	24 3
280	-20	25	40.0
281	-21	60	⇒ 42.6
282	-22	· 66	38.1
283. 284.	-23 -24	55 63	65.4 54.0
285.	-24 -25	60	617
286	-25 -26	62	88 . <i>1</i>
287.	-27	53	84.9
288	75033-52-VI NDT-2	46	54.3
289	-5	57	77.2
290 .	-6	51	533
291 .	-7	49	69 4
292 .	-8	63	68.2
293	-10	51	72.5
294	-11	58	79.3
295.	-15	64	93 7
296	-17	26	69.2
297.	-21	54	63.0
298	-22	68	72.0
299	-23 -24	58 58	87 5 79 3
300. 301.	-24 -25	44	79.3 75.0
301.	-25 · · · · · · · · · · · · · · · · · · ·	44	32.6
302.	75033-53-VI NDT-1	50	18.0
304	75033-56-VI NDT-1	55	58.2
305.	-2	63	71.4
	_		· · · · · ·

1	2	3	4
306.	75033-57-VI NDT-1	65	93.3
307	-2	58	84.5
308.	75033-62-VI NDT-1	64	92.2
309.	75049-13-VI NDT-1	64	82.8
310.	-2	61	78.7
311.	75049-14-VI NDT-1	54	61.1
312.	-2	66	92.1
313.	-3	64	85.9
314.	-4	51	78.4
315.	-5	55	
316.	-5 -6		87.3
		58	75.9
317.	75049-15-VI NDT-1	64	75.0
318.	-2	43	81.4
319.	-1	52	28.8
320.	-2	65	68.9
321.	75049-17-VI NDT-1	54	40.7
322.	-2	60	63.3
323.	75049-20-VI NDT-1	53	35.8
324.	75049-23-VI NDT-1	49	75.5
325.	75049-27-VI NDT-1	47	53.2
326.	-2	54	55.5
327.	-3	72	81.9
328.	75049-28-VI NDT-1	60	53.3
329.	75049-32-VI NDT-1	45	53.3
330.	73049-32-VI NDI-1 -2	53	62.3
330.	-2 -3		
		43	55.8
332.	75049-34-VI NDT-1	59	74.6
333.	-2	64	68.7
334	75049-35-VI NDT-1	55	81.8
335.	-2	51	76.5
336.	-3	62	56.4
337.	75049-37-VI NDT-1	66	31.8
338.	- 2	69	85.5
339,	75049-39-VI NDT-1	58	65.5
340.	75049-40-VI NDT-1	76	30.3
341	75049-42-VI NDT-1	73	71.2
342.	-2	56	62.5
343.	75049-43-VI NDT-1	64	70.3
344.	73043-43-41 NB1-1 -2	59	42.4
345.	-3	61	55.7
346.	75049-45-VI NDT-1	72	59.7
347.	75049-45-VI NDI-1 -2	72 59	39.0
		59 57	75.4
348.	75049-47-VI NDT-1	5/	/3.4

1	2	3	4	
349	75049-47-VI NDT-2	61	59.0	
350	-3	57	71.9	
351.	75049-50-VI NDT-1	58	37.9	
352	75049-52-VI NDT-1	52	46.1	
353.	-2	55	436	
354	75049-53-VI NDT-1	54	33.3	
355.	-2	56	44.6	
356	75049-55-VI NDT-1	60	50 . 0	
357	-2	69	68.8	
358	75049-56-VI NDT-1	61	75.4	
359	75049-58-VI NDT-1	68	82 . 3	
360.	75049-59-VI NDT-1	75	86.7	
361.	75049-64-VI NDT-1	72	98.6	
362.	75049-80-VI NDT-1	61	95.1	

APPENDIX- VII

Results of screening selections from M-1 (DC-F₃) -'B' for wilt resistance in Vertisol sick plot -'B'

1. 2. 3. 4. 5.	2 75023-56-VI NDT-1 -2 -3 -4 -5	3 68 62 79	4 64.7 66.1
2. 3. 4.	-2 -3 -4	62	
3. 4.	-3 -4		66.1
4.	-4	79	
4. 5.	-4 -5	, ,	83.9
5.	-5	71	48.6
_	•	61	54.1
<u>6</u> .	-6	66	84.8
7.	-7	70	82.8
8.	-8	57	82.4
9.	-9	66	84.8
10.	-10	56	76.8
11.	75023-102-VI NDT-1	71	59.1
12.	-2	61	86.9
13.	-3	52	51.9
14.	-4	71	91.5
15.	-5	75 66	82.7
16.	-6	66	39.4
17.	-7	74 53	98.6
18.	-8	51	58.8
19.	-9	69 75	75.4 46.7
20.	-10		46.7
21. 22.	75009-39-VI NDT-1	59 64	98.3 57.8
23.	-2 -3	70	85.7
24.	-3 -4	60	85.0
25.	- 	56	91,1
26.	-5 -6	50 50	74.0
27.	-0 -7	64	96.9
28.	-8	66	69.7
29.	-9	57	91.2
30.	-10	78	87.2
31.	75009-119-VI NDT-1	50	82.0
32.	75009-119-VI ND1-1 -2	51	68.6
33.	-2 -4	84	95.2
34.	- 	68	79.4
35.	-6	64	89.1
36.	- 0 -7	67	76.1
37.	-8	63	93.6
38.	-9	55	67.3
39.	-10	81	98.8

1	2	3	4
40.	75028-99-VI NDT-1	61	47.5
41.	-2	64	60.9
42	-3	59	83.0
43 .	-4	67	76 . 1
44 .	-5	45	57 .8
45.	-6	69	81.1
46.	-7	65	58 . 5
47.	- 8	70	77.1
48.	-9	68	66,2
49。	-10	42	92.8
50	75059-67-VI NDT-1	34	61.8
51.	-2	79	44.4
52.	-3	63	71.4
53 .	-4	52	44.2
54 .	-5	59	61.0
55.	-6	63	71.4
56。	-7	65	67.7
57.	-8	55	72.7
58.	-9	59	74 6
59.	-10	57	63.1
60 .	75059-39-VI NDT-1	57	35.0
61.	-2	69	35.1
62.	-3	52	53.8
63.	-4	58	81.0
64	- 5	63	63.5
65	-6	63	57 Î
66.	- 7	69	55.1
67.	-8	65	33.8
68.	-9	67	25.4
69.	-10	58	72.4
70 .	75020-71-VI NDT-1	36	75.0
71	-2	50	84.0
72.	-3	51	94.1
73.	-4	42	68.8
74	-5	31	58 \$ 5
	-5 -6	58	96.5
75 _«	-6 -7		66.0
76	-/ -8	50 55	
77			76.4
78 .	-9	51 48	72.5
79 .	-10	48	85.4
80.	75020-80-VI NDT-1	56	55.3
81	-2	62	54.8
82.	-3	52	711
83.	-4	66	89 . 4

84. 75020-80-VI NDT-5 35 57.1 856 67 98.5 867 55 81.8	
867 55 81 _. 8	
878 51 88.2	
889 66 74.2	
8910 53 84.9 90. 75020-82-VI NDT-1 60 83.3	
912 53 83.0 923 54 81.5	
934 60 90.0	
945 64 87.5	
956 53 94.3	
967 62 72.6	
978 61 90.2	
989 54 70.4	
9910 60 93.3	
100. 75023-68-VI NDT-1 61 100.0	
1012 55 90.9	
1023 70 95.7	
1034 54 88.9	
1045 58 67.2	
1056 43 81.4	
1067 52 48.1	
1078 55 80.0	
1089 57 66.7	
10910 57 59.6	
110. 75023-71-VI NDT-1 56 53.6 1112 58 70.7	
1112 58 70.7 1123 59 47.4	
1134 68 79.4	
1145 63 66.7	
1156 68 70.7	
1167 65 87.7	
1178 72 83.3	
1189 61 93.4	
11910 66 86.4	
120. 75023-100-VI NDT-1 64 78.1	
1212 48 95.8	
1223 74 75.7	
1234 57 96.5	
1245 61 88.5	
1256 53 83.0	
1267 58 91.4 1278 42 57.1	
1278 42 57.1	

1	2	3	4
128.	75023-100-VI NDT-9	64	48.4
129.	-10	50	780
130	75023-101-VI NDT-1	48	77.1
131.	-2	65	69.2
132.	-3	57	86 0
133.	-4	58	55 . 2
134	-5	59	915
135.	- 6	44	77 3
136	-7	51	52.9
137.	-8	49	73.5
138.	- 9	54	55.5
139.	-10	57	56.0
140 。	75009-72-VI NDT-1	46	50 . 0
141.	- 2	50	38.0
142.	-3	62	56.4
143.	-4	56	73.2
144	- 5	39	58.9
145.	-6	41	78.0
146.	- 7	51	627
147.	- 8	51	17.6
148.	-9	51	21.6
149.	-10	62	3 69
150.	75009-113-VI NDT-1	47	55.3
151.	-2	59	74.6
152	-3	49	783
153	-4	51	588
154	-5	52	615
155.	-6	61	55 a 7
156	-7	63	77,8
157	-8	68	51.5
158.	-9	57	54.4
159	-10	63	889
160	75009-118-VI NDT-1	64	75.0
161	-2	48	50.0
162.	-3	46	52.2
163.	-4	27	74.1
164.	-5	42	80.9
165.	-6	62	56.4
166	- 7	72	75.0
167.	- 8	52	78.8
168.	-9	60	83.3
169.	-10	50	74.0
170.	75009-120-VI NDT-1	51	64.7
171.	73003-120-VI ND1-1 -2	33	81.8
8 7 B o	- <i>L</i>	55	U, , U

1	2	3	4
172.	75009-120-VI NDT-3	52	42.3
173.	-4	57	82.4
174.	-5	42	78 " 6
175.	-6	52	67.3
176.	-7	48	35.4
177.	-8	58	74.1
178.	-9	44	54.5
179.	-10	47	61.7
180.	75009-126-VI NDT-1	39	87.2
181.	-2	43	81.4
182.	-3	33	60.6
183.	-4	66	71.2
184.	-5	57	71.9
185.	-6	41	70.7
186.	- 7	49	69.4
187.	- 8	52	90.4
188.	-9	45	75.5
189.	-10	32	93.7
190.	75009-128-VI NDT-1	65	11.1
191.	-2	58	75.9
192.	-3	68	50.0
193.	-4	73	84.9
194.	- 5	37	81.1
195.	-6	77	90.9
196.	- 7	63	76.2
197.	-8	56	96.4
198.	-9	70	84.3
199.	-J0	55	60.0
200	75009-129-VI NDT-1	52	84.6
201.	-2	5 <u>9</u>	83.0
202.	-3	46	71.7
203.	-4	41	74.5
204.	- 	62	58.1
205.	-6	30	76.7
206.	-6 -7	52	61.5
207.	-7 -8	54	81.5
208.	-8 -9	44	52.3
200.	-9 -10	51	82.3
210.	75028-70-VI NDT-1	44	63.6
210.	75028-70-VI NUT-1 -2	44 49	69.4
212.	-2 -3	36	69.4
212.	-3 -4	56 54	87.0
214.		35	65.7
214.	-5 -6	35 44	84.1
£10.	-0	77	07.1

1	2	3	4
216	75028-70-VI NDT-7	48	70.8
217. 218.	-8 -9	53 60	73.6 81.7
219	-10	57	85 . 9
220	75028-72-VI NDT-1	57	84 . 2
221 .	-2	44	81.8
222 .	-3	41	82.9
223.	-4	60	91.7
224 225 .	-5 -6	40	700
226	-o -7	37 38	89 . 2 84 . 2
227	-7 -8	59	72.9
228	-9	44	61.4
229.	-10	60	70.0
230	75028-89-VI NDT-1	47	872
231 .	-2 ·	36	75.0
232	-3	49	89.8
233 . 234 .	-4 -5	47 43	63.8 73.5
235.	-5 -6	43 43	73.5 65.1
236	-7 -7	43	69.8
237.	-8	40	60.0
238.	-9	35	0, 08
239	-10	53	84 , 9
240	75028-98-VI NDT-1	53	50.9
241. 242.	-2 -3	38 47	65.8 70.2
242.	-3 -4	47 34	70.2 79.4
244.	-5	42	61.9
245	-6	37	86.5
246	-7	67	67.2
247	-8	57	77.2
248	-9	54	61.1
249. 250	-10 75028-103-VI NDT-1	43 65	83 . 7 90 . 8
251	75020-103-VI NDI-1 -2	55 55	906 964
252	-3	54	96.3
253	-4	37	91.9
254	- 5	60	91.7
255.	-6	53	88 .4
256.	-7	49	95.9
257.	-8 -9	41 48	97.6 100.0
258 259	-9 -10	48 68	956
Z33.,	-10	00	90.0

1	2	3	4
260.	75028-112-VI NDT-1	53	98.1
261.	-2	50	92.0
262 .	-3	58	88.1
263.	-4	44	97.7
264.	- 5	38	100.0
265.	- 6	45	96.4
266.	-7	49	100.0
267.	-8	38	76.3
268.	-9	47	70.2
269 .	-10	57	82.4
270.	75059-66-VINDT -1	57	43.8
271.	-2	57	77.2
272.	-3	52	69.2
273.	-4	60	61.7
274.	-5	58	82.7
275.	- 6	59	74.6
276.	-7	64	81.2
277.	-8	51	94.1
2 78.	-9	56	80.3
279.	-10	55	74.5
280.	75059-27-VI NDT-1	58	63.8
281.	-2	59	78.0
282.	-3	47	78.7
283.	-4	72	87.5
284.	- 5	54	59.2
2 85 .	- 6	48	47.9
286.	- 7	62	51.6
287.	-8	58	79.3
288.	-9	47	468
289.	-10	41	90.2
290.	75059-33-VI NDT-1	62	77.4
291.	- 2	42	80.9
292.	-3	· 59	84.7
293.	-4	53	75.5
294	- 5	59	55.9
295 。	- 6	46	71.7
296 .	- 7	55	81.8
297。	- 8	47	74.5
298 .	-9	52	80 . 8
299 .	-10	56	76.8
300.	75059-36-VI NDT-1	60	21.7
301.	- 2	59	69.5
302.	-3	59	29.8
303.	-4	52	46.1
304 。	- 5	50	80.0
305。	-6	5 6	62.5

306 a	75059-36-VI NDT-7	54	85 . 2
307 .	- 8	61	62 3
308 .	- 9	54	85.7
309	-10	67	83.,6
310.	75059-37-VI NDT-1	62	41.9
311.	- 2	46	23.9
312.	-3	61	34 . 4
	-3		
313	-4	48	39.6
314.	- 5	55	60.0
315	-6		100.0
	- 0	49	
316.	- 7	58	396
317.	- 8	57	75 ، 4
318.	-9	56	83 9
319.	-10	54	74.1
3 20 .	75059-40-VI NDT-1	73	78.1
321	-2	36	83.3
322.	-3	41	878
323	-4	43	767
324	- 5	46	80 . 4
325 .	-6	69	78.3
326	- 7	52	36 5
327	-8	55	60.0
328	-9	47	70.2
329.	-10	60	71.7
	75059-44-VI NDT-1	47	95.7
330 .			
331	-2	52	82.7
332 .	-3	51	882
	-4	43	76.7
333			
334 .	-5	49	<i>77</i> .5
335.	-6	51	74 5
336	- 7	60	98.3
337 .	-8	57	94.7
338 .	- 9	51	88 2
339	-10	48	91 . 7
			78.9
340	75033-54-VI NDT-1	57	/0.9
341 .	-2	53	92.4
342	- 3	49	83.7
343.	-4	58	89 . 6
344 。	- 5	53	868
345。	-6	38	<i>76 .</i> 3
346	- 7	35	68.6
		30 50	
347.	-8	53	88 . 7
348。	-9	51	98 . 0
349.	-10	51	100.0
350 .	75033-55-VI NDT-1	54	100.0

1	2	3	4
351.	75033-55-VI NDT-2	30	96.7
352.	-3	51	96.1
353.	4	64	100.0
354。	-5	72	97 . 2
355.	-6	60	100.0
356.	- 7	54	92.6
357.	-8	53	90.6
358.	- 9	51	92.1
359.	-10	47	93.6
360.	75049-36-VI NDT-1	51	86.3
361.	- 2	41	95.1
362.	-3	42	85.7
363.	-4	37	86.5
364.	- 5	46	89.1
365.	- 6	41	81.4
366.	-7	38	86.8
367.	-8	59	96.6
368.	-9	44	81.8
369.	-10	54	88.9
370.	75049-54-VI NDT-1	48	77.1
371.	-2	53	62.3
372.	-3	52	59.6
373.	-4	47	48.9
374 .	- 5	42	71.4
375.	-6	36	58.3
376.	- 7	52	65.4
377.	-8	49	57.1
378	- 9	43	62.8
379	-10	33	48.5

APPENDIX-VIII

Results of screening of F4 progenies selected from M-l for wilt resistance in Vertisol sick plot -'B'

S1. No.	Pedigree	No. of plants	Percent wilt
1	2	3	4
1.	74226-E-V NDT-1	57	49.1
2	74240-3-V NDT-1	81	76 . 5
3 ,	74240-2-V NDT-1	44	77.3
4	-3	59	72.9
5.	-4	88	898
6.	- 5	61	80.3
7.	74240-1-V NDT-1	67	86.6
8.	- 2	82	80.5
9 .	-3	80	96 2
10.	-4	85	92.9
11.	- 5	80	88 . 7
12.	74233-3-V NDT-1	76	658
13.	74233-4-V NDT-2	70	80.0
14.	-3	78	936
15	-4	85	82.3
16.	74233-1-V NDT-5	60	88↓3
17.	- 6	73	79.4
18.	74233-2-V NDT-7	69	956
19.	-8	46	76 . 1
20.	-9	66	100.0
21.	-10	78	88 . 5
22 .	-11	64	934
23.	74233-3-V NDT-12	47	48 ، 9
24.	-13	71	577
25	-14	56	41.1
26	- 15	66	21 2
27.	-16	77	66 . 2
28	74233-1-V NDT-17	63	92.1
29.	-18	71	59 .1
30 .	74233-4-V NDT-19	52	55 7
31	-20	69	797
32 .	-21	55	691
33 .	-22	52	73.1
34 .	- 23	59	47.4
35 .	-24	75	72.0
36.	-25	58	51.7
37.	- 26	61	52.4

1	2	3	4
38.	74233-4-V NDT-27	57	63.1
39.	-28	72	86.1
40.	-29	41	65.8
41.	-30	56	73.2
42.	-31	55	55.4
43.	-32	50	60.0
44.	74233-4-VI NDT-11	59	81.3
45.	74233-3-VI NDT-33	62	74.2
46.	-34	64	57.8
47.	-35	55	50.9
48.	-36	52	42.3
49.	74233-1-VI NDT-37	57	38.6
50.	-38	66	62.1
51.	- 39	69	53.6
52.	-40	40	65.0
53.	-41	60	53.3
54.	74240-4-VI NDT-12	57	87.7
55.	-13	36	66.7
56.	-14	60	70.0
57.	74233-2-V NDT-42	68	53.4
58.	-43	57	40.3
59.	-44	58	65.5
60.	-4 5	51	80.4
61.	74233-3-VI NDT-46	55	86.1
62.	-47	51	55.0
63.	-48	70	45.7
64.	-49	67	65.7
65.	-50	49	42.8
66.	-51	56	76.8

APPENDIX-IX

Results of screening of F4 & F3 progenies (selected from wilt nursery, 1976) for wilt in Vertisol sick plot -B

S1. No.	Pedigree	No. of plants	Percent wilt
1	2	3	4
1.	F _A -74243-1-W19	30	96.7
2.	-W2 Q	35	100.0
2. 3.	-W3 @	22	100.0
4.	-W4 ⋒	42	100.0
5 . 6 .	F ₄ -74243-2-W1 <u>@</u> -W2 @	24	87.5
6.	-W2 ®	25	88 0
7	-W3 @	28	96.4
8.	-W4 ₽	39	83.3
9	-W5 2	42	83.3
10.	−W6 ®	28	92.8
11	-W7 @	33	60.6
12.	-W8 ₽	15 19	100.0
13.	F ₄ -74243-3-W10	19	68.4
14.	-W2Q	27	592
15.	-W3 2	41	70.7
16.	-W4@	26	53.8
17	F ₄ -74243-4-W1Q	10	80.0
18.	-W2M	20	75.0
19.	-W3@	24	100.0
20.	-W4@	30	76.7
21 .	-W50	43	74.4
22 .	F ₄ -74243-5-W1@	35	971 896
23	4 -W20	29	78.9
24 .	-W3@	19 37	100.0
25.	-W4@	31	87.1
26	-W50 -W60	35	91.4
27	-wow -w7Q	19	78.9
28.	- W7 W - W8 Q	33	75.7
29 . 30	-₩9 ₽	21	90.3
30 . 31 .	-WJ 🖫	21	71.4
32.	-W118	31	74.2
33 .	F ₄ -74243-8-W19	28	85.7
34 .	-W28	27	85.2
35 .	-W2W	14	85.7
36 .	-W48	47	97.9
37 .	F ₄ -74243-9-W1	37	86.5
			Contd

1	2	3	4
38.	F ₄ -74243-9-W2	22	45.4
39.	' –₩3 @	17	17.6
40.	-W4 Q	22	81.8
41.	-W5 @	40	35.0
42.	-W6 &	28	50.0
43.	-W7 £	14	28.6
44.	-W8 2	48	64.6
45.	-W9 Q	33	78.8
46.	-W1 OQ	20	85.0
47.	-W110	24	54.2
48.	-W120	24	83.3
49.	-W1 3@	29	86.2
50.	-W14Q	38	84.2
51.	-W15 2	20	85.0
52.	-W16 2	14	85.7
53.	F74243-10-W10	46	93.5
54.	F ₄ -74243-10-W1 <u>@</u> -W2 <u>@</u>	45	91.1
55.	-W3 Q	30	76.7
56.	-₩3₩ -₩4₩	27	44.7
57.	-₩+₩ -W5 Q	31	83.9
58.	-₩5₩ -₩6₩	56	
59.			100.0
60.	-W79	36 36	100.0
	F ₄ -74167-1-₩1 <u>₩</u> -₩2 Q	26 26	100.0
61.	-W Z 184	36	85.0
62.	-W3@	33	100.0
63.	-W4@	25 50	84.0
64.	F ₄ -74167-2-W19	58	96.5
65.	-W∠ w	21	90.5
66.	(Early x Early)-1-WlQ	32	93.7
67.	-W2 Q	30	76.7
68.	-W3 Q	50	90.0
69.	-W4 <u>Q</u>	24	83.3
70.		30	73.3
71.	(Early x Early)-2-Wl®	27	92.6
72.	-W2 ®	13	100.0
73.	-₩3₽	25	96.0
74.	-₩4₩	39	100.0
75.	-₩5₽	41	95.1
76.	-₩6₩	32	90.6
77.	-W7 Q	52	51.9
78.	F ₂ -74277-W1 Q	23	100.0
79.	3 -W2Q	37	86.5
80.	-W3 2	28	100.0

1	2	3	4
81.	F ₃ -74277-W4	36	83.3
82.	-W5 Q	42	57.1
83.	F ₃ -74423-W10	38	73.7
84.	-W2Q	27	33.3
85.	-W3 @	43	79.1
86 .	-W4Q	24	48.1
87.	-₩5 Q	26	73.1
88 ,	-W6 Q	18	94.4
89.	-W7 Q	22	81.8
90.	-W8 Q	25	88.0
91.	-W9 Ω	31	74 . 2
92.	-W1O Ω	40	67.5
93.	-W11@	23	52.2
94.	-W12 @	20	90.0

APPENDIX-X

Results of screening of selections (F4) from RA-28 for wilt resistance in Vertisol sick plot -'B'

S1. No.	Pedigree	No. of plants	Percent wilt
1	2	3	4
1.	F ₄ -74376-W2 Q- VII NDT-1	35	80.0
2.	· -2	47	63.8
3.	-3	35	54.3
4.	F ₄ -74376-W6 Q- VII NDT-1	61	52.4
5.	F ₄ -74376-W17Q-VII NDT-1	53	77.3
6.	-2	63	90.5
7.	F ₄ -74376-W40@-VII NDT-1	71	69.0
8.	-2	53	24.5
9.	-3	62	54.8
0.	-4	68	66.1
1.	F ₄ -74376-W41 Q -VII NDT-1	38	92.1
12.	F ₄ -74376-W42@-VII NDT-1	33	63.6
13.	-2	54	59.2
4.	-3	43	39.5
5.	F ₄ -74427-W9Q-VII NDT-1	53	52.8
16.	F ₄ -74427-W16Q-VII NDT-1	62	72.6
17.	-2	39	58.9
18.	-3	52	62.5
19.	F ₄ -74427-W238-VII NDT-1	59	50.8
20.	-2	56	57.1
21.	-3	55	63.6
22.	F ₄ -74427-W29@-VII NDT-1	53	56.6
23.	-2	65	67.7
24.	F ₄ -74427-W36@-VII NDT-1	54	74.1
25.	4 / 142 / NSOM VII NS 1 -2	44	77.3
26.	-3	47	83.0
27.	-4	48	60.4
28.	F ₄ -74427-W39 Q -VII NDT-1	52	65.4
29.	-2	52	73.1
30.		48	85.4
31.	F ₄ -74427-W42@-VII NDT-1 F ₄ -74428-W8@-VII NDT-1	51	78.4
32.	-2	56	85.7
33.	-3	54	75.9
34.	-4	53	83.0
35.	F _A -74428-W13Q-VII NDT-1	34	79.4
36.	-2	53	83.7

1	2	3	4
37.	F ₄ -74428-W27@-VII NDT-1	29	93.1
38 . 39 .	-2 F _A -74428-W30@-VII NDT-1	34 46	100.0 67.4
40.	F ₄ -74428-W42Q-VII NDT-1	43	93.0
41. 42.	-2 -3	36 41	88.9 80.5
43.	F _A -74428-W43@-VII NDT-1	48	64.6
44 . 45 .	-2 -3	50 54	50.0 778
46.	F ₄ -74428-W44 Q -VII NDT-1	44	78 6
47	F ₄ -74429-W1-VII NDT-1	49	67.3
48.	F ₄ -74429-W2-VII NDT-1	57	70.2
49.	F ₄ -74429-W6-VII NDT-1	47	42.5
50 51	F ₄ -74429-W7-VII NDT-1 -2	38 45	658 80.0
52.	F ₄ -74420-W10Ω-VII NDT-1	40	50.0
53.	F ₄ -74420-W12@-VII NDT-1	37	56.7
54	F ₄ -74420-W14&-VII NDT-1	41	87.8
55.	F ₄ -74420-W20Q-VII NDT-1	56	589
56.	F ₄ -74420-W24Q-VII NDT-1	52	57.7
57. 58.	-2 E 74420 U250 VII NDT 1	45 52	42 2 80 8
50. 59.	F ₄ -74420-W25@-VII NDT-1	30	56.7
60.	F ₄ -74348-W1@-VII NDT-1 -2	40	52.5
61.	F ₄ -74348-W4@-VII NDT-1	49	95.9
62.	F ₄ -74348-W14@-VII NDT-1	22	81.8
63. 64.	F ₄ -7434 8 -W17@-VII NDT-1 -2	15 27	60.0 70.4
65 。	F ₄ -74348-W24@-VII NDT-1	42	88 . 1
66. 67.	-2 F _A -74348-W25 @-V II NDT-1	54 50	907 920
68	F ₄ -74348-W29@-VII NDT-1	29	93.1
69 .	-2	23	95.6
70	F ₄ -74348-W37 0- VII NDT-1	46	69.7
71	F ₄ -74348-W39@-VII NDT-1	39	100.0

Contda

	2	3	4
•	F ₄ -74348-W41@-VII NDT-1	49 47	93.9 95.7
	F ₄ -74360-W1@-VII NDT-1	55	90.9
•	-2 F ₄ -74334-W35@-VII NDT-1	65 69	92.3 63.8

APPENDIX-XA

Results of screening of selections from RA-28 (F4&F5) for wilt resistance in Vertisol sick plot - 'B'

S1. No.	Pedigree	No. of plants	Percent wilt
1	2	3	4
1	F _A -74351-W4@-VI NDT-1	25	76.0
2	4-74351-W180-VI NDT-1(source)	46	47.8
3	-74351-W180-VI NDT-2 12142)	33	61.5
4	-74363-W100-VI NDT-1	23	82.6
5 .	-74363-W120-VI NDT-1	39	8,08
6.	-74363-W18Q-VI NDT-1	39	43.6
7.	-2	44	523
8.	-74363-W34@-VI NDT-1	24	29.2
9.	-74363-W36Q-VI NDT-1	53	60 . 4
10.	-74363-W37@-VI NDT-1	47	53.2
11.	-74363-W37@-VI NDT-2	45	48 . 9
12.	-74418-W3Q-VI NDT-1	37	21.6
13.	-74418-W28@-VI`NDT-1	2 15	500
14.	-74418-W33@-VI NDT-1	15	533
15.	-74418-W35@-VI NDT-1	39	69.2
16	-74418-W44 @- VI NDT-1	30	133
17	-74418-W49@-VI NDT-1	40	7.5
18.	-74418-W51@-VI NDT-1	42	38.1
19.	-74418-W57@-VI NDT-1	38	71.0
20	-74418-W57@-VI NDT-2	52	519
21.	-74376-W5Q-VI NDT-2	36	91 7
22 ,	-74376-W7Q-VI NDT-1	49	77.5
23.	-74376-W7&-VI NDT-2	51	66 7
24	-74376-W9@-VI NDT-1	72	80.5
25.	-74427-W12Q-VI NDT-1	54	96 3
26 .	-74427-W13@-VI NDT-1	60	450
27 .	-74427-W17Q-VI NDT-1	53	81.1
28 .	-74427-W34Q-VI NDT-1	64	48.4
29.	-74427-W38@-VI NDT-1	65	69.2
30 .	-74428-W3Q+VI NDT-1	64	78.1
31	-74428-W5Q-VI NDT-1	64	50.0
32 .	-74428-W21@-VI NDT-1	72	87.5
33.	-74428-W21Q-VI NDT-2	62	903
34 .	-74428-W340-VI NDT-1	48	89 . 6
35 。	-74428-W38Q-VI NDT-1	26	38 , 5

1	2	3	4
36.	F ₄ 74428-W45@-V1 NDT·1	62	98.4
37.	-2	33	45.4
38.	-74429-WIIQ-VI NDT-1	49	75.5
39.	-74429-W34@-VI NDT-1	16	75.0
40.	-74348-W5@~VI NDT-1	20	45.0
41.	-74348-W100-VI NDT-1	37	62.2
42.	-74348-W11@-VI NDT-1	50	58.0
43.	-74348-W150-VI NDT-1	45	82.2
44.	-74348-W150-VI NDT-2	49	75.5
45.	-3	56	76.8
46.	-4	44	77.3
47.	- 5	49	83.7
48.	-74348-W27@-VI NDT-1	66	83.3
49.	-2	46	86.9
50.	-74348-W34@-VI NDT-1	42	66.7
		69	97.1
51.	-74348-W36@-VI NDT-1 -2	53	
52.	-74360-W4@-VI NDT-1		88.7
53.		42	80.9
54.	-74360-W12Q-VI NDT-1	56	87.5
55.	-74360-W25Q-VI NDT-1	57	78.9
56.	-74360-W26Q-VI NDT-1	69	84.0
57.	-74360-W27@-VI NDT-1	62	96.1
58.	-2	64	70.3
59.	-74360-W44Q-VI NDT-1	38	52.6
60.	-74360-W45@-VI NDT-1	48	58.3
61.	-74360-W53Q-VI NDT-1	25	48.0
62.	-74360-W56Q-VI NDT-1	61	85.2
63.	-74330-W80-VI NDT-1	20	75.0
64.	-74330-W9@-VI NDT-1	45	68.9
65.	· -2	41	75.6
66.	74330-W350-VI NDT-1	27	66.7
67.	-74434-W120-VI NDT-1	48	27.1
68.	-74434-W130-V1 NDT-1	24	8.3
69.	-74434-W160-VI NDT-1	27	11.1
70.	-74434-W37Q-VI NDT-1	39	56.4
71.	-74289-W26 0- V1 NDT-1	30	83.3
72.	- 2	49	89.8
73.	-74289-W310-VI NDT-1	43	63.1
74.	-74290-W30-V1 NDT-1	24	80.8
75.	-74290-W30-VI NDT-2	67	59 7
76.	-74290-W17@-VI NDT-1	54	94 ، 4
77.	-74290-W18Q-VI NDT-1	37	89.2
78.	-2	46	82.6
79.	-3	36	80.5
80.	-74290-W55&-VI NDT-1	48	97.5
			Contd.

1	2	3	4
81.	F ₄ -74430-W13Q-VI NDT-1	58	67.2
82.	4-74430-W19@-VI NDT-1	56	83 9
33 .	-74430-W36Q-VI NDT-1	41	82.9
B 4 .	-74367-W2Q-VI NDT-1	44	79.5
85.	-74367-W6Q-VI NDT-1	50	84.0
86.	-2	64	82.8
37.	-74367-Wl2@-VI NDT-l	68	83.8
38.	-74367-W14Q-VI NDT-1	37	83.8
39.	-2	28	64.3
90 .	F ₅ -73094-W1@-VI NDT-1	59	20.3
91.	-2	35	37.1
92.	-73094-W5Q-VI NDT-1	45	60.0

APPENDIX-XI

Results of screening of germplasm lines for wilt resistance
in Vertisol sick plot - 'B'

S1. No.	Pedigree	No. of plants	Percent wilt	S1. No.	Pedigree	No. of plants	Percent wilt
1	2	3	4	1	2	3	4
1.	ICP-1	33	58 .1	37.	ICP-43	38	81.6
2.	-2	40	61.5	38.	-45	28	75.0
3.	-3	32	83 ,9	39.	-46	32	93.7
4.	-4	41	951	40.	-48	36	75.0
5.	-5	40	90.0	41.	-49	36	88.9
<u>6</u> .	-6	22	72,7	42.	-50	29	89.6
7.	-7	28	100.0	43.	-51	35	94.3
8.	-8	35	82.8	44.	-52	40	52.5
9.	-9	36	91.7	45.	-54	30	90.0
10.	-10	36	77.8 82.8	46.	-56	31	67.7
11. 12.	-11	35	82.8 85.7	47.	-57	39 47	94.9
13.	-12 -13	24 43	93.5	48.	-58 -59	47 40	87.2
14.	-13 -14	43 36	93.5 88.9	49. 50.	-60	33	100.0 72.7
15.	-14 -15	36 42	85.7	50.	-62	33 43	88.4
16.	-16	36	94.4	52.	-63	39	89.7
17.	-10 -17	36	88.2	53.	-64	37	94.6
18.	-18	48	79.2	54.	-65	28	89.3
19.	-19	32	75.0	55.	-66	29	89.6
20.	-22	31	87 1	56.	-67	51	100.0
21.	-24	48	91.7	57.	-68	48	95.8
22.	-25	44	88.6	58	-69	38	84.2
23.	-26	48	100.0	59.	-70	33	81.8
24.	-27	35	100.0	60.	-71	30	93.3
25.	-28	55	94.5	61	-72	37	91.9
26.	-29	28	100.0	62.	-75	34	70.6
27.	-31	25	88.0	63.	- 76	33	84.8
28.	-32	43	53.5	64	- 77	45	82.2
29.	-33	25	88 .0	65.	-78	58	810
30.	-34	31	61.3	66.	-79	36	83.3
31.	-35	33	87.9	67.	-81	46	82 6
32.	- 36	35	85.7	68.	-82	39	82.0
33.	- 37	25	72 0	69.	-83	39	84.6
34.	-38	30	86.7	70.	-84	42	90.5
35.	-40	45	88,9	71.	-86	42	95.2
36.	-41	36	80.5	72.	-87	38	94.7
				1		Cont	

1	2	3	4	1	2	3	4
73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.99.91.92.93.94.95.96.97.98.99.100.101.102.103.104.105.106.107.108.109.110.111.112.113.114.115.116.	ICP-88 -91 -92 -94 -95 -98 -99 -100 -102 -103 -104 -106 -107 -108 -109 -110 -111 -112 -113 -115 -116 -119 -121 -122 -124 -126 -127 -128 -130 -131 -132 -135 -136 -139 -141 -147 -148 -150 -154 -155 -156 -157 -163 -164	36 42 41 32 39 40 46 39 44 36 35 39 38 38 29 33 38 41 26 38 39 49 38 39 49 38 39 49 40 41 26 37 40 41 41 41 41 41 41 41 41 41 41 41 41 41	94.4 57.1 92.7 100.0 61.5 72.6 74.3 81.8 80.4 66.7 76.3 81.4 82.7 75.7 75.7 75.3 81.4 82.6 94.8 97.0 82.0 83.8 91.4 84.6 92.0 83.8 94.2 97.0 88.0 97.0 88.0 97.0 98.0 99.0 88.0 99.0 88.0 99.0 88.0 99.0	117. 118. 119. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149. 150. 151. 152. 153.	ICP-165 -167 -168 -170 -171 -173 -175 -180 -182 -184 -185 -187 -189 -193 -194 -195 -198 -199 -202 -206 -208 -210 -212 -213 -214 -216 -218 -219 -220 -222 -224 -227 -228 -230 -231 -232	35 36 34 34 39 36 36 37 36 42 42 42 42 42 42 42 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43	100.0 86.1 93.0 93.2 88.2 69.3 91.7 97.8 88.6 96.1 97.6 100.0 96.4 100.0 94.3 94.7 93.5 84.0 94.4 93.7 94.7 89.3 50.0 88.2 72.7 77.1 85.3 71.4 80.0 81.8 87.5 93.3 96.3 100.0 90.9

APPENDIX-XII

Results of screening of ACT pigeonpea lines against wilt in sick plot 'B' during 1978 K

S1. No.	Pedigree/ Cultivar	No. of plants	Number wilted	Percent wilt	Yield/plant (g)
1	2	3	4	5	6
EACT					
1. 2. 3. 4. 5. 6. 7. 8. 9.	ICPL-1 HPA-2 UPAS-120 Prabhat H-76-53 H-76-35 ICPL-2 H-76-19 H-73-20 ICPL-4	83 77 52 27 78 60 93 92 70 78 82	55 57 40 21 62 48 75 76 59 67	66.3 74.0 76.9 77.8 79.5 80.0 80.6 82.6 84.3 85.9 92.7	1.8 1.5 1.0 0.7 0.2 1.2 1.6 0.3 0.9 0.4 0.2
12.	ICPL-4 ICPL-3	72	67	93.1	0.1
ACT-1 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	JA-9-19 ICPL-6 DL-74-1 TT-5 4-84 TT-6 TT-4 HY-5 Sehore-68 ICPL-8 T-21 ICPL-5 ICPL-7 Sehore-197	74 105 119 72 69 80 91 73 65 78 91 81 96	60 87 101 62 60 70 80 65 58 70 83 74 89 95	81.1 82.9 84.9 86.1 87.0 87.5 87.9 89.0 89.2 89.7 91.2 91.4 92.7 94.1	1.8 1.0 0.6 0.4 0.5 1.1 0.4 0.4 2.5 0.4 0.5 0.1
ACT-2 1. 2. 3. 4. 5.	BDN-1 C-11 AS-71-37 Sehore-75-4 BDN-2	79 130 136 129 91	13 56 60 67 50	16.5 43.1 44.1 51.9 54.9	7.6 9.0 7.1 1.4 10.7

1	2	3	4	5	6
ACT-2					
6 . 7 .	JA-15	131	73	55.7	6.3
7.	HY-4	91	57	62.6	7 . 4
8.	ICP-1	129	84	65.1	1.4
9. 10.	ICPL-42 ICPL-43	105 55	71 39	67.6 70.9	5.3 1.3
10. 11.	No. 148	87	59 65	70.9 74.7	10.5
12.	JA-3	62	49	79.0	9.0
13.	JA-8	71	60	84.5	1.7
14.	JA-5	87	79	90.8	1.5
15.	HY-2	78	73	93.6	0.4
16.	GS-1	83	79	95.2	11.4
<u> ACT-3</u>					
1,	NP(WR)15	114	23	20.2	0.8
2 .	K-28	78	33	42.3	0.5
3.	K-16	99	58	58.6	1.3
2 · 3 · 4 · 5 · ·	PS-65	83	49	59.0	1 ,5
5. 6.	PS-66 T-7	58 76	35 46	60.3 60.5	0.8 0.2
7.	PS-43	76 72	46 48	66.7	0.1
8.	Composite-4	64	44	68.8	1.7
9.	AS-29	72	56	77.8	0.8
10.	K-23	72	56	77.8	01
11.	Gwalior-3	83	67	80.7	0.7
12.	1258	74	60	81.1	0.2
13	Group-8	88	72 5.6	81.8	2.3
14	Group-10	68 109	56	82 . 4 87 . 2	0.9 0.9
15. 16.	PS-41 1234	50	95 4 <i>7</i>	94 .0	0.9

APPENDIX-XIII

Results of screening of Phytophthora blight promising progenies against wilt in Vertisol sick plot -B

S1. No.	Pedigree		No. of plants	Percent wilt
1	2		3	4
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	74290-P10 -P20 -P30 -P40 -P50 -P60 -P70 -P80 -P100 -P110 -P120 -P130 -P150 -P150 -P170	(3NDT) (3NDT) (5NDT) (5NDT) (6NDT)	2 21 22 19 15 20 16 18 31 21 25 19 24 21 24 21 24 34 23	100.0 71.4 77.3 73.7 80.0 65.0 93.7 61.1 80.6 76.2 80.0 78.9 83.3 95.2 91.7 70.6 60.9
18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38.	-P180 -P190 -P200 -P210 -P220 -P230 -P240 -P250 -P260 -P270 -P280 -P290 -P310 -P320 -P330 -P350 -P360 -P370 -P380	(6NDT)	15 18 19 25 18 17 26 2 4 18 12 16 27 25 10 9 21 18 18 22 24	93.3 83.3 78.9 84.0 44.4 47.0 84.6 100.0 75.0 72.2 58.3 81.2 74.1 52.0 50.0 55.5 57.1 27.8 50.0 63.6 50.0

1	2		3	4
39	74290-P398	(7NDT)	21	47.6
40.	-P40 	(7NDT)	27	66 . 7
41.	-P410	(7NDT)	26	46 . 1
42.	-P42 <u>Q</u>	(7NDT)	24	20.8
43.	-P43@	(7NDT)	18	55.5
44。	-P44@	(7NDT)	21	57 . l
45	-P450	(7NDT)	24	62 . 5
46	-P46 @	(7NDT)	23	56 , 5
47	-P47@	(7NDT)	24	41.7
48.	-P48@	(7NDT)	20	45.0
49	-P490	(7NDT)	22	13.6
50	-P500	(7NDT)	24	41.7
51.	-P510	(7NDT)	25	64.0
52.	-P52@	(7NDT)	19	42 1
53	-P539	(7NDT)	27	48.1
54	-P54Q	(7NDT)	27	555
55 .	-P550	(7NDT)	22	36 . 4
56	-P56 9	(7NDT)	21	52.4
57.	-P57 Q	(7NDT)	24	41.7
58 .	-P58@	(7NDT)	21	57]
59.	-P59 @	(7NDT)	16	56 . 2
60.	-P60 ₽	(7NDT)	26	46.1
61.	-P610	(7NDT)	26	34 . 6
62	-P62 9	(7NDT)	20	55.0
63	-P63@	(7NDT)	27	63.0
64 .	-P64 Q	(7NDT)	21	52.4
65	-P65 ₽	(7NDT)	28	714
66 .	-P669	(7NDT)	24	62.5
67.	-P67 0	(7NDT)	22	72 . 7
68	-P68 @	(7NDT)	24	50.0
69 .	-P69 9	(7NDT)	27	77 ، 8
70.	-P70 @	(7NDT)	29	51.7
71	-P71@	(7NDT)	25	56 a O
72	-P72@	(7NDT)	19	73.7
73	-P73₩	(7NDT)	26	88 - 5
74 。	-P74@	(7NDT)	19	73.7
75	-P750	(7NDT)	25	96.0
<i>7</i> 6.	-P76 ₽	(7NDT)	24	62.5
77.	-P77 ⊗	(7NDT)	21	52.4
78	-P78 №	(7NDT)	24	62.5
79 .	-P79₩	(7NDT)	26	76 . 9
80 a	P80 ₽	(7NDT)	19	68、4

1	2		3	4
		(ONDT)		
81.	74290-P819	(8NDT)	23	91.3
82.	-P82 Q	(8NDT)	25	100.0
83.	-P83@	(8NDT)	28	60.7
84.	-P84 Q	(8NDT)	23	95.6
85.	-P85 @	(8NDT)	22	86.4
86.	-P86 ₽	(8NDT)	22	100.0
87.	-P87 	(8NDT)	28	96.4
88.	-P88 Q	(8NDT)	23	73.9
89.	-P89 2	(8NDT)	25	96.0
90.	-P90 Q	(8NDT)	22	50.0
91.	-P91@	(8NDT)	22	50.0
92.	-P92 ₽	(8NDT)	21	71.4
93.	-P93 ₽	(8NDT)	24	100.0
94.	-P94 ₽	(8NDT)	18	100.0
95.	-P95 ®	(BNDT)	26	84.6
96.	-P96 ₽	(8NDT)	24	58.3
97.	-P97 £	(SNDT)	24	75.0
98.	-P98 ®	(SNDT)	24	37.5
99.	-P99 ®	(8NDT)	25	28.0
100.	-r99₩ -P100₩	(BNDT)	25 25	56.0
100.	74360-P19	(6NDT)	23	21.7
102.	-P2 Q	(7NDT)	24	91.7
103.	-P3 Q	(7NDT)	19	84.2
104.	-P4@	(7NDT)	22	95.4
105.	-P5@	(7NDT)	20	45.0
106.	-P6 ₽	(7NDT)	23	69.6
107.	-P7 Q	(7NDT)	21	66.7
108.	-P9 @	(8NDT)	25	100.0
109.	-P10@	(8NDT)	23	91.3
110.	-P 1 2 0	(8NDT)	24	87.5
111.	-P14 2	(8NDT)	22	90.9
112.	-P15 9	(8NDT)	26	73.1
113.	-P16 2	(8NDT)	23	65.2
114.	-P17 2	(BNDT)	18	94.4
115.	-P18 2	(BNDT)	21	66.7
116.	-P19 ⊗	(8NDT)	17	76.5
117.	-P20Q	(8NDT)	23	82.6
118.	-P21@	(8NDT)	19	89.5
119.	-P22 0	(8NDT)	24	95.8
120.	-P23 Q	(8NDT)	3	66.7
121.	-P24@	(8NDT)	24	87.5
122.	-P25 Q	(SNDT)	17	100.0
123.	-P26Q	(SNDT)	25	92.0
124	-P27 Q	(SNDT)	21	61.9
125.		(8NDT)	23	78.3
	-P28 2	(וטאס)	23	,0.0

1	2		3	4
126	74360-P29₽	(8NDT)	23	82.6
127.	-P30 <u>₽</u>	(BNDT)	29	69.0
128	-P34 Q	(8NDT)	19	684
129	-P35 ⋒	(8NDT)	20	60.0
1 30	-P36 ₽	(8NDT)	23	39 . 1
131,	-P37 Q	(8NDT)	21	57.1
132	-P38@	(8NDT)	29	48 3
133	-P40@	(8NDT)	20	55.0
134	-P44@	(8NDT)	18	77.8
135.	-P45@	(8NDT)	22	63.6
136	-P46₩	(8NDT)	26	53.8
137, 138.	-P480 -P490	(8NDT) (8NDT)	2 4 9	16.7 33.3
139	-P490a -P500a	(SNDT)	18	83.3
140	-P51@	(SNDT)	18	72.2
140	-P52Q	(SNDT)	25	64.0
142	-P53 2	(BNDT)	15	33.3
143	-P54 Q	(BNDT)	19	73.7
144	-P56 ₽	(BNDT)	20	80 0
145	-P57 Q	(BNDT)	19	78 9
146.	-P59 Q	(8NDT)	22	54.5
147.	-P60®	(8NDT)	20	90.0
148	-P619	(8NDT)	7	57.1
149	-P629	(BNDT)	14	57.1
150.	-P63@	(9NDT)	9	66.7
151.	- P64@	(9NDT)	12	66 . 7
152	-P65 ₽	(9NDT)	12	91.7
153.	-P66@	(9NDT)	8	100.0
154	-P67@	(9NDT)	16	75.0
155	-P68@	(9NDT)	8	65 2
156	-P69@	(9NDT)	3	100.0
157	-P70₩	(9NDT)	1	100.0
158	-P81@	(9NDT)	2	50.0
159	- P829	(9NDT)	10 12	90.0 100.0
160.	-P83 <u>9</u>	(9NDT)	26	76 9
161 162	-P849 -P859	(9NDT) (9NDT)	26 1 <i>7</i>	76 · 5
163	-P86 9	(9NDT)	17	92.3
164	-room -P88@	(9NDT)	20	50 0
165	-P89 Q	(9NDT)	11	72. 7
166	-P90 ₽	(9NDT)	16	100.0
167	-P91 9	(9NDT)	21	61.9
168	-P96®	(9NDT)	24	100.0
		, ,	- ·	

Conta

1	2		3	4
169.	74363-P1 ₽	(8NDT)	12	58.3
170.	-P2Q	(8NDT)	13	69.2
171.	-P3@	(BNDT)	12	91.7
172.	-P4@	(8NDT)	15	26.7
173.	-P69a P70a	(8NDT) (8NDT)	18 18	77.8
174. 175.		(8NDT)	18 24	88.9 95.8
175.	-row -P15@	(8NDT)	19	95.6 31.6
170.	-P178	(8NDT)	12	83.3
178.	-P18 <u>0</u>	(8NDT)	15	66.7
179.	-P21 <u>Q</u>	(8NDT)	10	50.0
180.	-P22 0	(8NDT)	4	25.0
181.	-P23 2	(BNDT)	24	66.7
182.	-P249	(8NDT)	23	73.9
183.	-P27 9	(BNDT)	20	55.0
184.	-P28 2	(BNDT)	14	48.2
185.	-P29 	(BNDT)	28	39.3
186.	-P30 	(BNDT)	21	42.8
187.	-P31 Q	(8NDT)	25	72.0
188.	-P32@	(8NDT)	16	68.7
189.	-P33@	(8NDT)	27	51.8
190.	-P34 2	(BNDT)	21	61.9
191.	-P35 Q	(8NDT)	14	45.8
192.	-P36 Q	(8NDT)	19	57.9 73.9
193. 194.	-P37 Q	(8NDT)	23 23	100.0
194.	-P38 9 -P39 9	(8NDT) (8NDT)	23 24	87.5
196.	-P40 2	(8NDT)	17	64.7
197.	-P41@	(8NDT)	19	73.7
198.	-P42 Q	(8NDT)	14	85.7
199.	-P43®	(8NDT)	24	62.5
200.	-P44@	(8NDT)	24	66.7
201.	-P45 2	(8NDT)	19	78.9
202.	-P46 2	(BNDT)	17	70.6
203.	-P47 2	(BNDT)	16	75.0
204.	-P48 	(8NDT)	20	65.0
205.	-P49 2	(BNDT)	22	40.9
206.	-P50 Ω	(8NDT)	22	59.1
207.	-P51@	(8NDT)	23	73.9
208.	-P520	(8NDT)	25 26	76.0 46.1
209.	-P53 ₽	(8NDT)	26	95.2
210. 211.	-P54Q	(BNDT)	21 25	95.2 84.0
211. 212.	-P55Q	(8NDT)	23	91.3
212.	-P569	(8NDT) (8NDT)	25 25	60.0
۵۱۵.	-P57 @	(I UNIO)	23	00.0

			3	4
214	74363-P58®	(8NDT)	24	70.8
215.	-P59 ⊋	(BNDT)	25	600
216.	-P60 9	(8NDT)	12	58.3
217.	-P61 Q	(8NDT)	24	41.7
218.	-P62 9	(8NDT)	25	720
219.	-P63₩	(8NDT)	20	70 . 0
220.	-P64@	(8NDT)	21	95.2
221	-P65₩	(8NDT)	21	57.1
222.	-P66 9	(8NDT)	23	73.9
223	-P67 9	(8NDT)	26	92 . 3
224	-P68@	(8NDT)	25	36 ₀0
225.	-P69 &	(8NDT)	21	52.4
226.	-P70⊗	(8NDT)	23	78.3
227.	-P71@	(8NDT)	24	66 7
228	-P72₩	(8NDT)	No germ	ination
2 2 9 。	-P73 ₽	(8NDT)	26	42 3
2 30 .	-P740	(8NDT)	18	50.0
231.	-P75₩	(8NDT)	20	80 0
232.	-P76₩	(8NDT)	18	500
233.	-P77₽	(8NDT)	19	78.9
234.	-P780	(8NDT)	23	21.7
235.	-P79 ⊗	(8NDT)	21	76 . 2
236	-P80 ₽	(8NDT)	22	18.2
237	-P81@	(BNDT)	17	1000
238	-P82@	(BNDT)	24	100.0
239	-P83 0	(TDN8)	23	86.9
240.	-P84 9	(BNDT)	23	100.0
241	-P85@	(BNDT)	27	44 4
242	-P86 0	(8NDT)	22	54 5
243	-P879	(8NDT)	24	58 3
244	-P88 9	(8NDT)	23	78 3
245	-P90@	(8NDT)	26	84 6
246	-P91@	(8NDT)	9	88.9
247	-P930	(8NDT)	13	76 9
248	- P94@	(8NDT)	16	68 7
249	P969	(8NDT)	20	80 0
250	-P97 0	(8NDT)	26	53 8

APPENDIX-XIV

Results of screening of sterility mosaic resistant germplasm selections against wilt in Vertisol sick plot - 'B'

1 2 1. ICP-3782-S10 24769-3-S30	3 24 22 32 21	70.8 13.6
	22 32	
2 _4769_3_\$30	32	13.6
34866-1-S3 2	21	25.0
44885-1-S1 0	6 I	42.8
55051-2 - S4 Q	22	54.5
65097-1-S3 Q	26	11.5
75463-1-S2 Q	20	85.0
85467-1-S1 Q	29	100.0
95651-1-30	33	30.3
105656-1-S2 Q	21	71.4
115701-1-S1@	20	15.0
126748-3-S2 9	22	95.4
136831-1-S2 2	34	11.8
146975-1-S3 Q	28	100.0
157185-1-S1@	16	37.5
167187-2-S5@	23	56.5
177194-1-S4@	35	20.0
187201-2-S1@	18	100.0
197217-1-S1@	21	19.0
207232-2-549	23 10	73.9 60.0
217233-2-\$19		93.1
227234-2-S1@	29 16	68.7
237237-1-539	21	85.7
247238-1-S50 257239-1-S10	29	89.6
	32	96.9
267240-3-S1@ 277243-7-S1@	23	95.6
	7	42.8
287246-2-S9@ 297248-7-S4@		ination 72.0
307250-1-S1Q	23	86.9
317258-1-S4Q	13	100.0
327273-1-S3@	25	56.0
337306-2-S20	23	91.3
347336-1-S3Q	20	25.0
357337-2-S4@	17	100.0
TOO! L STE	• •	
		Contd.

1	2	3	4
36 .	ICP-7345-3-S20	19	684
37	-7346-1-S3 @	19	100.0
38	-7349-1-S1 Q	31	645
39	-7353-1-S 49	12	100.0
40	-7372-3-S3 Q	19	94 7
41	-7378-2-S2 9	19	68.4
42.	-7387-5-S5 ®	24	958
43	-7403-2-S2 @	20	95.0
44.	-7407-1-S2 9	19	789
45.	-7411-1-S10	16	68 . 7
46	-7414-1-S3 Q	8	75.0
47.	- 7445-4-S 5Q	20	40 . 0
48 ,	-7501-2-S2 0	21	1000
49.	- 7864-1S5 ₽	22	818
50	-7867-1-S4Q	22	72.7
51.	-7870-1-S1 Q	21	90 . 5
52	-7873 - 5-S1 Q	26	100.0
53.	-7874-6-S4Q	17	100.0
54.	- 7875-3-S4 Q	10	100.0
55	-7898-3-S3 9	20	100.0
56	-7904-5-S5®	15	100.0
57	-7906-1-S5 0	23	1000
58.	-7942-1-S4@	26	692
59	-7983-1-S2Q	25	100.0
60	- 7998-4-S5®	23	100.0
61.	-8014-3-549	19	68.4
62	-8021-3-550	24	91.7
63	-8029-1-S4@	30	66 . 7
64	-8032-1-549	28	64 . 3
65	-8033-2-S1@	27	66.7
66	-8035-1-\$30	22	95.4
67	-8036-13-S1 Q	25	96.0
68.	-8038-2-519	29	96.5
69.	-8057-3-\$19	24	917
70.	-8058-3-540	10	100 0
71.	-8061-3-519	23	100.0
72	-8063-5-S1@	17	100.0
73	-8067-2-529	22	90.9
74	-8075-2-S2 9	18	83.3
75	-8084-7-S5 Q	23	52.2
76	-8093-2-S1 <u>0</u>	26	65.4
77	-8094-1-S2@	25 16	56.0 87.5
78 70	-8101-2-S20 8103 5 S10		26.1
79 .	-8102-5-S1@	23 29	55.2
80.	-8103-3-S2 9	29	30 . Z

1	2	3	4
81.	ICP-8106-2-S5@	30	83.3
82.	-8111-2-S1 9	21	90.5
83.	-8113-1-S5 №	24	33.3
84.	-8120-2-S5 Q	34	61.8
85.	-8121-2-S1 Q	28	57.1
86.	-8123-1-S5 @	24	95.8
87.	-8127-2-S4 @	23	43.5
88.	-8128-1-S1 @	23	73.9
89.	-8130 - 5-S4 ₽	21	76.2
90.	-8132-2-S3 0	27	66.7
91.	-8133 -1- S4₩	25	80.0
92.	-8134-1-S1 @	13	53.8
93.	-8136-1 <i>-</i> S1 Ω	17	70.6
94.	-8137-2-S4 ₽	25	100.0
95.	-8138-2-S4 Ω	22	72.7
96.	-8139 - 3-S1 Ω	13	30.8
97.	-8140-1-S4 0	41	65.8
98.	-8141-2-S2 ₽	14	85.7
99.	-8144-3-S3 Q	28	92.8
100.	-8 146-1- S5 Q	32	56.2
101.	-8147-1-S2 0	27	66.7
102.	-8151-7-S4 Q	17	58.8
103.	-8160 -1- S3 0	34	26.5
104.	-8161-1-S1 Ω	26	42.3
105.	-8167-1-S3 ₽	30	53.3
106.	-8501 <i>-</i> 2-S2₩	16	87.5

APPENDIX-XV

Results of screening of single plant progenies of sterility mosaic resistant materials for wilt resistance in Vertisol sick plot - 'B'

S 1 No	Pedigree		No of plants	Percent wilt
1	Pant-B-76-5-S10		14	100.0
2 / 3	ICP-6997-137-16Br		42	100.0
3	74243-E-B-S10	(6NDT)	39	872
4.	-S2 0	(7NDT)	42	100.0
5	-S3 9	(6NDT)	47	93.7
6.	-S4 9	(6NDT)	34	70.5
7.	-S5 @	(6NDT)	56	89 8
8.	-S6 9	(7NDT)	49	93.9
9	-S7Q	(7NDT)	34	94.1
0	-580	(6NDT)	57	66.7
11,	-S9 9	(6NDT)	35	77.8
12	-S10@	(7NDT)	53	73.6
13.	-5110	(7NDT)	29	82.7
14.	-S12 Q	(6NDT)	52	44.2
15.	-S13@	(6NDT)	66	57 6
16	-S14@	(6NDT)	19	84 2
17.	-S15 Q	(6NDT)	42	928
18.	-5160	(5NDT)	15	73.3
19	-S17@	(5ND1)	18	100 0
20 .	-5180	(SNDT)	18	16.7
21	-5190	(SNDT)	50	100.0
22	-S20 ₽	(7NDT)	47	17.0
23	-521@	(7NDT)	51	588
24	-S22®	(6NDT)	51	13.9
25.	-S23 9	(6NDT)	55	74.5
26 .	-\$249	(6NDT)	42	73.8
27	-\$25@	(7NDT)	48	18.7
28 .	-\$26@	(6NDT)	41	95.1
29.	-S27@	(6NDT)	43	65 .1
30.	-5289	(GNDT)	45	667
31	-\$29@	(6NDT)	45	95 5
32.	-S30@	(SNDT)	48	00
33 .	-531@	(7NDT)	52	94.2
34.	-5320	(6NDT)	42	88.1
35	- \$33@	(6NDT)	37	94.6
36	-\$340	(6NDT)	37	100.0
37.	-S35Q	(6NDT)	21	95.2
38	S36 @	(4NDT)	21	61.9

S1. No.	Pedigree		No. of plants	Percent wilt
39.	74243-B-B-S37Q	(6NDT)	41	46.3
40.	-\$38₽	(7NDT)	34	76.5
41.	-S39 @	(6NDT)	48	83.3
42.	-S40 @	(7NDT)	22	31.8
43.	-S41 @	(7NDT)	48	62.5
44.	-S42 Q	(5NDT)	25	100.0
45.	-S43 ₽	(5NDT)	56	83.9
46.	-S44 Q	(5NDT)	46	67.4
47.	-S45 @	(5NDT)	48	79.2
48.	-S46₩	(7NDT)	52	71.1
49.	-\$47₽	(6NDT)	43	60.5
50.	-\$48₩	(6NDT)	43	83.7
51.	-S49 Q	(4NDT)	45	26.7
52.	-S50Q	(6NDT)	60	8.3
53.	-S51 @	(6NDT)	50	42.0
54.	-S52 Q	(6NDT)	60	65.1
55.	-\$530	(5NDT)	63	77.8
56.	-S54 Q	(6NDT)	32	65.6
57.	-S55 0	(7NDT)	41	90.2
58.	-S56 ₽	(6NDT)	29	69.0
59.	-S57 Q	(6NDT)	41	95.7
60.	-S58 Q	(7NDT)	43	79.1
61.	-S59 2	(6NDT)	50	56.0
62.	-S60Q	(6NDT)	43	72.1
63.	-S61 Q	(7NDT)	36	97.2 72.1
64. 65.	-S62₩	(3NDT)	43 22	63.6
66.	-S63Ω -S64Ω	(3NDT) (6NDT)	36	100.0
67.	-364₩ -S65₩	(SNDT)	39	100.0
68.	-366 ₽	(6NDT)	40	50.0
69.	-367 2	(6NDT)	30	93.3
70.	-307₩ -S68₩	(GNDT)	49	100.0
71.	-S69₩	(GNDT)	49	91.8
72.	-509kg -570kg	(6NDT)	43	100.0
73.	-571 Ω	(5NDT)	53	77.8
74.	-571 ₽ -572 ₽	(6NDT)	51	92.1
75.	-S73 2	(6NDT)	35	91.4
76.	-S74@	(5NDT)	33	72.7
77.	-S75 ₽	(SNDT)	44	72.3
78.	-576 9	(5NDT)	31	45.2
79.	-S77 ₽	(5NDT)	18	66.7
80.	-S789	(5NDT)	29	17.2

S1 No	Pedigree	No. of plants	Percent wilt
81	74243-B-B-S79 	17	82.3
82	-\$80₩	44	65.9
83	-\$81₽	36	61.1
84	-S82 0	37	48.6
85 .	-S83 @	36	83 .3
86 。	-\$8 49	51	98.0
87	-S85 Q	28	78 . 6
88 .	-\$8 6Q	49	63.3
89	-S87@	50	500
90.	-\$889	36	100 0
91	- \$89 9	55	58.9
92.	-890@	6	100 0
93.	-591@	30	100.0
94	-5929	34	100.0
95.	-8939	40	62.5
96	-\$94@	15	267
97.	-\$95 @	27	333
98 .	-S96@	49 45	79.6
99.	-S97@	45 42	33.3
100. 101.	-S98@ -S99@	42 37	97 .6 94 .6
101.	-S100@	59	72.9
103.	-S100® -S101@	23	30.4
104	-S101%	56	100 0
105	-S102# -S103@	41	95 1
106	-S104®	32	96.9
107.	-S105@	28	100 0
108	-S106Q	36	100.0
109	-S107 ₽	41	98.0
110.	-S108 2	43	100.0
111	-S109Ø	62	74 2
112	-S110 2	11	81.8
113.	-S111@	46	100.0
114.	-S112 Q	50	74 0
115	-51130	22	4.5
116.	-S114Q	16	87.5
117.	-S115₩	62	85.5
118	-S116@	62	58.1
119	-S117 Q	11	63.6
120.	-S118 ₽	37	216
121.	-S119 Q	47	42.2
122.	-S120@	<u> </u>	100.0
123	-S12 1Ω	47	851

S1. No.	Pedigree	No. of plants	Percent wilt
NO .		Prants	WIIT
124.	74243-B-B-S1229	38	76.3
125.	-S123 Q	No germin	
126.	-S124Q	39	43.6
127.	-S125 @	49	93.9
128.	~S126₩	16	62.5
129.	-S12 7Q	39	66.7
130.	-S128 ₽	42	45.2
131.	- \$129 @	32	93.7
132.	-S130 ₽	36	94.4
133.	-S131 Ω	38	97.2
134.	-S132@	28	71.4
135.	-S133₩	55	47.3
136.	-S134 ₽	42	85.7
137.	-S135 @	$4\overline{4}$	86.4
138.	-S136Q	37	91.9
139.	-S137 Q	14	96.4
140.	-\$1380	30	30.0
141.	-\$1399	34	85.5
142.	-S140Q	35	85.3
143.	-S141 <u>@</u>	42	90.5
144.	-S142 0	39	53.8
145.	-S143Q	45	73.3
146.	-\$144@	20	15.0
147.	-S145Q	55	76.4
148.	-S146Q	38	81.6
149.	-S147 Q	39	87.2
150.	-S148 Q	49	51.0
151.	-S149Q	47	100.0
152.	-S150 Q	46	65.2
153.	-S151 Q	41	82.9
154.	-S152 Q	29	89.6
155.	-S153 Q	19	100.0
156.	-S154 Q	45	51.1
157.	-S155 Q	45	84.4
158.	-S156 Q	17	76.5
159.	-S157Q	30	63.3
160.	-S158 2	31	51.6
161.	-S159₽	47	89.4
162.	-S160®	24	58.3
163.	-S161 Q	29	72.4
164.	-S162Q	33	57.6
165.	-S162W -S163W	46	91.3
166.	-S1648	44	88.6
167.	-S165 Q	48	72.9
168.		39	33.3
168.	- S166 ₽	39	33.3

S1. No	Pedigree	No. of plants	Percent wilt
169	74243-B-B-S1670	38	84.2
170	-S168 ₽	35	82.8
171.	-S169 @	64	17.2
172	-S170 ₽	39	84 . 6
173,	-S171@	45	53,3
174.	-S1720	36	88.9
175	-S173Q	51	25 5
176.	-S174@	54	907
177	-S175@	3	66 . 7
178.	-S176@	49	83 7
179.	-S1770	21	85 7
180.	-S178@	51	58.8
181	-S179@	19	84 2
182	-S180@	58	91.4
183.	-S181@	22	68.2
184 .	-S182@	55	61.8
185	-\$183 9	22	27.3
186	-\$184@ \$1850	26	96.1
187.	-\$185@	27	96.3
188. 189	-\$1869 \$1879	56 56	55.3
	-\$187 @ -\$188 @	56	60 7 51 0
190. 191	-5189@	51 49	71.4
192	-3189W -S190W	57	75.4
193	-3190 8 -S191 8	44	95.4
194	-S1918	46	97.8
195	-S1930	39	23 1
196	-S194@	16	93.7
197.	-S195@	40	90.0
198	-\$196	15	100.0
199	-\$1972	50	88.0
200	-\$1980	42	71,4
201	-\$199@	50	70.0
202	-\$200@	30	43.3
203	-S201®	23	63.6
204	-S202 0	32	100.0
205.	-\$203 Q	29	84.6
206	-S204®	59	81.3
207	-S205@	54	44.4
208.	-S206 9	34	94 1
209	-S207 9	44	100.0
210	-S208 ⋒	34	58.8
211	-S209 Q	41	92 . 7
212	-\$2100	40	92 . 5

S1. No.	Pedigree	No. of plants	Percent wilt
213.	74243-B-B-S211@	24	100.0
214.	-S212 0	42	73.8
215.	-S213 0	30	46.7
216.	-S214 Q	52	59.6
217.	-S215 Q	49	95.9
218.	-S216 Q	48	25.0
219.	-S21 7Q	14	64.3
220.	-S218 ₽	44	97.7
221.	-S219 Q	58	84.5
222.	-S220 ₽	26	92.3
223.	-S221 Q	39	94.9
224.	-S222 Q	ii	90.9
225.	-S223 Q	12	75.0
226.	-S224 Q	51	78.4
227.	-S225 Q	43	90.7
228.	-S226 Q	41	56.1
229.	-S227 Q	16	32.2
230.	-\$228 0	40	100.0
231.	-S229 Q	42	80.9
232.	-S230@	39	92.3
233.	-S231 Q	37	91.9
234.	-S237 B	48	85.4
235.	-S232 a -S233 a	41	100.0
236.	-\$233 a -\$234 a	33	75.7
237.	-S235 0	33 37	100.0
238.	-3235 ® -S236 ®	39	76.9
239.	-3230 2 -S237 2	31	54.8
240.	-3237₩ -S238₩	38	65.8
240.		38	94.7
241.	-S239₽ -S240₽	50 59	88.1
242.		49	79.6
	-S241@	45	75.5
244.	-S2429	47	91.5
245.	-S243@	44	93.2
246.	-S244 <u>Q</u>		93.2
247.	-\$245@	29	
248.	-S246 ₽	60	40.0
249.	-S247@	44	97.7
250.	-S248 ₽	38	86.8
251.	-S249Q	37	91.9
252.	-S250 Q	41	87.8
253.	-S251 Q	60	63.3
254.	-S252 9	18	88.9
255.	-S253 Q	41	95.1

S1, No.	Pedigree		No. of plants	Percent wilt
256	74243-B-B-S254 Q		37	81.1
257	-S255 Q		47	93.6
258	-S256 9		39	97.4
259.	-S257 9		39	84 . 6
260.	-S258 9		36	944
261.	-S259@		53	100.0
262 .	-S260 9		42	95.2
263.	-S261 9		31	32 2
264.	-S262 9		51	92.1
265	-S 2630		51	84.3
266 .	C-11-21-2-P2		85	38 8
267.	74254-S4Q-S1Q		49	69 . 4
268 .	-S2 9		37	87.2
269	-S3 Q	(7NDT)	18	77.8
270	- S4 \		51	80.4
271	-S5 Q		42	80 9
272	-S6 \		40	82 ., 5
273 .	-S7 @		40	67.5
274.	-S8₩		44	70 . 4
275	-S9₽		54	92 6
276.	-S10@	(7NDT)	35	80 . 0
277	-S11 0		50	86.0
278.	-S12 9		53	77,3
279.	-S1 32		49	63.3
280	-S14 @		42	69.2
281	73070-S20-S10	(8NDT)	47	53.2
282	-S2 9		43	51.2
283.	73070-30-510-510	(7NDT)	49	20 . 4
284	-S2 Q	(7NDT)	46	23.9
285	-\$10-\$30	(7NDT)	53	24.5
286	-\$40	(7NDT)	53	15.1
287.	-S5 Q	(7NDT)	53	11.3
288	-S6 9	(7NDT)	No germ	
289	-S2 Q -S1 Q	(7NDT)	48	16.8
290	-\$29	(7NDT)	44	6 8
291	. −S3@	(7NDT)	51	17.6
292	-540	(7NDT)	52	15 4
293.	73088-13-519-519	(8NDT)	35	82 8
294	-S2Q	(8NDT)	43	81 .4
295 "	-S3 Q	(8NDT)	23	95 6
296	-S4Q	(8NDT)	60	90.0
297.	-S5 0	(8NDT)	36	83.3
298 .	74240-7-510-510	/ max = m \	46	869
299 .	-520	(7NDT)	57	86 0
300	-S3₽	(7NDT)	51	76 5

S1. No.	Pedigree		No. of plants	Percent wilt
301.	74240-7-S1@-S4@	(7NDT)	51	60.8
302.	-S5 Q	(7NDT)	51	88.2
303.	-S2 Q- S1 Q	(8NDT)	47	83.0
304.	-S2 Q	(6NDT)	48 °	89.6
305.	-S3 Q	(6NDT)	46	84.8
306.	-S4 Q	(5NDT)	46	97.8
307.	-S5 Q	(5NDT)	54	90.7
308.	74240-33-S1Q-S1Q	(6NDT)	58	94.8
309.	-S2 №	(7NDT)	46	71.7
310.	- S-3 <u>Q</u>	(6NDT)	42	69.0
311.	-S4 №	(6NDT)	45	53.3
312.	-S5 Ω	(6NDT)	. 51	88.2
313.	74240-46-S1Q-S1Q	(BNDT)	13	76.9
314.	-S2 2	(8NDT)	29	86.2
315.	-S3 Q	(6NDT)	12	58.3
316.	-S4 Q	(8NDT)	35	80.0
317.	74240-60-S1Q-S1Q	(6NDT)	47	93.6
318.	-S2 ₽	(6NDT)	44	100.0
319.	-S3 Q	(6NDT)	27	100.0
320.	-S4 ₽	(6NDT)	42	85. <u>7</u>
321.	-S5 Q	(5NDT)	55	92.7
322.	-S6 Q	(6NDT)	49	95.9
323.	-S7 Q	(6NDT)	42	95.2
324.	-589	(5NDT)	49	91.8
325.	-590		43	93.0
326.	-5100		44	81.8
327.	-5110		33	90.9
328.	-\$120		31	90.3
329.	74245-15-510-510		13	92.3
330.	-520		45	100.0
331.	-530		48	85.4
332.	-540		46	97.8
333.	-S5 Q	(=up=)	41	100.0
334	74024-8-S2@-S1@	(7NDT)	40	85.0
335.	-\$20		40	70.0
336.	-\$39		44	68.2
337.	-\$49		26	84.6
338.	-\$50		17	88.2
339.	-S6 <u>Q</u>		27	59.2
340.	-572		40	70.0
341.	-S82		33	63.6

51 . No .	Pedigree	No. of plants	Percent wilt
342 .	73054-17-1-Bulk.II S10-S10	24	54 . 2
43.	-520	41	80 5
344.	-S3 Q	15	100.0
45、	-\$4₽	20	1000
46	73054-2-5-5-S1Q-S1Q-2NDT	33	75.7
47.	-S2@-3NDT	43	39.5
48	-S3 @ -3NDT	28	71.4
49.	-S4@-2NDT	28	78,6
50	-S5 @ -6NDT	46	913
51.	73054-2-6-3-S5Q-S1Q-5NDT	45	0.08
52 .	-S2 Q -5NDT	13	92 . 3
53.	-S3 Q -6NDT	38	94.7
54	-S4@-5NDT	44	59.1
55.	-S5@-5NDT	36	86.1
56.	73054-58-1-2-S3@-S1@-5NDT	20	55 0
57.	-S2@-4NDT	40	77.5
58 ,	-S3Q-5NDT	32	66.7
159	-S4 Q -3NDT	41	756
60.	-S5 ⊇ -5NDT	18	100.0
61	73054-58-1-2-S4@-S1@-5NDT	43	76 2
62.	-S2 @ -5NDT	42	595
63	-S3@-5NDT	42	643
64.	-S4Q-3NDT	49	97.9
65	-S5@-2NDT	30	50.0

APPENDIX- XVI

Results of screening of progenies resistant to sterility
mosaic against wilt in Vertisol sick plot -'A'

S1. No.	Pedigree	No. of plants	Percent wilt	No. of plants selected
1.	ICP-3783-S1@-S27@-W1@	8	37.5	0
2.	-₩3₩	14	28.6	Ö
3.	-S39Q-W1Q	15	40.0	Ö
4.	-W2 2	15	53.3	0
5.	-S42@-W3@	4	75.0	0
6.	-W4Q	9	33.3	0
7.	-S45Q-W3Q	19	36.8	0
8.	-W4 Q	12	16.7	0
9.	-S46Q-W3Q	10	30.0	0
10.	-W4@	12	16.7	3 1
11.	-3783-S3Q-S11Q-W1Q	13	15.4	
12.	-W3Q	22	27.3	0
13.	-S12Q-W4Q	20	15.0	2
14.	-W5@	16	18.8	1
15.	-S15@-W3@	10	70.0	0
16.	-W4 Q	9	11.1	2
17.	-S16@-W1@	13	38.5	0
18. 19.	-W30	16	31.3	0
20.	-S43@-W3@	14	28.6	1 1
20.	-W40	12 8	16.7 12.5	2
22.	ICP-7035-S45@-S1@-W1@	6 5	40.0	0
23.	-W30 -S60W10	18	22.2	0
24.		17	29.4	0
25.	-W30 -S200-W30	6	50.0	0
26.	-320W-W3W -W4Q	12	33.3	Õ
27.	-S230-W40	11	18.2	ĭ
28.	-323 2-W42 -W5 9	19	36.8	ò
29.	HY-3-C-S50-S10-W20	27	44.4	ŏ
30.	-W3Q	13	30.8	Ö
31.	-S2Q-W1Q	15	60.0	Ö
32.	-S3 Q -W2 Q	19	52.6	0
33.	-W30	16	43.8	Ö
34.	-S4 Q -W3 Q	20	35.0	0
35.	-W4@	18	38.9	Ō
36.	-S50-W20	8	25.0	0
37.	-W3@	7	71.4	0

S1. No.	Pedigree	No. of plants	Percent wilt	No. of plants selected
38	HY-3-C-S50-S80-W30	19	15.8	1
39	~W4 .	20	35.0	0
40 .	-S9Q-W3Q	21	47.6	0
41 .	-W4@	10	200	0
42	-S251Q-S10Q-W3Q	14	21.4	0
43.	-W4 £	18	61.1	0
44	-S11Q-W1Q	18	77.8	0
45 。	W3 Q	23	39 . 1	0
46	-W5Q	14	35.7	0
47.	-S14Q-W1Q	11	54.6	Ō
48.	-W2Q	12	58.3	0
49.	-S150-W10	11	81.8	0
50.	-W2Q	20	35.0	0

APPENDIX-XVII & XVIII

Screening of single plant progenies for resistance to
wilt in Alfisol sick plot - A

S1. No.	Pedigree	No. of plants	Percent wilt	Percent SMV infection	Symptom severity (SMV)
1	2	3	4	5	6
1.	T-17-W1Q-W2Q-W1Q	15	53.3	75.00	MM
2.	-W2 @	22	27.3	95.00	MM
3.	-W3№-W1@	25	100.0	88.23	MM
4.	-W2 Q	25	100.0	80.00	MM
5.	-W5Q-W1Q	23	30.4	85.00	MM
6.	-W2 @	30	26.7	82.75	MM
7.	-W9Q2-W1Q	21	100.0	9.09	MM
8.	-W2 @	22	100.0	0.00	-
9.	-W17Q-W1Q	23	26.1	33.33	MM
10.	-W2 :	19	15.8	84.21	MM
11.	T-17-W2Q-W1Q-W1Q	25	28.0	78.26	MM
12.	-W2 @	24	12.5	91.66	MM
13.	-W3Q-W1Q	23	17.4	90 .90	MM
14.	-W2 @	23	0.0	69.56	MM
15.	-W7Q-W1Q	26	19.2	88.00	MM
16.	-W2 Q	24	25.0	85.00	MM
17.	T-17-W3Q-W6Q-W1Q	22	59.1	84.21	MM
18.	-W2 @	21	38.1	100.00	MM
19.	-W7Q-W1Q	20	45.0	100.00	MM
20.	-W2 Q	21	52.4	94.11 - ~	MM men 2
21.	-W9Q-W1Q	24	20.8	81.81	MM
22.	-W2 Q	22	13.6	100.00	SM
23.	-W12Q-W1Q	20	60.0	100.00	SM
24.	_W2 Q	21	71.4	3.03	MM
25.	NP(WR)15-W1@-W1@-W1@	20	30.0	0.00	-
26.	-W2 Q	16	18.8	0.00	-
27.	NP(WR)15-W1Q-W7Q-W1Q	15	13.3	43.75	MM
28.	-W20	20	15.0	80.95	MM
29.	-W12Q-W1Q	17	11.8	0.00	-
30.	-W2Q	21	23.8	0.00	_ MM
31.	-W14Q-W1Q	16	56.3	85.71	MM
32.	-W2 9	15	40.0	93.33	MM
33.	-W16Q-W1Q	17	70.6	0.00	-
34.	-W2Q	18	27.8	0.00	-
35.	-W19 Q -W1 Q	23	30.4	0.00	-

1	2	3	4	5	6
36	NP(WR)-15-W10-W190-W20	22	13.6	22 22	MM
37.	-W219-W19	21	95	10.00	MM
38	-W2@	25	16.0	0.00	-
39.	NP(WR)-15-W2@-W1@-W1@	19	68.4	0.00	-
40	-W2@	25	72,0	0.00	-
41	-W3@-W1@	21	14.3	71 42	MM
42	-W2@	18	33.3	88 23	MM
43.	-W50-W10	23	39.1	0.00	-
44	-W2Q	2 2	36 . 4	0 00	-
45	-W1200-W100	20	30.0	61.11	MM
46.	-W2 @	27	44.4	20 83	MM
47	-W1499-W199	18	5 。 6	17.64	MM
48	-W2Q	25	8.0	15 78	MM
49	-W15@-W10	20	20.0	18 18	MM
50	-W20	17	0.0	31 57	MM
51	-W16@-W1@	26	15.4	55 55	MM
52	-W2 Q	19	0.0	43.75	MM
53.	-W19Q-W1Q	20	10.0	0 00	-
54.	-W2 Q	17	17,7	5 26	MM
55.	-W20 9 -W1 9	20	0.0	23 80	MM
56	NP(WR)-15-W2Q-W2OQ-W2Q	22	18 2	41 76	MM
57	-W3 Q -W6 Q -W1 Q	20	0.0	0 00	-
58	-W28a	20	35.0	0.00	-
59 .	-W7Q -W1Q	20	5 0	66,66	MM
60	-W2Q	19	5.3	65 00	MM
61	-W8Q-W1Q	20	00	0 00	-
62	-W2 0	20	15 0	6.66	MM
63.	-W9@ - W1@	17	29.4	0.00	-
64	-W2 9	18	27 8	0 00	-
65	-W140-W10	24	62 5	0 00	-
66	-W2 9	22	909	10.00	MM
67	-W15Q-W1Q	24	66.7	0 00	-
68	-W2Q	22	22.7	0 00	-
69	-W189-W19	28	32 , 1	7.69	RS
70.	-W2Q	25	28.0	15 38	RS
71,	1CP-6970-S10-W10	26	0.0	26 66	RS
72.	-W2@	26	0 0	5.88	RS
73.	-S2@-W1@	16	6 3	0 ,00	-
74	-W2 9	17	5.9	4 76	RS
75	-S30-W10	23	21 7	0.00	
76	−W5 @	23	8 7	100.00	SM
77	-S49-W19	17	35 7	9.52	RS
78	-W20	17	100.0	30.00	RS
79.	-S1@-W1@	20	10.0	70.58	SM
80.	-W2 9	22	9.1	10.00	RS

1	2	3	4	5	6
81.	ICP-6970-S2-W10	22	31.8	0.00	- .
82.	-W2Q	22	22.7	0.00	-
83.	-S3-W1@	21	95.2	5.88	RS
84.	-W2@	22		20.00	RS
85.	-S4-W1 Q	22	31.8	3.57	RS
86.	-W2Q	16	6.3	18.18	RS
87.	-S5-W1Q	27	18.5	5.26	RS
88.	-W30 -S6-W10	23 23	4. <i>4</i> 17.4	15.78	RS
89.	-30-W182 -W282	23 19	0.0	5.66 30.00	RS RS
90. 91.	-W28 -S7-W10	27	18.5	17.39	RS RS
92.	-3/-W1W -W2M	20	5.0	16.66	RS
93.	-S8-W1 Q	24 .	4.2	4.37	RS
94.	-W2 Q	21	47.6	10.00	RS
95.	-S9-W1 Q	23 .	0.0	16.00	RS
96.	-W2Q	20 .	0.0	14.28	RS
97.	-S10Q-W1Q	27	11.1	0.00	-
98.	-W2 Q	20	0.0	0.00	_
99.	KWR-1-W1Q-W2Q-W1Q	24	62.5	100.00	SM
100.	-W2 Q	25	76.0	100.00	SM
101.	-W3@-W1@	24	87.5	0.00	-
102.	-W5 Q	20	50.0	0.00	-
103.	-W5Q-W1Q	19	78.9	0.00	-
104.	-W2 Q	24	70.8	0.00	-
105.	-W2Q-W2Q-W1Q	22	77.3	0.00	-
106.	-W2Q	16	62.5	0.00	-
107.	-W11@-W1@	21	42.9	0.00	-
108.	W2Q	21	33.3	0.00	-
109.	-W13Q-W1Q	19	78.9 87.5	0.00 0.00	_
110.	-W20	24	27.3	85.00	MM
111.	-W3@-W1@-W1@	22	66.7	33.33	MM
112. 113.	-W20	24 21	47.6	30.76	MM
114.	-W3Q-W11Q-W1Q -W2Q	23	60.9	0.00	-
115.	-w211 15-3-3-W202-W1302-W102	23 20	20.0	100.00	SM
116.	15-3-3-W201-W1312-W181 -W201	20	15.0	94.44	SM
117.	-W1Q-W16Q-W1Q	21	9.5	100.00	SM
118.	-W182-W108-W182	25	20.0	100.00	SM
119.	20-1-W1Q-W1Q	21	19.1	38.09	MM
120.	-W2Q	18	11.1	24.52	MM
	NCB	, -			

1	2	3	4	5	6
121.	73039-RbB-W4@-W1@-W1@	20	10.0	95.00	SM
22.	-W29	15	46.7	100.00	SM
23	-W2Q-W1Q	20	20.0	100.00	SM
24.	-W3 ₽	22	50.0	100.00	SM
25 .	Early x Early-RbB-W50-W10-W10	12	16.7	90.00	SM
26	-W2Q	23	43.4	94.11	SM

SMV

Sterility mosaic virus Severe mosaic Ring spot Mild mosaic SM RS MM

APPENDIX-XIX

Screening of single plant progenies for resistance to wilt in Vertisol sick plot - 'A'

S1. No.	Pedigree	No. of plants	Percent wilt
1	2	3	4
1.	T-17-W19-W29-W59	15	13.3
2.	−W6 Q	19	52.6
3.	-W7 Q	16	56.3
4.	-W8 Q	13	0.0
5.	-W3 Q- W5 Q	13	69.2
6.	-W6 <u>Q</u>	22	54.6
7.	-W7 Q	16	50.0
8.	-W8 Q	20	75.0
9.	-W5Q-W2Q	14	0.0
10.	-W3 Q	15	0.0
11.	-W4 2	12	0.0
12.	-W6Q	21	57.1
13.	-W9@-W5@	21	42.9
14.	-W6 <u>Q</u>	32	12.5
15.	−W7 @	17	64.7
16.	-W8@	33	81.8
17.	-W12Q-W3Q	24	58.3
18.	-W4@	18 14	0.0
19.	-W5@	14	42.9
20. 21.	-W6 <u>@</u>	17	88.9 58.8
22.	-W1 3Q-W3Q	18	55.6
23.	-W4@	16	50.0
24.	- W5 Q - W6 Q	19	47.4
25.	-wow -w17@-w5@	18	44.4
26.	-W1781-W382 -W6Q	16	50.0
27.	- WOM - W7@	21	38.1
28.	-W8 Q	16	62.5
29.	T-17-W2Q-W1Q-W5Q	iš	55.6
30.	-W6Q	20	45.0
31.	- WOW - W7Q	18	44.4
32.	-W8Q	15	6.7
33.	-W3 Q- W5 Q	16	62.5
34.	-W3&-W3&	29	27.6
35.	- W 7 2	19	42.1
36.	-W8 Q	15	40.0

1	2	3	4
37,	T-17-W29-W79-W59	14	71.4
38.	-W6 0	26	53.9
39.	-W7@	17	35.3
40	-W8 0	20	30.0
41.	-W9 @- W3 @	24	50 . 0
42.	-W40	22	13.6
43.	-W5@	13	46.2
44	- 1468	18	33.3
45.	-W39-W29-W29	20	25.0
46.	-W3@	22	45.5
47	-W4@	19	26.3
48.	-W5 &	15	53 .3
49.	-W3Q-W2Q	16	50.0
50.	-W3 Q	11	63.6
51.	-W4 Q	18	16.7
52.	~ W5⊗	16	56.3
53. ·	-W4Q-W2Q	12	500
54 .	-W3@	16	50.0
55.	-W4 ⊗	15	53.3
56.	-W5@	22	22.7
57.	-W6Q-W1Q	19	36 8
58.	-W3₽	19	47.4
59.	-W4Q	18	611
60.	~W5@	16	18.8
61.	-W7Q-W1Q	21	28.6
62.	-W20	21	47.6
63.	-W3@	16	31.3
64	-W49	20	250
65	-W9@-W2@	22	31.8
66.	W3 Q	17	23.5
67.	W4 . ₩	22	22 7
68	-W5@	20	35 . 0
69.	-W1 2Q-W2Q	19	15.8
70.	-W3@	22	45.5
71	-W4Q	23	52.2
72.	-₩5 @	14	28.6
73.	NP(WR)-15-W1@-W1@-W5@	18	11.1
74,	-W60	20	10.0
75.	-W7 @	. 22	18.2
76	-W8 9	15	13.3
77.	-W2Q-W1Q	20	55.0
78	-W3 Q	17	41 2
79.	-W4 ŵ	19	47.4
80.	-W5 ₽	14	64.3

1	2	3	4
81.	NP(WR)-15-W1@-W3@-W3@	18	33.3
82.	-W4 Q	18	0.0
83.	-W5@	16	31.3
84.	-₩6₩	15	40.0
85.	-₩4₩-₩3₩	16	50.0
86.	-₩4₩	16	18.8
87.	-W5 &	18	27.8
88.	-W6 2	19	36.8
89.	-W7Q-W4Q	20	5.0
90.	-₩5₩	21	23.8
91.	-₩6₽	21	14.3
92.	-W7 @	17	17.7
93.	-W12Q-W5Q	15	0.0
94.	-W6 2	18	44.4
95.	-W7 Q	15	13.3
96.	-W8 Q	14	21.4
97.	NP(WR)-15-W1Q-W13Q-W3Q	17	35.3
98.	-W4 Q	23	26.1
99.	-W5@	17	41.2
100.	-W6 2	22	13.6
101.	-W149-W59	16	0.0
102.	-W6Q	21	9.5
103.	-W7Q	20	35.0
104.	-W8 Q	22	31.8
105.	-W16Q-W5Q	19	36.8
106.	-W69	18	55.6
107.	-W7@	18	50.0
108.	-W8 2	17	52.9
109.	-W17@-W1@	23	21.7
110.	-W2 <u>Q</u>	13	0.0
111.	-W2 -W3 	17	5.9
112.	-W4@	10	20.0
113.	-W198-W58	19	57.9
114.	-W1912-W312 -W612	22	13.6
115.	- W7Q	18	22.2
116.	-W80	14	35.7
117.	-wo⊠ -w20&-w3&	19	84.2
118.	-w208-w38 -W40	22	45.5
119.	-W48 -W58	15	73.3
120.	-W5@	16	56.3
121.		15	0.0
121.	-W21@-W5@	22	45.5
122.	-W6@	15	33.3
123.	-W7@	20	55.0
144.	-₩8₩	20	55.0

C--+1

126. 127. 128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	10/110) 35 1100 1130 1150		
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	IP(WR)-15-W2Q-W1Q-W5Q	21	38.1
128. 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	-₩6₽	12	41.7
129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148.	-W7 9	18	0.0
130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148.	-W8 @	18	27 .8
131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	-W3Q-W5Q	14	14 3
132. 133. 134. 135. 136. 137. 138. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	- W 69	16	31.3
133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	-W7Q ·	18	33.3
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	- W8 Q	15	26.7
135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	-W5Q-W5Q	18	27 .8
136 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	-W6Q	14	50 . 0
137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148.	-W7 Q	19	21.1
138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148.	-W8 @	15	0.0
138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148.	-W129-W59	15	6.7
139. 140. 141. 142. 143. 144. 145. 146. 147. 148.	~W6&	18	0.0
140. 141. 142. 143. 144. 145. 146. 147. 148.	W7@	19	21 1
141. 142. 143. 144. 145. 146. 147. 148.	-W8 9	18	11.1
142. 143. 144. 145. 146. 147. 148.	-W14Q-W5Q	16	12.5
143. 144. 145. 146. 147. 148.	-W6Q	20	15.0
144. 145. 146. 147. 148.	-W7Q	18	16.7
145. 146. 147. 148.	-W8 Q	23	17.4
146. 147. 148. 149.	-W150-W50	10	0.0
147. 148. 149.	-W6 Q	25	40.0
148. 149.	- W7 Q	21	28.6
149.	-W8 @	14	7.1
	-W16Q-W5Q	18	38.9
150.	-W6 2	16	25.0
151	-W79	12	33.3
152	-W80	13	38.5
153.	-W19Q-W5Q	19	26 3
154	-W6@	22	31 .8
155	- W79	12	50.0
156.	-W8@	20	60.0
157.	-W20 @- W5 @	16	0.0
158	-W6Q	14	0.0
159	-W7Q	19	15.8
160	-W8 Q	14	42.9
	NP(WR)-15-W3Q-W6Q-W5Q	19	21.1
162.	- W68	18	27.8
163.	-W7 <u>Q</u>	ii	45.5
164.	- W8Q	16	6 3
165.	-W79-W59	22	0.0
166.	-W69	19	26.3
167,	- W7@	20	15.0
168	-W8 Q	15	33.3

1	2	3	4
169.	NP(WR)-15-W3Q-W8Q-W5Q	20	5.0
170.	-W6 Q	21	4.8
171.	- W7 Q	21	4.8
172.	-W8 Q	21	9.6
173.	-W9Q-W5Q	23	43.5
174.	-₩6₩	23	26.1
175.	-₩7₩	22	22.7
176.	-W8 ₽	21	19.1
177.	-W14Q-W5Q	20	35.0
178.	-W6 2	21	57.1
179.	-W7 @	18	38.9
180.	-W8 2	27	33.3
181.	-W15Q-W5Q	22	40.9
182.	-₩6₩	22	18.2
183.	-W7 £	23	17.4
184.	-W8 2	18	16.7
185.	-W17Q-W3₽	22	13.6
186.	-W4 Q	27	37.0
187.	-₩5₩	19	21.1
188.	-₩6₽	16	18.8
189.	-W18 @ -W5 @	26	23.1
190.	-₩6₩	23	30.4
191.	-W7 @	19	15.8
192.	-₩8₽	22	4.6
193.	KWR-1-W1@-W2@-W5@	23	17.4
194.	-W6 Q	21	23.8
195.	-W7 ⊗	18	55.6
196.	-W8 Q	18	16.7
197.	-W3Q-W2Q	18	27.8
198.	-W3 Q	22	22.7
199.	-W4 Q	19	36.8
200.	-W5 Q	22	9.1
201.	-W5Q-W5Q	22	40.9
202.	-₩6₽	21	28.6
203.	-W7 Q	17	35.3
204.	-W8 Q	22	40.9
205.	KWR-1-W20-W20-W50	13	15.4
206.	-W6Q	12	16.7
207.	-W7 Q	20	25.0
208.	-₩8 @	24	50.0
209.	-W3Q-W3Q	23	26.1
210.	-W4 Q	24	33.3
211.	-W5 Q	23	47.8
212.	-W6 ₽	18	33.3

1	2	3	4
213	KWR-1-W2Q-W7Q-W3Q	14	28 . 6
214.	-W4@	15	40 0
215.	÷₩5 &	16	12.5
216	- ₩6 @	24	16 7
217.	-W1O ⊗- W3 ⊗	21	42 9
218.	-W4 2 0	22	36.4
219	-W5 Q	21	28.6
220.	-W6 Q	21	33.3
221.	-W118-W58	18	0.0
222.	-W69	21	28.6
223.	-W7Q	20	20.0
224.	-W8 Q	21	14.3
225	-W139-W59	21	19.1
226.	-W6 Q	17	41.2
227	-W7&	22	45.5
228	-W8 2	15	66 7
229.	- WOW . KWR-1-W3Q-W1Q-W5Q	22	22.7
230.	-W60	22	31.8
230.	-wow ⋅W7&	18	33.3
232		16	6.3
	-W8Q	16	12.5
233	-W50-W30		7,1
234.	-W4@	14	10.0
235	-W50	11	18.2
236.	-W6Q	22	18.2
237.	-W119-W59	15	6.7
238.	-W60	12	16.7
239	-W7@	18	5 6
240.	-W8 Q	13	0 0
241.	-W130-W10	17	17.7
242.	-W3@	23	8.7
243.	-W4@	24	20.8
244.	-W5@	23	17.4
2 45.	ICP-6970-S10-W20	16	6.3
246.	-W30	25	16.0
247	-W4@	20	5.0
248.	-W50	22	4.6
249.	-S20-W20	15	0.0
250 .	W3 0	18	22 2
251	-W4@	17	0.0
252.,	-W5@	20	25.0
253.	-S3 Q -W2 Q	18	0.0
254	-W3 @	19	10 5
255.	-W4@	16	12.5
256.	-₩5₩	17	5.9

		3	4
257.	ICP-6970-S4Q-W2Q	12	100.0
258.	-₩3₩	21	23.8
259.	-W4 @	20	15.0
260.	- W5 Q	18	22.2
261.	-S100-W200	23	4.4
262.	-₩3 Q	18	5.6
263.	-W4Q	17	0.0
264.	-₩5@	22	0.0
265.	-S2Q-W2Q	18	0.0
266.	-W3@	21	0.0
267.	-W4@	19	36.8
268.	-W5Q	16	0.0
269.	-S3Q-W2Q	16	31.3
270.	-W3Q	24	0.0
271.	-W4Q	16	12.5
272.	~W5@	20	0.0
273.	-S49-W19	19	0.0
274.	-W3@	18	11.1
275.	-W4 2	21	4.8
276.	- W 5 Q	18	0.0
277.	-S5Q-W2Q	19	15.8
278.	-83% -W2%	20	0.0
279.	-W4@	16	0.0
280.	-W4W -W50	22	4.6
281.	-S6Q-W2Q	20	15.0
282.	-309-W29 -W30	23	4.4
283.	- w 5 w - W 4 &	23 21	14.3
284.	- W 5 &	19	5.3
285.	-w5ma -S7Q-W2Q	18	27.8
286.	-3/w-w2w -W30	17	5.9
287.	-w3⊠ -w4Ω	20	5.9
288.	- W482 - W504	16	12.5
289.	-w5w -S8 Q -W2 Q	20	10.0
209.		16	0.0
290. 291.	-W3@	15	0.0
	-W4 <u>Q</u>	20	0.0
292.	-W5@	20 19	0.0
293.	-S9@-W2@	20	0.0
294.	-W3@	20 15	0.0
295.	- W4 Q	21	4.8
296.	-W5Q	21 20	4.8 0.0
297.	-S109-W19		13.6
298.	~W3Q	22	
299.	-W4@	24	0.0
300.	-W5 Q	17	0.0

1	2	3	4
301.	C-11-W20-W100-W10	25	28.0
302.	-W20	18	5.6
303.	-W30	18	11.2
304.	-W40	23	13.0
305.	NO-1258-W20-W50-W10	16	43.8
306.	-W30	20	45 0
307.	-W4Q	12	16.7
308.	~W5@	22	45.5
309.	15-3-3-W19-W169-W29	18	16,7
310.	-W30	22	9,1
311.	~W40	18	5.6
312	-W50	24	4 2
313.	-W20-W130-W20	19	0,0
314.	-W30	14	14,3
315	-W40	15	6.7
316.	-W5 0	15	6.7
317.	20-1-W10-W20	19	21.1
318.	· W3@	21	4.8
319.	- W49	15	6.7
320	· W5@	14	7.1
321.	F ₅ -73039-RbB·W49-W19-W59	18	0.0
322.	-W60	24	8.3
323.	-W7 9	21	4.8
324.	-W8 Q	18	16.7
325.	W2Q-W2Q	17	17.7
326	· W30	18	16 7
327	-W48	14	28.6
328	-W59	30	13.3
329	F ₆ -EXE-RbB-W59-W19-W59	17	5.9
330.	-M68	19	0.0
331.	-W70	22	31.8
332	- W80	15	33,3

APPENDIX - XX

Screening of single plant progenies from six field wilt tolerant lines for resistance to wilt in Vertisol sick plot - 'A'

S1. No.	Pedigree	No. of plants	Percent wilt
1	2	3	4
1.	NP(WR)-15-W10-W10	20	10.0
2.	-W2Q	20	15.0
3.	-W3@-W1@	20	0.0
4.	-W2Q	21	14.3
5.	-W1 2Ω-W1Ω	22	9.1
6.	-W2 @	20	0.0
7.	-W13Q-W1Q	23	30.4
8.	-W2 0	21	19.0
9.	-W14Q-W1Q	23	17.4
10.	-W20	20	50.0
11.	-W21Q-W1Q	25	24.0
12.	-W2 Q	20	20.0
13.	-W29Q-W1Q	20	10.0
14.	-W2 Q	24	16.7
15.	-W44Q-W1Q	22	63.6
16.	-W2Q	17	11.8
17.	-W73Q-W1Q	20 22	5.0 9.1
18.	-W2Q	21	54.6
19.	-W79 Q -W1 Q	22	50.0
20.	-W20	23	52.2
21.	ICP-7035-W16Q-W2Q	23 21	19.1
22.	-W3@	12	33.3
23.	-W21@-W2@	32	65.6
24.	-W33Q-W1Q	17	64.7
25. 26.	-W2@ -W49@-W1@	10	10.0
20. 27.	-w498-w189 -W28	23	82.6
27. 28.	-₩2₩ -₩50Q-₩1₩	23	65.2
29.	-W2@	25	28.0
30.	-W259 -W608-W18	21	61.9
30.	-W2Q	17	58.8
32.	-W64Q-W1Q	23	73.9
33.	-W2A	23	47.8
34.	-W73Q-W1Q	17	76.5
35.	-W28	18	44.4
36.	-W77Q-W1Q	15	40.0
37.	-W2 0	18	72,2
			Contd.

243

1	2	3	4
38	ICP-7035-W79@-W1@	22	54.6
39	-W2 ₽	25	56.0
40.	-W80@-W1@	21	52.4
41	-W2 <u>®</u>	12	41.7
42.	-W89@-W]@	17	58 . 8
43	-W2@	10	80 0
44	-W99@-W1@	19	84 . 2
45	- W2@	11	100.0
46.	-W1038-W18	14	0.0
47.	- W2 Q	17	17.7
48	-W142Q-W1Q	13	23.1
49	W2Q	11	100.0
50.	-W144@-W1@	22	864
51.	-W2Q	16	18.8
52.	W151@-W1@	17	0.0
53.	-W2 Q	10	0.0
54.	-W161@-W1@	22	0.0
55.	-W2Q	14	100.0
56.	-W165@-W1@	15	800
57 .	~W2Q	20	60.0
58.	HY-3C-W19-W19	19	10.5
59.	-W20	2 17	0 0
60.	-W3@-W1@	1 /	35.3
61.	-W2@ C11-W11@-W1@	22	682
62		29	0.0
63.	- W2@ -W13@-W1@	20 21	00 0.0
64 65		32	00
66,	- W2@ - W22@ - W1@	18	56
67.		18	33.3
68.	∽ W29a NO⇔148∵ W269 ∽ W19	16	0.0
69 a	140~ (40~ W20 R ~ W 1 R) - W20	20	35.0
70.	-w2m -w32m-w1m	18	5.6
70. 71.	-w32sa-w1sa ∴W2Qa	17	35.3
72	- W539 - W19	24	62.5
73.	- W3587- W160 W269	24	100 0
74	-W63Q-W1Q	16	6 3
75.	-W29	16	0 0
76 .	- W69Q-W1Q	18	66.7
77.,	-W2@	42	0.0
78	-W708-W18	26	69.0
79	-W2@	21	19.1
80	-W809-W39	22	86.4
81	-W49	23	82.6
82	-W83Q-W2Q	18	38.9

83. NO-148-W83@-W3@ 19 42.1 84W86@-W1@ 27 81.5 85W2@ 25 88.0 86W2@ 19 19 15.8 87W2@ 22 50.0 88W111@-W1@ 20 85.0 89W2@ 24 8.3 90W112@-W1@ 24 41.7 91W2@ 26 30.8 92W114@-W1@ 20 15.0 93W2@ 24 29.2 94W118@-W1@ 20 15.0 94W118@-W1@ 20 15.0 95W2@ 18 39.9 96W12@-W1@ 21 9.5 95W2@ 18 39.9 96W12@-W1@ 21 9.5 97W2@ 19 47.4 98W12@-W2@ 24 62.5 99W5@ 25 36.0 100W12@-W2@ 24 62.5 100W12@-W2@ 24 62.5 101W2@ 22 27.3 102W12@-W1@ 20 30.0 101W2@ 22 27.3 104W12@-W1@ 20 30.0 105W2@ 22 27.3 106W12@-W1@ 20 30.0 107W2@ 22 386.9 108W13@-W1@ 19 10.5 107W2@ 23 13.0 106W13@-W1@ 19 10.5 107W2@ 23 13.0 106W13@-W1@ 19 10.5 107W2@ 26 30.8 110W2@ 27 14.8 112W13@-W1@ 20 5.0 111W2@ 22 18.2 114W13@-W1@ 20 5.0 115W2@ 22 18.2 116W13@-W1@ 20 5.0 117W2@ 22 18.2 118W2@ 22 18.2 119W2@ 22 18.2 119W2@ 22 28.0 110W13@-W1@ 20 5.0 111W3@-W1@ 20 5.0 112W13@-W1@ 21 23.8 114W13@-W1@ 21 23.8 115W2@ 22 18.2 116W14@-W1@ 25 34.0 117W2@ 25 36.0 118W14@-W1@ 25 36.0 119W2@ 26 29.2 120W145@-W1@ 23 30.4 121W149@-W1@ 23 30.4 121W149@-W1@ 23 30.4 122W2@ 26 20 35.0 123W150@-W4@ 24 75.0 124W2@ 20 35.7	1	2	3	4
85.	83.			
86W88@-W1@ 19 15.8 87W2@ 22 50.0 88W111@-W1@ 20 85.0 89W2@ 24 8.3 90W112@-W1@ 24 41.7 91W2@ 26 30.8 92W114@-W1@ 20 15.0 93W2@ 24 29.2 94W118@-W1@ 22 54.5 95W2@ 18 39.9 96W12@-W1@ 21 9.5 97W2@ 19 47.4 98W12@-W2@ 24 62.5 99W5@ 25 36.0 100W12@-W1@ 20 50.0 101W2@ 22 27.3 102W12@-W1@ 20 50.0 101W2@ 22 50.0 102W127@-W1@ 20 50.0 103W2@ 22 50.0 104W128@-W1@ 20 30.0 105W2@ 22 50.0 106W13@-W1@ 20 30.0 107W2@ 22 50.0 108W13@-W1@ 20 30.0 109W2@ 21 30.0 101W2@ 22 50.0 102W13@-W1@ 20 30.0 105W2@ 22 50.0 106W13@-W1@ 20 30.0 107W2@ 21 30.0 108W13@-W1@ 20 30.0 109W2@ 21 30.0 110W2@ 22 18.1 111W2@ 26 30.8 110W13@-W1@ 20 5.0 111W2@ 26 30.8 110W13@-W1@ 27 14.8 112W13@-W1@ 20 5.0 114W13@-W1@ 20 5.0 115W2@ 26 36.0 116W141@-W1@ 25 36.0 117W2@ 25 36.0 118W141@-W1@ 25 36.0 119W2@ 25 28.0 120W145@-W1@ 23 30.4 121W149@-W1@ 23 30.4 122W15@-W1@ 24 75.0 123W15@-W1@ 24 75.0 123W15@-W1@ 24 75.0 123W15@-W1@ 24 75.0 123W15@-W1@ 24 75.0				
87W20				
88W111@-W19 20 85.0 89W20 24 8.3 90W112@-W19 24 41.7 91W20 26 30.8 92W114@-W19 20 15.0 93W20 24 29.2 94W118@-W10 22 54.5 95W20 18 39.9 96W120@-W10 21 9.5 97W20 19 47.4 98W122@-W20 24 62.5 99W50 25 36.0 100W126@-W10 20 50.0 101W20 22 77.3 102W127@-W10 23 86.9 103W20 22 77.3 102W127@-W10 23 86.9 104W128@-W10 20 30.0 105W20 22 10.0 106W130@-W10 19 10.5 107W20 23 13.0 106W130@-W10 19 10.5 107W20 26 30.8 110W130@-W10 26 19.2 109W20 26 30.8 110W131@-W10 26 19.2 111W20 27.3 112W136@-W10 20 50.0 111W30 27 14.8 112W136@-W10 20 50.0 115W20 26 30.8 116W131@-W10 20 50.0 117W20 26 30.8 118W20 27 14.8 119W20 29 24 29.2 116W141@-W10 25 36.0 118W143@-W10 25 36.0 119W20 25 36.0 110W149@-W10 25 36.0 111W20 25 36.0 111W20 25 36.0 112W149@-W10 21 66.7 119W20 25 36.0 120W149@-W10 20 35.0 121W149@-W10 20 35.0 122W149@-W10 20 35.0 123W150@-W10 24 75.0 123W150@-W10 24 75.0 124W50 24 75.0				
89W2\(\text{N} \) 24 \\ 8.3 \\ 90W112\(\text{R} - \text{W} \) \\ 91W2\(\text{R} \) 26 \\ 30.8 \\ 92W114\(\text{R} - \text{W} \) \\ 93W2\(\text{R} \) 24 \\ 94W118\(\text{R} - \text{W} \) \\ 96W12\(\text{R} - \text{W} \) \\ 96W12\(\text{R} - \text{W} \) \\ 96W12\(\text{R} - \text{W} \) \\ 97W2\(\text{R} \) \\ 98W12\(\text{R} - \text{W} \) \\ 99W5\(\text{R} \) \\ 99W5\(\text{R} \) \\ 99W5\(\text{R} \) \\ 99W5\(\text{R} \) \\ 99W12\(\text{R} - \text{W} \) \\ 99W2\(\text{R} \) \\ 99W12\(\text{R} - \text{W} \) \\ 99W2\(\text{R} \) \\ 99W12\(\text{R} - \text{W} \) \\ 100W12\(\text{R} - \text{W} \) \\ 101W2\(\text{R} \) \\ 102W127\(\text{R} - \text{W} \) \\ 103W2\(\text{R} \) \\ 104W12\(\text{R} - \text{W} \) \\ 105W2\(\text{R} \) \\ 106W13\(\text{R} - \text{W} \) \\ 107W2\(\text{R} \) \\ 108W13\(\text{R} - \text{W} \) \\ 109W2\(\text{R} \) \\ 109W2\(\text{R} \) \\ 109W2\(\text{R} \) \\ 109W13\(\text{R} - \text{W} \) \\ 109W2\(\text{R} \) \\ 110W13\(\text{R} - \text{W} \) \\ 110W13\(\text{R} - \text{W} \) \\ 111W3\(\text{R} \) \\ 112W13\(\text{R} - \text{W} \) \\ 113W2\(\text{R} \) \\ 114W13\(\text{R} - \text{W} \) \\ 115W2\(\text{R} \) \\ 116W14\(\text{R} - \text{W} \) \\ 117W2\(\text{R} \) \\ 22 - 18.2 \\ 114W14\(\text{R} - \text{W} \) \\ 121W14\(\text{R} - \text{W} \) \\ 122W14\(\text{R} - \text{W} \) \\ 123W14\(\text{R} - \text{W} \) \\ 124W19\(\text{R} - \text{W} \) \\ 24 - 75.0 \\ 25 - W16\(\text{R} - \text{W} \) \\ 26 - W16\(\text{R} - \text{W} \) \\ 27 - 122W16\(\text{R} - \text{W} \) \\ 28 - 46.4 \\ 29.1 \\ 21W16\(\text{R} - \text{W} \) \\ 28 - 46.4 \\ 29.1 \\ 20 - 123W16\(\text{R} - \text{W} \) \\ 21W16\(\text{R} - \text{W} \) \\ 28 - 46.4 \\ 29.1 \\ 28 - 46				
90W112B-W1B 24 41.7 91W2B 26 30.8 92W114B-W1B 20 15.0 93W2B 24 29.2 94W118B-W1B 22 54.5 95W2B 18 39.9 96W120B-W1B 21 9.5 97W2B 19 47.4 98W122B-W2B 24 62.5 100W126B-W1B 20 50.0 101W2B 25 36.0 100W126B-W1B 20 50.0 101W2B 22 27.3 102W127B-W1B 23 86.9 103W2B 22 50.0 104W128B-W1B 20 30.0 105W2B 22 50.0 106W130B-W1B 19 10.5 107W2B 18 16.7 108W131B-W1B 26 19.2 109W2B 26 30.8 110W133B-W1B 20 5.0 111W3B 27 14.8 112W136B-W1B 20 5.0 111W3B 27 14.8 112W136B-W1B 21 23.8 113W2B 22 18.2 114W137B-W1B 19 36.8 115W2B 26 30.8 116W137B-W1B 27 14.8 117W2B 29 26 30.8 118W137B-W1B 29 20 5.0 119W2B 20 5.0 110W138B-W1B 20 5.0 111W3B 27 14.8 112W136B-W1B 21 23.8 113W2B 22 18.2 114W137B-W1B 25 36.0 118W141B-W1B 25 36.0 118W141B-W1B 25 36.0 118W143B-W1B 21 66.7 119W2B 25 36.0 110W143B-W1B 21 66.7 119W2B 25 36.0 120W145B-W1B 22 22.7 121W149B-W1B 22 22.7 122W2B 20 35.0 123W150B-W1B 24 75.0				
91W28 26 30.8 92W1149-W19 20 15.0 93W29 24 29.2 94W1189-W19 22 54.5 95W29 18 39.9 96W1209-W19 21 9.5 97W29 19 47.4 98W1229-W29 24 62.5 99W59 25 36.0 100W1269-W19 20 50.0 101W29 22 27.3 102W1279-W19 23 86.9 103W29 22 38.6 104W1289-W19 20 30.0 105W29 23 13.0 106W1309-W19 19 10.5 107W29 18 16.7 108W1319-W19 26 19.2 110W29 27 14.8 110W1319-W19 26 30.8 110W1339-W19 26 30.8 110W1339-W19 20 5.0 111W39 27 14.8 112W1369-W19 21 23.8 115W29 22 18.2 114W1379-W19 21 23.8 115W29 22 18.2 114W1379-W19 29 25 36.0 118W1379-W19 29 25 36.0 119W29 29 22 18.2 114W1379-W19 29 25 36.0 118W1499-W19 25 36.0 118W1499-W19 21 66.7 119W29 25 36.0 118W1499-W19 21 66.7 119W29 25 28.0 110W1499-W19 21 66.7 119W29 25 28.0 110W1499-W19 21 66.7 119W29 25 28.0 110W1499-W19 20 35.0 121W1499-W19 20 35.0 122W1499-W19 22 22.7 122W1509-W19 24 75.0				
92W114@-W1@ 20 15.0 93W2@ 24 29.2 94W118@-W1@ 22 54.5 95W2@ 18 39.9 96W120@-W1@ 21 9.5 97W2@ 19 47.4 98W122@-W2@ 24 62.5 99W5@ 25 36.0 100W126@-W1@ 20 50.0 101W2@ 22 27.3 102W127@-W1@ 23 86.9 103W2@ 22 50.0 104W128@-W1@ 20 30.0 105W2@ 22 50.0 106W130@-W1@ 19 10.5 107W2@ 23 13.0 106W130@-W1@ 19 10.5 107W2@ 28 18 16.7 108W131@-W1@ 26 19.2 109W2@ 26 30.8 110W133@-W1@ 20 5.0 111W3@ 27 14.8 112W136@-W1@ 21 23.8 113W2@ 22 18.2 114W137@-W1@ 19 36.8 115W2@ 24 29.2 114W137@-W1@ 19 36.8 115W2@ 24 29.2 114W137@-W1@ 25 36.0 118W141@-W1@ 25 44.0 117W2@ 25 36.0 118W141@-W1@ 25 44.0 117W2@ 25 36.0 118W149@-W1@ 25 28.0 120W145@-W1@ 21 66.7 119W2@ 25 36.0 118W149@-W1@ 21 66.7 119W2@ 25 36.0 118W149@-W1@ 21 66.7 119W2@ 25 36.0 110W149@-W1@ 21 66.7 119W2@ 25 36.0 118W149@-W1@ 21 66.7 119W2@ 25 36.0 118W149@-W1@ 21 66.7 119W2@ 25 36.0 120W145@-W1@ 21 33.0 121W149@-W1@ 22 22.7 122W2@ 20 35.0 123W150@-W4@ 24 75.0 124W50@ 28 46.4 125W166@-W1@ 19 21.1				
93.				
94W118@-W1@ 22 54.5 95W2@ 18 39.9 96W120@-W1@ 21 9.5 97W2@ 19 47.4 98W122@-W2@ 24 62.5 99W5@ 25 36.0 100W126@-W1@ 20 50.0 101W2@ 22 27.3 102W127@-W1@ 23 86.9 103W2@ 22 50.0 104W128@-W1@ 20 30.0 105W2@ 22 50.0 104W128@-W1@ 20 30.0 105W2@ 23 13.0 106W130@-W1@ 19 10.5 107W2@ 18 16.7 108W131@-W1@ 26 19.2 109W2@ 26 30.8 110W133@-W1@ 20 5.0 111W3@ 27 14.8 112W136@-W1@ 21 23.8 113W2@ 22 18.2 114W137@-W1@ 19 36.8 115W2@ 24 29.2 116W141@-W1@ 25 44.0 117W2@ 25 36.0 118W149@-W1@ 25 28.0 119W2@ 25 36.0 118W149@-W1@ 25 22.7 120W149@-W1@ 23 30.4 121W149@-W1@ 23 30.4 122W2@ 20 35.0 123W165@-W1@ 22 22.7 123W165@-W1@ 24 75.0 128W165@-W1@ 28 46.4 125W165@-W1@ 19 21.1				
95.				
96W1209-W19 21 9.5 97W20 19 47.4 98W1229-W29 24 62.5 99W59 25 36.0 100W1269-W19 20 50.0 101W29 22 27.3 102W1279-W19 23 86.9 103W29 22 50.0 104W1289-W19 20 30.0 105W29 23 13.0 106W1309-W19 19 10.5 107W29 18 16.7 108W1319-W19 26 19.2 109W29 26 30.8 110W1339-W19 26 30.8 110W1339-W19 20 5.0 111W39 27 14.8 112W1369-W19 21 23.8 113W29 22 18.2 114W1379-W19 19 36.8 115W29 24 29.2 116W1419-W19 25 44.0 117W29 25 36.0 118W1439-W19 25 44.0 117W29 25 36.0 118W1439-W19 25 25 28.0 120W1459-W19 21 66.7 119W29 25 36.0 120W1459-W19 21 66.7 119W29 25 28.0 120W1459-W19 23 30.4 121W1499-W19 22 22.7 122W29 25 28.0 123W1509-W19 24 75.0 124W1509-W19 24 75.0 125W1659-W19 28 46.4				
97W2\text{98} 19 47.4 98W12\text{2R}-W2\text{W} 24 62.5 99W5\text{W} 25 36.0 100W12\text{6R}-W1\text{W} 20 50.0 101W2\text{W} 22 27.3 102W12\text{P}-W1\text{W} 23 86.9 103W2\text{W} 22 50.0 104W12\text{RP-W1\text{W} 20 20 30.0 105W2\text{W} 23 13.0 106W13\text{RP-W1\text{W} 19 10.5} 107W2\text{W} 18 16.7 108W13\text{RP-W1\text{W} 26 19.2 109W2\text{W} 26 30.8 110W13\text{RP-W1\text{W} 26 30.8 110W13\text{RP-W1\text{W} 20 5.0 111W3\text{RP-W1\text{W} 27 14.8} 112W13\text{RP-W1\text{W} 27 14.8 113W2\text{RP-W2\text{W} 27 14.8 114W13\text{RP-W1\text{W} 27 14.8 115W2\text{RP-W2\text{W} 21 23.8 116W13\text{RP-W1\text{W} 27 14.8 117W2\text{RP-W2\text{W} 25 36.0 117W2\text{RP-W2\text{W} 25 36.0 118W14\text{RP-W1\text{W} 25 36.0 119W2\text{RP-W1\text{W} 25 36.0 110W14\text{RP-W1\text{W} 26 21 66.7 119W2\text{RP-W1\text{W} 26 22 22.7 120W14\text{RP-W1\text{W} 26 23 30.4 121W14\text{RP-W1\text{W} 26 22 22.7 122W2\text{RP-W1\text{W} 26 24 75.0 123W15\text{RP-W1\text{W} 26 28 46.4 125W16\text{SP-W1\text{W} 28 46.4 125W16\text{SP-W1\text{W} 28 46.4				
98W1228-W28 24 62.5 99W58 25 36.0 100W1268-W18 20 50.0 101W29 22 27.3 102W1278-W18 23 86.9 103W28 22 50.0 104W1288-W18 20 30.0 105W28 23 13.0 106W1308-W18 19 10.5 107W29 18 16.7 108W1318-W18 26 19.2 109W28 26 30.8 110W1338-W18 20 5.0 111W38 27 14.8 112W1368-W18 21 23.8 113W28 22 18.2 114W1378-W18 21 23.8 115W28 22 18.2 114W1378-W18 29 22 18.2 114W1378-W18 29 22 18.2 115W28 24 29.2 116W1418-W18 25 44.0 117W28 25 36.0 118W1438-W18 21 66.7 119W28 25 36.0 120W1458-W18 21 66.7 119W28 25 28.0 120W1458-W18 21 66.7 121W1498-W18 22 22.7 122W28 23 30.4 121W1498-W18 22 22.7 122W28 24 75.0 123W1508-W18 24 75.0 124W1508-W18 28 46.4 125W1658-W18 19 21.1				
99.				
100. -W1 26 € - W1 € 20 50.0 101. -W2 € 22 27.3 102. -W1 27 € - W1 € 23 86.9 103. -W2 € 22 50.0 104. -W1 28 € - W1 € 20 30.0 105. -W2 € 23 13.0 105. -W2 € 23 13.0 106. -W1 30 € - W1 € 19 10.5 107. -W2 € 18 16.7 108. -W1 31 € - W1 € 26 19.2 109. -W2 € 26 30.8 110. -W1 33 € - W1 € 20 5.0 111. -W3 € 27 14.8 112. -W1 36 € - W1 € 21 23.8 113. -W1 36 € - W1 € 22 18.2 114. -W1 37 € - W1 € 22 18.2 114. -W1 37 € - W1 € 24 29.2 116. -W1 41 € - W1 € 25 44.0 117. -W2 € 25 36.0 118. -W1 43 € - W1 €				
101.				
102. -W1270-W10 23 86.9 103. -W20 22 50.0 104. -W1280-W10 20 30.0 105. -W20 23 13.0 106. -W1300-W10 19 10.5 107. -W20 18 16.7 108. -W1310-W10 26 19.2 109. -W20 26 30.8 110. -W1330-W10 20 5.0 111. -W30 27 14.8 112. -W1360-W10 21 23.8 113. -W20 22 18.2 114. -W1370-W10 19 36.8 115. -W20 22 18.2 116. -W1410-W10 25 44.0 117. -W20 25 36.0 118. -W1430-W10 21 66.7 119. -W20 25 28.0 120. -W1450-W10 23 30.4 121. -W1490-W10 22 22.7 -W20				
103.				
104. -W128@-W1@ 20 30.0 105. -W2@ 23 13.0 106. -W1 30@-W1@ 19 10.5 107. -W2@ 18 16.7 108. -W1 31@-W1@ 26 19.2 109. -W2@ 26 30.8 110. -W1 33@-W1@ 20 5.0 111. -W3@ 27 14.8 112. -W1 36@-W1@ 21 23.8 113. -W2@ 22 18.2 114. -W1 37@-W1@ 19 36.8 115. -W2@ 24 29.2 116. -W1 41@-W1@ 25 44.0 117. -W2@ 25 36.0 118. -W1 43@-W1@ 21 66.7 119. -W2@ 25 28.0 120. -W1 45@-W1@ 23 30.4 121. -W1 49@-W1@ 22 22.7 122. -W1 49@-W1@ 24 75.0 123. -W1 50@-W4@ 24 75.0				
105.				
106. -WI 300-WI 0 19 10.5 107. -W20 18 16.7 108. -WI 310-WI 0 26 19.2 109. -W20 26 30.8 110. -W300-WI 0 20 5.0 111. -W300-WI 0 27 14.8 112. -WI 360-WI 0 21 23.8 113. -W200-WI 0 22 18.2 114. -WI 370-WI 0 19 36.8 115. -W200-WI 0 24 29.2 116. -WI 410-WI 0 25 44.0 117. -W200-WI 0 25 36.0 118. -WI 430-WI 0 21 66.7 119. -W200-WI 0 23 30.4 121. -WI 490-WI 0 22 22.7 122. -W200-WI 0 24 75.0 123. -WI 500-WI 0 28 46.4 125. -WI 650-WI 0 19 21.1				
107. -W20 18 16.7 108. -W131Q-W10 26 19.2 109. -W20 26 30.8 110. -W133Q-W10 20 5.0 111. -W30 27 14.8 112. -W136Q-W10 21 23.8 113. -W20 22 18.2 114. -W137Q-W10 19 36.8 115. -W20 24 29.2 116. -W141Q-W10 25 44.0 117. -W20 25 36.0 118. -W143Q-W10 21 66.7 119. -W20 25 28.0 120. -W145Q-W10 23 30.4 121. -W149Q-W10 22 22.7 122. -W20 20 35.0 123. -W150Q-W40 24 75.0 124. -W50 28 46.4 125. -W165Q-W10 19 21.1				
109. -W20 26 30.8 110. -W1330-W10 20 5.0 111. -W300 27 14.8 112. -W1360-W10 21 23.8 113. -W20 22 18.2 114. -W1370-W10 19 36.8 115. -W20 24 29.2 116. -W1410-W10 25 44.0 117. -W20 25 36.0 118. -W1430-W10 21 66.7 119. -W20 25 28.0 120. -W1450-W10 23 30.4 121. -W1490-W10 22 22.7 122. -W20 20 35.0 123. -W1500-W40 24 75.0 124. -W50 28 46.4 125. -W1650-W10 19 21.1			18	16.7
110. -W133Q-W1Q 20 5.0 111. -W3Q 27 14.8 112. -W136Q-W1Q 21 23.8 113. -W2Q 22 18.2 114. -W137Q-W1Q 19 36.8 115. -W2Q 24 29.2 116. -W141Q-W1Q 25 44.0 117. -W2Q 25 36.0 118. -W143Q-W1Q 21 66.7 119. -W2Q 25 28.0 120. -W145Q-W1Q 23 30.4 121. -W149Q-W1Q 22 22.7 122. -W2Q 20 35.0 123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1	108.	-W131Q-W1Q		
111. -W30 27 14.8 112. -W1360-W10 21 23.8 113. -W20 22 18.2 114. -W1370-W10 19 36.8 115. -W20 24 29.2 116. -W1410-W10 25 44.0 117. -W20 25 36.0 118. -W1430-W10 21 66.7 119. -W20 25 28.0 120. -W1450-W10 23 30.4 121. -W1490-W10 22 22.7 122. -W20 20 35.0 123. -W1500-W40 24 75.0 124. -W50 28 46.4 125. -W1650-W10 19 21.1	109.	-W2 Q	26	
112. -W136Q-W1Q 21 23.8 113. -W2Q 22 18.2 114. -W137Q-W1Q 19 36.8 115. -W2Q 24 29.2 116. -W141Q-W1Q 25 44.0 117. -W2Q 25 36.0 118. -W143Q-W1Q 21 66.7 119. -W2Q 25 28.0 120. -W145Q-W1Q 23 30.4 121. -W149Q-W1Q 22 22.7 122. -W2Q 20 35.0 123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1	110.	-W133Ω-W1Ω	- -	
113. -W20 22 18.2 114. -W1370-W10 19 36.8 115. -W20 24 29.2 116. -W1410-W10 25 44.0 117. -W20 25 36.0 118. -W1430-W10 21 66.7 119. -W20 25 28.0 120. -W1450-W10 23 30.4 121. -W1490-W10 22 22.7 122. -W20 20 35.0 123. -W1500-W40 24 75.0 124. -W50 28 46.4 125. -W1650-W10 19 21.1				14.8
114. -W137Q-W1Q 19 36.8 115. -W2Q 24 29.2 116. -W141Q-W1Q 25 44.0 117. -W2Q 25 36.0 118. -W143Q-W1Q 21 66.7 119. -W2Q 25 28.0 120. -W145Q-W1Q 23 30.4 121. -W149Q-W1Q 22 22.7 122. -W2Q 20 35.0 123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1		-W136Q-W1Q		
115. -W2Q 24 29.2 116. -W141Q-W1Q 25 44.0 117. -W2Q 25 36.0 118. -W143Q-W1Q 21 66.7 119. -W2Q 25 28.0 120. -W145Q-W1Q 23 30.4 121. -W149Q-W1Q 22 22.7 122. -W2Q 20 35.0 123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1				
116. -W141@-W1@ 25 44.0 117. -W2@ 25 36.0 118. -W143@-W1@ 21 66.7 119. -W2@ 25 28.0 120. -W145@-W1@ 23 30.4 121. -W149@-W1@ 22 22.7 122. -W2@ 20 35.0 123. -W150@-W4@ 24 75.0 124. -W5@ 28 46.4 125. -W165@-W1@ 19 21.1				
117. -W20 25 36.0 118. -W1430-W10 21 66.7 119. -W20 25 28.0 120. -W1450-W10 23 30.4 121. -W1490-W10 22 22.7 122. -W20 20 35.0 123. -W1500-W40 24 75.0 124. -W50 28 46.4 125. -W1650-W10 19 21.1				
118. -W143Q-W1Q 21 66.7 119. -W2Q 25 28.0 120. -W145Q-W1Q 23 30.4 121. -W149Q-W1Q 22 22.7 122. -W2Q 20 35.0 123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1				
119. -W20 25 28.0 120. -W145Q-W1Q 23 30.4 121. -W149Q-W1Q 22 22.7 122. -W2Q 20 35.0 123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1				
120. -W145Q-W1Q 23 30.4 121. -W149Q-W1Q 22 22.7 122. -W2Q 20 35.0 123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1				
121. -W149Q-W1Q 22 22.7 122. -W2Q 20 35.0 123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1				28.0
122. -W2Q 20 35.0 123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1				30.4
123. -W150Q-W4Q 24 75.0 124. -W5Q 28 46.4 125. -W165Q-W1Q 19 21.1				26.7
124W50 28 46.4 125W1650-W10 19 21.1				
125. $-W165Q-W1Q$ 19 21.1				
120WZM 28 35./				
	120.	-WZ W	20	35.7

1	2	3	4
127.	NO-148-W1679-W19	22	500
128	W2 Q	21	47.6
129	-W169 Q W1 Q	16	62.5
130.	-W20	20	55.0
131.	-W170Q-W1Q	24	16.7
132.	-W2Q	24	50.0
133	-W1749-W39	25	24,0
34	-W4@	21	28.6
35	-W1759-W1Ω	24	25.0
36 .	W3 Q	23	8.7
137.	-W1769-W19	20	15.0
38.	-W1819-W29	26	23.1
139.	-W3 Q	21	66.7
140.	-W1829-W39	26	46 2
141.	-W50	20	400
142	-W190@-W1@	19	15.8
143.	-W20	26	26.9
144	-W2049-W19	20	60.0
	~₩204æ≈₩≀₩ -₩4₩	20	550
145	-W2099-W19	20 21	23.8
46.		21	
147.	W2 @		23.8
148	-W2120-W10	25	36.0
149.	-W30	21	4.8
50	-W229@-W1@	22	27.3
51.	- W2.9	26	34 6
152	-W232Q-W1Q	23	47.8
53.	-W3®	20	25.0
54	-W242Q-W1@	21	52.4
155	-W3 Q	22	27.3
156.	BDN-1-W39@-W1@	22	18.2
157.	-W2 Q	30	20 .0
158	- W1 74@-W2@	23	82 6
159、	-W3 @	27	37.0
160.	-W191@W3@	22	50 · C
161	-W4₽	29	37.9
162.	-W192Q-W2Q	27	40 7
163.	-W30	24	16.7
164.	-W2O2@-W2@	24	50.0
165.	-W3@	20	200
166	W209 Q W3 Q	22	9.1
167	-W4@	23	52 . 1
168	-W214Q-W2Q	27	33.3
169	~W3@	26	19.2
170,	BDN-1-W2169-W49	22	13 6
r , U ,	CONTRACTOR NAME	30	23

1	2	3	4
172.	BDN-1-W219@-W1@	21	76.2
173.	-W2 2	18	61.2
174.	-W236Q-W1Q	23	0.0
175.	-W2 Q	15	20.0
176.	-W237Q-W1Q	26	65.4
177.	-W3 Q	22	54.5
178.	-W239Q-W3Q	19	31.6
179.	-W4Ω	21	14.3
180.	-W242Q-W1Q	26	34.6
181.	-W2Q	27	51.9
182.	-W243Q-W1Q	28	14.3
183.	-W2 Q	20	10.0
184.	-W245Q-W2Q	20	55.0
185.	-W3@	25	40.0
186.	-W250Q-W1Q	27	25.9
187.	-W5@	20	25.0
188.	-W263Q-W3Q	29	10.3
189.	-W2008-W08	12	8.3

APPENDIX-XXI

Screening of sterility mosaic resistant and/wilt promising progenies

for resistance to wilt in Vertisol sick plot-A

ST. No.	Pedigree	No. of plants	% Wilt	No of plants selected
1	2	3	4	5
1.	ICP-2376-SW1Q	9	44.4	0
2	-SW20	12	0.0	1
3.	-SW309	18	0.0	i
4	-SW400	8	37.5	ò
5.	ICP-3782-SW80	າ້າ	9.1	ŏ
6.	-SW10Q	8	0.0	ŏ
7.	-SW11Q	10	10.0	Ö
8.	-SW120	9	11.1	Ö
9.	ICP-3783-S10-S20-SW100	16	6 3	0
10.	-SW110	16	6.3	0
11.	-SW12@	23	8.7	0
12	-SW16Q	18	5.6	0
13.	NP(WR)-15-W20-W140-SW70	20	5.0	0
14.	-SW9@	17	0.0	4
15	-SW11@	12	0.0	5 8
16.	-SW13 Q	20	10.0	
17.	ICP-6970-S20-SW90	24	4.2	5 5
18.	-SW100	21	9.5	5
19.	-SW11@	16	6.3	6
20.	-SW120	18	11.1	5
21	ICP-7035-S34Q-S29Q-SW9Q	17	7 6 5	0
22.	-SW10@	17	88.2	0
23.	-SW11@	16	37.5	0
24.	-SW120	15	13.3	0
25 .	HY-3C-S2510-S150-SW70	12	16 7	0
26.	-SW8 9	21	38.1	0
27.	-SW10@	20	30.0	0
28.	-SW11@	16	31.3	0
29.	KWR-1-W3Q-W1Q-SW7Q	16	6.3	5
30.	-S₩8@	18	16.7	0 5 5 3
31	-SW9Q	27	18.5	3
32	-SW10@	12	0.0	2
33.	BDN-1-W10-SW100	8	25 0	0
34.	- SW1 30	26	53 9	0
35.	-SW14@	20	10.0	0 contd

contd

1	2	3	4	5	
36.	BDN-1-W10-SW160	26	11.5	0	
37.	15-3-3-W20-W160-SW100	23	4.3	4	
38.	-SW11 Q	20	0.0	5	
39.	-SW130	14	0.0	7	
40.	-SW140	22	4.6	6	
41.	ICP-7867-SW60	20	25.0	0	
	-SW7₩	20	40.0	0	
42. 43.	-SW8 Q	13	23.1	0	
44.	-SW9 Q	11	36.4	0	

APPENDIX ~ XXII

Results of screening germplasm against pigeonpea wilt in pots

S1 No	ICP No.	No of plants tested	Percent wilt	S1. No	ICP No.	No. of plants tested	Percent wilt
1	2	3	4	1	2	3	4
1,	1	26 1 <i>7</i>	61 .5 70 .6	38	45	21	80.9
2. 3.	2 3	29	55,2	39 40	46 48	3) 27	67 7 85 2
4.	4	29 27	85 . 2	41	49	32	81.3
5	5	25	72.0	42	50	26	76 9
6.	6	26	57.7	43	51	32	87.5
7.	7	26	84.6	44	52	17	52 9
8.	8	24	70.8	45	54	26	92.3
9,	9	26	769	46	56	22	77 3
10.	10	27	85 2	47.	57	29	78.3
11.	11	29	931	48	58	31	93.5
12.	12	26	885	49.	59	24	667
13.	13	28	85.7	50.	60	29	96.5
14. 15.	14 15	27 30	55.5 66.7	51 52	62 63	28 25	64 3 68 0
16	16	28	71.4	53.	64	25 17	88 2
17.	17	19	84.2	54.	65	20	90.0
18	18	22	72.7	55	66	24	91.7
19	19	21	71.4	56	67	18	94 4
20 .	22	26	65.4	57.	68	28	75 0
21	24	20	850	58	69	23	69 6
22 .	25	28	82 1	59	70	23	78 3
23.	26	29	828	60	71	25	92.0
24 .	27	33	81.8	61.	72	26	46 1
25.	28	26	34.6	62.	75 36	28	60 7
26. 27.	29 31	23 28	95.6 71.4	63 64	76 77	33 18	84 8 61 1
28	32	20 32	40.6	65	7.7 78	30	86 7
29	33	28	786	66	81	20	100 0
30	34	32	56.2	67	82	26	73 1
31	35	28	50.0	68	83	24	83 3
32	36	31	83.9	69	84	28	67.9
33	37	27	66.7	70.	86	23	86 4
34	38	24	75.0	71.	87	16	100.0
35	40	30	833	72	88	28	92 9
36	41	28	64 . 3	73.	91	30	90 0
37	43	21	80.9	74	92	4	100.0

1	2	3	4	1	2	3	4
75.	94	25	100.0	121.	173	25	52 0
76.	95	22	954	122.	175	22	95.4
77.	98	24	95.8	123.	178	25	76.0
78.	99	25	92.0	124.	180	24	79.2
79.	100	32	87.5	125.	182	23	78.3
80.	102	9	77.8	126.	184	31	87.1
81.	103	10	20.0	127.	185	22	95,4
82.	104	24	95.8	128.	187	31	54.8
83.	106	22	72.7	129.	189	26	69.2
84.	108	16	75.0	130.	193	27	15.0
85.	109	8	50.0	131.	194	14	71 ,4
86.	110	17	52.9	132.	195	24	79.2
87.	111	10	90.0	133.	198	28	82.1
88.	112	23	69.6	134.	199	25	72.0
89.	113	22	90.9	135.	202	30	90.0
90.	115	9	55.6	136.	204	22	86.4
91.	117	25	80.0	137.	206	28	71.4
92.	119	17	82.3	138.	208	33	81 .8
93.	121	22	90.9	139.	210	27	81.5
94.	122	25	92.0	140.	212	27.	85.2
95.	124	26	34.6	141.	213	26	80.8
96.	126	22	41.0	142.	214	24	33.3
97.	127 128	17 18	100.0	143. 144.	216	23 22	8.7
98. 99.	130	31	88.9 83.9	144.	218 219	22 25	81.8 68.0
99. 100.	130	31	64.5	145.	219	25 20	95.0
100.	132	28	82.1	140.	222	28	82.1
102.	132	23	43.5	147.	224	25	64.0
102.	136	26	61.5	149.	227	31	61.3
104.	139	23	56.5	150.	228	29	79.3
105.	141	21	76.1	151.	230	23	73.9
106.	147	18	55.5	152.	231	29	79.3
107.	148	26	61.5	153.	232	28	82.1
108.	150	23	87.0	154.	233	24	79.2
109.	151	18	50.0	155	234	28	85,7
110.	154	13	76.9	156	235	29	79.3
111.	155	33	84.8	157.	238	30	90.0
112.	156	22	81.8	158.	240	26	96.1
113.	157	23	60.9	159.	242	23	100.0
114.	163	25	80.0	160.	246	21	95.2
115.	164	23	87.0	161.	247	26	76.9
116.	165	21	95.2	162.	248	26	26.9
117.	167	25	88.0	163.	250	23	82.6
118.	168	28	53.6	164.	251	27	77.8
119.	170	26	84.6	165.	252	23	91.3
120.	171	28	89.3	166.	255	24	83 . 3
	• • •	_0	3.0				

			4	ı	2	3	4
167.	257	31	83.9	214	357	2.7	70.4
168	261	23	82,6	215	359	24	41 7
`69 '70	264 266	26 17	88.5 100.0	216 217.	361 363	31 28	90.3 87.9
171	267	20	90.0	218	366	30	66 7
172	268	27	77.8	219	369	28	96.4
173.	270	23	783	220	373	22	72 7
174	274	29	86 2	221	375	33	72.7
1.75	275	33	84 .8	222	377	30	73.3
176	279	24	70.8	223	379	25 20	88.0
177 178	281 283	23 25	73.9 56.0	224 . 225 .	380 382	29 23	89.6 95.6
179	285	25 34	70,6	226	383	29	89.6
180	288	23	69.6	227.	385	29	62 1
181.	290	28	71.4	228.	38.7	34	85 3
182.	292	20	750	229	388	29	72 4
183	294	25	68.0	2 30	389	13	61.5
184. 185	296 297	26	92.3	231	390 391	51	80 9 79 0
186.	297 299	31 22	90.3 31.8	232	393	19 28	64.3
187	301	22	81.8	234	395	?6	92.3
188	305	29	65.5	235.	397	25	88 0
189	306	20	41.7	2.36	400	26	76 9
190	308	26	61 5	237	402	25	92 0
191	309	28	500	238	406	25	84 0
192.	312	24	75.0	239 . 240 .	408 4≩0	4 17	100.0
193 194	314 315	26 26	26 . 9 61 . 5	241	412	25	889
195	321	28	71.4	242	416	22	72 7
96	323	31	77.4	243	418	20	85.0
197	325	26	23.1	244	420	20	70 0
198	327	32	53,2	245	423	13	76 9
199	330	19	57.9	246	424	36	66 7 18 7
200 201	332 334	19 30	63 .2 66 .7	247 248	426 427	32 22	18 ⁷ 40 9
201	335	21	100.0	249	428	59	51.7
203	338	2	100.0	250	431	13	38 5
204	339	22	81.8	251	4 32	31	48 4
205	341	31	48.4	252	433	22	72.3
206	342	22	45.4	253	4 34	18	83 3
207.	344	22	86,4	254 255	438 439	13	61 5 68 2
208 209	348 349	26 26	80 .8 80 .8	256	440	22 23	68 Z 26 J
210	350	32	34.4	257	443	17	11.8
211	352	27	48.1	258	442	25	56.0
212.	353	11	72. <i>1</i>	259	444	22	86.4
213.	355	17	823	260	445	38	83 3

		·					
1	2	3	4	1	2	3	4
261.	446	22	54.5	306。	539	21	100.0
262.	447	28	607	307.	542	25	88.0
263.	450	30	56.7	308.	547	21	66.7
264.	451	19	57.9	309.	551	28	100.0
265.	452	21	52.4	310.	552	25	88.0
266.	453	19	84.2	311.	553	28	92.9
267.	455	17	100.0	312.	554	23	73.9
268.	457	20	40.0	313.	555	28	78.6
269.	460	22	54.5	314.	558	27	88.9
270.	464	16	75.0	315.	559	29	79.3
271.	466	29	37.9	316.	561	24	75.0
272.	468	24	95.8	317.	562	31	64.5
273.	472	26	80.7	318.	565	30	56.7
274.	474	36	5.5	319.	567	29	65.5
275.	475	20	35.0	320.	569	25	64.0
276.	476	27	25.9	321.	570	29	72.4
277.	478	19	42.1	322.	576	27	55.5
278.	479	26	76.9	323.	580	24	75.0
279.	483	33	54.5	324.	582	29	86.2
280.	487	23	60.9	325.	583	25	92.0
281.	489	28	53.6	326.	587	29	89.6
282.	491	20	100.0	327.	589	23	87.0
283.	494	26	53.8	328.	590	31	90.3
284.	496	25	52.0	329	592	15	100.0
285.	497	30	83.3	330.	594	28	82.1
286.	498	30	63.3	331.	595	17	941
287.	499	18	33.3	332	596	29	82.8
288.	500	19	84.2	333.	597	30	83.3
289.	501	21	76 . 2	334.	598	33	78,8
290.	503	28	50.0	335.	599	34	82.3
291.	504	21	80.9	336.	605	24	62,5
292.	505	24	83.3	337.	607	28	893
293.	508	29	44.8	338.	608	23	69.6
294.	509	25	84.0	339 .	613	38	81.6
295.	511	20	75 ، 0	340.	615	33	84 .8
296.	512	22	90 . 9	341.	616	29	69.0
297.	513	26	100.0	342.	617	21	71.4
298.	514	21	90.5	343.	618	27	88.9
299.	517	21	85.7	344.	619	20	90.0
300.	522	18	88.9	345	620	22	77.3
301.	525	26	76.9	346.	621	22	95.4
302.	528	25	76.0	347.	624	30	76.7
303 .	534	21	80.9	348.	625	24	83.3
304.	535	17	82.3	349.	6 2 8	33	69.7
305.	538	25	32.0	350.	629	25	64.0

1	2	3	4	1	2	3	4
351	633	34	52.9	396.	744	27	85 2
352	635	34	706	397	747	26	88.5
353	637	33	78.8	398	752	24	95.8
354	638	30	700	399	755	28	100.0
355	648	29	62.1	400.	756	20	90.0
356	649	13	30.8	401.	758	9	66.7
357	652	35	65.7	402.	760	17	100.0
358	653	22	27.7	403	767	27	96 3
359	654	34	14.7	404	769	27	88 9
360	655	38	842	405	774	24	70 8
361	656	34	50.0	406	776	6	66.7
362	657	34	72.2	407。	778	20	65 0
363.	659	45	733	408	779	3	100.0
364 .	663	46	543	409.	780	21	66 7
365	664	29	65 5	410.	781	20	85 0
366	665	42	73.8	411.	783	24	41 6
367.	666	26	57.7	412	785	10	50 0
368	667	42	61.9	413.	786	20	80 0
369	668	33	87.9	414	788	24	87.5
370 。	670	35	68.6	415	791	27	92 6
371.	672	34	41.2	416	792	20	95 0
372.	673	37	70 . 3	417	794	32	68 7
373	676	33	48.5	418	795	19	100 0
374,	.677	17	588	419.	796	26	8 08
375	679	12	75.0	420	797	22	81.8
376	681	20	20 0	421	19 8	10	0.08
377	684	23	82 , 6	422	800	24	91 7
378	688	35	74.3	423	801	14	57 1
379	691	16	87.5	424	802	20	90 0
380	694	23	783	425	803	24	87.5
381.	698	19	84.2	426	804	17	76 5
382	702	23	783	427	805	31	19 3
383	704	28	60 , 7	428	806	21	85.7
384	705	28	96.4	429	807	35	71 4
385	707	28	42.9	430	808	22	72 7
386	709	19	100.0	431	809	36	61 1
387	711	23	73.9	432	810	26	88 5
388.	715	26	846	433.	811	25	56 0
389	719	28	75.0	434.	813	10	90 0
390	722	29	65 . 5	435	814	35	94.3
391	725	28	78 6	436	816	35	88.6
392	728	28	57.1	437.	818	32	78]
393	730	29	828	438.	820	39	38.5
394	731	32	87.5	439.	821	25	20.0
395 ,	735	16	43.7	440	822	31	45.2
				ı			

1	2	3	4	1	2	3	4
141.	823	28	75.0	486.	888	27	29.6
442.	826	33	78.8	487.	890	32	75.0
443.	827	26	76.9	488.	891	28	53.6
144.	828	14	71.4	489.	893	31	74.2
445.	829	32	78.1	490.	896	28	53.6
446.	830 832	29 26	75.9 61.5	491. 492.	898	28	75.0
447. 448.	836	26 31	41.9	492. 493.	900 902	25 18	88.0 83.3
449.	838	28	75.0	494.	905	10	80.0
450.	839	29	82.7	495.	907	32	65.6
451.	840	23	60.9	496.	908	35	77.1
452.	841	27	77.8	497.	909	36	97.2
453.	842	32	75.0	498.	910	34	52.9
454.	843	34	70.6	499.	913	17	64.7
455.	844	33	69.7	500.	914	13	76.9
456.	845	21	76.2	501.	916	28	92.9
457. 458.	846 848	35 36	48.6 88.9	502. 503.	918 919	25 24	84.0 50.0
456. 459.	849	28	67.8	504.	921	33	51.5
460.	850	42	73.8	505.	923	13	76.9
461.	852	36	77.8	506.	926	27	88.9
462.	853	35	0.08	507.	929	33	93.9
463.	854	29	75.9	508.	930	41	51.2
464.	855	38	73.7	509.	932	45	88.9
465.	856	30	93.3	510.	933	30	46.7
466.	857	27 22	85.2	511.	934 937	25 30	84.0 83.3
467. 468.	858 860	22 24	86.4 91.7	512. 513.	937 938	32	87.5
469.	861	21	100.0	514.	939	18	66.7
470.	863	27	25.2	515.	941	25	68.0
471.	865	24	87.5	516.	943	36	75.0
472.	867	38	24.2	517.	945	32	75.0
473.	868	29	62.1	518.	947	30	66.7
474.	869	34	79.4	519.	948	30	76.7
475.	870	26	73.1	520.	949	29	79.3
476.	872	29	75.9	521.	951 952	29 29	37.9 82.8
477. 478.	874	30 30	80.0	522. 523.	952 954	29 27	14.8
478. 479.	875 876	30 31	56.7 74.2	523.	95 4 956	26	76.9
479. 480.	876 877	31 24	74.2 87.5	525.	958	29	69.0
481.	878 .	16	56.2	526.	960	36	61.1
482.	882	25	72.0	527.	962	31	71.0
483.	885	8	75.0	528.	964	45	55.5
484.	886	19	52.6	529.	967	37	48.6
485.	887	28	42.8	530.	969	33	51.5

1	2	3	4	1	2	3	4
531	970	20	60.0	576.	1035	22	86.4
532	972	29	13.8	577.	1036	28	89.3
533.	974*	22	9.9	578.	1038	22	68.2
534	976*	3	0.0	579.	1039	20	75.0
5.35	978	26	30.8	580.	1040	25	80.0
536	980	27	81.5	581.	1041	22	63.6
537	984	2	100.0	582	1042	31	77.4
538	987	31	45.2	583	1043	25	56 0
539	988	17	64.7	584.	1044	22	68 2
540	989	18	94.4	585	1045	26	26 9
541	990	17	88.2	586	1046	25	20.0
542.	991	17	100.0	587.	1047	26	26.9
543.	992	33	57.6	588	1049	26	57. <i>1</i>
544 ·	993	21	52.4	589.	1050	29	24 1
545.	994	35	71.4	590.	1053	20	60.0
546.	995*	6	0.0	590. 591.	1053	32	90.6
547.	997	10	70.0	592.	1055	27	48.1
548	998	24	70.0 41.7	593.		27	74 1
549				593. 594.	1056 105 <i>7</i>	32	90.1
	999	33	48.5				
550.	1000	30	56.7	595.	1058	30	80 0 75 7
551.	1002	29	55.2	596 ·	1059	33	
552	1003	32	75.0	597.	1060	29	72.4
553	1004	26	65.4	598	1061	30	90.0
554.	1005	35	34.3	599.	1062	28	64 3
555.	1007	42	47.7	600.	1063	36	63 9
556	1008	28	286	601	1064	29	75.9
557.	1011	22	27.3	602.	1065	23	86 9
558	1013	32	71.9	603	1066	25	88 0
559	1014	26	57.7	604	1067	32	90.6
560	1015	26	53.8	605.	1068	33	54 5
561	1016	31	87.1	606 .	1069	32	50.0
562	1017	26	73.1	607.	1070	51	78.4
563.	1018	25	52,0	608.	107!	36	69 4
564.	1020	24	50.0	609.	1072	32	68 7
565	1021	23	56.5	610.	1075	23	86 9
566.	1022	23	82.6	611.	1076	26	84.6
567	1024	22	86 . 4	612.	1078	20	85.0
568	1025	24	45.8	613.	1081	28	<i>75</i> 0
569.	1026	25	56 . 0	614	1083	26	92.3
570	1027	24	70.8	615.	1084	18	88 9
571.	1029	24	95.8	616.	1086	31	90∞3
572.	1030	27	55.5	617.	1087	24	95 8
573	1031	19	26.3	618.	1088	30	80.0
574	1033	19	94.7	619.	1090	3	66 ⁷
575.	1034	22	90.9	620 。	1092	26	885

1	2	3	4	1	2	3	4
621.	1094	21	80.9	666.	1151	23	91.3
622.	1095	20	50.0	667.	1152	22	77.3
623.	1097	21	52,4	668.	1154	26	76.9
624.	1098	24	83.3	669.	1156	26	26.9
625.	1100	9 3	33.3	670.	1157	16	68.7
626.	1101	3	100.0	671.	1158	33	45.4
627.	1102	26	76.9	672.	1159	23	60.9
628.	1103	19	68.4	673.	1160	43	90.7
629.	1105	32	78.1	674.	1161	23	78.3
630.	1106	30	60.0	675.	1162	20	100.0
631.	1107	29	75.9	676.	1163	33	69.7
632.	1108	27	59.2	677.	1164	10	80.0
633.	1110	2 32	100.0	678.	1165	27	22.2
634.	1112	32	65.6	679.	1168	30	60.0
635.	1115	25	80.0	680.	1173	36	69.4
636.	1116	32	87.5	681.	1174	29	79.3
637.	1117	6	66.7	682.	1175	25	52.0
638.	1119	24	79.2	683.	1176	16	100.0
639.	1120	30	80.0	684.	1177	33	72.7
640.	1121	26	57.7	685.	1178	44	40.9
641.	1123	26	57.7	686.	1179	33	78.8
642.	1124	28	71.4	687.	1180	44	25.0
643.	1125	29	65.5	688.	1182	42	19.0
644.	1126	25	84.0	689.	1183	26 39	19.2 46.1
645.	1127	33	39.4	690. 691.	1184 1185	39 38	50.0
646.	1128	26	76.9	692.	1186	26	23.1
647.	1131	26	73.1 55.5	693.	1187	35	40.0
648. 649.	1132 1133	18 12	33.3	694.	1188	35 35	40.0
650.	1133	23	26.1	695.	1189	29	48.3
651.	1135	34	50.0	696.	1190	35	48.6
652.	1136	34 31	35.5	697.	1191	22	63.6
653.	1137	30	40.0	698.	1192	32	68.7
654.	1137	22	45.4	699.	1193	18	83.3
655.	1140	26	80.8	700.	1194	33	84.8
656.	1140	31	80.6	701.	1196	22	68.2
657.	1142	23	30.4	702.	1199	32	56.2
658.	1143	26	73.1	703.	1200	21	19.0
659.	1144	3	100.0	704.	1202	23	30.4
660.	1145	26	23.1	705.	1203	32	31.2
661.	1146	22	72.7	706.	1204	37	75.7
662.	1147	32	65.6	707.	1205	36	86.1
663.	1148	14	92.8	708.	1206	25	4.0
664.	1149	20	85.0	709.	1207	37	29.7
665.	1150	14	71.4	710.	1208	22	13.6
	1130	17					

1	2	3	4
711.	1209	30	70.0
712.	1210	28	53.6
713.	1211	33	12.1
714.	1212	34	20.6
715.	1213	44	31.8
716.	1214	29	27.6
717	1216	26 ·	61.5
718.	1217	35	77.l
719.	1218	28	35.7
720 .	1219	32	78.1

The wilt susceptible check, ICP-6997 showed 50 to 100% wilt includence.

^{*}The wilt incidence in these cases was ranging from 75-100% in susceptible check, ICP-6997.

APPENDIX-XXIII

Result of screening of pigeonpea germplasm accessions for sterility mosaic resistance during 1978-79

ST. No.	PI/ICP No.	Total plants	Infected plants	Percent infection
1.	PI-394792	1	0	0.00
2.	-394833	i	ŏ	0.00
3.	-394834	i	ĭ	100.00
4.	-394837	4	2	50.00
5.	-394842	4 2 6	ī	50.00
6.	-394845	6	6	100.00
7.	-394848	1	Ö	0.00
8.	-394866	1	1	100.00
9.	-394869 A	1	i	100.00
10.	-394875	1	0	0.00
11.	-394886	1	0	0.00
12.	-394887	1	0	0.00
13.	-394888	1	0	0.00
14.	-394890	1 1 2 2 2	0 2	0.00
15.	-394891	2	2	100.00
16.	-395067	2	1	50.00
17.	-395071	1	1	100.00
18.	-395089	1	0	0.00
19.	-395091	1	1	100.00
20.	-395107	1	1	100.00
21.	-395132	1	0	0.00
22.	-395143	1	1	100.00
23.	-395147	1	1	100.00
24.	-395171	1	1	100.00
25.	-395174	1	1	100.00
26.	-395185	1	1	100.00
27.	-395187	1	1	100.00
28.	-395188	3	2 2 0	66.66
29.	-395189	2	2	100.00
30.	-395190	3 2 2 2 1		0.00
31.	-395193	2	2	100.00
32.	-395194	1	1	100.00
33.	-395195	<u>1</u>	1	100.00
34.	-395196	2	2	100.00
35.	-395198	j	1	100.00
36.	-395203	2 1 2 1	2 1	100.00
37.	-395204			100.00
38.	-395206	6	6	100.00
39.	-395207	3 5	6 3 5	100.00
<u>40.</u>	-395209	5	5	100.00
				contd.

259

- 1	2	3	4	5
41	PI-395210	2	2	100.00
42	-395213	2 5 2 3 6 2 6 3 1	4	80.00
43	-395214	2	1	50.00
44.	-395217	3	2	66.66
45	-395219	6	6	100.00
46.	-395220	2	2	100.00
47	-395223	6	2 4 2 1 3 2	66,66
48.	-395224	3	2	66.66
49.	-395227		7	100.00
50.	-395229	3 4	3	100.00
51.	-395230		2	50.00
52.	-395235	4		100.00
53.	-395236	1	1	100.00
54.	-395238	1	1	100.00
55	-395240	3	3 6	100.00
56	-395243	3 6 3		100.00
57.	-395246	3	2 1	66.66
58 -	-395253	1		100 00
59.	-395257	1	1	100.00
60.	-395259	2 1	2	100.00
61.	-395266	1	0	0.00
62.	-395269	3	3	100.00
63	-395273	3 2 2 3	0 3 2 2 3 3	100.00
64	-395275	2	2	10000
65	-395277	3	3	100.00
66	-395281	4	3	75.00
67.	-395282]		100.00
68.	-395284	2 1	2	100.00
69	-395289	<u>1</u>	1	100.00
70.	-395301	5	2 1	40.00
71.	-395302	2		50.00
72	-395303	5 2 3 2 6	1	33.33
73.	-395305	2	1	50.00
74.	- 395306	6	2 0	. 33.33
75	-395307	8	0	0.00
76	-395308	8	3 1	37.50
77.	-395309	5		20 00 25.00
78	-395311	4	1	
79	-395312	2	0	0.00
80	-395313	2 5 3 2 3 1	j	20.00
81	-395315	3	3 2 2 0	100.00
82.	-395316	2	2	100.00
83	-395317	ა 1	2	66,66
84	-395319	1		0.00
85.	-395320	11	17	100.00

5	0	75.00		Ö	83.33	ö	85.71		ۍ د ح		57.14	o	m	Š	o,	ຕັ ເ	ر م	ہ م	Š	57 14		o o	o	Ö	S.	ى ب	o r	_ u	00.001) L	က	0	0	100.00	20	0	0	8	100.00	8
4							90																																	
3	25	71	o m	2	9	2		+ L	۳ n	יא כ		2	က	4	വ	9 0	m (7) (0 -		~ ~	1 W	4	13	6	ကျ	_	∞ <	4 6	•	• •			2	2	_		2		2
2	33	יז ני	3953	3953	(7)	(7)	C) C	,,,	') ('	2057	3959	3955	3955	3926	3956	3955	3959	2) !	2000	242	3050	30.5	3950	3959	395	395	395	395	~ ``	3000	395	100	396	396	396	396	ū	io	ū	(Q)
_	86.	. %	. 8		91.	95.	93.	4.	95.		. 86	99.	.00	101.	102.	103.	104.	105.	. 20	. 00.	. 2		: ::	112.	113.	114.	115.	9:			. 021	121.	122.	123.	124.	125.	126.	127.	128.	129.

1	2	3	4	5
131	PI-396065	1	0	0.00
132.	-396069	1	1	100.00
133.	-396074	1	1	100,00
134.	-396078	1	0	0.00
135.	-396079	2 1	0	0.00
136.	-396085		1	100,00
137.	-396094	1	1	100.00
138.	-396096	1	0	0.00
139 .	-396097	2	2	100.00
140.	-396099	1 2 3 1	2 2 1	66.66
141	-396111			100.00
142.	-396142	3	1	33,33
143.	-396182	1	0	0.00
144.	-396202	1	0	0.00
145.	-396204	1	1	100.00
146.	-396733	1	1	100.00
147.	-396744	1	0	0 ~ 00
148.	-396749	2	0	0.00
149	-396757	1	0	0.00
150.	-396792	3	2 1	66.66
151.	-396798	1	7	100.00
152.	- 396799	3 1	2 1	66.66
153.	-396803	1		100.00
154.	-396834	1	1	100.00
155.	-396841	3	3	100.00
156.	-396862	1	0	0.00
157.	-396966	2	j	50.00
158.	-397008	1	1	100.00
159.	-397013	1	0	0.00
160.	-397085	1	1	100.00
161	-397100]	0	0.00
162.	-397101	1	Q	0.00
163.	-397105	1	0	0.00
164.	-397322	3	1	33.33
165.	-397727	1	1	100.00
166	-397754	5	5 2	100.00
167.	-397756	5 2 1	2	100.00
168	-397769	1	0	0.00
169	-397777	2	1	50.00
170.	-397786	2 3 1	2	66.66
171.	-397788		<u>į</u>	100.00
172.	-397789	1	1	100.00
173.	-394791	2 1	2 1	100.00
174.	-394792	1	1	100.00
<u>175.</u>	-394794	2	2	100.00

contd.

1	2	3	4	5
76.	PI-394798	1	1	100.00
77.	-394799	2	Ž	100.00
78.	-397802	2 5 1 2 7 2 3 6 2 3 5 3 2 5 5 3 2 8 4 3 7 6	2 5	100.00
79.	-397812	1	1 2 7 2 3 6 2 3 2	100.00
80.	-397817	2	2	100.00
81.	-397818	7	7	100.00
82.	-397821	2	2	100.00
83.	-397825	3	3	100.00
84.	. -397826	6	6	100.00
85.	-397835	2	2	100.00
86.	-397836	3	3	100.00
87.	-397841	5	2	40.00
88.	-397855	3		100.00
89.	-397857	2	1	50.00
90.	-397861	5	3	60.00
91.	-397865	5	0	0.00
192.	-397868	3	2	66.66
193.	-397872	2	2 2 7 3 2	100.00
194.	-397880	8	7	87.50
195.	-397883	4	3	75.00
196.	-397892	3	2	66.66
197.	-397900	7	1	14.28
198.	-397911	6	4	66.66
199.	-397912	1	0	0.00
200.	-397931	1	0	0.00
201.	-397937	5 11	2 9	40.00
202.	-397939	11	9	81.81
203.	-397941	6 5 9 2 6 2 4	1	16.66
204.	-397955	5	3	60.00
205.	-397957	9	4	44.44
206.	-397958	2	Ō	0.00
207.	-397969	6	3	50.00
208.	-398000	2	ļ	50.00
209.	-398002	4	4	100.00
210.	-398012	1]	100.00
211.	-398018	4	1	25.00
212.	-398019	1	1	100.00
213.	-398026	1	1	100.00
214.	-398028	2 4	2	100.00
215.	-398029	4	4	100.00
216.	-398032	8 4	8	100.00
217.	-398034	4	3	75.00
218.	-398036	1	1	100.00
219.	-398037	8	8	100.00
220.	-398038	1	11	100.00
				contd.

4	100.00	.99	100.	75,	ຕິ ຕິ		001		100	75.	× 00	99	O	1001	100	100	833	505	001	100	100	3	1001	Ö	C	100	.0	33.	4	8	8	3	2	88	888	7 6 9	100 100 50 50 75	100 100 100 75 75 75	001 000 002 25 208 208 208 208 208 208 208 208 208 208	00 00 00 00 00 00 00 00 00 00 00 00 00	001 001 002 003 003 003 003 003 003 003 003 003	100.00 1 100.00 3 2 75.00 3 100.00 4 83.33 5 100.00
3	2 2																												-				_	_								24 w 0 2 2 2 4 c
2	PI-398039	-398040	-398042	-398043	-398044	200043	-398050	-398051	-398052	-398055	-398056	-398058	-398059	-398060	-398063	-398064	-398065	-398066	-398068	-398069	-398071	-398074	-398080	-398081	-398082	-398085	-398090	-398092	-398098	-398108	-398114	-398118	598119	'	c	ICP-8872	'' ئے	പ്''	ٔ ٔ ٔ ٔ ٔ	P-887 -887 -887 -887 -887	ב''	<u>a</u> ' ' ' ' ' ' '
_	221,	223	224.	225.	226.	220	229	230	231.	232	233.	234	235.	236.	237	238.	239	240	241	242	243.	244	245	246	247	248	249	250	251	252	253.	254.	255. 256	027		. 727	258 258 259	258 259 260	258 259 260	257. 259 260. 261.	255 259 261 261 261 261	255 261 262 263 263 263

266. ICP-8885 3 2 66.66 267. -8886 1 1 100.00 268. -8887 3 2 66.66 269. -8890 1 1 100.00 270. -8895 1 1 100.00 271. -8897 1 1 100.00 272. -8888 1 1 100.00 273. -8900 1 0 0.00 274. -8894 1 0 0.00 275. -8898 2 2 100.00 276. -8899 2 2 100.00 277. -8901 1 1 100.00 278. -8902 1 1 100.00 279. -8903 1 1 100.00 280. -8904 2 2 100.00 281. -8905 4 4 100.00 282.	1	2	3	4	5
267.	266.		3	2	66.66
2688897		- 8886	1	1	
2698890			3	2	
271. -8897 1 1 100.00 272. -8888 1 1 100.00 273. -8900 1 0 0.00 274. -8894 1 0 0.00 275. -8898 2 2 100.00 276. -8899 2 2 2 100.00 277. -8901 1 1 100.00 279. -8903 1 1 100.00 280. -8904 2 2 2 100.00 281. -8905 4 4 100.00 281. -8906 5 5 5 100.00 284. -8911 1 1 100.00 284. -8912 1 1 100.00 287. -8915 1 1 100.00 287. -8916 3 3 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00				1	100.00
272. -8888 1 1 100.00 273. -8900 1 0 0.00 275. -8898 2 2 100.00 275. -8898 2 2 100.00 276. -8899 2 2 100.00 277. -8901 1 1 100.00 279. -8903 1 1 100.00 280. -8904 2 2 100.00 281. -8905 4 4 100.00 282. -8906 5 5 100.00 283. -8907 1 1 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 299. -8919 2 <td></td> <td></td> <td></td> <td></td> <td>100.00</td>					100.00
273. -8900 1 0 0.00 274. -8894 1 0 0.00 275. -8898 2 2 100.00 276. -8899 2 2 1p0.00 277. -8901 1 1 100.00 279. -8903 1 1 100.00 280. -8904 2 2 100.00 281. -8905 4 4 100.00 283. -8906 5 5 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 287. -8915 1 1 100.00 287. -8916 3 3 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3				1	100.00
274. -8894 1 0 0.00 275. -8898 2 2 100.00 276. -8899 2 2 1p0.00 277. -8901 1 1 100.00 278. -8902 1 1 100.00 279. -8903 1 1 100.00 280. -8904 2 2 100.00 281. -8905 4 4 100.00 282. -8906 5 5 100.00 283. -8907 1 1 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 299. -8918 1 1 100.00 291. -8921 3 3 100.00 292. -89	272.				100.00
275. -8898 2 2 100.00 276. -8899 2 2 1p0.00 277. -8901 1 1 100.00 278. -8902 1 1 100.00 279. -8903 1 1 100.00 280. -8904 2 2 100.00 281. -8905 4 4 100.00 282. -8906 5 5 100.00 283. -8907 1 1 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 294. -8924 1<					
277. -8901 1 1 100.00 278. -8902 1 1 100.00 280. -8904 2 2 100.00 281. -8905 4 4 100.00 282. -8906 5 5 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 293. -8921 3 3 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 </td <td></td> <td></td> <td><u>j</u></td> <td>0</td> <td></td>			<u>j</u>	0	
277. -8901 1 1 100.00 278. -8902 1 1 100.00 280. -8904 2 2 100.00 281. -8905 4 4 100.00 282. -8906 5 5 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 293. -8921 3 3 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 </td <td></td> <td></td> <td>2</td> <td>2</td> <td></td>			2	2	
278. -8903 1 1 100.00 279. -8903 1 1 100.00 280. -8904 2 2 100.00 281. -8905 4 4 100.00 282. -8906 5 5 100.00 283. -8907 1 1 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 291. -8921 3 3 100.00 292. -8921 3 3 100.00 292. -8922 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922<				2	
279. -8903 1 1 100.00 280. -8904 2 2 100.00 281. -8905 4 4 100.00 282. -8906 5 5 100.00 283. -8907 1 1 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 289. -8918 1 1 100.00 290. -8919 2 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 297. -8929<					
280. -8904 2 2 100.00 281. -8905 4 4 100.00 282. -8906 5 5 100.00 283. -8907 1 1 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8921 3 3 100.00 294. -8922 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 299. -8931 2 </td <td>278.</td> <td></td> <td></td> <td></td> <td></td>	278.				
281. -8905 4 4 100.00 282. -8906 5 5 100.00 283. -8907 1 1 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 287. -8916 3 3 100.00 289. -8918 1 1 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8929 3 3 100.00 297. -8929 3<					
282. -8906 5 5 100.00 283. -8907 1 1 100.00 284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 300. -8932 1 1 100.00 301. -8933 3 </td <td></td> <td></td> <td>2</td> <td>2</td> <td></td>			2	2	
284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 5 100.00 296. -8922 4 3 75.00 297. 297. -8929 3 3 100.00 298. -8930 5 5 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. <td></td> <td></td> <td>4</td> <td></td> <td></td>			4		
284. -8911 1 1 100.00 285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 5 100.00 296. -8922 4 3 75.00 297. 297. -8929 3 3 100.00 298. -8930 5 5 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. <td></td> <td></td> <td>5</td> <td>5</td> <td></td>			5	5	
285. -8912 1 1 100.00 286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8921 3 3 100.00 293. -8922 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 299. -8931 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 303. -8936 1 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
286. -8914 2 2 100.00 287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 300. -8931 2 2 100.00 301. -8932 1 1 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
287. -8915 1 1 100.00 288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 304. -8937 1 1 100.00 305. -8939 </td <td></td> <td></td> <td>1</td> <td></td> <td></td>			1		
288. -8916 3 3 100.00 289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 </td <td></td> <td></td> <td>2</td> <td>2</td> <td></td>			2	2	
289. -8918 1 1 100.00 290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 </td <td></td> <td></td> <td>Į .</td> <td>I</td> <td></td>			Į .	I	
290. -8919 2 2 100.00 291. -8921 3 3 100.00 292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 100.00 30 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 308. -8943 3<			3	3	
292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 </td <td></td> <td></td> <td>1</td> <td></td> <td></td>			1		
292. -8922 1 1 100.00 293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 </td <td>290.</td> <td>-8919</td> <td>2</td> <td>2</td> <td></td>	290.	-8919	2	2	
293. -8923 1 1 100.00 294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
294. -8924 1 1 100.00 295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00	202				
295. -8926 5 5 100.00 296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00					
296. -8922 4 3 75.00 297. -8929 3 3 100.00 298. -8930 5 5 100.00 299. -8931 2 2 100.00 300. -8932 1 1 100.00 301. -8933 3 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00		-0924 -0926	5		
301. -8933 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00			4	3	
301. -8933 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00			3	3	
301. -8933 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00			5	5	
301. -8933 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00			2	2	
301. -8933 3 100.00 302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00			ī	ī	
302. -8934 2 2 100.00 303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00			3	3	
303. -8936 1 1 100.00 304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00			2		
304. -8937 1 1 100.00 305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00			ົ້າ	ī	
305. -8939 3 3 100.00 306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00	304				
306. -8941 1 1 100.00 307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00					
307. -8942 1 1 100.00 308. -8943 3 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00					
308. -8943 3 100.00 309. -8944 2 2 100.00 310. -8945 1 1 100.00					
3098944 2 2 100.00 3108945 1 1 1 100.00			3	3	100,00
<u>310.</u> -8945 <u>1 1 100.00</u>			2	2	100.00
			1	1	100.00
					contd.

4 5
3
7

1	2	3	4	5
35 6 .	ICP-9080	6	0	0.00
357.	-9081	3	Ō	0.00
358.	-9084	2	0	0.00
359.	-9085	1	0	0.00
360.	- 9087	3	Ō	0.00
361.	-9 088	4	2	50.00
362.	-9090	2	1	50.00
363.	-9091	1	0	0.00
364.	-9092	1	1	100.00
365.	- 9093	1	0	0.00
366.	-9094	4	2	50.00
367.	-9095	4	1	25.00
3 6 8.	-9097	2	1	50.00
369.	-9100	1	0	0.00
370.	-9103	1	0	0.00
371.	-9104	3	0	0.00

APPENDIX-XXIV

Results of screening of pigeonpea germplasm selections made in 1976-77
for sterility mosaic resistance during 1978-79

		Ta4a1	Inf	ected pl	ants	D +
S1. No.	ICP No.	Total - plants	Ring spot	Severe mosaic	Total	Percent infection
1	2	3	4	5	6	7
2. 3. 4. 5. 6. 7.	-250 -350 -450 ICP-6630-1-150 -2-150 -250 -350	27 11 10 15 14 5 19	13 0 0 7 2 3 3	0 0 0 1 0 0	13 0 0 8 2 3 3	48.14 0.00 0.00 53.33 14.28 60.00 15.78 0.00
9 10. 11. 12. 13. 14.	-450 -3-150 -250 -350 ICP-7196-1-150 -250	21 24 9 13 25 37	0 2 0 0 0	0 0 0 0 0	0 2 0 0 0	0.00 8.33 0.00 0.00 0.00 2.70
15 16 17 18 19	-350 -450 -550 -650 -750	47 24 31 14 43	0 0 0 0	0 0 2 1 0	0 0 2 1 0	0.00 0.00 6.45 7.14 0.00
20 . 21 . 22 . 23 . 24 .	-850 -950 ICP-7197-5-150 -250 -350	43 19 14 24 33	0 0 0 0	12 0 0 0	12 0 0 0 0	27.90 0.00 0.00 0.00 0.00
25. 26. 27. 28. 29. 30.	-450 -550 -16-150 -19-150 -250 -350	23 20 37 39 20 27	0 0 2 0 0	0 0 1 2 0 3	0 0 3 2 0 3	0.00 0.00 8.10 5.12 0.00 11.11
31 32 33 34 35	-450 -550 -25-150 -40-150 -250	30 30 27 49 25	0 0 8 4 0	0 0 0 0 2	0 0 8 4 2	0.00 0.00 29.62 8.16 8.00
36 37 38 39 40	-250 -43-150 -250 -350 -450 ICP-7201-3-150	42 25 50 50 36	0 0 0 9	0 0 0 0 0 2	0 0 0 9 3	0.00 0.00 0.00 18.00 8.33
						contda

268

1_	2	3	4	5	6	7
41.	ICP-7201-6-1SM	56	0	0	0	0.00
42	-7240-1-1S Ø	31	0	1	ĺ	3.22
43.	-2-1S Ø	30	1	0	1	3.33
44.	-6-1S ₩	25	1	0	1	4.00
45.	- 6-2S₽	46	0	0	0	0.00
46.	ICP-7372-4-150	44	7	0	7	15.90
47.	-2S &	46	6	1	7	15.21
48.	-3S Ø	41]	0	1	2.43
49.	-4S ®	34	3	0	3	8.82
50.	-5S Ø	45	2	0	0	0.00
51.	-6SØ	5	0	0	0	0.00
52.	-7S10	6	0	0	0	0.00
53.	-850	43	0	0	0	0.00
54.	ICP-7407-3-15@	- 1-	-	-	-	-
55.	-2S Ø	15	3	0	3	20.00
56.	-350	200	-	-	-	-
57.	-4-1SØ	26	0	0	0	0.00
58.	-25 0 -35 0	-	-	-	-	-
59.	-35W -45B	-	-	-	-	-
60. 61.	-43b -550	15	0	- 6	- 6	40.00
62.	-62 0	13	0	0	0	0.00
63.	-75 0	57	16	0	16	28.07
64.	-8S ®	- -	-	-	-	20.07
65.	-9S &	1	0	0	0	0.00
66.	-10S Ø	12	Ö	ŏ	Ö	0.00
67.	-11S Ø	41	2	Ŏ	2	4.87
68.	ICP-7407-5-1S0		_	_	_	-
69.	-2SØ	-	-	-	_	-
70.	-3S 0	_	_	_	_	-
71.	- 4S Ø	13	3	2	5	38.46
72.	-5S Ø	14	Ō	3	3	21.42
73.	-6S Ø	31	0	4	4	12.90
74.	-750	57	8	3	11	19.29
75.	ICP-7407-6-1S8	30	6	0	6	20.00
76.	-2S ®	-	-	-	-	-
77.	-3 SØ	-	-	-	-	-
78.	- 4S Ø	8	2	0	2	25.00
79.	- 5S &	1	0	0	0	0.00
80.	- 6S Ø	-	-	-	-	-
81.	-7S ®	11	7	0	7	63.63
82.	- 85 0	-	-	-		-
83.	ICP-7407-7-1S8	-	-	-	-	-
84.	-2S ®	1	0	0	0	0.00
85.	-3S ®	3	0	0	0	0.00
						contd.

1	2	3	4	5	6	7
86.	ICP-7407-7-4SØ	6	2	0	2	33.33
87.	-8-1S ®	8	1	0	1	12.50
88	-2S Ø	_ 4	0	0	0	0.00
8 9 .	-3S ®	10	2	0	2	2000
90.	-9-1S 0	3	0	0	0	0,00
91.	-2S ®	1	0	0	0	0,00
92.	ICP-7436-1-1S@	20	3	0	3	15.00
93.	-25 0	15	0	0	0	0,00
94.	-3S 0	7	0	0	0	0.00
95. 96.	-45 8 -55 0	10 18	0	0	0	0.00
96. 97.	-55@ -65@	7	0 0	0 0	0 0	000 000
98.	-2-1S 0	18	0	0	0	0.00
99	-2S 0	28	5	0	5	17.85
100.	-3SØ	25	3	0	3	12.00
101	-4S Ø	34	10	Ö	10	29,41
102	-3-1S 0	30	6	Ö	6	20.00
103	-250	16	3	Ö	3	18.75
104	-350	42	5	ĩ	6	14.28
105	-4-1S 0	39	10	0	Ō	0.00
106	-2S ®	34	6	0	6	17.64
107.	- 3S ⊗	46	6	0	6	13.04
108	-4S Ø	37	6	0	6	16.21
109.	ICP-7445-1-1S8	25	0	0	0	0,00
110.	- 2S Ø	19	0	0	0	0.00
111.	-3S Ø	21	0	0	0	000
112.	-4S Ø	13	0	0	0	0.00
113.	-550	2]	0	0	0	000
114.	ICP-7445-3-1S8	1	0	0	0	0.00
115.	-25 0 -35 0	- 16	0	0	0	0.00
116. 117.	-35 0 -45 0	22	0	0	0	0.00
118.	-43 b -5-15 b	8	0	0	0	0.00
119	-2S Ø	14	0	0	0	0,00
120	-3S ®	16	0	Ö	Ő	0,00
121	-4S ®	17	11	ŏ	ıĭ	6470
122	-5S Ø	17	5	ŏ	5	29.41
123	-6S Ø	7	Ŏ	Ŏ	Ö	0.00
124.	-6-1S Ø	52	3	Ō	3	5.76
125.	-2S 0	45	0	0	0	0.00
126	-3S Ø	24	0	0	0	0,00
127.	- 4S Ø	45	0	0	0	0,00
128.	-5S Ø	6	0	0	0	0,00
129.	-6S Ø	13	0	1	1	7.69
130.	-7S 0	28	0	0	0	0,00

contd

1_	2	3	4	5	6	
131.	ICP-7445-6-8SØ	32	4	0	4	12.50
132.	-9S Ø	9	Ó	Ö	Ó	0.00
133.	-10S Ø	10	2	Ō	2	20.00
134.	- 11S @	3	0	0	Ō	0.00
135.	- 12S Ø	28	2	Ō	2	7.14
136.	- 13S Ø	9	0	0	Õ	0.00
137.	-14S ®	-	-	-	-	-
138.	-7-1S 0	2	0	0	0	0.00
139.	-2S Ø	2	0	Ō	Ŏ	0.00
140.	-35₩	2 2 1 2	0	0	0	0.00
141.	-4S Ø	2	0	0	0	0.00
142.	-5S ₩	-	-	-	-	_
143.	-6S 0	4	0	0	0	0.00
144.	-7SØ	56	5	0	5	8.92
145.	-8S 0	8	0	0	0	0.00
146.	-9S ®	8	0	0	0	0.00
147.	-10S @	1	0	0	0	0.00
148.	-11S Ø	3	0	0	0	0.00
149.	<u>-</u> 8-15 ®	-	-	-	-	-
150.	-250	-	-	-	-	-
151.	-3S Ø	9	1	0	1	11.11
152.	-10-1S ⊠	21	0	0	0	0.00
153.	- 2S 8	18	0	4	4	22.22
154.	- 3S ®	4	0	0	0	0.00
155.	-4S ®	9	0	0	0	0.00
156.	-11-150	1	0	0	0	0.00
157.	-2S 8	42	2	0	2	4.76
158.	-3S ₩	21	1	0	1	4.76
159.	-12-1S ®	12	0	0	0	0.00
160.	-2S ®	7	0	0	0	0.00
161.	-350	8	0	0	0	0.00
162.	-4S Ø	18	0	0	0	0.00
163.	ICP-7873-2-1SB	51	2	0	2	3.92
164.	-3-1S Ø	24	2	10	12	50.00
165.	-2S @	25	0	0	8	32.00
166.	-3S @	58	0	0	3	5.17
167.	-4S ®	12	1	1	3 2 2	16.66
168.	- 5S ®	32	0	2	2	6.25
169.	-6S ®	7	0	0	0	0.00
170.	-7S 0	5	0	0	0	0.00
171.	-8S ®	47	0	0	0	0.00
172.	-9S 0	-	-	- 27	- 27	- 62.79
173.	ICP-7873-4-1SB	43	0	27	27	
174.	-7898-5-2S ®	1	0	0	0	0.00
175.	-3S ®	12	0	6	6	50.00
						contd.

-1	2	3	4	5	6	7
176.	ICP-7898-5-4S8	12	4	0	4	33.33
177.	- 5S @	30	0	0	0	0.00
178.	-9 - 15 0	21	0	0	0	0.00
179.	-250	4	3	1	4	10000
180.	-3S Ø	22	3	0	3	13.63
181 182.	-4S Ø -13-1S Ø	9 12	0	0	0	0.00
183.	-13-13 <u>w</u> -25 @	12	0 3	0 0	0 3	0.00 27.27
184.	-35 0	28	0	0	0	0.00
185.	-45 0	20	-	-	-	-
186.	-5S Ø	2	0	0	0	0.00
187.	-6S ®	14	4	Ö	4	28.57
188.	-14-1S ®	46	4	0	4	8.69
189.	-2S Ø	23	0	0	0	0.00
190.	-3S ®	7	0	0	0	0.00
191.	-4SØ	25	1	0	ן	4.00
192.	-5S 0	-	-	-	-	-
193.	-6S 0	4	0	0	0	0.00
194. 195.	-75 0 ICP-6748-5-15 0	11	0	0	0	0.00
195.	-9-1SØ	ī	0	0	0	0.00
197.	-25 0	<u>'</u>	-	-	-	0.00
198.	-10-15 8	2	0	0	0	0.00
199.	-15-1S ®	2 9	3	Ŏ	3	33,33
200.	-16-1S 0	-	-	-	-	-
201.	-18-1S 0	9	1	0	1	11.11
202	ICP-7904-1-1SØ	17	4	0	4	23.52
203.	-2S 0	5	2 2	0	2 3	40.00
204.	-3S 0	10	0	1	3	30,00
205 206	ICP-7873-4-250 -350	2	U	0	0	0,00
200.	-35₩ -45₩	1	0	0	0	0,00
208.	-43 2 -55 8	' -	-	-	-	-
209.	ICP-7875-5-1S0	-	-	_	_	_
210.	-2S 0	_	-	-	_	-
211.	-3S Ø	6	1	0	1	16.66
212.	-4S 0	12	0	0	0	0.00
213.	-5S ®	-	-	-	•	-
214.	ICP-7898-5-1SB	24	3 3 3	0	3	12.50
215.	-7904-1-3S 0	26	3	0	3	11.53
216.	-4SØ	32	3	0	3	9,37
217.	~5S⊠ -3-1S®	30	5 0	0	5 0	16.66
218. 219.	-3-150 -250	4 33	4	0 0	4	0.00 12.12
219.	-25 0 -35 0	33 18	0	0	0	0.00
220,	-008	10				contd

contd,

1	2	3	4	5	6	7
221.	ICP-7904-3-450	12	0	0	0	0.00
222.	-6-1S 0	1	0	0	0	0.00
223.	-2S Ø	14	0	0	0	0.00
224.	- 3S ®	32	2	0	2	6.25
225.	-4SØ	16	0	0	0	0.00
226.	- 5S ®	5	1	0	1	20.00
227.	-7-1S ®	20	2	0	2	10.00
228.	-2S @	-	-	-	-	-
229.	-3S @	4	0	0	0	0.00
230.	-450	-	-	-	-	-
231.	-550	1	0	0	0	0.00
232.	ICP-7906-2-1S®	9	0	0	0	0.00
233.	-2S ®	8	0	0	0	0.00
234.	-350	20	.0	0	0	0.00
235.	-4S ®	-	-	-	-	-
236.	-5SØ	7	0	0	0	0.00
237.	-6S Ø	25	0	0	0	0.00
238.	-4-15 0	28	0	0	0	0.00
239. 240.	-2SØ	2	0	0	0	0.00
	-3S Ø	9	0	0	0	0.00
241. 242.	-4S® -7 - 1S®	13 20	0 0	0	0	0.00
242.	-/-1510 -2510	20 30		0 0	0	0.00
243. 244.	-2510 -3510	20	0 0	0	0 0	0.00 0.00
244. 245.	-3510 -4510	20 32	0	0	0	0.00
245.	-436 -550	21	0	0	0	0.00
247.	ICP-7997-1-1SØ	13	0	0	0	0.00
248.	-10-1SØ	31	Ö	0	0	0.00
249.	-10-13 a -25 0	36	0	0	Ö	0.00
250.	-35 0	23	Ö	Ö	Ö	0.00
251.	-4S 0	33	Ö	ő	Ö	0.00
252.	-5S Ø	37	Ö	Ŏ	Ŏ	0.00
253.	ICP-8051-1-150	33	Ŏ	Ŏ	ŏ	0.00
254.	-2S Ø	35	Ŏ	Ö	Ō	0.00
255.	-3S Ø	15	Ö	Ō	Ō	0.00
256.	-4S Ø	27	Ŏ	Ö	Ö	0.00
257.	-5S D	26	Ō	0	0	0.00
258.	-6S ®	36	0	0	0	0.00
259.	-7S Ø	32	0	Ō	0	0.00
260.	-85	17	0	0	0	0.00
261.	-9S Ø	24	0	0	0	0.00
262.	-10S ®	12	0	0	0	0.00
263.	ICP-8084-3-150	31	1	0	1	3.22
264.	-2S ®	17	2	0	2	11.76
265.	-3S Ø	9	0	0	0	0.00

1	2	3	4	5	6	7
266.	ICP-8084-3-450	32	4	0	4	12.50
267.	-5S @	_]	0	0	0	0.00
268.	- 6S ®	51	1	0	1	1.96
269.	-7S ®	13	2	0	2	15.38
270.	-850	1	0	0	0	0.00
271	-9S 0]	0	0	0	0.00
272.	-10S 0	35	2	0	2	5.71
273.	-11SB	2	0	0	0	0.00
274. 275.	-5 - 1S 0 -2S 0	7	0	0	0	0,00
276.	-25W -35KD	3		0		
277.	-3510 -4510	3	0	-	0	0.00
278.	-43 8 -55 8	6	- 0	0	0	0.00
279.	-6-1S B	27	3	0	3	11.11
280.	-2S Q	4	0	Ö	0	0.00
281.	-3S Ø	i	Ö	Ö	Ö	0.00
282	-4S Ø	19	ŏ	ŏ	Ŏ	0.00
283.	-5S Ø	8	Ŏ	Ö	Ö	0,00
284	ICP-8120-3-150	21	ĭ	Ŏ	ĭ	4.76
285	-2S Ø	73	Ò	Ö	Ò	0.00
28 6 .	-3S ®	23	Ō	Ō	Ō	0.00
287.	-4S ®	32	0	0	0	0.00
288	-5S ®	30	0	0	0	0.00
28 9 .	- 5-1S ®	38	0	0	0	0.00
290.	-2S ®	28	0	0	0	0.00
291.	-3S 0	27	0	0	0	0 - 00
292.	-4SØ	-	-	-	-	_
293.	-5S Ø	25	0	0	0	0.00
294.	-6S ®	28	0	0	0	000
295	-7S ®	30	0	0	0	0.00
296.	-850	36	0	0	0	0.00
297 298	-9SD	45	0	0 0	0	0.00 0.00
298	-105 0 -115 0	39 40	0 0	0	0 0	0.00
300	-1138 -1258	22	0	0	0	0.00
301	ICP-8121-4-150	46	1	0	i	2, 17
302.	-2SM	43	Ó	Ö	Ö	0.00
303.	-3S 0	27	Ö	Ö	0	0.00
304	-4S &	39	ŏ	ő	Ö	0.00
305	-5S Ø	25	ŏ	ŏ	Ŏ	0.00
306	-650	36	Ŏ	Ö	Ŏ	0,00
307.	-7S 0	25	Ŏ	Ö	Ŏ	0.00
308.	-8S @	19	Ō	Ō	Ö	0, 00
309	- 9S Ø	14	0	0	Ō	0,00
310.	-5 - 13S 0	13	0	0	0	0.00

	2	3	4	5	6	7
311. 312.	ICP-8121-5-14S © -15S ©	13 29	0 7	0 0	0 7	0.00 24.13
312.	-16S 0	58	7	3	10	17.24
314.	ICP-8120-6-1SØ	17	ó	0	0	0.00
315.	-250	50	7	Ö	7	14.00
316.	-3S ®	41	8	Ö	8	19.51
317.	-4S Ø	72	18	4	22	30.55
318.	-5S ®	32	2	i	3	9.37
319.	-6S Ø	5	2	1	3	60.00
320.	ICP-8121-4-950	<u>-</u>	-	-	-	_
321.	-10S @	8	0	0	0	0.00
322.	-11SØ	31	0	0	0	0.00
323.	ICP-8136-1-15 0	39	0	0	0	0.00
324.	-3227 - 2 - 15 0	6	1	2	3	50.00
325.	-2S Ø	14	2	0	2	14.28
3 26.	ICP-3426-1-150	17	0	0	0	0.00
327.	-2S Ø	4	0	0	0	0.00
328.	ICP-3486-1-150	18	0	0	0	0.00
329.	-250	29	0	0	0	0.00
330.	-3S Ø	26	0	0	0	0.00
331.	-45 0	28	0	0	0 1	0.00
332. 333.	ICP-3727-1-1S0 -2S0	15 35	1 0	0 0	0	6.66 0.00
334.	~25₩ ~35₩	35 15	0	0	0	0.00
335.	-45 0	23	0	0	Ö	0.00
336.	ICP-4043-1-150	31	Ö	Ö	Ö	0.00
337.	-4152-1-1SØ	28	0	Ö	Ö	0.00
338.	-2SØ	38	Ŏ	ŏ	Ŏ	0.00
339.	-3S ®	24	Ŏ	Ö	Ö	0.00
340.	ICP-4157-1-150	6	0	0	0	0.00
341.	-2S ®	35	3	0	3	8.57
342.	-3S Ø	15	2	0	2	13.33
343.	ICP-4395-3-1S0	34	0	0	0	0.00
344.	-4439-1-1S ⊗	37	0	0	0	0.00
345.	-2S 0	33	0	0	0	0.00
346.	- 3S Ø	17	0	0	0	0.00
347.	ICP-4601-1-158	46	7	2	9	19.56
348.	-250	23	0	0	0	0.00
349.	ICP-4609-1-1S0	26	0	0	0	0.00
350.	-2SØ	26	0 2 3	0	0	0.00
351. 352.	-3S 0	28 33	2	0 0	2 3	7.14
352. 353.	-4SØ	33 17	0	0	0	9.09 0.00
353. 354.	-55 0 ICP-4731-2-15 0	32	0	0	0	0.00
354. 355.	1CP-4/31-2-150 -250	32 28	9	0	9	32.14
200.	-238	20	3	U	3	32.14

1	2	3	4	5	6	7
356	ICP-4731-2-350	37	8	0	8	21.62
3 5 7	-4S Ø	45	11	0	11	24 . 44
358 .	-5S ⊗	23	1	0	1	4.34
359	ICP-4765-1-1S0	20	2	0	2	10.00
360.	-4769-1 - 15 0	12	0	0	0	0.00
361	- 2S Ø	23	0	0	0	0 - 00
362	ICP-4785-1-1S ©	21	0	0	0	000
363 .	-2S 0	14	1	0	1	7.14
364.	- 3S Ø	42	1	0	1	2,38
365.	-4S Ø	25	0	0	0	0,00
366	- 5S ⊗	41	1	0	1	2,43
367.	ICP-4788-2-150	42	8	0	8	19.04
3 6 8.	-2S Ø	52	9	1	10	19.23
369.	-3S Ø	23	0	0	0	0.00
370.	-4S ®	23	Ō	0	0	0.00
371.	-5S ®	15	Ŏ	Ō	Ö	0.00
372	ICP-4794-2-1S®	17	Ĭ	Ŏ	i	5,88
373.	-250	14	Ö	Ŏ	Ö	0.00
374.	-3SØ	19	3	6	9	47.36
375	-4S ®	54	6	19	25	46.29
376.	-5S 0	29	3 6 2 3	Ö	2	6.89
377.	ICP-5098-1-1SM	35	3	Ŏ	3	8,57
378.	-2SØ	30	8	Ö	8	26.66
379.	-3SØ	49	18	ĭ	19	38.77
380.	ICP-5124-1-150	39	13	ò	13	33,33
381	-2SB	43	7	Ŏ	7	16.27
382	-3S 0	14	ó	0	Ó	0.00
383	-4S @	45	10	Õ	10	22, 22
384	-5S Ø	17	3	0	3	17 64
385	ICP-5142-2-150	5	ĭ	Ö	i	20 00
386	-2SØ	22	3	0	3	13.63
387	-35 0	16	0	0	Ŏ	0.00
388	-35 w -45 @	6	0	0	0	0.00
389 .	ICP-5151-1-15 0	26	0	0	0	0.00
390	-2S ®	13	Ö	0	0	0,00
391	-25 0 -35 0	24	2	0	2	8.33
391 392.	-35W -450	24 10	0	0	0	0.33
		25	17	0	17	68°00
393.	-55 0	25 8	4	0	4	50 00
394	ICP-5157-1-150	8 43	4 5	1		13 95
395	-2S 0			•	6	
396	ICP-5172-1-1SØ	48	15	16	31	64.58
397.	-2S 0	37	23	0	23	62.16
398.	-3S ®	54	16	20	36 35	66 · 66
399.	-4S Ø	60	28	7	35	58.33
400,	-5S ®	43	24	9	33	76,74

1	2	3	4	5	6	7
401.	ICP-5172-1-6S®	65	23	8	31	47.69
402.	-7S ®	33	15	2	17	51.51
403.	-8S ®	22	9	0	9	40.90
404.	- 9S 0	1	0	0	0	0.00
405.	ICP-5291-2-1SØ	22	4	4	8	36.36
406.	-3-1S ®	17	0	0	0	0.00
407.	-2S Ø	26	0	0	0	0.00
408.	-3 S®	29	0	0	0	0.00
409.	-4SØ	18	0	0	0	0.00
410.	ICP-5337-1-1S0	33	0	0	0	0.00
411.	-2S ®	13	0	0	0	0.00
412.	-350	27	0	0	0	0.00
413.	ICP-5350-2-1S®	16	0	0	0	0.00
414.	-2S Ø	24	0	0	0	0.00
415. 416.	-3SØ	24	0	0	0	0.00
416.	-3-15 0 -25 0	16 10	0 0	0	0 0	0.00
417.	-23W ICP-5370-1-1S0	14	2	0 0	2	0.00 14.28
419.	-2SØ	18	1	0	1	5.55
420.	-25 0	5	Ö	0	Ó	0.00
421.	ICP-5444-2-1SØ	25	0	0	0	0.00
422.	-2SØ	29	1	0	ĭ	3.44
423.	-3S Ø	25	Ö	0	ò	0.00
424.	-4S Ø	17	ĭ	Ö	ĭ	5.88
425.	-5S ®	31	14	Ö	14	45.16
426.	-6S ®	i	Ö	Ŏ	0	0.00
427.	ICP-5446-1-150	41	20	3	23	56.09
428.	-2S Ø	48	29	0	29	60.41
429.	-3S Ø	44	18	1	19	43.18
430.	- 4S Ø	29	17	0	17	58.62
431.	ICP-5465-1-1SØ	18	10	3	13	72.22
432.	- 2S Ø	36	3	3	6	16.66
433.	-3S ®	35	2	5	7	20.00
434.	ICP-5535-2-1S0	8	0	0	0	0.00
435.	-2S Ø	18	1	0]	5.55
436.	-3S ®	19	0	3	3	15.78
437.	-4SØ	32	0	2	3 2 1	6.25
438.	ICP-5733-1-150	15	0	1		6.66
439.	-2S ®	17	0	2	2 2	11.76
440. 441.	-2-1S Ø	23 17	0 0	2 0		8.69
441. 442.	-25 0 ICP-5834-1-15 0	17 27	1	2	0 3	0.00 11.11
442.	1CP=5834-1-158 -258	32	0	12	12	37.50
444.	-25 W -35 W	32 1	0	1	12	100.00
445.	-35 w -45 0	50	0	Ó	0	0.00
170.	-43B	30	U	J	U	0.00

	2	3	4	5	6	7
446	ICP-5834-1-5S8	31	0	0	0	0,00
447	-5950-1-1S 0	27	0	0	0	0.00
448	-2S Ø	32	0	0	0	0.00
449.	-3S ®	33	0	0	0	0 . 00
450 -	-4S 0	24	0	0	0	0,00
451	-6S ®	26	0	0	0	0.00
452.	ICP-5950-2-1SB	35	4	0	4	11.42
453	-2S ®	22	3	0	3	13,63
454.	- 3S Ø	33	4	0	4	12.12
455	-4S Ø	25	0	0	0	0.00
456.	-55 0	13	0	0	0	0.00
457.	ICP-5999-1-1SM	7	0	0	0	000
458.	-2S Ø	48	0	0	0	0.00
459.	-3S Ø	37	3	0	3	8.10
460.	-4SØ	31	13 5	0	13 5	41.93
461.	-5S Ø	41		0		12.19
462 463	ICP-6029-1-1SM	53 44	20 22	0 0	20 22	37.73 50.00
464	-2SØ -3SØ	35	4	3	7	20.00
465	ICP-6929-1-1SM	36	3	0	3	8,33
466	-2SB	27	0	0	0	0,00
467	-2-1SØ	4	0	0	0	0.00
468	-2S 0	18	Ö	Ö	0	0.00
469	-350	29	Ö	Ö	Ö	0.00
470	-4S Ø	18	ĭ	8	9	50.00
471	ICP-6223-3-1SØ	ii	0	Ö	Ŏ	0,00
472.	-2S Ø	16	Ŏ	Ŏ	Ŏ	0,00
473.	-3S ®	18	Ō	0	0	0.00
474.	ICP-6241-1-150	17	0	0	0	0.00
475	-2510	58	18	16	34	5862
476.	-3S Ø	50	15	9	24	48.00
477	ICP-6267-1-1S 8	28	0	0	0	0 ~ 00
478.	-2S 0	21	9	0	9	4285
479	-3S ®	41	0	0	0	0 / 00
480	ICP-6694-1-1S 0	35	1	0	1	2.85
481.	-2S 0	29	0	0	0	000
482	-3S Ø	38	0	1	1	2.63
483	-4S Ø	31	0	0	0	0.00
484.	-5S ®	23	2	0	2	8,69
485	ICP-6707-1-150	21	0	0	0	0.00
486	-2S 0	27	0	0	0	000
487	-3S ®	11	0	0	0	0, 00
488	-4S ®	26	0	0	0	0.00
489	-5S 0	23	0	0	0	000
490	ICP-6710-1-1SB	26	11	00]	3.84

<u> </u>	2	3	4	5	6	7
491.	ICP-6710-1-258	38	1	0	1	2.63
491. 492.	-3S ®	25	Ö	ŏ	Ö	0.00
493.	-4S Ø	21	Ö	Ö	Ŏ	0.00
494.	-5S ®	21	ĭ	Ö	ĭ	4.76
495.	ICP-6742-1-150	29	ò	Ŏ	Ò	0.00
496.	-2SØ	25	Ō	0	0	0.00
497.	-3S Ø	27	Ō	0	0	0.00
498.	ICP-7125-1-150	5	0	5	5	100.00
499.	-2S ®	3	0	0	0	0.00
500.	-3S Ø	3	0	0	0	0.00
501.	ICP-7169-1-1S 0	30	0	0	0	0.00
502.	-2S 0	44	0	0	0	0.00
503.	-3S ®	32	12	0	12	37.50
504.	-450	29	0	0	0	0.00
505.	ICP-7169-2-1S8	61	22	0	22	36.06 46.26
506.	-2S ®	67 46	31 24	0 0	31 24	52.17
507. 508.	-3S ® -4S ®	46 55	13	0	13	23.63
500. 509.	ICP-7169-3-1S®	8	0	0	0	0.00
510.	-2S 0	9	Ö	Ŏ	Ö	0.00
511.	-3S ®	16	Ö	Ŏ	Ŏ	0.00
512.	ICP-7173-1-150	18	Ŏ	Ö	Ö	0.00
513.	-2S ®	15	6	0	6	40.00
514.	-3S ®	14	0	0	0	0.00
515.	ICP-7183-1-1S0	47	0	0	0	0.00
516.	-7187-1-1S 0	15	0	0	0	0.00
517.	-2S Ø	9	1	0	1	11.11
518.	-3 S Ø	10	0	0	0	0.00
519.	-4S ®	19	0	0	0	0.00
520.	-550	18	0	0	0	0.00
521.	-6S ®	19	3 1	0	3 1	15.78 2.94
522.	ICP-7193-1-1SB	34	0	0 0	0	0.00
523. 524.	-25 0 -35 0	30 38	2	0	2	5.26
524. 525.	-33W ICP-7198-1-1SM	46	Õ	0	0	0.00
526.	-2S 0	48	Ö	Ö	0	0.00
527.	-3S 0	63	Ö	ő	Ö	0.00
528.	-4S ®	28	Ŏ	Ŏ	Ŏ	0.00
529.	-5S Ø	35	Ĭ	Ö	ī	2.85
530.	ICP-7198-2-150	9	0	Ö	Ó	0.00
531.	-250	39	1	0	1	2.56
532.	-3S ®	49	5	0	5	10.20
533.	-4S ®	47	0	0	0	0.00
534.	-5S ®	53	0	0	0	0.00
535.	ICP-7198-3-1SB	49	0	0	0	0.00

	2	3	4	5	6	7
536.	ICP-7198-3-250	37	0	0	0	0,00
537.	- 3S Ø	28	0	0	0	0.00
538.	-4S @	37	0	0	0	0.00
539.	-5S Ø	9	0	0	0	0.00
540.	-6S Ø	44	0	0	0	0.00
541.	ICP-7198-4-1S 0	31	0	0	0	0.00
542.	- 2S Ø	39	0	0	0	0 - 00
543.	-3S 0	32	0	0	0	0.00
544	-4S Ø	42	0	0	0	0.00
545.	-5S ®	46	0	0	0	0.00
546	ICP-7200-1-150	50	0	0	0	0.00
547.	-2S ®	38	0	0	0	0.00
548,	-3S Ø	32	1	0]	3.12
549.	-4S 0	18	0	0	0	0.00
550	ICP-7200-2-150	37	0	0	0	0.00
551.	-2S 0	43	0	0	0	0.00
552.	-3SØ	19	0	0	0	0.00
553.	-4S ®	34	0	0	0	0.00
554 555.	ICP-7200-3-1SM	30	0 0	0	0	0.00
556.	-25 0 -35 0	23 43	0	0 0	0 0	0.00 0.00
557.	-35W -45 0	43 41	0	0	0	0.00
558.	-43 0 -55 0	38	0	0	0	0.00
559.	ICP-7213-1-1S 0	24	0	8	8	33,33
560.	-2S 0	37	Ö	21	21	56,75
561.	ICP-7221-3-150	20	0	0	0	0.00
562	-2S 0	14	Ö	Ö	Ö	0.00
563	-3S Ø	34	Ö	Ö	0	000
564	-4S &	33	ŏ	Ŏ	Ŏ	0.00
565	-5S ®	14	Ö	Ŏ	Ö	0.00
566	ICP-7221-4-1S0	21	Ö	Ŏ	Ŏ	0.00
567.	-2S Ø	26	Ŏ	Ŏ	Ŏ	0, 00
568	ICP-7222-4-1S@	33	Ō	0	0	0.00
569.	-7232-3-1S 0	17	0	0	0	000
570.	-2S 0	22	0	0	0	0.00
571.	- 3S @	21	0	0	0	0,00
572.	-4S Ø	18	0	0	0	000
573 .	ICP-7232-6-1SB	21	0	0	0	000
574	- 2S Ø	17	1	0	1	5 .88
575 .	- 3S Ø	26	0	0	0	000
576 .	ICP-7232-10-15@	3	0	0	0	0 . 00
577	-2S ®	23	0	0	0	0,00
578.	-3 S®	24	0	0	0	000
579.	-4SØ	11	0	0	0	0,00
<u>580 .</u>	ICP-7233-5-1S0	36	00	00	0	0,00
						contd.

1	2	3	4	5	6	7
581.	ICP-7233-5-250	8	0	0	0	0.00
582.	-3S ®	24	Ĭ	Ŏ	1	41.67
583.	-450	28	3	Ö	3	10.71
584.	-5S ®	33	3	2	5	15.15
585.	-6S 2	31	2	Ō	2	6.45
586.	ICP-7234-1-150	12	1	0	1	8.33
587.	-2S Ø	4	0	Ō	Ó	0.00
588.	ICP-7234-4-1S8	10	Ô	0	0	0.00
589.	-2S @	10	Ō	0	0	0.00
590.	ICP-7238-3-350	26	2	Ō	2	7.69
591.	-4S ®	21	1	Ó	ī	4.76
592.	-5S ®	20	Ó	Ō	Ó	0.00
593.	-6S 8	14	ì	Ó	ì	7.14
594.	-7S 0	24	0	Ō	Ó	0.00
595.	-850	16	0	0	0	0.00
596.	-9S ®	10	0	0	0	0.00
597.	-10S 0	23	0	0	0	0.00
598.	ICP-7238-4-150	21	0	4	4	19.04
599.	-2S 0	32	2	0	2	6.25
600.	-3S Ø	14	6	0	6	42.85
601.	ICP-7243-1-1S0	2 8	4	4	8	28.57
602.	-7246-3-1S Ø	-	-	-	-	_
603.	-2S Ø	_	-	-	-	-
604.	ICP-7248-1-150	38	2	0	2	5.26
605.	-2S 0	35	0	0	0	0.00
606.	-3S 0	60	0	0	0	0.00
607.	-4S 0	6	0	3	3	50.00
608.	-5S Ø	41	0	0	0	0.00
609.	ICP-7234-4-2S0	7	1	0	1	14.28
610.	-3S Ø	11	1	0	1	9.09
611.	ICP-7234-5-1S	9	0	0	0	0.00
612.	-2S 0	7	0	0	0	0.00
613.	-3S @	14	0	0	0	0.00
614.	-4S @	7	0	0	0	0.00
615.	ICP-7234-8-1S@	20	1	0	1	5.00
616.	-2S 0	35	1	0	1	2.85
617.	-3S Ø	14	1	0	1	7.14
618.	ICP-7238-3-1S0	7	2	0	2	28.57
619.	-2S ®	4	0	0	0	0.00
620.	ICP-7248-3-150	28	0	0	0	0.00
621.	-2S ®	9	0	0	0	0.00
622.	- 3S Ø	28	0	2	2	7.14
623.	-4S ®	3 5	1	0	1	2.85
624.	-55₿	62]	0]	1.61
625.	ICP-7248-5-1S8	25	0	1]	4.00

1	2	3	4	5	6	7
626.	ICP-7248-5-258	32	0	3	3	9.37
627.	-3S ®	_	-	-	-	-
628.	-4S 0	11	0	0	0	0.00
629.	-5S ®	-	-	-	-	-
630.	-65₩	2	0	0	0	000
631	ICP-7248-6-158	27	0	2	2	7 . 40
632.	-2S 0	15	0	0	0	000
633	ICP-7248-8-150	33	1	1	2	6.06
634.	-2S 0	23	4	5	9	39,13
635,	-3S ®	53	3	11	14	26.41
636	-4S ⊗	50	4	5	9	1800
637	- 5S Ø	16	0	0	0	0.00
638.	ICP-7251-2-150	30	11	1	12	4000
639	-250	31	20	1	21	67.74
640	-350	22	15	0	15	68.18
641	ICP-7251-3-1S0	3	0	Ō	0	0.00
642.	-2SØ	19	Ŏ	ì	ī	11.11
643	-3S Ø	4	Ö	0	Ö	0.00
644	-450	25	2	2	4	16.00
645	-5S Ø	10	ō	3	3	3000
646	ICP-7256-1-150	15	4	Ŏ	4	26, 66
647.	-250	15	j	2	3	20.00
648	-3S Ø	19	12	ī	13	68,42
649.	-4S Ø	ii	3	i	4	36.36
650	-5S Ø	30	21	0	21	70.00
651	ICP-7258-2-158	12	i	4	5	41.66
652.	-2S Ø	3	ò	Ó	Õ	0.00
653	ICP-7258-3-150	12		Ŏ		16.66
654	-250	20	2 2 3	Ŏ	2 2 3	10.00
655	-3S Ø	20	3	Ö	3	15.00
656	-4S Ø	8	ĭ	Ŏ	ĭ	12.50
657	-5S 8	29	6	Ŏ	6	20.69
658	ICP-7258-4-150	6	3	Ö	3	50.00
659	-2S Ø	41	27	Ö	27	65.85
660	-3S Ø	24	17	Õ	17	70.83
661.	-4S Ø	5	Ö	Ŏ	0	0,00
662	-5S Ø	27	14	ĭ	15	55.55
663	ICP-7273-2-1S0	52	35	ò	35	67.30
664	-2S Q	45	10	0	10	22, 22
665	-23 a -35 a	42	14	0	14	3333
666	-33 2 -45 0	45	4	Ö	4	8,88
667	-43 a -58 a	24	8	0	8	33 33
668	ICP-7281-1-1S Q	25	ő	0	0	0,00
669	-2S 0	26	0	0	0	0.00
	-25 0	20	-	-	Ū	U, UU
670.				-		-

1	2	3	4	5	6	7
671.	ICP-7281-1-450	25	1	0	1	4.00
672.	-5S ®	27	0	0	0	0.00
673.	ICP-7281-9-150	24	0	0	0	0.00
674.	-2S ®	19	0	0	0	0.00
675.	-3S 0	41	0	0	0	0.00
676.	-4S 0	39	13	0	13	33.33
677.	-5S 0	40	10	0	10	25.00
678.	ICP-7286-1-150	22	0	0	0	0.00
679.	-2S Ø	22	0	0	0	0.00
680.	-3S 0	14	0	0	0	0.00
681.	-45 0 -55 0	23 24	0	0 0	0 0	0.00
682. 683.	-53W ICP-7286-2-1SM	21	0	0	0	0.00 0.00
684.	-2SA	38	0 0	0	0	0.00
685.	-25 0	30 30	0	0	0	0.00
686.	-33₩ -45₩	27	0	0	0	0.00
687.	~5S Ø	17	ő	Ö	0	0.00
688.	ICP-7337-4-1SM	52	5	23	28	53.84
689.	-2S 0	32	5	7	12	37.50
690.	-3S Ø	37	5	8	13	35.13
691.	-4S Ø	51	8	20	28	54.90
692.	-5S Ø	44	6	19	25	56.81
693.	ICP-7337-5-150	44	13	8	21	47.72
694.	-250	34	2	9	11	32.35
695.	ICP-7337-6-150	22	7	11	18	81.81
696.	-250	45	12	9	21	46.66
697.	-3S ®	40	18	13	31	77.50
698.	-4SØ	15	11	1	12	80.00
699.	ICP-7371-2-1S@	18	11	0	17	61.11
700.	-2S Ø	22	15	0	15	68.18
701.	ICP-7375-1-1S₩	40	31	0	31	77.50
702.	-2S B	54	24	0	24	44.44
703.	-3S ®	25	17	0	17	68.00
704.	-4S ®	59	31	0	31	52.54
705.	-550	29	10	0	10	34.48
706.	ICP-7386-1-150	29	0	0	0	0.00
707.	-2S Ø	29	0	0	0	0.00
708.	-3S ®	25	0	0	0	0.00
709. 710.	-4S 10	19	0 0	0 0	0	0.00
710. 711.	-5S ®	31	0	0	0 0	0.00
711. 712.	ICP-7444-1-1S0 -2S0	8 13	1	0	1	0.00 7.69
712.		23	1	0	i	7.69 4.34
713. 714.	ICP-7447-1-1S0	23 29	0	0	0	0.00
714. 715.	-25 0	29 22	2	0	2	
/10.	ICP-7472-1-1S8			U		18.18

	2	3	4	5	6	7
716.	ICP-7472-1-258	16	0	0	0	0.00
717.	-7491-1-1S 8	41	3	0	3	14 63
718	-2S Ø	28	4	0	4	28 57
719 720	-3S Ø	32 37	2 5	0	2 5	12.50
720 721	-45 0 -55 0	37 42	5 6	0 0	5 6	27 . 02 28 . 57
722	ICP-7874-1-150	23	1	Ö	ì	8.69
723	-250	12	ò	Ö	Ô	0 00
724	-350	16	Ō	Ō	0	000
725	-4S Ø	8	0	0	0	000
726.	ICP-7874-13-150	31	0	0	0	000
727	-2S 0	11	0	0	0	0.00
728 . 729 .	-3S Ø -4S Ø	20 21	0 2	0 0	0 2	0.00 9.52
730.	-43 w -55 0	15	0	0	0	0.00
731.	ICP-7874-16-158	-	-	-	-	-
732.	-250	12	4	0	4	3333
733	-3S Ø	26	8	0	8	30.76
734	-4S ®	2	0	0	0	0.00
735	-5S 0	26	10	0	10	38.46
736 737.	ICP-7874-18-150	8 7	0 0	0 0	0 0	0 · 00 0 · 00
737. 738.	-25 0 ICP-7889-1-15 0	28	13	1	14	50.00
739	-2S&	31	6	Ö	6	19 35
740	-3S &	6 8	21	Ŏ	21	3088
741	-4S ®	11	4	0	4	36 36
742.	-5S &	1	1	0	1	100.00
743	ICP-7893-2-158	3	1	0	1	33.33
744	-25 0	38	6	10	16	42.10 2.56
745 746	-35 0 -45 0	39 2	1 0	0 0	1 0	0.00
747	-5S 0	1	ő	Ö	0	0.00
748	ICP-7983-3-150	22	Ŏ	Ŏ	Ö	0.00
749	-250	52	0	0	0	0.00
750	-3S Ø	31	3	2	5	16.12
751	-4S ®	18	15	1	16	8899
752	ICP-7993-3-150	2	0	0	0	0.00
753、 754。	-7991-1-15 0 -25 0	3 5	0 0	0 0	0 0	0.00 0.00
754. 755.	-23W -350	6	0	0	0	0.00
756	ICP-7997-2-1SØ	36	5	4	9	25.00
757	-2510	9	Õ	i	i	11.11
758	-3S Ø	14	0	0	0	0.00
759	-4S ®	27	0	0	0	0,00
760.	ICP-8021-5-1SØ	27	5	0	5	18.50

1	2	3	4	5	6	7
761.	ICP-8021-5-2S®	37	2	0	2	5.40
762.	-3S ®	18	0	0	0	0.00
763.	-4S ®	20	1	0	1	5.00
764.	-5S ®	24	0	0	0	0.00
765.	-6S Ø	24	2	0	2	8.33
766.	ICP-8025-1-150	30	0	0	0	0.00
767.	-2S 0	44	4	0	4	9.09
768.	-3SØ	25	4	3	7	28.00
769.	ICP-8027-1-1SM	9	4	0	4	44.44
770.	-2S Ø	24	2	0	2	8.33
771. 772.	-3S∰ ICP-8030-1-1S∰	12 17	0 0	0	0 0	0.00
773.	-2S 0	16	0	0 0	0	0.00
774.	-25 6 -35 6	29	0	0	0	0.00
775.	-4S ®	16	Õ	Ö	0	0.00
776.	-5S ®	6	ĭ	ŏ	i	16.66
777.	-6S ®	16	Ö	Ŏ	ò	0.00
778.	-7S Ø	25	Ö	Ŏ	Ŏ	0.00
779.	-850	43	Ō	Ō	Ō	0.00
780.	ICP-8033-8-150	9	2	0	2	22.22
781.	-2S ®	13	4	0	4	30.76
782.	- 3S Ø	14	1	0	1	7.14
783.	ICP-8035-1-1S	_	-	-	-	-
784.	-2SØ	15	0	1]	6.66
785.	-3S ®	46	2	23	25	54.34
786.	-4S ®	42	0	j	ļ	2.38
787. 788.	-5S Ø	51	2	1	3	5.88
789.	-650 -750	30 7	5 0	4 0	9 0	30.00
769. 790.	-/SW ICP-8035-2-1SM	44	2	4	6	0.00 13.63
790. 791.	-2SM	28	2	1	3	10.71
792.		24	Õ	6	6	25.00
793.	ICP-8035-3-158	6 8	Ö	8	8	11.76
794.	-2S Ø	49	2	8	10	20.40
795.	-3S D	70	5	10	15	21.42
796.	-4S Ø	44	2	9	11	25.00
797.	ICP-8035-4-150	20	0	1	3	5.00
798.	-2S 0	35	2	5	7	20.00
799.	-3S ®	42	1	2	3	7.14
800.	-4S 0	21	2	0	2	9.52
801.	-5S Ø	25	0	1	1	4.00
802.	ICP-8035-5-158	11	0	0	0	0.00
803. 804.	-2S 0	6	0	0	0	0.00
805.	-3S Ø	18	1 3	0	1	5.55
003.	- 4S 0	61	3	20	23	37.70
						contd.

	2	3	4	5	6	7
806	ICP-8035-5-55 0	9	0	0	0	0.00
807	-6S Ø	20	1	2	3	15.00
808	-7S ®	7]	0	1	14.28
809	ICP-8035-6-158	10	2	0	2	20.00
810.	-8036-8-1S 0	25	0	0	0	0.00
811.	-9-1S 0	26	0	0	0	0.00
812 813	-25 0 -35 0	9 4	0 1	0 0	0 1	0.00 25.00
814.	-35 w -45 0	36	Ò	0	Ó	0.00
815.	-5S 0	15	0	0	0	0.00
816	ICP-8036-10-150	25	Ö	4	4	16,00
817	-2S Ø	5	Ŏ	Ó	Ò	0.00
818	-3S ®	15	Ō	Ō	Ō	0.00
819	-4S ®	15	0	0	0	0.00
820	- 5S ®	9	0	0	0	000
821.	ICP-8036-14-15 8	6	0	0	0	0.00
822	-2S @	7	0	0	0	0.00
8 23 .	-350	5	0	0	0	0.00
824	ICP-8052-1-1S0	26	0	0	0	0.00
8 25 .	-2S 0	37 69	2	0	2	5.40
8 26 . 827 .	-350 -450	69 44	11	5 2	16 3	23. 18 6. 31
828	-458 -558	37	1 0	0	3 0	0.00
829.	ICP-8054-1-15 0	28	4	0	4	1428
830	-2SB	20	2	Ö	2	10.00
831.	-3S ®	29	ī	Õ	ī	3.44
832	-4S Ø	21	0	Ŏ	0	0.00
833	ICP-8057-1-150	34	0	4	4	11.76
834.	-2SØ	49	9	0	9	18 36
835.	-3S Ø	33	1	0	1	3.03
83 6 -	- 4SØ	16	3	0	3	18 75
837	ICP-8057-4-150	15	0	0	0	0 00
838	-250	52	0	2	2	3 84
839.	-3S ®	39	1	0	1	2.56
840	-45 0	24 33	0 4	0 0	0 4	0 00 12.12
841. 842.	-5S 0 ICP-8057- 6 -1S 0	33 28	1	0	1	3.57
843	-2SB	14	Ö	0	Ó	0.00
844	-3S B	12	ĭ	Ö	1	8.33
845.	-4S ®	8	i	Ö	i	12.50
846.	ICP-8058-2-158	35	4	ŏ	4	11 42
847	-2S Ø	47	Ö	Ö	Ö	000
848	- 3S @	37	2	1	3	8.10
8 49	-4S 8	20	0	5	5	25.00
<u>850.</u>	ICP-8058-5-1S 0	2	0	00	0	0.00

1	2	3	4	5	6	7
851.	ICP-8058-5-2S₩	10	1	0	1	10.00
852.	-3 S Ø	56	6	0	6	10.71
853.	-4S ®	28	3	0	3	10.71
8 54.	ICP-8058-7-1SØ	23	0	0	0	0.00
8 55.	-2S ®	-	-	-	-	-
856.	ICP-8058-9-150	19	4	2	6	31.57
8 57 .	-2S 0	6	0	1	1	16.66
858.	-3S ®	9	0	2	2	22.22
859.	ICP-8058-10-158	2	0	1	1	50.00
860.	-2S ®	40	0	2	2	5.00
861.	ICP-8061-5-1S	11	0	0	0	0.00
862.	-2SØ	21 24	0	0 0	0	0.00 0.0
863. 8 64.	-35 0 -45 0	1	0 0	0	0 0	0.00
8 65.	-43 w -55 0	1	U	-	U	0.00
866.	ICP-8063-3-15 0	-	_	_	_	_
867.	-9-1S ®	_	_	_	_	_
868.	-25 B	_	_	_	_	_
869.	-3S Ø	_	_	_	_	_
870.	-4S ®	_	_	_	_	_
871.	ICP-8067-4-150	_	_	_	_	_
872.	-250	_	_	-	_	. –
873.	-350	-	_	_	-	-
874.	_4S Ø	-	-	-	-	-
875.	-550	1	0	0	0	0.00
876.	-6S ®	30	0	0	0	0.00
877.	-7S ⊗	23	0	0	0	0.00
878.	-8S ®	1	0	0	0	0.00
879.	ICP-8067-9-1S8	39	1	0	1	2.56
880.	-2S ®	-	-	-	-	-
881.	-350	-	-	-	-	7.00 .00
882.	-45 0	1	0	1]	100.00
883.	ICP-8085-1-1SM	47	9 39	0	9	19.14 68.42
884. 885.	-2SØ -3SØ	57 16	39 1	0 0	39 1	6.25
88 6.	-35₩ -45₩	53	40	0	40	75.47
887.	1CP-8090-1-1S0	36	11	15	26	72.22
888.	-2S 8	8	'0	0	0	0.00
889.	-3S ®	50	9	ŏ	9	18.00
890.	-331⊌ -4818	17	8	6	14	82.35
891.	-5S 0	51	13	18	31	60.78
892.	ICP-8093-1-S10	45	16	20	36	80.00
893.	-S2 8	31	-	-	16	51.61
894.	-S3 Ø	32	_	-	17	53.12
895.	-S4 0	11	-	-	5	45.45
	- 1.2					contd.

	2	3	4	5	6	7_
8 96 .	ICP-8093-3-S10	13	-	-	}	7,69
897	-S2 0	_8	-	-	6	75.00
898	-\$38	13	-	-	0	0.00
899	-S4 @	15	-	-	9	60,00
900	-S5 0	10	-	-	0	0.00
901	ICP-8094-2-S10	8	-	-	1	12.50
902.	-\$2 0	7	-	-	0	0.00
903	-S3 0	10	•	-	0 9	0.00
904 905	ICP-8095-1-S10 -S20	21 23	-	-	1	4285 434
905	-52N -53N	23 25	-	-	10	40.00
907	-54 0	16	-		0	0 00
908	-34 6 -S5 6 0	10	<u>-</u>	-	0	000
909	ICP-8095-2-S1 0	11	-	_	ĭ	9.09
910.	-S210	ii	_	_	i	9.09
911.	-52 b -53 0	23	-	_	10	43.47
912.	-S4 0	16	_	_	2	12.50
913	-S5 0	iĭ	_	_	Ō	000
914	ICP-8095-3-510	6	_	_	ĭ	16,66
915	-S2Ø	4	_	-	Ô	0.00
916	-S3 0	11	-	_	Ō	000
917	-540	7	_	-	0	000
918.	-S5 0	11	-	-	1	5.00
919.	ICP-8095-4-S10	20	-	-	14	31.11
920	-S2 0	54	-	-	4 5	8333
921	-\$310	29	-	-	17	58 62
922	-S4 B	33	-	-	21	63 63
923	-S5 0	12	-	-	0	0.00
924	ICP-8101-1-518	19	-	-	1	5 26
925	-S2 0	18	-	-	5	27.77
926	-S3 0	24	-	-	0	0.00
927	-S40	14	-	-	0	0 00
928 929	-S5 0 ICP-8102-1-S1 0	18 16	-	-	0 0	0.00 0.00
930	-S2 0	27	-	-	7	2592
931	-52 6 -53 8	10	-	_	í	10.00
932	-336 -840	42	_	_	16	38 09
933	-S50	28	_	_	18	6428
934	ICP-8102-2-S10	3	_	_	0	000
935	-528	17	_	_	9	52 94
936	-S3 0	8	_	_	Ó	000
937	-S4 ®	6	_	_	ő	0.00
938	-S5 8	10	_	_	Ö	0.00
939	ICP-8102-3-S18	10	_	-	Õ	0 00
940	-S2 8	7	-	_	Ŏ	000
		•			-	contd

1	2	3	4	5	6	7
941.	ICP-8102-3-S30	11	-	_	2	18.18
942.	-S4 0	7	-	-	0	0.00
943.	- S5 ®	15	-	-	0	0.00
944.	ICP-8102-6-S18	35	-	-	10	28.57
945.	- S2 Ø	9	-	-	0	0.00
946.	-S3 0	15	-	-	0	0.00
947.	-S4 0	9	-	-	0	0.00
948.	-S5 0	31	-	-	19	61.29
949.	ICP-8102-8-S10	2	-	-	0	0.00
950.	-S2 0	9	-	-	Ţ	11.11
951.	-S3 8	17	-	-	1	5.88
952.	-s4 8	12	-	-	0	0.00
953.	-S5 ⊠	18	-	-	3	16.66
954.	ICP-8103-1-510	23	-	-	0	0.00
955.	-S2 0	22	-	-	0	0.00
956.	-S3 @	19	-	-	0	0.00
957.	-S4 @	29	-	-	0	0.00
958.	-S5 0	8	-	-	0	0.00
959.	ICP-8103-2-518	13	-	-	1	7.62
960.	-S2 0	19	-	-	1	5.26
961.	-S3 0	17	-	-	1	5.88
962.	-S4 ®	15	-	-	5	33.33
963.	-S5 0	17	-	-	3	17.64
964.	-S60	20	-	-	2	10.00
965.	ICP-8104-1-510	5	-	-	1	20.00
966.	-S2 ®	22	-	-	2	9.09
967.	-\$3 ®	15	-	-	2	13.33
968.	-S4 ®	7	-	-	2	28.57
969.	-550	-	-	-	-	-
970.	ICP-8104-2-510	24	-	-	20	83.33
971.	-5210	10	-	-	0	0.00
972.	ICP-8107-1-S18	18	-	-	0	0.00
973.	-S2 0	18	-	-	0	0.00
974.	-S3 0	26	-	-	0	0.00
975.	-S4 0	24	-	-	0	0.00
976.	-\$50	8	-	-	0	0.00
977.	ICP-8111-1-510	8	-	-	0	0.00
978.	-S2 ®	53	-	-	26	49.05
979. 980.	-S3 0	3	-	-	0	0.00
	-S48	10	-	-	0	0.00
981.	-550	45	-	-	9	20.00
982.	ICP-8112-1-S10	19	-	-	9	47.36
983.	-S2 0	13	-	-	0	0.00
984.	-S3 0	5	-	-	0	0.00
985.	-S4 0	26	-	-	0	0.00
						contd.

	2	3	4	5	6	7
986	ICP-8112-1-S50	16	-	-	2	12.50
987.	-2-S1 Ø	22	-	-	13	59 09
988 -	-S2 ®	8	-	-	0	0.00
989	-S3 Ø	13	-	-	1	7 - 69
990	-S4₩	9	-	-	0	0.00
991	-S5 0	23	-	-	8	34 . 78
992	ICP-8122-1-S10	4	-	-	0	000
993	-S2 0	5	-	-	0	0.00
994	-S3 Ø	6	-	-	0	0.00
995	-\$ 40	9	-	-	0	0.00
996	-S5 ®	18	-	-	0	0 00
997.	ICP-8128-2-S10	14	-	-	0	0.00
998	-S2 0	24	-	-	0	0.00
999.	-S3 ®	9	-	-	0	0.00
1000	-S4 8	28	-	-	0	0.00
1001	-S5 ®	19	-	-	0	0.00
1002	ICP-8128-3-518	19	-	-	1	5.26
1003	-S2Ø	19	-	_	0	0.00
1004.	-S3 0	30	-	-	j	3,33
1005	-S4 8	34	-	-	1	2 94
1006.	-S5 0	19	-	-	2	10.52
1007.	ICP-8130-1-S18	14	-	-	0	0.00
1008	-S2 0	7	-	-	0	0.00
1009.	-S3 0	27	-	-	0	0.00
1010.	-S480	24	-	-	0	0 . 00 0 . 00
1011 1012.	-S50 ICP-8130-2-S10	10 7	-	-	0 0	0.00
1012.	-S28	33	-	-	0	0.00
1013.	-32 b -\$3 Ø	33 14	-	-	0	0,00
1014	-54 0	18	_	_	0	0.00
1015	ICP-8130-6-S10	9	_	-	0	0.00
1017	-S2 8	24	_	_	0	0.00
1018	-S3 0	29	_	_	ő	0.00
1019.	-S4 8	36	_	_	Ö	0.00
1020	-S5 ®	13	_	_	Ö	0.00
1021	ICP-8130-7-S10	15	_	_	Ö	0.00
1022	-S2 0	32	_	_	Ŏ	0.00
1023.	-S3 Ø	31	_	_	Õ	0.00
1024	-S4 ®	19	_	_	Ö	0.00
1025	-S5 0	<u> 19</u>	-	_	4	21.05
1026	ICP-8130-8-S18	9	_	_	Ö	0.00
1027.	-S2 8	23	_	_	Ö	0.00
1028	-S3 8	24	_	_	Ö	0.00
1029	-S4 8	<u> 1</u> 9	-	-	Ö	0.00
1030.	-S5 8	24	-	_	Ō	0 . 00
	· · · -					contd

1	2	3	4	5	6	7
1031.	ICP-8130-9-S10	8	-	-	0	0.00
1032.	-S2 ®	10	-	-	2	20.00
1033.	-S3 0	13	-	-	0	0.00
1034.	-S4 ®	16	-	-	0	0.00
1035.	- S5 ®	45	_	-	21	46.66
1036.	ICP-8132-7-S10	29	-	-	8	27.58
1037.	-S2 ®	5	-	-	0	0.00
1038.	-S3₩	9	-	-	0	0.00
1039.	-S4 0	2	-	-	0	0.00
1040.	-S5 0	13	-	-	0	0.00
1041.	ICP-8133-2-S10	19	-	-	0	0.00
1042.	-S2 0	19	-	-	0	0.00
1043.	-S3 1 0	19	-	-	1	5.26
1044.	-\$4₩	24	-	-	0	0.00
1045.	-S5 ⊗	14	-	-	0	0.00
1046.	ICP-8133-3-S1 Ø	31	-	-	0	0.00
1047.	-S2 0	27	-	-	0	0.00
1048.	-S3 Ø	34	-	-	0	0.00
1049.	-S4 ®	19	-	-	0	0.00
1050.	-S5 0	18	-	-	0	0.00
1051.	ICP-8137-2-S1 0	14	_	-	2	14.38
1052.	-4-S1 0	12	-	-	0	0.00
1053.	-S2 10	17	-	-	0	0.00
1054.	-S3 0	14	-	-	0	0.00
1055.	-S4 0	12	-	-	0	0.00
1056.	-S5 0	30	-	-	2	6. 6 6
1057.	-S6 0	24	-	-]	4.16
1058.	ICP-8138-1-S10	33	-	-	1	3.03
1059.	-S2 0	22	-	-	0	0.00
1060.	-S3 0	28	-	-	0	0.00
1061.	-S4⊠	38	-	-	0	0.00
1062.	-S5 0	38	-	-	4	10.52
1063.	ICP-8138-6-S1 0	21	-	-	3	14.28
1064.	-S2 0	32	-	-	0	0.00
1065.	-\$3 0	29	-	-	1	3.44
1066.	-S4 0	27	-	-	0	0.00
1067.	-\$50	32	-	-	0	0.00
1068.	ICP-8139-6-S18	25	-		0	0.00
1069.	-S2 ®	16	-	-	2	12.50
1070.	-S3 Ø	10	-	-	4	40.00
1071.	-S4 1 0	15	-	-	j	6.66
1072.	-S5 0	21	-	-	2	9.52
1073.	ICP-8139-7-S18	37	-	-	0	0.00
1074.	-\$2 0	20	-	-	0	0.00
1075.	-S3 ®	14	-	-	0	0.00
						contd.

	2	3	4	5	6	7
6°0	ICP-8139-7-S40	14	-	-	0	0.00
077	- S5 &	5	-	-	0	000
1078	ICP-8140-4-S7 0	15	-	-	0	0.00
079	-S2 0	22	-	-	0	0 00
1080	~ \$3 0	18	-	-	1	5.55
1081	-S4 0	10	-	-	0	0.00
1082	-S5 0	5 0	-	_	7	14.00
1083	:CP-8161-2-510	8	-	_	0	0.00
1084	-\$2 0	21	-	-	0	000
1085	- \$30	29	-	-	4	1379
086	- 54 6 0	22	-		0	0.00
· 0 8.7	-\$50	23	-	_	Ŏ	000
088	1CP-8161-3-510	24	_	-	Ö	0.00
089	-S2 Ø	28	-	-	Ö	000
1090	- S3 10	29	_	_	Ŏ	000
1091	-S4 8	24	-	-	2	8.33
1092	-\$50	36	~	.=	2	5555
093	ICP-8163-1-S10	24	_	_	Ō	000
094	-S2 0	17	_	_	Ö	0.00
095	\$3 0	12	_	_	Ö	0,00
1096	-540	16	_	_	Ö	0.00
1097	-S5 ®	6	_	_	Ö	0,00
1098	ICP-8164-1-S10	11	_	_	i	9.09
1099	-S280	9	-	_	ò	0.00
1100	ICP-7349-6-518		-	<u>-</u>	-	0.00
1101	-S28	2	_	_	0	0.00
1102	-S3 0	ĺ	_	· =	0	0.00
103	-54 0	2	_	_	0	000
1104.	-54 0	ĺ	-	-	0	000
1104	-56 0	2	-	_	0	000
1106	-50 0 -57 0	2	-	-	U	0.00
1107	-58 0	-	-	-	-	-
1108	-S9 0	_	-	-	-	-
1100	-510 0	-	-	-	•	
1110	-S110	ì	-	-	0	0.00
-			-	-		
1111	ICP-7942-13-S18	2	-	-	0	0.00
1112	-8084-1-S1 0	2		-	0	0.00
1113	-S2 9	1	-	-	0	000
1114	-S3 0	-	-	-	-	- 00
1115	-S4 0	5	-	-	0	0.00
1116	-S5 0	3	-	-	0	0.00
117	-S6 0	10	-	-	0	0.00
1118.	-576	11	-	-	0	0.00
1119.	-S8 0	6	-	-	0	0.00
.120	-S9 Ø	7	-	-	0	0,00

1	2	3	4	5	6	7
1121.	ICP-8084-1-S100	8	-	_	0	0,00
1122.	-8021-6-S1 0	10	_	_	0	0.00
1123.	-S2 0	6	-	_	0	0.00
1124.	-S3 0	15	-	_	0	0.00
1125.	-S40	11	_	_	0	0.00
1126.	-S5 ®	4	-	_	Ó	0.00
1127.	ICP-8121-8-S10	4	_	-	0	0.00
1128.	-2630-1-S1 0	_	-	_	_	_
1129.	-S2 0	_	-	_	_	_
1130.	-S3 0	_	-	_	_	_
1131.	-S4 8	_	_	-	_	_
1132.	-S5 0	_	_	-	_	_
1133.	-S6 0	1	_	-	0	0.00
1134.	-S7 1 0	2	_	_	Ö	0.00

APPENDIX-XXV

Results of screening of pigeonpea germplasm selections made in 1977-78
for sterility mosaic resistance during 1978-79

		T-1-7	Inf	D		
Si. No.	ICP No.	Total plants	Ring	Severe	Total	Percent infection
		•	spot	mosaic		7111 60 61011
_!	2	3	4	5	6	
1.	ICP- 19-1S0	25	17	2	19	76.00
2	-2S @	49	35	0	35	71.42
3.	-3\$0	13	8	0	8	61.53
4.	-450	1	0	1]	100.00
5	-550	38	17	2	19	50.00
6	ICP- 45-1S@	4	2	0	2	50.00
7.	-250	14	14	0	14	100.00
8	ICP- 70-150	7	.0	0	0	0.00
9.	-2S Q	31	13	0	13	41.93
10.	-3S Q	21	8	0	8	38.09
11.	-4SQ	18	3 7	2 0	5 7	27.77
12. 13.	ICP- 95-1S@	58	21	Ü		12.06 63.88
13 14.	~2S @	36 10	3	2 2	28 7	70.00
15.	-35 0 ICP-187-15 0	3	0	0	0	0.00
16	-2SØ	14	1	1	2	14.28
17.	ICP-210-1S0	51	13	Ó	13	25, 49
18.	10P-210-13m -25m	34	30	0	30	88,23
19.	ICP-238-150	47	26	0	26	55.31
20.	-2S®	17	8	Ö	8	47,08
21.	ICP-306-150	36	5	15	20	55.55
22	-314-1S Q	42	16	14	30	71,42
23	-2S Q	22	9	4	13	59.09
24.	-390-1SØ	3	Ō	3	3	100.00
25	-410-1SØ	23	7	0	7	30.43
26	-416-1S 0	2	2	0	2	10000
27.	-457-1S@	36	2 7	0	2 2 7	5,55
28 -	-2SØ	18		0		38.88
29.	- 3S₽	35	4	0	4	11.42
30	-4S @	7	0	0	0	0,00
31	-550	63	9	0	9	14 28
32	-6S ₽	35	4	Ō	4	11.42
33 -	-7S @	24	9	0	9	37.50
34	-85₽	15	0	0	0	0.00
35.	-595 - 15 0	23	5	0	5	21.73
36	-250	49	11	0	11	22.44
37	-350	17	0	0	0	0.00
38	-260 - 15@	46	18	5	23	50.00
39 .	-2S @	48	24	0	24	50.00
40.	-350	12	0	00	0	0.00
						contd.

1	2	3	4	5	6	7
41.	ICP-638-1S@	22	20	0	20	90.90
42.	-2S @	21	9	0	9	42.85
43.	-3S @	40	18	0	18	45.00
44.	-778-1S @	45	0	0	0	0.00
45.	-2SØ	32	3	2	5	15.62
46.	-3S@	9	0	0	0	0.00
47.	-4SØ	40	4	2	6	15.00
48.	-5SØ	35	2	0	2	5.71
49.	-6S Q	16	0	0	0	0.00
50.	-934-1S @	22	0	0	0	0.00
51. 52.	-25 0 -35 0	27 42	0 2	0 0	0 2	0.00 4.76
52. 53.	-33₩ -4SØ	26	0	0	0	0.00
54.	-43 <i>b</i> -55 <i>b</i>	24	5	0	5	20.83
55.	-6S @	40	6	0	6	15.00
56.	-75 @	26	3	0	3	11.53
57.	-8S Q	43	10	Ö	10	23.25
58.	-999-1S ®	38	12	Ö	12	31.57
59.	-250	19	18	Ō	18	94.73
60.	-350	27	20	Ō	20	74.07
61.	-450	-	-	-	_	-
62.	-5S ₽	26	6	0	6	23.07
63.	ICP-1214-1S@	32	1	0	1	3.12
64.	-2SØ	29]	0	1	3.44
65.	-3S₩	28	2	0	2	7.14
66.	ICP-1220-150	57	0	0	0	0.00
67.	-250	25	0	0	0	0.00
68.	-350	14	0	0	0	0.00
69.	ICP-1283-15@	1		0	0	0.00 33.33
70. 71.	-250 -350	12 18	4 1	0	4 1	5.55
72.	-33₩ -4S@	43	Ó	4	4	9.30
73.	-45 ₽ -5S ₽	27	0	26	26	96.29
74.	ICP-1644-158	42	26	2	28	66.66
75.	-2S Q	36	13	0	13	36.11
76.	-3S ®	18	2	Ö	2	11.11
77.	-4SØ	20	20	Ō	20	100.00
78.	-5S Q	37	8	0	8	21.62
79.	-6S ₽	33	13	Ŏ	13	39.39
80.	ICP-1680-1S₩	41	0	0	0	0.00
81.	- 2S @	50	15	0	15	30.00
82.	-35₽	1	1	0	1	100.00
83.	-4S @	16	1	0	1	6.25
84.	ICP-1736-1SØ	7	7	0	7	100.00
85.	-1802-1S Q	33	7	0	7	21.21
						contd.

	2	3	4	5	6	7
86	ICP-1814-1S@	-	-	-	-	-
87	-1833 - 15 0	40	6	17	23	57.50
88.	-18 96- 1S Q	37	28	2	30	81.08
89	-1908-15 0	29	11	0	11	37.93
90. 91.	-1908-1S @	46 56	9 25	0	9 34	19.56
92	-1921-15 @ -25 @	56 43	25 15	9 4	34 19	60,71 44,18
93	-23 8 -35 0	31	12	7	19	61.29
94	-338 -450	65	21	9	30	46.15
95.	-5S ®	41	6	15	21	51.21
96.	-6S Q	49	4	16	20	40.81
97	ICP-1923-1S@	55	11	Ö	īĭ	20.00
9 8	-250	32	25	4	29	90.62
99.	-35₽	12	7	1	8	66.66
100	- 4S @	39	25	1	26	66,66
101	ICP-1926-1S₩	26	3	11	14	53.84
102.	-1929-1S @	41	4	12	16	39.02
103.	-250	9	3	0	3	33.33
104	ICP-1941-1S0	25	3 2 9	12	14	56.00
105	-1944-1S Q	54 57	15	25	34	62.96
106	-1946-1SQ -2SQ	57 50	15 13	3	18 13	31.57
107。 108。	-23 ₽ -3 S₽	50 27	13	0 0	14	26.00 51.85
109	-33⊠ -45@	41	5	7	12	29.26
110.	-5S Q	58	12	2	14	24.13
111.	ICP-1963-158	48	10	3	13	27.08
112.	-2SQ	45	13	3	16	35.55
113.	ICP-1976-1S@	36	12	8	20	55.55
114.	-1979-1S @	29	4	20	24	82.75
115.	-2 S 2	63	5	47	52	82.53
116.	-3 S₽	28	0	27	27	96.42
117	-4S@	20	2	16	18	90.00
118.	-5 S @	30	3	20	23	76,66
119.	ICP-1983-150	22	3	5	8	36.36
120.	-25 9	16	0	2	2	12.50
121.	-3S Q	33	0	0	0	0.00
122 a 123 a	ICP-1987-15@	34	10 13	0	10	29.41 86.66
123.	-250 ICP-2003-150	15 36	15	0 7	13 22	61.11
125.	-2SQ	33	2	0	2	6.06
126.	-3S Ø	-	_	-	-	-
127.	-45 0	19	8	4	12	63.15
128	- 5S ₽	25	4	17	21	84.00
129.	ICP-2009-15@	30	4	19	23	76.66
130.	-2S @	26	0	17	17	65.38

1	2	3	4	5	6	7
131.	ICP-2010-1S@	32	8	2	10	31.25
132.	-2 S 2	44	16	7	23	52.27
133.	ICP-2013-150	35	3	1]	14	40.00
134.	-2SØ	14	4	3	7	50.00
135.	-35 0 ICP-2017-15 0	24 3	7	0	7 3	29.16
136. 137.	-2SQ	13	0 3	0	3 5	100.00 38.46
137.	-25 8 -35 0	26	3 9	2 6	15	57.69
139.	-4S Q	21	8	Ö	8	38.09
140.	ICP-2020-150	-	-	-	-	-
141.	-2S Q	31	1	0	1	3.22
142.	-35₽	50	5	13	18	36.00
143.	- 4S @	39	4	11	15	38.46
144.	ICP-2045-1S@	43	2	12	14	32.55
145.	-2S Q	44	6	12	18	40.90
146.	ICP-2050-1S0 -2S0	37	0 7	0	0	0.00
147. 148.	-25 1 2 -35 1 2	45 3	0	0 0	7 0	15.55 0.00
149.	-4S 2	50	8	4	12	24.00
150.	-5S 0	52	ĭ	2	3	5.76
151.	-6S ®	52	ż	2 4	ő	11.53
152.	- 7S ₽	42	0	1	ī	2.38
153.	-8S @	54	0	6	. 6	11.11
154.	- 9\$ 0	48	3	6	9	18.75
155.	ICP-2060-1S@	36	3	21	24	66.66
156.	-250	31	4	5	9	29.03
157. 158.	-3S@	43 56	10	12	22	51.16
150.	-4S@ -5S@	56 42	10 12	27 6	37 18	66.07 42.85
160.	ICP-2067-1S0	49	15	17	32	65.30
161.	-2S Q	30	5	6	ii	36.66
162.	-3S Q	33	9	17	26	78.78
163.	ICP-2096-1SM	43	8 6	3	11	25.58
164.	-2098-1S @	36		6	12	33.33
165.	-2101-150	53	9 3	12	21	39.62
166.	-2106-1S ®	20	3	4	7	35.00
167.	-2110-1S @	67	12	19	31	46.26
168. 169.	-2S ®	42 27	19 8	16 18	35	83.33 70. 27
170.	-350 ICP-2112-150	37	•	-	26 -	70.27
171.	-2S0	50	23	20	43	86.00
172.	ICP-2121-150	3 6	9	17	26	72.22
173.	-2150-1S @	4			0	0.00
174.	-2S Q	23	0 5	0 4	9	39.13
175.	-2155-150	20	7	1	8	40.00
						contd.

	2	3	4	5	6	7
176	ICP-2155-25@	17	8	2	10	58.82
177.	-2158 - 15 ₽	29	6	3	9	31.03
178.	-2S Q	13	3	0	3	23 . 07
179	-3 SQ	37	0	10	10	27.02
180	~4S @	-	-	-	-	•
181	ICP-2170-15@	-	-	-	-	-
182	-250	1	0	0	0	0.00
183.	ICP-2184-150	32	3	7	10	31.25
184.	-2S ®	13	1	7	8	61.53
185.	ICP-2209-150	17	2	6	8	47.05
186. 187.	-250	23	3	5	- 0	24 70
188.	-35 0 -45 0	23 9	0	3	8	34.78 33.33
189	- 5S Q	22	3	5 6	9	40,90
190.	-538 ICP-2210-150	27 27	0	7	7	25.,92
191.	-2SQ	27 25	6	3	9	36.00
192	ICP-2216-150	-	-	-	-	30.00
193	-250	28	8	3	11	39.28
194	ICP-2235-150	27	3	6	9	33.33
195	-2238-150	26	ž	15	22	84.61
196.	-2S Q	24	7	17	24	70.58
197.	ICP-2241-1S@	25	7	3	10	40.00
198	-2246-1S 0	8	4	1	5	62 50
199.	-2S @	1	1	0	1	100.00
200.	- 3S Ø	18	11	2	13	
201.	ICP-2351-1S@	21	3	15	18	85.71
202.	-2S 0	21	3	12	15	71.42
203.	-3S @	26	5	6	11	42,30
204.	ICP-2380-150	14	3	0	3	21.42
205.	-2S 0	7	1	0	1	14,28
206	-350	1	0	0	0	0.00
207 . 208 .	ICP-2621-1SØ	16]	6	7	43.75
209	-2262-15 0 -25 0	29 23	14 10	0	14 10	48. 27 43. 47
210.	-35 0	20	13	2	15	75.00
211.	-4S@	5	3	0	4	80.00
212.	ICP-2732-150	12	0	4	4	3333
213.	-2S Q	20	ő	16	16	80.00
214.	ICP-2812-150	29	Õ	0	0	0.00
215.	-2S®	35	ĭ	ĩ	2	5.71
216	-35 0	12	Ó	Ó	Ō	0.00
217	-450	19	Ŏ	Ŏ	0	0,00
218.	- 5S @	22	2	0	2	9.09
219.	ICP-2928-15@	17	1	2	3	17.64
220.	-3208-15 @	20]	1	2	10,00

221. ICP-3208-2S0 16 1 0 1 0 1 6.25 222350 20 5 1 6 30.00 223. ICP-3259-1S0 33 5 3 8 24.24 2243412-1S0 18 2 0 2 111.11 225250 24 1 1 2 8.33 226. ICP-3421-1S0 10 0 0 0 0 0.00 227250 21 4 0 4 19.04 228350 1 1 0 1 0 1 100.00 229. ICP-3521-1S0 11 3 1 4 36.36 2303566-1S0 26 13 3 16 61.53 2313576-1S0 11 3 1 4 36.36 232250 2 6 13 3 16 61.53 2313576-1S0 11 4 0 4 36.36 232250 5 0 2 2 25.00 234. ICP-3666-1S0 15 3 1 4 26.66 2353678-1S0 15 3 1 4 26.66 2353678-1S0 19 14 3 17 89.47 236250 15 8 0 8 53.33 237 -350 8 8 2 0 0 2 25.00 238. ICP-3689-1S0 19 14 3 17 89.47 236250 15 8 0 8 53.33 237 -350 10 7 0 7 70.00 238. ICP-3689-1S0 14 0 0 0 0 0.00 239250 14 0 0 0 0 0.00 239250 14 0 0 0 0 0 0.00 240. ICP-3693-1S0 30 6 4 10 33.33 241250 36 4 6 10 27.77 242. ICP-3694-1S0 18 5 0 5 27.77 242. ICP-3696-1S0 35 1 11 12 34.28 245250 26 7 11 18 69.23 246350 39 19 11 0 11 57.89 247. ICP-3697-1S0 5 1 0 1 20.00 2483755-1S0 29 2 0 2 6 6.89 249250 29 8 0 8 27.58 250350 19 11 0 11 57.89 241. ICP-3697-1S0 5 1 0 1 20.00 2483755-1S0 29 2 0 2 6 6.89 249250 29 8 0 8 27.58 250350 19 11 0 11 57.89 251. ICP-3761-1S0 38 8 0 8 27.58 255. ICP-3761-1S0 38 8 0 8 27.58 2563781-1S0 29 2 0 2 0 2 6.89 249250 28 9 0 9 35.00 257250 19 2 0 2 10.52 258. ICP-3801-1S0 28 9 0 9 9 50.00 259250 29 20 0 2 0 2 10.52 258. ICP-381-1S0 21 3 3 0 3 14.28 257250 19 2 0 2 10.52 258. ICP-381-1S0 29 2 0 2 10.52 258. ICP-381-1S0 29 2 0 2 9.09 259250 25 0 0 0 0 0 0.00 260350 19 11 0 1 3.44	1	2	3	4	5	6	7
222.		ICP-3208-250		1	0		6.25
223.				5	1	6	
224. -3412-150 18 2 0 2 11.11 225. 1CP-3421-150 10 0 0 0 0 227. -250 21 4 0 4 19.04 228. -350 11 1 0 1 100.00 229. 1CP-3521-150 11 3 1 4 36.36 230. -3566-150 26 13 3 16 61.53 231. -3576-150 11 4 0 4 36.36 232. -250 - - - - - - 233. -350 8 2 0 2 25.00 234. 1CP-3666-150 15 3 1 4 26.66 235. -3678-150 15 8 0 8 53.33 237. -350 10 7 0 7 70.00 238.	223.	ICP-3259-1S₩	33	5	3	8	24.24
225. -2SØ 24 1 1 2 8.33 226. ICP-3421-ISØ 10 0 0 0 0.00 227. -2SØ 21 4 0 4 19.04 228. -3SØ 1 1 0 1 100.00 229. ICP-3521-ISØ 11 3 1 4 36.36 230. -3566-ISØ 26 13 3 16 61.53 231. -3576-ISØ 11 4 0 4 36.36 232. -2SØ - - - - - - 233. -3SØ 8 2 0 2 25.00 234. ICP-3666-ISØ 15 3 1 4 26.60 235. -3678-ISØ 19 14 3 17 89.47 236. -2SØ 15 8 0 8 53.33 237.	224.	-3412-1S 0	18	2	0	2	11.11
226. ICP-3421-1SØ 10 0 0 0 0,00 227. -2SØ 21 4 0 4 19,04 228. -3SØ 1 1 0 1 100,00 229. ICP-3521-1SØ 11 3 1 4 36,36 230. -3566-1SØ 26 13 3 16 61,53 231. -3576-1SØ 11 4 0 4 36,36 232. -2SØ - - - - - 233. -3SØ 8 2 0 2 25,00 234. ICP-3668-1SØ 15 3 1 4 26,66 235. -2SØ 15 8 0 8 53,33 237. -3SØ 10 7 0 7 70,00 238. ICP-3693-1SØ 14 0 0 0 0 240. ICP-3693-1SØ 30 6 4 10 33,33 241. -2SØ		-2S @				2	
227. -258 21 4 0 4 19.04 228. -350 1 1 0 1 100.00 229. ICP-3521-150 26 13 3 16 61.53 231. -3576-150 11 4 0 4 36.36 231. -3576-150 11 4 0 4 36.36 232. -250 - - - - - - 233. -350 8 2 0 2 25.00 234. ICP-3666-150 15 3 1 4 26.66 235. -3678-150 19 14 3 17 89.47 236. -250 15 8 0 8 53.33 237. -350 10 7 0 7 70.00 238. ICP-3693-150 14 0 0 0 0.00 240.	226.	ICP-3421-1S@	10		Ó	0	
228. -358 1 1 0 1 100.00 229. ICP-3521-IS0 11 3 1 4 36.36 230. -3566-IS0 26 13 3 16 61.53 231. -3576-IS0 11 4 0 4 36.36 232. -250 - - - - - - 233. -350 8 2 0 2 25.00 234. ICP-3666-IS0 15 3 1 4 26.66 235. -3678-IS0 19 14 3 17 89.47 236. -250 15 8 0 8 53.33 237. -350 10 7 0 7 70.00 238. ICP-3689-IS0 14 0 0 0 0.00 239. -250 14 0 0 0 0.00 241.		-2S @					
229. ICP-3521-1SØ 11 3 1 4 36.36 230. -3566-1SØ 26 13 3 16 61.53 231. -3576-1SØ 11 4 0 4 36.36 232. -2SØ - - - - - - 233. -3SØ 8 2 0 2 25.00 234. ICP-3666-1SØ 15 3 1 4 26.66 235. -3678-1SØ 19 14 3 17 89.47 236. -2SØ 15 8 0 8 53.33 237. -3SØ 10 7 0 7 70.00 238. ICP-3689-1SØ 14 0 0 0 0.00 239. -2SØ 14 0 0 0 0.00 240. ICP-3693-1SØ 30 6 4 10 33.33 241.		-3S Q			Ö		
230.					ĭ		
231.		-35 66-1 S 0	26		3		
232. -2SØ - </td <td></td> <td></td> <td></td> <td></td> <td>ō</td> <td></td> <td></td>					ō		
233.			-				-
234. ICP-3666-1S0 15 3 1 4 26.66 2353678-1S0 19 14 3 17 89.47 2362S0 15 8 0 8 53.33 237 -3S0 10 7 0 7 70.00 238. ICP-3689-1S0 14 0 0 0 0 0.00 2392S0 14 0 0 0 0 0.00 240. ICP-3693-1S0 30 6 4 10 33.33 2412S0 36 4 6 10 27.77 242. ICP-3694-1S0 18 5 0 5 27.77 2432S0 14 3 5 8 57.14 244. ICP-3696-1S0 35 1 11 12 34.28 2452S0 26 7 11 18 69.23 2463S0 247. ICP-3697-1S0 5 1 0 1 20.00 2483755-1S0 29 2 0 2 6.89 2492S0 29 8 0 8 27.58 2503S0 19 11 0 11 57.89 251. ICP-3756-1S0 17 5 0 5 29.41 2522S0 18 8 0 8 44.44 2533S0 18 9 0 9 30.00 2544S0 28 9 0 9 32.14 255. ICP-3761-1S0 38 8 0 8 21.05 2563781-1S0 28 0 0 0 0 0.00 2592S0 29 2 0 2 0.00 2592S0 29 2 0 2 0.00 2592S0 28 0 0 9 32.14 2572S0 18 9 0 9 50.00 2592S0 28 0 0 0 0 0.00 2592S0 29 20 0 0 0 0.00 2603S0 16 3 0 3 18.75 2614S0 22 2 0 0 2 9.09 2625S0 27 1 0 1 3.70 263. ICP-3838-1S0 37 8 0 8 21.62 2643920-1S0 29 1 0 1 3.44	233.		8	2		2	25.00
235.			15	3	ĭ	4	
236.							
237					ŏ		
238. ICP-3689-ISB 14 0 0 0 0.00 23925B 14 0 0 0 0 0.00 240. ICP-3693-ISB 30 6 4 10 33.33 2412SB 36 4 6 10 27.77 242. ICP-3694-ISB 18 5 0 5 27.77 2432SB 14 3 5 8 57.14 244. ICP-3696-ISB 35 1 11 12 34.28 2452SB 26 7 11 18 69.23 2463SB 247. ICP-3697-ISB 5 1 0 1 20.00 2483755-ISB 29 2 0 2 6.89 2492SB 29 8 0 8 27.58 2503SB 19 11 0 11 57.89 251. ICP-3756-ISB 19 11 0 11 57.89 251. ICP-3756-ISB 18 8 0 8 44.44 2533SB 18 9 0 9 50.00 2544SB 28 9 0 9 32.14 255. ICP-3761-ISB 38 8 0 8 21.05 2563781-ISB 21 3 0 3 14.28 2572SB 19 2 0 0 0 0 0.00 2592SB 25 0 0 0 0 0.00 2592SB 25 0 0 0 0 0.00 2603SB 16 3 0 3 18.75 2614SB 22 2 0 2 9.09 2625SB 27 1 0 1 3.70 263. ICP-3838-ISB 37 8 0 8 21.62 2643920-ISB 37 8 0 8 21.62 2643920-ISB 37 8 0 8 21.62 2643920-ISB 29 1 0 1 3.44							
239.					ŏ		
241. -2SØ 36 4 6 10 27.77 242. ICP-3694-ISØ 18 5 0 5 27.77 243. -2SØ 14 3 5 8 57.14 244. ICP-3696-ISØ 35 1 11 12 34.28 245. -2SØ 26 7 11 18 69.23 246. -3SØ - - - - - 247. ICP-3697-ISØ 5 1 0 1 20.00 248. -3755-ISØ 29 2 0 2 6.89 249. -2SØ 29 8 0 8 27.58 250. -3SØ 19 11 0 11 57.89 251. ICP-3756-ISØ 17 5 0 5 29.41 252. -2SØ 18 8 0 8 44.44 253. -3SØ 18 9 0 9 32.14 255. ICP-3761-ISØ			• •		ŏ		
241. -2SØ 36 4 6 10 27.77 242. ICP-3694-ISØ 18 5 0 5 27.77 243. -2SØ 14 3 5 8 57.14 244. ICP-3696-ISØ 35 1 11 12 34.28 245. -2SØ 26 7 11 18 69.23 246. -3SØ - - - - - 247. ICP-3697-ISØ 5 1 0 1 20.00 248. -3755-ISØ 29 2 0 2 6.89 249. -2SØ 29 8 0 8 27.58 250. -3SØ 19 11 0 11 57.89 251. ICP-3756-ISØ 17 5 0 5 29.41 252. -2SØ 18 8 0 8 44.44 253. -3SØ 18 9 0 9 32.14 255. ICP-3761-ISØ		ICP-3693-150		6	4		
242. ICP-3694-1S0 18 5 0 5 27.77 243. -250 14 3 5 8 57.14 244. ICP-3696-1S0 35 1 11 12 34.28 245. -2S0 26 7 11 18 69.23 246. -3S0 - - - - - - 247. ICP-3697-1S0 5 1 0 1 20.00 248. -3755-1S0 29 2 0 2 6.89 249. -2S0 29 8 0 8 27.58 250. -3S0 19 11 0 11 57.89 251. ICP-3756-1S0 17 5 0 5 29.41 252. -2S0 18 8 0 8 44.44 253. -3S0 18 9 0 9 50.00 254. -4S0 28 9 0 9 32.14 255. ICP-3					6		
243. -250 14 3 5 8 57.14 244. ICP-3696-150 35 1 11 12 34.28 245. -250 26 7 11 18 69.23 246. -350 - - - - - - 247. ICP-3697-150 5 1 0 1 20.00 248. -3755-150 29 2 0 2 6.89 249. -250 29 8 0 8 27.58 250. -350 19 11 0 11 57.89 251. ICP-3756-150 17 5 0 5 29.41 252. -250 18 8 0 8 44.44 253. -350 18 9 0 9 50.00 254. -450 28 9 0 9 32.14 255. ICP-3761-150 38 8 0 8 21.05 256. -3781				5			
244. ICP-3696-1S0 35 1 11 12 34.28 245. -2S0 26 7 11 18 69.23 246. -3S0 - - - - - 247. ICP-3697-1S0 5 1 0 1 20.00 248. -3755-1S0 29 2 0 2 6.89 249. -2S0 29 8 0 8 27.58 250. -3S0 19 11 0 11 57.89 251. ICP-3756-1S0 17 5 0 5 29.41 252. -2S0 18 8 0 8 44.44 253. -3S0 18 9 0 9 50.00 254. -4S0 28 9 0 9 32.14 255. ICP-3761-1S0 38 8 0 8 21.05 256. -3781-1S0 21 3 0 3 14.28 257. -2S0 <				3	Š	8	
245. -2S@ 26 7 11 18 69.23 246. -3S@ - - - - - - 247. ICP-3697-1S@ 5 1 0 1 20.00 248. -3755-1S@ 29 2 0 2 6.89 249. -2S@ 29 8 0 8 27.58 250. -3S@ 19 11 0 11 57.89 251. ICP-3756-1S@ 17 5 0 5 29.41 252. -2S@ 18 8 0 8 44.44 253. -3S@ 18 9 0 9 50.00 254. -4S@ 28 9 0 9 32.14 255. ICP-3761-1S@ 38 8 0 8 21.05 256. -3781-1S@ 21 3 0 3 14.28 257. -2S@ 19 2 0 2 10.52 258. ICP-3801-1							
246. -3S0 - </td <td></td> <td></td> <td>26</td> <td>ż</td> <td>ii</td> <td>18</td> <td></td>			26	ż	ii	18	
247. ICP-3697-1S@ 5 1 0 1 20.00 248. -3755-1S@ 29 2 0 2 6.89 249. -2S@ 29 8 0 8 27.58 250. -3S@ 19 11 0 11 57.89 251. ICP-3756-1S@ 17 5 0 5 29.41 252. -2S@ 18 8 0 8 44.44 253. -3S@ 18 9 0 9 50.00 254. -4S@ 28 9 0 9 32.14 255. ICP-3761-1S@ 38 8 0 8 21.05 256. -3781-1S@ 21 3 0 3 14.28 257. -2S@ 19 2 0 2 10.52 258. ICP-3801-1S@ 28 0 0 0 0 0 259. -2S@ 25 0 0 0 0 0 260.							-
248. -3755-1S@ 29 2 0 2 6.89 249. -2S@ 29 8 0 8 27.58 250. -3S@ 19 11 0 11 57.89 251. ICP-3756-1S@ 17 5 0 5 29.41 252. -2S@ 18 8 0 8 44.44 253. -3S@ 18 9 0 9 50.00 254. -4S@ 28 9 0 9 32.14 255. ICP-3761-1S@ 38 8 0 8 21.05 256. -3781-1S@ 21 3 0 3 14.28 257. -2S@ 19 2 0 2 10.52 258. ICP-3801-1S@ 28 0 0 0 0 0 259. -2S@ 25 0 0 0 0 0 0 260. -3S@ 16 3 0 3 18.75 0 0<							20 00
249. -250 29 8 0 8 27.58 250. -350 19 11 0 11 57.89 251. ICP-3756-150 17 5 0 5 29.41 252. -250 18 8 0 8 44.44 253. -350 18 9 0 9 50.00 254. -450 28 9 0 9 32.14 255. ICP-3761-150 38 8 0 8 21.05 256. -3781-150 21 3 0 3 14.28 257. -250 19 2 0 2 10.52 258. ICP-3801-150 28 0 0 0 0 0 259. -250 25 0 0 0 0 0 260. -350 16 3 0 3 18.75 261. -450 22 2 0 2 9.09 262. -5							
250. -3S@ 19 11 0 11 57.89 251. ICP-3756-1S@ 17 5 0 5 29.41 252. -2S@ 18 8 0 8 44.44 253. -3S@ 18 9 0 9 50.00 254. -4S@ 28 9 0 9 32.14 255. ICP-3761-1S@ 38 8 0 8 21.05 256. -3781-1S@ 21 3 0 3 14.28 257. -2S@ 19 2 0 2 10.52 258. ICP-3801-1S@ 28 0 0 0 0 0 259. -2S@ 25 0 0 0 0 0 260. -3S@ 16 3 0 3 18.75 261. -4S@ 22 2 0 2 9.09 262. -5S@ 27 1 0 1 3.70 263. ICP	249			8	Ŏ	8	27 58
251. ICP-3756-1S@ 17 5 0 5 29.41 252. -2S@ 18 8 0 8 44.44 253. -3S@ 18 9 0 9 50.00 254. -4S@ 28 9 0 9 32.14 255. ICP-3761-1S@ 38 8 0 8 21.05 256. -3781-1S@ 21 3 0 3 14.28 257. -2S@ 19 2 0 2 10.52 258. ICP-3801-1S@ 28 0 0 0 0.00 259. -2S@ 25 0 0 0 0.00 260. -3S@ 16 3 0 3 18.75 261. -4S@ 22 2 0 2 9.09 262. -5S@ 27 1 0 1 3.70 263. ICP-3838-1S@ 37 8 0 8 21.62 264. -3920-1S@							
252.							
253.							
254. -450 28 9 0 9 32.14 255. ICP-3761-150 38 8 0 8 21.05 256. -3781-150 21 3 0 3 14.28 257. -250 19 2 0 2 10.52 258. ICP-3801-150 28 0 0 0 0.00 259. -250 25 0 0 0 0.00 260. -350 16 3 0 3 18.75 261. -450 22 2 0 2 9.09 262. -550 27 1 0 1 3.70 263. ICP-3838-150 37 8 0 8 21.62 264. -3920-150 29 1 0 1 3.44							
255. ICP-3761-1SQ 38 8 0 8 21.05 256. -3781-1SQ 21 3 0 3 14.28 257. -2SQ 19 2 0 2 10.52 258. ICP-3801-1SQ 28 0 0 0 0.00 259. -2SQ 25 0 0 0 0.00 260. -3SQ 16 3 0 3 18.75 261. -4SQ 22 2 0 2 9.09 262. -5SQ 27 1 0 1 3.70 263. ICP-3838-1SQ 37 8 0 8 21.62 264. -3920-1SQ 29 1 0 1 3.44	254			9		9	
256. -3781-1SQ 21 3 0 3 14.28 257. -2SQ 19 2 0 2 10.52 258. ICP-3801-1SQ 28 0 0 0 0.00 259. -2SQ 25 0 0 0 0.00 260. -3SQ 16 3 0 3 18.75 261. -4SQ 22 2 0 2 9.09 262. -5SQ 27 1 0 1 3.70 263. ICP-3838-1SQ 37 8 0 8 21.62 264. -3920-1SQ 29 1 0 1 3.44	255			Ω		0	
257. -250 19 2 0 2 10.52 258. ICP-3801-150 28 0 0 0 0.00 259. -250 25 0 0 0 0.00 260. -350 16 3 0 3 18.75 261. -450 22 2 0 2 9.09 262. -550 27 1 0 1 3.70 263. ICP-3838-150 37 8 0 8 21.62 264. -3920-150 29 1 0 1 3.44	256						
259. -250 25 0 0 0.00 260. -350 16 3 0 3 18.75 261. -450 22 2 0 2 9.09 262. -550 27 1 0 1 3.70 263. ICP-3838-150 37 8 0 8 21.62 264. -3920-150 29 1 0 1 3.44				3 2	0	ა ე	
259. -250 25 0 0 0.00 260. -350 16 3 0 3 18.75 261. -450 22 2 0 2 9.09 262. -550 27 1 0 1 3.70 263. ICP-3838-150 37 8 0 8 21.62 264. -3920-150 29 1 0 1 3.44				Ú	0		
260. -3SQ 16 3 0 3 18.75 261. -4SQ 22 2 0 2 9.09 262. -5SQ 27 1 0 1 3.70 263. ICP-3838-1SQ 37 8 0 8 21.62 264. -3920-1SQ 29 1 0 1 3.44							
2614\$\text{0} 22 2 0 2 9.09 2625\$\text{0} 27 1 0 1 3.70 263. ICP-3838-1\$\text{0} 37 8 0 8 21.62 2643920-1\$\text{0} 29 1 0 1 3.44				3			
2625S@ 27 1 0 1 3.70 263. ICP-3838-1S@ 37 8 0 8 21.62 2643920-1S@ 29 1 0 1 3.44				2			
263. ICP-3838-1SQ 37 8 0 8 21.62 2643920-1SQ 29 1 0 1 3.44				ے 1	0	1	
264. - 3920-15 0 29 1 0 1 3.44	263				0		
		7030 JCD 701-3030-1310			0		

266 ICP-3923-1SØ 28 0 0 0 0.00 267 -2SØ 30 0 0 0 0.00 268 -3SØ 34 0 0 0 0.00 269 ICP-3979-1SØ 42 6 0 6 14.28 270. -2SØ 11 0 0 0 0.00 271 ICP-4125-1SØ 36 4 4 8 22.22 272. -2SØ 17 4 1 5 0.00 273 ICP-4126-1SØ 15 0 0 0 0.00 274 -4142-1SØ 26 7 4 11 42.30 0 0 0 0.00 276. -3SØ 21 0 0 0 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th>1_</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th>	1_	2	3	4	5	6	7
268.		ICP-3923-1S@		0		0	0 , 00
269. ICP-3979-1SQ 42 6 0 6 14.28 270. -2SQ 11 0 0 0.00 271. ICP-4125-ISQ 36 4 4 8 22.22 272. -2SQ 17 4 1 5 0.00 273. ICP-4126-ISQ 15 0 0 0 0.00 274. -4142-ISQ 26 7 4 11 42.30 275. -2SQ 43 0 0 0 0.00 276. -3SQ 21 0 0 0 0.00 277. -4SQ 31 0 0 0 0.00 278. -5SQ 46 1 0 1 2.17 279. -6SQ 48 0 0 0 0.00 280. ICP-4200-ISQ 9 1 0 1 11.11 11 11 11 11							
270.							
271. ICP-4125-1S0 36 4 4 8 22.22 272250 17 4 1 5 0.00 273. ICP-4126-1S0 15 0 0 0 0.00 2744142-1S0 26 7 4 11 42.30 2752S0 43 0 0 0 0 0.00 2763S0 21 0 0 0 0 0.00 2774S0 31 0 0 0 0 0.00 2785S0 46 1 0 0 1 2.17 2796S0 48 0 0 0 0 0 0.00 280. ICP-4200-1S0 9 1 0 1 11.11 2814290-1S0 22 0 0 0 0 0.00 2822S0 21 2 0 2 9.52 2833S0 21 0 0 0 0 0.00 284. ICP-4325-1S0 19 0 0 0 0.00 2852S0 21 0 0 0 0 0.00 286. ICP-4325-1S0 19 0 0 0 0 0.00 2874358-1S0 34 10 1 11 32.35 2882S0 32 5 7 38.88 2874358-1S0 34 10 1 11 32.35 2893S0 48 5 0 5 10.41 2904S0 32 3 1 4 12.50 2915S0 6 0 0 0 0 0.00 292. ICP-4375-1S0 37 6 0 6 6.21 2932S0 18 13 0 13 72.22 2943S0 25 10 0 10 0 0 0.00 2954S0 32 3 1 4 12.50 2915S0 6 0 0 0 0 0 0.00 2954S0 37 6 0 6 6.21 2932S0 18 13 0 13 72.22 2943S0 25 10 0 10 40.00 2954S0 38 6 0 6 16.21 2932S0 38 6 0 6 16.21 2932S0 38 6 0 6 16.21 2932S0 38 6 0 6 15.78 300. ICP-4396-1S0 38 7 0 7 18.42 2993S0 38 4 2 6 15.78 300. ICP-4396-1S0 31 2 0 2 6.45 3012S0 38 4 2 6 15.78 300. ICP-4396-1S0 31 2 0 2 6.45 3012S0 38 4 2 6 15.78 300. ICP-4331-S0 38 7 0 7 18.42 2993S0 38 4 2 6 15.78 300. ICP-4331-S0 38 9 1 10 26.31 3072S0 38 41 20 7 27 65.85 306. ICP-4533-1S0 38 9 1 10 26.31 3072S0 38 42 15 2 17 40.47				6			
272. -250 17 4 1 5 0.00 273. 1CP-4126-150 15 0 0 0 0.00 274. -4142-150 26 7 4 11 42.30 275. -250 43 0 0 0 0.00 276. -350 21 0 0 0 0.00 277. -450 31 0 0 0 0.00 278. -550 46 1 0 1 2.17 279. -650 48 0 0 0 0.00 280. ICP-4200-150 9 1 0 1 11.11 281. -4290-150 22 0 0 0 0.00 282. -250 21 2 0 2 9.52 283. -350 21 0 0 0 0.00 284. ICP-4325-150 <td< td=""><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td></td<>				1			
273. 1CP-4126-1SØ 15 0 0 0 0.00 274. -4142-1SØ 26 7 4 11 42.30 275. -2SØ 43 0 0 0 0.00 276. -3SØ 21 0 0 0 0.00 277. -4SØ 31 0 0 0 0.00 278. -5SØ 46 1 0 1 2.17 279. -6SØ 48 0 0 0 0.00 280. ICP-4200-1SØ 9 1 0 1 11.11 281. -4290-1SØ 22 0 0 0 0.00 282. -2SØ 21 2 0 2 9.52 283. -3SØ 21 0 0 0 0.00 284. ICP-4325-1SØ 19 0 0 0 0 0 285. -2SØ<							
274. -4142-1SØ 26 7 4 11 42,30 275. -2SØ 43 0 0 0 0.00 276. -3SØ 21 0 0 0 0.00 277. -4SØ 31 0 0 0 0.00 278. -5SØ 46 1 0 1 2.17 279. -6SØ 48 0 0 0 0.00 280. ICP-4200-1SØ 9 1 0 1 11.11 281. -4290-1SØ 22 0 0 0 0.00 282. -2SØ 21 2 0 2 9.52 283. -3SØ 21 0 0 0 0.00 284. ICP-4325-1SØ 19 0 0 0 0 0 286. ICP-4352-1SØ 18 2 5 7 38.88 287. -435				0	ò		
275.				7			
277.							0.00
278. -550 46 1 0 1 2.17 279. -650 48 0 0 0 0.00 280. ICP-4200-150 9 1 0 1 11.11 281. -4290-150 22 0 0 0 0.00 282. -250 21 2 0 2 9.52 283. -350 21 0 0 0 0.00 284. ICP-4325-150 19 0 0 0 0.00 285. -250 22 6 0 6 22.27 286 10 6 22.27 38.88 287. -4358-150 34 10 1 11 32.35 288. -250 38 0 0 0 0.00 289. -350 48 5 0 5 10.41 2.50 291. -550 6 0 0 0 0.00 0 <				0			
279. -650 48 0 0 0 0.00 280. ICP-4200-150 9 1 0 1 11.11 281. -4290-150 22 0 0 0 0.00 282. -250 21 2 0 2 9.52 283. -350 21 0 0 0 0.00 284. ICP-4325-150 19 0 0 0 0.00 285. -250 22 6 0 6 22.27 38.88 287. -4358-150 18 2 5 7 38.88 287. -4358-150 34 10 1 11 32.35 288. -250 38 0 0 0 0.00 289. -350 48 5 0 5 10.41 290. -450 32 3 1 4 12.50 291.							
280. ICP-4200-1S0 22 0 0 0 0 0.00 2814290-1S0 21 2 0 2 9.52 283350 21 0 0 0 0 0.00 284. ICP-4325-1S0 19 0 0 0 0 0.00 285250 22 6 0 6 22.27 286. ICP-4352-1S0 18 2 5 7 38.88 2874358-1S0 34 10 1 11 22.35 288250 38 0 0 0 0 0.00 289350 48 5 0 5 10.41 290450 32 3 1 4 12.50 291550 6 0 0 0 0 0.00 292. ICP-4367-1S0 37 6 0 6 16.21 293250 18 13 0 13 72.22 294350 25 10 0 10 40.00 295450 16 1 0 1 6.25 296. ICP-4375-1S0 21 6 8 14 66.66 2974380-1S0 38 7 0 7 18.42 299350 38 6 0 6 0 6 15.78 299350 38 6 0 6 0 6 15.78 299350 38 4 2 6 15.78 300. ICP-4396-1S0 31 2 0 2 6.45 301250 38 41 20 7 27 65.85 302350 5 0 0 0 0 0.00 303. ICP-4423-1S0 22 3 0 3 13.63 304250 36 17 2 19 52.77 305350 41 20 7 27 65.85 306. ICP-4533-1S0 38 9 1 10 26.31 307250 46 3 1 4 8.69 308350 42 15 2 17 40.47 309450 48 2 1 3 6.25		-5S Ø					
281.							
282	281	-4290-15 0	22	Ó	Ö		
284. ICP-4325-ISM 19 0 0 0 0 0.00 285				2			
285				0		0	
286. ICP-4352-1SQ 18 2 5 7 38.88 2874358-1SQ 34 10 1 11 32.35 2882SQ 38 0 0 0 0 0.00 2893SQ 48 5 0 5 10.41 2904SQ 32 3 1 4 12.50 2915SQ 6 0 0 0 0 0.00 292. ICP-4367-1SQ 37 6 0 6 0 6 16.21 2932SQ 18 13 0 13 72.22 2943SQ 25 10 0 10 40.00 2954SQ 16 1 0 0 10 40.00 2954SQ 16 1 0 0 1 6.25 296. ICP-4375-1SQ 21 6 8 14 66.66 2974380-1SQ 38 7 0 7 18.42 2982SQ 38 6 0 6 15.78 2993SQ 38 4 2 6 15.78 300. ICP-4396-1SQ 31 2 0 2 6.45 3012SQ 38 4 2 6 15.78 300. ICP-4396-1SQ 31 2 0 2 6.45 3012SQ 37 4 0 4 32.52 3023SQ 5 0 0 0 0 0 0.00 303. ICP-4423-1SQ 22 3 0 3 13.63 3042SQ 36 17 2 19 52.77 3053SQ 41 20 7 27 65.85 306. ICP-4533-1SQ 38 9 1 10 26.31 3072SQ 46 3 1 4 8.69 3083SQ 42 15 2 17 40.47 3094SQ 48 2 1 3 6.25				0			
287.				6	0		
288. -250 38 0 0 0 0.00 289. -350 48 5 0 5 10.41 290. -450 32 3 1 4 12.50 291. -550 6 0 0 0 0.00 292. ICP-4367-150 37 6 0 6 16.21 293. -250 18 13 0 13 72.22 294. -350 25 10 0 10 40.00 295. -450 16 1 0 1 6.25 296. ICP-4375-150 21 6 8 14 66.66 297. -4380-150 38 7 0 7 18.42 298. -250 38 6 0 6 15.78 299. -350 38 4 2 6 15.78 300. ICP-4396-150 31 2 0 2 6.45 301. -250 3							
2893SQ 48 5 0 5 10.41 2904SQ 32 3 1 4 12.50 2915SQ 6 0 0 0 0 0 0.00 292. ICP-4367-ISQ 37 6 0 6 16.21 2932SQ 18 13 0 13 72.22 2943SQ 25 10 0 10 40.00 2954SQ 16 1 0 1 6.25 296. ICP-4375-ISQ 21 6 8 14 66.66 2974380-ISQ 38 7 0 7 18.42 2982SQ 38 6 0 6 15.78 2993SQ 38 4 2 6 15.78 300. ICP-4396-ISQ 31 2 0 2 6.45 3012SQ 38 5 0 0 0 0 0.00 303. ICP-4423-ISQ 22 3 0 3 13.63 3042SQ 36 17 2 19 52.77 3053SQ 41 20 7 27 65.85 306. ICP-4533-ISQ 38 9 1 10 26.31 3072SQ 46 3 1 4 8.69 3083SQ 42 15 2 17 40.47 3094SQ 48 2 15 2 17 40.47							
290. -4SQ 32 3 1 4 12.50 291. -5SQ 6 0 0 0 0.00 292. ICP-4367-ISQ 37 6 0 6 16.21 293. -2SQ 18 13 0 13 72.22 294. -3SQ 25 10 0 10 40.00 295. -4SQ 16 1 0 1 6.25 296. ICP-4375-ISQ 21 6 8 14 66.66 297. -4380-ISQ 38 7 0 7 18.42 298. -2SQ 38 6 0 6 15.78 299. -3SQ 38 4 2 6 15.78 300. ICP-4396-ISQ 31 2 0 2 6.45 301. -2SQ 17 4 0 4 32.52 302. -3SQ 5 0 0 0 0 0 303. ICP-4423-ISQ <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td>				5			
291. -550 6 0 0 0 0.00 292. ICP-4367-150 37 6 0 6 16.21 293. -250 18 13 0 13 72.22 294. -350 25 10 0 10 40.00 295. -450 16 1 0 1 6.25 296. ICP-4375-150 21 6 8 14 66.66 297. -4380-150 38 7 0 7 18.42 298. -250 38 6 0 6 15.78 299. -350 38 4 2 6 15.78 300. ICP-4396-150 31 2 0 2 6.45 301. -250 17 4 0 4 32.52 302. -350 5 0 0 0 0 0 303. ICP-4423-150 22 3 0 3 13.63 304. -250 <td></td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td>				3			
292. ICP-4367-1SQ 37 6 0 6 16.21 293. -2SQ 18 13 0 13 72.22 294. -3SQ 25 10 0 10 40.00 295. -4SQ 16 1 0 1 6.25 296. ICP-4375-1SQ 21 6 8 14 66.66 297. -4380-1SQ 38 7 0 7 18.42 298. -2SQ 38 6 0 6 15.78 299. -3SQ 38 4 2 6 15.78 300. ICP-4396-1SQ 31 2 0 2 6.45 301. -2SQ 17 4 0 4 32.52 302. -3SQ 5 0 0 0 0.00 303. ICP-4423-1SQ 22 3 0 3 13.63 304. -2SQ 36 17 2 19 52.77 305. -3SQ <t< td=""><td></td><td></td><td></td><td>Ö</td><td></td><td>-</td><td></td></t<>				Ö		-	
294. -3SQ 25 10 0 10 40.00 295. -4SQ 16 1 0 1 6.25 296. ICP-4375-1SQ 21 6 8 14 66.66 297. -4380-1SQ 38 7 0 7 18.42 298. -2SQ 38 6 0 6 15.78 299. -3SQ 38 4 2 6 15.78 300. ICP-4396-1SQ 31 2 0 2 6.45 301. -2SQ 17 4 0 4 32.52 302. -3SQ 5 0 0 0 0.00 303. ICP-4423-1SQ 22 3 0 3 13.63 304. -2SQ 36 17 2 19 52.77 305. -3SQ 41 20 7 27 65.85 306. ICP-4533-1SQ 38 9 1 10 26.31 307. -2SQ <	292.	ICP-4367-1S@		6		6	
295. -450 16 1 0 1 6.25 296. ICP-4375-150 21 6 8 14 66.66 297. -4380-150 38 7 0 7 18.42 298. -250 38 6 0 6 15.78 299. -350 38 4 2 6 15.78 300. ICP-4396-150 31 2 0 2 6.45 301. -250 17 4 0 4 32.52 302. -350 5 0 0 0 0.00 303. ICP-4423-150 22 3 0 3 13.63 304. -250 36 17 2 19 52.77 305. -350 41 20 7 27 65.85 306. ICP-4533-150 38 9 1 10 26.31 307. -250 46 3 1 4 8.69 308. -350							
296. ICP-4375-1SØ 21 6 8 14 66.66 297. -4380-1SØ 38 7 0 7 18.42 298. -2SØ 38 6 0 6 15.78 299. -3SØ 38 4 2 6 15.78 300. ICP-4396-1SØ 31 2 0 2 6.45 301. -2SØ 17 4 0 4 32.52 302. -3SØ 5 0 0 0 0.00 303. ICP-4423-1SØ 22 3 0 3 13.63 304. -2SØ 36 17 2 19 52.77 305. -3SØ 41 20 7 27 65.85 306. ICP-4533-1SØ 38 9 1 10 26.31 307. -2SØ 46 3 1 4 8.69 308. -3SØ 42 15 2 17 40.47 309. -4SØ <							
297 -4380-150 38 7 0 7 18.42 298 -250 38 6 0 6 15.78 299 -350 38 4 2 6 15.78 300 ICP-4396-150 31 2 0 2 6.45 301 -250 17 4 0 4 32.52 302 -350 5 0 0 0 0.00 303 ICP-4423-150 22 3 0 3 13.63 304 -250 36 17 2 19 52.77 305 -350 41 20 7 27 65.85 306 ICP-4533-150 38 9 1 10 26.31 307 -250 46 3 1 4 8.69 308 -350 42 15 2 17 40.47 309 -450 48 2 1 3 6.25							
298. -2SQ 38 6 0 6 15.78 299. -3SQ 38 4 2 6 15.78 300. ICP-4396-1SQ 31 2 0 2 6.45 301. -2SQ 17 4 0 4 32.52 302. -3SQ 5 0 0 0 0.00 303. ICP-4423-1SQ 22 3 0 3 13.63 304. -2SQ 36 17 2 19 52.77 305. -3SQ 41 20 7 27 65.85 306. ICP-4533-1SQ 38 9 1 10 26.31 307. -2SQ 46 3 1 4 8.69 308. -3SQ 42 15 2 17 40.47 309. -4SQ 48 2 1 3 6.25				ნ 7			
299. -3SQ 38 4 2 6 15.78 300. ICP-4396-1SQ 31 2 0 2 6.45 301. -2SQ 17 4 0 4 32.52 302. -3SQ 5 0 0 0 0.00 303. ICP-4423-1SQ 22 3 0 3 13.63 304. -2SQ 36 17 2 19 52.77 305. -3SQ 41 20 7 27 65.85 306. ICP-4533-1SQ 38 9 1 10 26.31 307. -2SQ 46 3 1 4 8.69 308. -3SQ 42 15 2 17 40.47 309. -4SQ 48 2 1 3 6.25				6			
300. ICP-4396-1S0 31 2 0 2 6.45 3012S0 17 4 0 4 32.52 3023S0 5 0 0 0 0 0.00 303. ICP-4423-1S0 22 3 0 3 13.63 3042S0 36 17 2 19 52.77 3053S0 41 20 7 27 65.85 306. ICP-4533-1S0 38 9 1 10 26.31 3072S0 46 3 1 4 8.69 3083S0 42 15 2 17 40.47 3094S0 48 2 1 3 6.25				4	2	6	
302 -3SQ 5 0 0 0 0.00 303 ICP-4423-1SQ 22 3 0 3 13.63 304 -2SQ 36 17 2 19 52.77 305 -3SQ 41 20 7 27 65.85 306 ICP-4533-1SQ 38 9 1 10 26.31 307 -2SQ 46 3 1 4 8.69 308 -3SQ 42 15 2 17 40.47 309 -4SQ 48 2 1 3 6.25				ż	ō		
302 -3SQ 5 0 0 0 0.00 303 ICP-4423-1SQ 22 3 0 3 13.63 304 -2SQ 36 17 2 19 52.77 305 -3SQ 41 20 7 27 65.85 306 ICP-4533-1SQ 38 9 1 10 26.31 307 -2SQ 46 3 1 4 8.69 308 -3SQ 42 15 2 17 40.47 309 -4SQ 48 2 1 3 6.25				4		4	
304. -2SQ 36 17 2 19 52.77 305. -3SQ 41 20 7 27 65.85 306. ICP-4533-1SQ 38 9 1 10 26.31 307. -2SQ 46 3 1 4 8.69 308. -3SQ 42 15 2 17 40.47 309. -4SQ 48 2 1 3 6.25				0			
306. ICP-4533-1SQ 38 9 1 10 26.31 3072SQ 46 3 1 4 8.69 3083SQ 42 15 2 17 40.47 3094SQ 48 2 1 3 6.25					Ō		
306. ICP-4533-1SQ 38 9 1 10 26.31 3072SQ 46 3 1 4 8.69 3083SQ 42 15 2 17 40.47 3094SQ 48 2 1 3 6.25					2		
307. -2SQ 46 3 1 4 8.69 308. -3SQ 42 15 2 17 40.47 309. -4SQ 48 2 1 3 6.25					/		
3083SQ 42 15 2 17 40.47 3094SQ 48 2 1 3 6.25 3105SQ 28 7 2 9 32 14				3			
3094SM 48 2 1 3 6.25 3105SM 28 7 2 9 32 14				15			
310 -550 28 7 2 9 32 14				2	ຳ		
	310.	-5S ®	28	7	ż	ğ	32,14

<u></u>	2	3	4	5	6	7
311.	ICP-4602-15@	2	0	0	0	0.00
312.	-4654-1S @	31	7	3	10	32.25
313.	-4668-1S@	41	10	0	10	24.39
314.	-2S @	3	0	0	0	0.00
315.	-3S Q	12	0	0	0	0.00
316.	-4S0	6	0	0	0	0.00
317.	ICP-4678-1S₩	50 45	7	0 7	7	14.00
318. 319.	-25 0 -35 0	45 44	6 6	1	13 7	28.88 15.90
320.	ICP-4701-1S0	17	7	Ö	7	41.17
321.	-4725-1SØ	- 17	-	-	_	41.17
322.	-4726-15 8	15	3	0	3	20.00
323.	-250	15	3	ŏ	3	20.00
324.	ICP-4727-150	3	Ö	ŏ	Ö	0.00
325.	-2S Q	7	Ö	Ŏ	Ō	0.00
326.	-3S Q	l	0	0	0	0.00
327.	- 4S Ø	1	0	0	0	0.00
328.	- 5S @	33	3	2	5	15.15
329.	ICP-4777-1S@	13	13	0	13	100.00
330.	- 4782-15 0	44	0	0	0	0.00
331.	-2S 0	14	1	0	1	7.14
332.	ICP-4783-150	41	6	0	6	14.63
333.	-2S ®	45	12	3	15	33.33
334. 335.	-3S @ -4S @	1 33	0 12	0 4	0 16	0.00
33 6.	-43⊌ -5S 2	33 40	10	0	10	48.48 25.00
337.	-6S 0	6	0	0	0	0.00
338.	ICP-4796-1SØ	42	15	3	18	42.85
339.	-2S Q	19	10	Õ	10	52.63
340.	-3S Q	34	6	ŏ	6	17.64
341.	ICP-4796-4S0	24	7	0	i	4.16
342.	-5S Ø	40	16	7	23	57.50
343.	ICP-4856-1S@	31	11	0	11	35.48
344.	-2S Ø	43	3	2	5	11.62
345.	ICP-4919-1S@	48	7	0	7	14.58
346.	-2S Q	36	12	0	12	33.33
347.	ICP-4929-1SØ	3	2	0	2	66.66
348.	-5001 - 15 0	29	10	0	10	34.48
3 49. 3 50.	-5020 - 15 0	21	1 3	5 4	6	28.57
35U. 351.	-5125-1S @	42 59	ა 2	4 6	7 8	16.66 13.55
352.	-25 0 -35 0	62	2 1	11	2	3.22
353.	-33 b -45 0	49	2	9	11	22.44
354.	-5S Ø	26	0	7	7	26.92
355.	-65 9	55	ĭ	5	6	10.90
	-00	33	`			contd.
						C31100.

1	2	3	4	5	6	7
356	ICP-5174-1S@	17	0	9	9	52.94
357。 358。	-25 0 ICP-5175-15 0	41	- 3	- 9	12	29.26
359.	-2SQ	41			12	29.20
360	1CP-5213-1S 0	31	- 5 - 9 2 4	20	25	80.64
361.	-5312-1S ®	-	-		-	-
362.	-5435-1SØ	41	9	21	30	73.17
363.	-5476-1S @	38	2	4	6	15.78
364	-2SØ	48		0	4	8.33
365.	-5529 - 15 0	42	11	8	19	45 .23
366	-2S Q	-	8	-	-	-
367. 368.	-5542-15 0 -5641-65 0	18 26	8	0 0	8 2	44.44 7.69
369.	-5041-03 g -7S g	46	2 5	3	8	17.39
370.	-5838- }\$ Ø	26	12	0	12	46.15
371	-250	30	14	Ö	14	46.66
372.	-3S Ø	ì	Ö	Ŏ	Ö	0,00
373.	-4S Ø	56	24	0	24	42.85
374.	-55₽	31	11	3	14	45.16
375.	-5916-1S ®	46	20	4	24	52.17
376.	-5970-1S @	53	8	2	10	18.86
377.	-2S Q	42	17	7	24	57.14
378 379	-5551-1S 0 -2S 0	2 4	0 0	0 0	0 0	0.00 0.00
380.	-23 b -5622-15 0	55	13	0	13	23.63
381.	-5629-1SØ	36	0	22	22	61.11
382.	-5641 - 15 0	33	7	0	7	21.21
3 83.	-250	13		Ō	4	30.76
384.	-3S Ø	22	4 5 2 2 4	0	5	22.72
385.	-4 S₽	4	2	0	2	5 0,00
386.	-5SØ	47	2	0	2	4.25
387.	-6S 0	21		0	4	19.04
388. 389.	-5970-3S 0	41 13	17 1	3 1	20	48.78 15.38
390.	-450 -550	43	9	0	2 9	20, 93
391.	-6S 0	17	. 3	0	3	17.64
392.	-7SØ	18	Ö	ŏ	Ö	0.00
393	-85 0	20	Ö	Ŏ	Ŏ	0.00
394.	-6088-1SØ	11	Ō	Ö	Ō	0.00
395.	-2SØ	20	0	0	0	0.00
396.	-3S Ø	37	2	0	2	5.40
397.	-4SØ	19	0	0	0	0.00
398.	-6102-1S 0	41	18	7	25	60.97
399.	-2SØ	30 45	12 6	6 3	18 9	60,00
400.	-6128 - 15 0	45	Ö	3	9	20.00 contd.
						Conta

401. ICP-6228-IS0 52 0 0 44 84.61 402250 28 0 14 14 50.00 403350 37 0 19 19 51.35 404450 55 0 22 22 40.00 405. ICP-6088-250 4 0 0 0 0 0.00 4066344-IS0 1 0 0 0 0 0.00 407250 2 0 0 0 0 0 0.00 408350 1 0 0 0 0 0.00 409450 1 0 0 0 0 0 0.00 410550 3 0 0 0 0 0 0.00 411650 18 0 0 0 0 0 0.00 412750 43 4 17 21 48.83 413850 29 0 0 0 0 0 0.00 414950 35 1 0 1 2.85 415. ICP-6367-IS0 46 0 35 35 76.08 4166369-IS0 42 3 20 23 54.76 417250 28 1 0 1 2.85 419. ICP-6394-IS0 61 6 1 7 11.47 4206410-IS0 28 5 1 6 21.42 421250 34 0 0 0 0 0 0.00 422. ICP-6427-IS0 33 10 4 14 42.42 423250 34 0 0 0 0 0 0.00 424. ICP-6431-IS0 27 5 0 5 18.51 425250 1 0 0 0 0 0.00 426. ICP-647-IS0 34 3 11 14 41.17 427250 38 0 0 0 0 0 0 0.00 428350 32 3 10 4 14 42.42 429250 34 0 0 0 0 0 0.00 420640-IS0 37 0 17 0 7 85.00 421250 38 0 0 0 0 0 0.00 422. ICP-647-IS0 34 3 11 14 41.17 427250 38 0 0 0 0 0 0.00 428350 37 0 1 7 0 7 85.00 429. ICP-6637-IS0 37 0 1 7 2.70 431250 38 0 0 0 0 0 0.00 428350 37 0 1 7 0 7 85.00 429. ICP-6637-IS0 37 0 1 7 2.70 431250 38 0 0 0 0 0 0.00 432350 37 0 1 7 2.70 433250 19 1 10 11 57.89 435350 37 0 0 0 0 0.00 434350 38 28 3 2 5 17.85 435350 37 0 0 0 0 0.00 434350 38 3 0 0 0 0 0 0 0.00 434350 38 3 0 0 0 0 0 0 0.00 435450 17 0 0 0 0 0 0.00 436550 3 0 0 0 0 0 0.00 4376640-IS0 37 0 0 0 0 0 0.00 438350 38 0 0 0 0 0 0 0.00 439850 3 0 0 0 0 0 0 0.00 440. ICP-6683-IS0 44 4 12 16 36.36 436550 3 0 0 0 0 0 0.00 442350 44 4 12 16 36.36 441250 8 8 0 0 0 0 0 0 0.00 442350 44 4 12 16 36.36 441250 8 8 0 0 0 0 0 0 0.00 442350 26 0 0 0 0 0 0.00 444. ICP-671-IS050 20 0 9 9 455.00	-	2	3	4	5	6	7
402258	401.	ICP-6228-150			0	44	
404.							
405. ICP-6088-2SØ 4 0 0 0 0.00 406. -6344-1SØ 1 0 0 0 0.00 407. -2SØ 2 0 0 0 0.00 408. -3SØ 1 0 0 0 0.00 409. -4SØ 1 0 0 0 0.00 411. -6SØ 18 0 0 0 0.00 412. -7SØ 43 4 17 21 48.83 413. -8SØ 29 0 0 0 0.00 414. -9SØ 35 1 0 1 2.85 415. ICP-6367-1SØ 46 0 35 35 76.08 417. -2SØ 28 1 0 1 3.57 418. -3SØ 32 3 4 7 21.87 419. ICP-6394-1SØ 28 </td <td></td> <td></td> <td></td> <td></td> <td>19</td> <td></td> <td></td>					19		
\$\frac{406}{0}\$, \$ \text{-6344-1S8}{0}\$							
407. -258 2 0 0 0.00 408. -358 1 0 0 0.00 409. -458 1 0 0 0.00 410. -558 3 0 0 0 0.00 411. -658 18 0 0 0 0.00 412. -758 43 4 17 21 48.83 413. -858 29 0 0 0 0.00 414. -958 35 1 0 1 2.85 415. ICP-6367-IS8 46 0 35 35 76.08 416. -6369-IS8 42 3 20 23 56.76 417. -258 28 1 0 1 3.57 418. -358 32 3 4 7 21.87 419. ICP-639-IS8 61 6 1 7							
408.							
1							
410.						_	
411. -6SØ 18 0 0 0 0.00 412. -7SØ 43 4 17 21 48.83 413. -8SØ 29 0 0 0 0.00 414. -9SØ 35 1 0 1 2.85 415. ICP-6367-1SØ 46 0 35 35 76.08 416. -6369-1SØ 42 3 20 23 54.76 417. -2SØ 28 1 0 1 3.57 418. -3SØ 32 3 4 7 21.87 419. ICP-6394-1SØ 61 6 1 7 11.47 420. -6410-1SØ 28 5 1 6 21.42 421. -2SØ 34 0 0 0 0.00 422. ICP-6427-1SØ 33 10 4 14 42.42 423. -2SØ 20 17 0 17 85.00 424. ICP-6431-1SØ							
412. -750 43 4 17 21 48.83 413. -850 29 0 0 0 0.00 414. -950 35 1 0 1 2.85 415. ICP-6367-IS0 46 0 35 35 76.08 416. -6369-IS0 42 3 20 23 54.76 417. -250 28 1 0 1 3.57 418. -350 32 3 4 7 21.87 419. ICP-6394-IS0 61 6 1 7 11.47 420. -6410-IS0 28 5 1 6 21.42 421. -250 34 0 0 0 0.00 422. ICP-6427-IS0 33 10 4 14 42.42 423. -250 1 0 0 0 0.00 424. ICP-6431-							
413. -850 29 0 0 0.00 414. -950 35 1 0 1 2.85 415. ICP-6367-IS0 46 0 35 35 76.08 416. -6369-IS0 42 3 20 23 54.76 417. -250 28 1 0 1 3.57 418. -350 32 3 4 7 21.87 419. ICP-6394-IS0 61 6 1 7 11.47 420. -6410-IS0 28 5 1 6 21.42 421. -250 34 0 0 0 0.00 422. ICP-6427-IS0 33 10 4 14 42.42 423. -250 20 17 0 17 85.00 424. ICP-6447-IS0 34 3 11 14 41.17 425. -250						-	
414. -9SØ 35 1 0 1 2.85 415. ICP-6367-ISØ 46 0 35 35 76.08 416. -6369-ISØ 42 3 20 23 54.76 417. -2SØ 28 1 0 1 3.57 418. -3SØ 32 3 4 7 21.87 419. ICP-6394-ISØ 61 6 1 7 11.47 420. -6410-ISØ 28 5 1 6 21.42 421. -2SØ 34 0 0 0 0.00 422. ICP-6427-ISØ 33 10 4 14 42.42 423. -2SØ 20 17 0 17 85.00 424. ICP-6431-ISØ 27 5 0 5 18.51 425. -2SØ 1 0 0 0 0.00 426.				4			
415. ICP-6367-IS@ 46 0 35 35 76.08 4166369-IS@ 42 3 20 23 54.76 4172S@ 28 1 0 1 3.57 4183S@ 32 3 4 7 21.87 419. ICP-6394-IS@ 61 6 1 7 11.47 4206410-IS@ 28 5 1 6 21.42 4212S@ 34 0 0 0 0 0.00 422. ICP-6427-IS@ 33 10 4 14 42.42 4232S@ 20 17 0 17 85.00 424. ICP-6431-IS@ 27 5 0 5 18.51 4252S@ 1 0 0 0 0 0.00 426. ICP-6447-IS@ 34 3 11 14 41.17 4272S@ 38 0 0 0 0 0.00 4283S@							
416.				ı			
417.				0			
418. -350 32 3 4 7 21.87 419. ICP-6394-150 61 6 1 7 11.47 420. -6410-150 28 5 1 6 21.42 421. -250 34 0 0 0 0.00 422. ICP-6427-150 33 10 4 14 42.42 423. -250 20 17 0 17 85.00 424. ICP-6431-150 27 5 0 5 18.51 425. -250 1 0 0 0 0.00 426. ICP-6447-150 34 3 11 14 41.17 427. -250 38 0 0 0 0.00 428. -350 - - - - - - 429. ICP-6970-150 42 1 2 3 7.14 430. -6640-150 37 0 1 1 2.70 431.				3 1			
420. -6410-1S0 28 5 1 6 21.42 421. -2S0 34 0 0 0 0.00 422. ICP-6427-1S0 33 10 4 14 42.42 423. -2S0 20 17 0 17 85.00 424. ICP-6431-IS0 27 5 0 5 18.51 425. -2S0 1 0 0 0 0 0.00 426. ICP-6447-IS0 34 3 11 14 41.17 427. -2S0 38 0 0 0 0.00 428. -3S0 - - - - - 429. ICP-6970-IS0 42 1 2 3 7.14 430. -6640-IS0 37 0 1 1 2.70 431. -2S0 19 1 10 11 57.89 432. ICP-6667-IS0 10 0 0 0 0 0 4				3			
420. -6410-1S0 28 5 1 6 21.42 421. -2S0 34 0 0 0 0.00 422. ICP-6427-1S0 33 10 4 14 42.42 423. -2S0 20 17 0 17 85.00 424. ICP-6431-IS0 27 5 0 5 18.51 425. -2S0 1 0 0 0 0 0.00 426. ICP-6447-IS0 34 3 11 14 41.17 427. -2S0 38 0 0 0 0.00 428. -3S0 - - - - - 429. ICP-6970-IS0 42 1 2 3 7.14 430. -6640-IS0 37 0 1 1 2.70 431. -2S0 19 1 10 11 57.89 432. ICP-6667-IS0 10 0 0 0 0 0 4				6			
421. -2SØ 34 0 0 0.00 422. ICP-6427-ISØ 33 10 4 14 42.42 423. -2SØ 20 17 0 17 85.00 424. ICP-6431-ISØ 27 5 0 5 18.51 425. -2SØ 1 0 0 0.00 426. ICP-6447-ISØ 34 3 11 14 41.17 427. -2SØ 38 0 0 0 0.00 428. -3SØ - - - - - 429. ICP-6970-ISØ 42 1 2 3 7.14 430. -6640-ISØ 37 0 1 1 2.70 431. -2SØ 19 1 10 11 57.89 432. ICP-6667-ISØ 10 0 0 0 0 433. -2SØ 11 0 0 0 0 434. -3SØ 28 3 2 </td <td></td> <td></td> <td></td> <td>5</td> <td></td> <td></td> <td></td>				5			
422. ICP-6427-ISØ 33 10 4 14 42.42 423. -2SØ 20 17 0 17 85.00 424. ICP-6431-ISØ 27 5 0 5 18.51 425. -2SØ 1 0 0 0 0.00 426. ICP-6447-ISØ 34 3 11 14 41.17 427. -2SØ 38 0 0 0 0.00 428. -3SØ - - - - - 429. ICP-6970-ISØ 42 1 2 3 7.14 430. -6640-ISØ 37 0 1 1 2.70 431. -2SØ 19 1 10 11 57.89 432. ICP-6667-ISØ 10 0 0 0 0.00 433. -2SØ 11 0 0 0 0 0 434.				Õ			
423. -250 20 17 0 17 85.00 424. ICP-6431-1S0 27 5 0 5 18.51 425. -250 1 0 0 0 0.00 426. ICP-6447-1S0 34 3 11 14 41.17 427. -250 38 0 0 0 0.00 428. -350 -							
424. ICP-6431-1S0 27 5 0 5 18.51 425. -2S0 1 0 0 0.00 426. ICP-6447-1S0 34 3 11 14 41.17 427. -2S0 38 0 0 0 0.00 428. -3S0 - - - - - - 429. ICP-6970-1S0 42 1 2 3 7.14 430. -6640-1S0 37 0 1 1 2.70 431. -2S0 19 1 10 11 57.89 432. ICP-6667-1S0 10 0 0 0 0.00 433. -2S0 11 0 0 0 0.00 434. -3S0 28 3 2 5 17.85 435. -4S0 16 7 0 7 43.75 436. -5S0 3 0 0 0 0.00 437. -6S0 7							85.00
425. -250 1 0 0 0.00 426. ICP-6447-IS0 34 3 11 14 41.17 427. -250 38 0 0 0 0.00 428. -350 - - - - - - 429. ICP-6970-IS0 42 1 2 3 7.14 430. -6640-IS0 37 0 1 1 2.70 431. -250 19 1 10 11 57.89 432. ICP-6667-IS0 10 0 0 0 0.00 433. -250 11 0 0 0 0.00 434. -350 28 3 2 5 17.85 435. -450 16 7 0 7 43.75 436. -550 3 0 0 0 0.00 437. -650 7 0 0 0 0.00 438. -750 28 3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
427. -2SØ 38 0 0 0.00 428. -3SØ - - - - - 429. ICP-6970-ISØ 42 1 2 3 7.14 430. -6640-ISØ 37 0 1 1 2.70 431. -2SØ 19 1 10 11 57.89 432. ICP-6667-ISØ 10 0 0 0 0.00 433. -2SØ 11 0 0 0 0.00 434. -3SØ 28 3 2 5 17.85 435. -4SØ 16 7 0 7 43.75 436. -5SØ 3 0 0 0 0.00 437. -6SØ 7 0 0 0 0.00 438. -7SØ 28 3 4 7 25.00 439. -8SØ 3 0 0 0 0.00 440. ICP-6683-ISØ 44 4 12 <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>0</td> <td></td>				0		0	
428. -3S® - </td <td></td> <td>ICP-6447-1S@</td> <td></td> <td></td> <td></td> <td></td> <td></td>		ICP-6447-1S@					
429. ICP-6970-1S@ 42 1 2 3 7.14 430. -6640-1S@ 37 0 1 1 2.70 431. -2S@ 19 1 10 11 57.89 432. ICP-6667-1S@ 10 0 0 0 0.00 433. -2S@ 11 0 0 0 0.00 434. -3S@ 28 3 2 5 17.85 435. -4S@ 16 7 0 7 43.75 436. -5S@ 3 0 0 0 0.00 437. -6S@ 7 0 0 0 0.00 438. -7S@ 28 3 4 7 25.00 439. -8S@ 3 0 0 0 0.00 440. ICP-6683-1S@ 44 4 12 16 36.36 441. -2S@ 8 0 0 0 0 0 442. -3S@ 9 </td <td></td> <td></td> <td>38</td> <td>0</td> <td>0</td> <td>0</td> <td>0.00</td>			38	0	0	0	0.00
430. -6640-150 37 0 1 1 2.70 431. -250 19 1 10 11 57.89 432. ICP-6667-150 10 0 0 0 0.00 433. -250 11 0 0 0 0.00 434. -350 28 3 2 5 17.85 435. -450 16 7 0 7 43.75 436. -550 3 0 0 0 0.00 437. -650 7 0 0 0 0.00 438. -750 28 3 4 7 25.00 439. -850 3 0 0 0 0.00 440. ICP-6683-150 44 4 12 16 36.36 441. -250 8 0 0 0 0.00 442. -350 9 0 0 0 0.00 443. -450 26 0							
431. -250 19 1 10 11 57.89 432. ICP-6667-150 10 0 0 0 0.00 433. -250 11 0 0 0 0.00 434. -350 28 3 2 5 17.85 435. -450 16 7 0 7 43.75 436. -550 3 0 0 0 0.00 437. -650 7 0 0 0 0.00 438. -750 28 3 4 7 25.00 439. -850 3 0 0 0 0.00 440. ICP-6683-150 44 4 12 16 36.36 441. -250 8 0 0 0 0.00 442. -350 9 0 0 0 0.00 443. -450 26 0 0 0 0.00 444. ICP-6771-150 - -							
432. ICP-6667-ISM 10 0 0 0 0.00 433. -2SM 11 0 0 0 0.00 434. -3SM 28 3 2 5 17.85 435. -4SM 16 7 0 7 43.75 436. -5SM 3 0 0 0 0.00 437. -6SM 7 0 0 0 0.00 438. -7SM 28 3 4 7 25.00 439. -8SM 3 0 0 0 0.00 440. ICP-6683-ISM 44 4 12 16 36.36 441. -2SM 8 0 0 0 0.00 442. -3SM 9 0 0 0 0.00 443. -4SM 26 0 0 0 0.00 444. ICP-6771-ISM - - - - - 445. -2SM 20 0							
433. -250 11 0 0 0 0.00 434. -350 28 3 2 5 17.85 435. -450 16 7 0 7 43.75 436. -550 3 0 0 0 0.00 437. -650 7 0 0 0 0.00 438. -750 28 3 4 7 25.00 439. -850 3 0 0 0 0.00 440. ICP-6683-150 44 4 12 16 36.36 441. -250 8 0 0 0 0.00 442. -350 9 0 0 0 0.00 443. -450 26 0 0 0 0.00 444. ICP-6771-150 - - - - - 445. -250 20 0 9 9 45.00	431.			I			
434. -350 28 3 2 5 17.85 435. -450 16 7 0 7 43.75 436. -550 3 0 0 0 0.00 437. -650 7 0 0 0 0.00 438. -750 28 3 4 7 25.00 439. -850 3 0 0 0 0.00 440. ICP-6683-150 44 4 12 16 36.36 441. -250 8 0 0 0 0.00 442. -350 9 0 0 0 0.00 443. -450 26 0 0 0 0.00 444. ICP-6771-150 - - - - - 445. -250 20 0 9 9 45.00							
436. -5SØ 3 0 0 0 0.00 437. -6SØ 7 0 0 0 0.00 438. -7SØ 28 3 4 7 25.00 439. -8SØ 3 0 0 0 0.00 440. ICP-6683-1SØ 44 4 12 16 36.36 441. -2SØ 8 0 0 0 0.00 442. -3SØ 9 0 0 0 0.00 443. -4SØ 26 0 0 0 0.00 444. ICP-6771-1SØ - - - - - 445. -2SØ 20 0 9 9 45.00				Ü	0		
436. -5SØ 3 0 0 0 0.00 437. -6SØ 7 0 0 0 0.00 438. -7SØ 28 3 4 7 25.00 439. -8SØ 3 0 0 0 0.00 440. ICP-6683-1SØ 44 4 12 16 36.36 441. -2SØ 8 0 0 0 0.00 442. -3SØ 9 0 0 0 0.00 443. -4SØ 26 0 0 0 0.00 444. ICP-6771-1SØ - - - - - 445. -2SØ 20 0 9 9 45.00				3			
437. -6SØ 7 0 0 0.00 438. -7SØ 28 3 4 7 25.00 439. -8SØ 3 0 0 0 0.00 440. ICP-6683-1SØ 44 4 12 16 36.36 441. -2SØ 8 0 0 0 0.00 442. -3SØ 9 0 0 0 0.00 443. -4SØ 26 0 0 0 0.00 444. ICP-6771-1SØ - - - - - 445. -2SØ 20 0 9 9 45.00				,			
438. -750 28 3 4 7 25.00 439. -850 3 0 0 0 0.00 440. ICP-6683-150 44 4 12 16 36.36 441. -250 8 0 0 0 0.00 442. -350 9 0 0 0 0.00 443. -450 26 0 0 0 0.00 444. ICP-6771-150 - - - - - 445. -250 20 0 9 9 45.00				0			
439. -850 3 0 0 0 0.00 440. ICP-6683-150 44 4 12 16 36.36 441. -250 8 0 0 0 0.00 442. -350 9 0 0 0 0.00 443. -450 26 0 0 0 0.00 444. ICP-6771-150 - - - - - 445. -250 20 0 9 9 45.00				3			
440. ICP-6683-1SØ 44 4 12 16 36.36 441. -2SØ 8 0 0 0 0.00 442. -3SØ 9 0 0 0 0.00 443. -4SØ 26 0 0 0 0.00 444. ICP-6771-1SØ - - - - 445. -2SØ 20 0 9 9 45.00				0			
441. -250 8 0 0 0.00 442. -350 9 0 0 0 0.00 443. -450 26 0 0 0 0.00 444. ICP-6771-150 - - - - - 445. -250 20 0 9 9 45.00				4	12		
4423SØ 9 0 0 0 0.00 4434SØ 26 0 0 0 0.00 444. ICP-6771-1SØ			• •				
443450 26 0 0 0 0.00 444. ICP-6771-150						_	
444. ICP-6771-1SQ 4452SQ 20 0 9 9 45.00	443			ñ			
4452S@ 20 0 9 9 45.00			-		_	-	-
			20		9	9	
contd.							contd.

	2	3	4	5	6	7
446	ICP-6771-3S@	5	0	2	2	40.00
447.	-4S @	21	0	11	11	52 , 38
448	ICP-6900-1S@	7	2	2	4	57.14
449.	-7217 - 15 0	6	0	0	0	0.00
450.	-250	1	0	0	0	0.00
451.	ICP-7226-1S0	28	4	6	10	35.71
452.	-2S Q	25	7	8	15	60.00
453.	-3S 9	24	5 1	5	10	41.66
454.	ICP-7227-1SØ	21 39	4	4	5 4	28.80
455。 456。	-250 -350	39 16	1	0	4 1	10.25 6.25
457	-33 b -45 0	21	3	5	8	38.09
458	ICP-7227-550	10	2	2	4	40.00
459	•7228-1S Q	29	0	0	0	0.00
460.	-7236-15 0	9	Ö	Õ	ŏ	0.00
461.	-250	_	_	-	_	-
462.	-350	16	0	0	0	0.00
463.	-4S Q	6	Ö	Ŏ	Ŏ	0.00
464.	-5S Ø	5	0	0	0	0.00
465.	-6S ₽	4	0	0	0	0,00
466.	-7SØ	12	0	0	0	0.00
467 .	-85₽	3	0	0	0	0.00
46 8	-950	-	-	-	-	-
469.	ICP-7236-10S@	11	0	0	0	000
470.	-7257-1SØ	2	0	0	0	0.00
471.	-250	10	4	0	4	40.00
472.	ICP-7260-1S@	5	2	0	2	40.00
473. 474.	-250 ICP-7261-150	0 24	0 0	0 0	0 0	0.00
474.	-2SQ	1	0	0	0	0.00 0.00
475.	ICP-7265-1SØ	2	0	Ö	0	0.00
470. 477.	-2SØ	-	-	-	-	0.00
478.	-3SØ	10	0	0	0	000
479.	ICP-7267-1S0	42	ĭ	ŏ	ĭ	2.38
480.	-7281-15 0	53	i	Ŏ	i	1.88
481.	-250	16	1	0	1	6.25
482	-350	42	0	Ö	0	0.00
483。	-4SØ	27	0	0	0	0.00
484.	- 5S ₽	43	0	0	0	0.00
485.	-6S Ø	34	0	1	1	2.94
486 .	ICP-7621-150	19	Ō]	1	5.26
487.	-2S 0	5 3	1	3	4	7 . 54
488	-3S 0	14	.0	1]	7.14
489	-4SØ	37	12	0	12	32.43
490.	ICP-7667-158	10	44	1	5	50.00
						contd.

<u> </u>	2	3	4	5	6	7
491.	ICP-7670-1S8	31	0	5	5	16.12
492.	-7714-1S ⊗	6	Ō	3	3	50.00
493.	-2S ®	25	0	3	3	12.00
494.	ICP-7718-1S0	22	1	4	5	22.72
495.	-7726-1S 0	21	0	11	11	52.38
496.	-7730 -1 S ®	19	0	2	2	10.52
497.	-7 731-15 0	16	0	4	4	25.00
498.	-7772-1S Ø	56	13	3	16	28.57
499.	-2S 0	31	6	7	13	41.93
500.	-7775-1S ®	17	0	3	3	17.64
501.	-7799-1S ®	27	0	1	1	3.70
502.	-7802-1S 0	28	0	1	1	3.57
503.	-2S 0	14	0	3	3	21.42
504.	-7817-1S 0	2	0	0	0	0.00
505.	-7823-1S 0	19	0	7	7	36.84
506.	-7830-1S ®	48	0	1	1	2.08
507.	-7859-1S 0	23	0	0	0	0.00
508.	-250	2 ·	0	0	0	0.00
509.	-7860-1S 8	34	0	2	2	5.88
510.	-2S ®	30	0	0	0	0.00
511.	-3S 0	25	0	0	0	0.00
512.	-4S ®	19	0	. 0	0	0.00
513.	-5S 0	5	0	0	0	0.00
514.	-6S ®	18	1	0 -	.]	5.55
515. 516.	-75 0 -85 0	20	0 0	0 0	0 0	0.00 0.00
516.		21 37	0	0	0	0.00
517. 518.	ICP-7861-150 -7862-150	3/	0	Ø	0	0.00
519.	-7862-13 0 -7862-25 0	20	0	Ö	0	0.00
520.	-7863-1S 8	27 .	0	0	Ö	0.00
521.	-7866-1S 0	2	0	Ö	Ö	0.00
522.	-7600-13 8 -25 8)	16	Ö	Ö	Ö	0.00
523.	-3S ®	47	Ö	Ö	Ö	0.00
524.	-7869-1S 8	2	ŏ	Ö	Ö	0.00
525.	-2S ®	20	Ö	ŏ	Ŏ	0.00
526.	-3S ®	17	ŏ	ĭ	ĭ	5.88
527.	-4S Ø	2	Ö	Ö	Ó	0.00
528.	-558	38	Ö	Ŏ	Ŏ	0.00
529.	-6S Ø	39	Ō	Ö	Ö	0.00
530.	ICP-7882-150	-	_	-	_	-
531.	-250	_	_	_	_	-
532.	-3S Ø	-	-	-	_	-
533.	ICP-7883-150	4	0	2	2	50.00
534.	-7884-1S ®		0	0	0	0.00
535.	-250	3 2	0	0	0	0.00
						contd.

	2	3	4	5	6	7
536	ICP-7905-150	1	0	0	0	0.00
537 .	-7907-1S ®	9	1	2	3	33.33
538.	-7921-1S &	2	0	1	1	50.00
539	-7938-1S ®	45	4	0	4	8.88
540 .	-7969-1S 0	-	_	-	-	-
541.	-7973 - 1S ®	79	2	0	<u>-</u> 2	2.53
542	-2S 0	56	1	0	1	1.78
543.	-7974-1S 0	20	1	0	1	5.00
544	-2S ®	36	0	0	0	0.00
545	- 3S Ø	20	0	0	0	0.00
546.	-4S ®	16	1	0	1	6.25
547.	-5S Ø	13	0	0	0	0.00
5 48.	ICP-7979-1SM	-	-	-	-	-
549.	-2S Ø	29	0	0	0	000
550	- 3S Ø	28	0	0	0	0.00
551.	ICP-7979-450	34	0	2	2	5 . 88
552	-5S @	9	0	0	0	0.00
553 .	ICP-7980-150	1	0	0	0	0.00
554	-2S Ø	30	0	6	6	20.00
555 .	-3S Ø	23	0	0	0	0,00
556.	-4 S Ø	78	0	0	0	0.00
557.	- 5S Ø	38	0	0	0	0.00
558.	-6S Ø	33	0	1.	1	3.03
559.	ICP-7981-150	12	Ō	1	i	8.33
560	-2S Ø	21	Ö	0	0	0.00
561.	-350	32	0	0	0	0.00
562.	-4S Ø	20	0	0	0	0.00
563 .	-558	_	_	_	-	_
564 .	ICP-7982-150	30	0	0	0	0.00
565.	- 2S Ø	70	0	0	0	0.00
566.	-3S 0	2	0	0	0	0.00
567.	-4S ®	_	_	-	-	-
56 8.	-558	20	0	0	0	0.00
569.	- 6S₩	_	_	_	_	-
570.	-7S Ø	38	0	0	0	0.00
571.	-8S Ø	1	0	0	0	0.00
572 .	ICP-7984-1S@	35	0	0	0	0.00
573 .	- 2S Ø	20	0	0	0	0.00
574.	-350	6	0	Ō	0	0.00
575.	- 4S₩	45	1	0	1	2.22
576	-5S &	35	0	0	0	0.00
577 ,	-6S ®	32	Ŏ	Ŏ	Ŏ	0.00
578.	-7SØ	-	-	-	-	_
579.	-8S Ø	43	0	0	0	0.00
5 80.	ICP-7987-1S0	25	0	0	0	0.00

1	2	3	4	5	6	
581.	ICP-7987-250	22	0	0	0	0.00
582.	- 3S ®	20	0	0	0	0.00
583.	-4S ®	-	-	-	-	-
584.	ICP-7988-150	29	0	0	0	0.00
585.	-2S 0	13	0	0	0	0.00
586.	-350	13	0	0	0	0.00
587.	ICP-7989-1SM	3	0	0	0	0.00
588.	-2S 0	6	0	0	0	0.00
589.	-3S ®	40	0	0	0	0.00
590.	ICP-7991-150	15 3 5	0	0	0	0.00
591.	-25 0 -35 0	50	0 0		0 0	0.00
592. 593.	-35₩ -45 8	30 37	2	0 0	2	0.00 5.40
593. 594.	-45W ICP-7992-150	37 48	0	0	0	0.00
594. 595.	-2SØ	40	-	-	-	0.00
595. 596.	-23 0 -35 0	19	0	0	0	0.00
596. 597.	-35W ICP-7993-15M	30	0	0	0	0.00
597. 598.	-25 0	35	0	0	0	0.00
599.	-3S 0	27	Ŏ	Ö	Ö	0.00
600.	ICP-7995-1SØ		-	_	-	-
601.	-2S Ø	-	_	_	-	_
602.	-3S Q	24	0	0	0	0.00
603.	-4SØ		_	_	_	-
604.	ICP-8001-150	-	-	_	-	_
605.	-2S Ø	20	0	0	0	0.00
606.	-35⊠	-	-	-	_	-
607.	-4S &	7	0	0	0	0.00
608.	ICP-8002-1S@	5	0	0	0	0.00
609.	-2S @	16	0	0	0	0.00
610.	-3S 0	13	0	0	0	0.00
611.	-4 S ®	-	-	-	-	-
612.	- 5S @	-	-	-	-	-
613.	-6S Ø	-	-	-	-	-
614.	- 7S @	-	-	-	-	
615.	ICP-8003-150	36	0	0	0	0.00
616.	-258	-	-	-	-	-
617.	-3S 0	32	0	0	0	0.00
618.	-45@	50	0	0	0	0.00
619.	-5 SQ	9	0	0	0	0.00
620.	-6S ®	37	0	0	0	0.00
621.	-7S 0	32	0	0	0	0.00
622. 623.	-8S 0	43	0	0	0	0.00
624.	-9S 0	40 26	0 0	0 0	0 0	0.00 0.00
	-10S Ø	26 20		0	0	
625.	ICP-8004-1S@	29	0	U	U	0.00

1	2	3	4	5	6	7
526	ICP-8004-250	-	-	-	_	
627	-350	34	0	0	0	000
628	-4S Ø	36	0	0	0	0.00
629	-5S ®	22	0	0	0	0.00
630 631.	-6S 0	34	0	0	0	0.00
632	ICP-8005-150	26	0	0	0	0.00
633.	-250 -350	23	0	0	0	0 . 00
634	-33⊌ -48 ©	27 31	0	0	0	0.00
635	-5S @	5	0	0	0	0.00
636	-6S ®	10	0 0	0 0	0	0.00
637	-7S 0	1	0	0	0 0	0.00
638	-8S 0	<u>'</u>	-	-	U	0.00
63 9 .	-950	-	_	_	-	-
640	ICP-8006-150	_	-	_	_	-
641	-250	_	_	_	_	-
642.	-3S ®	1	0	0	0	0.00
643.	-4 S ⊗	11	Ö	Ŏ	ŏ	000
644.	-5 S @	30	0	Ö	Ö	0.00
645	-650	24	0	0	Ö	0.00
646	ICP-8008-150	13	0	0	0	0.00
647 648	-250	_	-	-	-	-
649	-3S Ø	27	0	0	0	0.00
650.	-450 -550	37	0	0	0	0.00
651	-6S &	38	0	0	0	000
652.	-75 0	61 71	0	0	0	0.00
653	-8 SØ	42	0 0	0	0	000
654	-9S 0	42	-	0	0	0 ., 00
655.	ICP-8011-150	28	2	0	2	7.14
656	-350	40	0	ĭ	1	2.50
657	ICP-8012-150	83	ŏ	Ö	Ó	0.00
658.	-250	57	Ŏ	0	0	0.00
659.	ICP-8015-150	-	_	-	-	-
660	-2S Ø	-	-	-	-	
661	-3S ₩	-	-	-	-	_
662.	ICP-8026-150	53	0	2	2	377
663.	-2S 0	41	0	0	0	0.00
664	ICP-8028-150	14	0	0	0	0.00
665. 666.	-2S 0	2	0	0	0	0.00
667	-3S 0	3	0	0	0	0.00
668.	-45 0 ICP-8031-15 0	1	0	0	0	000
669	-250	42	0	0	0	0.00
670	-25 w -35 0	19	0	0	0	0.00
57 O .	-335	22	0	0	0	0.00
						contd

1	2	3	4	5	6	7
671.	ICP-8031-450	76	0	1	1	1.31
672.	-8040-1S ⊠	-	-	-	_	-
673.	-2S Ø	-	-	-	-	_
674.	-3S ⊗	7	0	1	1	14.28
675.	- 4S Ø	56	0	0	0	0.00
676.	-5S 0	58	0	0	0	0.00
677.	ICP-8043-1S🛭	41	0	1	1	2.43
678.	-8044 - 15 0	12	0	0	0	0.00
679.	-2S 0	11	0	0	0	0.00
680.	-3S @	33	0	0	0	0.00
681.	-4S Ø	43	0	0	0	0.00
682.	-55ぬ	34	0	0	0	0.00
683.	-6 S Ø	47	0	0	0	0.00
684.	ICP-8048-15 0	-	-	-	-	-
685.	-2S Ø	13	0	0	0	0.00
686.	-3S ®	~	-	-	-	-
687.	ICP-8062-1S 0	26	0	0	0	0.00
688.	-2S 0	47	0	0	0	0.00
689.	-3S ®	21	0	0	0	0.00
690.	-4S ®	1	0	0	0	0.00
691.	ICP-8064-1S8	2	1	0	1	50.00
692.	-2S Ø	2	0	0	0	0.00
693.	-3S @	50	0	0	0	0.00
694.	- 4S Ø	8	0	0	0	0.00
695.	-5 S ®	37	0	0	0	0.00
396.	-65₽	34	0	0	0	0.00
697.	-7S ®	29	0	0	0	0.00
698.	ICP-8070-150		-	-	-	-
699.	-2S ®	18	0	0	0	0.00
700.	-350	23	0	0	0	0.00
701.	-4S ®	14	0	0	0	0.00
702.	ICP-8070-558	48	0	0	0	0.00
703.	-6S ®	66	0	0	0	0.00
704.	-7S 0	55	0	0	0	0.00
705.	ICP-8071-150	49	0	0	0	0.00
706.	-2S 0	52	0	0	0	0.00
707.	-3S Ø	-	-	-	-	-
708.	ICP-8072-1S0	-	-	-	-	-
709.	-250	-	-	-	-	_
710.	-3S Ø	15	0	0	0	0.00
711.	-4S Ø	63	0	0	0	0.00
712.	-550	4	0	0	0	0.00
713.	ICP-8073-150	5	0	0	0	0.00
714.	-2S 0	1	0	0	0	0.00
715.	-3S Ø	9	0 _	_ 0	0 _	0.00
						contd.

1	2	3	4	5	6	7
⁷ 6	ICP-8073-458	25	0	0	0	0,00
7 7	-8074-1S 0	11	0	1	1	9.09
7 8	-2S Ø	17	0	0	0	0.00
7 9	-3S ®	13	0	1	1	769
720.	ICP-8077-1SM	26	0	0	0	000
721 722	-25 0 -35 0	18 18	0 0	0	0 0	0.00 0.00
723	-4S 0	12	0	0	0	0.00
724	-5S Ø	14	Ö	Ö	0	0.00
725	-6S &	50	Ŏ	Ŏ	ŏ	0.00
726	- 7S₩	48	Ö	Ō	Ö	0.00
727	-880	12	0	0	0	0.00
728	ICP-8080-1 50	31	7	6	13	41.93
729	-2S Ø	39	13	3	16	41.02
730	ICP-8081-150	12	0	11	11	9166
731.	-2S ®	43	ļ	18	19	44 18
732 . 733 .	ICP-8082-15 0 -25 0	1 13]	0 5	1 10	100.00 76.92
733. 734.	-25W ICP-8083-15 0	13	5 2	0	2	15,38
735.	-2S 8	4	4	0	4	100.00
736.	ICP-8088-15 0	_	_	-	-	100,00
737.	-2S ®	43	1	0	1	2.32
738	ICP-8091-150	36	Ò	Ŏ	0	0.00
739.	-2S ®	49	9	3	12	24.48
740.	-3S Ø	11	0	0	0	0.00
741.	-4S ®	41	0	0	Ō	0.00
742	-5S Ø	5	2	0	2	40.00
743.	ICP-8096-558	50	9	10	19	38.00
744. 745	-8097-1S @ -2S ®	64 40	14 13	13 4	27 17	42.18 42.50
745 746	-25 % -35 %	41	13 8	14	22	53.65
747	-45 ®	49	3	11	14	28.57
748	-5S 0	50	7	Ö	7	14.00
749	ICP-8100-150	31	0	Ŏ	Ó	0.00
750	-250	26	0	2	2	7.69
751.	-3S Ø	41	0	0	0	0 . 00
752.	-4S ®	22	0	0	0	0,00
753.	ICP-8091-1S@	19	0	0	0	0.00
754	-8092-1S Ø	41]	0	1	2,43
755.	-2S 0	23	0	0	0	0.00
756 757	-3S ®	20 21	2 0	1 0	3 0	15,00 0,00
757. 758	-4S Ø -5S Ø	45	0	4	4	8.88
750. 759.	-55W ICP-8096-15M	51	i	Õ	i	1.96
760.	-25 0	35	i	0	i	2.85
, 00,	LJU		_ _			oontd.

1	2	3	4	5	6	7
761.	ICP-8096-350	22	4	0	4	18.18
762.	-4S Ø	21	3	0	3	14.28
763.	ICP-8100-450	15	0	0	0	0.00
764.	- 5S Ø	31	0	0	0	0.00
765.	ICP-8105-150	27	2	0	2	7.40
766.	-2S Ø	28	Ō	Ö	ō	0.00
767.	-3S ®	36	Ŏ	Ŏ	Ö	0.00
768.	-4S ®	37	ĭ	Ŏ	ĭ	2.70
769.	-5S Ø	14	Ö	Ö	Ö	0.00
770.	ICP-8107-150	18	Ö	Ö	Ö	0.00
771.	-250	20	0	0	0	
772.	-35 0	29	0	0	0	0.00 0.00
773.	-45 0	25	0	0	0	
773. 774.	-43 0 -55 0	25 7		0		0.00
			0		0	0.00
775.	ICP-8109-150	10	4	0	4	40.00
776.	-2S 0	24	4	0	4	16.66
777.	-3S Ø	24	0	0	0	0.00
778.	-4SØ	26	0	0	0	0.00
779.	-5S Ø	22	4	0	4	18.18
780.	ICP-8110-1580	33	0	0	0	0.00
781.	-2S ®	35	2	0	2	5.71
782.	-3S ®	20	2 2 4	0	2 2 4	10.00
783.	-4S Ø	23	4	0	4	17.39
784.	- 5S ⊗	16	2 2	0	2 · 2	12.50
785.	ICP-8114-1S⊠	13	2	0	2	15.38
786.	-2S 0	12	0	0	0	0.00
787.	-3S Ø	10	0	0	0	0.00
788.	-4S Ø	36	1	0	1	2.77
789.	-5S ®	18	0	0	0	0.00
790.	ICP-8116-1SØ	8	0	0	0	0.00
791.	-2 S Ø	32	0	0	0	0.00
792.	- 3S Ø	41	2	0	0	0.00
793.	-4S ®	15	0	0	0	0.00
794.	-5S ®	13	Ō	Ō	Ö	0.00
795.	ICP-8117-1510	7	0	0	0	0.00
796.	-250	10	0	Ô	Ō	0.00
797.	-3S Ø	15	Ō	Ō	Ö	0.00
798.	-4SØ	9	ŏ	Ŏ	Ö	0.00
799.	-5S Ø	25	ĭ	Ö	ĭ	4.00
800.	ICP-8118-15 0	10	Ö	Ö	Ö	0.00
801.	-2SØ	14	Ö	ŏ	ő	0.00
802.	-3S 0	19	ŏ	Õ	Ö	0.00
803.	-45 0	32	0	0	0	0.00
804.	-45 8 -55 8	32 9	Ö	0	0	0.00
805.	-55W ICP-8119-15M	28	0	0	0	0.00
000.	ICL-0113-128	۷٥	U	U	U	0.00

	2	3	4	5	6	7
806	ICP-8119-250	37	0	0	0	0.00
807	-3S ®	22	5 3	0	5 3	22.72
808	-4S ®	32	3	0	3	9.37
809	-5S Ø	22	1	0	1	4 . 54
810	ICP-8123-150	46	1	0	1	2.17
811.	-2S Ø	29	0	0	0	0,00
812 813	-35 0 -45 0	15 15	0 6	0 0	0 6	0.00 40.00
814	-45 0	17	0	0	0	0,00
815	ICP-8124-15 0	16	0	0	0	0.00
816.	-2SØ	1	ő	Ö	Ö	0.00
817	-350	4	ŏ	ŏ	ŏ	0.00
818	-4S B	19	Õ	Ö	Ö	0.00
819	-5S Ø	7		Ó	0	0.00
820.	ICP-8125-150	27	0 5	0	5	18.51
821	- 2S Ø	30	3	0	3	10.00
822.	-3S Ø	51	3 2 7	11	13	25.49
823 ·	-4S ®	33	7	0	7	21.21
824	-5S 0	14	1	0	1	7.14
825	ICP-8126-1SØ	21	5	0	5	23.80
826	-250	39	5 3 7	24	27	69.23
827.	-3S 0	58	/	2	.9	17.30
828.	-4S Ø	31 34	3 0	12 13	15 13	48.38 38.23
829. 830.	-55 0 ICP-8129-15 0	34 26	0	0	0	0,00
831.	-2S Ø	35	4	0	4	11.42
832	-350	27	Õ	Ö	0	0,00
833.	-4SØ	26	Ö	Ö	Ö	0,00
834	-5S ®	50	6	ĭ	7	14.00
835	ICP-8131-150	16	2	Ô	2	12,50
83 6	-250	16	1	0	1	6 . 25
837.	ICP-8132-3SM	34	2	0	2 4	588
838	-4S ®	21	2 2 2	2	4	19.04
8 39	-5 S Ø	6	2	0	2	33.33
840	ICP-8135-150	34	0	0	0	0.00
841	-250	27	0	0	0	0.00
842.	-350	44	0	0	0	0,00
843.	-4S0	19 50	0	0	0 11	0.00 22.00
844. 845.	-55 0 -65 0	50 32	9 8	2 1	9	28.12
84 6	ICP-8153-15 0	30	0	0	0	0.00
847	-2S 0	18	Ö	Ö	ŏ	0.00
848	-3S 0	28	0	0	0	0.00
849	-4S 0	49	7	Ö	7	14.28
850	-5S Ø	48	13	Ŏ	13	27.08
		<u></u>				200 40

1	2 .	3	4	5	6	7
851.	ICP-8156-1S0	38	8	14	22	57.89
852.	-2S Ø	57	4	17	21	36.84
853.	- 3S Ø	49	4	2	6	12.24
854.	-450	29	3	8	11	37 . 93
855.	-5S Ø	34	10	3	13	38 23
8 56.	ICP-8158-150	43	0	0	0	0.00
857.	-2S Ø	35	6	5	1]	31,42
858.	-3S Ø	31	0	0	0.	0.00
85 9. 8 60.	-450 ICP-8166-150	49 23	0 2	2	2 12	4.08
860. 861.	-2S&	23 26	0	10 11	12	52.17 42.30
862.	-23₩ -3 5 ₩	34	2	16	18	52.94
863.	-45 0	47	19	23	42	89,36
864.	-5S ®	35	8	16	24	68.57
865.	ICP-8168-150	45	11	25	36	80.00
866.	-8205-15 0	39	4	12	16	41.02
867.	-8212-1S Ø	83	11	39	50	60.24
868.	-250	51	7	18	25	49.01
8 69.	-350	7	2	0	2	28. 57
870.	ICP-8215-150	34	7	3	4	11.76
871.	-8216-1S 0	14	0	0	0	0,00
872.	-2S ⊗	36	0	0	0	0.00
873.	-3S Ø	43	24	5	29	67.44
874.	-4S Ø	14	0	0	0	0.00
875.	-5S @	31	0	0	0	000
876.	ICP-8221-150	17	0	0	0	0.00
877.	-2S ®	25	0	0	0	0,00
878.	-3SØ	20	1	Ŏ	1	500
879.	ICP-8229-1S0	15	0	0	0	0.00
880. 881.	-25 0 ICP-8230-15 0	34 22	0 4	0 0	0 4	000
88 2 .	-2S0	36	4	0	4	18. 18 11.11
883.	-23W ICP-8231-15 0	33	12	2	14	42.42
884.	-2S @	34	25	0	25	73.52
885.	-3S 0	39	15	0	15	38.46
886.	-4S Ø	37	18	Ö	18	48.64
887.	-5S Ø	22		Õ	9	40 90
888.	ICP-8240-150	18	9 3	Ö	3	16.66
88 9 .	-8247-1S &	9	1	Ö	į	11, 11
890.	-250	23	4	7	11	47.82
891.	-350	48	3	13	16	33.33
892.	ICP-8257-1S0	6	0	0	0	0.00
893.	-2S 0	43	11	1	12	27.OC
894.	-350	35	10	0	10	28.57
895.	-4S ®	6	2	4	6	100 ° 00
						contd

7
45
.45).00
2.94
0.00
3.33
2.45
.29
3.33
5.66 0.00
7.50
0.00
2.41
2.77
0.00
5.45
1.11 0.00
3.06
0.00
0.00
.42
5.31
5.00
0.00 9.41
3.41 3.75
7.14
1.11
0.00
3.42
7.14
5.66 5.66
2,00
1.05
3.13
2.41
0.00
0,00
2.43
0.00
5.25
0.00

	2	3	4	5	6	7
941.	ICP-8317-450	36	16	0	16	44.44
942.	- 8318-1 S @	32	8	11	19	59.37
943.	-8319 - 15 0	24	0	0	0	0.00
944.	ICP-8319-250	55	0	0	0	0.00
945.	-8325-1S ®	30	0	0	0	0.00
946.	- 2S ®	33	0	0	0	0.00
947.	ICP-8326-15 0	38	0	0	0	0.00
948.	-2S ₩	43	2	0	2	4.65
949.	-3S❷	. 52	0	0	0	0.00
950.	- 4S Ø	. 30	0	0	0	0.00
951.	-5S @	20	0	0	0	0.00
952.	-6S 0	27	0	0	0	0.00
953.	-7S Ø	28	0	0	0	0.00
954.	ICP-8330-15 0	25	11	0	11	44.00

APPENDIX-XXVI

Results of screening of advanced selections of germplasm for sterility mosaic resistance during 1978-79

SI No.	ICP No.	No. of plants	Infected plants	Percent infection
_1	2		4	5
1.	ICP-85-1-4-150	10	0	0.00
2.	-25 0			
3	-3S ®	01	•	0.00
4.	-4S Ø	21	0	0.00
5.	- 5S ®	32	0	0,00
6 -	-6S ®	32	0	0.00
7	-7SØ	27	0	000
8.	-85 0	12	0	0.00
9	-9S 0	19	0	0.00
10.	-10SØ	38 34	2	5.26
11. 12.	-11SØ	34 31	0 0	0.00
	-12S 0 -13S 0	21	0	0.00
13. 14	ICP-504-1-4-S10	31	i 1	0.00 33.00
15	-S20	33	j	3,03
16.	-52 b -53 0	36	Ó	0.00
17.	-54 0	36	Ŏ	0.00
18	-S5 0	14	Ö	0.00
19	-S6 0	26	ŏ	0.00
20.	-S7 0	41	ŏ	0.00
21	-S8 8	38	Ö	0.00
22	-S9 8	30	Ö	0,00
23	-\$108	28	Ö	0.00
24	-\$110	51	Ö	0.00
25	-\$120	40	0	0.00
26	-S13 0	38	0	0,00
27	-\$148	42	0	0.00
28	-S15 0	29	0	0.00
29	-S16 0	45	0	0,00
30 .	-S17 ⊗	42	0	0.00
31	-S18 0	32	0	0,00
32	-S19 0	34	0	0.00
33.	-S20 ®	36	0	0.00
34	-S21 0	38	0	0,00
35 -	-S22 0	37	0	0.00
36	ICP-2795-1-1-S18	41	2	4.87
37	-S2 0	-	-	-
38.	-\$30	22	1	4.54
39.	-\$40	37	1	2.70
40	-S5 0	19	2	10.52
				contd

	2	3	4	5
41.	ICP-2795-1-1-S60	15	1	6.66
42.	-S 70	20	2 5 3	10.00
43.	-S8 0	19	5	26.31
44.	-S9 0	30	3	10.00
45.	-S10 0	25	2 0	8.00
46.	-S11 0	12	0	0.00
47.	-S12 0	30	3	10.00
48.	-S13 0	16	1	6.25
49.	-S14 0	2 8	1	3.57
50.	-S15 0	12	0	0.00
51.	-S16 0	29	0	0.00
52.	- S17 0	38	0	0.00
53.	ICP-2795-1-5-S1@	4	0	0.00
54.	-S1 0	2	0	0.00
55.	-S2 0	10	2	20.00
56.	- S3 Ø	3	1	33.33
57.	- S4 Ø	14	2	14.28
58.	- S5 ⊠	12	3	25.00
59.	- S6 8	13	0	000
60.	- S7 &	49	1	2.04
61.	-S8 0	3 6	0	0.00
62.	- S9 ⊠	18	0	0.00
63.	-S10 0	34	0	0 , 00
64.	-S110	27		0.00
65.	- S12 0	30	0 3 2	10.00
66.	- S13 Ø	39	2	5.12
67.	-S14 0	30	0	0.00
68.	- S15 0	16	0	0.00
69.	-S160	16	0	0.00
70.	-S17 @	21	0	0.00
71.	-S18 0	37	0	0.00
72.	ICP-2828-1-1-S10	15	0	0.00
73.	-S2 0	26	0	0.00
74.	-\$30	36	0	0.00
75.	-S4 0	19	0	0.00
76.	-S 5Ø	31	0	0.00
77.	-S6 Ø	23	0	0.00
78.	-S7 8	26	0	0.00
79.	-S8 0	21	1	4.76
80.	-S 9 ₩	36	0	0,00
81.	ICP-7249-1-4-S18	35	0	0.00
82.	-S2 0	21	0	0.00
83,	-S3 Ø	18	4	22.22
84.	-\$40	18	3	16,66
85.	-550	32	4	12.50

1	2	3	4	5
86	ICP-7249-1-4-S68	16	0	0,00
87	-S7 ⊗	-	-	-
88	-S8 0	21	1	4.76
89	- S9 Ø	23	0	0.00
90 .	-S10 0	31	5	16.12
91.	-S11 0	10	2	20.00
92	-S12 0	18	5 2 12	66,66
93	-S13 0	12	0	000
94.	-S14 0	19	0	0.00
95	-S15 0	19	2	10.52
96	-5160	10	2 0	0.00
97	ICP-7249-1-7-S18	18	2	11.11
98	-S2 0	8	0	0.00
99	-S3 8	10	1	10.00
100	-540	13	1	7.69
101	-S5 D	10	2	20.00
102	-S6 0	10	ō	0,00
103.	-S7 0	21	Ö	0.00
104.	-\$8 0	īi	Ŏ	0.00
105	-S9 &	13	Ö	0.00
106	-S10 8	27	ŏ	0.00
107	ICP-7197-3-S18	32	Ŏ	0,00
108	-S2 ®	15	ŏ	0.00
109	-S3 0	iĭ	9	8 1 .81
110	-540	39	9 12	30.76
111.	-S5 0	40	7	17.50
112	-S6 8	34	í	2.94
113.	-57 0	17	Ó	0.00
114.	- \$.7 &	10	ŏ	0.00
115.	-S8 0	33	Ö	0,00
116.	-S9 &	19	5	26,31
117.	-S10 B	44	5 15	34.09
118.	-S110	46	0	0.00
119	-S12 0	36	2	555
120	-S126 -S136	24	0	000
		21 -	0	23, 80
21	-S148	21 28	5	0.00
122	-S150	20 29	0	6,89
123.	-S160		5 0 2 7	
24	-S170	17	/	41 17
125	-5180	14	1	7.14
126	-5190	26	2 0	7.69
127	ICP-7197-7-S18	12	Ü	0.00
28	-S2 0	4	0	0,00
129	-S3 0	4	0	0,00
130	-S4 0	12	00	0,00

31. 32. 33. 33. 33. 33. 33. 33. 33. 34. 44. 44	1CP-7197-7-S50 -8-\$10 -\$20 -\$30 -\$40 -\$50 -\$60 -\$70 -\$80 -\$100 -\$110 -\$120 -\$130 -\$140 -\$150 -\$160	22 30 15 22 8 23 13 13 17 36 25 12 31 32		0 00 0 00 4 54 0 00 0 00 0 00 0 00 0 00
32 33 34 35 36 37 38 39 40 41 41 42 43	-\$2\forall -\$2\forall -\$3\forall -\$4\forall -\$4\forall -\$5\forall \text{8} \\ -\$56\forall -\$7\forall -\$8\forall \text{9} \\ -\$10\forall -\$11\forall \\ -\$12\forall -\$13\forall \\ -\$15\forall \text{9}	15 22 8 23 13 13 17 36 25 12 31 32	0 0 0 0 0 0 0 0	0 00 0 00 4 54 0 00 0 00 0 00 0 00 0 00
34 . 35 . 36 . 37 . 38 . 39 . 40 . 41 . 42 . 443 .	-530 -540 -550 -560 -570 -580 -590 -5100 -5110 -5120 -5130 -5130 -5150	22 8 23 13 17 36 25 12 31 32	0 0 0 0 0 0 0	4 54 0 00 0 00 0 00 0 00 0 00 0 00 0 00
35. 36. 37. 38. 39. 40. 41. 42. 443. 444.	- 540 - 550 - 560 - 570 - 580 - 580 - 5100 - 5110 - 5120 - 5130 - 5140 - 5150	8 23 13 17 36 25 12 31 32	0 0 0 0 0 0 0	0 00 0 00 0 00 0 00 0 00 0 00 0 00
136 137 138 139 140 141 142 143 144	- \$50 - \$60 - \$70 - \$80 - \$80 - \$100 - \$110 - \$120 - \$130 - \$140 - \$150	23 13 17 36 25 12 31 32	0 0 0 0 0 0 0	0 00 0 00 0 00 0 00 0 00 0 00 0 00
137。 138。 139。 140。 141。 142。 143。 144。 145。	- \$60 - \$70 - \$80 - \$90 - \$100 - \$110 - \$120 - \$130 - \$140 - \$150	13 13 17 36 25 12 31 32	0 0 0 0 0 0	0 00 0 00 0 00 0 00 0 00 0 00
138 . 139 . 140 . 141 . 142 . 143 . 144 .	-578 -588 -598 -5108 -5118 -5128 -5138 -5148	13 17 36 25 12 31 32	0 0 0 0 0 0	0 00 0 00 0 00 0 00 0 00
139 . 140 . 141 . 142 . 143 . 144 .	-580 -590 -5100 -5110 -5120 -5130 -5140 -5150	17 36 25 12 31 32	0 0 0 0 0	0 00 0 00 0 00 0 00 0 00
141. 142. 143. 144.	-590 -5100 -5110 -5120 -5130 -5140 -5150	36 25 12 31 32	0 0 0 0	0 00 0 00 0 00
141. (42. (43 144. 145	- \$100 - \$110 - \$120 - \$130 - \$140 - \$150	25 12 31 32 16	0 0 0 0	0 00 0 00 0 00
142. 143 144	-\$110 -\$120 -\$130 -\$140 -\$150	12 31 32 16	0 0 0	0 00
143 144. 145	-\$\20 -\$\30 -\$\40 -\$\50	31 32 16	0 0	0 0
144. 145	-\$13 0 -\$14 0 -\$15 0	32 16	0	
145	-S140 -S150	16		() ()(
	-\$150			
			0	0 00
146.		43	0	0 00
147		12	0	0 00
48	-\$17Ø	19 22	0 0	0 00
149 . 150 .	-\$18 0 1CP-7197-11-51 0	44	0	0 00
150.	-52 8	25	1	4 00
152	- 53 0	19	Ò	0 00
153	- 5 4 %	21	0	0 0
54	- \$5 0	21	Ö	0 0
155	ICP-7197-16-518	35	Ö	0 0
₹ 56 .	-\$28	15	Ö	0 0
157	- \$38	20	Ö	0 0
158	- 548	34	Ō	0 0
159	-\$58	36	0	0 0
60	- \$60	45	0	0 0
161.	- 570	33	0	0 0
162	-\$8 0	13	0	0 0
163	- 590	30	0	0 0
64	-5:00	36	0	0 0
65	-S110	39	0	0 0
⁶ 66	ICP-7197-33-510	25	0	0 0
167	- \$20	29	0	0 0
168	-538	31	0	0 0
69	-540	35	0	0 0
170.	-\$5%	36	0	0 0
171	ICP-7197-36-510	11	0	0 0
172	-\$2 0	38	0	0 0
173	- 530	32	0	0 0
174	- 540	31	0	0 0
175	-\$5 %	33	0	00 contd

	2	3	4	5
76	1CP-7197-36-S60	3	0	0.00
77	-S7 Ø	28	0	000
178	-580	33	0	0.00
179 180	-S9 0 -S10 0	26 19	0 0	0.00 0.00
181	-510W ICP-7197-37-S10	8	0	0.00
182	-S20	26	1	3.84
183	-\$50	37	Ö	0.00
184	-\$68	38	ŏ	000
185	-570	24	Ö	0.00
186	-\$80	21	0	000
187	-S9 0	49	0	000
188	ICP-7197-42-510	39	0	000
189	-S2 Ø	51	0	0.00
190	-S3 ®	36	0	0.00
191	-\$48	45	0	0,00
192.	-\$50	35	0	0.00
193	ICP-7197-52-S10	29	0	0.00
194	-S20	42	0	0.00
195 196	-\$3 0 -\$4 0	27 30	0 0	000 000
196	-54 0 -55 0	27	0	0.00
197.	-56 %	29	0	0.00
199.	-50 % -57 %	16	0	0.00
200	-S8 0	24	ŏ	0.00
201	-S9 Ø	49	ŏ	0.00
202	-S10 0	37	Ō	0.00
203	-5110	31	0	0 00
204	-S12 0	10	0	0,00
205	-S13 0	4	0	000
206	-5140	16	0	0.00
207	-S150	25	0	0 00
208	-S168	15	0	0.00
209	-S178	14	0	0.00
210	-\$18 0	5	0	0.00
211	-S19 0	14 14	0 0	0,00 0,00
212 213	-S20 0 -S21 0	15	0	0.00
214.	ICP-7249-1-S18	13	0	0.00
215	-S20	31	0	0.00
216	-S3 0	16	Ŏ	0.00
217	-S4 ®	36	ĭ	2.77
218	-S5 8	14	Ò	0.00
219	ICP-7353-2-S18	8	0	0.00
220	-S18	27	0	0.00
				contd

,	2	3	4	5
221	ICP=7353-2-520	48	0	0 00
222.	- \$30	37	0	0 00
223	-S4 0	37	0	0 00
224.	- S 50	10	0	0 00
225.	<i>-</i> \$ 60	34	0	0 00
226	- 570	50	0	0 00
227.	-\$88	41	0	0 00
228	- S9 8	33	0	0 00
229	ICP-7353-5-510	11	0	0 00
230.	- \$2 0	27	0	0 00
231.	- \$3 0	3	0	0 00
232	ICP-7403-10-518	11	0	0 00
233	-\$20	16	0	0 00
234	-S3 &	5	0	0 00
235	1CP-7445-5-510	35	6	17 14
236	- S2 0	29	0	0 00
237	- \$3 0	4 (0	0 00
238.	-540	8	0	0 00
239	- \$5 0	12	0	0 00
240	1CP-7445-13-510	3	0	0.00
241.	- \$20	33	0	0.00
242	ICP-7873-8-510	47	0	0 00
243	- \$2 0	34	0	0 00
244	- S3 Ø	12	0	0.00
245	- \$40	23	0	0 00
246	ICP-8043-8-510	34	0	0 00
247	- \$2 0	43	0	0 00
248	-538	29	0	0 00
249	- \$4 0	2	0	0.00
250	-\$5 %	34	0	0 00
251.	-S68	39	0	0 00
252	1CP-8042-10-510	30	0	0 00
253	-520	25	0	0 00
254	-538	7	0	0 00
255	-548	23 36	0	0 00 0 00
256	-\$5 8	30 11	0 1	9 09
257	ICP-8051-2-S10	6	0	0 00
258	- 52 0	1		0 00
259 260	- \$3 0	4	0 0	0 00
260. 261	- \$4 0	13	0	0 00
262	-\$5 0	10	0	0 00
262 . 263 .	-S68 -S76	17	1	5 88
263 264.	-\$7 0	6	O	0 00
265.	- S8 ®	4	0	0 00
265. 266.	-59 8 -510 8	4	1	25.00
267	-S100	7	Ô	0 00
201	-3118			contd

	2	3	4	5
268	ICP-8051-2-S120	1	0	0.00
269.	-3-S1 0	1	0	0 , 00
270	-S2 0	10	0	0 00
271	-\$3 0	10	0	0.00
272.	-S4 8	11	0	000
273.	-S5 8	23	4	17.39
274	-S68	19	4	2105
275 276	-S7 0 -S8 0	10	0	0.00
277.	~30w ~S9&	5	0	0.00
278	-S10 8	13	3	23.07
279	-S11 8	14	3 1	7.14
280	-S12 0	9	Ö	0.00
281	-S13 0	21	0	0.00
282	-S14 0	15	0	0.00
283 .	ICP-8120-1-S10	46	1	2.17
284	-S2 0	43	0	0.00
285	-S3 0	38	0	0.00
286	-\$48	34	0	0,00
287	-S5 ®	60	0	0.00
288 · 289 ·	-S6 0 -S7 0	61 44	0 0	0 / 0C 0 « 0C
290.	-37 % -88 0	33	0	0.00
291	-S9 8	34	Ö .	000
292	-S10 0	34	Ō	0.00
293	-S11 0	57	0	0 - 00
294.	-S12 0	47	0	000
295	-S13 0	31	0	0.00
296	-\$148	19	0	0.00
297	-S15 0	33	0	0.00
298. 299.	-S160	45 47	0 0	0 · 0C 0 · 0C
299. 300.	ICP-8121-1-510 -520	18	0	0.00
301	-S3 8	20	ĭ	5.00
302	-S4 8	47	i	2.12
303	-S5 0	26	0	000
304	-S6 2	33	0	000
30 5	-S7 ⊗	16	0	0.00
306	-S8 0	47	2	4, 25
307	-S9 8	20	0	0 00
308	ICP-3940-1-S10	35 30	0	0.00
309 310	-S2 0	39 25	0 0	0 ° 00
311.	- S3 0 -S4 0	25 16	0	0 0 (
312.	-54 0 -55 0	46	0	0.00
.1 1 🕰 🦠	-305	₹ 0	J	contd
				5011043

1	2	3	4	5
313	ICP-3940-1-S60	20	0	0 00
314	-578	25	Ö	0 00
315	- \$8 0	31	Ō	0 00
316	-598	12	Ö	0 00
317	1CP-4537-1-518	ii	ŏ	0 00
318	!CP-4765-2-518	17	Ö	0 00
319		16	0	
	-\$2 0 -\$3 0	15		0 00
320			0	0.00
321	-\$4 ®	34	0	0 00
322	- \$5 ®	46	0	0 00
323	- S6 8	20	0	0 00
324	- \$ 70	25	0	0 00
325	- \$8 0	31	0	0 00
326	- \$9 &	44	0	0 00
327 .	-S10 0	32	0	0 00
328	1CP-4765-3-510	18	0	0 00
3 29 .	- 528	15	1	6 66
330	-S3 0	7	0	0 00
331	-S4 8	9	Ö	0 00
332	-550	25	Ŏ	0 00
333	-568	36	Ő	0 00
334.	- 57 &	18	i	5 55
335	-57 w -58 %	24	Ó	0 00
33 6		38		7 89
	-\$9 %		3	
337.	-\$100	26	Ó	0 00
338	1CP-5436-2-510	16	1	6 25
339	-S2 0	19	0	0 00
340	ICP-5444-1-510	60	7	11 66
341	-S2 0	26	2	7 69
342	- \$30	25	0	0 00
343	-540	33	0	0 00
344	-350	43	1	44 00
345	ICP-5444-2-510	8	0	0 00
346	-520	30	0	0 00
347	-530	36	6	16 66
348	- \$40	19	3	15 78
349.	-S5 ®	23	ŏ	0 00
350.	- 5 6 8	28	ő	0 00
351	- 5 7 8	59	Ő	0 00
352	-37 % -38 0	33	0	0 00
353.	-30 % -59 %	32	0	0 00
354		42		0 00
	-\$108		0	
355	-5118	37	0	0 00
3 56 .	-S12 0	25	2	8 <u>00</u> contd

	2	3	4	5
ر5 <i>5</i>	ICP-5445-1-S18	42	0	0,00
358	-S2 0	26	2	7.69
3 59 .	-\$3 0]	0	0.00
360 361	-S4 0 -S5 0	21 38	0	0.00 5.26
362	-25M	36 36	2 0	0.00
363	-500 -57 0	21	0	0.00
364	-S8 &	44	ĭ	2.27
365	-\$9 &	18	Ö	0.00
366	ICP-5729-1-510	28	ĭ	3.57
367	-S2 0	15	0	0.00
368.	- \$3 @	7	0	0.00
369	-\$40	28	1	3.57
370 .	-S5 0	14	Ō	0.00
371.	-S6 0	30	Ō	0.00
372.	-S7 8	31	1	3.22
373. 374.	-\$8 0 -\$ 90	14 20	0 0	0.00 0.00
374. 375.	-39W -S10Ø	50 50	0	0.00
37 5	-S118	12	0	0.00
377	ICP-5729-2-S10	13	ĭ	7.69
378	-520	17	ì	5.88
379.	-S3 0	4	0	0.00
380 -	-S4 0	4	0	0.00
381	-S5 0	13	0	0.00
382	-560	25	3 1	12.00
383	-S7 0	14	j	7.14
384.	-\$8 0	20	3	15.00
385. 386	-S9 0 -S10 0	15 17	0 0	0.00 0.00
387.	-S11 2	46		4.87
388	-S120	10	2 1	10.00
389	-S13 8	8	Ö	0.00
390	ICP-6559-1-S10	24	Ŏ	0.00
391.	-S2 ®	3	0	0.00
392 .	- S3 ®	11	0	0.00
393	-S4 0	24	0	0.00
394	-S5 Ø	20	1	5,00
395	ICP-6806-1-S18	28	0	0.00
396 ·	-S2 0	14 17	0	0.00 0.00
397 298	-\$3 0 -\$4 0	17 27	0 0	0.00
290 299.	-S50	27 29	Ö	0.00
400.	-S6 0	27	Ö	0.00
	502	_,	J	contd

1	2	3	4	5
401	1CP-6806-1-578	26	0	0 00
402 -	-\$8 0	23	0	0 00
403 -	ICP-7185-1-510	22	0	0 00
404 -	-S2 0	12	0	0 00
405.	-\$3 ®	26	0	0 00
406	-S4 0	6	0	0 00
407 -	-S 50	2	0	0 00
408	-5 6%	5	0	0 00
409	-570	14	0	0 00
410	-\$8 0	6	0	0 00
411.	-590	13	0	0 00
412.	-590	6	0	0 00
413	ICP-7185-2-510	39	0	0.00
414.	-520	2 8	0	0 00
415	- 530	2 8	0	0 / 00
416	- 540	<i>i</i> 9	0	0 00
417.	-S5 ®	6	0	0 00
418	-560	15	0	0 00
419.	1CP-7185-5-51@	13	0	0 00
420	-S2 0	22	0	0 00
421	-530	12	0	0 00
422	-540	21	0	0 00
423	-S5 0	22	0	0 00
424	-560	25	0	0 00
425	1CP-7187-2-S10	6	0	0 00
426.	-S2®	6	0	0 00
427	-\$30	15	0	0 00
428	-\$4₩	12	0	0 00
429	-\$58	19	0	0 00
430	-\$ 6 \$.6	0	0 00
431	-S7 0	10	0	0 00
432	-\$8\$	4	0	0 00
433	-598	3	0	0 00
434	-5100	13	0	0 00
435	-5110	14	0	0 00
436 .	-5120	16	0	0.00
437.	1CP-7217-2-S1@	13	0	0 00
438	-S20	26	0	0 00
439.	-530	13	0	0 00
440	-548	1	0	0 00
441	-\$5 ®	2	0	0 00
442	- 5 6 Ø	5	0	0 00
443	-\$7 ½	4	0	0 00
444	-580	- 7	-	
445	-\$9 8	7	0	0 00
446.	-S108	6	0	0.00

	2	3	4	5
447	ICP-7217-3-S18	25	4	16.00
448	-S2 0	19	0	0.00
449	- S3 ⊠	2	0	0 - 00
450	- S4 ⊠	11	0	0.00
451	-S5 0	7	0	0.00
452	-S6₩	8	0	0.00
453	- \$7 8 ∘	10	0	0.00
454	ICP-7221-1-S10	10 3 3 11	0	0.00
455	-S2 0	3	0	0.00
456	- \$3 0	11	0	0.00
457,	~ S4₩	13	0	0.00
45 8.	- S5 &	8 9 5	0	0.00
459	-S6 8	9	0	0.00
460,	- S7 Ø	5	0	000
461	-\$8 0	10	0	0.00
462	ICP-7221-2-S10	29	0	0.00
463	-S2 %	14	0	0.00
464	- \$3 0	16	0	000
465.	-S4 %	18	0	0 00
466.	ICP-8021-2-S10	10	0	0.00
467	-S2 ®	14	0	0.00
46 8	- \$3 ∅	1	0	0.00
469.	-S4 0	7	0	0 ^ 00

APPENDIX-XXVII

Results of screening of pigeonpea material for inheritance of resistance to sterility mosaic during 1978-79

51	Particular		Iotal		Infected pla	lants	
No ,			plants	Immur	e Ring spot	Severe mosaic	
	2		3	4	5	6	
1.	ICP-2376		18	0	18	0	
2	-6986-4		8	8	0	Ō	
3.	C.NO-75102(2376 x 6	986)RS-1(F		14	3	0	
-	BDN-1		5	0	0	5	
4.	C NO-75102(2376 x 6	986) RS - 2	33	31	2	0	
5.	*	- 3	33	31	2	0	
6		-4	3	3	o 2	0	
7.		-5	34	27	4	3	
8		-6	19	14	5	0	
9.		- 7	14	11	3	0	
0		-8	3	3	0	0	
•		-9	3	2	1	Ō	
2		-10	i	ī	0	Ō	
3.		-11	2	2	0	Ō	
	BDN-1		11	ō	Õ	11	
4	55.1	-12	5	4	ì	0	
5		-13	Ž	2	0	Ö	
6.		-14	ī	ĭ	Ŏ	Ö	
7		- 15	1	i	Õ	Ŏ	
8.		-16		No	germination	·	
9		-17		0	1	0	
20		-18	1	ĭ	0	Ö	
21		- 19	•	No	germination	U	
22.		20	1	0	0	1	
23.		-21	2	5	0	0	
٠,٠	BDN-1	-2.	4	Ō	Õ	4	
24.	BDN- 1	-22	7	-	germination	•	
25.		-23			germination		
26		-24	2	2	0	0	
27		-25	16	15	i I	ő	
28		-26	3	2	1	ő	
29.		-27	2	1	Ö	i	
30		-28	8	6	2	0	
3U 31		-29	14	10	4	0	
32 32		- 30	1	0	1	0	
٥٥	DDM 1	- 30	29	0	Ó	?9	
33.	BDN-1	-31	29 5	4	0	79	
JJ.		-31	Э	4	U	•	

1	2	3	4	5	6
34	C NO-75102(2376 x 6986)RS-32	2	2	0	0
35	-33	1	1	0	0
36	-34 -35	15	7 4	6	2
37 38	-35 -36	5		l ermination	0
39	-37	17	14	3	0
40	-38	18	10	8	Ŏ
41	-39	12	9	ĭ	2
	BDN - 1	7	Ō	Ô	2 7
42	-40	9	8	1	0
43	-41	4	3	1	0
44	-42	10	8	2	0
45	-43	16	14	0	2
46	-44	13	11	2	0
47 48	-45 -46	31 4	30 4	1 0	0 0
49.	-46 -47	8	6	2	0
50.	-47 -48	4	3	Ì	0
51	-49	9	7	2	Ö
	BDN-1	10	Ö	ō	10
52.	-50	1 15	9	5	1
53	C.NO-77022(2376 x 6986)x2376)B¦-1 2	1	1	0
54		B ¹ ₁ -2	No g	ermination	
55	C.NO-77054(2376x(2376 x 6986)B ¹ -R1 1	1	0	0
56		B1-R2 2	1	1	0
57		3	No a	ermination	
58		4		ermination	
59.	•	5 4	0	4	0
	BDN-1	9	0	0	9
60	C NO-77021[(2376 x 6986)x 69	86-4]			
		$B_1^1 - 1 = 3$	2	1	0
61		-2 3	1	2	0
62		-3	No a	ermination	•
63.		-4	No g	ermination	
64	C.NO-77055[6986-6 x (2376x69	86)]			
	В	2 - R1 2	2	0	0
65 .	_	- 2 5	4	1	0
00.		- 2 3	~	8	U

1	2	3	4	5	6
66	ICP-3782	7	7	0	0
67	ICP-2376 76078 [3782 x 2376]R-1	4 4	0 4	4 0	0 0
68	BDN-1	30	ō	Ö	30
69	76078 [3782 x 2376]R-2	8	8	0	0
70 .	$77023[(3782 \times 2376) \times 3782] B_1^{1}$		No	germina	tion
71	-2	j	1	0	0
72.	77056 [3782 x (3782 x 2376)] B ₁ -R1		No (germina	tion
73	-R2		No (germina	tion
74	BDN-1 C.NO-77056 [3782 x (3782 x 2376)]B ₁ ¹ -R3	19	0 No (0 germina	19 t 10n
75.	-R4		No	germina	tion
76 .	C NO-77024[(3782 x 2376) x 2376] B_1^2 -1	1	1	0	0
77.	· 2	1	1	0	0
78 .	77057 [2376 × (3782 × 2376)] B_1^2 -R1	1	0	Į	0
79	-R2			germina	tion
80	ICP-8113	4 2	4	0	0
81 82	!CP 2376 76074 [8113 x 2376] R-1	19	0 15	2 4	0 0
	BDN-1	12	0	0	12
83.	77025 [(8113 x 2376) x 8113] B_1^{1}	4	4	0	0
84	-2	2	2	0	0
85	77058[8113 x (8113 x 2376)] B ₁ -R1	19	18	1	0
86 .	-R2	6	6	0	0
87	77026 [(8113 x 2376) x 2376] B_1^2	3	2	1	0
88	-2	3	2	1	0
89	77059 [2376 x (8113 x 2376)] B_1^2 -R!	5	4	1	0
90	-R2	9	6	3	0
	BDN-1	15	0	0	15

1	2	3	4	5	6
91	ICP-2376	6	8	0	0
9?	ICP-8113	11	11	0	0
93 94	76083 [2376 x 8113] RS-1	19	13	.6	0
94 95	-2 -3	14 35	3	10	1
96	-3 -4	32	28 20	7 12	0
97	- 	47	24	17	0
98	- 6	27	24	3	Ö
99	- 7	15	10	5	ŏ
100 -	-8	18	14	4	0
	BDN-1	18	0	0	18
101	-9	26	18	8	0
102.	-10	īī	9	Ŏ	2
103	-11	31	26	5	0
104.	-12	18	12	6	0
105	-13	24	20	4	0
106	-14	28	22	6	0
107. 108.	-15 -16	31 18	17	14 7	0
108.	-16 -17	36	11 21	15	0
110	-17 -18	6	2	3	0 1
111	C.NO-75102 (2376 x 6986)RS-4	ĭ	ī	0	Ô
112	C_NO-75102 (2376 x 6986)RS-10	•	No g	jermi na	
	BDN-1		No g	jermina	tion
113	C.NO-76083 [2376 x 8113]RS-18		No g	germina	tion
114.	-1 9	19	13	6	0
115	-20	15	10	5	0
116	-21	23	9	14	0
117	-22 -23	35	19	16	0
118 119	-23 -24	44 40	16 25	28 10	0 5
120	-24 -25	51	27 27	24	0
121.	-26	24	14	10	Ö
122	-27	32	16	16	ŏ
	BDN-1	45	0	0	45
123	-28	27	14	13	0
124	-29	15	15	0	0
125	-30	75	39	35	1
126	-31	62	25	36	j
127	-32	54	31	23	0
128	-33 . -34	43 135	28 99	15 32	0 4
129.					

1	2	3	4	5 6	ı
13 <u>1</u> 132	C.NO-76083 [2376 x 8113] RS-36 -37	86 59	41 25	45 0 32 2	
133 134 135 136 137 138 139 140	BDN-1 C.NO-76083 [2376 x 8113] RS-38 -39 -40 -41 -42 -43 -44 -45 -46	39 40 14 18 18 32 89 39 43 46	0 12 4 3 6 7 33 14 17 21	0 39 27 1 10 0 15 0 11 1 22 3 51 5 25 0 25 1 25 0	3
142 143 144 145	BDN-1 76083 [2376 x 8113] -47 .48 -49 -50	17 9 8 8 5	0 0 3 2	0 17 4 4 8 0 5 0 3 0))
146	77027 [2376 x 8113] x 2376 - B ₁ -1	10	3	7 0)
147 148 149	-2 -3 -4	9 7 1	1 1 0	8 0 6 0 1 0)
150.	77060 [2376 × (2376 × 8113)]- B ₁ -QM BDN-1	5 · 8	0	5 0	
151	77028 [(2376 x 8113) x 8113] B ₂ -1	16	10	6 0)
152 153 154	· 2 · 3 - 4	16 7 10	16 5 10	0 0 5 0 0 0)
155.	77061 [8113 × (2376 × 8113)]- B ¹ -R1	55	22	0 0)
156 157 158 159	- R2 -R3 11B 7 7035	20 10 1	20 8 1	0 0 2 0 0 0 Jerminatio))
160	77062 (TTB - 7 x 7035)	3	3	0 0	
	BDN-1	9	0	0 9)

1	2	3	4	5 6
161 162 163 164	77063 (7035 x TTB-7) 7197-9 7035 77070 (7197-9 x 7035) 77071 (7035 x 7197-9)	4 4 4 20 28	4 4 4 19 28	0 0 0 0 0 0 0 1 0 0
166 167 168 169 170 171	BDN-1 7445-12 7035 77078 (7445-12 x 7035) 77079 (7035 x 7445-12) 7353-2 7035 77086 (7353-2 x 7035)	25 4 3 20 22 2 16	0 4 3 18 22 No germ 2 16	0 25 0 0 0 0 2 0 0 0 ination 0 0 0 0
173 174 175 176 177 178 179	BDN-1 77087 (7035 x 7353-2) 7088-2 7035 77094 (7088-2 x 7035) 77095 (7035 x 7088-2) 999 7035	6 16 2 15 14 36 3 5	0 16 0 15 0 32 3 5	0 6 0 0 2 0 0 0 14 0 4 0 0 0
180 181 182 183 184 185	BDN-1 77107 (999 x 7035) 77103 (7035 x 999) 7173-1 7035 77110 (7173-1 x 7035) 77111 (7035 x 7173-1)	10 29 17 1 1 11	0 25 17 0 1 11	0 10 4 0 0 0 1 0 0 0 0 0 0 0
186 187 188 189 190 191	BDN-1 TTB-7 2376 77064 (TTB-7 x 2376) 77065 (2376 x TTB-7) 7197-9 2376 77072 (7197-9 x 2376)	34 1 1 5 16 2 1	0 1 5 16 2 1	0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0
193 194 195 196	BDN-1 77073 (2376 x 7197-9) 7445-12 2376 77080 (7445-12 x 2376) 77081 (2376 x 7445-12)	10 15 6 17 44 49	0 0 2 0 41 45	0 10 15 0 4 0 17 0 3 0 4 0

1	2	3	4	5	6
198 199	7353-2 2376	5	5	0	0
199	BDN 1	4 17	0	4 0	0 17
200 201 202 203 204 205	77088(7353- 2 x 2376) 77089 (2376 x 7353-2) 7088-2 2376 77096 (7088 2 x 2376) 77096 (2376 x 7088-2)	26 24 5 4 27	26 24 0 0 0	0 0 5 4 27	0 0 0 0
206 207 208 209 210 211 212	BDN-1 999 2376 77104 (999 × 2376) 77105 (2376 × 999) 7173-1 2376 77112 (7173-1 × 2376)	15 6 1 73 67 1 14 36	0 6 0 0 0 0 0 3	0 0 1 70 66 1 14 33	15 0 0 3 1 0 0
213. 214. 215. 216 217	BDN-1 77113 (2376 x 7173 1) 118.7 3783 (la-275) 77066 (118-7 x 3783) 77067 (3783 x 118-7)	15 18 20 2 1 8	0 0 20 2 1 8	0 18 0 0 0	15 0 0 0 0
218 219	BDN-1 71979 3783	13 5	0 5	0 0	13
220 221 222 223 224	77074 (7197-9 x 3783) 77075 (3783 x 7197 9) 7445-12 3783 77062(7445-12 x 3783)	20 11 15 3 55	20 11 15 3 55	minati 0 0 0 0 0	0 0 0 0
225 226 227 228 229 230	BDN-1 77083 (3783 x 7445) 12 7353-2 3783 77090 (7353 2 x 3783) 77091 (3783 x 7353-2) 7088 2	17 18 4 2 54 17	0 18 4 2 54 17 0	0 0 0 0 0	17 0 0 0 0 0
231 232	BDN-1 3783 77098 (7088-2 x 3783)	23 3 44	0 3 28	0 0 14	23 0 2

1	2	3	4	5	6
233	77099 (3783 x 7088-2)	39	39	0	0
234	999		No germ		
235 236	3783 77106 (999 x 3783)	1 25	1 24	0 1	0
230	77107 (3783 x 999)	23	23	Ö	0
5 4 '	•				-
220	BDN-1	4	0	0	4
238 239	71 73 - 1 3783	3	0 No germ	3	0
240	77114(7173-1 x 3783)	11 '	11	0	0 10 11
241	77115 (2783 x 717301)	2	2	ŏ	Ö
242	TTB-7	ī	ī	Ŏ	Ŏ
243	Hy-3C	11	9	1	1
244	77068 (TTB-7 x Hy-3C)	2	2	0	0
	BDN-1	13	0	0	13
245	77069 (Hy-3C x TTB-7)	10	1Ŏ	Ŏ	Ö
246	7197-9	3	3	0	0
247,	Hy-3C	6	6	0	0
248.	77076 (7197-9 x Hy-3C)	15	15	0	0
249.	77077 (Hy-3C x 7197-9)	14	14	0	0
	BDN-1	26	0	0	26
250	7445-12	3	2]	0
251	Hy-3C	1	1	0	0
252	77084 (7445-12 x Hy-3C)	26 67	26 67	0	. 0
253 254	77085 (Hy-3C x 7445-12) 7353-2	3	3	0	0
255	Hy-3C			ninat	
256	77092 (7353-2 x Hy-3C)	14	14	0	0
	BDN-1	15	0	0	15
257.	77093 (Hy-3C x 7353-2)	8	8	0	0
258	7088-2	8	0	8	0
259	Hy-3C	1	1	0	0
260	77100 (7088-2 x Hy-3C)	9	9	0	0
261	77101 (Hy-3C x 7088-2)	12	12	0	0
	BDN-1	7	0	0	7
262	999	44	0	42	2
263	Hy-3C	2 35	2 32	0 3	0
264 265	77108 (999 x Hy-3C) 77109 (Hy-3C x 999)	73	32 72	0	1
266	77109 (Hy-3C x 999) 7173-1	73	0	2	Ö
267	Hy-3C	6	6	Õ	Ö
268	77116 (7173-1 x Hy-3C)	23	19	4	Ō
269	77117 (Hy-3C x 7173-1)	56	54	2	0
	• •				

1	2	3	4	5	6
	BDN-1	32	0	0	32
270	2376	8	0	8	0
271	8113	10	10	0	0
272.	77037 (2376 X 8113)	157	150	7	0
273	77038 (8113 X 2376)	60	60	0	0
274.	2376	10	0	10	0
275.	BDN-1	13	0	0	13
	BDN · 1	40	0	0	40
276.	77039 (2376 X BDN-1)	55	0	0	55
277	77033 (BDN-1 X 2376)	88	0	0	88
278.	3783-Ja-275	6	6	0	0
279.	BDN-1	40	0	0	40
280	77040 (3783 X BDN-1)	19	15	0	4
281	77034 (BDN-1 X 3783)	10	7	0	3
	BDN-1	23	0	0	23
282.	7035	7	7	0	0
283.	BDN-1	40	0	0	40
284	77041 (7035 X BDN-1	13	11	0	2
285	77035 (BDN-1 X 7035)	26	23	0	3
286	6997	6	6	0	Õ
287	BDN-1	5	0	0	5
288.	77118 (6997 X BDN-1)	33	15	0	18
000	BDN-1	19	0	0	19
289	77036 (BDN-1 X 6997)	43	0	0	43
290	2376	12	0	12	0
291	2836·1-9B (8798-77K)	6	0	0	6 2
292.	77136 (2376 X 2836-1-9B)	2 12	0	0	0
293	6997	3	12 3	0	0
294	TTB-7	59	59		
295	77137 (6997 X TTB-7)	31	59 0	0 0	0 31
206	BDN-1	5	0	5	0
296	2376	33	25	8	
297	7173-2	33 15	25 0	15	0 0
298	77135 (2376 X 7173-2)	10	ì	7	2
299.	76080 (2376 X 3782) RS-1	10	Ó	17	0
300	-2 -3	28	27	1	0
301	-3 -4	5	0	5	0
302	-4 -5	1	1	0	0
303		9	5	3	1
304	-6	8	5 7	ر ا	0
305.	-7	8 29	29	0	0
<u>306</u> .	-8		29	_	contd

1	2	3	4	5	6
307. 308. 309. 310. 311. 312. 313. 314. 315.	BDN-1 76082 (2376 X 7942) R-1 -2 -3 -4 -5 -6 -7 -8 -9 -10	33 16 33 20 16 31 19 42 16 10 6	0 16 29 19 13 29 13 39 12 9 4	0 0 3 1 1 2 5 2 4 1 2 0	33 0 1 0 2 0 1 1 0 0 0

Results of screening of F3 progenies of pigeonpea from 1977-78 sterility mosaic nursery for sterility mosaic resistance during 1978-79

APPENDIX-XXVIII

S1. No	Particular	No of plants	Infected plants	Percent incidence
1	2	3	4	5
	ICP-102-P1	27	13	48 14
1	C.No 75209-F ₂ B-S10	14	0	0 00
2.	-520		- 0	-
3	-S3 0	13	0	0 00
4	- S40 - S50	4	0	0 00
4 5 6 7	- 56 0	1	0	0 00
7	-578		Ö	0 00
8.	- \$8 0	3 3	ő	0 00
0.	BDN-1	3	3	100 00
9.	C. No. 75209-F ₂ B-S98	1	0	0 00
10.	-5100			
11,	-5110			
12	-\$120	6 2 2 7	1	16 66
13.	-5130	2	0	0 00
14	-\$140	2	0	0 00
15.	-\$15 0	3	0 0	0 00 0 00
16 17	-S160 -S170	4	0	0 00
18.	-517 % -518 0	9	ő	0 00
19.	-5190	21	ıĭ	52 38
, 5 .	BDN-1	11	11	100 00
20.	C. No. 75209-F ₂ B-S208	19	0	0 00
21	S210	2	0	0 00
22	-S22 %	2	0	0 00
23.	-\$23 0	9	0	0 00
24	- \$248	44	0	0 00
25.	-S250	8	0	0 00
26	-\$26 0	13 21	0 0	0 00 0-00
27 . 28	-\$2 70 -\$28 0	5	0 .	0 00
29	-328 6 - 5298	17	0	0 00
30	-S30 0	8	Ö	0 00
30	BDN - 1	5	5	100 00
31	C No 75209-F ₂ B-S318	5 3 3 6	Ö	0 00
32	-\$320	3	Ō	0 00
33	-\$330		0	0 00
34	-\$340	11	0	0 00
35	-\$350	_1	0	0_00
				contd

1	2	3	4	5
36	C.No.75209-F ₂ B-S36 0 -S37 0	1	0	0.00
3 7 .	² -S370	11	0	0.00
38	-\$38 0	9	0	0.00
39	-S39 &	3	0	0.00
40.	-\$40₩	1	0	0,00
41	-S41 0	4	0	0.00
42	-\$42	4	Ō	0.00
	BDN-1	7	7	10000
43.	C.No.75209-F-B-S438	17	2	11.76
44	C.No.75209-F ₂ B-S43 0 -S44 0	19	Ō	0.00
45	-S45 2	14	Ö	0.00
46	-S46 0	16	Ö	0.00
47	-S47 0	31	ŏ	0.00
48	-5480	15	0	0.00
49	-5492	16	0	0.00
50	-S50 0	5	0	0.00
	-S51 8	6	0	
51				0.00
EO	BDN-1	9	8	88,88
52	C.No.75209-F ₂ B-S52 0 -S53 0	3	0	0.00
53.		13	1	7.69
54	-S54 8]	0	0.00
55	-S55 0	14	0	0.00
56.	-S56 0	1	0	0.00
57	ICP-6891-P2	20	7	35.00
58	C.No.75248-F ₂ B-S18	9	0	0,00
59	² -S20	4	0	0.00
60	-\$3 0	9	0	0,00
61	-\$40	10	0	0.00
62	-S5 0]	0	0.00
63	-S6 0	11	0	0.00
	BDN-1	2	2	10000
64 .	C.No.75248-F ₂ B-S70	1	0	000
65	- - S8 0	5	0	0 . 00
66	-S9 0	7	0	0.00
67	- \$10 ₽	-	-	-
68	-S11 ®	-	-	-
69	- S12 ®	1	0	0.00
70	-S13 0	1	0	0.00
71.	-S14 <u>0</u>	1	0	0.00
72	-\$150	ĺ	Ō	000
73	-S16 0	21	Ö	0,00
74	-S17 0	16	ŏ	000
	BDN-1	8	8	100.00
75	C.No.75248-F ₂ B-S180	2	Õ	0.00
	3.110.702 10 1 2D-310u			

-1_	2	3	4	5
76	C.No. 75248-F ₂ B-S190	10	0	0 00
77.	-5200	2	0	0 00
78	-S21 8	14	0	0 00
79	-\$228	5	0	0 00
80	-\$238	6	0	0 00
81.	-S24 ®	0	0	0 00
8 2	-S25 ®	8	0	000
83	-S26 %	1	0	0 00
	BDN-1	1	1	100 00
84	C.No.75248-F ₂ B-S270	5 7	Ō	0 00
85	S28 0	7	0	0.00
8 6 .	-5298	4	0	0 00
8 7	-\$30 8	9	Ō	0.00
88	-5310	13	0	0 00
8 9	-S32 0	1	Ō	0 00
90	-\$33 @	7	0	0 00
91.	-S3 4Ø	11	0	0 00
92	-\$35 0	1	0	0 00
93	-\$36 8	4	0	0 00
_	BDN-1	1	1	100 00
94 .	C.No. 75248-F ₂ B-S37@	2	0	0 00
95.	-\$38 0	-	-	-
96	-\$39 0	6	0	0 00
97.	-\$400	-	-	•
98	-5410	7	0	0 00
99	-\$420	2	0	0 00
100	-\$430	4	0	0 00
101,	-\$440	21	0	0 00
102	~S45@	6	0	0 00
102	BDN - 1	9	9	100 00
103	C No 75248-F ₂ B-S468	14	0	0 00
104	- S478	19	0	0 00
05	-548 0	19	0	0 00
106. 107	-\$490	21 15	0	0 00 0 00
108	-\$50 0	5	0 0	0 00 0 00
109	-\$51 0	18	0	0 00
110	- \$520	18	0	0 00
111	-\$53 0 -\$54 0	17	0	0 00
112		26	0	0 00
	-\$55 0 BDN-1	8	8	100 00
113		10	0	0 00
114	C No 75248-F ₂ B-S560 -S570	13	0	0 00
115.	-558 0	13	0	0.00
116		11	0	0.00
117	-S59 0 -S60 0	• • • • • • • • • • • • • • • • • • • •	-	-
	-30UW			contd

1	2	3	4	5
8	C.No.75248-F2B-S618	15	0	0.00
⊹ ≀9	-S62 0	44	Ō	0.00
'20	-S63 0	9	0	0,00
121	-S64 0	7	0	0 00
122	-\$65₩	21	0	0.00
	BDN-1	6	6	10000
123	C. No. 75248-F ₂ B-S668	8	0	0.00
124.	² -S67 ®	9	0	0.00
125.	-\$68 ®	23	0	0.00
126.	-S69 Ø	7	0	0.00
127	-S70 №	13	0	0.00
128	-S71 0	5	0	0.00
129	- \$72 8	5	0	0.00
130	-S73 0	12	0	000
131.	-S74 0	9	0	0.00
	BDN-1	12 9 3	3	100.00
132	C.No.75248-F2B-S750	12	0	0.00
133.	-S76 0	32	0	0.00
134	-S77 0	17	0	0.00
135.	-S78 0	11	1	9.09
136.	-S79 &	13	0	0.00
137	-S80 0		0	0.,00
138	-S81 0	3 5 6 5 32	0	0.00
139	-S82 ®	6	0	0.00
140.	-S83 0	5	0	0.00
141.	ICP-6891-P2	32	20	62.50
	BDN-1	4	4	100.00
142		2 6	0	0.00
143	ICP-3783-3-20P1 C.No.75443-F ₂ B-S10 -S20	6	0	0.00
144	² -S20	-	-	-
145	- \$3 &	2	0	0.00
146	-S4 2	-	-	-
147	-S5 0	3	0	0 . 00
148.	-S6 0	17	0	0 . 00
149.	- S7 ®	14	0	0.,00
150.	-S8 0	15	0	0 . 00
151	-S9 0	1	0	0.00
152	-S10 0	6	0	0.00
153	-S11 0	1	0	0.00
	BDN-1	4	4	100.00
154	CNo75443-F ₂ B-S120	17	0	0°00
155	-S1369	28	0	000
- 56 ∞	-S14 0	1	0	0.00
157	-S15 @	2	0	0.00
158	-S16 8	11	0	0 . 00
				contd

1	2	3	4	5
159	C.No.75443-F2B-S178	-	-	•
160.	-51809	•	-	-
16!	-S19 0	15	0	0 00
162	-S20 0	5	0	0 00
163.	-5210	1	0	0 00
	BDN-1	3	3	100.00
164	C. No. 75443-F ₂ B-S228	12	0	0 . 00
165.	-2230	5	0	0 , 00
166	<i>-</i> \$24 0	10	1	10 00
167	-S25 0	-	-	-
168.	-S26 0	2	0	0 00
169.	-S27 6	8	0	0 . 00
170 .	-S28 0	3	0	0 00
171.	-S29 0	6	0	0 00
172.	-\$30 0	11	0	0 00
173	-5310	12	0	0 00
	BDN-1	7	7	100.00
174.	C.No.75443-F ₂ B-\$32 0	10	0	0 00
175	- - 533 0	6	0	0 00
176	-\$3 40	15	1	6 66
177	-\$35 0	21	0	0 00
178.	-\$36 0	23	0	0 . 00
₹ 79 .	-S3 70	23	0	0 00
180	-\$38 0	6	Q	0.00
181	- \$39 0	6	0	0.00
182	-\$40 8	32	0	0 00
	BDN-1	10	10	100 00
183,	C No. 75443-F ₂ B-S410	25	0	0 00
184	² -\$42 0	22	0	0 00
185	-\$430	12	0	0 00
186	-5440	6	0	0.00
187	-\$450	13	0	0 00
188	-\$460	.6	0	0 00
89	-\$470	18	0	0 00
90	-\$480	5	0	0 00
191.	-\$490	2	0	0 00
192	-\$500	16	0	0 00
100	BDN-1	2	2	100 00
193.	C No 75443-F ₂ B-S518	8	0	0 00
194	~5520	9	0	0 00
195	-\$53 0	20	0	0 00
196	-\$54 0	11	0	0 00
197	-\$550	12	0	0 00
198	-\$560	5	0	0.00
199	-S57 0	25	2	8.00
200	-\$580	5	0	0.00

1	2	3	4	5
201	C.No.75443-F2B-S598	8	0	0.00
202.	² -\$60 0	12	Ō	0,00
203	-8610	20	0	0.00
	BDN-1	16	16	100.00
204 -	C.No.75443-F2B-S620	21	0	0.00
205	² -S63 ∆	20	0	0 , 00
206.	-S64 0	7	0	0.00
207。	-S65₩	24	0	0.00
208.	- S66 ₽	28	0	0.00
209	-S67 0	3	0	0 . 00
210	-S68 0	23	3	13.04
211.	-S69 0	21	0	000
212.	-S70 0	25	3	12.00
213	-S71 @	7	0	0.00
	BDN-1	16	16	100.00
214。	C.No.75443-F ₂ B-S∑₹	16	4	2500
215.	¯ -\$73®	12	0	000
216.	-5740	11	0	0 - 00
217.	-575 0	10	0	0 ~ 00
218.	-S 76₩	14	0	000
219.	-S77 0	6	1	16.66
220.	-S78⊠	12	0	000
221.	-S 79 0	3	ì	33, 33
222.	-S8 00	-	-	-
223.	-581@	5	4	80 ., 00
	BDN-1	5 3 5	3	10000
224.	C.No.75443-F ₂ B-S820	5	0	0 , 00
225。	-S83 0	7	0	0.00
226.	-S84 0	4	0	0 00
227 .	-\$85 0	4	0	000
228。	>86 ∂	15	0	0 - 00
229.	-\$870	12	1	666
230.	- \$88 0	2	0	000
231.	-\$89 %	4	0	000
232.	-\$900	12	0	0 00
233.	5910	6	0	000
	BDN-1	5	5	100.00
234.	C.No.75443-F ₂ B-S92 0	13	2	15.38
235.	ICP-6891-P2 2	20	16	80.00
236.	ICP-7035-45-27-S208P1	3	1	33.33
237.	C.No.75229-F ₂ B-S10	6	0	0.00
238.	S200	8	0	0.00
239。	-\$3₩	1	0	0.00
240.	-S4 8	22	00	0.00
				contd

1	2	3	4	5
241	C No 75229-F ₂ B-S50	4	0	0 00
242 .	² -S6 0	2	0	0 00
243	-S7 0	13	0	0.00
244	-58 0	2	0	0.00
245.	-S9 8	9	Ō	0 00
246	-5100	17	Ö	0 00
	BDN-I	4	4	100 00
247.	C. No 75229-F ₂ B-S110	13	Ô	0 00
248	-5120	8	3	37 50
249	-5130	ĩ	Ö	0 00
250	-S140	9	ŏ	0 00
251	-\$150	9	ŏ	0 00
252	-\$160	ĺ	Ö	0 00
253	-S17 8	ì	Ö	0 00
254	-\$180	3	Õ	0 00
255	-5190	-	-	0 00
256	-\$208	8	0	0 00
250	BDN-1	2	2	100 00
257		6	0	0 00
258.	C No.75229-F ₂ B-S210 -S220	2	0	0 00
259.	-S23 0	10	0	0 00
260	- \$24 8	4	0	0 00
261	- \$25 8	3	0	0 00
262	-S26 8	13	4	30 76
263	-320 8 -S27 8	6	0	0 00
264	-\$28 0	15	ì	6 66
265	-320 8 -S29 8		,	0 00
266	-530 %	24	0	0 00
200	BDN - 1	8	8	100 00
267		12	0	
268.	C.No 75229-F ₂ B-S310 -S320	3		0 00 0 00
	-532 0 -533 0	12	0 0	0 00
269 270	-535W -5340	9	0	0.00
271		19		0.00
272	-\$35 0	9	0 0	
	-\$36 0	18	1	0 00 5 55
273	-\$37 0	12		
274.	-538 %	18	0	0 00
275	-539 6		0	0 00
276	- \$400	5	0	0 00
777	BDN - 1	10	10	100 00
277.	C No 75229-F ₂ B-S418	6	0	0 00
278	² -\$42 0	3	0	0 00
279	-5430) 12	0	0 00
280		13	4	30 76

1	2	3	4	5
281	C.No.75229-F ₂ B-S45 0 -S46 0	17	5	29.41
282.	² -S46 0	11	0	0 , 00
283.	- S47 ⊗	5	0	0.00
284.	-S48 0	8	0	0.00
285 .	- S49 &	12	0	0.00
286.	- S50 2	14	0	0.00
287.	-S51 0	16	0	0.00
	BDN-1	8	8	100.00
288.	C.No.75229-F ₂ B-S52 0 -S53 0	5	0	0.00
289.	² -S53 0	31	0	0.00
290	- S54 8	4	0	0.00
291.	-S55 0	14	0	0.00
292.	-S56 0	22	0	0.00
293。	-S57 ∆	21	0	0.00
294.	-S58 0	6	0	0.00
295.	-S59 0	23	0	000
296.	-S60 8	31	0	000
	BDN-1	6	6	100.00
397.	C.No.75229-F ₂ B-S618	22	0	000
298.	² -S62 0	-	-	-
299.	-S63 0	12	0	000
300.	-S64 0	1	0	0.00
301.	-S65 0	10	0	0.00
302.	-S66₩	3	0	0.00
303.	-\$67₩	15	0	0.00
304.	-S68 0	19	0	0.00
305.	-S69 0	3	0	0.00
306.	-S70 8	6	0	0.00
	BDN-1	1	1	100.00
307.	C.No.75229-F ₂ B-S718	7	0	0 00
308.	ICP-6929-P2 ²	Ì	1	100.00
309。	ICP-6997-139-12-P1	21	0	0.00
310.	C.No.75268-F ₂ B-S18	25	0	0.00
311.	-5219	26	0	0.00
312.	-\$38	5	0	0,00
313.	-S4 0	27	0	0 ° 00
314.	-S5 ®	23	0	0.00
315.	-S6 1 0	23	0	0.00
316.	-S7 0	23	0	0.00
	BDN-1	_ 1	1	100.00
317.	C.No.75268-F ₂ B-S88	ຶ 15	0	0.00
318.	-298	19	0	0.00
319.	-S10 0	19	0	0 , 00
320.	-S11 0	21	0	0.00
321,	-S12 @	27	0	0.00
322。	-S13 0	16	0	0.00
323。	-S14 0	25	2	8.00

1	2	3	4	5
324	C No 75268-F ₂ B-S150 -S160	23	0	0 00
325	² -\$160	38	0	0 00
326	-51700	14	0	0 00
	BDN - 1	22	22	100 00
327	C.No 75268-F ₂ B-5180	13	0	0 00
328	² ~519 0	22	0	0 00
329	-5208	19	0	0 00
330	-5210	23)	4.34
331	- \$220	21	0	0 00
33 2	-\$230	7	Ö	0 00
333	- S24 0	24	Ö	0 00
334	- \$25 0	20	ŏ	0 00
335	-\$268	3	ŏ	0 00
336	-\$2.78	12	ő	0 00
330	BDN-1	3	3	100 00
337		14	0	0 00
338	C No 75268-f ₂ B-S280 -S290	22	0	0 00
	- 530 %	27		
339	-330 6 - 5316	4	0	0 00
340		11		25.00
341	-\$32 0		0	0 00
342	-533%	21	0	0 00
343	-\$34 0	13	0	0 00
344	-\$35 0	2.	0	0 00
345	-\$360	47	.0	0 00
246	BDN - 1	19	17	89 47
346	C No 75268-F ₂ B-5370	38	0	0 00
347.	-\$380	13	0	0 00
348	-\$390	20	0	0 00
349	-\$400	20	2	10 00
350	-5410	19	1	5 26
351	-\$420	11	0	0 00
352	~\$43 0	28	0	0 00
353	· \$44 0	25	0	0 00
354	-\$45 0	16	0	0 00
3 5 5	- \$460	22	2	9 09
	BDN - 1	18	18	00 00 من
356	C No 75268-F ₂ B-S470	40	0	0 00
357	-54809	37	0	0 00
358.	-5490	49	0	0 00
359	-5508	39	0	0 00
360	-5510	2.4	0	0 00
361	-\$520	36	3	8 33
362	-S53 0	12	0	0 00
363.	-S54 8	26	0	0 00
364	- \$558	19	4	2 05
365	-S56 8	14	ó	0 00
~==				contd

1	2	3	4	5
366	C.No.75268-F2B-S578	37	0	0.00
	BDN-1	16	16	100.00
367.	C.No.75268-F ₂ B-S588	21	6	28.57
3 6 8.	² -S59 8	18	0	0.00
369.	- S60 ⊠	16	0	0.00
370.	-S61 0	23	0	0.00
371.	ICP-6929-P2	26	25	96.15
372.	ICP-3783-3-20-P1	1	0	0.00
373.	C No. 75/63-F R-SIM	13	Ö	0.00
374.	C.No.75463-F ₂ B-S1 0 -S2 0			
3/4. 37E		5	0	0.00
375.	-S3 0	10	2	20,00
376.	-\$40	11	1	9.09
	BDN-1	14	14	100.00
377.	C.No.75463-F ₂ B-S58	28	2	7.14
378.	² -S60	18	0	0.00
379.	- S7 @	5	0	0.00
380.	- S8 0	5 8	0	0.00
381.	-S9 Q	8	Ö	0.00
382.	-S10 0	18	ŏ	0.00
383.	-S11 2	16	2	12.50
384.	-S12 0	31	0	0,00
385.	-S138	2	0	0.00
386.	-\$140	27	0	0.00
387.	-S15 0	22	0	0.00
	BDN-1	19	19	100.00
388.	C.No.75463-F ₂ B-S160	9	0	0.00
389.	-S17 ®	9 3 5 8	1	33,33
390.	-S18 0	5	0	0.00
391.	-S19 0	8	0	0.00
392.	-S20 0	16	0	0.00
393.	-S21 0	25	Ō	0.00
394.	-S22 0	3	ŏ	0.00
395.	-S23 0	22	Ö	0.00
396.	-S24 8	5	0	0,00
		0		
397.	-S25 0	8	0	0.00
398.	-\$268	9	0	0 , 00
399.	-S27 0	3	0	0.00
	BDN-1	10	10	100.00
400.	C.No.75463-F ₂ B-S288	3	0	0 . 00
401.	- - S29 0	3 3	0	0 . 00
402.	-S30 ®	3	0	0.00
403.	-S31 0	29	0	0.00
404.	-S32 0	29	4	13.79
405.	-S33 0	8	ó	0.00
		<u>-</u>		contd

	2	3	4	5
406	C.No.75463-F ₂ B-\$340	15	2	13.33
407	~ -S3 5 60]	0	0 00
408	-S36 0	3	0	0 00
409	-S37 0	-	-	-
14	BDN-1	8	8	100.00
410.	C. No. 75463-F ₂ B-\$38 0	11	0	0 00
411.	² -\$39 0	4	0	0 00
412	-S40 0	-	-	_
413	-\$410	2	0	0 - 00
414.	-S42 0	7	ĺ	14 29
415	-S43 8	2	0	0.00
416.	-5440	11	Ŏ	0.00
417.	-S45 0	8	ŏ	0.00
418	-S46 0	12	ŏ	0.00
419	-S47 0	18	ŏ	0 00
	-548 0	18	0	0 00
420		5	5	100 00
401	BDN-1			
421	C.No.75463-F ₂ B-S498	22	0	0 00
422	-S50 0	11	0	0.00
423	ICP-6929-P ₂	17	17	00 00
424	ICP-7035-45-27-P1	2	0	0 00
425.	C.No.75236-F2B-S10	2 2 5 5	0	0.00
426	² -\$2 0	5	0	0 00
427	-S3 0	5	0	0.00
428	-S4 ®	1	0	0 00
429	-\$50	3	0	0 00
430	-\$60	11	0	0 00
431	-\$78	1	0	0 00
	BDN-1	6	6	100 00
432.	C No 75236-F ₂ B-\$80	4	0	0.00
433.	- \$9 8	6	0	0 00
434	-5100	1	0	0.00
435	-5110	-	-	-
436	-S120	5	0	0.00
437	-\$130	23	0	0 00
438	-5148	5	Ō	0 00
439	-\$158	_	-	•
440	-S16 0	2	0	0 00
441	-S17 0	-	-	
442	-S18 0	5	0	0 00
776		13	13	00 00'
443.	BDN - 1	5	0	0 00
	C No. 75236-F ₂ B-S190	2	0	0 00
444	-\$20 0	۷	U	0 00
445	-\$210			

1	2	3	4	5
446.	C.No.75236-F ₂ B-S22 0	-	-	-
447.	-52310	-	-	_
448.	-\$2 4 ₿	-	-	-
449.	-S25 @	-	-	-
450.	-S26 0	2	0	0.00
451.	-S2 7&	2 3	0	0.00
452.	-\$28 0	7	0	0,00
	BDN-1	8	8	100.00
453 <i>.</i>	C.No.75236-F ₂ B-S290	3	0	0.00
454。	² -S30 0	7	Ô	0.00
455.	-S31 0	8	0	0.00
456.	-S32 0	24	Ō	0.00
457.	-S33 ®	32	Õ	0,00
458.	-S34 ®	16	Ö	0,00
459.	-\$35 8	16	Ŏ	0,00
460.	-S36 2	38	3	7.89
461.	-\$37 8	27	Ö	0.00
401.	BDN-1	17	17	100.00
462.		25	'n	4,00
463.	C.No.75236-F ₂ B-S38 0 -S39 0	1	Ó	0.00
464.	-S40 0	6	Ö	0.00
465.	-S41@	15		
	-541W -542M		0	0.00
466. 467.		7	0	0.00
	-\$43 0	5 3	0	000
468	-S440	3 7	0	0,00
469	-S450	,	0	0.00
4 7 0。	-S46@	9]	11.11
471.	-S47@	9	1	11,11
470	BDN-1	16	16	100,00
472.	C.No.75236-F ₂ B-S480	7	0	0,00
473.	-\$49 0	2	0	0.00
474.	-S50 8	1	0	0.00
475.	-S51 8	1	0	000
476.	-S52 8	1	0	0.00
477.	-S53 0	2	0	0.00
478.	-S54 8	1	0	0.00
479.	-S55 8	3 2	0	0.00
480.	-\$56₽	2	0	0.00
481.	-S57 0	4	0	0.00
	BDN-1	. 12	12	100.00
482.	C.No.75236-F ₂ B-S58@	3	0	0.00
483.	-S59 0	1	0	0.00
484.	-\$60₿	-	_	-
485。	-S61 0	3	0	0,00
486.	-\$62₩	-	-	-
487 。	-S63 0	5	0	0,00
				contd.

	2	3	4	5
488	C.No.75236-F ₂ B-S640	-	•	•
489	-5650	5	0	0 00
490	-S66 8	1	0	0 00
	BDN-1	5	5	100 00
491.	C No. 75236-F ₂ B-S678	_	a .	•
492	-2680	6	0	0 00
493	-S69 ®	5	0	0 00
494	-S70 8	1	0	0 00
495.	-S71 0	3	0	0 00
496	-\$720	6	1	16 66
497	-\$73 0	-	-	-
498.	-S74 8	1	0	0 . 00
499	-\$750	4	0	0 00
500	-5760	1	0	0 00
	BDN - 1	6	6	100 00
501.	C. No . 75236-F ₂ B-S770	4	0	0 00
502	-5/80	1	0	0 00
503	-S79 0	3	0	0 00
504 -	-S80 8	5	0	0 00
505	-\$810	1	0	0 00
506	-\$82 0	-	-	•
508	- \$83 8	-	•	-
509.	-S84 0	3	0	0 00
509	- \$85 0	3 2 5	0	0 00
510.	-S86 0	5	0	0 00
	BDN-1	7	7	100 00
511	C No 75236-F ₂ B-S870	-	-	-
512	-288 0	1	0	0 00
513	-S89 0	5	0	0 00
514	-:\$ 90%	-	-	-
515	-5918	3	0	0 00
516	-\$92 %	2	0	0 00
517	-\$93 0	4	0	0 00
518	-S940	-	•	-
519	-\$950	3 3	0	0 00
520	-\$960		0	0 00
	BDN-1	3	3	100 00
521	ICP-7183 - P2	11	0	0 00
522.	ICP-6997-139-12-P1	6	0	0 00
523	C No. 75275-F ₂ B-S18	7	0	0 00
524	² -S2 0	23	1	4 34
525	~\$30	15	0	0 00
526	-\$40	32	0	0 00
527	- S 5 0	9	0	0 00
528	-560	32	0	0 00
529	-S 7 8	19	0	0 00
_	BDN - 1	10	10	100 00
				contd

1	2	3	4	5
530	C.No.75275-F2B-S80 -S90	20	0	0,00
531.	"-S9 0	1 <u>1</u>	0	0.00
532。 533。	-S100 -S110	7 1	0 0	0.00
534.	-S12 0	14	0	0 00 0 00
535.	-51380	34	Ö	0.00
536.	-S14 0	13	0	000
537 .	-S15 0	12	0	000
538.	-S160	.5	0	000
539.	-S17 0 BDN-1	17 7	0 · 7	0.00 100.00
540 a	C.No.75275-F ₂ B-S180	, 29	Ó	0,00
541.	-5190	22	ŏ	0.00
542。	-S20 0	11	0	0 - 00
543 .	-S21 8	4	0	000
544.	-S22 0	21	0	0.00
545。 546。	-S230 -S240	10 6	0 0	0°00 0°00
547.	-S25 8	2	0	0.00
548.	-S26 0	13	ŏ	0.00
549.	-S27 0	8	0	000
	BDN-1	10	8	80.00
550	C.No.75275-F ₂ B-S28 0 -S2 90	3 18	0	0.00
551 - 552 -	-329W -S30Ø		0 0	0.00 0.00
553	-S31 0	3 7	ŏ	0.00
554 .	-S32 0	9	Ō	000
555.	-\$33₿	17	0	0 . 00
556	-S34 0	4	0	0 00
557. 558.	-\$35 0 -\$3 60	19 2	0 0	0 00
556. 559.	-536W -S37W	53	0	0.00
33 7 ,	BDN-1	12	11	91.66
5 6 0 .	C.No.75275-F ₂ B-S38 0	10	0	0.00
561	-S39 ®	7	0	0.00
562	-\$400	21	0	0.00
563 . 564 .	-S410 -S420	2 10	0 0	0.00 0.00
565°	-S43 ®	5	Ö	0,00
566	-\$448	10	Ö	0.00
567.	-\$450	8	0	000
568	-S468	12	0	000
569.	-S47 6)	17 12	0 12	0.00
570.	BDN-1 C No 75275-F-B-\$480	12 7	0	10000 000
5/0.	C.No.75275-F ₂ B-S488	·		0.00

1	2	3	4	5
571.	C No 75275-F ₂ B-S498	17	0	0 00
572	² -S50®	6	0	0 00
573.	-S510	23	0	0 00
574	-S52 0	2	0	0 00
575	-\$53₿	16	0	0 00
576	-S54 0	1	0	0 00
577.	-S55 0	•	-	-
578	-\$5 60	7	0	0 00
579	-S57 0	25	Ö	0 00
• •	BDN - 1	13	13	100 00
580	C. No. 75275-F 2B-\$580	19	Ō	0.00
581.	-\$598	8	Ö	0 00
582	-S60 0	19	Ö	0 00
583	-5618	10	Ö	0 00
584	-\$628	27	Ŏ	0 00
58 5 .	-S63 A	21	ŏ	0 00
58 6	-S64 2		-	-
587	- S 6 5 0	6	0	0 00
588	-S66 0	12	Ö	0.00
J00,	BDN-1	15	15	100 00
5 8 9	C.No.75275-F ₂ B-S678	-	, ,	,00 00
590	1CP-7183-P2	<u>-</u>	_	_
591.	1CP-3783-3-20-P1	7	0	0.00
592.	C.No. 75470-F ₂ B-S18	ì	ŏ	0 00
593	-528	12	ŏ	0 00
594.	-S3 6	6	ŏ	0 00
595.	-S4 0	2	ŏ	0 00
596	- 550	-	-	-
597	- \$ 68	1	0	0 00
598	- 57 &	5	Ö	0 00
599	-58 0	14	0	0 00
333	BDN - 1	10	10	100 00
600		19	0	0 00
601	C No 75470-f ₂ B-590 -5100	9	0	0 00
602	-SII@	2	0	0 00
603.	-S120	4	Ö	0 00
	-513 0	9	1	11 11
604.	~ 3 i 3 W r 1 A M	8		0 00
605	-5140	38	0	
606	-515@	36 2)	0	0 00 4 76
607.	-516 0		1	
608	-5170	8	0	0 00
609.	-\$180	15	0	0 00
610	-\$198	28	ì	3 57
611	-\$200	17	0	0 00
	BDN-1	13	13	100 00

	2	3	4	5
612.	C.No.75470-F2B-S218	6	0	0,00
613.	- S22 0	11	0	0.00
614.	-S230 -S240	23	0	000
615。 616。	-S25 0	27 17	1 0	3.70 0.00
617.	-S26 8	6	Ö	0,00
618.	-S27 8	8	ŏ	0.00
619.	-S28 0	5 4	Ō	0,00
620.	-S29 8	4	0	0.00
621.	-\$308	2	0	0.00
622.	-S310	5	2	40.00
623。	BDN-1	10 3	10	10000
624.	C.No.75470-F ₂ B-S32 0 -S33 0	8	0 3	0 / 00 37 / 50
625.	-S34 &	-	-	-
626	-\$35 ®	1	0	0.00
627	-S3 6 Ø		0	0 - 00
628 .	-S37 ®	3 2 2 2 2	0	0.00
629。	-\$38 0	2	0	0.00
630.	-S39 8	2	0	0.00
631. 632.	-S40 0 -S41 0	. 1	0 0	0 · 00 0 · 00
032.	BDN-1	10	10	100.00
633	C.No.75470-F ₂ B-S420	-	-	-
634.	-S43 0	3	0	0.00
635.	-\$440	20	0	000
636.	-\$45 0	2	0	0.00
637.	-\$46 0	1	0	0 - 00
638 639 640:	-\$47 0 -\$48 0	4 3 1	<u>8</u> ō	8:88
640. 641	-549 % -550 %	3	0	
642.	-\$510	1	0	0.00
643.	-S52 Q	-	-	-
644。	-\$530	5	0	0 . 00
645	-S54 0	-	-	2.00
646.	-S550 BDN-1	2 12	0 12	0.00 100.00
647.	C.No.75470-F ₂ B-\$568	1	0	0.00
648.	-\$578	6	Ŏ	0.00
649	-S58 0	ą.	Ö	000
650 ₁	-S59 0	<u> -</u>	-	-
651.	-\$608		-	
652.	-S61 8	5	0	0.00
653.	ICP-7183-P2	15 11	7	46.66
654. 655.	ICP-6997-139-12-P1 C.No.75276-F ₁ B-S1 8	9	0 0	000 000
		<i>J</i>	<u> </u>	contd

6 5 8	-S 4 @	à	Ŏ	0 00
0,00	BDN-1	9 2 5	2	100 00
659.	C.No.75276-F ₂ B-S50	Ę	0	0.00
660.	-S68	16	Ŏ	0 00
	-S7 8	16	2	12 50
66).				
662	-\$8 0	20	0	0 00
663.	-598	6	0	0 00
664	-5100	5 7	0	0 00
، 665	-\$110		0	0 00
666 .	-5120	5	0	0 00
667	-\$13@	13	. 0	0 00
6 6 8.	-5140	7	0	0 00
	BDN-1	6	6	100 00
6 6 9	C. No. 75276-F ₂ B-S150	15	0	0 00
670	² -S16 8	8	0	0.00
671	-S17 &	6	0	0 00
672	-518@	5	Ō	0 00
673	-5198	12	ĭ	8 33
674.	-S20 8	18	ò	0 00
675	-S21 0	14	Ö	0 00
676	-5220	24	0	0 00
677	-S23 0	12	0	0 00
678	-\$240	8	0	0 00
474	BDN-1	3	3	100.00
679	C.No.75276-F ₂ B-S250	29	0	0 00
680	- 5200	15	0	0 00
681.	-S27 0	6	0	0 00
682.	-S28 0	-	•	•
683	-529 0	20	0	0 00
684	-S30 0	10	0	0 00
685.	-S31 &	3	0	0 00
68 6	-\$320	7	0	0 00
687	- S33 Ø	9	0	0 00
688.	-\$340	19	0	0 00
	BDN-1	8	8	100 00
68 9 [×]	C No 75276-F ₂ B-S350	17	0	0 00
690.	-\$360	18	Ö	0 00
69	-\$370	3	Õ	0.00
692	-538 0	ĭ	Ŏ	0 00
693 .	-539 2	32	Ö	0 00
694	-539W -\$40 0	27	0	0 00
		22	0	0.00
695.	-S4180	33	0	0.00
696	-5420	აა	<u> </u>	
				contd

1	2	3	4	5
697.	C.No.75276-F ₂ B-S43 0 ICP-7186-P2	14	0	0.00
698.	ICP-7186-P2	6	0	0°00
699.	ICP-3783-3-20P1	- 9	9	100.00
700 .	BDN-1 C.No.75471-F ₂ B- <u>\$1</u> 0	14	1	100.00 7.14
701.	-S2 8	6	Ö	0.00
702.	-S3 0	7	Ö	000
703.	-S4 Ø	7	0	0.00
704.	-S5 0	8	0	000
705 a	-S60	-	-	0.00
706。 707。	-S7∰ -S8∰	3 7	0 0	0.00 0.00
708.	- \$98		-	-
709.	-\$100	4	0	000
710.	-5110	2 6	0	000
	BDN-1		6	100,00
711.	C.No.75471-F ₂ B-S120	11	0	0.00
712.	² -S13 0	4	0	0.00
713. 714.	-S140 -S150	7 5	0 0	0.00
715.	-S16 <u>8</u>	5 2	Ö	0.00
716.	-S17 0	23	Ŏ	0,00
717.	-S18 0	8	0	000
718.	-S19 8	1	0	0.00
719	-S20 8	21	1	4.76
720.	-S21 0	5	0	000
721.	-S22 0 BDN-1	14 16	0 16	0 · 00 100 · 00
722.	C. No. 75471-F ₂ B-S238	18	0	0.00
723.	-\$240	-	-	-
724 。	-S25 0	22	0	0.,00
725.	-S26 0	14	0	000
726	-\$27 8	3 5	0	000
727 。 728 .	-S28 0 -S29 0	21	0 0	0.00 0.00
729.	-S29 8 -S30 8	10	0	0.00
730.	-S31 0	26	ŏ	0.00
731.	-S32 ®	15	Ō	000
	BDN-1	5	5	100.00
732.	C.No.75471-F ₂ B-S338	9	0	000
733.	-5340	21	0	0.00
734。 735』	-\$35 0 -\$3 60	2 5	0 0	0 00 0 00
736.	-530W -537 W	10	1	1000
737.	-S38 0	15	ò	0.00
				contd

	2	3	4	5
738	C No. 75471-F ₂ B-\$390	10	0	0 00
739	² -\$40 0	3	1	33.33
740.	-541@	4	0	0 00
741	-\$420	1	0	0 00
742	~S43 0	4	0	0 00
743.	-S44 ®	16	0	0 00
	BDN-1	9	9	100 00
744	C No 75471-F ₂ B-S450	8	0	0 00
745,	² -S46 8	2	0	0 00
746	-S47 ®	9	1	11.11
747	-5488	2	0	0.00
748.	-S49 ®	5	0	0.00
749	-S508	-	-	-
750	-5518	2	0	0 00
751	-S52 0	-	-	-
752.	-\$53₿	2	0	0 00
753	-\$540	18	0	0 00
754	-5550	7	0	0 00
	BDN-1	14	14	100 00
755	C.No. 75471-F ₂ B-S568	1	0	0 00
756	-S57 8	17	0	0 00
757	-\$580	18	0	0.00
7 5 8	-S59 &	6	0	0.00
759	-5608	10	0	0 00
760	1CP-7186-P2	13	7	53 84

APPENDIX-XXIX

Results of screening of F4 progenies of pigeonpea from 1977-78

sterility mosaic nursery for sterility mosaic resistance during 1978-79

S1. No.	Particular	No. of	Infected plants	Percent infection
1	2	plants 3	4	5
1.	ICP-2624-P ₂ -ST-1	6	6	100.00
2.	C.No.74348-F ₃ B-S18	9	6	66.00
3.	-S2 ®	9 11	3	27.27
4.	-S3 0	6	0	0.00
	BDN-1	11	10	90.90
5.	C.No.74348-F ₃ B-S4 <u>B</u>	14	0	0.00
6.	³ - \$5 0	1	0	0.00
7.	-\$6₩	5	0	0.00
8.	-S7 ®	1	0	0.00
9.	-S8 0	6	0	0.00
10.	- S9 Ø	9	0	0 . 00
11.	-S10 Ø	9 2 7	2	100.00
12.	- S11 0		0	0.00
13.	-S12 0	10	0	0.00
14.	-\$138	5	0	0.00
	BDN-1	12	11	91.66
15.	C.No.74348-F ₃ B-S140	19	0	0.00
16.	-5150	11	0	0.00
17.	-S16 0	17	7	41.17
18.	-S17 0	14	4	28 - 57
19.	-S18 0	22	2	9.09
20.	-S19 8	27	0	0.00
21.	-S20 <u>0</u>	6	0	0.00
22.	-S21 0 -S22 0	23 15	2 0	8.69
23. 24.	-522W -523 0	2	0	0.00 0.00
24.	-323W BDN-1	4	4	100.00
25.	C.No.74348-F ₃ B-\$248	25	0	0.00
26.	-\$25 8		2	22.22
27.	-S26 8	9 8 2 7	2 1	12.50
28.	-S27 ®	2	Ò	0.00
29.	-\$280	7	ŏ	0.00
30.	-\$29	27	3	11.11
31.	-S30 0	13	3 6	46.15
32.	-\$310	12	Ö	0.00
33.	-S32 0	23	0	0.00
:4	BDN-1	7	7	100.00
. <u>i</u>	C.No.74348-F ₃ B-S338	17	0	0.00
				contd

1	2	3	4	5
36.	C.No.74348-F ₃ B-\$350	21	0	0.00
37.	-536 W	6	0	0.00
38.	-\$37 0	16	0	0 00
39.	-\$38 0	27	0	0 00
40.	-S39 0	29	0	0 00
41.	-S40 0	10	0	0 00
42.	-S416	27	0	0 00
43.	-5420	11	0	0 00
44.	-\$43 ® BDN-1	9 17	0 17	0 00 100 00
45		5	0	0.00
46	C.No.74348-F ₃ B-S44 @ -S45 @	34	0	0.00
47.	-S4 68	39	Ö	0.00
48.	-S47 0	13	2	15.38
49.	-\$48 0	5	Ō	0.00
50 .	-\$498	17	8	47 05
51,	-S50®	21	4	19 04
52.	-\$518	6	0	0 00
53	-\$52₩	6	2	3333
	BDN-1	-	-	-
54.	C. No. 74348-F ₃ B-S538	-	-	_
55 .	-55410	2	0	0 00
56 ·	-S5 50	-	-	. -
57 ,	-S56 0	2	0	0 00
58 -	-S57 0	4	0	0 00
59 .	-\$58 0	2	0	0 00
60.	-\$59 0	2	0	0.00
61.	-S608	4	0 0	0 00 0 00
62. 63.	-S61 0 -S62 0	2 4 2 2 4 3 5	0	0 00
03.	BDN-1	-	-	-
64.	C.No.74348-F ₃ B-\$638	10	3	30 00
65.	-\$64B	-	-	-
66.	-\$65 0	1	0	0 00
67.	-S66 2	13	0	0.00
68 .	-\$670	12	0	0 00
69.	-S68 8	8	Q	0 00
70.	-S698	15	2	13.33
71.	C.No.74348-F3B-S708	22	1	4 54
72.	-5/100	.8	0	0 00
73.	-S72 0	17	0	0 00
7.4	BDN-1	17	17	100 00
74.	C No 74348-F ₃ B-S738	24	0	0.00
75	³ -\$74 0	11	0	0.00
				contd

	2	3	4	5
76.	C.No.74348-F3B-S750	15	3	20,00
77.	-S760	14	Ō	0,00
78.	-S77 ⊠	3	0	0.00
79 。	-S78 ®	20	4	20 . 00
80 [.]	-S79 ⊠	15	0	000
81.	-\$80₩	-	-	-
82.	-S81 0	27	0	000
	BDN-1	12	12	10000
83.	C No.74348-F3B-5820	11	0	0.00
84.	-\$ 83 0	3	0	000
85.	-\$84₩	6 7	Ō	0 - 00
8 6 .	-S85 0	7_	1	14.28
87.	-\$8 60	5	Ō	0.00
88.	-S87 ®	4	0	0.00
89.	-\$88 0	2	0	0.00
90.	-S89 ®	1	0	0.00
91.	-S90 0	7	0	0.00
92.	-5910	2	0	0.00
93.	-S92 0	11	0	0.00
0.4	BDN-1	6	6	100.00
94.	C. No. 74348-F ₃ B-S93@	-	-	0.00
95.	-S94 0	2 3	0	0.00
96.	-S95 @	3 1	0	0.00
97.	-\$9 60		0	0.00
98.	-S97 0	14	0	0.00
99.	-\$98 0	5 7	1	20.00
100 . 101 .	-S99 0 -S100 0	22	0 0	0 · 00 0 · 00
102.	-S100W -S101Ø	2	0	0.00
103	-S102 8	19	0	000
103.	BDN-1	12	12	100.00
104		, ,	-	100.00
105.	C.No.74348-F ₃ B-S1Q3 0 -S104 0	23	0	0.00
106	-S105 ®	26	2	7.69
107.	-S106 ®	21	Ō	0.00
108	-S107 0	21	Ö	0.00
109	-S108 0		-	_
110.	-S109 8	10	2	20.00
111.	-S110 0	11	Ō	0.00
112	-\$1110	23	3	13.04
113.	-S112 0	40	Ô	0.00
	BDN-1	12	12	100.00
114.	C.No.74348-F ₃ B-S1130	10	0	0,00
115.	3 -S114 0	9	Ó	0.00
				contd

116	0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
117	0 00 0 00 0 00 0 00 0 00 0 00 100 00
119	0 00 0 00 0 00 0 00 0 00 100 00
119	0 00 0 00 0 00 0 00 100 00 0 00
120	0 00 0 00 0 00 100 00 0 00
121	0 00 0 00 100,00 0.00
122.	0 00 0 00 100,00 0.00
123.	100.00
BDN-1 124. C.No.74348-F ₃ B-S123\(\text{B} \) 125S124\(\text{B} \) 126S125\(\text{B} \) 127S126\(\text{B} \) 128S127\(\text{B} \) 129S128\(\text{B} \) 130S129\(\text{B} \) 131S130\(\text{B} \) 6 0	0.00
124. C.No.74348-F3B-S1238 8 0 125. -S1248 1 0 126. -S1258 12 0 127. -S1268 7 1 128. -S1278 2 0 129. -S1288 41 0 130. -S1298 4 0 131. -S1308 6 0	
125. -S124@ 1 0 126. -S125@ 12 0 127. -S126@ 7 1 128. -S127@ 2 0 129. -S128@ 41 0 130. -S129@ 4 0 131. -S130@ 6 0	
126. -\$125@ 12 0 127. -\$126@ 7 1 128. -\$127@ 2 0 129. -\$128@ 41 0 130. -\$129@ 4 0 131. -\$130@ 6 0	0 - 00
127. -\$126@ 7 1 128. -\$127@ 2 0 129. -\$128@ 41 0 130. -\$129@ 4 0 131. -\$130@ 6 0	0.00
128. -S1276 2 0 129. -S1286 41 0 130. -S1296 4 0 131. -S1306 6 0	14 28
129S1280 41 0 130S1290 4 0 131S1300 6 0	0.00
-S129 0 4 0 131 -S130 0 6 0	0 00
-S130 0 6 0	0 00
	0 00
132. - \$131 0 1 0	0.00
-S132 0 12 0	0 - 00
BDN-1 3 3	100.00
134 C.No.74348-F ₃ B-S133 0 7 0	0 00
135 -S134 0 5 0	0 00
136. - \$13 50 20 3	15 00
137S136 0 15 0	0 00
-S137 0	
-S138 0 14 0	0.00
140. - \$139 0 - -	-
-S140 0 11 0	0 00
142. - \$141 0 9 2	22 22
143. -\$1420 19 6	31 57
BDN-1 1	100 00
144 C.No. 74348-F ₂ B-\$143 0 13	7 69
1455!4489 11 4	36 36
146 - \$145 0 25 0	0 00
-S146 0 13 0	0 00
148. -S1470 14 0	0 00
149. –S148 0 27 0	0 00
150 _° -S149 0 16 0	0 00
151 ₀ -S150 8 0 22 0	0 00
152, -S151 0 4 2	50 00
BDN-1 12 12	100 00
153 C No 74348-F 3B-\$152 0 26 0	0 00
154. 3 -S153 8 13 0	0 00
155. - \$154 0 6 0	0,00

	2	3	4	5
56	C. No. 74348-F ₃ B-S1550	2	0	000
57	-2120M	2 3	0	000
58	-S157 &	3	0	Q., QO
i 59 .	-\$1588	-	-	. •
₹60 -	-S159 0	1	0	0 - 00
√61 160	-S160 0	8	0	0.00
162	-\$1610	9	0	0.00
160	BDN-1	7	7	100 00
63 64	C.No.74348-F ₃ B-\$162@	-	-	-
65	-S1630 -S1640	14	0	0.00
166	-S1650	26	2	7.69
167	-51668	4	Õ	000
168	-51678		ŏ	0.00
169.	-\$1688	2 2	ŏ	0.00
170	-\$1698	13	Ö	000
171	-S170®	7	Ö	0 00
172	1CP-7086-P ₂	-	-	-
173.	ICP-7035-45-27-S20B-P ₁	-	-	-
	BDN-1	2	2	100.00
174.,	C.No.74321-F ₃ B-S18	•	-	-
175.	- - S2 0	30	0	0.00
176.	-S3 ®	18	0	0 00
177.	-540	15	2	13 33
178.	-S50	7	0	0.00
179.	-S60	5 12	0	0.00
180	-\$7 0 -\$8 0	5	2 0	16,66 0,00
181 182	-30 w - S9 Ø	15	1	6.66
183	-S10 0	9	Ö	0 00
184	-S118	15	ĭ	6 66
185.	-5120	34	17	50.00
	BDN-1	18	18	100.00
186	C.No.74321-F3B-S130	20	6	30.00
187.	³ -\$14 0	34	0	0 - 00
188.	-S150	13	0	000
189	-S 16 Ø	26	1	384
190	-S17@	30	2	6, 66
191	-5188	9	0	0.00
192	-S19@	10	0	0 00
193	-\$20 0	14	7	50.00
194	-S21 8	4	0 7	0.00 21.21
195	-S22 0	33 22	<i>'</i>	13 63
196.	-S23® BDN-1	7	3 7	100.00
	וועט איין אוועט		<u> </u>	contd
				Contu

1	2	3	4	5
197.	C.No.74321-F ₃ B-S240 -S250	7	0	0.00
198.	-S25 8	1	0	0 00
:99.	-S260	13)	7 69
200 201 。	-S27 0 -S28 0	5 4) 2	20 00
202.	-529 &	1	2 0	50 00 0 00
203	-\$308	5	ì	20 00
204	-\$310	24	Ö	0 00
205	- \$32 0	2	0	0 00
206	-\$330	11	3	27 27
207.	-5340	15	0	0 00
200	BDN-1	3	3 2	100 00
208. 209.	C.No.74321-F ₃ B-S350 -S360	18	2	11 11
210.	-537 0	14 13	2 0	14 28 0 00
211.	-538 0	14	11	78 57
212.	-S39 ®	22	1	4 54
213.	-\$400	4	1	25 00
214.	-5410	-	-	-
215.	-\$420	12	0	0 00
216	-\$430	20	13	65.00
217.	-S44®]]	3	27 27
218.	BDN-1 C No. 7/321-F R-S/150	15 3	15 1	100 00 33 33
219.	C.No.74321-F ₃ B-S45@ -S46@	14	3	21 42
220	-\$47 %	i	ŏ	0 00
221.	-\$480	40	0	0.00
222	-5490	14	1	7 14
223	-\$500	.6	0	0 00
224 .	-5510	12	6	50 00
225 . 226 .	-\$520 -\$530	20	0	0 00
227.	-554 %	5	0	0 00
228.	-\$5 5%	-	-	-
	BDN-1	10	10	100 00
229 .	C.No.74321-F ₃ B-S560 -S570	18	9	50 00
230		13	0	0 00
231	-\$58 8	17	5	29 41
232	-\$590	15	3	20 00
233 234	-S60 8	8 1	2	25 00 0 00
234 . 235	-\$61 0 -\$ 620	4	0 0	0 00
236.	-563 <u>8</u>	13	0	0 00
237	-S64®	1	Ö	0 00
238.	-S65 %	3	1	33 33
	BDN-1	_	-	
-				

1	2	3	4	5
239	C No 74321-F ₃ B-S660	11	0	0.00
240	-26/10	2	0	0.00
241	-\$688	-	-	-
242.	-\$698	1	0	0.00
243	-5708	16	0	0 . 00
244	-S71 0	-	-	
245	-S72 0	30	0	0.00
246	-S738	23	1	4.34
247 248	-S74 0 -S75 0	9	0	0,00
249	-575W - 576 W	- 4	2	50°00
243	BDN-1	4	4	100.00
250	C No. 74321-F ₃ B-S778	6	Ŏ	0.00
251.	-S780	8	Ô	0.00
252.	-5790	5	Ö	0.00
253.	-S80 0	5 8	Ŏ	0.00
254	-S81 8	3	Ö	0.00
255	-S82 0	1	Ō	000
256	-\$838	22	Ō	000
257	-S84 0	1	0	0 00
25 8	-S85 0	8	0	0 . 00
259	-S8 60	6	0	0.00
260.	-S8 7®	8	0	0 ^ 00
261	-\$88 0	-	-	-
262	-S8 9&	j	0	0.00
	BDN-1	4	4	100.00
263	C.No.74321-F ₃ B-S908	,5	.0	0.00
264	-S918	18	17	94.44
265	-\$92 0	-	-	- 00
266	-\$93 0	4	0	0.00
267	-S94 0	7 12	0	0.00
268 269	-S95 0 -S96 0	9	0 2	0.00 22.22
270.	-597 &	10	10	100.00
271.	-S98 0	3	0	0.00
272	-S99 &	16	ĭ	6.25
273	-S100 2	25	2	8,00
274.	-S101 0	10	ō	0.00
275	-\$102	23	7	30,43
	BDN - 1	17	17	100.00
276	C.No.74321-F ₃ B-S1038	9	Ō	0.00
277.	-S104 ®	7	2	28.57
278	-\$105 0	10	0	0.00
279	- S106 2	11	0	0,00
280	-S107 ®	25	00	0.00
				contd

	2	3	4	5
281,	C No.74321-F ₃ B-S108@	9	0	0.00
282	-51090a	6	1	16 66
283	-\$110@	8	0	0.00
284	-\$1110	2	0	0 00
285	- \$1120	-	-	
286	-\$1130	10	1	10.00
207	BDN-1	14	14	100 00
28 7 288.	C.No.74321-F ₃ B-S1140 -S1150	14]	7 14
28 9 .	-S1160	5 20	3 0	60 00 0 00
290	-S1170	3	2	66.66
291.	-51180	8	Ō	0 00
292	-51190	4	Ö	0 00
293.	-\$1209	4	Ö	0.00
294.	-\$1210	1	0	0 00
295.	-51220	13	0	0 00
296	-\$1230	18	0	0 00
297	-\$1240	5	0	0 . 00
298	-\$1250	4	0	0.00
299.	-\$1269	10	0	0.00
	BDN-1	16	16	100.00
300.	C.No.74321-F ₃ B-S1270	26	0	0 00
301.	-\$128 9	27	0	0 00
302 303	-S129 @ -S130 @	11 9	1 0	9.09 0.00
304	-3130 % -S131 9	5	0	0.00
305	-\$1329	21	3	14 28
306	-S133@	3	ő	0.00
307	-S134Q	14	Õ	0 00
308	-S135 9	22	0	0 00
309	- S136@	22	0	0.00
310.	-S137@	44	23	52 27
311	S1380	2	0	0 00
	BDN-1	17	17	100.00
312.	C No. 74321-F ₃ B-S139@	29	8	27.58
313	-S1400	18	3	16 66
314	-51410	20	6	30 00
315	- \$1429	12	0	0.00
316	\$1439	- 1	-	0 00
31 <i>7</i> 318	-\$144 9	·	0	0 00
318	-5145 0 -5146 0	- 3 2 6 7	0	0.00
320	-5147 0	2	0	0 00
321	-\$148@	6	Ö	0 00
322	-3149 g	7	Ö	0 00
	BDN-1	7	7	100 00
				contd

			4	5
323.	C.No.74321-F ₃ B-S1500	3 5	0	000
324.,	³ -S151 @	5	0	0.00
325.	-S152 @	-	-	-
326 .	-S153 Q	1	0	0.00
327	-S154Q	1	0	0.00
328.	-S155 @	1	1	100.00
329.	-S156 Q	2	1	50.00
330.	-S157 @	2 5 4 7	0	0 00
331	-S158 2	4	0	0.00
332	÷S159 @	7	0	0.00
333.	-S160 @	-	-	-
334 .	-S161 @	15	3	2000
	BDN-1	3	3	100.00
335 .	C.No.74321-F ₃ B-S1620	-	-	-
336.	³ -S163 Q	8 2	1	12.50
337	-S164 ₽	2	0	0.00
338.	-S165 @	26	2	7 . 69
339.	-S166 @	7	0	0.00
340.	-S167 0	12	5	41.66
341	-S168 Q	2	0	0.00
342.	-S169 Q	13	6	46.15
343	-S170 Q	35	3	8.57
344	-S17 1Q	18	0	0.00
	BDN-1	3	3	100 .00
345.	C.No.74321-F ₃ B-S172@	18 3 6 3	0	0.00
346	³ -S173 Q	3	3	100.00

APPENDIX-XXX

Results of screening of F₅ progenies of pigeonpea from 1977-78

<u>sterility mosaic nursery for sterility mosaic resistance during 1978-79</u>

<u>51</u>	Particular	No. of plants	Infected	Percent infection
No 1	2	3	plants 4	5
1.	ICP-7404-10-1-518	25	0	0 00
2	-\$20	13	ī	7 69
3.	-\$38	17	0	0 00
4	-540	22	Ō	0 00
5.	- S5 %	17	0	0 00
6	ICP-3783- 3 -2-Br	-	-	-
7.	C.No.73076-F ₄ B-S18	8	0	0 00
8	- 520	17	0	0 00
9	- 530	١7	0	0 00
10	- S4 0	16	0	0 00
	BDN-1	7	5	71 42
11.	C No 73076-F ₄ B-S58	19	12	63 15
12.	-568	20	10	50 00
13.	-S70	7	ì	14 28
14.	-580	32	10	31 25
15.	-S9 0	- 27	12	44 44
16. 17.	-S100 -S110	3	0	0 00
18	-S12®	25	15	60 00
19	-S13 0	41	13	31 70
20.	-S14 8	35	3	8 57
20,	BDN-1	ì 9	18	94 73
2 :	C No 73076-F4B-S150	16	7	43 75
22	-5160	16	8	50 00
23	-S170	25	0	0 00
24	- \$180	22	10	45 45
25.	-5198	47	1	2 12
26	-S2 0	11	0	0 00
27	- \$210	4	1	25 00
28	- S22 0	4	0	0 00
29	*\$ 2 3 8	30	. 0	0 00
	BDN - 1	10	9	90 00
30.	C.No 73076-F ₄ B-S240	16	Ó	0 00
31	T - \$25 0	16	1	6 25
32	- \$260	12	0	0 00
33.	- \$27 0	21	14	66 66
34.	-\$280	7 7	0	0 00
35.	- 5290		0	0.00

1	2	3	4	5
36	C.No.73076-F4B-S308	6	0	0.00
37 .	'-\$31 ®	7	1	14 . 28
38.	-S32 0	15	0	000
39.	-S33 0	27	1	3.70
40	-S34 @	9	0	0.00
41.	-S35 0	17	13	76.47
42.	BDN-1	22 16	22 5	100 ° 00 31 ° 25
43.	C.No 73076-F ₄ B-S36 0 -S37 0	9	0	0.00
44	-S38 0	17	6	35, 29
45.	-S39 ®	í	ŏ	0.00
46.	-\$40	19	Ŏ	000
47	-\$410	14	6	42.85
48.	-S42 0	18	4	2222
49.	-\$430	4	0	0 - 00
50.	-S44 ®	23	5	21.73
51.	-\$450	7	0	0.00
	BDN-1	9	9	100 00
52.	C.No.73076-F4B-S460	9 6	Ō	0.00
53.	· -\$478		1	16.66
54	-S48 0 -S49 0	9 10	9	100.00
55 . 56 .	-S50 2	15	0 1	6 66
57.	-550 <u>w</u> -551 0	1	Ó	0.00
58.	-S52 0	7	Ö	0.00
59 .	-S53 0	19	3	15.78
60	-\$540	16	Ö	0 00
61.	-\$550	40	5	12 50
	BDN - 1	22	22	100.00
62	C.No.73076-F4B-S560	14	0	0 00
63	`-S57 Ø	1	0	0 00
64.	-\$58 0	7	0	0.00
65	-S59 8	7	0	0.00
66.	-\$60 8	14	5	35.71
67 .	-S618	22 14	0	0.00 7.14
68. 69.	-S62 0 -S 6 3 0	14	1 0	0.00
70.	-564 8		0	0.00
70. 71.	-S65 8	5	Ö	000
• •	=303 & BDN - 1	6 5 9	9	100.00
72	C.No.73076-F4B-S668	16	í	6,25
73	-S67 Ø	9	Ò	000
74	-S68 0	9 3	Ō	000
75.	-S69 8	11	0	0,00
76.	-S70 0	20	0	0.00

	2	3	4	5
77,	C.No 73076-F4B-S718	20	0	0 00
78	-5/20	•	-	-
79.	-S73 0	5	0	0 00
80	-5740	27	10	3 70
81.	-5750	11	0	0 00
	BDN-1	22	22	100 00
82 -	C.No.73076-F ₄ B-\$768 -\$778	5	0	0 . 00
83.	⁻ -\$77 8	24	0	0 00
84 .	• -S78 ®	23	4	17 39
85.	-S790	7	3	42 85
8 6 .	-\$80₿	48	6	12 50
87	-S81 0	7	0	0 00
88	- \$82 0	42	13	30 95
8 9 .	-\$83 0	12	1	8 33
90	- \$84 0	2	0	0 00
91.	-S85 0	-	-	•
	BDN - 1	41	41	100 00
92.	C.No 73076-F ₄ B-S860	3	0	0 00
93 .	⁴ -S87 ®	13	2	15.38
94,	- \$88 0	12	0	0 00
95	- S8 90	-	-	-
96.	-3900	9	0	0 00
97	-\$910	3	0	0 - 00
98	- \$920	27	8	29 . 62
99.	-\$93 0	4	1	25 00
100	-5940	3	0	0 - 00
101	-5950	23	0	0.00
102	- \$960	1	0	0 00
103.	- \$97@	11	0	0 00
	BDN-1	10	10	100.00
104	C.No 73076-F ₄ B-5980	11	0	0 00
05	4 - \$990	15	0	0 00
06	-5:000	3	;	33 33
107	-51018	12	3	25 00
108	- S · O2®	9	0	0 00
109	-\$\038	21	0	0 00
110	-51048	5	0	0 00
111.	-51050	5 7	0	0 00
112.	-\$1060	20	0	0 00
113	-51078	11	0	0 00
114	-51080	10	Ö	0 00
	BDN-1	8	8	100.00
115	C.No.73076-F4B-\$1098	12	0	0 00
116.	-51108	10	Ō	0 00
117	-51110	20.	Ō	0.00
		j		contd

1	2	3	4	5
8	C.No.73076-F ₄ B-S1128	9	0	0.00
۰9.	-51130	3	1	33,33
120.	-\$1148	18	0	0.00
121.	-S1150	9	0	0.00
+22 . ±23 .	-S1160 -S1170	10 13	0 0	0 · 00
124	-S118 0	19	3	15.78
	BDN-1	ii	11	100.00
125	C.No.73076-F4B-S1190	7	1	14.28
126	· - \$120 8	6	1	16, 66
127.	-\$1218	8	0	0.00
128	-S122 0	3	0	000
129 130 -	-S1230 -S1240	10 22	0 0	0.00 0.00
131.	-31246 -S1258	8	0	0.00
132	-\$1260	35	8	22.85
133	-S127 0	3	Ö	0.00
134.	-S128 0	10	9	90 - 00
135	-S129®	37	21	56.75
	BDN-1	15	15	100.00
'36	C No.73076-F ₄ B-S1308	14	2 0	14.28
37 138	~ - S1310 - S1320	32 6	0	0 · 00 0 · 00
139.	-S133 0	21	0	0.00
140	-S134 0	13	Ŏ	0.00
141	-S135®	37	0	0.00
142.	-S13 6 Ø	26	0	0.00
143	-\$137 \	4	0	000
144.	-\$1380	4	0	0.00
145	-S139 6	22 17	0 17	0,00 10000
146.	BDN-1	24	1	4.16
147	C No.73076-F ₄ B-\$140 <u>0</u> -\$141 <u>0</u>	13	i	7 69
148	-51420	25	i	4 00
149	-51430	3	0	0.00
150.	-S144®	1	0	000
151.	-\$1450	4	0	0.00
152.	-51460	12	0	0 - 00
153.	-S147 ®	-	-	-
154	-S148 0 BDN-1	- 47	47	100.00
155	C.No 73076-F ₄ B-S1490	41	41	-
56	-\$1508	-	-	_
157	-51510	4	0	000
158	-51520	31	2	6.45
				contd

	2	3	4	5
159		10	0	
160	C No 73076-F ₄ B-51530 -S1540	35	6	0 00 17 14
161	-51550	28	22	78 57
162	-\$1568	20		10 31
163	-51578	-	-	-
	-51580	12	-	16.66
164			2	16 66
165	-S1590 BDN-1	11	0	0 00
166		13	13	100 00
166	C. No 73076-F ₄ B-\$1600	13	1	7 69
167	-51610	9	0	0 00
168	-51620	15	0	0 00
169	-5163 0	22	2	9 09
70	-\$1640	12	, O	0 00
71	-51658	32	11	34 37
172	-S1660	12	1	8 33
173.	-51678	18	0	0 00
174.	-51680	10	.0	0 00
	BDN-1	15	15	,00 00
175.	C No 73076-F ₄ B-S1698	30	16	53 33
176.	4 -S1708	6	0	0 00
177	-51710	10	0	0 00
178.	-\$1720	11	0	0 00
179	-\$1730	11	0	0 00
180 .	-\$174 8	42	0	0 00
181	-S1750	22	0	0 00
182	-517 6 8	13	0	0 00
183	- 5ì 7 7 8	8	ì	12 50
184	-51780	8	ì	12 50
	BDN - 1	5	5	100 00
185.	C No 73076-F ₄ B-51798	1	0	0 00
36	^ - \$\frac{1}{2}80\text{0}	4	0	0 00
87	-5°8; ®	3	0	0 00
88	-5 82 0	10	0	0 00
≀8 9	-\$183 0	•	-	-
190	-51840	12	1	8 33
191.	-S`85 0	8	0	0 00
192	-S\8 6 0	13	1	7 69
193	1-51870	7	4	57 \ 4
194	-51880	42	15	35 71
	BDN-1	22	22	:00 00
195	C No 73076-F4B-51890	10	3	30 00
¹ 96	-51908	20	3	15 00
197	-51918	3	Ō	0 00
98	-51920	16	3	18 75
199	-51930	1]	Ö	0.00
200	-5:940	-	-	-

1	2	3	4	5
20:	C.No.73076-F ₄ B-S1950	9	0	0.00
202	⁴ -S196 8	19	0 7	36.84
203	-S197 ®	31	5	16.12
204	-5198@	19	14	73 . 6 8
	BDN-1	17	17	100,00
205.	C.No.73076-F ₄ B-S1998	31	7	2258
206	4 -S200 8	8	0	0.00
207	-S201 0	. 10	ī	10,00
208.	-S202 ®	6	Ó	0.00
209	-S203 %	24	23	95.83
210.	-S204 8	8	0	0.00
211	-S205 0	12	_s 5	41.66
212	-\$2060	16	Ö	0.00
213.	-S207 8	ì	ŏ	0.00
214.	-\$208 8	20	ĭ	5,00
6. 1 T a	BDN-1	14	14	100.00
215	C.No.73076-F ₄ B-S209®		• •	-
216	-S210®	11	0	000
217.	-S211 6	. ' -	-	-
218	-52128	31	10	32 . 25
219	-\$2138	27		11.11
220.	-S214 0	25	3 2	8.00
221.	-S215 0	-	_	-
222	-S216 0	3	0	0 ., 00
223.	-S217 ®	34	5	14.70
224	-S218 0	3	2	6666
CLT	BDN-1	26	5 2 26	10000
225	C.No.73076-F _A B-S2198	9	5	55.55
226.	-S2208	37	Ŏ	0 00
227	-S221 0	38	7	18.42
228	-S222 0	22	4	18.18
229	-S223 8	3	ò	000
230	-S224 Ø	-	-	-
231	-S225 8	20	7	3500
232	-S226 0	8	7 5	62,50
233 .	-S227 8	40	5	12.50
255.	BDN-1	16	5 16	100.00
234	C. No. 73076-F ₄ B-S228 0	26	1	3.84
235.	-S2298	16	6	37.50
236	-5229W -S2300	16	2	12.50
237	-3230W -S231W	13	2 3	23.07
238	-5231 6 -5232 6	13	0	0.00
239	-5232 0 -5233 0	22	1	4,54
240.	-3233W -S234Ø	1	Ó	0,00
<u> </u>	-32348		<u> </u>	contd

	2	3	4	5
241	C No 73076-F4B-S2358	9	5	55 55
242	⁴ -S23 60	15	5	33 33
243	- \$237 0	38	2	5 26
244	- S238 0	33	4	12 12
•	BDN-1	34	34	100 00
245	C No 73076-F ₄ B-S2390	66	7	10 60
246.	4 - \$240®	31	11	35 48
247	-52410	2	1	50 00
248	-52420	6	0	0 00
249	- \$2430	2	Ö	0 00
250	-\$2440	3	Ö	0 00
25	- \$2450	54	18	33 33
252	-S246 0	7	0	0 00
253	-\$2470	2	Ö	0 00
254	- 5.2480	7	4	57 14
254	BDN - 1	2	2	100 00
255		16	۱	6 25
256	C No.73076-F ₄ B-52490 -S2500	22	i	4 54
	- \$251 0	21	3	14 28
257.	- S251 8 - S252 8	12	0	0 00
258.	- 5252 0 - 5 253 0	6	0	0 00
259		10	0	0 00
260	- \$2540	6	0	0 00
261	- \$255 0	1	0	0 00
262	- \$256 0	3	1	33 33
263.	-S257 0	26	Ò	0 00
264	- \$2580	20 1	0	0 00
265	-52590	23	23	100 00
066	BDN-1			
266	C No 73076-F ₄ B-S2600	8	0 3	0 00 15 00
267	¯ -\$26₹ ®	20		0 00
268	- \$262 0	2 4	0 0	
269	- 52638	14	U	0 00 7 14
270	-52648	21		
271	ICP-4704-GW-391-518		21	100 00
272	ICP-3783	2	0	0 00
273	C.No 73070-F4B-510	33	2	6 06
274	-\$2 0	16	0	0 00
275	-530	-	•	
276	- 540	19	0	0 00
	BDN - 1	12	12	100 00
277	C No 73076-F ₄ B-S58	3	0	0 00
278	- \$ 6 %	22	0	0 00
279	-5700 .	23	1	4 34
280	- 580	5	0	0 00
				contd

1	2	3	4	5
281.	C No 73070-F4B-S98	1	0	0.00
28 2	-5100	8	0	0 . 00
283.	-5110	5	0	0 00
284	-5120	35	0	0.00
285.	-\$138	7	1	14.28
286	-S140	20	0	0.00
287.	-S150	17	1	5.88
288.	-S16 0 BDN-1	16 11	0 11	0.00 100.00
289		11	0	0,00
290	C.No.73070-F ₄ B-S170 -S180	19	Ö	0.00
291	-\$198	3	Ö	000
292	-\$208	29	Ö	0.00
293	-\$218	2	Ŏ	0,00
294	-\$22 8	8	Ö	000
295	-\$23 0	26	3	11.53
296	-\$240	9	3 2	22.22
297	-S25 8	14	1	7.14
298	-S26 0	6	0	000
299	-S27 0	15	0	0 00
	BDN-1	15	15	10000
300	C.No.73070-F ₄ B-S28 B]	0	0 00
301	~ -S29 0	29	0	0.00
302	-\$30 0	•	-	-
303	-S310	-	-	-
304.	-\$32 0 -\$33 0	9	3	33.33
305 306	-535W -534W	12	4	33.33
307	-535 % -S35 %	2	0	0.00
308	-\$368	14		0 00
309	-\$37 6	9	0 5	55.55
310	-\$38 8	10	3	30 . 00
	BDN-1	9	3 9	100.00
311	CNo73070-F ₄ B-\$398	6	1	16.66
312	-\$400	21	0	000
313.	-\$418	-	-	~
314.	-\$42	21	21	100,00
315.	-\$430	14	0	0.00
316	-\$440	10	I	10.00
317	-\$450	23	1	4.34
318.	-S46@	26	1	3.84
319.	-S476	16	3 3	18.75
220	BDN-1	3 6	3 0	10000
320	CNo.:73070-F ₄ B-\$48 0	O	U	
				contd

321		2	3	4	5
223	321	C No 73070-FAB-S498	6	0	0 00
324		-S50 0		0	
325.				0	
326				1	
327					
328					
329					
BDN-1					
330	329.				
331					
332		C No 73070-F ₄ B-\$580			
333					
334.					
335.					
336					
337					
Section Sect					
BDN-1					
339.	338				
340.	222				
341 -S698 8 0 0 00 342 -S708 9 0 0 00 343 -S718 21 0 0 00 344 -S728 13 0 0 00 345 -S738 17 0 0 00 346 -S748 - - - 347 -S758 15 0 0 00 348 -S768 12 0 0 00 349 -S768 12 0 0 00 349 -S778 20 3 15 00 BDN-1 14 11 75 57 350 C No 73070-F4B-S788 16 0 0 00 351 -S798 5 0 0 00 352 -S808 17 0 0 00 353 -S808 3 0 0 00 354 -S828 3 0 0 00 355 -S838 17 0 0 00 356 -S848 19 0 0 00		C.No /30/0-F4B-56/8			
342					
343.					
344		-5/U8 5716			
345		-5/180 6706			
346.					
347			17		0 00
348 -\$76\mathbb{\text{8}} 12 0 0.00 349 -\$77\mathbb{\text{8}} 20 3 15 00 BDN-1 14 11 75.57 350 C No 73070-F4B-\$78\mathbb{\text{8}} 16 0 0 00 351 -\$79\mathbb{\text{8}} 5 0 0 00 352 -\$80\mathbb{\text{8}} 17 0 0 00 353 -\$81\mathbb{\text{8}} 3 0 0 00 354 -\$82\mathbb{\text{8}} 3 0 0 00 355 -\$83\mathbb{\text{8}} 17 0 0 00 356 -\$84\mathbb{\text{8}} 19 0 0 00 357 -\$85\mathbb{\text{8}} 21 0 0 00 358 -\$86\mathbb{\text{8}} 8 0 0 00 359 C No 73070-F4B-\$87\mathbb{\text{8}} 29 1 3 44 360 -\$89\mathbb{\text{8}} 3 0 0 00 361 -\$89\mathbb{\text{8}} 3 0 0 00 362 -\$90\mathbb{\text{8}} 1 0<			15		0.00
349 -S778 20 3 15 00 BDN-1 14 11 75 57 350 C No 73070-F 4B-S788 16 0 0 00 351 -S798 5 0 0 00 352 -S808 17 0 0 00 353 -S818 -S828 3 0 0 00 355 -S838 17 0 0 00 356 -S848 19 0 00 357 -S858 21 0 00 358 -S868 8 0 00 359 C No 73070-F 4B-S878 29 1 3 44 360 -S888 3 0 00 361 -S888 3 0 00 362 -S898 8 0 000 362 -S898 8 0 000		-3/3W C76M			
BDN-1 350 C No 73070-F 4B-S780		-3/08 - C77M			
350 C No 73070-F ₄ B-S780 16 0 000 351 -S790 5 0 000 352 -S800 17 0 000 353 -S810 -S820 3 0 000 355 -S820 3 0 000 355 -S820 17 0 000 356 -S840 19 0 000 357 -S850 21 0 000 358 -S860 8 0 000 359 C No 73070-F ₄ B-S870 29 1 3 44 360 -S880 3 0 000 361 -S880 3 0 000 362 -S890 8 0 000	343				
351	350				
352 -\$80\text{80} 17 0 0 00 353 -\$81\text{80}		C NO 73070-1 48-3788			
353					
354					-
355 -583\(\text{S} \) 17 0 0 00 356 -584\(\text{S} \) 19 0 0 00 357 -585\(\text{S} \) 21 0 0 00 358 -586\(\text{S} \) 8 0 00 8DN-1 10 8 80 00 359 C No 73070-F4B-S87\(\text{S} \) 29 1 3 44 360 -588\(\text{S} \) 3 0 000 361 -589\(\text{S} \) 8 0 000 362 -590\(\text{S} \) 1 0 000				Ω	0 00
356 -5848 19 0 0 00 357 -5858 21 0 0 00 358 -868 8 0 0 00 8DN-1 10 8 80 00 359 C No 73070-F4B-S878 29 1 3 44 360 -5888 3 0 000 361 -5898 8 0 000 362 -5908 1 0 000					
357 -5850 21 0 0 00 358 -8860 8 0 0 00 BDN-1 10 8 80 00 359 C No.73070-F4B-S870 29 1 3 44 360 -S880 3 0 0 00 361 -S890 8 0 0 00 362 -S900 1 0 00					
358\$86\dd{8} 8 0 0 00 BDN-1 10 8 80 00 359 C No 73070-F 4B-\$87\dd{9} 29 1 3 44 360 -\$88\dd{9} 3 0 0 00 361 -\$89\dd{9} 8 0 0 00 362 -\$90\dd{9} 1 0 0 00					
BDN-1 10 8 80 00 359 C No 73070-F ₄ B-S876 29 1 3 44 360 -S886 3 0 0 00 361 -S896 8 0 0 00 362 -S906 1 0 0 00					0 00
359 C No 73070-F ₄ B-S870 29 1 3 44 360 -S880 3 0 0 00 361 -S890 8 0 0 00 362 -S900 1 0 0 00	000;				
360 -S88\(\text{3} \) 0 0 00 36\(\text{36} \) -S89\(\text{8} \) 8 0 0 00 362 -S90\(\text{8} \) 1 0 000	359	C. No. 73070-F AR-S876			
36) -S890 8 0 0 00 362 -S900 1 0 0 00		-S88A		0	
362 - \$900 1 0 0 00					

1	2	3	4	5
353	C No.73070-F4B-S918	30 2 6	18	60,00
3 64	-5920	2	0	000
3 65 .	-S93 ®	6	1	16.66
3 66	-S94 8	6	0	0.00
367	-S95 &	16	0	0.00
3 6 8	-S96 0	14	6	42.85
260	BDN-1	12	10	83.33
369	C.No.73070-F ₄ B-S970	10	2 1	20.00
370 371,	⁴-S98® -S99®	9 29		11.11 34.48
372	-S100 0	29 5	10 1	20.00
373	-S1002 -S1012	7	5	71.42
374	-51020	2	ŏ	0.00
375.	-S102 a	27	ŏ	0,00
37 6 .	-S104B		ŏ	000
377	-S105 ®	5 4	Ŏ	0.00
378	-S106®	7	Ö	0,00
379.	-S107 &	3	0	000
380	-\$1088	19	0	000
	BDN-1	19 26	26	100.00
381.	C.No.73070-F4B-S1098	-	-	-
382.	-S110 8	7	0	0.00
383.	-S111 0	14	1	714
384	-51120	14	2	14.28
385	-S113 0	18	0	000
386.	-51140	18	1	5.55
387	-S115 0	17	10	58.82
388.	-S1160	15 6	0	000
389 390	-S117 0 -S118 0	33	0 0	000 000
390	BDN-1	12	12	100.00
391.	C.No.73070-F ₄ B-S1198	19	1	5.26
392	-\$1208	iš	Ò	0,00
393	-51210	25	Ŏ	000
394	-\$1228	26	Ö	0.00
395	-\$1230	18	0	0.00
396	-\$1248	15	1	6, 66
397.	-S125@	12	0	0 , 00
398.	-S12 6 0	12	0	0.00
39 9 .	-S127®	14	0	000
400	-S128®	26	2 10	7.69
	BDN-1	12	10	83.33
401	C.No.73070-F ₄ B-S1290	7	0	0.00
402	-S130M	20	0	0.00
403	-\$131 0	27	. 6	22.22
404	-S132 0	46	20	43.47 contd

106		2	3	4	5
106	405	C. No. 73070-FAB-S1330	53	8	15 09
108	406	-51340	-		-
109	407	-\$1350	•	-	-
110.	408	-S1360	27	0	0 00
110.	409	-S137 0	7	0	0 00
BDN-1 BD	4 0	-\$1380	•		-
BDN-1 BD	411	-51398	2	0	0 00
1413.	412	-51408	7		14 28
413.		BDN-1	8	8	100 00
1-14	4 \ 3	C.No.73070-F1B-S1418			0 00
416	4 • 4	-5142 8			-
416	415.	-5:430	2	0	0 00
417	416	-51440	-		-
419.	4 1 7	-5145@	•	-	-
419.	418.	-51460	3	0	0 00
	419.	-51478	8		0 00
Solution	420.	-51480	-	-	-
BDN-1 423	42 4 .	-51490	-	-	-
423.	422	-515010	19	4	21 05
424		BDN-1	18	18	100 00
424	423	C No. 73070-F B-51518	-	-	-
426\$154\text{8}	424	'-31528			-
427	425	-S153 0	5	0	0 00
428	426.	- \$1540	18		
429	427	-S155 0			0 00
430	428	-S1 56 0			0 00
431	429	-S:57 0		0	0 00
432	430	-S1580	16	1	6 25
432	431	-5159 %	0	1	<u>`0 00</u>
BDN-4 434	432		•	-	-
BDN- { 434	433	- 5 ¹ 6 ¹ 8	•		0 00
434			₹6	16	,00 00
435	434		18	1	5 55
436.	435	4 - 5 i 638	4 }	7	17 00
437.	436		3	0	0 00
438	437.		2		0 00
439	438		15	0	0 00
440	439		15		33 33
441, -51696 4 1 25 00 442 -51706 10 2 20 00 443 -51716 2 0 0 0 444 -51726 5 2 40 00 445 -51736 19 14 73 66 8DN-1 22 22 100 00	440		-		•
442	44!		4	1	25 00
443 -51718 2 0 0 0 444 -51728 5 2 40 0 445 -51738 19 14 73 6 8DN-1 22 22 100 0	442		10	2	20 00
444S1726 5 2 40 00 445S:736 19 14 73 60 BDN-1 22 22 100 00	443		2	0	0 00
4455:73 6 19 14 73 66 BDN-1 22 22 100 0	444		5	2	40 00
BDN-1 22 22 100 00	445	-S:73 0	19	14	73 6 8
	= -		22	22	100 00
					contd

446.	1	2	3	4	5
447 51750		C. No. 73070-FAB-S1748	7	0	0,00
449S17780	447.	-S175 0	18	5	
449S17780	448 .	-S176 0	28	3	
450.	449.	-S177 &			
451\$1790 1 0 0.00 452\$1800 31 0 0.00 453 -\$1810 8 0 0.00 454 -\$1820	450.		-		-
452\$1800 31 0 0.00 453 -\$1810 8 0 0.00 4545 -\$1820 455 -\$1820 455 -\$1820 456. C.No.73070-F4B-\$1840 22 2 2 9.09 457\$1850 9 0 0.00 458\$1860 1 1 1 100.00 459\$1860 1 1 1 100.00 459\$1860 1 1 1 100.00 460\$1880 16 4 25.00 461 -\$1890 10 3 30.00 462\$1900 26 0 0.00 461 -\$1890 10 3 30.00 462\$1910 16 1 6 1 6.25 464 -\$1920 26 0 0.00 465 -\$1930 10 3 30.00 465 -\$1930 10 3 30.00 466\$1940 12 1 8.33 BDN-1 10 9 90.00 467. C.No.73070-F4B-\$1950 5 1 20.00 468\$1940 2 0 0.00 470\$1980			1	0	000
453			31		
454					
455.					-
BDN-1			24	15	62,50
456.		BDN-1			
457.	456.			2	
458.		~\$185 0			
459 S1870 3 0 0.00 460 S1880 16 4 25.00 461 S1890 10 3 30.00 462 S1900 26 0 0.00 463 S1910 16 1 6.25 464 - S1920 2 0 0.00 465 S1930 10 3 30.00 466 S1940 12 1 8.33 BDN-1 10 9 90.00 467. C No.73070-F4B-S1950 5 1 20.00 468 S1960 2 0 0.00 469 S1970 5 0 0.00 470 S1980 471 S1990 4 0 0.00 472 S2000 40 30 75.00 473 - S2010 5 0 0.00 474 - S2020 3 0 0.00 475 S2030 20 3 15.00 476 S2040 19 2 10.52 477 - S2050 13 0 0.00 478 C.No.73070-F4B-S2060 479 - S2050 13 0 0.00 480 - S2080 13 0 0.00 481 - S2080 13 0 0.00 482 - S2110 10 0.00 484 - S2120 2 0 0.00 485 - S2130 1 0 0.00 486 - S2140		-S186 8			
460\$1880 16 4 25.00 461\$1890 10 3 30.00 462\$1900 26 0 0.00 463\$1910 16 1 6.25 464 -\$1920 2 0 0.00 465\$1930 10 3 30.00 466\$1940 12 1 8.33 BDN-1 10 9 90.00 468\$1960 2 0 0.00 469\$1970 5 1 20.00 470\$1980					
461				ă	
462					
463.				0	
464					
465\$1930 10 3 30.00 466\$1940 12 1 8.33 BDN-1 10 9 90.00 467. C No.73070-F4B-\$1950 5 1 20.00 468\$1960 2 0 0.00 469\$1970 5 0 0.00 470\$1980 471\$1990 4 0 30 75.00 472\$2000 40 30 75.00 473 -\$2010 5 0 0.00 474 -\$2020 3 0 0.00 475\$2020 3 0 0.00 476\$2020 3 0 0.00 477 -\$2020 13 0 0.00 478 C.No.73070-F4B-\$2060 19 2 10.52 477 -\$2050 13 0 0.00 BDN-1 10 10 100.00 480 -\$2080 13 0 0.00 481\$2080 13 0 0.00 481\$2080 13 0 0.00 482 -\$2100 5 1 20.00 483 -\$2110 1 1 100.00 484 -\$2120 2 0 0.00 485 -\$2130 1 0 0.00 486 -\$2140 -\$2120 2 0 0.00 487 -\$2110 1 0 0.00 488 -\$2120 2 0 0.00 488 -\$2120 2 0 0.00 489 -\$2120 2 0 0.00 480 -\$2120 2 0 0.00 481 -\$2120 2 0 0.00 482 -\$2120 2 0 0.00 483 -\$2120 2 0 0.00 484 -\$2120 2 0 0.00 485 -\$2130 1 0 0.00 486 -\$2140					
BDN-1			10	3	
BDN-1 C No.73070-F4B-S1958 5 1 20.00 468S1968 2 0 0.00 469S1978 5 0 0.00 470S1988 471S1998 4 0 0.00 472S2008 40 30 75.00 473 -S2018 5 0 0.00 474 -S2028 3 0 0.00 475 -S2038 20 3 15.00 476 -S2048 19 2 10.52 477 -S2058 13 0 0.00 BDN-1 10 10 100.00 478 C.No.73070-F4B-S2068				1	
467. C No.73070-F4B-S1950 5 1 20.00 468S1960 2 0 0.00 470S1980 471S1990 4 0 0.00 472S2000 40 30 75.00 473 -S2010 5 0 0.00 474 -S2020 3 0 0.00 475S2030 20 3 15.00 476S2040 19 2 10.52 477 -S2050 13 0 0.00 BDN-1 10 10 100.00 478 C.No.73070-F4B-S2060 479 -S2070 14 0 0.00 480 -S2080 13 0 0.00 481 -S2080 13 0 0.00 482 -S2100 5 1 20.00 483 -S2110 1 1 100.00 484 -S2120 2 0 0.00 485 -S2130 1 0 0.00 486 -S2140 487 -S2150	400				
468. -S1960 2 0 0.00 469. -S1970 5 0 0.00 470. -S1980 - - - 471. -S1990 4 0 0.00 472. -S2000 40 30 75.00 473. -S2010 5 0 0.00 474. -S2020 3 0 0.00 475. -S2030 20 3 15.00 476. -S2040 19 2 10.52 477. -S2050 13 0 0.00 478. C.No.73070-F4B-S2060 - - - 479. -S2070 14 0 0.00 480. -S2070 14 0 0.00 481. -S2080 13 0 0.00 482. -S2100 5 1 20.00 483. -S2110 1 1 100.00 485. -S2130 1 0 0.00 486. -S2140	167		10	9	
469S1978 5 0 0.00 470S1988			2		
470.			2		
471S1990 4 0 0.00 472S2000 40 30 75.00 473 -S2010 5 0 0.00 474S2020 3 0 0.00 475S2030 20 3 15.00 476S2040 19 2 10.52 477 -S2050 13 0 0.00 BDN-1 10 10 10 100.00 478			ວ	U	000
472 -\$2000 40 30 75.00 473 -\$2010 5 0 0.00 474 -\$2020 3 0 0.00 475 -\$2030 20 3 15.00 476 -\$2040 19 2 10.52 477 -\$2050 13 0 0.00 478 C.No.73070-F4B-\$2060 - - - 479 -\$2070 14 0 0.00 480 -\$2080 13 0 0.00 481 -\$2090 18 0 0.00 482 -\$2100 5 1 20.00 483 -\$2110 1 1 100.00 484 -\$2120 2 0 0.00 485 -\$2130 1 0 0.00 486 -\$2140 - - - -\$2150 - - - - -\$2150 - - - - 80 - - -			<u>-</u>	•	0.00
473 -\$2016 5 0 0.00 474 -\$2026 3 0 0.00 475 -\$2036 20 3 15.00 476 -\$2046 19 2 10.52 477 -\$2056 13 0 0.00 BDN-1 10 10 100.00 478 C.No.73070-F4B-\$2068 - - - 479 -\$2078 14 0 0.00 480 -\$2088 13 0 0.00 481 -\$2098 18 0 0.00 482 -\$2108 5 1 20.00 483 -\$2118 1 1 100.00 484 -\$2128 2 0 0.00 485 -\$2136 1 0 0.00 486 -\$2146 - - - -\$2156 - - - - BDN-1 1 1 100.00					
474 -\$2020 3 0 0.00 475 -\$2030 20 3 15.00 476 -\$2040 19 2 10.52 477 -\$2050 13 0 0.00 BDN-1 10 10 100.00 478 C.No.73070-F4B-\$2060 - - - 479 -\$2070 14 0 0.00 480 -\$2080 13 0 0.00 481 -\$2080 13 0 0.00 482 -\$2100 5 1 20.00 483 -\$2110 1 1 100.00 484 -\$2120 2 0 0.00 485 -\$2130 1 0 0.00 486 -\$2140 - - - -\$2150 - - - - BDN-1 1 1 100.00					
475. -\$203\delta 20 3 15.00 476. -\$204\delta 19 2 10.52 477 -\$205\delta 13 0 0.00 BDN-1 10 10 100.00 478 C.No.73070-F4B-\$206\delta - - - 479 -\$207\delta 14 0 0.00 480 -\$208\delta 13 0 0.00 481 -\$209\delta 18 0 0.00 482 -\$210\delta 5 1 20.00 483 -\$210\delta 5 1 100.00 484 -\$212\delta 2 0 0.00 485 -\$213\delta - - - 486 -\$214\delta - - - -\$215\delta - - - - 487 -\$215\delta - - - - BDN-1 1 1 100.00 - -			5		
13 0 0.00 1478				Ü	
13 0 0.00 1478				3	
BDN-1 10 10 100.00 478				2	
478 C.No.73070-F4B-S2068 - - - - 479 -S2078 14 0 0.00 480 -S2088 13 0 0.00 481 -S2098 18 0 0.00 482 -S2108 5 1 20.00 483 -S2118 1 1 100.00 484 -S2128 2 0 0.00 485 -S2138 1 0 0.00 486 -S2148 - - - 487 -S2158 - - - BDN-1 1 1 1 100.00	4//				
479 4 -S2078 14 0 0.00 480 -S2088 13 0 0.00 481 -S2098 18 0 0.00 482 -S2108 5 1 20.00 483 -S2118 1 1 1 100.00 484 -S2128 2 0 0.00 485 -S2138 1 0 0.00 486 -S2148 - - - 487 -S2158 - - - BDN-1 1 1 1 100.00			10	10	100-00
480 -\$208\(\text{0} \) 13 0 0.00 481. -\$209\(\text{0} \) 18 0 0.00 482 -\$210\(\text{0} \) 5 1 20.00 483. -\$211\(\text{0} \) 1 1 100.00 484 -\$212\(\text{0} \) 2 0 0.00 485 -\$213\(\text{0} \) - - - 486. -\$214\(\text{0} \) - - - 487. -\$215\(\text{0} \) - - - BDN-1 1 1 100.00		C.No./30/0-F4B-52060			-
481. -\$209\(\text{b}\) 18 0 0.00 482 -\$210\(\text{b}\) 5 1 20.00 483. -\$211\(\text{b}\) 1 1 100.00 484 -\$212\(\text{b}\) 2 0 0.00 485 -\$213\(\text{b}\) 1 0 0.00 486. -\$214\(\text{b}\) - - - 487. -\$215\(\text{b}\) - - - BDN-1 1 1 100.00					
482 -\$2100 5 1 20.00 483. -\$2110 1 1 100.00 484 -\$2120 2 0 0.00 485 -\$2130 1 0 0.00 486 -\$2140 - - - 487. -\$2150 - - - BDN-1 1 1 100.00				Ü	
483S2118 1 1 100.00 484 -S2128 2 0 0.00 485 -S2138 1 0 0.00 486 -S2148 487				0	
484 -S2126 2 0 0.00 485 -S2136 1 0 0.00 486 -S2146 487S2156 BDN-1 1 1 100.00			5	1	
485 -S2136 1 0 0.00 486 -S2146 487S2156 BDN-1 1 1 100.00]	1	
486 - \$214 0			2		
487 S2150 1 1 1 100.00			1	0	0 00
BDN-1 1 1 100.00			-	-	-
	487 .		-	-	_
contd.		BDN-1	1	1	
					contd.

	2	3	4	5
488	C No 73070-F ₄ B-S2160 -S2170	1	0	0 00
48 9		2 7	0	0 00
490	-\$2180		0	0 00
491	-\$2198	3	1	33 33
492	-52200	14	4	28 57
493	-\$2210	-	-	-
494	- \$2220	9	0	0 00
495	-\$2230	16	0	0 00
496	-\$2240	-	-	-
497	- \$2250	6	0	0 00
	BDN - 1	5	5	100 00
498	C No 73070-F ₄ B-S2260	3	0	0 00
499	· - S227 &	1	1	100 00
500	-\$228 0	•	•	•
501	-S22 9 0	4	0	0 00
502	-\$ 2 30 8	3	0	0 00
503	-\$2310	7	0	0 00
504	-\$23 20	10	0	0 00
505	-S233 0	1	0	0 00
506	- S23 4 0	2 ,	0	0 00
507	-\$23 5 0	8 /	2	25 00
508	-S236 0	13	0	0 00
	BDN-1	6	6	100 00
509	C No 73070-F ₄ B-S2378	10	0	0 00
510.	-\$238 ®	9	1	11 11
511.	-S239 ®	10	0	0 00
512	-32408	21	4	19 04
513	-S241 8	8	0	0 00
514	-S242 8	4	0	0 00
515	-52430	21	0	0 00
516	- \$2440	3	0	0 00
5.7	- \$2450	-	-	•
5 8	-52460	-	-	-
519	- S2 470	ţ	1	100 00
	BDN - 1	•	-	-
520	C No 73070-F ₄ B-52480	4	0	0 00
521.	⁴ -S249®	4	0	0 00
522	-S250 0	-	-	•
523	-S25 1 0	2	1	50 00
524	-S252 0	7	2	28 57
525	-\$2530	6	6	100 00
526	- \$2540	-	-	-
527	-\$2550	2	1	50 00
528	-\$2560	-	-	-
529	-\$2578	2	0	0 00
	BDN-1	•	-	-
				contd

	2	3	4	5
530	C.No.73070-F ₄ B-S258 B -S259 B	-	_	
531.	4 -S259 0	-	-	-
532	-S260 0	15	0	0.00
533	-S261 0	6	0	0,00
534。	-S262 0	7	0	0 . 00
535	-S263 ®	10	0	0.00
536.	-S2 64®	9	0	0.00
537.	- S26 5 ₩	5	0	0.00
5 38.	-S266 0	8	0	0.00
539.	-S267 0	26	1	3 , 84
540	- \$2 6 8 Ø	6	0	0 . 00
541.	-S269 0	13	0	0,00
	BDN-1	10	10	10000
542.	C.No.73070-F ₄ B-S2700	13	2	15.38
543.	⁴ -S271⊠	20	9	45.00
544	-S272 0	2 8	9	32.14
545.	-S273 ®	6	9 1	16.66
546.	-S274 0	20	3	1500
547.	-S275 ⊠	8	0	0 . 00
548	-S27 6 ₽	12	0	0 . 00
549.	-S277 ⊗	21	0	0.00
550.	-S278 0	13	5	38.4 6
	BDN-1	10	10	100.00
551.	C.No.73070-F ₁ B-S279 0	10	0	0.00
552.	-S280 0	16	4	25 . 00
553 a	-S281 0	2 7	0	0 00
554	-S282 0		1	1428
555 ·	-S283 ®	9	0	000
556	-S284 0	15	2	13,33
557。	-S285 0	9	0	000
558 .	-S28 60	11	0	0 . 00
559	-S287 ⊠	9	1	11.11
560	-S288 Ø	5	0	0 00
	BDN-1	4	4	100.00
561.	C.No.73070-F ₄ B-S289@	3 2 3 3	0 1	0.00
562.	· ~S290 0	2		50 . 00
563 <i>.</i>	-S291 8	3	0	0,00
564	-S29 2 0	3	0	000
565.,	-\$2938	1	0	0.00
566.	-S294 0	5 3	0	000
5 67 .	-S295 ®	3	0	0 00
56 8	-S296 8	1	0	0 , 00
569	-S297 0	•	-	-
570 a	-S298 0	15	2	13.33
				contd.

1	2	3	4	5
57	C No 73070-f ₄ B-S2990	20	0	0 00
572	- 53000	10	0	0 00
	BDN-1	15	15	100 00
573	C No 73070-F ₄ B-53010	1	Ō	0 00
574	-\$3020	2	1	50 00
575	-S3038	10	0	0 00
576.	-S304 0	7	0 0	0 00
577.	- \$30 50	7	1	۱4 28
578.	-S3060	-	-	0.00
579 580	-\$307 0 -\$308 0	6 6	0 0	0 00
581.	-S300 %	2	0	0 00 0 00
582	-5310 <u>0</u>		Ū	0 00
583	-S311 6	_	_	-
584.	-\$3120	_	-	-
585	-\$3130	5	0	0 00
586	-\$3140	11	Ö	0 00
000	BDN-1	4	3	75 00
5 87 .	C No 73070-F ₄ B-S3150	7	5	71 42
588	-S3160	15	Ö	0 00
589	-\$3170	9	0	0 00
590.	-53180	7	0	0.00
591	-\$3190	15	0	0 00
592.	-53200	7	1	14 28
593	-\$3210	13	2	15 38
594	- \$3220	1	0	0 00
595	- \$3230	-	-	-
596	- 53240	•	-	-
597.	-53250	-	-	, 00 . 00
500	BDN - 1	1	1	100 00
598	C No 73070-F ₄ B-S3268	•	-	0.00
599.	-\$327 0	2	0	0 00
600	- \$328 0	3 3	0 0	0 00 0 00
601 602	-\$329 0 -\$33 00	12	0	0 00
603	-5330 0 -5331 0	. 2	-	0 00
604	-\$33 20	•	•	-
605	- 5332 % - 5333 %	_	_	-
606	-53340		_	_
000	BDN - 1	3	3	100 00
607	C No. 73070-F ₄ B-S335@	-	-	
608	-\$336	6	ì	16 66
609	- \$337 0	-	-	-
6 0	- \$3380	6	2	33 33
				contd

1	2	3	4	5
611.	C. No. 73070-F ₄ B-S3398	3	0	0.00
612.	4 -S340 0	7	1	14.28
613.	-\$3410	19	0	0 00
614.	-S342 0	2	0	0 , 00
615.	-\$3430	12	5	4166
616.	-\$3440	-	0 5 - 6	
	BDN-1	6	6	100,00
617.	-S345@	3	0	0.00
618.	-S346 0	10	0	0.00
619.	-S347 0	-	1	11 11
620.	-S348 0	9 7	l E]].]] 71.42
621. 622.	-\$34 90 -\$350 0	4	5 0	7142 0.00
623	-S351 0	5	0	0,00
624	-S352 0	13	Ŏ	0,00
625.	-S353 0	10		0,00
626.	- S354 ®	7	ñ	0.00
627 .	-S355 0	4	3	75.00
	BDN-1		0 0 3 7	100.00
628.	C.No.73070-F4B-S3568	7 2	0	0.00
629.	⁴ - \$3 57&	4	0	000
630.	-S358 0	7	0 2 2 3 0	28 . 57
6 31.	-S35 90	7 5 6 3 7 5 2 10	2	28 . 57
632 .	-S360 0	5	3	60.00
633 .	-\$3610	6	0	0,00
634.	-S362 0	3	0	000
635.	-\$363 0	7	0	000
636.	-\$364 8	5	0 0 0	000
637	-\$365 0	2	Ü	000
638 639	-S366₪ -S367₪	10	2 0	20.00 0.00
039.	BDN-1	8	8	10000
640.	C.No.73070-F ₄ B-S368 0	2 8 9 7	Ö	0,00
641.	-\$369 8	7	ő	0.00
642	-\$370 8	21	0 4 2 8	19.04
643	-\$371 0	7	2	28.57
644	- \$372 ₪	15	8	5333
645.	-\$373 ®	3 4	0	000
646	-S374 0	4	0	0.00
647.	-\$37 5®	3	0	0.00
648.	-\$376 @	13	0	000
649	-\$377 8	38	24	63,15
650	-\$378 @	12	0	0.00
	BDN-1	9	8	88.88
				contd _s

	2	3	4	5
651	C No. 73070-F4B-S3798	21	0	0 00
652	⁻ -S380 0	26	t	3 84
653	-\$3810	34	ì	2 94
654	- \$382 0	19	0	0 00
655 -	-S383 0	18	Õ	0 00
656	-\$384 8	18	4	22 22
657	-53850	37	Ó	0 00
658.	- \$38 60	16	ì	6 25
659	-\$387 8	13	1	7 69
660	-\$3880	27	1	3 70
•••	BDN-1	7	7	100 00
661	C.No.73070-F ₄ B-S389@	2	Ó	0 00
662	-\$3900	26	Ŏ	0 00
663	-\$3910	5	Õ	0 00
664	-\$3920	20	Ö	0 00
665.	-\$3938	26	Ö	0 00
666	1CP-6997-137-16Br-P1	1	Ö	0 00
667	C No. 74240-F 4B-S18		-	-
6 6 8.	-\$20	_	-	_
6 69 .	-530	-	•	-
003.	BDN-1	8	8	100 00
670.	C.No.74240-F ₄ B-S48	5	3	60 00
671	-95 0	-	-	00 00
672	-35 a -56 0	3	0	0 00
673	-570	9	2	22 22
674	-588	-	-	-
675	-598	6	0	0 00
676	-S108	10	Ö	0 00
677	-S110	6	2	33 33
678	-S120	8	0	0 00
679		2	0	0 00
019.	-S130 BDN-1	2 8	8	100 00
6 80 .		2	0	0 00
68 i .	C No.74240-F ₄ B-S140 -S150	18	Ö	0 00
682	-S160	12	ì	8 33
		14	Ò	0 00
683 .	-S170	4	Ö	0 00
684 685	-518 0 -519 0	8	3	37 50
685 686	-520 %	8	0	0 00
686		4	0	0 00
687	-52`\$	32	0	0 00
688	-S22 0	32		00 00
600	BDN-1	13 8	13 0	
689	C No 74240-f ₄ B-5238	5		0 00
690	-524 0	6	0 0	0 00
69	-S25®			
				contd

	2	3	4	5
692	C.No.74240-F4B-S2610	18	5	27.77
693.	- S27 0	2	0	0 , 00
694 .	-S28 Ø	1	0	0.00
695	-S 29 ®	7	1	14., 28
696	-\$3 00	7	3	42.85
697.	-S31 @	3	2	6666
69 8.	-\$320	-	-	-
699	-5330	9	0	0.00
700.	-\$34 @	9 2 4	0	0.00
701	BDN-1	4	4	100.00
701. 702.	C. No. 74240-F ₄ B-S340	5 9	0 3	0.00
702	-\$3 50 -\$3 60	11	0	33,33 0,00
704.	-S37 0	12	1	8.33
705	-S38 0	4	i	25.00
706.	-S39 8	23	2	869
707	-540 0	4	ō	0.00
708	-S410	7	2	2 8 ² 57
709	-S42 0	35	Ō	0.00
710.	-S43 0	6	Ö	0.00
nine.	BDN-1	6	6	10000
711.	C.No.74240-F ₄ B-S44@	7	1	14.28
712	~S45 0	3	0	0.00
713.	- S4 6 ₿	29	0	0.00
714.	- \$47 @	-	-	-
71.5	-\$48	1	0	0.00
716.	-S49 0	19	0	0.00
717.	-S50 0	10	0	0.00
718.	-S518	18	3	16.66
719. 720.	-S52 0	4 10	0	0.00
720. 721.	-S53 0 -S54 0	17	1 10	1000 5882
121.	BDN-1	10	10	100.00
722.	C. No. 74240-F ₄ B-\$558	9	2	22,22
723	~S568	3	1	33, 33
724	-S57 @	13	5	38.46
725	-S58 2	8	ĭ	12.50
726	-\$598	10	2	20.00
727	-S60 2	16	ō	0.00
728.	-5618	7	Ō	000
729	-\$620	2	Ö	000
730.	-\$630	_	-	-
731 .	-5640	-	-	-
₩,*	BDN-1	7	7	100.00
732	C.No.74240-F ₄ B-S650	15	2 1	13.33
733	-S66 ₽	6	1	16.66

	2	3	4	5
734	C No 74240-F ₄ B-S678	29	0	0 00
735	-S68 0	8	1	12 50
736	-569 0	9	2	22 22
737	-S700	15	2	13 33
738.	-S718	2	0	0 - 00
739 . 740 .	-572 0 -573 0	- 4	0	0.00
740	-S740	15	0	0 00 0 00
1710	BDN-1	5	5	100 00
742.	C.No.74240-F ₄ B-S750	15	3	20 00
743.	4 - S76Ø	3	Ō	0 00
744	- S77 &	15	0	0.00
745	-\$78₿	-	-	-
746	-\$790	5	0	0.00
747	- \$800	5	0	0 00
748	- S81 0	6	0	0 00
749	-S82 0	16	3	18 75
750. 751.	-S83 0 -S84 0	2 3	0 0	0.00 0.00
1315	BDN-1	-	•	0 00
752	C.No 74240-F ₄ B-S85@		0	0 00
753	-586	2 7	ĭ	14.28
754	-\$870	3	3	100.00
755	- \$88 0	6	0	0 00
756	-S8 9®	4	0	0 00
757	-5900	-	-	-
7 5 8 .	-\$91 0	8	0	0 00
759 .	-\$92 %	7	0	0 00
760	-\$93 %	2	ī	FO 00
761	- 5 940 BDN-1	5	4	50 00 80 00
7 62 .	C No 74240-F4B-S950	יו	i	9 09
7 6 3	-5968	Ì	0	0 00
764	- 5976	14	2	14 28
765	- S 980	10	0	0 00
766	-5990	5	2 3	40 00
767.	-\$1000	13	3	23 .07
7 6 8 .	-51010	13	ì	7 69
769	-51020	21	3 2	³ 4 28
770	-3103 0	15 4	1	13 33 25 00
77 772	-5104 8 -5105 8	4		25 00
112.	-\$105 0 BDN-1	3	3	100 00
773,	C.No.74240-F4B-51068	17	3	17 64
774.	-Si078	3	Õ	0 00
775	-51080	5	5	100 00
			· 	4 d

1	2	3	4	5
776	C.No.74240-F4B-S1098	_	-	•
777.	⁴ -S110⊠	1	0	0.00
778.	-S111 0	16	0	0.00
779	-S112 0	2	0	0 , 00
780.	-S113 0	2 5	4	80,00
781	-51140	13	8	6153
782 .	-\$1150	-	-	-
	BDN-1	2	2	10000
783	C~No.74240-F ₄ B-S116@	2 2	0	0 00
784	′-S117 0	2	0	000
785	-51180	-	-	-
78 6	-S119 @	-	~	-
787.	-51200	-	-	-
788	-\$1210	-	-	-
78 9	-S122 0	6	2	33, 33
790.	-S123 0	5	2	4000
791.	-S124Ø	-	-	-
792	-S125®	4	0	0,00
	BDN-1	5	5	100.00
793	C No 74240-F ₄ B-S1268	24	0	0.00
794	4 -S127@	16	2	12.50
795.	-\$1280	-	-	100.00
796	-S129 0]	ļ	100.00
197	-\$1300	7	1	1428
798	-\$131 0	28	15	53 . 57
799.	-\$1320	12	1	8.33
800	-\$133 0	-	-	0.00
801	-S1340	20	0	0.00
802	-\$135 0	30	2	6.66
803	-S1360	7	0	0 00
004	BDN-1	10	10	100 00
804	C.No 74240-F ₄ B-S1370	4 11	0	0、00 27、27
805	-\$138 0	10	3 0	
806	-S139 8		2	0, 00 33, 33
807	-5140 0 -5141 0	6 14	2 9	64 . 28
808 809	-5141W -5142Ø	9	0	000
810.	-5142W -51438	9	0	0.00
310.	-31478	J		contd
				Contu

	2	3	4	5
8 1	C.No.74240-F4B-S1440	5 2	0	0 00
812.	-51458	2	0	0 00
	BDN-1	13	13	100 00
813	C.No.74240-F ₄ B-S146@	19	Ō	0.00
814	-S147@	6	1	16 66
815.	-\$1480	10	1	10 00
816.	-\$1498	9	0	0 00
817	-\$150 0	4	1	25 00
818. 81 9 .	-S1510 -S1520	4	0	0.00
820	-5152W -5153@	-	-	-
821	-S1540	7	0	0 00
822	-S155@	, -	•	0 00
OLL.	BDN-1	15	15	100 00
823.	C.No.74240-F ₄ B-S1568	10	ì	10 00
824	-S157 8	9	4	44 44
825	-\$1580	20	ò	0 00
826	-\$1590	15	4	26 66
827	-\$160 0	4	0	0 00
8 28	-\$1618	4	0	0.00
8 29	-\$1 62 ₩		1	12.50
830	-51630	8 2	0	0 00
831.	-51640	2	-	-
832	-S1 65®	2	0	0 00
	BDN-1	-	•	-
833	CNo74240-F ₄ B-\$1660	-	-	-
834	-51670	-	-	16.66
835	-\$1680	6	1	16 66
83 6 .	-\$1690 51700	2 1	0	0 00
837 838	-S1708	10	3 0	0 00 30 00
839	-\$171 8 -\$172 0	6	0	0 00
840	-51738	3.1	Ö	0 00
841.	-S174 %	3	Ŏ	0 00
842	-S175@	26	Ŏ	0 00
012	BDN-1	6	6	100 00
843.	C.No.74240-F ₄ B-S176®	ì	Ö	0 00
844.	-\$1770	6	Ō	0 00
845	-S178 8	6	0	0 00
846.	-51798	10	1	10 00
847	-S180 0	-	-	-
848	-51810	-	-	-
849	-51820	1	0	0 00
850 .	-51830	-		
				contd

1	2	3	4	5
851	C. No. 74240-F4B-\$1848	-	-	-
852.	⁴ -S185 ⊠	-	-	-
	BDN-1	-	-	-
853.	C.No.74240-F ₄ B-S186@	4	1	25,00
8 54 .	4 -S187 0	10	4	40 ، 00
855.	-S188 0	1	0	0.00
8 56 .	-S189 ®	3	0	0.00
857	-S190 ⊠	8	0	0.00
858	-S191 &	-	-	_
859	-S192 0	3	0	0.00

APPENDIX- XXX!

Results of screening of advanced selected germplasm and breeding materials for sterility mosaic resistance during 1978-79.

ς1 No.	Particular	Total plants	Infected plants	Percent infec- tion
1	2	3	4	5
1 2 3 4 5 6	ICP-7249-1-1-S1 VI NDT-B0 -S2 VI NDT-B0 -S3 VI NDT-B0 -S4 VI NDT-B0 -S5 VI NDT-B0 -S6 VI NDT-B0 -S7 VI NDT-B0	18 18 33 22 14 11 29	0 1 2 0	0.00 5 55 3 03 9 09 0 00 9 09 0 00
8 9. 10	BDN-1 -S8 VI NDT-B@ -S9 VI NDT-B@ -S10 VI NDT-B@ -S11 VI NDT-B@	26 28 17 15 32	26 1 1 2 6	'00 00 3 57 5 88 13 33 18 75
12. 13. 14. 15. 16. 17.	SDN - 1 -S13 VI NDT-B9 -S14 VI NDT-B9 -S17 VI NDT-B9 -S18 VI NDT-B9 -S19 VI NDT-B9 ICP-5157-1 S2 VI NDT-B9 -S3 VI NDT-B9	40 5 15 35 13 6 4	40 0 0 1 0 2 0	100 00 0 00 0 00 2 85 0 00 33 33 0 00 0 00
19 20. 21 22 23.	BDN-1 -S4 VI NDT-B9 -S5 VI NDT-B9 -S6 VI NDT-B9 -S7 VI NDT-B9 -S8 VI NDT-B9	4 10 13 6 6 6	4 1 1 0 0	100 00 10 00 7 69 16 66 0 00 0 00
24 25 26 27	BDN 1 -S9 VI NDT B0 -S10 VI NDT-B0 -S11 VI NDT-B0 -S12 VI NDT-B0	8 3 11 10 14	8 0 0 0	00 00 0 00 0 00 0 00 0 00

1	2	3	4	5
28 29	ICP-6491-1-S1 VI NDT-BQ -S2 VI NDT-BQ .	18	0	0.00
30. 31 32 33. 34.	BDN-1 -S2 VI NDT-B0 -S3 VI NDT-B0 -S4 VI NDT-B0 -S5 VI NDT-B0 -S6 VI NDT-B0	12 6 25 12 14 21	12, 1 1 0 6	100 00 16 66 4 00 8 33 0 00 28.57
35. 36. 37. 38. 39	BDN-1 -S7 VI NDT-B0 -S8 VI NDT-B0 -S9 VI NDT-B0 -S10 VI NDT-B0 -S11 VI NDT-B0	8 23 12 19 29 21	8 0 1 1 1	100 00 0 00 8.33 5.26 4.44 4.76
40 . 41 . 42 . 43 . 44 .	BDN-1 -S12 VI NDT-BQ -S13 VI NDT-BQ -S14 VI NDT-BQ -S15 VI NDT-BQ -S16 VI NDT-BQ	18 23 12 7 12 8	18 7 0 1 1 3	100.00 30.43 0.00 14.28 8.33 37.50
45 46 47 48 49 50.	BDN-1 ICP-6559-1-S1 VI NDT-BQ -S2 VI NDT-BQ -S3 VI NDT-BQ -S5 VI NDT-BQ -S12 VI NDT-BQ -S13 VI NDT-BQ -S14 VI NDT-BQ	6 5 6 7 9 15 19 20	6 1 5 0 0 0 2 4	100.00 20.00 83.33 0.00 0.00 0.00 10.52 20.00
52 53 54 55 56.	BDN-1 -S15 VI NDT-B@ -S16 VI NDT-B@ -S17 VI NDT-B@ -S18 VI NDT-B@ 74041 11-4-S1 VI NDT-B@ (F5)	6 27 5 10 6 20	6 0 1 0 0	100.00 0.00 20.00 0.00 0.00 75.00
57. 58. 59. 60.	BDN-1 -S2 VI NDT-B0 -S3 VI NDT-B0 -S4 VI NDT-B0 -S5 VI NDT-B0	8 18 16 10 4	8 7 3 0	100.00 38.88 18.75 0.00 0.00

1	2	3	4	5
61	74041-11-4-S6 VI NDT-B0	}	0	0 00
62 63 64 65 66.	BDN-1 -S7 V1 NDT-B9 -S8 VI NDT-B9 -S9 VI NDT-B9 -S10 NDT-B9 -S11 NDT-B9	6 2 12 12 33 20	6 0 6 4 7 2	100 00 0 00 50 00 33 33 2' 20 10 00
67 68 69 70	BDN 1 -S12 NDT-B@ -S13 NDT-B@ S14 NDT-B@ -S15 NDT-B@ -S15 NDT-B@ -S16 NDT-B@	16 8 21 12 21 24	16 2 16 0 2 4	100.00 25.00 76.19 0.00 9.52 16.66
72 / 73 / 74 , 75 /	BDN-1 -S17 NDT-B9 -S18 NDT-B9 -S19 NDT-B9 -S20 NDT-B9	7 32 18 16	7 1 0 2 0	100 00 3 12 0 00 12 50 0 00
76 . 77 . 78 . 79 . 80 .	BDN-1 73047·24-8-2-1-S2 IV DT-B@ (F8) -S3 IV DT-B@ -S4 IV DT-B@ -S5 IV DT B@ 73047-24-1-5-3-S1 V DT-B@	7 2 6 25 12	7 No germ 0 0 15	100 00 nation 0 00 0.00 60 00 0 00
81 82 83 84 85 86 87 88 89 90	BDN-1 -S2 V DT-B9 -S3 V DT-B9 -S4 V DT-B9 -S5 V DT-B9 -S6 V DT-B9 -S7 V DT-B9 -S7 V DT-B9 -S10 V DT-B9 -S12 V DT-B9 -S13 V DT-B9 73047 24-1-5-4-S1 V DT-B9	14 31 9 2 23 7 2 10 7 33 34	14 0 0 0 1 0 4 0 0 0	00 00 0 00 0 00 0 00 50 00 0 00 57 14 0 00 0 00 0 00 0 00 0 00
	BDN-1	19	19	100 00

	2	3	4	5
92 93 94 95	73047-24-1-5-4-S2 V DT-B@ -S3 V DT-B@ -S4 V DT-B@ -S5 V DT-B@	20 16 8 12	0 2 1	0.00 12.50 12.50 8.33
96. 97. 98. 99.	BDN-1 -S6 V DT-B0 -S7 V DT-B0 -S8 V DT-B0 -S9 V DT-B0 -S10 V DT-B0	10 16 15 2 23 19	10 0 0 0 0	100,00 0.00 0.00 0.00 0.00 0.00
101 102 103 104 105.	BDN-1 73047-24-8-2-1-S1 IV NDT-BQ 73054-3-4-1-S1 IV NDT-BQ -S2 IV NDT-BQ -S3 IV NDT-BQ -S4 IV NDT-BQ -S5 IV NDT-BQ	13 19 12 5 9 8	13 0 0 0 0 0	100.00 0.00 0.00 0.00 0.00 0.00 0.00 22.22
107. 108 109 110	BDN-1 73047-21-2-4-S1 IV NDT-BQ (F7) -S2 IV NDT-BQ -S3 IV NDT-BQ -S4 IV NDT-BQ -S5 IV NDT-BQ	28 23 25 7	28 2 0 0 No germi	100.00 8.69 0.00 0.00 nation
112 113 114 115	BDN-1 -S6 IV NDT-B9 -S7 IV NDT-B9 -S8 IV NDT-B9 73047-24-BII-1-S6 V DT-B9	3 28 13 24 6	3 8 0 0	100 00 28.57 0.00 0.00 0.00
116 117, 118 119	BDN-1 -S8 V DT-B0 -S1 V NDT-B0 -S2 V NDT-B0 -S3 V NDT-B0 -S4 V NDT-B0	8 14 5 1 16 8	8 0 0 0 0	100.00 0.00 0.00 0.00 0.00 0.00
121 122	BDN-1 73047-24-BII-1-S5 V NDT-B@ -S7 V NDT-B@	6 19 18	6 0 0	100.00 0.00 0.00

1	. 2		3	4	5
123	73047-22-5-S1 IV	NDT-B9 (F6)	12	2	16 66
124	74236-35-2 S2 IV	NDT - B@	5	0	0 - 00
125	74236-35-4-S1-IV	NDT-B@	34	0	0 00
	BDN-1		15	15	100 00
126	-S2 1V	NDT-B@	11	0	0 Q 0
127.	-\$3 IV	NDT-B@	34	3	8.82
128.	-S4 IV	NDT-B0	34	1	2 94
! 29 .	74236-35-5-S1 IV	ND7 - B@	25	0	0 00
	BDN-1		14	14	100.00
130	-S3 IV	NDT-B0	13	Ó	0 00
131	-S5 IV	NDT-B@	27	Ŏ	0 00
1 32	74236-35-6-S1 IV	NDT-B0	25	0	0.00
133.	-S2 IV	NDT B@	14	0	0 00
	BDN-1		22	22	100.00
134	-S3 IV	NDT-B0	34	0	0 00
135	-S4 IV	NDT-B0	29	0	0 00
136	-S5 IV	NDT-B0	33	2	6 06
137	74236-35-7-S1 IV	NDT-B0	23	0	0 00
138.	-S2 IV	NDT-B@	14	0	0 00
	BDN-1		7	7	100 00
1 39	-S3 !V	NDT - B@	10	0	0 00
140	-\$4 IV	NDT-B0	11	0	0 00
141	-\$5 !V	NDT BQ	19 7	0	0 00
142 143	74236 35-9-S3 IV	NDT -BO	15	0 0	0 00 0 00
143.	-S4 IV	ND T - B@	, 3	U	0 00
	BDN-1		9	0	0 00
144	-S5 IV	NDT B@	23	0	0 00
145	73047-42-510-SV	DT@-B@	7	1	14 28
146	73047-27-S10-SV	NDT9-B9	2	0	0 00
147	73070-10-S10-SV	NDT0-B0	12	0	0 00
148	74236-21-8-S1 V	NDT-BØ	16 11	0	0.00
149 150	-S2 V	NDT-BQ	10	0 0	0 00 0 00
151	-S3 V -S4 V	NDT-B@ NDT B@	, _U	0	0 00
152	-54 V -S5 V	NDT-BG	9	0	0 00
153	73054 55-1-S1 VI		10	1	00 01
154	-S2 VI		9	0	0 00
	BDN-1		3	3	100 00

1	2	3	4	5
155 156 157 158 159	73054-55-1-S3 VI NDT-BQ -S4 VI NDT-BQ -S5 VI NDT-BQ 73054-55-3-S2 VI NDT-BQ -S3 VI NDT-BQ -S4 VI NDT-BQ	10 6 1 4 7	l l No germi O O	10.00 16.66 nation 0.00 0.00
161. 162 163 164. 165	BDN-1 74240-7-S1@-S VI NDTQ-BQ -S2@ S VI NDTQ-BQ 73047-8-S2@-S V DTQ-BQ 73047-19-S2@-S V DT1Q-BQ 73070-S1@ SV NDTQ-BQ (F5) 73088-S1@-SV NDTQ-BQ	7 4 12 8 2 1 17	7 1 0 0 0	100.00 25.00 8 33 0.00 0.00 0.00
167 168 169 170	BDN-1 74245-S10-S V NDT0-B0 74240-S10-S V NDT0-B0 74236-S10-S VI NDT0-B0 74236-S20-S VI NDT0-B0 74363-S30-S VI NDT0-B0	4 11 16 5 14 13	2 1 0 0 1 0	50 .00 9 .09 0 .00 0 .00 7 .14 0 .00
172	BDN-1 74363-S40-S VI NDT0-B0	16 6	16 0	100.00

APPENDIX-XXXII

Results of screening of advanced F4 and F5 triple cross progenies of pigeonpea for sterility mosaic resistance during 1978-79

ς1 No	Particular	Total p ¹ ants	Infected plants	Percent infec- tion
1	2	3	4	5
1 2 3 4 5 6 7	74038-12-1-1-S1@ 111 DT (TCF5) 74023-7-3-3-S5@ 111 NDT 74020-9-1-2 S6@ V DT 74020-8-2-7-S2@ V DT -S4 V DT@ -S5 V DT@ -S6 V DT@	15 37 13 25 4 6 2	0 2 0 0 0 0	0 00 5 40 0.00 0 00 0 00 0 00 0 00
8. 9. 10. 11. 12. 13. 14. 15. 16.	BDN-1 74020-31 2-3-S1 V DT9 -S2 V DT9 -S5 V DT9 74008-5-1-5-S2 V NDT9 -S3 V NDT9 74019-18-1-3-S2 V NDT9 S3 V NDT9 -S4 V NDT9 S5 V NDT9 74019-28-1 6-S1 V NDT9	10 5 2 3 13 26 19 10 11	10 0 0 0 0 2 0 0 0	100 00 0 00 0 00 0 00 0 00 7 69 0 00 0 00 0 00 23 52
18 19 20 21 22 23 24 25 26	-S3 V NDT@ -S4 V NDT@ -S4 V NDT@ -S4 V NDT@ -S2 V NDT@ -4020-8-2-7-S3 V NDT@ -4023-7-3-3-S2 V NDT@ -S3 V NDT@ -S4 V NDT@ -S6 V NDT@	8 12 26 19 11 32 26 36 3	8 0 0 0 0 0 0 0	100 00 8 33 0 00 0 00 0 00 0 00 0 00 0 00 14 28
	BDN-1	11	11	100 00

1	2	3	4	5
27. 28. 29. 30. 31. 32. 33. 34. 35.	74024-2-1-3-S1 V NDT@ -S2 V NDTQ -S3 V NDTQ -S5 V NDTQ 74038-12-1-1-S4 V NDTQ 74038-49-1-3-S1 V NDTQ -S2 V NDTQ -S3 V NDTQ -S3 V NDTQ -S5 V NDTQ 74038-3-1-1-S2 V NDTQ	3 19 13 1 15 15 4 11	0 0 0 0 0 0 0 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
37. 38. 39. 40. 41. 42. 43. 44.	BDN-1 74030-1-2-S1 V NDTQ (TCF4) -S2 V NDTQ -S3 V NDTQ -S4 V NDTQ -S5 V NDTQ (TCF3) 74034-4-4-S3 V NDTQ -S4 V NDTQ -S4 V NDTQ 74020-9-1-2-S5 VI DTQ 74020-8-2-7-S1 VI DTQ	19 29 48 15 18 18 22 40 14	19 0 1 0 0 1 5 0	100.00 0.00 2.08 0.00 0.00 5.55 22.72 0.00 0.00
46. 47. 48. 49. 50. 51. 52. 53. 54.	BDN-1 74004-47-1-3-S1 VI NDTQ -S2 VI NDTQ -S3 VI NDTQ 74004-47-1-4-S1 VI NDTQ -S2 VI NDTQ -S2 VI NDTQ -S3 VI NDTQ -S4 VI NDTQ -S4 VI NDTQ -S3 VI NDTQ -S3 VI NDTQ -S3 VI NDTQ -S3 VI NDTQ -S4 VI NDTQ	2 9 15 19 25 23 7 13 13 20 25	2 0 0 0 1 1 0 0 5 3 16	100.00 0.00 0.00 0.00 4.00 4.34 0.00 0.00
56. 57. 58. 59. 60. 61. 62. 63.	BDN-1 -S5 VI NDT@ 74008-5-1-3-S1 VI NDT@ -S2 VI NDT@ -S3 VI NDT@ -S4 VI NDT@ 74008-5-1-4-S1 VI NDT@ -S2 VI NDT@ -S3 VI NDT@ -S4 VI NDT@ -S4 VI NDT@	12 67 42 46 32 33 26 40 68 21	12 7 0 2 0 2 1 2 0 3	100.00 10.44 0.00 4.34 0.00 6.06 3.84 5.00 0.00 14.28
	BDN-1	15	15	100.00

1	?	3	4	5
65	74008-5-1-5-S5 V1 NDT@	28	1	3.57
66	74019-18-1 5-SI VI NDT@	9	2	22 22
67	S2 V! NDT⊕	18	11	61,11
68	S3 VI NDTO	13	2	15 38
69	-S4 VI NDTQ	18	2	וויו
70	S5 V: NDT@	15	Ó	0 00
71 72	.74019-28-1 6-S2 VI NDT@ -S5 V! NDT@	29	1	3 44
73	74023 6-1-5-SI VI ND18	3 14	0 0	0 00 0 00
74	· 52 VI NDTQ	26	0	0 00
7 🕶	. 35 41 (10)	20	U	0 00
	BDN · 1	7	7	100 00
75	-S3 V! NDTQ	19	0	0 00
76	-S4 V! NDTQ	34	Ō	0 00
77	-S5 VI NDTO	56	11	19 64
78	-S6 V! NDT0	40	32	80 00
79.	74023-6 2-1 St v! NDT@	48	3	6 25
80	-S2 VI NDT0	12	0	0 00
81	-S3 VI NDT@	1	0	0 00
82.	-S4 V! NDT@	9	0	0 00
83.	-S5 VI ND™	27	0	0 00
	BDN-1	17	17	100 00
84	74023-2-1-S6 V1 NDT@	9	0	0 00
85.	74038-20-1 3-S1 VI NDT0	2	Ō	0 00
86	-S2 V! NDT@	6	0	0 00
87.	-53 VI NDTG	32	0	0 00
88	-S4 V! ND™	10	0	0 00
89	S5 v: NDT®	32	7	21 87
90	74038-26-1-6-51 VI NDT@	49	0	0 00
91	-S2 V! NDT@	15	3	20 00
92	-S3 V! NDTQ	39	0	0 00 2 63
93.	-\$4 V! ND™@	38	•	2 03
	BDN - 3	18	18	100 00
94	74038-26-1-7-SI V! NDTQ	64	Õ	0.00
95	-53 VI NDTQ	47	ĭ	2 12
96	-S5 V! NDT@	36	0	0 00
97	74044-4-1-9-5' VI NDT@	53	9	16 98
98.	74034-6-1-S1 VI NDT@ (TCF4)	25	0	0 00
99	-S3 VI NDT₽	41	5	12 19
100	-S4 V! ND™	43	5	11 62
101	S5 V! NDT@	28	0	0 00
102	74041 1-1-St V! NDT@	46	4	8 69
	DDM 1	16	16	100 00
	BDN 1	- 0	. 0	. 55 55

1	2	3	4	5
103. 104. 105. 106. 107. 108. 109. 110. 111.	74041-1-1-S2 VI NDTQ -S3 VI NDTQ -S4 VI NDTQ -S5 VI NDTQ 74041-1-4-S1 VI NDTQ -S2 VI NDTQ -S3 VI NDTQ -S4 VI NDTQ -S5 VI NDTQ -S5 VI NDTQ 74041-74041-1-5-S1Q VI NDT	48 69 60 66 10 26 52 21 36 22	0 0 1 0 0 0 8 0	0.00 0.00 1.66 0.00 0.00 0.00 15.38 0.00 0.00
113. 114. 115. 116. 117. 118. 119. 120.	BDN-1 -S2@ VI NDT -S3@ VI NDT -S4@ VI NDT -S5@ VI NDT 74041-1-5-S6@ VI NDT -S7@ VI NDT -S8@ VI NDT -S8@ VI NDT -S9@ VI NDT 74041-6-5-S2@	18 24 34 56 21 60 42 60 28 37	18 0 0 0 0 0 0 0	100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.
122. 123. 124. 125. 126. 127. 128. 129. 130.	BDN-1 -S3@ VI NDT -S4@ VI NDT -S5@ VI NDT -S5@ VI NDT -S6@ VI NDT 74041-8-2-S1@ VI NDT -S2@ VI NDT 74041-10-3-S1@ VI NDT -S2@ VI NDT -S2@ VI NDT -S3@ VI NDT -S3@ VI NDT	20 58 48 36 23 31 60 56 45 56	20 0 3 0 0 1 1 0 1 2	100.00 0.00 6.25 0.00 0.00 3.22 1.66 0.00 2.22 3.57 0.00
132. 133. 134. 135. 136. 137. 138. 139. 140.	BDN-1 -S4Q 74041-11-4-S1Q VI NDT -S2Q VI NDT 74041-15-1-S2Q VI NDT 74043-1-4-S1Q VI NDT -S3Q VI NDT -S3Q VI NDT -S4Q VI NDT 74043-4-3-S1Q VI NDT -S2Q VI NDT BDN-1	17 69 57 62 19 53 89 56 47 28	17 0 0 0 2 2 14 6 5 6	100.00 0.00 0.00 0.00 10.52 3.77 15.73 10.71 10.63 21.42 100.00

1	2	3	4	5
4 :	74043-4-3-53@ V! NDT	14	2	14 28
42.	-S4@ VI NDT	4	0	0 00
43.	-SS@ VI NDT	10	0	0.00
:44	74043-7-4-SI@ VI NDT	51	5	9.80
145	SSB V! NDT	51	0	0 00
146 .	-S40 VI NDT	15	1	6 66
147	-550 VI NDT	52	0	0 00
148	74043-10-1-SI@ V! NDT	32	. 0	0 00
149	- 520 V! NDI	29	0	0.00
150.	-S30 VI NDT	21	3	14 28
	BDN-1	15	15	100 00
151	-S4@ V! NDT	14	2	14 28
152	-S5@ VI NDT	10	1	10 00
153.	74054 5-2-SI@ VI NDT	5	0	0 00
154	S20 VI NDT	8	0	0 00
155	-S30 VI NDT	24	1	4 16
156	-S40 VI NDT	16	1	6 25
157	-S50 VI NDT	15	0	0 00
158.	74054-7-3-S2 VI NDT	31	0	0 00
159	74023-7-3-3-SI@ VII NDT (TCF5)	38	18	47 36
	BDN-1	14	14	100 00
160	74038-12-1-1-S2@ VII NDT	32	4	12 50
161	74038-3-1 1-S10 VII NDT	48	14	19 16
162	74041-15 1-SI@ VII NDT (TCF4)	38	5	13 15
163	74054-4-2-S49 VIII NDT	39	4	10 25
164	74044-4-1-9-S2 VIII NDT (TCF5)	37	8	21 62
165	74041 16-2-SI@ VIII NDT (TCF4)	64 67	3 1	4 68 1 49
166	S20 VIII NDT	70	ò	0 00
167 168	-530 VILL NDT 74054-1-3 SIG VILL NDT	33	0	0 00
169	S20 VIII NDT	29	ĺ	3 44
	DDM 1	22	22	100 00
170	BDN-1	23	1	4 34
171	-53@ VI!! NDT -55@ VI!! NDT	23 44	1	2 27
172	74054-4-2-SI@ VII! NDT	3	i	33 33
173	-\$20 V[]; NDT	ì	Ó	0 00
173.		•	No germi	
175	-530 VIII NDT -550 VII¦ NDT	1	0	0 00
173.	יטא וווא אּמככ.	•	U	0.00

APPENDIX- XXXIII

Results of screening of F3, F4 & F5 triple cross progenies
of pigeonpea for sterility mosaic resistance
during 1978-79.

S1. No.	Particular	Total plants	Infected plants	Percent infec- tion
1	2	3	4	5
1.	74014-5-1-3-1 VI NDT (TCF5) -4 VI NDT	49 81	30 47	61.22 58.02
3. 4. 5. 6. 7.	BDN-1 -5 VI NDT 74019-18-1-6-2 VI NDT -3 VI NDT 74020-3-1-3-1- VI NDT -4 VI NDT	21 92 72 75 48 58	21 76 33 49 1 7	100.00 82.60 45.83 65.33 2.08 12.06
8. 9. 10. 11.	BDN-1 -5 VI NDT 74042-9-1-4-2 VI NDT -4 VI NDT -5 VI NDT	13 42 55 26 19	13 9 40 15 9	100.00 21.42 72.72 57.69 47.36
12. 13. 14. 15.	BDN-1 74038-49-1-6-2 VI NDT -3 VI NDT -4 VI NDT 74038-50-1-2-1 VI NDT -2 VI NDT	16 69 81 45 49 57	16 37 35 10 39 43	100.00 53.62 43.20 22.22 79.59 75.43
17. 18. 19. 20. 21.	BDN-1 -3 VI NDT 74038-50-1-4-2 VI NDT -3 VI NDT -4 VI NDT 74003-48-B-5-1 VI NDT	14 41 57 50 24 39	14 41 45 13 7 39	100.00 100.00 78.94 26.00 29.16 100.00
22. 23. 24. 25.	BDN-1 74003-48-B-S-2 VI NDT -5 VI NDT 74004-11-B-4-1 VI NDT -2 VI NDT	10 53 27 40 53	10 44 23 33 24	100.00 83.01 85.18 82.50 45.28

1	2	3	4	5
26	74004-11-B-4-5 VI NDT	72	25	34 72
27 28 29 30	BDN-1 74004 53-B-4-3-2 VI NDT -3 VI NDT 74004 53-B-4-2 VI NDT 3 V! NDT	21 69 69 72 24	21 18 21 68 20	100 00 26 08 30 43 94 44 83 33
31 32 33 34 35	BDN-1 74004-53-B 4-5 VI NDT 74004-44-B-1-1 VI NDT -2 VI NDT -3 VI NDT 74004-9-3-1 VI NDT (TCF4)	16 44 69 29 79 79	16 44 22 6 6 72	100 00 100 00 31 88 20 68 7 59 91 13
36 37 38 39 40	BDN 1 -2 VI NDT -5 VI NDT 74004-18-4-1 VI NDT -2 VI NDT -5 VI NDT	19 69 24 53 43 65	19 65 7 17 25 42	100 00 94 20 29 16 32 07 58 13 64 61
41 42 43 44 45	BDN-1 74004-25-2-1 VI NDT -3 VI NDT -5 VI NDT 74004-26-3-1 VI NDT -3 VI NDT	17 61 53 26 13 36	17 21 8 7 5	100 00 34 42 15 09 26 92 38 46 50 00
46 47 48 49	BDN-1 -4 VI NDT 74004-48-2-1 VI NDT -3 VI NDT -5 VI NDT	17 80 69 73 36	17 40 17 17	100 00 50 00 24 63 23 28 19 44
50 51 52 53 54	BDN-1 74004-48-3-1 VI NDT 74004-48-2-3 VI NDT -4 VI NDT 74004-48-4-3 VI NDT -5 VI NDT	18 58 61 81 73 26	18 10 9 4 59 4	100 00 1 72 14 75 4 93 80 82 15 38
	BDN-1	16	16	100 00

1	2	3	4	5
55. 56. 57. 58. 59.	74004-48-4-6 VI NDT 74004-49-5-3 VI NDT -4 VI NDT -5 VI NDT 74007-61-3-1 VI NDT	5 56 78 61 96	0 16 28 32 65	0.00 28.57 35.89 52.45 67.70
60. 61. 62. 63.	BDN-1 -3 VI NDT -4 VI NDT 74008-6-7-1VI NDT -4VI NDT -5VI NDT	23 98 100 96 42 51	23 67 89 71 6	100.00 68.36 89.00 73.95 14.28 31.37
65. 66. 67. 68.	BDN-1 74008-29-2-3 VI NDT -5 VI NDT -6 VI NDT 74019-15-2-1 VI NDT	15 64 44 96 95	15 4 10 14 0	100.00 6.25 22.72 14.58 0.00
69. 70. 71. 72. 73.	BDN-1 -2 VI NDT -4 VI NDT 74019-15-7-2 VI NDT -3 VI NDT -5 VI NDT	24 41 84 21 74 77	24 0 3 0 12 2	100.00 0.00 3.57 0.00 16.21 2.59
74. 75. 76. 77.	BDN-1 74034-14-2-1 VI NDT -2 VI NDT -6 VI NDT 74034-14-3-3 VI NDT -4 VI NDT	26 99 9 59 69 53	26 48 3 48 47 36	100.00 48.48 33.33 81.35 68.11 67.92
79. 80. 81. 82. 83.	BDN-1 74038-2-2-1 VI NDT -5 VI NDT -6 VI NDT 74038-5-1-1 VI NDT -3 VI NDT	24 93 70 79 62 113	24 22 47 48 35 10	100.00 23.65 67.14 60.75 56.45 8.84
84.	BDN-1 -6 VI NDT	17 112	17 59	100.00 52.67

1	2	3	4	5
85	74038-13-6-1 V! NDT	89	8	8 98
86	-2 VI NDT	80	4	5 00
87	-3 VI NDT	91	16	17 58
	BDN-1	17	17	100 00
88	74038-18-1 2 V1 NDT	86	42	48 83
89	-3 VI NDT	84	44	52 38
90	-4 VI NDT	119	73	61 34
91	74038-22-4-4 VI NDT	58	6	10 34
92	-6 VI NDT	84	0	0 00
	BDN-1	17	17	100 00
93	74038-74-4-1 VI NDT	70	47	67.14
94	-4 VI NDT	120	103	85.83
95	-5 VI NDT	114	13	11 40
96	74038-74-6-1 VI NDT	94	26	27 65
97	-2 VI NDT	89	8	81 98
	BDN-1	18	18	100 00
98.	-4 VI NDT	94	19	20.21
99	75077-162-1 VI NDT (TCF3)	85	3	3 52
100	75077-165-1 VI NDT	76	12	15 78
102 101	-2 V[NDT 75069 15-1 VI NDT	82 20	26 0	31 70 0 00
102	1009 10-1 AT NOT	20	U	0 00
	BDN 1	15	15	100 00
103	75069-16-1 VI NDT	26	1	3 84
'04	75069 · 20 - 1 VI NDT	39	2	5 12
105	75069 21-1 VI NDT	41	5 1	12 19
106	75069-29-1 VI NDT	33	•	3 03
	BDN-1	7	7	100 00
10.7	75069-34-1 V! NDT	25	1	4 00
108	75069-38-1 VI NDT	7	0	0 00
109	75069-41-1 VI NDT	51	5	9 80
110	75069-41 2 VI NDT	14	0	0 00
111	75069-43-1 V! NDT	75	3	4 00
	BDN- j	14	14	100 00
115	75069 44-1 V! NDT	26	0	0 00
113	75069 47-1 V1 NDT	45	9	20 00
114.	75069-48-1 VI NDT	69	5 2	7 24 9 52
115.	75069-51-1 VI NDT	21	No germina	
116	· 2 VI NDT		ao germano	
	BDN-1	7	7	100 00

1	2	3	4	5
117. 118. 119. 120. 121.	75069-53-1 VI NDT 75069-57-2 VI NDT 75069-59-1 VI NDT 75069-60-1 VI NDT 75069-68-1 VI NDT	39 38 14 32 42	2 11 2 1 2	5.12 28.94 14.28 3.12 4.76
122. 123. 124. 125.	BDN-1 75069-72-1 VI NDT 75069-72-2 VI NDT 75069-74-1 VI NDT 75069-75-1 VI NDT	17 57 87 82 20	17 16 6 3 2	100.00 28.07 6.89 3.65 10.00
126. 127. 128. 129. 130.	BDN-1 75069-75-2 VI NDT -3 VI NDT 75069-77-1 VI NDT 75069-78-1 VI NDT 75069-82-1 VI NDT	21 15 43 57 52 21	21 3 16 17 3 5	100.00 20.00 37.20 29.82 5.76 23.80
131. 132. 133. 134. 135.	BDN-1 75069-82-2 VI NDT -3 VI NDT 75069-86-1 VI NDT 75069-87-1 VI NDT 75073-14-1 VI NDT	16 19 74 88 50 62	16 2 11 23 12 15	100.00 10.52 14.86 26.13 24.00 24.19
136. 137. 138. 139.	BDN-1 75073-16-1 VI NDT 75073-21-1 VI NDT 75073-22-1 VI NDT 75073-23-1 VI NDT 75073-27-1 VI NDT	12 33 70 63 72 36	12 3 23 36 28 2	100.00 9.09 32.85 57.14 38.88 5.55
141. 142. 143. 144.	BDN-1 75073-29-1 VI NDT 75073-30-1 VI NDT 75073-30-2 VI NDT 75073-39-1 VI NDT	10 54 90 46 65	0 21 6 1 15	0.00 38.88 6.66 2.16 23.07
145. 146. 147. 148. 149.	BDN-1 -2 VI NDT 75073-41-1 VI NDT 75073-43-1 VI NDT 75073-46-1 VI NDT 75073-48-1 VI NDT BDN-1	15 40 23 79 24 75	15 6 0 16 4 8	100.00 15.00 0.00 20.25 16.66 10.66

,	2	3	4	. 5
150	75073-51-1 VI NDT	48	19	39 58
151	75073-63-1 VI NDT	41	26	63 41
152	75073-65-1 VI NDT	57	29	50 87
153 154.,	75073-66 1 VI NDT	39	21	53 84
154.,	75073-70-1 VI NDT	30	12	4000
	BDN-1	10	10	100 00
155	-2 VI NDT	62	15	24 19
156	75073-71-1 VI NDT	56	13	23 21
157	75073-74-1 VI NDT	29	1	3 44
158	75073-75-1 VI NDT	32	7	21 87
159.	75073-77-1 VI NDT	23	4	17 39
	BDN-1	17	17	100 00
160	75077-76-1 VI NDT	3	0	0 00
161	75077-79-1 VI NDT	11	2	18 18
162	75077-83-1 VI NDT	12	4	33 33
163.	75077-84-1 VI NDT	63	35	55 . 55
	BDN-1	14	14	100.00
164	75077-85-1 VI NDT	48	3	6 25
165	75077-86-1 VI NDT		No germina	
166	75077-87-1 VI NDT	23	3	13 04
167	75077-88-1 VI NDT	33	0	0.00
168	75077-89-1 VI NDT	5	0	0 00
	BDN - 1	10	10	100 00
169	75077 91-1 VI NDT	29	Ö	0 00
170	75077-94-1 VI NDT	2	0	0 00
171	75077-169-1 VI NDT	15	2	1.3 33
7.72	75077-170-1 VI NDT	19	3	15 78
173	-2 VI NDT	45	4	88 88
	BDN · ¹	18	18	100 00
174	75077-171-1 VI NDT	44	9	20 45
175	75077-174-1 VI NDT	21	4	19 04
176	75077-174-2 VI NDT	22	10	8 19
177	75077-175-1 VI NDT	63	9	14 28
1 78	75093-4-1 VI NDT	29	2	6 89
	DDN 1	18	18	100 00
179	BDN-1 -2 VI NDT	101	15	14 85
180	75093-5-1 VI NDT	63	14	22 22
				58 18
181	75093-6-1 VI NDT	55	32	58 1

1	2	3	4	5
182.	75093-9-1 VI NDT	55	14	25.45
183. 184. 185. 186. 187.	BDN-1 -2 VI NDT 75093-10-1 VI NDT 75093-17-1 VI NDT 75093-17-2 VI NDT 75093-11-2 VI NDT	21 85 67 44 48 83	21 0 3 17 16 50	100.00 0.00 4.47 38.63 33.33 60.24
188. 189. 190. 191. 192.	BDN-1 75093-14-1 VI NDT -2 VI NDT -3 VI NDT 75093-18-1 VI NDT 75093-19-1 VI NDT	21 147 137 62 100 72	21 34 4 7 0 8	100.00 23.12 2.91 11.29 0.00 11.11
193. 194. 195. 196. 197.	BDN-1 75093-22-1 VI NDT -2 VI NDT -3 VI NDT -4 VI NDT -5 VI NDT	90 117 86 103 95 77	32 6 9 12 68 52	35.55 5.12 10.46 11.65 71.57 67.53
198. 199. 200. 201.	BDN-1 75093-23-1 VI NDT 75093-28-1 VI NDT -2 VI NDT 75093-29-1 VI NDT	18 97 73 82 78	18 26 0 0	100.00 26.80 0.00 0.00 12.82
202. 203. 204. 205. 206.	BDN-1 -2 VI NDT 75093-30-1 VI NDT -2 VI NDT 75093-31-1 VI NDT -2 VI NDT	19 69 66 71 59 111	12 2 9 24 0 8	63.15 2.89 13.63 33.80 0.00 7.20
207. 208. 209. 210. 211.	BDN-1 75093-33-1 VI NDT 75093-35-1 VI NDT -2 VI NDT 75093-36-1 VI NDT 75093-37-1 VI NDT	10 86 56 80 81 65	10 2 9 12 11 4	100.00 2.32 16.07 15.00 13.58 6.15
	BDN-1	15	15	100.00

1	2	3	4	5
212	75093-38 1 VI NDT	107	80	74 76
213	-2 VI NDT	113	70	61 94
214	-3 V1 NDT	53	40	75 45
215	75093-39-1 VI NDT	62	10	16 12
216	-2 VI NDT	115	68	59 13
217.	-3 VI NDT	104	47	45 19
218	-4 VI NDT	30	2	6 66
219	75093-44-1-VI NDT	75	52	69 33
220	75093-48-1 VI NDT	60	3	5.00
	BDN-1	15	15	100.00
221	-2 VI NDT	40	0	0.00
222	-3 VI NDT	55	9	16 36
223.	-4 VI NDT	55	10	18 18
224	75093-49 1 VII NDT	78	22	28 20
225	75093-50-1 VII NDT	25	0	0 00
	BDN-1	6	6	100 00
226	75093-51-1 VII NDT	140	29	20.71

APPENDIX- XXXIV

Results of screening of F4 progenies of pigeonpea from generation tests for sterility mosaic resistance during 1978-79.

S1. No.	Particular	Total plants	Infected plants	Percent infec- tion
1	2	. 3	4 .	5
1. 2. 3. 4. 5. 6.	74236-1-V NDT1 (F4) 1-V NDT2 1-V NDT3 1-V NDT4 1-V NDT5 1-V NDT6 1-V NDT7	• 36 40 10 116 9 32 53	26 27 6 5 5 11 48	72.22 67.50 60.00 4.31 55.55 34.37 96.00
8. 9. 10. 11. 12. 13. 14. 15. 16.	BDN-1 1-V NDT8 1-V NDT9 1-V NDT10 1-V NDT11 1-V NDT12 1-V NDT13 1-V NDT14 1-V NDT15 1-V NDT16 1-V NDT17	13 29 10 32 12 8 7 21 39 24 41	13 2 1 12 7 6 3 12 31 6 29	100.00 6.89 10.00 37.50 58.33 75.00 42.85 57.14 79.48 25.00 70.73
18. 19. 20. 21. 22. 23. 24. 25.	BDN-1 1-V NDT18 1-V NDT19 1-V NDT20 74236-4-V NDT21 V NDT22 V NDT23 V NDT24 V NDT25 V NDT26	15 18 15 46 57 39 39 14 36 62	15 9 10 38 22 33 1 6 22 2	100.00 50.00 66.66 82.60 38.59 84.61 2.56 42.85 61.11 3.22
27. 28.	BDN-1 V NDT27 V NDT28	15 36 19	15 4 12	100.00 11.11 63.15

1	2	3	4	5
29	74236-4-V NDT29	20	2	10.00
30	V NDT30	42	27	64 28
31,	74236-1-V NDT31	42	30	71 42
32	1-V NDT32	43	37	86 04
33	1-V NDT33	27	7	25 92
34,	1V NDT34	45	19	42 22
35	1 V NDT35	43	34	79 06
36	1 V NDT36	23	14	60 86
	BDN-1	6	6	100 00
37	1-V NDT37	35	10	28 57
3 8	1-V NDT38	28	28	100 00
39	1-V NDT39	39	28	71 79
40	1-V NDT40	49	28	57 14
41	1 V NDT41	16	14	87 50
42.	1 V NDT42	ğ	4	44 44
43	1-V NDT43	9	6	66 66
44	1 V NDT44	9 7	5	71 42
45	1-V NDT45	13	13	100 00
	BDN - J	6	6	100.00
46	1-V NDT46	5	4	80 00
47	1-V NDT47	4	2	50 00
48.	74236-3-V NDT48	64	34	53 12
49	3-V NDT49	35	5	14 28
50.	3-V NDT50	39	22	56 41
51	3-V NDT51	46	26	56 52
52	3-V NDT52	23	9	39 13
53.	3 V NDT53	43	14	32 55
54	3 V NDT54	43	14	32.55
55	3-V NDT55	32	21	65 62
	BDN-1	8	8	100 00
56.	3-V NDT56	42	34	80 95
57.	3-V NDT57	44	13	29 54
58	3-V NDT58	22	10	45 45
59.	3-V NDT59	29	28	96 55
60	3-V NDT60	35	28	80 00
61	3-V NDT61	23	14	60 86
62	3-V NDT62	11	6	54 54
63.	3 V NDT63	28	4	14 28
64.	3-V NDT64	22	15	68 18
	BDN ~ 1	19	19	100 00

1	2	3	4	5
65. 66. 67. 68. 69. 70. 71. 72. 73.	74236-3-V NDT65 3-V NDT66 3-V NDT67 74236-4-VI NDT68 4-VI NDT69 4-VI NDT70 4-VI NDT71 4-VI NDT72 C.NO-74236-4-VI NDT73 4-VI NDT74	36 24 35 35 39 35 39 48 22	5 2 4 35 38 33 35 45 21	13.88 8.33 11.42 100.00 97.43 94.28 89.74 93.75 95.45
75. 76. 77. 78 79. 80. 81. 82. 83. 84.	BDN-1 4-VI NDT74 4-VI NDT75 4-VI NDT76 4-VI NDT77 4-V NDT78 4-V NDT79 4-V NDT80 4-V NDT81 4-V NDT82 4-V NDT83	20 26 53 47 29 54 45 16 37 50 35	20 25 50 45 27 47 41 16 27 30 28	100.00 95.00 94.33 95.74 93.10 87.03 91.11 100.00 72.97 60.00 80.00
85. 86. 87. 88. 89. 90. 91. 92. 93.	## A-V NDT84 4-V NDT85 4-V NDT86 4-V NDT86 4-V NDT87 74236-2-V NDT88 -2 V NDT89 -2 V NDT90 -2 V NDT91 -2 V NDT92 -2 V NDT93	10 40 21 36 18 13 39 27 35 33 24	10 39 12 18 18 10 16 22 15 19	100.00 97.50 57.14 50.00 100.00 76.92 41.02 81.48 42.85 57.57
95. 96. 97. 98. 99. 100. 101. 102. 103.	BDN-1 -2 V NDT93 -2 V NDT94 -2 V NDT95 -2 V NDT96 -2 V NDT97 74236-3 V NDT98 3 V NDT99 3 V NDT100 3 V NDT101 3 V NDT102	8 25 35 15 43 30 69 52 30 53 40	8 12 22 8 26 23 34 15 4 36 6	100.00 48.00 62.85 53.33 60.46 76.66 49.27 28.84 13.33 67.92 15.00
	BDN-1	11	11	100.00

1	2	3	4	5
105 106 107 108 109 100 101	74236 3 V NDT103 3 V NDT104 3 V NDT105 3 V NDT106 3 V NDT107 3 V NDT108 3 V NDT109 3 V NDT110 3 V NDT111	50 39 45 35 52 48 27 47 50	12 18 12 5 24 31 5 31	24 00 46 15 26 66 14 28 46 15 64 58 18 51 65 95 72 00
104 105 106 107 108 109 110 111 112	3 V NDT112 BDN-1 74236-1 V NDT112 1 V NDT113 1 V NDT114 1 V NDT115 1 V NDT116 1 V NDT117 74243-1 V NDT1 1 V NDT2 1 V NDT3 1 V NDT4	33 17 33 18 55 54 55 64 23 23 28 18	16 19 12 19 23 22 27 5 13 27	48 48 95 00 57 57 66 66 34 54 42 59 40 00 42 18 21 73 56 52 96 42 38 88
115 116 117 118 119 120 121 122 123	BDN-1 1 V NDT5 1 V NDT6 1 V NDT7 1 V NDT8 1 V NDT9 1 V NDT10 74243-3 VI NDT11 3 VI NDT12 3 VI NDT13 3 VI NDT14	20 12 9 54 27 32 39 19 41 21	10 10 7 30 9 20 8 7 29 16 20	50 00 83 33 77 77 55 55 33 33 62 50 20 51 36 84 70 73 76 19 71 42
125 126 127 128 129 130 131	BDN-1 3 VI NDT14 3 VI NDT15 3 VI NDT16 3 VI NDT17 3 VI NDT18 3 VI NDT18 3 VI NDT19 3 VI NDT20 74243-4 VI NDT21	16 33 43 32 20 37 28 25 45	16 20 32 11 13 30 11 8 35	100 00 60 60 74 41 34 37 65 00 81 08 39 28 32 00 77 77

1	2	3	4	5
133. 134.	74243-4 VI NDT22 4 VI NDT23	42 45	26 42	61.90 93.33
	BDN-1	20	20	100.00
135.	4 VI NDT24	53	52	98.11
136. 137.	4 VI NDT25 4 VI NDT26	42 38	28 37	66.66 97.36
137.	4 VI NDT26 4 VI NDT27	35	33	94.28
139.	4 VI NDT28	63	59	93.65
140.	4 VI NDT29	38	35	92.10
141.	4 VI NDT30	28	25	89.28
142.	74243-3 VI NDT31	65	4	6.15
143. 144.	3 VI NDT32 3 VI NDT33	61 18	24 12	39.34 66.66
	BDN-1	17	17	100.00
145.	3 VI NDT33	32	13	40.62
146.	3 VI NDT34	43	3	6.97
147.	3 VI NDT35 3 VI NDT36	54 46	21 7	38.88 15.21
148. 149.	3 VI NDT36 3 VI NDT37	60	6	10.00
150.	3 VI NDT38	73	4	5.47
151.	3 VI NDT39	29	9	31.03
152.	3 VI NDT40	45	2	4.44
153. 154.	3 VI NDT41 3 VI NDT42	60 7 5	35 73	58.33 97.33
	BDN-1	17	17	100.00
155.	3 VI NDT43	58	37	63.79
156.	3 VI NDT44	33	33	100.00
157.	3 VI NDT45	55 45	37 45	67.27
158. 159.	3 VI NDT46 3 VI NDT47	45 43	45 43	100.00 100.00
160.	3 VI NDT47	39	38	97.43
161.	3 VI NDT49	41	40	97.56
162.	3 VI NDT50	46	45	97.82
163.	74243-1 VI NDT51	56	49	87.50
164.	1 VI NDT52	28	19	67.85
165	BDN-1	19	19	100.00
165.	1 VI NDT52	27	14	51.85
	BDN-1	19	19	100.00

1	2	3	4	, 5
166	C NO-74243-1 VI NDT52	27	14	51.85
167	1 VI NDT53	14	0	0.00
168	1 VI NDT54	35	8	22 85
169	1 VI NDT55	36	11	30 55
170	1 VI ND 156	57	42	73 68
171	1 VI NDT57	18	7	38 88
172	1 VI NDT58	31	28	90 32
173	1 VI NDT59	36	8	22 22
174)	37	28	75 67
175	l VI NDT61	40	31	77.50
1.26	BDN-1	20	20	100 00
176	74243-3 VI NDT62	28	24	85 71
177	3 VI ND163	16	13	81 25
178.	3 VI NDT64	17	7	41 17
179	3 VI NDT65	34	19	55 88
180	3 VI NDT66 3 VI NDT67	65	65 40	100 00
181 . 182		58	48	82 75
183	3 VI NDT68 3 VI NDT69	32 47	28 40	87 50 85 10
184	3 VI NDT70	37	28	75 67
185	74243-4 VI NDT71	32	25 25	78 12
105	74243-4 VI ND: 71		23	70 (2
	BDN-1	15	15	100 00
186	4 VI NDT71	39	11	28 20
187	4 VI NDT72	54	48	88 88
188	4 VI ND 773	59	26	44 06
189	4 VI NDT74	59	46	77 96
190	4 VI ND!75	65	51 27	78 46
191	4 VI NDT76	44	37 25	84 09 87 50
192	4 V! NDT77	40	35	15 38
193	4 V! NDT78	78 71	12	84 50
194. 195	4 VI NDT79 4 VI NDT80	68	60 41	60 29
195	4 11 110100			
	BDN-1	15	15	100 00
196	74243-3 V NDT81	35	34	97 14
197	3 V NDT82	70	69	98 57
198	3 V NDT83	59	47	79 66
199	3 V NDT84	36	35	97 22
200	3 V NDT85	56	33	58 92
201	3 V ND186	26	26	100 00
202	3 V NDT87	48	48	100 00
503	3 V NDT88	41	36	87 80 97 95
204	3 V NDT89	49 29	48 28	96 55
205 .	3 V NDT90			
	BDN - 1	16	16	100 00

1	2	3	4	5
206. 207. 208. 209. 210. 211. 212. 213. 214. 215.	74243-3 V NDT90 3 V NDT91 3 V NDT92 74243-1 V NDT93 1 V NDT94 1 V NDT95 1 V NDT96 1 V NDT97 1 V NDT98 1 V NDT99	16 39 43 69 32 31 46 55 57	14 27 22 14 16 26 43 27 42	87.50 69.23 51.16 20.28 50.00 83.87 93.47 49.09 73.68 77.41
216. 217. 218. 219. 220. 221. 222. 223. 224. 225.	BDN-1 1 V NDT100 74243-3 VI NDT101 3 NDT102 3 NDT103 3 NDT104 3 NDT105 3 NDT106 3 NDT107 74243-1 VI NDT108 1 VI NDT109	14 37 74 48 32 37 34 52 42 32	14 11 20 23 11 31 30 43 41 29	100.00 29.72 27.02 47.91 34.37 83.78 88.23 82.69 97.61 90.62 12.50
226. 227. 228. 229. 230. 231. 232. 233. 234. 235.	BDN-1 1 VI NDT109 1 VI NDT110 1 VI NDT111 1 VI NDT112 1 VI NDT113 1 VI NDT114 1 VI NDT115 1 VI NDT116 1 VI NDT117 1 VI NDT118	18 21 33 50 35 5 9 54 60 42 50	18 3 6 32 11 2 1 28 54 34 15	100.00 14.28 18.18 64.00 31.42 40.00 11.11 51.85 90.00 80.95 30.00
236. 237. 238. 239. 240. 241. 242. 243. 244.	BDN-1 74243-2 V NDT119 2 V NDT120 2 V NDT121 2 V NDT122 2 V NDT123 2 V NDT124 2 V NDT125 2 V NDT126 2 V NDT127	20 28 67 48 58 75 22 15 13	20 6 41 6 50 3 3 0	100.00 21.42 61.19 12.50 10.34 66.66 13.63 20.00 0.00 80.00

) _:	2	3	4	5
245	74243-4VNDT128	25	19	⁷ 6 00
	BDN-1	5	5	100.00
246	4 V NDT128	17	14	82 35
247	4 V NDT129	7	7	100 00
248	4 V NDT130	25	25	100 00
249	4 V NDT131	25	22	88 00
250	4 V NDT132	20	20	100 00
251	4 V NDT133	7	7	100 00
252	. 4 V NDT134	6	4	66 66
253 . 254 .	4 V NDT135 4 V NDT136	14	14	100.00
255	4 V NDT137	46 15	44 15	95 65 100 00
			-	.00 00
	BDN - 1	19	19	100 00
256	74245-4 VI NDT1	33	13	39 39
257	4 VI NDT2	72	50	69 44
258.	4 VI NDT3	59	52	88 13
259	4 VI NDT4 4 VI NDT5	40	26	65 00
260 261	4 VI NDT5 4 VI NDT6	58 41	50 26	86 20 63 41
262	4 VI NDT7	57	53	92 98
263	4 VI NDT8	39	27	69 23
264	4 VI NDT9	62	36	58 06
265	4 VI NDTIO	25	23	92 00
	BDN 1	16	16	100.00
266	4 VI NDT10	16	14	87 50
267	4 V NDT11	35	24	68 57
268	4 V NDT12	. 39	32	82 05
269	4 V NDT13	42	22	52 38
270	4 V NDT14	19	١7	89 47
271	4 V NDT15	22	11	50 00
272	4 V NDT16	34	30	88 23
273	4 V NDT17	· 20	18	90 00
274	4 V NDT18	53	47	88 67
275	4 V NDT19	13	11	84 61
	BDN-1	15	14	93 33
276	4 V NDT20	41	35	85 36
277	4 V! NDT21	59	30	50 84
278	4 VI NDT22	20	16	80 00
2.79	4 VI NDT23	26	13	50 00
280	4 V! NDT24	38	13	34 21
281	4 VI NDT25	! 7	7	41 17

1	2	3	4	5
282. 283. 284. 285.	74245-4 VI NDT26 4 VI NDT27 4 VI NDT28 4 VI NDT29	32 42 27 18	7 - 18 11 6	21.87 42.85 40.74 33.33
286. 287. 288. 289. 290. 291. 292. 293. 294.	BDN-1 4 VI NDT29 4 VI NDT30 74245-3 VI NDT31 3 VI NDT32 3 VI NDT33 3 VI NDT34 3 VI NDT35 3 VI NDT36 3 VI NDT37 3 VI NDT37	12 6 39 35 46 25 46 41 32 28 22	12 6 1 29 30 20 20 34 27 23 18	100.00 100.00 2.56 82.85 65.21 80.00 43.47 82.92 84.37 82.14 81.81
296. 297. 298. 299. 300. 301. 302. 303. 304. 305.	BDN-1 74245-4 VI NDT39 4 VI NDT40 4 VI NDT41 4 VI NDT42 4 VI NDT43 4 VI NDT44 4 VI NDT44 4 VI NDT45 4 VI NDT46 4 VI NDT47 4 VI NDT48	11 49 32 70 34 37 21 25 48 46	11 15 15 60 27 15 14 17 42 38 16	100.00 30.61 46.87 85.71 79.41 40.54 66.66 68.00 87.50 82.60 84.21
306. 307. 308. 309. 310. 311. 312. 313. 314. 315.	BDN-1 4 VI NDT48 4 VI NDT49 4 VI NDT50 4 VI NDT51 4 VI NDT52 4 VI NDT53 4 VI NDT54 4 VI NDT55 4 VI NDT55 4 VI NDT56 4 VI NDT57	14 7 18 43 37 47 50 38 31 38 45	14 5 11 9 5 40 13 36 30 28 38	100.00 71.42 61.11 20.93 13.51 57.14 26.00 94.73 96.77 73.68 84.44
316. 317.	BDN-1 4 VI NDT58 74245-1 VI NDT59	7 27 22	7 22 22	100.00 81.48 100.00

1	2		3	4	5
318	74245-1 VI	NDT60	47	9	19 14
3!9	1 17	NDT61	45	33	73 33
320	1 VI	NDT62	24	21	87 50
321	1 11	NDT63	. 37	28	75 67
322		NDT64	. 48	18	37 50
323	l ,	NDT65	30	14	46 66
324) 1	NDT66	38	20	52 63
325 .	•	ND167	29	18	62 06
	BDN-1		18	18	100 00
326	ı vı	NDT67	13	5	38 46
327	1 V!	ND168	51	15	29 41
328。	74245-3 VI	NDT69	30	19	63 33
329	3 VI	NDT 70	57	44	77 19
330	3 VI	NDT 71	45	10	55 55
331	3 VI	NDT 72	45	15	33 33
332		NDT73	46	12	26 08
333.	3 VI	NDT74	47	9	19 14
334	3 VI	NDT75	39	24	61 53
335	3 VI	NDT 76	55	33	60 00
	BDN-1		16	16	100 00
336		NDT77	25	14	56 00
337	1V E		50	15	30 00
338	74245 2 V	NDT79	22	14	63 63
339	2 V	NDT80	37	17	45 94
340	2 V	ND181	19	17	17 00 53 12
341	2 V	ND182	32 71	20	53 12 64 78
342 343	2 V 2 V	NDT83 NDT84	59	46 49	83 05
343 344		ND184 ND185	38	28	73 68
345	2 V 2 V	ND186	20	13	65 00
			10	10	100.00
24.5	BDN-1	110.000	18	18	100 00
346	2 V	NDT86	10	2	20 00
34.7	2 V	NDT87	55 52	34 45	61 81 86 53
348	2 V	ND188	52 54	45 34	62 96
349	74245 V 1 V	ND*89 ND*90	63	34 41	65 07
350 351	•	ND191	32	22	68 75
351 352	l v l v	NDT92	32	24	75 00
352 353	1 V	ND193	38	25	65 78
353. 354.	l V	ND794	58	37	63 79
354 . 355 .	i v	NDT95	49	19	38 77
300.	, V	110133	4,7	,	

1	2	3	4	5
356. 357. 358.	BDN-1 74245- 1 V NDT96 1 V NDT97 1 V NDT98	15 12 8 30	15 8 2 12	100.00 66.66 25.00 40.00
359. 360. 361. 362. 363. 364. 365.	74245- 3 V NDT99 3 V NDT100 3 V NDT101 3 V NDT102 3 V NDT103 3 V NDT104 3 V NDT105	24 43 31 65 52 56 28	19 8 12 55 40 27 19	79.16 18.60 38.70 84.61 64.51 48.21 67.85
366. 367. 368. 369. 370. 371. 372. 373. 374.	BDN-1 3 V NDT105 3 V NDT106 3 V NDT107 3 V NDT108 3 V NDT109 3 V NDT110 3 V NDT111 74245- 2 V NDT112 2 V NDT113 2 V NDT114	12 16 43 49 66 63 37 11 29 55	12 5 19 24 29 32 33 7 4 43 16	100.00 31.25 44.18 48.97 43.93 50.79 89.18 63.63 13.79 78.18 34.04
376. 377. 378. 379. 380. 381. 382. 383. 384. 385.	BDN-1 2 V NDT115 2 V NDT116 2 V NDT117 2 V NDT118 74245- 4 VI NDT119 4 VI NDT120 4 VI NDT121 4 VI NDT122 4 VI NDT123 4 VI NDT124	17 41 37 58 51 63 41 40 13 34	17 16 13 55 36 35 23 9 8 11	100.00 39.62 35.13 94.82 70.58 55.55 56.09 22.50 61.53 32.35 57.57
386. 387. 388. 389. 390. 391. 392. 393.	BDN-1 4 VI NDT124 4 VI NDT125 4 VI NDT126 4 VI NDT127 4 VI NDT127 4 VI NDT128 74245- 2 VI NDT129 2 VI NDT130 2 VI NDT131	24 27 44 41 65 20 24 35	24 13 14 7 56 17 7 3	100.00 48.14 31.81 17.07 86.15 85.00 29.16 8.57 13.33

1	2	3	4	5
394 305	74245-2 VI NDT132	44	3	6 81
395	2 VI NDT133	31	23	74 19
	BDN 1 .	14	1.4	00 00
396	2 VI NDT134	21	6	28 57
397	2 VI NDT135	51	30	58 82
398	2 V! NDT136	54	41	75 92
399	2 V 1 NDT137	27	7	25 92
400 401	2 VI NDT138 74245-6 VI NDT139	43	14	32 55
402	74245-6 VI NDT139 6 VI NDT140	41 45	3	7 31
402	6 VI NDT141	45 49	29	64 44 53 06
404	6 VI NDT142	52	26 4	7 69
405	6 VI ND:143	29	2	6 89
	BDN-1	20	20	100 00
406	6 VI NDT143	22	0	0 00
407.	6 VI NDT144	14	i	7 10
408	74245 3 VI NDT145	38	24	63 15
409	3 VI NDT146	53	18	33 96
410	3 VI NDT147	44	32	72 72
411	3 VI NDT148	39	27	69 23
412.	3 VI NDT149	43	38	88 37
413	3 VI NDT150	53	46	86 79
414	3 VI NDT151	63	52	82 53
415	3 V1 NDT152	59	45	76 27
	BDN-1	8	8	100 00
416	3 VI ND 1153	31	23	74 19
417	3 VI NDT154	37	30	81 08
4.8	74240 3 V NDT1	47	43	91 48
419	3 \ ND12	40	25	62 50
420 421	3 V ND 3 3 V ND 14	37 31	36 22	97 29 70 96
422	3 V NDT4 3 V NDT5	52	44	84 61
423	74240-1 V NDT1	9	0	0 00
424	1 V NDT2	18	13	72 22
425	1 V NDT3	20	19	95 00
	BDN-1	16	16	100 00
426	1 V ND 7 3	20	15	75 00
427	1 v ND 4	41	41	100 00
428	1 V ND 5	61	47	77 04
429	74240-4 V! ND''1	48	46	95 83
430	4 VI NDT12	39	24	61 53
43!	4 VI NDT13	15	10	66 66
432.	4 V NDT 14	43	41	95 34

APPENDIX-XXXV

Results of screening of F₄ triple cross progeny bulks of pigeonpea

for sterility mosaic resistance during 1978-79

<u>\$1.</u>	Particular	No. of	Infected	Percent
No.		plants	plants	infection
1	2	3	4	5
1.	74003-49-4-B	7	7	100.00
2.	-50-3-B	51	51	100.00
	BDN-1	29	29	100.00
3.	74003-53-2-B	40	38	95.00
4.	-58-2 - B	45	41	91.11
5.	-58-3-B	25	24	96.00
6.	-60-1-B	107	105	98.13
7.	-60-2-B	52	50	96.15
8.	-60-3-B	33	32	96.96
9.	-60-4-B	29	24	82.75
10.	-61-2-B	42	40	95.23
11.	-61-3-B	48	44	91.66
12.	-64-1-B	4 2 34	40 34	95.23 100.00
13.	BDN-1 74003-64-2-B	40	3 4 38	95.00
14.	-65-1-B	77	74	96.10
15.	-66-10B	53	47	88.67
16.	-69-1-B	33 37	36	97.29
17.	-75-1-B	52	36	69.23
18.	-75-2-B	36	33	91.66
19.	74004-8-1-B	22	16	72.72
20.	-16-1-B	38	23	60.52
21.	-29-1-B	31	19	61.29
	BDN-1	32	32	100,00
22.	74007-1-1-B	55	23	41.81
23.	-2-3-B	42	28	66.66
24.	-3-1-B	21	19	90.47
25.	-4-2-B	85	59	69.41
26.	-13 - 1-B	109	87	79.81
27.	-13-2-B	53	48	90.56
28.	-17-1-B	36	26	72.22
29.	-18-1-B	15	11	73.33
30.	-20-2 - B	37	27	72.97
31.	-23-1-B	42	34	80.95
20	BDN-1	32	32	100.00
32.	74007-24-1-B	45 28	29	64.44
33.	-33 - 1-B -34-2-B	69	23 49	82.14 71.01
34. 35.	-34-2-B -45-1-B	48	49 45	92:75
33.	-40-1-D	70	7.7	contd.

contd.

1	2	3	4	5
36	74007-55-1-B	65	50	76 92
37 /	-56-1-B	81	66	81 48
38.	-56 - 3 - B	48	32	66 66
39	74008-10-1-B	83	32	38 55
40	-36-1-B	34	20	54 00
	BDN-1	23	11	47 82
41,	74022-25-4-B	18	15	83 33
42.	-30-2-B	25	0	0 00
43	-30-3 - B	54	50	92 59
44	-37-2-B	92	86	93 47
45	-38-2-B	107	70	65 42
46	74023-17-1-B	61	55	90 16
47.	74024-1-1-B	44	35	79 54
48	-4-1-B	4	0	0 00
49	-4-2-B	43	36	83 72
50	-4-3-B	43	29	67 44
	BDN-1	29	29	100 00
51	74024-5-1-B	17	10	58 82
52	-5-2-B	20	13	65 00
53 54	74044-1-1-B -2-1-B	88	80	90 90
55 ·	-4-1-B	54 66	45 41	83 33 62 12
56	-5-1 - B	50	45	90 00
57	74008-15-B-B-1-B	107	91	85 04
58.	-17-B-B-1-B	85	45	52 94
59	-21-B-B-1-B	57	27	47 36
33	BDN-1	27	27	100 00
60	74004-52-1-B	19	15	78 94
61	-55-1-B	39	31	8i 57
62	74003-8-1-B	60	54	90 00
63	-14-4-B	57	51	89 47
64	-16-2-B	42	40	95 23
65	- (7-3-B	41	34	92 92
66	-17-4-B	30	30	100 00
67	-18-2-B	15	11	73 33
68	-20-3-B	31	22	70 96
69.	-20-4-B	44	35	79.54
	BDN-1	39	39	100 00
70.	74003-24-4-B	44	42	95 45
71	-31-2-B	21	17	90 95
72	-35-2-B	11	8	72 72
73	-35-3-B	18	16	88 88
74	-35-4-B	28	26	92 85
75	-35-1-B	70	64	91 42
				contd

<u> </u>	2	3	4	5
76.	74003-38-1-B	9	6	66.66
77.	-41-3-B	51	42	82.35
78.	-42 - 2-B	37	34	91.89
	BDN-1	41	41	100.00
79.	74003-42-4-B	21	18	85.71
80.	-43-5-B	45	42	93.33
81.	-44-1-B	83	80	96.38
82.	-44-2-B	126	99	78.57
83.	-47-2-B	75	68	90.66
84.	-48-3-B	58	55	94.82
85.	-48-4-B	38	3 6	94.73
86.	-50-4-B	61	55	90.16
87.	-55-1-B	51	46	90.19
88.	-69-2 - B	62	62	100.00
00.	BDN-1	41	41	100.00
8 9 .	74003-72-1 - B	82	70	85.36
90.	-74-1-B	48	43	89.58
91.	-75-3-B	27	25	92.59
92.	74004-1-1-B	31	23	74.19
93.	-1-2-B	53	51	96.22
94.	-9-1-B	52	46	88.46
95.	-15-1 <i>-</i> B	18	18	100.00
96.	-17-1-B	28	25	89.28
97.	-17-1-B -17-2-B	23	20	86.95
37.	BDN-1	23 29	29	100.00
98.	74004-17 - 3-B	33	26	78.78
99.	-18-2-B	28	24	85.71
100.	-18-3-B	37	35	94.59
100.	-10-3-B -19-1-B	37 39	28	71.79
		24	21	
102.	-19-2-B	24 29		87.50
102.	-26-1-B	29 15	26	89.65
104.	-27-1-B		13 15	86.66
105.	-32-1-B	16 57		93.75
106.	-32-2-B		43	75.43
107.	-34-1-B	87	60	68.96
• • •	BDN-1	48	48	100.00
108.	74004-34-2-B	25	22	88.00
109.	-34-3-B	26	26	100.00
110.	-36-1-B	52	51	98.07
111.	-38-1-B	35	31	88.57
112.	-39-1-B	53	50	94.33
113.	-45-1-B	41	26	63.41
114.	-46-1-B	12	10	95.00
115.	-48-1-B	20	15	75.00
				contd.

	2	3	4	 5
116	74004-52-3-B	15	15	100 00
	BDN-1	18	18	100 00
117.	74004-53-1-B	33	30	90 90
118	-54-1-B	30	25	83 33
119	74007-11-2-B	61	57	93 44
! 20	-21-1-B	39	35	89 74
121	-22-2-B	26	26	100 00
122.	-24-2-B	19	18	94 75
123.	-31-2-B	13	10	76 92
124	-32-1-B	25	22	88 00
	BDN - 1	25	25	100 00
125	74007-32-2-B	43	41	95 34
126	-37 <i>-</i> 2 <i>-</i> B	49	45	91 83
127	-38-1-B	30	27	90 00
128	-39-1-B	25	25	100 00
129	-39-2-B	21	20	95 25
130	-44-3-B	33	29	87 87
131	-44-4-B	36	3 0	83 33
132.	-45-2-B	45	45	100 00
133	-46-2-B	34	27	79 41
	-47 <i>-</i> 2-B	44	38	86.36
	BDN-1	27	27	100 00
134	74007-47-4 - B	23	22	95 65
136	-48-1-B	40	38	95 00
137	-49-3-B	40	35	87 50
138	-50-1-B	44	43	97 72
139	-51-1-B	34	34	100 00
140	-51-3-B	32	30	93 75
141	-51-5-B	31	28	90 32
142	-52-1-B	59	55	93 22
143	-52-2 - B	48	46	95 83
	BDN-1	22	22	100 00
144	74007 -53 - 1 -B	50	49	98 00
145	-53-3-B	40	38	95 00
146	-54-i-B	45	37	82 22
147	-54-2 - B	53	29	54 71
148	-55-2 - B	39	27	69 23
149	-55-3-B	54	33	61 11
150	-57-1-B	3)	26	83 87
151.	-57-2-B	54	41	75 92
152	-58-1-B	50	48	96 00
153.	-59-2-B	54	47	87 03
	BDN-1	38	38	100 00
154	74007-60 - 2-B	45	37	82 22
155	-61-2-B	45	42	93_33
				contd

1	2	3	4	5
156.	74008-1-1-B	41	21	51.21
157.	-2-1-B	76	43	56.57
158.	-2-2-B	75	35	46.66
159.	-2-3-B	56	38	67.85
160.	-6-1 <i>-</i> B	51	37	72.54
161.	-10-4-B	45	37	82.22
162.	-11-2 - B	25	23	92.00
	BDN-1	41	40	97.56
163.	74007-12-3-B	71	60	84.50
164.	-12-4-B	25	19	76.00
165.	-12 - 6-B	6 8	46	67.64
166.	-13-1 - B	66	55	83.33
167.	-15-1 <i>-</i> B	65	53	81.53
168.	-15-6-B	59	58	98.30
169.	-15-7-B	42	38	90.47
170.	-16-2-B	60	59	98.33
171.	-17-1-B	60	38	63.33
172.	-17-2-B	58	46	79.31
• • •	BDN-1	33	32	96.96
173.	74008-19-2-B	53	31	58.49
174.	-23-1-B	51	37	72.54
175.	-23-2-B	62	5	8.06
176.	-23-4-B	70	9	12.85
177.	-24-1-B	45		8.88
178.	-26-2-B	50	11	22.00
179.	-28-1-B	47 78	42 21	89.36
180.	-30-2-B	78 45		26.92
181.	-32-1-B	23	15 23	33.33 100.00
182.	BDN-1 74008-34-1-B	59	39	66.10
183.	-38-1-B	50	6	12.00
184.	-30-1 - B -38-2 - B	55	19	34.54
185.	-38-3-B	62	3	4.83
186.	-32-2 - B	47	6	12.76
187.	-40-1-B	61	13	21.31
188.	-41-2-B	56	23	41.07
189.	-41-3-B	49	47	95.91
190.	-43-1-B	55	36	65.45
191.	-43-2-B	69	6	8.69
	BDN-1	31	31	100.00
192.	74008-43-3 - B	39	5	12.82
193.	-43-4-B	35	32	91.42
194.	-45-1-B	23	13	56.52
195.	-45-2 - B	52	50	96.15
				contd.

74008-45-3-B 97 -45-4-B 198 -45-5-B 99 -46-1-B	67 33 16 47 53	59 9 9 38	88 05 27 27 56 25
198 -45-5-B	33 16 47 53	9 9	27 27
	16 47 53	9	
'99 -46-1-R	47 53		30 (3
70 0	53		80 85
200 74022-1-2-B		53	00 00
BDN-1	31	31	;00 00
20) 74022-4-2-B	48	47	97 9i
202 -5-2-B	3	3	100 00
203 -6-1-B	86	86	100 00
204 -6-3-B	104	104	100 00
205 -8-1-B	95	94	98 94
206 -9-1-B	106	106	100 00
207 - 11-1-B	25	25	100 00
208 -12-1-B	109	109	100 00
209 -12-2-B	124	121	97 58
210 -12-4-B	53	46	86 79
BDN-1	27	27	100 00
211 74022-12-7-B	27	27	100 00
2·2 -13-1-B		27 69	
	69	59 59	00 00
	60		98 33
214 -15-2-B	50	50	,00 00
215 -15-3-B	6 0	59 70	98 33
216 -16-1-B	72	70	97 22
217 -16-2-B	32	31	96 87
218 -20-3-B	21	20	95 23
21920-4-B	60	60	00 00
BDN-1	46	46	,00 00
220 74022-20-5-B	71	71	100 00
22! -22-1-B	47	44	93 61
222 -22-2-B	43	43	100 00
223 -22-3-B	72	67	93 05
224 -23-2-B	79	74	93 67
225 -23-3-B	42	35	83 33
226 -24-1-B	42	40	95 23
227 -27-2-B	63	53	84 12
228 -28-1-B	39	32	82 05
229 -28-2-B	84	70	83 33
BDN-i	53	5 3	100 00
230 74022-28-3-B	65	59	90 76
23 -29-2-B	83	8.	97 59
232 -33-1-B	67	57	85 07
233 -34-1-B	87	85	97 70
234 -36-2-B	66	64	96 96
235 - 36-3-B	62	60	96 76
236 -44-2-B	67	64	95 52
230 -44-2-6			conto

1	2	3	4	5
237.	74022-45-1-B	79	79	100.00
238.	-45-2-B	15	9	60.00
	BDN-1	45	45	100.00
239.	74022-49-1-B	56	54	96.42
240.	-50-1 <i>-</i> B	48	47	97.91
241.	-52-1 - B	101	97	96.03
242.	-52 - 2-B	97	92	94.84
243.	-53-1-B	96	96	100.00
244.	-55-3-B	78	69	88.46
245.	-56-2-B	60	57	95.00
246.	-57-1-B	71	6 2	87.32
247.	-57-3-B	76	76	100.00
248.	-58-1-B	48	38	79.16
240.	BDN-1	54	54	100.00
249.	74023-1-1 - B	57	31	54.38
250.	-7-1-B	65	52	80.00
250.	-7-1-B -7-2-B	74	69	93.24
252.	-7-2-B -8-1-B	74 72	66	93.95
252.	-8-2-B	68	61	89.70
	-0-2-B -9-1-B	34	24	70.58
254.	-9-1-B -9-2-B	64	57	89.06
255.				
256.	-9-3-B	30 71	29 6 8	96.66
257.	-12-1-B		86	95.77
050	BDN-1	86		100.00
258.	74023-14-1-B	60	54	90.00
259.	-15-1-B	44	34	77.27
260.	-15-2-B	47	39	82.97
261.	-16-1-B	28	27	96.42
262.	-16-2-B	64	62	96.87
263.	-16-3-B	23	16	69.56
264.	-17-2-B	69	63	91.30
265.	-18-1 - B	64	28	43.75
266.	-18-2-B	28	14	50.00
267.	-25-2-B	38	26	68.42
	BDN-1	31	3]	100.00
2 6 8.	74023-25-3 - B	17	9	52.94
269.	-27-1-B	14	12	85.71
270.	-27-2 - B	44	33	75.00
271.	-27-3-B	40	40	100.00
272.	-28-1-B	23	13	50.52
273.	74024-1-2-B	29	26	89.65
274.	-1-3-B	58	57	98.27
275.	-1-4-B	19	19	100.00
276.	-6-1-B	42	28	66.66
	BDN-1	48	48	100.00

277. 74024-11-1-B		2	3	4	5
278	277.	74024-11-1-B	51	41	80 39
27911-3-B					
280	279	-11-3-B			
281	280	-11-4-B			
283		-12-1-B	51		
284		-12-2-B	34	30	88 2 3
285. 74034-2-1-B		-12 - 3-B	17	11	64 70
BDN-1	284		20	17	85 00
BDN-1 287 74034-11-1-B 288 -14-1-B 299 -16-1-B 290 74038-15-2-B BDN-1 36 36 36 100 00 291 -16-1-B 374 73 98 64 290 74038-16-2-B BDN-1 36 36 100 00 292 74038-16-2-B 44 33 75 00 292 74038-16-2-B 46 42 91 30 293 -21-1-B 73 52 71 23 294 -22-1-B 43 21 48 83 295 -23-1-B 82 68 82 92 296 -24-1-B 84 84 84 100 00 297 -25-1-B 81 75 92 59 298 -29-1-B 77 71 92 20 300 -29-3-B 301 -29-4-B BDN-1 B	285.		84	59	70 23
287	286	-4-1-B		71	91 02
288		BDN - ì		36	100 00
289 -16-1-B 74 73 98 64 290 74038-15-2-B 44 33 75 00 291 -16-1-B 65 64 98 46 BDN-1 36 36 100 00 292 74038-16-2-B 46 42 91 30 293 -21-1-B 73 52 71 23 294 -22-1-B 43 21 48 83 295 -23-1-B 82 68 82 92 296 -24-1-B 84 84 100 00 297 -25-1-B 81 75 92 59 298 -29-1-B 71 67 94 43 299 -29-2-B 77 71 92 20 300 -29-3-B 71 67 94 43 299 -29-4-B 48 47 97 91 BDN-1 16 16 16 100 00 302 74038-30-1-B 33 31 93 93 303 -33-1-B 44 36 81 81 304	287	74034-11-1-B		84	82 35
290 74038-15-2-B 44 33 75 00 291 -16-1-B 65 64 98 46 BDN-1 36 36 100 00 292 74038-16-2-B 46 42 91 30 293 -21-1-B 73 52 71 23 294 -22-1-B 43 21 48 83 295 -23-1-B 82 68 82 92 296 -24-1-B 84 84 100 00 297 -25-1-B 81 75 92 59 298 -29-1-B 71 67 94 43 299 -29-2-B 77 71 92 20 300 -29-3-B 51 47 92 15 301 -29-4-B 48 47 97 91 BDN-1 16 16 100 00 302 74038-30-1-B 33 31 93 93 303 -33-1-B 44 36 81 81 304 -48-2-B 48 46 95 83 305 -59-1-B					
291	289	-16-1-B		73	98 64
BDN-1 292 74038-16-2-B 293 -21-1-B 294 -22-1-B 295 -23-1-B 296 -24-1-B 297 -25-1-B 298 -29-1-B 299 -29-2-B 300 -29-3-B 301 -29-3-B 302 74038-30-1-B 303 -33-1-B 304 -48-2-B 305 -59-1-B 306 -61-1-B 307 -61-2-B 308 -76-1-B 309 74039-28-2-B 300 -28-1-B 301 -29-3-B 302 74039-28-2-B 303 -33-1-B 304 -48-2-B 305 -59-1-B 306 -61-1-B 307 -61-2-B 308 -76-1-B 309 74039-28-2-B 300 -29-3-B 300 -29-3-B 301 -29-3-B 302 74039-28-2-B 303 -33-1-B 304 -48-2-B 305 -59-1-B 306 -61-1-B 307 -61-2-B 308 -76-1-B 309 74039-28-2-B 300 -29 -100 000 301 74039-28-2-B		74038-15-2-B			
292 74038-16-2-B 46 42 91 30 293 -21-1-B 73 52 71 23 294 -22-1-B 43 21 48 83 295 -23-1-B 82 68 82 92 296 -24-1-B 84 84 100 00 297 -25-1-B 81 75 92 59 298 -29-1-B 71 67 94 43 299 -29-2-B 77 71 92 20 300 -29-3-B 51 47 92 15 301 -29-4-B 48 47 97 91 BDN-1 16 16 100 00 302 74038-30-1-B 33 31 93 93 303 -33-1-B 44 36 81 81 304 -48-2-B 48 46 95 83 305 -59-1-B 44 15 34 09 306 -61-1-B 39 29 74 35 307 -61-2-B 33 22 66 66 308 <td< td=""><td>29:</td><td>• •</td><td></td><td></td><td></td></td<>	29:	• •			
293 -21-1-B 73 52 71 23 294 -22-1-B 43 21 48 83 295 -23-1-B 82 68 82 92 296 -24-1-B 84 84 100 00 297 -25-1-B 81 75 92 59 298 -29-1-B 71 67 94 43 299 -29-2-B 77 71 92 20 300 -29-3-B 51 47 92 15 301 -29-4-B 48 47 97 91 BDN-1 16 16 100 00 302 74038-30-1-B 33 31 93 93 303 -33-1-B 44 36 81 81 304 -48-2-B 48 46 95 83 305 -59-1-B 44 15 34 09 306 -61-1-B 39 29 74 35 307 -61-2-B 33 22 66 66 308 -76-1-B 28 21 75 00 309 7403					
294 -22-1-B 43 21 48 83 295 -23-1-B 82 68 82 92 296 -24-1-B 84 84 100 00 297 -25-1-B 81 75 92 59 298 -29-1-B 71 67 94 43 299 -29-2-B 77 71 92 20 300 -29-3-B 51 47 92 15 301 -29-4-B 48 47 97 91 BDN-1 16 16 100 00 302 74038-30-1-B 33 31 93 93 303 -33-1-B 44 36 81 81 304 -48-2-B 48 46 95 83 305 -59-1-B 44 15 34 09 306 -61-1-B 39 29 74 35 307 -61-2-B 33 22 66 66 308 -76-1-B 28 21 75 00 309 74039-28-1-B 40 23 57 50 301 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
295					
296 -24-1-B 84 84 100 00 297. -25-1-B 81 75 92 59 298 -29-1-B 71 67 94 43 299 -29-2-B 77 71 92 20 300 -29-3-B 51 47 92 15 301 -29-4-B 48 47 97 91 BDN-1 16 16 100 00 302 74038-30-1-B 33 31 93 93 303 -33-1-B 44 36 81 81 304 -48-2-B 48 46 95 83 305 -59-1-B 44 15 34 09 306 -61-1-B 39 29 74 35 307 -61-2-B 33 22 66 66 308 -76-1-B 28 21 75 00 309 74039-9-1-B 40 23 57 50 310 -28-1-B 40 23 57 50 8DN-1 29 29 100 00 311 74039-28-2-B					
297. -25-1-B 81 75 92 59 298. -29-1-B 71 67 94 43 299. -29-2-B 77 71 92 20 300. -29-3-B 51 47 92 15 301. -29-4-B 48 47 97 91 BDN-1 16 16 100 00 302. 74038-30-1-B 33 31 93 93 303. -33-1-B 44 36 81 81 304. -48-2-B 48 46 95 83 305. -59-1-B 44 15 34 09 306. -61-1-B 39 29 74 35 307. -61-2-B 33 22 66 66 308. -76-1-B 28 21 75 00 309. 74039-9-1-B 40 23 57 50 300. 28-1-B 40 23 57 50 301. <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
298 -29-1-B 71 67 94 43 299 -29-2-B 77 71 92 20 300 -29-3-B 51 47 92 15 301 -29-4-B 48 47 97 91 BDN-1 16 16 100 00 302 74038-30-1-B 33 31 93 93 303 -33-1-B 44 36 81 81 304 -48-2-B 48 46 95 83 305 -59-1-B 44 15 34 09 306 -61-1-B 39 29 74 35 307 -61-2-B 33 22 66 66 308 -76-1-B 28 21 75 00 309 74039-9-1-B 40 23 57 50 310 -28-1-B 40 23 57 50 BDN-1 29 29 100 00 311 74039-28-2-B 30 27 90 00					
299					
300			·		
301					
BDN-1 16 16 100 00 302 74038-30-1-B 33 31 93 93 303 -33-1-B 44 36 81 81 304 -48-2-B 48 46 95 83 305 -59-1-B 44 15 34 09 306 -61-1-B 39 29 74 35 307 -61-2-B 33 22 66 66 308 -76-1-B 28 21 75 00 309 74039-9-1-B 40 23 57 50 310 -28-1-B 40 23 57 50 BDN-1 29 29 100 00 311 74039-28-2-B 30 27 90 00					
302 74038-30-1-B 33 31 93 93 303 -33-1-B 44 36 81 81 304 -48-2-B 48 46 95 83 305 -59-1-B 44 15 34 09 306 -61-1-B 39 29 74 35 307 -61-2-B 33 22 66 66 308 -76-1-B 28 21 75 00 309 74039-9-1-B 40 23 57 50 310 -28-1-B 40 23 57 50 BDN-1 29 29 100 00 311 74039-28-2-B 30 27 90 00	30 !				
303					
304					
305					
306					
307					
308 -76-'-B 28 21 75 00 309 74039-9-1-B 40 23 57 50 310 -28-1-B 40 23 57 50 BDN-1 29 29 100 00 311 74039-28-2-B 30 27 90 00					
309 74039-9-1-B 40 23 57 50 310 -28-1-B 40 23 57 50 BDN-1 29 29 100 00 311 74039-28-2-B 30 27 90 00					
310 -28-1-B 40 23 57 50 BDN-1 29 29 100 00 311 74039-28-2-B 30 27 90 00					
BDN-1 29 29 100 00 311 74039-28-2-B 30 27 90 00					
311 74039-28-2-B 30 27 90 00	3:0				
	2:1				
	311				

_1	2	3	4	5
312.	74039-29-1-B	28	25	89.28
313.	74044-1-2-B	46	42	91.30
314.	-1-2-B	56	46	82.14
315.	-1-4-B	42	38	90.47
316.	-2-2-B	25	23	92.00
317.	-2 - 3-B	45	44	97.77
318.	-3-1-B	41	37	90.24
319.	-3-2-B	37	27	72.97
320.	-3-3-B	42	34	80.95
	BDN-1	20	20	100.00
321.	74044-3-4-B	15	15	100.00
322.	-4-2-B	30	30	100.00
323.	-5-2 -B	48	48	100.00
324.	-5-3-B	25	25	100.00
325.	-6-1-B	39	38	97.43
326.	-9-1-B	52	51	98.07
327.	-9-2-B	44	39	88.63
328.	-12-1-B	57	53	92.98
329.	-12-2-B	72	69	95.83
	BDN-1	39	39	100.00
330.	74044-13-1-B	41	27	65.85
331.	-13-2 - B	10	4	40.00

APPENDIX-XXXV!

Results of screening of F3 and F4 progenies for Phytophthora blight resistance in RA-9 nursery

S) No	Pedigree	No of p ¹ ants	Percent blight	S1 No	Pedigree	No of plants	Percent blight
1	2	3	4	,	2	3	4
3	74143-P1	24	16 6	41	74143-P41	22	22 7
?	-P2	31	97	42	-P42	26	57 7
3	-P3	18	5 6	43	-P43	13	0.0
4	-P4	19	0 0	44	-P44	23	13 0
5	-P5	26	3 9	45	-P45	23	30 4
6	-P6	21	95	46	-P46	18	5 6
7	_P7	22	13 6	47	-P47	19	31.6
8	-¤8	24	33 3	48	-P48	17	0 0
9	-P9	24	37 5	49	-P49	24	75 0
,0	-P10	22	40 9	50	-P50	13	53.8
11	-P11	24	12 5	51	-P51	21	4 8
1.5	-P12	21	4 8	52	-P52	16	25 0
13	-P13	22	31 8	53	-P53	24	66 7
14	-P14	17	29 4	54	-P54	25 20	64 0
15	-P!5	24	12 5	55	-P55	20	50 0
'6	-P16 -P17	24	37 5	56 57	-P56 -P57	16 19	25 0 5 3
17	-P17 -P18	21	28 6	58	-P58	22	31.8
18 19	-P18	25 24	24 0 33 3	59	-P59	25	36 0
20	-P20	24 29	20 7	60	-P60	21	80 9
21	-P21	27	92 6	61	-P61	22	18 2
25	-P22	23	30 4	62	-P62	27	51 9
23	-P23	28 28	50 0	63	- P63	23	56 5
24	-P24	16	6 3	64	-P64	12	75 0
25	-P25	27	ijί	65	-P65	24	70 8
26	-¤26	21	4 8	66	-P66	22	36 4
27	-P27	15	40 0	67	-P67	20	30 0
28	-P28	24	25 0	68	-P68	23	39 1
29.	-P29	١ς	23 8	69	-P69	21	19 0
30	-P30	28	64 3	70	-P70	21	619
31	-P31	28	7 1	71	-P71	24	70 8
32	-P 32	29	517	72	-P72	21	66 7
33	-P33	25	12 0	73	-P73	26	0 0
34	-P34	28	7 1	74	-P74	24	29 2
35	-P35	28	32 1	75	-P75	15	53 3
36	-P36	24	75 0	76	-P76	19	15 8
3	_P 37	22	30 7	77	-P77	13	0 0
38	-P38	19	10 5	78	-P78	25	16 0 25 0
39.	-P39	29	51 7	79	-P79	20 24	25 U 41 7
40	-P40	17	47 1	80	-P80	74	4. /

427

1	2		3	4	1	2	3	4
81.	74143-P81		14	21.4	126.	74171-P269	26	36.4
82.	-P82		10	10.0	127.	-P27 Q	16	12.5
83.	-P83		18	38.9	128.	-P28 9	26	61.5
84.	-P84		16	31.3	129.	-P29 Q	27	11.1
85.	-P85		23	73.9	130.	-P30 9 a	19	68.4
86.	-P86		18	33.3	131.	-P31 Q	21	4.8
87.	-P87		25	52.0	132.	-P32 Q	22	27.2
88.	-P88		15	66.7	133.	-P33 Q	18	61.1
89.	-P89		11	63.6	134.	-P34 0	20	55.0
90.	-P90		16	56.3	135.	-P35 Q	28	32.
91.	-P91		23	86.9	136.	-P36Q	24	16.7
92.	-P92		21	38.1	137.	-P37 Q	16	12.5
93.	-P93		12	41.7	138.	-P38 Q	19	26.3
94.	-P94		23	21.7	139.	-P390	17	5.9
95.	-P95		24	0.0	140.	-P40Q	(5NDT)31	41.9
96.	-P96		18	5.6	141.	-P410a	(5NDT)23	13.0
97.	-P97		21	19.0	142.	-P420	23	9.3
98.	-P98		17	82.4	143.	-P430	24	16.7
99.	-P99		19	15.8	144.	-P44Q	20	50.0
100.	-P100		23	26.1	145.	-P45 Q	21	38.1
101.	74171-P10	(2NDT)	20	25.0	146.	-P469	(5NDT)23	13.0
102.	-P29	(3NDT)	17	29.4	147.	-P470	(6NDT)19	68.4
103.	-P30	(3NDT)	12	50.0	148.	-P48Q	24	25.0
104.	-P49	(3NDT)	15	26.7	149.	-P49Q	22	27.3
105.	-P5Q	(3NDT)	12	0.0	150.	-P50Q	19	57.9
106.	-P6Q	(4NDT)	16	25.0	151.	-P510	25	20.0
107.	-P7Q	(4NDT)	12	0.0	152.	-P52Q	22	40.9
108.	-P8Q	(4NDT)	11	9.1	153.	-P530a	24	4.2
109.	-P9 Q	(4NDT)	12	25.0	154.	-P54@	23	4.3
110.	-P100	(4NDT)	21	14.3	155.	-P55Q	24	0.0
111.	-P11Q	(4NDT)	32	21.9	156.	-P56 Q	32	18.8
112.	-P120	(4NDT)	27	14.8	157.	-P57 Q	23	30.4
113.	-P130	(4NDT)	11	18.2	158.	-P58Q	(6NDT)24	0.0
114.	-P14Q	(4NDT)	13	46.2	159.	-P59Q	(7NDT)21	47.6
115.	-P150	(4NDT)	18	66.7	160.	-P60Q	(7NDT)22	31.8
116.	-P16Q	(4NDT)	21	76.2	161.	-P61Q	(7NDT)18	100.0
117.	-P170	(5NDT)	21	33.3	162.	-P620	25	0.0
118.	-P180	(5NDT)	19	26.3	163.	-P630	24	20.8
119.	-P19Q	(5NDT)	15	100.0	164.	-P649	26	26.9
120.	-P209	(5NDT)	22	22.7	165.	-P65Q	21	4.8
121.	-P219	(5NDT)	25	16.0	166.	-P669	23	8.
122.	-P229	(3.10.)	23	86.9	167.	-P67Q	21	33.3
123.	-P239		24	29.2	168.	-P68 Q	22	4 6
124.	-P249		23	17.4	169.	-P69 9	20	20.0
125.	-P259		21	9.0	170.	-P709	27	40.7
123.	-1 C JIA		- 1	J.0	1 ','.	-1700	۲,	,
					1			

1	2		3	4	1	2	3	4
171	74171-P710		17	23.5	216.	74185-P29	23	30 4
172.	-P72 0		18	44 . 4	217.	-P30	24	37 5
173.	-P73 @	(7NDT)	22	59.1	218.	-P31	20	90 0
174	-P74 Q	(TDN8)	19	47.4	219.	-P32	31	38 7
175.	-P75 Q		15.	0.0	220.	-P33	(7NDT)19	57 9
176	-P760		17	17.6	221.	-P34	(6NDT)24	29 2
177	-P77 Q		22	9.1	222.	-P35	20	30 0
178.	-P78 0		22	9.1	223.	-P36	22	22 7
79	-P790		20	0.0	224.	-P37	24	74 1
180	-P80 Q	(BNDT)	1	100.0	225.	-P38	23	4 8
181	-P81 @	(TDN8)	25	8.0	226	-P3 9	22	50 0
182	-P82 Q	(8NDT)	21	14.3	227.	-P40	23	17 4
183.	-P83 9		15	13.3	228.	-P41	2.5	46
184	-P84 9		23	17.4	229.	-P42	23	34 8
185	-P85 0		27	7.4	230.	-P43	22	22 7
186	-P86 9	(9NDT)	23	4.3	231.	-P44	21	619
187	-P87 Q		15	46.7	232.	-P45	24	4.2
188	74185-P1	(2NDT)	22	77.3	233.	-P46	17	11 8
189	-P2	(4NDT)	26	65.4	234.	-P47	16	43 8
190	-P3		16	12.5	235.	-P48	22	54.5
191	-P4		23	65.2	236.	-P49	22	9 2
192,	-P5		19	10.5	237.	-P50	22	54 5
193	-P6		23	69.6	238.	-P51	23	47 8
194	-P7		26	23.1	239 .	-P52	24	70 8
195	-P8	(***= **)	21	19.1	240	-P53	(6NDT)23	0.0
196.	-P9	(4NDT)	23	26.1	241		(6NDT)21	19 0
197	-P10	(5NDT)	20	60.0	242	-P55	10	60 0
198	-P11		28	78.6	243.	-P56	18	72 2
199	-P12		23	78.3	244	-P57 -P58	25	0 0 58 3
200	-P13	/ CNDT \	25	16.0	245.	-P59	12 19	26 3
201	-P14	(5NDT)	24	20 . 8 14 . 3	246 . 247 .	-P60	22	20 3
202	-P15		28 24	16.7	247.	-P61	16	37 5
203	-P16 -P17		24 18	16.7	249	-P62	12	0 0
204	-P17 -P18	(5NDT)	27	18.5	250	-P63	21	14 3
205	-F10 -P19	(6NDT)	24	29.2	251	-P64	(6NDT)20	30 0
206	-P19 -P20	(ייטאוס)	22	9 1	252	-P65	19	42 1
207	-P21		23	17.4	253	-P66	18	33 3
208	B 0 0		27	22 2	254	-P67	13	15 4
209 210	-P22 -P23		24	16.7	255	-P68	22	ő ö
211	-P23 -P24		29	75.9	256	-P69	15	0 0
212	-P25		22	100.0	257	-P70	10	80 0
213	-P26		26	57.7	258	-P71	13	0 0
214	-P27	(6NDT)	27	51.9	259	-P72	13	38 5
215.	-P28	(ייטויט)	24	41.7	260.		(7NDT)25	60 0
c. 1 J ,	-1 20		LT	, 1 • •		•		
					1			

1	2		3	4	1	2	3	4
261. 262. 263. 264. 265. 266. 267. 268. 270. 271. 272. 273. 274. 275. 276. 277. 278. 279. 280. 281.	74185-P74 -P75 -P76 -P77 -P78 -P79 -P80 -P81 -P82 -P83 -P84 -P85 -P86 -P87 -P88 -P89 -P90 -P91 -P92 -P93 -P94 -P95	(7NDT) (7NDT) (8NDT)	18 21 20 19 12 20 23 13 26 13 26 13 24 16 22 18 23 17 13 10 18	16.7 80.9 20.0 31.6 75.0 5.0 17.4 61.5 26.9 46.2 44.4 54.2 25.0 36.4 33.3 78.3 91.3 0.0 38.5 0.0	306. 307. 308. 309. 310. 311. 312. 313. 314. 315. 316. 317. 318. 320. 321. 322. 323. 324. 325. 326. 327.	74248-P20 -P21 -P22 -P23 -P24 -P25 -P26 -P27 -P28 -P29(6N -P30(7N -P31 -P32 -P33 -P34(7N -P35(7N -P36 -P37 -P38 -P39 -P40 -P41	DT)20 20 20 23 DT)25	81 .8 24 .0 9 .1 59 .0 19 .1 36 .0 23 .3 52 .0 26 .9 10 .0 40 .0 55 .0 8 .7 20 .0 16 .7 8 .0 4 .5 30 .8 76 .9 72 .0
283. 284. 285. 286. 287. 288. 289. 291. 292. 293. 294. 295. 296. 297. 298. 299. 301. 302. 303. 304. 305.	-P96 -P97 -P98 -P99 74248-P1 -P2 -P3 -P4 -P5 -P6 -P7 -P8 -P9 -P10 -P11 -P12 -P13 -P14 -P15 -P16 -P17 -P18 -P19	(6NDT) (6NDT) (6NDT)	25 25 25 21 20 21 18 23 19 20 12 13 13 16 20 12 20 19 21	28.0 60.0 3.9 71.4 40.0 23.8 66.7 0.0 4.3 15.7 0.0 25.0 42.1 72.7 38.1 23.1 23.1 31.3 80.0 91.7 25.0 89.5 18.2	328. 329. 330. 331. 332. 333. 334. 335. 336. 337. 338. 340. 341. 342. 343. 344. 345. 347. 348. 349. 349.	-P47 -P43 -P44 -P44 -P45 -P46 -P47 -P48 -P49 -P50 -P51 -P52 -P53 -P54(7N -P56 -P57 -P58 -P59 -P60 -P61 -P62 -P63 -P64	23 25 25 29 25 25 19 20 24 27 21 25 IDT) 20	47.8 56.0 58.0 41.4 76.0 0.0 10.5 30.0 12.5 40.7 14.3 44.0 30.0 3.5 33.3 22.2 35.3 20.0 12.0 13.0 8.7 47.4 37.5

1	2	3	4	1	2		3	4
351	74248-P65	21	42.9	396.	74262-P109		21	42 9
352	-P66	26	15.4	397.	-P110		20	50 0
?53	-P67	20	20.0	398.	-P120		24	16.7
354	-P68	22	22.7	399	-P130		25	4.0
355	-P69	24	8.3	400.	-P140	(7NDT)	21	57.1
35 6 .	-P70 (7NDT)		18.2	401.	-P150	(7NDT)	20	15 0
357	-P71 (8NDT)		16.0	402.	-P169	(7.10.7	16	68.8
358	-P72	12	25.0	403.	-P170		23	60 9
359.	-P73	26	3.9	404.	-P180		18	11.1
360.	-P74 (8NDT)		34.8	405.	-P190		23	60 9
361	-P75 (8NDT)		9.1	406.	-P20@		19	15.8
362	-P76	23	30.4	407.	-P21Q		23	13 0
363	-P77	23	30.4	408.	-P220		23	95.6
364	-P78	23	43.4	409.	-P230		24	12.5
365	-P79	24	8.3	410.	-P240		26	80 8
366	-P80	21	38.1	411.	-P250		26	38.5
367	-P81	23	13.0	412.	-P260		25	20.0
368	-P82	23	8.7	413.	-P279		20	10 0
369.	-P83	25	12.0	414.	-P28 9		21	57 1
370	P84	22	27.3	415.	-P298		26	34 6
371	-P85	26	23.1	416.	-P309	(7NDT)	23	17,4
372	-P86	25	32.0	417.	-P319	(BNDT)	2	0.0
373	-P87	24	87.5	418.	-P320	ן ישווס ן	19	10.5
374	-P88	23	21.7	419.	-P339		22	36.4
375	-P89	22	18.2	420.	-P349	(BNDT)	19	0 0
376	-P90	25	8.0	421.	-P359	(8NDT)	11	72.7
377	-P91	26	11.5	422.	-P369	() ()	28	3.6
378	-P92	23	13.0	423	-P378		15	26.7
	-P92 -P93	23	23.8	424.	-P389		24	41 7
379	-P94 (8NDT)		13.0	425.	-P399		11	9 1
380			33.3	426	-P400		24	8 3
381 382	-P95 (8NDT) -P96	18	5.6	427.	-P410		29	55.2
			11.5	428	-P429		26	3 9
383	-P97	26	57.1	429.	-P430		22	4 6
384	-P98	28		430.	-P449		25	20 0
385	-P99	27	14.8	430.	-P450		25	4.0
386.	-P100(8NDT		16.0	432	-P469		13	7.7
387	74262-P10 (6NDT		21.7	433.	-P479		20	0.0
388	-P2@	21	71.4	434.	-P489		10	0.0
389	- P 30	24	4 2		_			
390	-P40	28	39.3	435.	-P499		26 28	46 2 0 0
391	-P50	21	85.7	436	-P509 -P519		15	0.0
392	-P60 (6NDT		100.0	437.	-P5101 -P520		16	25.0
393.	-P70 (7NDT		60.9	438.			17	41 2
394,	-P80	28	67.9	439.	-P539 -P549	(8NDT)		15 4
395.	-P9 9	23	86.9	440.	-r 54W	(ייטווס)	13	13 4

1	2		3	4	1	2		3	4
441.	74262-P55 Q	(8NDT)	20	45.0	486.	74290-P9 Q	(6NDT)	23	30.4
442.	-P56 9		27	0.0	487.	-P109	(6NDT)	22	4 6
443.	-P57 @		10	50.0	488.	-P110	(6NDT)	26	23.1
444.	-P58 Q		11	18.2	489.	-P120	(6NDT)	24	20.8
445.	-P59 Q		21	14.3	490.	-P130	(6NDT)	26	42.3
446.	-P60 	•	11	18.2	491.	-P14Q	(6NDT)	24	12.5
447.	-P61 Q		26	7.7	492.	-P15Q	(6NDT)	26	53.8
448.	-P62 0		22	4.6	493.	-P160	(6NDT)	24	8.3
449.	-P630a		26	42.3	494:	-P170	(6NDT)	23	8.7
450.	-P64Q		12	50.0	495.	-P180	(6NDT)	22	27.3
451.	-P650a		18	88.9	496.	-P190	(6NDT)	24	8.3
452.	-P66 9		19	10.5	497.	-P20Q	(6NDT)	20	40.0
453.	-P67 Q		28	21.4	498.	-P210	(6NDT)	23	56.5
454.	-P68 Q		26	3.9	499.	-P220	(6NDT)	23	43.5
455.	-P690		15	66.7	500.	-P230	(6NDT)	28	10.7
456.	-P70@		14	0.0	501.	-P249	(6NDT)	27	25.7
457.	-P710		33	9.1	502.	-P250	(6NDT)	29	93.1
458.	-P720		28	0.0	503.	-P269	(6NDT)	25	32.0
459.	-P730	(ONDT)	12	16.7	504.	-P279	(6NDT)	25	68 6
460.	-P74Q	(SNDT)	13	61.5	505.	-P289	(6NDT)	23	21.7
461.	-P750	(8NDT)	4	100.0	506.	-P290 -P300a	(6NDT) (6NDT)	25 28	12.0 53.6
462.	-P76Q -P77Q		16	75.0	507. 508.	-P30M2 -P310	(6NDT)	22	18.2
463. 464.	-P770a -P780a		15 20	20.0 0.0	509.	-P319	(6NDT)	26	15.4
465.	-P790a		26	69.2	510.	-P339	(6NDT)	22	13.4
466.	-P80Q		17	58.8	511.	-P34Q	(6NDT)	29	13.8
467.	-P81 9		21	0.0	512.	-P350	(6NDT)	21	0.0
468.	-P82 9		20	0.0	513.	-P369	(6NDT)	26	26.9
469.	-P83 9		10	90.0	514.	-P37Q	(6NDT)	25	16 0
470.	-P84 9		15	6.7	515.	-P38 Q	(7NDT)	23	30.4
471.	-P85Q		16	6.3	516.	-P39Q	(7NDT)	22	4.6
472.	-P86 Q		15	0.0	517.	-P40Q	(7NDT)	22	27 3
473.	-P87 Q		23	95.7	518.	-P410	(7NDT)	26	50.0
474.	-P88 Q	(BNDT)	5	100.0	519.	-P420	(7NDT)	23	21.7
475.	-P89 Q	(9NDT)	.21	9.5	520.	-P430	(7NDT)	26	0 0
476.	-P900	(9NDT)	20	5.0	521.	-P44Q	(7NDT)	25	12.0
477.	-P91Q	(9NDT)	12	33.3	522.	-P45Q	(7NDT)	27	11.1
478.	74290-P19	(3NDT)	2	100.0	523.	-P460	(7NDT)	21	0.0
479.	-P2Q		22	50.0	524.	-P47Q	(7NDT)	22	50 0
480.	-P30	(5NDT)	20	55.0	525.	-P48 Q	(7NDT)		29.2
481.	-P40a	, ,	23	8,7	526.	-P490	(7NDT)	19	36.8
482.	-P5 Q	(6NDT)	26	15.4	527.	-P50Q	(7NDT)	25	24.0
483.	-P6 Q	(6NDT)	22	0.0	528.	-P51 Q	(7NDT)	15	40.0
484.	-P7 Q	(6NDT)	22	9.1	529.	-P52 Q	(7NDT)		47.4
485.	-P8 0	(6NDT)	21	9.5	530.	-P53 Q	(7NDT)	25	40.0

1	2		3	4	1	2		3	4
531	74290-P549	(7NDT)	25	16.0	578.	74318-P10	(CNDT)		
532	-P550	(7NDT)	22	14 3	579.	-P29	(6NDT) (7NDT)	23	4.4
533	-P569	(7NDT)	23	8.7	580.	-P30	(7NDT)	19	68.4
534	-P570	(7NDT)	26	23.1	581.	-P4Q	(7NDT)	22	22 7
535	-P58 9	(7NDT)	23	39 1	582	-P50	(7NDT)	26	26 9
536	-P59 9	(7NDT)	24	8.3	583.	-P69	(8NDT)	25 30	52.0 13 3
537	-P609	(7NDT)	25	12.0	584.	-P78	(SNDT)	23	60 9
538。	-P610	(7NDT)	26	7 , 7	585.	-P80	(0110)	25	24.0
539	-P629	(7NDT)	25	12.0	586.	-P90		22	4.6
540	-P639	(7NDT)	25	12 0	587.	-P100		21	19 1
541	-P649	(7NDT)	25	4 0	588.	-P110		21	52.4
542.	-P650	(7NDT)	27	37.0	589.	-P120		23	13 0
543	-P669	(7NDT)	23	17.4	590	-P130		19	36.8
544	-P670	(7NDT)	29	20.7	591.	-P140		30	0.0
545	-P689	(7NDT)	26	34.6	592.	-P15Q		26	23 1
546	-P690	(7NDT)	21	9.5	593.	-P160		23	69.6
547	-P709	(7NDT)	25	28.0	594.	-P17⊗		26	23.8
548	-P710	(7NDT)	23	0.0	595.	-P18 Q		21	9.5
549	-P729	(7NDT)	27	74 1	596	-P190		22	63.6
550 551.	-P73@	(7NDT)	27	7.4	597	-P200		20	35.0
552	-P740 -P750	(7NDT)	27	29.6	598.	-P210		23	17 4
553	-P759 -P769	(7NDT) (7NDT)	25	4.0	599.	-P229	(04-7)	26	92.3
554	-P778	(7NDT)	27	68.9	600.	-P230	(SNDT)	15	6 7
555	-P789	(7NDT)	20 15	5 0 26.7	601	-P240	(NDT)	10	10 0
556	-P79Q	(7NDT)	22	9.1	602. 603.	-P250		19	100.0
557 _e	-P809	(7NDT)	25	12.0	604	-P269		17	76 5
558	-P819	(NDT)	24	45 8	605.	-P270 -P280		15	0 0
559.	-P829	(BNDT)	19	0 0	606.	-P298		19 10	0 0 20 0
560	-P839	(8NDT)	24	58,3	607.	-P300		21	76 2
56!	-P849	(8NDT)	27	11.1	608.	-P319		9	22.0
562	-P850	(SNDT)	24	16 7	60 9 .	-P320		25	0 0
563.	-P869	(BNDT)	26	50.0	610.	-P339		23	39,1
564	-P876	(SNDT)	23	60 9	611.	-P349		20	45 0
565	-F88 9	(8NDT)	26	7 7	612	-P350			100.0
566	-P890	(8NDT)	24	12.5	613	-P369		27	85 2
567	-P90Q	(SNDT)	25	0.0	614.	-P370		21	14 3
568	-P91@	(SNDT)	23	73.9	615	-P38 9		26	19 2
569 。	-P92@	(8NDT)	29	17.2	616	-P390		21	42.9
570	-P93₩	(8NDT)	25	12.0	617.	-P40@		19	84 2
571	-P948	(8NDT)	28	10.7	618.	-P410		16	25 0
572	-P950	(8NDT)	25	40.0	619.	-P420		11	0 0
573.	-P969	(SNDT)	25	28 .0	620	-P430	(8NDT)	11	18.2
574	-P970	(SNDT)	26	11 5	621.	-P440		22	59 1
575	-P980	(8NDT)	25	20 .0	622.	-P450		16	25 0
576	-P990	(TDNB)	27	14 8	623.	-P460		22	95.5
577	-p1000	(8NDT)	25	16.0	624.	-P470		21	0 0

1	2	3	4	1	2-		3	4
625.	74318-P48 9	23	86.9		74318-P94 9		27	59.3
626.	-P49&	27	7.4	672.	-P95 Q		25	24.0
627.	-P50 2	25	72.0	673.	-P96 2		24	37.5
628.	-P51Q	22	54.5	674.	-P97 9		21	23.8
629.	P52 ⊗	25	28.0	675.	-P98 Q		24	58. 3
630.	-P53 &	22	9.1	676.	-P99 9	(9NDT)	25	8.0
631.	-P54 Q	25	8.0	677.	74332-P10	(7NDT)	21	14.3
632.	-P55 ⊗	20	35.0	678.	-P20		15	20.0
633.	-₽56 Q	24	0.0	679.	-P30	(====)	23	60.9
634.	-P57 &	21	19.0	680.	-P40	(7NDT)	19	10.5
635.	-P58 Q	24	50.0	681.	-P50	(7NDT)	19	26.3
636.	-P59 Q	8	12.5	682.	-P6₩	(7NDT)	24	16.7
637.	~P60@	23	65.2	683.	-P70	(8NDT)	7	85.7
638.	-P61 Q	25	0.0	684.	-P8 2		24 27	12.5
639.	-P629	18	50.0	685. 686.	-P90a -P100a		24	81.5 79. 2
640. 641.	-P63₩ -P64₩	(8NDT)14 (8NDT)20	71.4 75.0	687.	-P110a		25	76.0
642.	-P659	18	88.9	688.	-P129		18	44.4
643.	-P669	10	60.0	689.	-P13 9		25	16.0
644.	-P67 ₽	15	46.6	690.	-P140		24	8.3
645.	-P68 2	17	0.0	691.	-P15Q		19	68.4
646.	-P69 8	16	62.5	692.	-P16₩		19	78.9
647.	-P70 ₽	27	88.9	693.	-P17 Q		22	27.2
648.	-P71 @	13	84.6	694.	-P180		18	5.6
649.	-P720	26	88.8	695.	-P190		23	60.8
650.	-P739	16	50.0	696.	-P209		22	45.5
651.	-P74@	12	66.7 11.1	697.	-P210a -P220a		22 21	36.4 23.8
652.	-P75 2 -P76 2	18 17	88.2	698. 699.	-P23 9		22	54. 5
653. 654.	-r/ou -P779	17	26.3	700.	-P249	(8NDT)	19	15.8
655.	-P789	20	30.0	701.	-P259	(OND1)	23	47.8
656.	-P798	17	0.0	702.	-P269		21	33.3
657.	-P809	16	62.5	703.	-P27 Q		24	33.3
658.	-P81 9	10	0.0	704.	-P28 Q		24	29.2
659.	-P82 9	22	0.0	705.	-P29Q		18	55.6
660.	-P83 9	20	65.0	706.	-P30 9 a		26	23.
661.	-P84 0	15	46.7	707.	-P31 Q		23	13.0
662.	-P85 2	12	33.3	708.	-P32 9		24	20.
663.	-P86 ₽	20	10.0	709.	-P33 Q		15	13.
664.	-P87 @	27	33.3	710.	-P34 Q		21	19.
665.	-P88 9	8	37.3	711.	-P350		14	7.
666.	-P89 Q	21	38.1	712.	-P36 9		24	37.
667.	-P909	22	9.1	713.	-P379		23	21.
668.	-P91&	25	24.0	714.	-P38Q		24	83.
669.	-P92Q	21	14.3	715.	-P399		23	60.
670.	-P93 2	19	63.2	716.	-P40 		19	63.
				1				

1	2		3	4	1	2		3	4
717	74332 - P41 0		21	28.6	761.	74332-P859	(9NDT)	11	100.0
718.	-P42 9		22	36.4	762.	-P869	()	21	95 2
719	-P43 9		26	80.8	763.	-P879		24	25 0
720	-P44Q	(8NDT)	22	36.4	764.	-P889		26	46 1
721	-P45 0	(8NDT)	31	23.1	765.	-P899		14	35 7
722	-P469		21	19.0	766	-P909		26	15 4
723	-P47Q		18	0.0	767	-P91Q		22	81.8
724	-P48 9		22	59.1	768.	-P920		31	100 0
725	-P49 0		20	50.0	769.	-P939		16	43.7
726	-P50 9		22	727	770.7	4332-B-Þ10	(6NDT)	27	77.8
727	-P510		21	52.4	771	-P2 Q	(6NDT)	21	57 1
728	-P52 9		19	42.1	772.	-P30		22	59 1
729	-P53 9		24	12.5	773.	-P40		22	86 4
730	-P540		19	36 8	774.	-P50a		23	82 6
731	-P55 9		21	80.9	775.	-P60		18	72.2
732.	-P560		21	71.4	776	-P7 Q		25	48 0
733.	-P57 9		13	38.5	777.	-P8 Q		25	20.0
734	-P58 9		25	64.0	778.	-P9 0		24	25.0
735	-P598		13	23.1	779.	-P100		25	100.0
736	- P60 9		24	20.8	780.	-P110		24	95.8
737	-P610		24	45.8	781.	-P120		22	31 8
738	-P629		23	17.4	782	-P130		25	88 0
739	-P630		25	100.0	783.	-P149		21	28 6
740		(TQN8)	23	26 1	784	-P150		25	20 0
741	-P659		17	70.6	785	-P160		23	13 0
742	-P669		21	52.3	786.	-P170		24	417
743	-P679		22	40 9	7 87.	-P189		24	16 7
744	-P68 9		25	72.0	788.	-P190		19	31 6
745。	-P69₩		23	17.4	789.	-P209	(6NDT)	16	68 8
⁷ 46	-P70₩		26	46 2	790.	-P210	(7NDT)	24	25 0
747.	-P719		19	10.5	791.	-P220	(7NDT)	24	33 3
748	-P72@		25	40 0	792.	-P239		24	45 8
749	-P730		21	52.4	793.	-P24 9		24	4! 7
⁷ 50	-P74Q		21	33.3	794	-P25 9		21	19 0
751	-P75@		21	95.2	795.	-P26 9		21	0.0
752	-P76₩		25	12.0	796.	-P279		24	54.2
753	-P77 ⊗		26	69.2	797.	-P280		17	58 8
754	-P78 ⊗		25	88 0	798	-P298		22	90 9
755	-P79@	(9NDT)	21	14 3	799	-P309		20	95 0
756	-P809		25	96 0	800	-P310		22	95 5
757	-P81 9		23	86 9	801.	-P320		22	50 0
758	-P829		22	18.2	802	-P339		22	59 1
759	-P83 9		23	17.4	803	-P340		24	50 0
760	-P840		16	25.0	804	-P350		18	66 7

435

05. 06.				1	2	3	4
	74332-B-P36₩	21	100.0	849.	74332-B-P809	27	66.7
	-P37 Q	20	65.0	850.		(8NDT)22	36.4
307.	-P38@	23	78.3	851.		(8NDT)14	7.1
308.	-P390	23	82.6	852.	-P83Q	22	22.7
309.	-P40@	24	76.5	853.	-P84 9	14	14.3
310.	-P41Q (7NDT)	35	100.0	854.	-P85Q	20	70.0
311.	-P420 (7NDT)	23	82.6	855.	-P86Q	21	38.1
312.	-P43Q	21	80.9	856.	-P87 Q	9	88.9
313.	-P44Q	25	92.0	857.	-P88 Q	15	60.0
314.	-P45Q	20	100.0	858.	-P89 Q	6	66.7
815.	-P46Q	17	82.4	859.	-P909	24	29.2
816.	-P470	24	75.0	860.	-P918	(8NDT)10	80.0
817.	-P48 2	19	73.7	861.	74360-P10	(6NDT)22	4.5
818.	-740₩ -P49₩	22	54.5	862.	-P29	(7NDT)26	92.3
819.	-P50Q	19	73.7	863.	-P30a	(7NDT)20	100.0
820.	-P510	25	40.0	864.	-P40	(7NDT)17	41.2
821.	-P529	26	34.6	865.	-P59	(7NDT)18	22.2
	-P530	25	24.0		-P69	(7NDT)18	36.4
822.		21		866.	-P79	(7NDT)10	
823.	-P54 Q		23.8	867.			90.0
824.	-P55Q	25	92.0	868.	-P8 Q	12 (8NDT)15	100.0
825.	-P569	25	36.0	869. 870.	-P9 2 -P10 9	(8NDT)16	0.0 33.3
826.	-P57Q	26	76.9		-P10a	7	0.0
827.	-P58Q	21	78.6	871.		(8NDT)14	
828.	-P59 Q	20	30.0	872.	-P12₩	•	50.0
829.	-P609	18	33.3	873.	-P130	(ONDT) 15	40.0
830.	-P610 (7NDT)	20	35.0	874.	-P149	(8NDT)15	50.0
831.	-P620 (7NDT)	24	20.8	875.	-P150	(8NDT) 4	12.9
832.	-P63₩	19	89.5	876.	-P169	(8NDT) 8	
833.	-P64 Q	21	42.9	877.	-P170	(8NDT)10	50.0
834.	-P65Q	17	29.4	878.	-P180	(8NDT)10	20.0
835.	-P66Q	19	21.1	879.	-P190	(8NDT)12	25 (
836.	-P679	19	100.0	880.	-P20Q	(8NDT)12	33.0
837.	-P689	16	62.5	881.	-P210	(8NDT) 3	
838.	-P690 (7NDT)	21	42.9	882.	-P22 Q	(8NDT)12	16.
839.	-P70@ (8NDT)	23	0.0	883.	-P23 Q	(8NDT)18	33.
840.	-P71@	25	20.0	884.	-P24Q	(8NDT)20	75.0
841.	-P720	24	58.3	885.	-P25Q	(8NDT)23	95.0
842.	-P730	25	60.0	886.	-P26 Q	(8NDT)19	21.0
843.	-P74 Q	23	26.1	887.	-P270	(8NDT)16	31.
844.	-P75@	25	28.0	888.	-P289	(8NDT)16	18.
845.	-P76Q	21	28.6	889.	-P29 Q	(8NDT)18	5.
846.	-P77 9	17	35.3	890.	-P30 Q	(8NDT)17	23.
847.	-P78 Q	24	100.0	891.	-P31 Q	17	11.
848.	-P79 Q	20	50.0	892.	-P32 Q	15	26 -

1	2	3	4	1	2		3	4
893	74360-P330	1	100.0	939.	74360-P79Q		23	73 9
894.	-P34 ⊗	(8NDT) 22	45.4	940	-P80 9		27	3 7
895 .	-P35 ⊗	(8NDT) 28	25.0	941	-P81 9	(9NDT)	24	12.5
896	-P36 ⊗	(8NDT) 15	20.0	942.	-P82 9	(9NDT)	26	0 0
897.	-P37 Q	(8NDT) 11	9.1	943		(9NDT)	22	18 2
898	-P38 Q	(8NDT) 24	00	944.	-P84 9	(9NDT)	25	40 0
8 99 .	-P39 9	(8NDT) 8	0 ' 0	945.		(9NDT)	22	50 0
900	-P40@	(8NDT) 15	86.7	946.		(9NDT)	18	27 8
901	-P410	(8NDT) 16	12.5	947.	-P87Q		21	14 3
902	-P42@	19	84 , 2	948.		(9NDT)	19	15 8
903.	-P430	20	20.0	949.		(9NDT)	25	4 0
904	-P44Q	(8NDT) 25	24.0	950		(9NDT)	24	29 2
905	-P450	(8NDT) 20	20.0	951		(9NDT)	25	72 0
906	-P46 9	(8NDT) 21	0.0	952.	-P920		26	88 5
907	-P47Q	(0)(0,0)	38.1	953.	-P939		17	35 3
908	-P489	(8NDT) 42	2 4	954.	-P940		13	92.3
909.	-P490	(8NDT) 16	93.7	955.	-P959	(ONDT)	22	22.7
910	-P500	21	14.3	956		(9NDT)	25	16 0
911 912	-P510	19 (8NDT) 17	68.4 17.6	957	-P970 74363-P10	(8NDT)	22	40 9
913	-P520 -P530	(8NDT) 17	6.6	958 959	-P29	(8NDT)	26 21	84.6 95.2
914	-P549	(8NDT) 22	9.1	960.	-P39	(8NDT)	24	83 3
915	-P.550	1]	36 4	961.	-P49	(BNDT)	22	86.4
916	-P569	(8NDT) 23	13.0	962	-P59	1011017	21	28 6
917	-P579	(8NDT) 24	0 0	963.	-P69	(TDM8)	22	86 4
918	-P589	8	62 5	964	-P7Q	(SNDT)	18	83 3
919	-P599	(8NDT) 15	40.0	965.	-P80	(8NDT)	25	100 0
920	-P609	(8NDT) 18	22 2	966	-P90	(0	26	42 3
921	-P619	(8NDT) 23	0.0	967	-P109		16	81 2
922	-P629	(8NDT) 16	12.5	968	-P110		12	83 3
923	-P636	(9NDT) 22	81 8	969	-P120		17	94 1
924	-P649	(9NDT) 20	100 0	970	-P130		15	100 0
925	-P65 9	(9NDT) 10	10.0	971.	-P140		20	100 0
926.	-P669	(9NDT) 22	100.0	972.	-P159	(8NDT)	23	69 6
927	-P679	(9NDT) 33	3 0	973	-P169		17	82 3
928	-P68 9	(9NDT) 16	0.0	974	-P179	(8NDT)	15	26 7
929	-P69 9	(9NDT) 30	93 3	975	-P180	(8NDT)	22	13 6
930	-P709	(9NDT) 4	100 0	976	-P190		21	0 0
931	-P71@	(9NDT) 13	76 .9	977	-P200	4	21	28 6
932	-P729	12	100 0	978	-P210	(8NDT)	23	65 2
933	-P730	10	30.0	979	-P229	(8NDT)	4	50 0
934	-P740	14	42.8	980	-P239	(1dN8)	25	44 0
935	-P750	12	50.0	981	-P249	(8ND1)	24	83 3
936	-P769	19	84.2	982	-P259		8	37 5
937.	-P770	15	100.0	983.	-P260	(ONDT)	20	60.0
938	-P780	20	90.0	984	-65/8	(BNDT)	24	25.0

1	2		3	4	1	2		3	4
985.	74363-P28 9	(8NDT)	23	95.6	1030.	74363-P739	(8NDT)	21	33.3
986.	-P29 9	(8NDT)	21	4.8	1031.	-P740	(8NDT)	24	37.5
987.	-P30 0	(8NDT)	27	96.3	1032.	-P75@	(8NDT)	20	0.0
988.	-P31@	(8NDT)	24	95.8	1033.	-P76Q	(8NDT)	20	0.0
989.	-P32 Q	(8NDT)	24	91.7	1034.	-P77@	(8NDT)	25	20.0
990.	-P33Q	(8NDT)	18	55.6	1035.	-P78 ₽	(SNDT)	20	5.0
991.	-P34Q	(8NDT)	22	0.0	1036.	-P79 ₽	(SNDT)	21	0.0
992.	-P35 Q	(8NDT)	24	37.5	1037.	-P80 0 -P81 0	(SNDT)	19	0.0
993.	-P36 Q	(8NDT)	24	12.5	1038. 1039.	-P819	(SNDT)	24 24	12.5 16.7
994.	-P37 Q	(8NDT)	25	20.0	1039.	-P83 9	(SNDT)	25	
995.	-P38 9	(8NDT)	21	19.1	1040.	-P84 Q	(8NDT)	23	24.0 13.0
996. 997.	-P39 Q	(8NDT)	24 24	41.7	1041.	-P85 0	(8NDT) (8NDT)	18	66.7
997. 9 98.	-P40 0 -P41 0	(8NDT) (8NDT)	24	12.5 33.3	1042.	-P86 Q	(SNDT)	24	100.0
999.	-P42 0	(8NDT)	18	77.8	1043.	-P87 2	(8NDT)	25	4.0
1000.	-P43 Q	(8NDT)	25	24.0	1044.	-P88 9	(8NDT)	25	20.0
1000.	-P44@	(8NDT)	26	50.0	1045.	-P89 2	(OND1)	20	25.0
1002.	-P45@	(8NDT)	24	4.2	1047.	-P908	(8NDT)	22	9.1
1002.	-P46 2	(8NDT)	22	54.5	1048.	-P910	(9NDT)	17	29.4
1004.	-P47Q	(8NDT)	24	70.8	1049.	-P92 8	(31101)	24	100.0
1005.	-P48 9	(8NDT)	24	4.2	1050.		(9NDT)	15	0.0
1006.	-P49 Q	(8NDT)	24	62.5	1051.	-P94 ₽	(31151)	16	93.8
1007.	-P50 ®	(8NDT)	25	56.0	1052.	-P95 ₽		9	88.9
1008.	-P510	(8NDT)	24	87.5	1053.	-P96 9	(9NDT)	9	88.9
1009.	-P52 ₽	(8NDT)	24	62.5	1054.	-P97 9	(9NDT)	13	23.1
1010.	-P53 2	(8NDT)	25	88.0	1055.	74369-P1Q	(TDN8)	19	21 1
1011.	-P54Q	(8NDT)	24	91.7	1056.	-P2 Q	(BNDT)	14	7.1
1012.	-P55 ®	(8NDT)	24	91.7	1057.	-P30	` '	17	17.6
1013.	-P56 2	(BNDT)	24	100.0	1058.	-P4 ⊗		27	11.1
1014.	-P57 2	(BNDT)	25	100.0	1059.	-P5 Q		26	3.9
1015.	- P 58 2	(BNDT)	21	100.0	1060.	-P6 2		25	0.0
1016.	-P59 Q	(BNDT)	25	92.0	1061.	-P7 Q		24	4.2
1017.	-P60 @	(8NDT)	27	74.1	1062.	-P8 Q		11	0.0
1018.	-P61 0	(8NDT)	24	62.5	1063.	-P9 2		13	0.0
1019.	-P62 @	(8NDT)	21	66.7	1064.	-P100		16	25.0
1020.	-P63 2	(8NDT)	22	36.4	1065.	-P118		15	0.0
1021.	-P64 ₽	(8NDT)	24	37.5	1066.	-P120		21	0.0
1022.	-P65 0	(BNDT)	26	88.5	1067.	-P130		16	0.0
1023.	-P66 ®	(8NDT)	23	60.9	1068.	-P14Q		9	0.0
1024.	-P6 72	(BNDT)	22	36.4	1069.	-P150		19	15.8
1025.	-P68 ₽	(8NDT)	27	44.4	1070.	-P16@	(0N==)	12	8.3
1026.	-P69 ₽	(8NDT)	24	70.8	1071.	-P17Q	(8NDT)	22	4.5
1027.	-P70 ⊕	(8NDT)	25	44.0	1072.	-P18 9	(8NDT)	17	0.0
1028.	-P710	(8NDT)	26	15.4	1073.	-P19 Q		16	37.5
1029.	-P72 Q	(8NDT)		germi-	1074.	-P20 ₽		16	0.0
			nat	tion					

1	2		3	4	1	2	3	4
1075. 1076.	74369-P219		18	5.6	1121	74369-P67 9	24	100 0
1076.	-P22 0 -P23 0		21	14.3	1122.	-P68 0	24	4 2
1077.	-P2394 -P249		29	3 5	1123.	-P69 Q	20	10 0
1078.	-P258		26	3.9	1124.	-P710	24	4.2
1079.	-P268		25 21	4.0	1125.	-P72@(8NDT)	20	15 0
1081	-P279		24	66.7 20.8	1126.	-P73@(9NDT)	22	13 6
1082	-P289		27	0.0	1127. 1128	-₽74 Q -₽75 Q	23	0.0
1083.	-P298		18	0.0	1128	-P75M -P76Q	19	57 9
1084	-P308		19	63.2	1130.	-P7701 -P770(9NDT)	20	35 0
1085	-P31@		11	9.1	1131.	-P780(9NDT)	17	11 8
1086	-P329		14	0.0	1132.	-P708(9NUI)	23 22	39 1 18 2
1087.	-P330		14	0.0	1133.	-P798 -P800	21	4 8
1088.	-P34 8		11	0.0	1134	-P81 Q	18	11 1
1089.	-P35Q		26	19 2	1135	-P82 0	32	13.0
1090	-P36 8		19	15.8	1136	-P83 9	23	13.0
1091	-P370	(8NDT)	15	13.3	1137.	-P84 9	20	5 0
1092.	-P380	(SNDT)	17	47.1	1138	-P85 0	21	4 8
1093.	-P390	(OND)	23	0.0	1139.	-P86 9	24	12 5
1094.	-P40@		11	0.0	1140.	-P87 Q	18	5 6
1095	-P410		7	42.9	1141	-P889	25	44 4
1096.	-P420		11	18.2	1142.	-P89 0	25	28 0
1097	-P430		20	50.0	1143.	-P90 9	20	45 0
1098	-P440		12	15.7	1144.	-P91 0	25	16.0
1099.	- P45Q		18	33.3	1145.	-P920	23	34 8
1100	-P460		16	0.0	1146	-P93 0	26	615
1101,	-P47Q		19	42 1	1147	-P94@	22	36 4
1102.	-P480		18	27 8	1148.	-P95 0	20	95 C
1103.	-P49Q		16	6.3	1149	-P96@(9NDT)	4	100 C
1104	-P50 Q		19	0.0	1150	74332-W10	40	82 £
1105	-P51@		19	21.1	1151	-W20	42	26 2
1106.	-P52 0		18	16 7	1152.	-W30	41	39 (
1107.	-P53 @		23	21.7	1153.	-W4Q	44	34
1108	-P540		17	70.6	1154	-W5Q	5.3	11 '
1109	-P550		21	19 1	1155	-W68	48	22 (
1110.	-P56 9		17	0.0	1156	-W7Q	6	100 (
1111.	-P570	(8NDT)	2	100.0	1157.	-W8Q	11	18
1112	-P58 Q	(1DN8)	26	0.0	1158	-W9@	31	51 (
1113.	-P59 9		5	15.4	1159	-W108	17	35
1114	-P60⊌		21	0 0	1160	-W110]	100
1115	-P61 Q		16	19.1	1161	-W120	5	60
1116	-P62@		18	12.5	1162	-W130	4	50
1117.	-P630		10	27 8	1163.	-W150	2	100
1118.	-P64 0		22	10 0	1164	-W16@	8	100
1119.	-P659		20	77.3	1165	-W17@	24 4	87 100
1120.	-P66 9		4	10.0	1166.	-W18 @	4	100
						<u></u>	ntd	
						CO	.,	

1	2	3	4	1	2	3	4
1167.	74332-W19 Q	21	42.9	1184.	74332-W36 Q	50	38.0
1168.	-W20 ₽	27	29.6	1185.	-W37 Q	57	21.1
1169.	-W21 Q	38	57.9	1186.	-W38 ₽	60	53.3
1170.	-W22Q	24	95.8	1187.	-W39 ₽	56	62.5
1171.	-W23 Q	49	59.2	1188.	-W40 Q	63	93.7
1172.	-W24 Q	40	87.5	1189.	-W41 Q	68	92.6
1173.	-W25 ₽	55	94.6	1190.	-W42 0	40	92.5
1174.	-W26 ₽	63	53.9	1191.	-W43 @	60	95.0
1175.	-W27 @	72	43.1	1192.	-W44 Q	64	100.0
1176.	-W28 Q	58	37.9	1193.	-W45 ₽	61	78.7
1177.	-W29 @	72	87.5	1194.	-W46 ₽	46	73.9
1178.	-W30 Q	63	88.9	1195.	-W47 Q	56	53.6
1179.	-W31 ₽	65	24.6	1196.	-W48 ₽	66	56.1
1180.	-W32 @	68	10.3	1197.	-W49 Q	28	100.0
1181.	-W33 Q	57	19.3	1198.	-₩50 Q	76	65.8
1182.	-W34 ₽	71	52.1	1199.	-W51 Q	73	64.4
1183.	-W35 ⊗	46	34.8	1200.	-W52 Q	66	30.3

 $\frac{\text{Results of screening of West Indies lines (SPP)}^{\underline{a}/\text{for resistance to}}}{\underline{\text{Phytophthora blight b}}}$

S1 No	Pedigree	No. of plants	Percent blight
1.	ICP-6901-P10	19	42 1
2.	-P2@	27	62 9
3	-P3 Q	20	70.0
2 3 4 5 6 7 8 9	-P4 Q	29	31.0
5.	-6903-P1@	23	65 2
6 .	-P20	25	84 0
7.	-P3 Q	26	65 . 4
8.	-P4 Q	24	87 5
9	-6915-P1 Q	23	86.9
10	-P2 Q	22	81 .8
11.	-P3 @	23	82.6
12.	-P4Q	18	889
13	-6919-P1 @	14	92 9
14	-P2 Q	17	94 1
15.	-P3 @	20	90.0
16	-P4⊗	20	90 0
17	-6926-P1 ⊗	30	93.3
18	-P20	23	78 3
19.	-P3 9	25	100 0
20.	-P4@	22	86 4
21.	-6930-P1Q	23	65 2
22	-P2 9	24	87.5
23	-P3 9	18	72 2
24	-P4@	25	72 0

a/ SPP - Single plant progenies.

b/ The susceptible check, HY-3C showed 87.8% blight incidence

Results of screening of progenies of germplasm and parental lines for Phytophthora blight a/

APPENDIX- XXXVIII

S1. No.	Pedigree	No. of plants	Percent blight
1.	ICP-3-P10	23	4.3
2. 3.	-4-P1Q	26	73.1
3.	-5-P1 Q	26	80.8
4.	-25- P1№	23	86.9
4. 5. 6. 7.	-3 1- P1 №	22	18.2
6.	-40-P1Q	28	96.4
7.	-52-P1@	17	41.2
8.	-102-P10	24	0.0
9.	-106-P1@	22	31.8
10.	-168-P1Q	21	57.1
11.	-218-P1 9	24	45.8
12.	-288-P1 Q	22	40.9
13.	-301-P1 Q	26	0.0
14.	-309-P1 Q	14	0.0
15.	-432-P1 Q	22	90.9
16.	-444-P1Q	24	25.0
17.	-1204-P1 Q	24	8.3
18.	-3868-P1@	27	3.7
19.	-4234-P1Q	25	16.0
20.	-4741-P1 @	19	26.3
21.	-4780-P1Q	24	79.2
22.	-6443-P1Q	25	96.0
23.	-6526-P2 Q	19	15.8
24.	-6929-P1 ₽	23	4.4
25.	-6973-P1 9	30	43.3
26.	-6978-P1 Q	22	81.8
27.	-7175-P1Q	31	0.0
28.	-7196-P1 Q	6	66.7
29.	-719 7 -P1 Q	24	100.0
30.	-7198-P1 9	20	40.0
31.	-7199-P1 Q	26	3.9
32.	-7200-P1Q	24	66.7
33.	K-28-P1Q	30	3.3

 $[\]underline{a}$ / The susceptible check, HY-3C showed 87.8% blight incidence.

APPENDIX-XXXIX

Screening of single plant progenies of promising lines to Phytophthora blight in RA-9 nursery a/

S1 No	Pedigree	No. of plants	Percent blight
1	2	3	4
1,	ICP-24-P1@	22	0.0
2	ICP-24-P20	23	4.4
3	ICP-24-P30	29	100.0
4	ICP-24-P4@	28	64 3
5.	ICP-2376-P10	16	6.3
6.	ICP-2376-P20	14	7 1
7 .	1CP-3753-P1Q	21	4.8
8	ICP-3753-P20	21	0 0
9	ICP-3753-P30	25	8 0
10.	ICP-3753-P4Q	18	0.0
11	Pant-A3-P1@	24	8.3
12.	Pant-A3-P20	13	7 3
13.	Pant-A3-P30	27	3.7
14	Pant-A3-P40	25	4.0
15.	ICP 7065-P10	15	0.0
16	ICP-7065-P20	24	8.3
17	ICP-7065-P30	17	5.9
18	ICP-7065-P49	21	9.5
19.	BDN-1-P10	31	3 2
20.	BDN - 1 - P20	26	7 7
21	BDN - 1 - P39	18	0.0
22	BDN-1-P49	19	5.3
23	Pusa Ageti-Pl@	23	8 7
24	Pusa Ageti-P20	27	7.4
25	Pusa Ageti-P30	20	0 0
26	<u> </u>	24	8.3
27	Pusa Ageti-P40	24	8.3
28.	Pusa Ageti-P60	22	4 6
	Pusa Ageti-P79	26	0 0
29	Pusa Ageti-P89	24	0 0
30	Pusa Ageti-P90	19	0.0
31	Pusa Ageti-113-P10	27	0.0
32	Pusa Ageti-113-P20	17	0.0
33	Pusa Ageti-113-P30	14	7 1
34	Pusa Ageti-113-P40		3 8
35	Pusa Ageti-231-P10	26 22	0 0
36	Pusa Ageti-231-P20	22	8.7
37	Pusa Ageti-231-P30	23	4 3
38	Pusa Aget1-231-P40	23	
39	Pusa Ageti-339-P10	28	3 6
40 .	Pusa Ageti-339-P20	22	9 1
		· — · · — · · — · · — · · · — · · · · ·	Contd

1	2	3	4	
41.	Pusa Ageti-339-P3@	29	3.5	
42,	Pusa Ageti-339-P4₩	25	4.0	
43.	Pusa Ageti-758-Pl@	15	0.0	
44.	Pusa Ageti-758-P2 2	16	0.0	
45.	Pusa Ageti-758-P3@	21	9.5	
46.	Pusa Ageti-758-P4Q	20	0.0	
47.	Pusa Ageti-1117-P1@	10	100.0	
48.	Pusa Ageti-1175-P1 @	15	86.7	
49.	Pusa Ageti-1175-P2@	22	9.1	
50.	Pusa Ageti-11 75- P3 0	24	8.3	
51.	Pusa Ageti-1175-P40	26	7.7	
52.	Pusa Ageti-1188-P1@	22	90.9	
53.	Pusa Ageti-1188-P20	25	84.0	
54.	Pusa Ageti-1200-P10	24	95.8	
55.	Pusa Ageti-1205-P1@	15	93.3	
56.	ICP-1205-P2@	17	82.3	
57.	ICP-1208-P1Q	13	0.0	
58.	ICP-1208-P20	8	0.0	
59.	ICP-1208-P39	22	9.1	
60.	ICP-1209-P20	28	21.4	
61.	ICP-1209-P30	25	8.0	
62.	ICP-1209-P40	21	0.0	
63.	ICP-1209-P5@	16	100.0	
64.	ICP-1211-P10	8	75.0	
65.	ICP-1249-P19	21	28.6	
66.	ICP-1249-P20	18	66.7	
67.	ICP-1372-P1₩	11	90.1	
68.	ICP-1510-P2Q	17	0.0	
69.	ICP-1510-P30	18	72.2	
70.	ICP-1516-P1@	10	90.0	
71.	ICP-1522-PB@	44	31.8	
72.	ICP-1522-P5@	19	0.0	
73.	ICP-1522-P69	22	27.3	
74.	ICP-1529-P2@	17	5.9	
75.	ICP-1529-P3₩	30	6.7	
76.	ICP-1529-P4Q	10	40.0	
77.	ICP-1529-P50	20	5.0	
78.	ICP-1531-P1@	20	0.0	
79.	ICP-1531-P2Q	20	35.0	
80.	ICP-1531-P3₩	26	7.7	
81.	ICP-1531-P40	22	9.1	
82	ICP-1535-P30	28	3.6	
83.	ICP-1535-P40	30	10.0	
84.	ICP-1535-P50	21	9.5	
85.	ICP-1559-P1@	9	88.9	
86.	ICP-1559-P2@	24	37.5	
87.	ICP-1559-P30	13	100.0	

1	2	3	4
88 .	ICP-1587-P19	4	25 0
89	ICP-1587-P29	25	0.0
90 ພ	ICP · 1587-P30	22	0.0
91	ICP-1587-P40	36	63.9
92	ICP-1622-P20	27	7.4
93.	ICP-1622-P30	22	7.4 9.1
94	1CP-1622-P49	16	12.5
95	ICP-1622-P50	14	42.9
96	1CP-1643-P19	6	0.0
90. 97.	1CP-1643-P2@		
97. 98.		13	7.7
	ICP-1643-P30	21	4.8
99	ICP-1643-P5@	10	80.0
100 。	ICP-1673-P10	28	67.9
101	ICP-1673-P20	14	50 0
102	ICP-1673-P30	21	28 . 6
103	ICP-1673-P40	15	93.3
104	ICP-1686-P1@	6	33.3
105	ICP-1686-P20	23	34.8
106	ICP-1686-P3@	31	6.5
107.	ICP-1686-P4Q	47	36 . 7
108	ICP-1708-P10	14	92.9
109.	ICP-1708-P2@	26	3.9
110	ICP-1708-P30	13	69.2
111	ICP-1708-P4@	13	0.0
112	ICP-214	33	9 1
113	ICP-580	43	4 7
114	ICP - 752	40	5 0
115	ICP · 913	41	9 8
116.	ICP - 934	46	8.7
117	ICP-1088	47	8.5
118	ICP-1090	51	9 8
119	ICP-1120	46	0.0
120	ICP-1123	51	9.8
121	ICP-1149	49	8 2
122	ICP-1150	50	10 0
123	ICP-1151	48	8.3
		50	10.0
124	ICP-1258	47	8 5
125	ICP-1321	48	6.3
126	ICP-1529	48 46	8.7
127	ICP-1535		
128	ICP-1570	42	7 1
159	ICP-1586	49	8.2

^{1/} The susceptible check, HY-3C, showed 87 8% blight incidence.

APPENDIX-XL

<u>Screening of wilt promising progenies for Phytophthora blight</u>
<u>resistance in RA-9 nursery</u> <u>a/</u>

S1. No.	Pedigree	No. of plants	Percent blight
1	2	3	4
1.	T-17-W1Q-W2Q-W1Q	25	8.0
2.	T-17-W1Q-W3Q-W1Q	24	0.0
3.	T-17-W1Q-W5Q-W1Q	25	0.0
4.	T-17-W1Q-W9Q-W1Q	24	4.2
5.	T-17-W1Q-W12Q-W1Q	24	8.3
6.	T-17-W1Q-W13Q-W1Q	23	4.3
7.	T-17-W1Q-W17Q-W1Q	25	4.0
8.	T-17-W2Q-W1Q-W3Q	27	0.0
9.	T-17-W2Q-W3Q-W8Q	22	22.7
10.	T-17-W28-W78-W18	20	20.0
11.	T-17-W20-W90-W20	27	0.0
12.	T-17-W2W-W2W-W2W T-17-W3Q-W2Q-W5Q	26	23.1
13.	T-17-W30-W20-W30 T-17-W30-W30-W20	29	6.9
13. 14.		22	9.1
	T-17-W3@-W4@-W2@	17	0.0
15.	T-17-W3Q-W6Q-W1Q		3.7
16.	T-17-W3Q-W7Q-W1Q	27	
17.	T-17-W3Q-W9Q-W1Q	25	8.0
18.	T-17-W3Q-W12Q-W2Q	25	36.0
19.	NP(WR)-15-W1Q-W2Q-W1Q	25	28.0
20.	NP(WR)-15-W1Q-W2Q-W5Q	17	58.8
21.	NP(WR)-15-W1Q-W3Q-W8Q	25	24.0
22.	NP(WR)-15-W1Q2-W4Q2-W8Q2	23	65.2
23.	NP(WR)-15-W1Q-W7Q-W1Q	23	8.7
24.	NP(WR)-15-W1Q-W12Q-W2Q	30	10.0
25.	NP(WR)-15-W1Q-W13Q-W8Q	22	45.5
26.	NP(WR)-15-W1Q-W14Q-W2Q	25	36.0
27.	NP(WR)-15-W1Q-W16Q-W1Q	22	22.7
28.	NP(WR)-15-W1Q-W17Q-W3Q	25	8.0
29.	NP(WR)-15-W100-W1900-W100	25	36.0
30.	NP(WR)-15-W1Q-W20Q-W7Q	22	18.2
31.	NP(WR)-15-W10-W210-W10	27	18.5
32.	NP(WR)-15-W2Q-W1Q-W9Q	24	33.3
33.	NP(WR)-15-W2Q-W3Q-W1Q	23	13.0
34.	NP(WR)-15-W2Q-W5Q-W1Q	23	4.5
35.	NP(WR)-15-W2Q-W12Q-W1Q	24	4.2
36.	NP(WR)-15-W2Q-W14Q-W1Q	25	52.0
	NP(WR)-15-W2Q-W15Q-W1Q	21	71.4
37.		23	56.5
38.	NP(WR)-15-W2Q-W16Q-W1Q	23 21	52.4
39.	NP(WR)-15-W20-W190-W10	22	27.3
40.	NP(WR)-15-W2Q-W2OQ-W1Q	44	41.3

) 	2	3	4
41.	NP(WR)-15-W3Q-W6Q-W1Q	27	66.7
42	NP(WR)-15-W30-W70-W20	24	41 7
43.	NP(WR)-15-W3@-W80-W10	25	16 0
44	NP(WR)-15-W3@-W9@-W1@	19	15.8
45.	NP(WR)-15-W30-W140-W10	27	3.7
46	NP(WR)-15-W30-W150-W10	27	11 1
47	NP(WR)-15-W3@-W17@-W7@	24	4 2
48.	NP(WR)-15-W30-W180-W10	22	9.1
49	EXE-Rb3 W50-W10-W40	19	0 0
50	73039-Rb3-W4@-W1@-W19@	28	10 7
51.	73039-Rb3-W40-W20-W30	25	4 0
52 .	ICP-6970-S1@-W3@	24	8 3
53	ICP-6970-S10-W40	26	0 0
54	ICP-6970-S20-W10	25	84 0
55	ICP-6970-S20-W30	26	3 9
56	ICP-6970-S3Q-W1Q	52	53.8
57	ICP-6970-S4Q-W1Q	51	25 5
58	1CP-6970·S5@-W5@	24	33.3
59 ູ	ICP-6970-S69 W18	25	24 0
60	ICP-6970-S70-W10	24	8.3
61	1CP - 6970-S80-W10	24	25 0
62	ICP-6970-S90-W10	25	32 .0
63	ICP-6970-S100-WI0	26	3.8
64	C-11-W20-W100-W50	26	34 6
65	No 1258-W20-W50-W30	26	0 0
66	15-3-3-W20-W130-W40	25	0 0
67	15-3-3-W2@-W16@-W3 @	28	28 6
68	20-1-W18-W48	24	0 0
69 a	KWR-1-W1@-W3@-W3@	23	65 2
70	KWR-1-W10-W30-W50	26	23 1
7.1	KWR-1-W1@-W5@-W3@	26	0 0
72	KWR-1:W2@-W2@-W1@	26	7 7
73	KWR-1-W20-W30-W10	27	259
74	KWR-1-W20-W79-W80	26	19 2
75	KWR-1-W2Q-W10Q-W7Q	22	31 8
76	KWR-1-W2@-W11@-W7@	26	30 8
77.	KWR-1-W20-W130-W20	25	20.0
78 .	KWR-1-W3@-W1@-W3@	22	13 6
79	KWR-1-W30-W50-W20	25	24 0
90	KWR-1-W30-W110-W40	27	14 8
81.	KWR-1-W30·W130-W50	24	20 8
82	ICP-1-6-W20-W10	16	12 5
83	1CP-1-6-W30-W10	24	8 3
84	1CP · 1 -6 · W5@ - W2@	26	3 9
85	ICP-4745-4-W50-W30	7	0 0

1	2	3	4
86.	ICP-4745-4-W5@-W4@	22	0.0
87.	ICP-6426-4-W4Q-W8Q	23	0.0
88.	HY-3C-12-W3Q-W3Q	23	95.7
89.	HY-3C-12-W5@-W1@	23	100.0
90.	ICP-2812-W4@	26	7.7
91.	ICP-4698-W1@	26	7.7
92.	ICP-5174-W1@	30	0.0
93.	ICP-5579-W1Q	22	63.6
94.	NP(WR)-15-W1Q	25	24.0
95.	ICP-6524-W5@	27	100.0
96.	ICP-6588-W1Q	23	30.4
97.	ICP-6812-W5@	23	30.4
98.	ICP-6815-W40	19	42.1
99.	ICP-6897-W4Q	23	26.1
100.	ICP-6915-W3@	21	100.0
101.	ICP-6927-W1@	22	9.1
102.	ICP-7336-W20	24	100.0
103.	ICP-7424-W3Q	23	8.7
104.	ICP-7549-W3₩	25	20.0

 $[\]underline{a}/$ The susceptible check, HY-3C, showed 87.8% blight incidence.

APPENDIX-XLI & XLII

Screening of sterility mosaic resistant progenies (Germplasm selections & Breeding materials) for Phytophthora blight in RA-9 nursery a/

SI. No	Pedigree	No of plants	Percent blight
1	2	3	4
1.	ICP-3782-S10	29	100.0
2	ICP-4769-3-S20	28	50 0
2	ICP-4866-1-S3@	26	0 0
4.	ICP-4885-1-S1@	39	7 7
5.	ICP-5051-2-S4@	28	42 9
6	ICP-5097-1-S30	31	9.7
7,	ICP-5436-1-S20	22	9 1
8	[CP-5467-1-S1@	25	88.0
9	ICP-5651-1-S30	27	7 . 4
10	ICP-5656-1-S20	31	3.2
11	1CP-5701-1-S1@	23	34.8
12	ICP-6748-3-S20	33	100.0
13.	ICP-6831-1-S20	32	96 9
14.	ICP-6975-1-S3Q	32	100.0
15.	ICP-7185-1-S10	37	5 4
16	ICP-7184-2-S50	34	85.2
17	ICP-7194-1-S40	28	0 - 0
18	1CP-7201-2-S1@	25	100.0
19	ICP-7217-1-S10	32	100 0
20	ICP-7232-2-S40	37	86 5
21	TCP-7233-2-S10	9	77 8
22	ICP-7234-2-S10	29	58 6
23	ICP-7237-1-S30	20	100 0
24	ICP-7238-1-S5@	16	87 5
25	ICP-7239-1-S10	29	100 0
26	1CP-7240-3-S10	31	100 0
27	ICP-7243-7-S10	31	61 3
28	ICP-7246 · 2-S90	10	10.0
29	ICP-7248-7-S40	4	100.0
30	ICP-7250-1-S10	26	100 0
31	ICP - 7258-1-S49	15	86 7
32	ICP-7273-1-S30	24	54 2
33 .	1CP - 7306 - 2 - S29	27	100 0
34	ICP - 7336 - 1 - S39	24	87 5
35	1CP-7337-2-S4@	24	100.0
36	1CP-7345-3-S29	21	66 7
37 .	ICP-7346-1-S39	26	96 2
38	ICP - 7349 - 1 - 519	25	84 0
			Contd

1	2	3	4
39.	ICP-7353-1-S40	25	88.0
40.	ICP-7372-3-S30	25	100.0
41.	ICP-7378-2-S20	26	100.0
42.	ICP-7387-5-S50	29	100.0
43.	ICP-7403-2-S20	30	96.7
44.	ICP-7407-1-S20	24	95.8
45.	ICP-7411-1-S1Q	19	94.8
46.	ICP-7414-1-S30	26	0.0
47 .	ICP-7445-4-S50	28	7.1
48.	ICP-7501-2-S20	23	100.0
49	ICP-7864-1-S50	23	9.6
50.	ICP-7867-1-S40	16	100.0
51.	ICP-7870-1-S10	17	100.0
52.	ICP-7873-5-S19	21	100.0
53.	ICP-7874-6-S4Q	23	100.0
54.	ICP-7875-3-S49	21	100.0
55.	ICP-7898-3-S30	23	100.0
56.	ICP-7904-5-S50	23	100.0
57.	ICP-7906-1-S5@	20	60.0
58.	ICP-7942-1-S40	23	95.7
59.	ICP-7983-1-S20	25	100.0
60.	ICP-7998-4-S5@	20	95.0
61.	ICP-8014-3-S40	27	100.0
62.	ICP-8021-3-S50	25	96.0
63.	ICP-8029-1-S40	30	26.7
64.	ICP-8032-1-S40	29	62.1
65.	ICP-8033-2-S10	20	50.0
66.	ICP-8035-1-S3@	24	100.0
67.	ICP-8036-13-S19	24	95.8
68.	ICP-8038-2-S19	31	29.0
69.	ICP-8057-3-S1@	26	100.0
70.	ICP-8058-3-S40	29	100.0
71.	ICP-8061-3-S10	31	100.0
72.	ICP-8063-5-S10	30	100.0
73.	ICP-8067-2-S2Q	27	100.0
74.	ICP-8075-2-S2@	24	8.3
75.	ICP-8084-7-S5@	25	96.0
76.	ICP-8093-2-S10	26	26.9
77.	ICP-8094-1-S20	34	8.8
78.	ICP-8101-2-S29	21	9.5
79.	ICP-8102-5-S10	24	0.0
80.	ICP-8103-3-S20	30	0.0
81.	ICP-8106-2-S50	32	0.0
82.	ICP-8111-2-S1@	30	0.0
83.	ICP-8113-1-S5@	28	28.6
55.			

)	2		3	4	
84.	ICP-8120-2-S5@		28	57,1	
85	ICP-8121-2-510		30	3.3	
86	ICP-8123-1-S50		30	26.7	
87	ICP-8127-2-54@		28	57 1	
88.	ICP-8128-1-S1@		26	100.0	
89	ICP-8130-5-S40		20	5 0	
90.	ICP-8132-2-S3@		25	4.0	
91.	ICP-8133-1-S40		30	66.7	
92	ICP-9134-1-S1@		28	821	
93.	ICP-8136-1-S10		29	68.9	
94	ICP-8137-4 - S40		28	7,1	
95 .	ICP-8138-2-S40		30	70.0	
96 .	1CP-8139-3-51@		21	23.8	
97	ICP-8140-1-S4@		29	20 7	
98	ICP-8141-2-S20		32	37 5	
99 ,	ICP-8144-3-S3@		29	3.5	
100	ICP-8146-1-S50		44	47 7	
101	ICP-8147-1-S20		34	0.0	
102	ICP-8151-7-S40		24	0.0	
103	ICP-8160-1-S30		27	74.1	
104.	ICP-8161-1-S10		42	48	
105	1CP-8167-1-S30		29	27.6	
106	ICP-8501-2-S20		27	66.7	
107	Pant-B-76-5 - 51 0		23	100.0	
108	74360-510-510		47	89 4	
109,	74360-S10-S20		47	78.7	
110	74360-S10-S30	(56	7.1	
111	74360-510-540	(7NDT)	23	30 4	
112	74360-510-550		54	98 2	
113	74360-519-569	(7NDT)	34	70 6	
114.	74360-S10-S70		50	14 0	
115	74360-S10-S80	(44,50)	44	15 9	
116	74360-510-590	(8NDT)	24	16.7	
117.	74360-510-5100	/ mum = \	49	75 5	
118	74360-S10-S110	(7NDT)	32	18.8	
119,	74360-510-5120		49	85 7	
120	74360-519-5139		47	27.7	
121	74360-510-5140		55	69 1	
155	74360-S10-S150	(01107)	54	33 3	
123	74360-510-5160	(8NDT)	42	47 6	
124	74360-S30-S10		41	98	
125	74360-S3 9- S2 9	/ main = 1	46 27	36 9 70 3	
126.	74360-539-539	(7NDT)	27	70 3 85 7	
127	74360-530-540	(ONDT)	49 43	11 6	
128	74360-S3@-S5@	(SNDT)	43	11 0	

1	2		3	4	
129	74360-S40-S10	(8NDT)	50	20.0	
130	74360-S40-S20	,	46	80.4	
131.	74360-S40-S30		46	2.2	
132.	74360-S4 0-S 4 0		51	5.9	
133	74360-S49-S59		49	32.7	
134.	74360-S49-S69		54	14.8	
135.	74360-S49-S79		48	25.0	
136.	74360-S40-S80	(8NDT)	34	32.3	
137.	74360-549-599	(8NDT)	27	14.8	
138.	74360-S49-S109	(55.7)	23	4.3	
139.	74360-S49-S119		53	5.6	
140.	74360-S40-S120		51	25.5	
141.	74360-S4Q-S13Q	(8NDT)	35	80.0	
142.	74360-S40-S140	(8NDT)	48	20.8	
143.	74360-S4 0 -S15 0	(6.151)	37	18.9	
144.	74360-S4 0 -S16 0		46	4.3	
145.	74360-S4Q-S17Q		40	12.5	
146.	74360-S4 Q -S18 Q		46	19.6	
147.	74360-S49-S199		43	4.7	
148.	74360-S48-S208		49	28.6	
149.	74360-S4 Q- S21 Q		42	0.0	
150.	74360-S4 Q -S22 Q	(8NDT)	48	56.3	
151.	74360-S48-S238	(0.101)	57	87.7	
152.	74360-S4 Q -S24 Q	(8NDT)	39	25.6	
153.	74360-S48-S258	(8NDT)	21	14.3	
154.	74360-S48-S268	(0.15.)	52	1.9	
155.	74360-S4 Q -S27 Q	(8NDT)	11	0.0	
156.	74360-S4Q-S28Q	(8NDT)	20	10.0	
157.	74360-S4M-S29M	(8NDT)	39	2.6	
158.	74360-S48-S308	(0.1.5 /)	43	6.9	
159.	74360-S10@-S1@		54	20.3	
160.	74360-S108-S28	(8NDT)	48	16.7	
161.	74360-5100-530	(0.1.51)	47	25.5	
162.	74360-S108-S48	(8NDT)	42	28.6	
163.	74360-S10 0- S5 0	(8NDT)	33	42.5	
164.	74360-S109-S69	(01101)	42	47.6	
165.	74360-S10 Q -S7 Q	(8NDT)	40	67.5	
166.	74360-S109-S89	(5.15.7)	47	14.9	
167.	74360-S109-S99		49	42.9	
168.	74360-S100-S100	(8NDT)	43	23.3	
169.	74360-S10M-S10M	(OND)	52	84.6	
170.	74360-S10 2- S12 2		53	22.6	
171.	74360-S100-S120		45	31.1	
172.	74360-S100-S140		49	36.7	
173.	74360-S108-S158		45	17.8	
174.	74363-S3 Q -S1 Q		55	23.6	
175.	74363-S3 Q -S2 Q		47	2.1	
1/3.	/ TUUU- UUM - UKM		17		

1	2	3	4
176.	74363-S39-S39	51	23.5
177.	74363-S402-S100 (6NDT)	55	83.6
1 7 8	74363-S4Q-S2Q	34	20.0
179	74363-S5Q-S1Q (8NDT)	66	72.7
180.	74363-S5 @- S2 @ (8NDT)	49	97.9
181.	74363-S5Q-S3Q (7NDT)	48	93.8
182.	74363-S5 Q -S4 Q	50	100.0
183.	74363-S5 0 -S5 0	27	100.0
184.	74363-S5Q-S6Q	54	96.3
185	74363-S5Q-S7Q	56	50.0
186 .	74363-S6Q-S1Q	52	17.3
187.	74363-S6 Q- S2 Q	56	19.6
188.	74363-S6 Q- S3 Q	55	20 .0
189.	74363-S6 Q- S4 Q	50	22.0
190.	74363-S6Q-S5Q	54	7.4
191.	74363-S6 Q- S6 Q	23	17.4
192.	74363-S6 Q -S7 Q	52	1.9
193。	74363-S6 Q- S8 Q	54	92.6
194.	74363-S6 0- S9 0	53	0.0
195.	73047-8-S2 0- S1 0 (2NDT)	54	14.8
196.	73047-8-S2 0- S2 0 (2NDT)	50	14.0
197,	73047-8-S2@-S3@ (2NDT)	36	2.8
198.	73047-8-S2 Q- S4 Q (2NDT)	38	5.3
199 .	73047-8-S2@-S5@ (2NDT)	47	85
200	73047-19-S2@-S1@(3NDT)	45	8.9
201 .	73047-19-S2 @- S2@(3NDT)	49	8.2
202 .	73047-19-S2@-S3@(3NDT)	56	0.0
203	73047-19-S20-S40(3NDT)	· 45	4.4
204 .	73047-19-S2@-S5@(3NDT)	50	0 0
205.	73047-27-S1@-S1@(4NDT)	49	0.0
206	73047-27 - S1Q-S2Q(4NDT)	19	0.0
207.	73047-27-S1Q-S3Q(4NDT)	25	20.0
208	73047-27-S1@-S4@(4NDT)	47	10 6
209	73047-40-S4Q-S1Q(8NDT)	50	28.0
210	73047-40-S4Q-S2Q(8NDT)	56	32 1
211.	73047-42-S1@-S1@(3NDT)	47	8 5
212.	73047-42-S1Q-S2Q(3NDT)	55	0.0
213.	73047-42-S10-S30(3NDT)	37	0.0
214	73047-42-S1Q-S4Q(3NDT)	47	2.1
215.	73047-42-S10-S50(3NDT)	55	0.0
216	73047-22-1-3-520-510	44 53	11.4
217,	73047-22-1-3-S2@-S2@	51	3.9
218	73047-22-1-3-520-530	10	0.0
219,	73047-22-1-3-529-549	27	0.0
220.	73047-22-1-3-S2 @- S5 @	41	2.4

1	2		3	4
221		5NDT)	50	4.0
222	.73047-30-1-S4Q-S2Q		26	3.9
223.	73047-30-1-S4 Q -S3 Q		12	16.7
224.	73047-30-1-S4 9 -S4 9		6	0.0
225.	73047-30-1-S4Q-S5Q		15	0.0
226.	73047-30-1-54@-56@		37	16.2
227.	73047-6-2-S7Q-S1Q		60	13.3
228.	73047-6-2-S7Q-S2Q		52	11.5
229.	73047-6-2-S7 Q- S3 Q		22	4.5
230.	73047-6-2-S7Q-S4Q		48	18.8
231.	73047-6-2-S11@-S1@		54	0.0
232.	73047-6-2-S11 0- S2 0		53	3.8
233.	73047-6-2-511@-53@		57	3.5
234.	73047-6-2-5112-542		48	6.3
235.	73047-6-2-5110-550		39	7.7
236.	73047-24-8-2-\$102-\$102	(3NDT)	46	6.5
237.	73047-24-8-2-S1@-S2@	(DT)	48	2.1
238.	73047-24-8-2-510-530	(5NDT)	55	12.7
239.	73047-24-8-2-\$10-\$40	(6NDT)	46	13.0
240.	73047-24-8-2-510-550	(6NDT)	51	25.5
241.	74236-35-880-810	(7NDT)	51	92.2
242.	74236-35-889-829	(7NDT)	49	85.7
243.	74236-35-880-830	(7NDT)	45	91.1
244.	74236-35-880-840	(7NDT)	48	91.7
245.	74236-35-880-850	(7NDT)	37	75.7
246.	73047-10-58@-51@	(6NDT)	20	85.0
247.	73047-10-589-529	(5NDT)	13	69.2
248.	73047-10-S8@-S3@	(6NDT)	24	83.3
249.	73047-10-580-540	(6NDT)	24	79.2
250.	73047-10-58@-55@	(7NDT)	25 37	80.0 24.3
251.	73047-24-1-5-S2Q-S1Q 73047-24-1-5-S2Q-S2Q	(2DT) (3DT)	35	24.3
252. 253.	73047-24-1-5-520-520	(3DT)	35 40	47.5
253. 254.	73047-24-1-5-520-530	(2NDT)	51	64.7
254. 255.	73047-24-1-5-520-540	(3NDT)	46	91.3
255. 256.	73047-24-1-5-528-558	(SNDT)	44	54.6
257.	73047-24-1-5-538-518	(6NDT)	51	35.3
258.	73047-24-1-5-538-528	(6NDT)	52	38.5
259.	73047-24-1-3-33 2 -33 2 73047-24-Bulk II-S1 0 -S1 0		40	42.5
260.	73047-24-Bulk II-SIM-SIM		50	64.0
261.	73047-24-Bulk II-S10-S20		30	56.7
262.	73047-24-Bulk II-S10-S40		49	55.1
263.	73047-24-Bulk II-S10-S50	(5NDT)	39	12.8
		, ,		

1	2		3	4
264.	74236-21-569-519	(6NDT)	51	100.0
265.	74236-21-S6Q-S2Q	(6NDT)	42	85.7
266.	74236-21-S6Q-S3Q	(6NDT)	53	100.0
267.	74236-21-560-540	(6NDT)	52	100.0
268.	74236-21 - S6 Q -S5 Q	(6NDT)	43	100.0
269.	73047-2-S2 @- S1 @	(6NDT)	53	9.4
270	73047-2-S2@-S2@	(6NDT)	35	2.9
271.	73047-2-S2Q-S3Q	(6NDT)	53	1.9
272.	73047-6-S2Q-S1Q	(7NDT)	48	6.3
273	73047-6-S29-S29	(6NDT)	50	2.0
274.	73047-6-S2 Q -S3 Q	(7NDT)	42	2.4
275.	73047-6-S2Q-S4Q	(6NDT)	48	12.5
276.	73047-6-S2Q-S5Q	(7NDT)	40	5.0
277.	73047-6-S4Q-S1Q	(6NDT)	45	8.9
278	73047-6-S4Q-S2Q	(6NDT)	46	0.0
279.	73047-1-2-520-510	(7NDT)	25	76.0
280.	73047-23-1-2-520-520	(7NDT)	41	36.6
281.	73047-23-1-2-520-530	, ,	46	34.8

 $[\]underline{a}/$ The susceptible check, HY-3C, showed 87.7% blight incidence.

APPENDIX- XLIII

Results of screening of $ACT^{\underline{a}/}$ pigeonpea lines against Phytophthora blight in the field (RA-9) during 1978 K

S1. No.	Pedigree/ Cultivar	No. of plants	No blighted	Percent blight	Yield/plant (g)
1	2	3	4	5	6
E	ACT (extra ear	1y)			
2. I 4. U 5. H 6. I 7. H 8. H 9. H 0. H	-73-20 CPL-1 CPL-2 PAS-120 -76-19 CPL-3 PA-2 -76-20 -76-35 -76-53 CPL-4 rabhat	90 93 113 106 149 87 73 104 80 85 94	8 28 37 71 112 67 58 84 66 71 80 90	8.9 30.1 32.7 67.0 75.2 77.0 79.5 80.8 82.5 83.5 85.1 93.8	22.1 20.2 15.7 11.0 6.8 1.4 14.8 8.2 5.3 3.9 2.6 2.5
I. I 2. I 3. 1 4. T 5. J 5. H 7. I 3. T 9. S 1. T 2. S	CPL-7 T-6 ehore-197 -84 T-5 ehore-68 L-74-1-3	106 105 110 92 79 82 105 124 129 120 112 48 100 95	22 36 42 46 48 50 66 88 99 103 99 43 95	20.8 34.3 38.2 50.0 60.8 61.0 62.9 71.0 76.7 85.8 98.4 89.6 95.0	22.0 24.8 15.2 12.3 11.5 11.6 19.5 4.0 2.6 2.7 2.1 4.4 1.5 1.0
1. B 2. H 3. J 4. I 5. S		78 124 87 128 120 123	4 10 9 21 28 29	5.1 8.1 10.3 16.4 23.3 23.6	41.0 18.8 33.5 25.4 25.4 28.5

1	2	3	4	5	6
	ACT-2 (medium)				
7.	JA-3	79	21	26.6	32.7
8.	ICPL-43	90	24	26.7	14.0
9 .	ICP-1	137	42	30.7	23.3
10.	BDN-2	102	33	32.4	14.3
11.	No. 148	110	54	49.1	28.5
12.	JA-5	114	59	51.8	34.3
13.	AS-71-37	87	48	55.2	28.7
14.	GS-1	94	54	57.5	33.3
15.	HY-2	109	72	66.1	15.0
16.	C-11	80	68	85.0	17.9
	ACT-3 (late)				
1.	AS-29	71	8	11.3	61.3
2. 3.	K-28	63	8	12.7	26.0
3.	K-23	93	14	15.1	33.2
4.	PS-65	82	14	17.1	33.4
5.	Group-8	92	24	26.1	29.4
4. 5. 6.	Group-10	101	29	28.7	23.7
7.	1234	79	29	36.7	21.6
8.	PS-41	93	35	37.6	28.1
9.	K-16	130	51	39.2	15.0
10.	Composite-4	87	45	51.7	11.1
11.	Gwalior-3	101	54	53.5	23.3
12	NP(WR)15	119	64	53.8	9.0
13,	T-7	91	52	57.1	18.5
14	PS-43	82	47	57.3	38.7
15.	1258	66	44 05	66.7	16.1
16.	PS-66	89	85	95.5	8.5

a/ ACT - Arhar (pigeonpea) coordinated trial. These are organized by the All India Coordinated Pulse Improvement Project.

APPENDIX- XLIV

<u>Screening of pigeonpea germplasm for Phytophthora blight</u>
<u>resistance in pot culture</u>

S1. No.	ICP No.	No. of plants	Percent blight	S1. No.	ICP No.	No. of plants	Percent blight
1	2	3	4	1	2	3	4
No. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.		plants	blight	No .		plants	blight
26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38.	1254 1256 1258 1261 1262 1264 1265 1267 1270 1272 1274 1277 1279 1280 1281	33 37 40 30 27 39 37 32 33 34 33 28 32 32 25	90.90 94.60 0.00 90.00 74.10 100.00 75.70 90.60 66.70 88.20 97.00 64.30 65.60 87.50 84.00	66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78.	1350 1351 1353 1355 1357 1364 1366 1367 1369 1370 1377 1379 1380 1381 1384	40 37 31 33 33 17 25 28 34 35 39 34 31 23 32	87.50 54.00 45.16 69.70 54.50 52.90 72.00 39.30 79.40 97.10 46.10 94.10 74.20 87.00 53.10

1	2	3	4	1	2	3	4
81	1387	27	88.90	126.	1540	24	91.70
82	1391	33	42.40	127.	1541	33	100.00
83,	1395	34	91.20	128.	1542	28	92.90
84	1398	38	84.20	129.	4 1544 °	38	97.40
85	1399	28	89.30	130.	1547	27	96.30
86.	1405	34	85.30	131.	1548	30 -	90.00
87.	1406	32	68.70	.132.	1550	27	100 00
88.	1407	38	73.70	133.	1555	36	63.90
89	1409	20	95.00	134.	1556	28	85.70
90.	1413	37	73.00	135	1557	27	96.30
91.	1415	27	96.30	136.	1560	36	94.50
92.	1417	39	94.90	137. 138.	1561	38	92.10
93	1421	32	78.10	138.	1563	31	90.30
94 .	1425	17	29.40	139.	1564	36	94.50
95.	1431	30	80.00	140.	1568	29	100.00
96.	1433	29	75.90	141.	1569	32	87.50
97.	1437	37	97.30	142.	• 1571	33	90.90
98.	1438	19	94.70	143.	`1575 [']	33	100.00
99.	1441	33	93.90	144.	1576	26	96.10
100.	1444	21	100.00	145.	1577	39	97,40
101.	1448	33	90.90	146.	1578	34	100.00
102.	1452	28	78.60	147.	1579	39	94.90
103.	1456	35	100.00	148.	1580	33	97.00
104	1458	16	87.50	149.	1581	38	52.60
105.	1462	29	86.20	150.	1583	38	89.50
106.	1468	39	100.00	151.	1586	25	4.00
107	1473	30	96.70	152.	1589	32	84 40
108	1474	30	80.00	153.	1590	32	21.90
109 .	1476	34	23.50	154.	1593	25	100 00
110	1482	38	92.10	155.	1596	28	100.00
111,	1483	34	70.60	156.	1597	22	100.00
112.	1486	29	89.60	157.	1601	37	100.00
113.	1490	31	90.32	158.	1602	20	60.00
114	1491	36	91.70	159.	1604	40	4500
115.	1492	33	93 "90	160.	1611	31	96.80
116.	1497	36	88.90	161.	1613	33	93.90
117.	1500	31	77.40	162.	1615	32	93 80
118.	1504	31	71.00	163.	1621	35	97.10
119.	1505	25	96.00	164.	1625	28	100.00
120.	1512	34	94.10	165.	1628	34	97.10
121	1513	35	88.60	166.	1629	33	87.90
122	1523	30	60.00	167.	1630	36	100 00
123	1527	30	93.30	168.	1632	32	96.90
124.	1534	22	95.50	169.	1641	37	70.30
(25)	1537	29	93.10	170.	1644	40	92.50
				1			

1	2	3	4	1	2	3	4
171.	1648	34	70.60	216.	1756	31	67.70
172.	1650	35	100.00	217.	1757	35	97.10
173.	1654	26	84.60	218.	1758	39	97.40
174.	1655	36	41.70	219.	1761	42	100.00
175.	1658	38	97.40	220.	1762	29	72.4 0
176.	1661	33	87.90	221.	1763	35	68.6 0
177.	1663	35	74.30	222.	1764	40	65.0 0
178.	1664	38	81.60	223.	1769	38	86.80
179.	1666	37	75.70	224.	1770	30	80.00
180.	1669	36	88.90	225.	1771	32	75.00
181.	1670	28	82.10	226.	1777	39	100.00
182. 183.	1671 1672	40 33	87.50	227. 228.	1 <i>77</i> 9 1 <i>7</i> 81	44 35	88.60
184.	1675	32	60.60 59.40	228.	1781	35 39	100.00
185.	1676	32 37	18.92	230.	1784	39 45	100.00 93.30
186.	1680	29	93.10	230.	1785	33	93.30 97.00
187.	1682	33	84.90	232.	1786	33 31	96.8 0
188.	1683	26	80.80	233.	1787	29	89.60
189.	1684	31	93.60	234.	1788	27	3.70
190.	1688	35	94.30	235.	1790	24	100.00
191.	1691	40	82.50	236.	1792	43	100.00
192.	1693	31	87.10	237.	1793	28	85.70
193.	1697	30	87.10	238.	1794	33	100.00
194.	1699	33	87.90	239.	1795	37	91.90
195.	1704	34	94.10	240.	1796	34	88.20
1 9 6.	1711	38	76.32	241.	1800	42	100.00
197.	1712	36	83.30	242.	1802	40	100.00
198.	1718	31	87.10	243.	1803	32	100.00
199.	1720	25	88.00	244.	1804	39	100. 00
200.	1724	37	86.50	245.	1805	39	100.00
201.	1725	35	88.60	246.	1806	32	78.10
202.	1726	36	88.90	247.	1807	28	53.50
203.	1727	29	62.10	248.	1809	35	88.60
204.	1728	35	80.00	249.	1811	32	90.60
205.	1730	20	85.00	250. 251.	1814	24	87.50
206. 207.	1732 1733	40 20	80.00 95.00	252.	1815 1817	37 32	100.00 100.00
207.	1735	38	71.00	253.	1818	32 37	86.50
208.	1735	38 39	64.10	253.	1820	33	57.60
210.	1737	39	73.30	255.	1822	35 36	100.00
211.	1733	25	84.00	256.	1823	32	96.90
212.	1747	34	94.12	257.	1829	41	97.60
213.	1751	30	76.70	258.	1830	36	100.00
214.	1752	34	64.70	259.	1833	38	79.00
215.	1754	40	97.50	260.	1835	35	80.00

1	2	3	4	1	2	3	4
261.	1836	34	79.40	306.	1938	41	100.00
262.	1837	28	92.90	307.	1940	48	81 20
263	1838	34	100.00	308.	1941	40	100.00
264	1842	34	100.00	309.	1943	45	100.00
265	1843	40	90.00	310.	1944	41	100.00
266	1845	39	100.00	311.	1946	42	76 20
267.	1846	31	93.60	312.	1947	45	97.80
268	1852	31	100.00	313.	1950	60	5.00*
269.	1853	39	92.30	314.	1951	41	100.00
270	1854	34	70.60	315.	1952	49	100.00
271.	1855	62	91.50	316.	1956	34	88.20
272.	1857	48	95.80	317.	1958	37	89 20
273	1860	61	91.80	318.	1959	51	80.40
274.	1862	44	95.50	319.	1962	42	76.20
275	1863	38	100.00	320.	1963	49	81.60
276	1864	60	98.30	321.	1964	41	100 00
277.	1865	55	100.00	322.	1966	45	100.00
278.	1866	34	100.00	323.	1967	35	100.00
279.	1869	43	100.00	324.	1968	46	100.00
280	1871	54	94.40	325.	1970	37	100 00
281	1875	47	97.90	326.	1972	29	100.00
282	1877	52	94.20	327.	1974	40	90 00
283	1882	49	100.00	328.	1975	50	88.00
284	1889	35	100.00	329.	1979	42	92.90
285.	1893	41	100.00	330	1983	19	100.00
286	1896	50	98.00	331.	1987	21	95 20
287	1897	53	100,00	332.	1992	28	92.90
288	1898	50	100.00	333.	1994	22	95.50
289	1900	51	90.20	334.	1995	25	88 00
290	1901	32	100.00	335.	1997	24	29 20
291.	1903	58	100.00	336.	1998	18	94 40
292	1908	43	97.70	337.	2003	28	60 70
293	1910	43	93.00	338.	2009	29	65 .50
294.	1912	35	100.00	339.	2010	24	58.30
295	1915	46	100.00	340.	2011	23	8260
296.	1920	53	100.00	341.	2013	21	90.50
297.	1921	28	89.30	342.	2016	13	100.00
298	1923	50	98.00	343.	2017	15	100 00
299	1925	46	100.00	344.	2019	12	100 00
300	1926	33	81.80	345.	2020	13	100 00
301	1927	47	100.00	346	2022	29	82.80
302	1929	27	100.00	347.	2023	28	100.00
303.	1931	33	100.00	348.	2024	26	76.90
304	1933	43	95.40	349.	2028	13	92 30
305	1935	45	97.80	350.	2032	20	90.00
500 ,	. 555	73	37.00	555.	2002	-	20,00

1	2	3	4	1	2	3	4
351.	2035	29	79.30	396.	2150	36	86.10
352.	2039	23	87.00	397.	2153	44	9.1*
353.	2044	28	93.00	398.	2154	29	72.40
354 .	2045	29	96.60	399.	2155	27	81.50
355.	2049	25	100.00	400.	2158	29	89.70
356.	2050	27	88.90	401.	2164	30	93.30
357.	2051	21	100.00	402.	2169	33	90.90
358.	2053	22	100.00	403.	2170	37	81.10
359.	2054	21	95.20	404.	2173	46	65.20
360.	2057	15	46.70	405.	2174	43	88.40
361.	2059	26	84.60	406.	2178	13	76.90
362.	2060	16	100.00	407.	2184	45	48.90
363.	2063	16	100.00	408.	2187	43	69.80
364.	2064	19	68.40	409.	2192	56	94.60
365.	2067	18	77.80	410.	2196	37	81.10
366.	2068	19	89.50	411.	2203	46	80.40
367.	2070	22	77.30	412.	2205	38	76.30
368.	2073	24	100.00	413.	2208	48	64.60
369.	2076	27	100.00	414.	2209	43	76.70
370.	2077	13	84.60	415.	2210	41	61.00
371.	2083	18	100.00	416.	2211	45	82.20
372.	2084	28	96.40	417.	2213	30	93.30
373.	2085	29	82.80	418.	2216	36	75.00
374.	2086	33	84.90	419.	2218	39	33.30
375.	2088	29	100.00	420.	2223	40	55.00
376.	2092	29	55.20	421.	2224	40	90.00
377.	2096	26	100.00	422.	2226	44	93.20
378.	2097	28	100.00	423.	2230	40	20.00
379.	2098	28	78.60	424.	2231	41	14.60
380.	2101	27	100.00	425.	2233	48	12.50
381.	2103	28	60.70	426.	2235	47	78.70
382.	2106	26	84.60	427.	2236	46	84.80
383.	2110	27	92.60	428.	2238	37	86.50
384.	2112	11	45.50	429.	2239	44	93.20
385.	2114	30	100.00	430.	2241	31	96.78
386.	2118	38	100.00	431.	2246	39	76.90
387.	2121	11	100.00	432.	2247	36	91.70
388.	2122	23	78.30	433.	2248	42	92.90
389.	2124	16	87.50	434.	2250	38	92.10
390.	2126	40	90.00	435.	2252	35	65.70
391.	2130	39	74.40	436.	2253	35	100.00
392.	2133	44	70.50	437.	2255	41	90.20
393.	2136	40	47.50	438.	2257	35	94.30
394.	2137	28	67.90	439.	2260	39	89.70
395.	2142	42	90.50	440.	2262	37	100.00

1	2	3	4	1	2	3	4
441	2265	43	90.70	486.	2377	30	56 70
442.	2269	39	100.00	487.	2379	28	96 40
443	2273	36	88.90	488.	2380	28	100 00
444.	2277	31	100.00	489.	2381	24	100 00
445	2281	44	100.00	490.	2382	22	100.00
446.	2282	35	94.30	491.	2384	28	78 . 60
447	2286	49	95.90	492.	2385	32	100.00
448	2288	30	100.00	493.	2386	33	90 90
449	2290	31	100.00	494	2387	30	100 00
450.	2294	30	80.00	495	2389	34	97.10
451.	2299	33	84.90	496.	2390	26	96.10
452.	2300	28	71.40	497.	2391	31	100.00
453.	2302	27	70.40	498.	2396	30	100.00
454.	2305	-34	79.40	499.	2399	29	100.00
455.	2307	27	100.00	500.	2400	29	96.60
456.	2309	30	96.70	501.	2402	29	89.70
457	2313	29	62.10	502.	2404	32	96.90
458	2315	33	45.50	503.	2405	28	100.00
459	2316	19	84,20	504.	2407	32	90.60
460.	2317	2 6	96.10	505	2409	35	74.30
461	2319	27	96.30	506.	2412	33	97.00
462	2321	28	78.60	507.	2413	31	100.00
463	2324	23	100.00	508.	2415	37	94.60
464	2325	30	93.30	509.	2419	36	83 30
465	2326	30	100.00	510.	2420	22	100 00
466	2328	29	10000	511.	2421	38	97 40
467	2335	29	100 00	512.	2422	39	100.00
468	2338	29	89.70	513.	2423	39	92.30
469	2341	35	94 30	514	2424	35	100 00
470	2344	31	54.80	515.	2425	33	100 00
471	2345	30	80.00	516.	2426	3 8	94 70
472	2350	31	90.30	517.	2429	33	97 00
473	2351	23	9570	518.	2430	41	95 10
474	2352	27	88.90	519.	2431	44	100 00
475	2355	34	100.00	520	2435	27	66 70
476	2360	26	100.00	521.	2437	32	93 80
477	2361	34	97,10	522.	2439	44	95 40
478.	2362	31	80 .60	523.	2440	50	94 . 00
479	2363	27	92.60	524.	2441	45	95.60
480	2364	28	53.60	525.	2442	42	85 - 70
481	2365	26	65 .40	526.	2444	49	95.90
482	2366	32	100.00	527	2445	41	92 70
483.	2369	37	94.60	528.	2447	37	94 60
484	2372	32	100,00	529.	2448	36	86 10
485.	2376	50	2.0*	530.	2449	35	100.00
				1			_

1	2	3	4	1	2	3	4
531.	2451	44	100.00	576.	2552	30	83 30
532.	2454	41	100.00	577.	2554	31	80,70
533.	2457	34	100.00	578.	2557	27	88.90
534.	2459	37	91.90	579.	2560	30	93.30
535.	2460	31	100.00	580.	2562	29	82,80
536.	2461	33	100.00	581.	2564	28	46.40
537.	2463	35	97.10	582.	2569	28	28.60
538.	2464	37	100.00	583.	2571	24	95. 80
539.	2467	34	100.00	584.	2573	24	33.30
540.	2469	33	84.90	585.	2577	27	100.00
541.	2471	28	100.00	586.	2579	32	56.20
542.	2472	30	100.00	587.	2581	31	74.20
543.	2479	37	75.70	588.	2586	30	90.00
544. 545.	2481 2482	41 40	92.70	589. 590.	2587 2588	35 33	88.60
545. 546.	2482 2484	40 39	100.00 100.00	590. 591.	2588 2589	33 30	42 .40 66 .70
540. 547.	2484 2485	39 40	100.00	591.	2509 2591	30 30	73.30
547. 548.	2489	-35	100.00	593.	2594	27	70.40
549.	2493	23	100.00	594.	2595	27	44.40
550.	2494	20	100.00	595.	2599	25	84.00
551.	2496	27	100.00	596.	2602	32	93.80
552.	2499	25	100.00	597.	2603	45	15.60
553 .	2500	26	100.00	598.	2605	36	63.90
554.	2502	25	100.00	599.	2608	32	18.80
555.	2503	25	60.00	600.	2612	52	76.90
556.	2505	48	0.00*	601.	2613	29	79.30
557.	2506	23	78.30	602.	2617	31	90.30
558.	2508	30	100.00	603.	2619	26	96.10
559.	2514	43	100.00	604.	2621	32	84.40
560. 561.	2515 2518	39 23	100.00	605. 606.	2622 2624	32 33	87.50 88.80
562.	2522	23 35	78.30 100.00	607.	2625	26	38.50
563.	2526	26	34.60	608.	2626	32	28.10
564.	2529	30	73.30	609.	2627	27	55.60
565.	2530	22	100.00	610.	2628	28	50.00
566.	2536	26	100.00	611.	2629	28	82.10
567.	2537	27	100.00	612.	2630	27	100.00
568.	2538	29	38.00	613.	2631	27	100 .00
569.	2539	30	36.70	614.	2634	34	94.10
570.	2540	28	42.90	615.	2635	31	93.60
571.	2542	30	36.70	616.	2638	26	76 .90
572.	2543	29	86.20	617.	2639	27	81.50
573.	2546	25	88.00	618.	2641	31	90.30
574.	2549	31	38.70	619.	2642	30	70.00 74.20
575.	2550	29	48.30	620.	2645	31	74.20

;	2	3	4	1	2	3	4
621	2648	29	37.90	666.	2724	35	74 30
622	2651	35	77.10	667.	2725	36	94 .40
623	2652	34	55.80	668.	2726	38	73.70
624	2654	38	39,50	669.	2727	30	86 70
625	2656	33	84 . 80	670	2730	34	79 40
626	26 60	27	92.60	671.	2732	26	84 .60
627	2661	32	37.50	672	2733	34	82.30
628	26 62	40	52.50	673 .	2734	35	82 90
629 .	2664	36	6390	674.	2735	31	67.70
630	2666	30	73 30	675	2736	48	4 2*
631	2667	35	77.10	676.	2738	29	79 30
632	266 8	33	75.80	677.	2739	35	88 60
633	2670	27	66.70	678.	2740	40	70 00
634	2671	29	41.40	679.	2745	32	7500
635	2673	51	2,0*	680	2746	41	90 20
636	2676	37	94.60	681.	2748	36	47.20
637	2677	37	32.40	682.	2749	34	76 50
638 .	2679	27	7040	683.	2753	33	97 00
639	2680	30	90.00	684.	2755	32	93 80
640	2681	35	71.40	685.	2756	41	1950
641.	2682	66	9.10*	686	2757	38	84 20
642 .	2685	31	41.90	687.	2758	38	8680
643.	2 6 86	28	82.10	688.	2761	31	74 20
644.	26 88	31	48.40	689.	2763	67	13 4* 97 10
645.	2689	29	51.70	690.	2764	35	
646	2690	26	84 .60	691	2767	33	45 40
647	2691	33	36.40	692 693	2772 2775	32 38	90 60 65 80
648 649	2692 2693	23	73.90	694	2776	36 31	16 10
650	2693 2694	32 30	56 . 20 86 . 70	695	2777	25	28 00
651	2694 2698	40	90.00	696.	2780	29	79 30
652	2699	40 40	90.00 80.00	697.	2783	38	76 30
653	2701	31	67.70	698.	2785	32	68 70
654	2703	28	78,60	699.	2786	26	92 30
655	2705	29	65.50	700	2787	30	26 70
656	2707	25	8800	701	2789	40	80 00
657	2709	26	8080	702	2790	35	51 40
658	2711	36	100.00	703	2792	33	48 50
659	2714	30	83.30	704.	2793	28	71 40
660	2716	36	72 20	705	2795	40	40 00
66'	2717	26	69 20	706.	2797	40	55 00
662	2718	39	64.10	707	2799	32	65 60
663	2719	69	1 4*	708	2801	31	77 40
664	2721	36	75.00	709	2803	33	81 80
665	2722	35	94 30	710.	2804	27	44 40
,	C. LL	55	J= .50	1 ',''	230 1	-,	.

1	2	3	4	1	2	3	4
711.	2805	36	88.90	756.	2889	38	92 10
712.	2808	40	67.50	757.	2890	26	80 80
713.	2809	28	50.00	758.	2894	36	75 00
714.	2811	36	86.11	759.	2895	27	74 10
715.	2812	22	45.40	760.	2898	34	64 70
716.	2815	31	74.20	761.	2900	27	63.00
717.	2816	32	87.50	762.	2901	23	73.90
717.	2819	27	92.60	762.	2902	31	
719.	2820	43	81.40	763.	2902		96.80
719. 720.	2821	43 24	95.80	765.		36	94 40
					2907	25	80 00
721.	2823	34	94.10	766.	2909	30	43.30
722.	2824	34	67.60	767.	2912	34	44.10
723.	2827	35	74.30	768.	2913	44	54.50
724.	2828	36	77.80	769.	2930	28	100 00
725.	2829	30	70.00	770.	2931	30	93 30
726.	2831	21	85.70	771.	2941	29	86 20
727.	2832	28	82.10	772.	2949	28	89.30
728.	2833	36	77.80	773.	2964	34	97.10
729.	2834	33	48.50	774.	2969	26	100 00
730.	2836	35	94.30	775.	2970	24	87.50
731.	2839	30	66.70	776.	2974	66	1.5*
732.	2840	43	86.00	777.	2978	28	10000
733.	2841	36	72.20	778.	2985	33	97 00
734.	2844	35	85.70	779.	2993	31	54.80
735.	2846	20	85.00	780.	2998	27	88 90
736.	2848	23	95.60	781.	2999	29	75 . 90
737.	2849	26	96.10	782,	3008	56	3.6*
738.	2851	34	88.20	783.	3012	37	94 60
739.	2852	32	56.20	784.	3023	36	91 70
740.	2858	35	80.00	785.	3027	30	63.30
741.	2860	38	65.80	786.	3032	34	94,10
742.	2862	36	83.30	787.	3041	25	92.00
743.	2863	34	67.60	788.	3053	38	71.00
744.	2865	29	58.60	789.	3062	34	91 20
745.	2868	37	83.80	790.	3082	35	85 70
746.	2873	25	96.00	791.	3092	42	45 20
747.	2875	25	68.00	792.	3130	31	54 80
748.	2876	35	94.30	793.	3133	36	69 40
749.	2877	30	73.30	794.	3138	32	28 10
750.	2880	35	94.30	795.	3145	33	81.80
751.	2881	36	50.00	796.	3146	38	81 60
752.	2883	34	70.60	797.	3181	31	16 10
753.	2884	34	85.30	798.	3183	33	84 80
754.	2886	38	31.60	799.	3185	38	57,90
755.	2888	28	100.00	800.	3187	31	12.90
	2000			1			-

1	2	3	4	1	2	3	4
801 802 803 804 805 806 807 808 810 811 812 813 814 815 816 817 818 820 821 822 823 824 825 826 827 828 829 831 832 833 834 835 836 837 838 838 839 839 839 839 839 839 839 839	3197 3208 3259 3268 3273 3278 3284 3298 3317 3318 3323 3327 3329 3341 3352 3359 3365 3367 3370 3386 3418 3424 3430 3431 3435 3498 3498 3509 3513 3599 3513 3599 3513 3599 3513 3599 3513 3599 3599	31 29 80 29 35 34 35 34 38 36 25 24 36 36 36 36 37 22 33 36 36 37 22 33 36 36 37 27 28 38 39 30 30 30 30 30 30 30 30 30 30 30 30 30	29.00 93.10 3.7* 89.60 40.00 94.10 94.30 91.40 95.10 73.70 97.10 36.80 30.00 91.70 94.10 83.30 7.0* 80.00 69.40 100.00 97.10 31.00 69.40 100.00 97.10 31.00 69.40 100.00 97.10 91.70	846. 847. 848. 849. 850. 851. 852. 853. 854. 855. 856. 867. 868. 867. 868. 869. 870. 871. 872. 873. 874. 875. 876. 877. 878. 879. 880. 881. 882. 883. 884. 885. 886. 887. 888. 889. 889. 889.	3597 3600 3643 3651 3652 3699 3704 3708 3719 3725 3730 3735 3737 3747 3748 3747 3748 3749 3751 3753 3755 3757 3758 3757 3758 3759 3773 3776 3781 3792 3793 3793 3799 3801 3816 3816 3817 3819 3821 3840 3846 3855 3858 3861 3863	28 35 29 33 29 31 25 33 34 36 22 30 31 64 30 34 36 27 31 32 33 34 37 31 25 32 33 34 36 27 31 32 33 34 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	17 90 94 30 76 00 79 30 93 90 17 24 93 50 88 00 78 80 88 20 86 50 34 60 77 30 23 30 100 00 10 60 100 00 1 6* 88 90 87 10 10 70 60 100 00 1 6* 88 90 87 10 97 30 97 30 97 30 98 70 99 30 90 10 8* 100 00 90 90 11 3* 73 90

				r			
1	2	3	4	1	2	3	4
891.	3867	59	23.70*	936.	4165	49	16 30
892.	3868	69	0.00*	937	4168	86	2 30
893.	3869	28	35.70	938.	4174	43	95 30
894 .	3891	67	300*	939。	4176	29	86 20
895 .	3899	37	2.70*	940.	4180	36	58 30
896.	3904	27	25.90	941.	4182	26	84 60
897.	3906	32	50.00	942.	4186	40	60.00
898.	3912	34	23.50	943.	4193	33	6970
899	3914	33	4240	944.	4196	43	81 40
900.	3920	31	64.50	945.	4199	31	74 20
901.	3923	31	61.30	946.	4213	36	61,10
902. 903.	3927 3937	31	35.50	947. 948.	4220 4221	30 35	100.00
903	3937 3945	64 60	0.00* 11.70	948. 949.	4221 4224	35 34	65 70 82.30
905.	3951	26	84,60	950	4229	21	9520
906.	3953	34	88.20	951	4231	11	3640
907.	3964	26	15.40	952.	4234	33	60.60
908.	3971	23	43.50	953	4236	33	90 90
909.	3979	29	79.30	954.	4240	31	100.00
910.	3982	28	89.30	955.	4245	28	71 40
911.	3990	44	9770	956.	4255	26	84 .60
912	3997	29	96.60	957.	4260	30	90.00
913.	4008	28	64.30	958.	4266	32	90.60
914.	4017	12	41 70	959.	4286	28	78.60
915.	4023	23	78 ., 30	960	4290	31	80 .60
916.	4024	31	38.70	961.	4292	33	81 00
917.	4043	29	62.10	962.	4295	31	83 90
918.	4057	25	60.00	963	4314	29	72 40 71 40
919. 920.	4063	33	75.70	964 . 965 .	4317 4326	35 29	86.20
920. 921.	4074 4076	23 42	87.00 83.30	965. 966.	4326 4328	29 26	84 .60
922.	4076	33	93.90	967.	4333	36	69.40
923.	4097	28	60.70	968.	4340	26	96.10
924.	4101	38	39.50	969.	4344	23	100 00
925.	4104	38	89.50	970.	4360	26	100.00
926	4113	34	47.10	971.	4367	27	96.30
927.	4125	28	78.60	972.	4368	31	100 00
92 8.	4126	32	90.60	973.	4379	29	65 50
929.	4127	36	83.30	974。	4380	31	100.00
930 .	4129	34	79.40	975.	9382	20	95 00
931.	4132	29	13.80	976.	4396	2 6	69 20
932.	4135	71	1 .40*	977.	4404	55	41 80*
933.	4138	32	28.10	978.	4412	29	100 00
934.	4141	67	1.50*	979.	4414	28	100.00
935	4142	38	50.00	980	4423	26	100 00
				1			

1	2	3	4	1	2	3	4
981	4509	30	90.00	1026.	4851	30	93.30
982 ,	4523	18	83.30	1027.	4852	32	90.60
983	4526	30	100.00	1028.	4856	33	100.00
984	4533	27	37.00	1029.	4865	19	94.70
985	4536	22	72 . 70	1030.	4882	56	0 00*
9 8 6 .	4567	10	10000	1031.	4885	33	75 .80
9 87	4595	22	59 10	1032.	4886	32	56 20
988	4619	23	95.60	1033.	4890	39	87.20
989	4638	26	8080	1034 .	4896	36	69 40
990	4640	30	86.70	1035.	4899	34	82.30
991	4653	30	86 70	1036.	4905	30	70 00
992	4665	31	8710	1037.	4919	24	58 30
993.	4673	33	10000	1038.	4928	19	100.00
994	4674	29	100.00	1039.	4955	27	11.10
995	4691	28	10000	1040.	4961	25	52.00
996	4692	26	96 . 10	1041.	4969	33	63 60
997	4697	33	27.30	1042.	4975	33	18.20
998	4698	28	42.90	1043.	4999	25	72 00
999 .	4699	61	0.00*	1044.	5006	22	81.80
000	4711	26	96.10	1045.	5010	10	50.00
001	4721	33	100.00	1046.	5011	10	100.00
002	4741	29	100.00	1047.	5020	11	90.90
003	4744	16	93.70	1048.	5044	41	21.9*
004	4746	31	71.00	1049.	5099	30	63.30
005	4752	50	4.0*	1050	5101	24	37 50
006	4756	35	100.00	1051.	5107	27	63 00
007	4762	30	83 30	1052	5130	32	25 00
800	4765	31	54 .80	1053.	5142	28	96.40
009	4768	28	8930	1054.	5444	35	62 90
010	4769	30	100.00	1055.	5450	60	3.3*
011	4779	25	100 00	1056.	5452	33	24.20
012	4780	32	93.70	1057.	5454	25	76.00
013	4782	30	100.00	1058.	5455	25	92.00
014	4783	32	100.00	1059.	5456	34	64.70
015	4784	29	82.80	1060.	5457	33	87.90
016	4785	35	94 .30	1061	5462	19	31 60
017	4788	32	96.90	1062.	5463	25	72 .00
018	4796	30	96.70	1063.	5464	24	58 30
019	4801	31	96.80	1064	5468	32	78 10
020	4804	27	5930	1065	5470	30	80 00
020 021	4804	25	9200	1066	5486	30	90 00
055	4809 4814	28 28	67.90	1067	5487	38	73 70
023	4818	29	93.10	1068	5489	30	96.70
023	4832	29 25	9200	1069.	5499	35	42.90
024 025	4832 4839	25 31		1009.	5506	29	44 80
U C D	4039	31	96 ,80	10/0.	3300	63	77 00

1	2	3	4	1	2	3	4
1071	5511	29	69.00	1116.	6798	28	96 40
1072.	5516	27	96.30	1117.	6799	29	100.00
1073.	5528	32	87 50	1118.	6805	28	100 00
1074	5541	21	42.90	1119	6808	68	51.5*
1075.	5542	21	66.70	1120	6815	31	100.00
1076.	5543	19	36.80	1121.	6861	35	17 10
1077.	5544	24	66.70	1122.	6865	55	3.6
1078.	5545	17	52.90	1123.	6867	36	100.00
1079.	5547	26	76.90	1124.	6868	30	90.00
1080	5549	24	95.80	1125.	6871	33	90.90
1081.	5551	25	84.00	1126.	6876	34	91.20
1082.	5558	26	100.00	1127.	6878	33	48 50
1083	5560	34	79.40	1128.	6884	23	26 10
1084.	5575	30	76.70	1129	6885	24	91 70
1085.	5579	26	53.80	1130,	6891	33	97.00
1086.	5584	32	65.60	1131.	6896	33	30 .30
1087.	5591	28	57.10	1132.	6902	34	100,00
1088.	5601	35	68.60	1133.	6914	30	86.70
1089.	5612	25	92.00	1134.	6917	26	80,80
1090.	5616	23	91.30	1135.	6919	26	73.10
1091.	5618	28	85.70	1136.	6924	27	96.30
1092.	5639	35	71.40	1137.	6930	29	93 10
1093.	5642	31	54.80	1138.	6932	31	93.50
1094.	56 7 5	35	37.10	1139.	6936	27	92.60
1095.	5723	38	23.70	1140.	6944	30	43.30
1096.	5762	38	28.90	1141.	6946	32	65.60
1097.	5774	38	18.40	1142.	6951	31	12.90
1098	5800	31	100.00	1143.	6952	30	6 70
1099.	5802	24	25.00	1144.	6953	58	8.6*
1100.	5804	44	97.70	1145	6954	28	89 30
1101	5823	31	100.00	1146.	6955	26	100,00
1102.	5838	28	100.00	1147.	6956	53	5.7*
1103.	5860	65	4.6*	1148.	6958	29	96 . 5 0
1104	5886	38	81.60	1149.	6959	30	66 70
1105	5893	29	55 . 20	1150.	6961	32	59 40
1106.	5904	24	20.80	1151.	6962	16	75.00
1107.	5906	37	100.00	1152.	6963	37	54 00
1108.	5909	29	69.00	1153.	6970	27	70 40
1109.	5919	30	50.00	1154	6973	29	65 50
1110.	5925	38	9470	1155.	6974	59	0.00*
1111.	5939	24	54.20	1156.	6975	22	81 .80
1112	59 50	28	78.60	1157.	6979	13	61 80
1113.	5964	26	80.80	1158.	6982	27	77.80
1114.	6770	34	29.40	1159.	6984	27	59,30
1115.	6773	27	40.70	1160.	6985	13	9 2 . 3 0
				1			

1	2	3	4	1	2	3	4
1161.	6991	24	95.80	1206.	7117	21	76.20
1162.	6992	28	100.00	1207.	7120	20	60.00
1163.	6994	33	66.70	1208.	7122	32	100.00
1164.	6996	16	100.00	1209.	7123	25	100.00
1165.	6997	30	83.30	1210.	7124	25	48.00
1166	6999	37	94.60	1211.	7125	23	78.30
1167.	7000	35	88.60	1212.	7128	19	78.90
1168.	7001	21	47.60	1213.	7129	25	92.00
1169.	7002	37	48.60	1214.	7130	24	83.30
1170. 1171.	7003	35	68.60	1215.	7131	20	75.00
	7004 7005	33 44	97.00	1216. 1217.	7134	19	100.00
1172 1173	7005	29	86.40 13.80	1217.	71 35 71 36	28 31	96.40 100.00
1174.	7010	37	16.20	1210.	7136 7138	41	85.40
1175	7011	31	58.10	1220.	7138	33	93.90
1176	7012	36	36.10	1221.	7140	25	100.00
1177.	7013	39	20.50	1222.	7141	40	17 50
1178.	7014	38	57.90	1223.	7142	28	82.10
1179	7016	37	73.00	1224.	7143	16	93.70
1180.	7017	30	93.30	1225.	7144	19	89.50
1181.	7021	27	100.00	1226.	7145	30	76.70
1182.	7025	24	95.80	1227.	7146	40	82.50
1183	7028	16	81.20	1228.	7147	36	88.90
1184	7038	25	88.00	1229.	7148	36	97.22
1185	7044	21	95.20	1230.	7149	39	82 . 00
1186	7052	19	31.60	1231.	7150	35	100.00
1187。	7054	31	38.70	1232.	7151	34	5.90
1188	7055	37	27.00	1233.	7152	24	100.00
1189	7057	42	0.00*	1234.	7154	22	95 .40
1190	7059	32	46.90	1235.	7155	30	90:00
1191	7065	27	3.70	1236.	7156 7158	30 29	83 / 30 85 / 20
1192 1193	7067	32	100.00	1237. 1238.	7156	29	82 ₋ 80
1194	7073 7079	40 16	47.50 100.00	1239.	7160	24	83 30
1195	7079 7094	31	48.40	1239.	7182	24	0 00
1196	7094	29	17.20	1241.	7185	18	0.00
1197	7100	29	72.40	1242	7186	27	74 10
1198	7102	32	31.20	1243.	7187	24	83.30
1199	7104	26	61.50	1244.	7189	29	96.50
1200.	7107	27	74.10	1245	7191	20	85 00
1201	7108	27	59.30	1246.	7192	25	88 00
1202	7110	28	71.40	1247.	7195	30	46 . 70
1203	7112	30	93.30	1248.	7196	19	0.00
1204	7114	27	96.30	1249.	7197	37	34.80*
1205.	7115	30	66.70	1250.	7198	53	57.50*
				1			

1	2	3	4	1	2	3	4
1251.	7199	44	34.10	1296.	7296	25	48.00
1252	7200	51	1.80*	1297.	7297	29	93 10
1253	7201	18	72,20	1298	7302	28	75 0 0
1254.	7205	36	75 00	1299	7303	25	56 OO
1255.	7206	20	45.00	1 300 。	7306	23	39 10
1256	7208	32	21.90	1301	7310	28	89.30
1257.	7209	37	78.40	1302。	7312	16	93 70
1258.	7211	31	71.00	1303.	7319	28	71 4 0
1259.	7212	26	88.50	1304	7320	26	57 . 70
1260.	7214	24	83.30	1305.	7321	24	10000
1261.	7215	42	92.90	1306.	7322	28	500 0
262.	7219	47	6170	1307.	73 23	28	75.0 0
1263	7220	17	76.50	1308.	7325	22	27.30
1264.	7221	50	54.00	1309.	7399	21	19 00
1265.	7222	32	75.00	1310.	7475	15	100.00
1266.	7223	30	33.30	1311.	7480	23	82.6 0
1267.	7228	31	54.80	1312	7483	16	0.00
1268.	7231	27	74,10	1313.	7488	24	91.7 0
1269.	7232	41	0.00	1314.	7489	22	59 .10
1270.	7233	21	57.10	1315.	7522	32	46 . 9 0
1271	7234	40	95.00	1316.	7523	25	24 .0 0
1272.	7235	35	85.70	1317.	7529	27	29 .60
1273.	7236	35	60.00	1318.	7530	34	50 , 0 0
1274.	7237	39	25.60	1319.	7532	28	60 . 7 0
1275.	7238	30	56.70	1320.	7533	23	0 , 0 0
1276	7245	36	58.30	1321	7535	22	95 40
1277.	7246	25	32.00	1322	7536	30	93.30
1278.	7247	35	28.60	1323	7553	28	75 0 0
1279	7250	32	40.60	1324.	7554	26	50 ,00
1280.	7254	27	25.90	1325	7555	19	73.7 0
1281.	7257	13	46.10	1326.	7556	27	40 7 0
1282.	7259	23	3480	1327	7557	27	70.4 0
1283.	7261	19	68 40	1328	7559	23	95 6 0
1284	7263	24	62.50	1329.	7560	24	37 .50
1285.	7269	45	4.40	1330.	7561	23	47 80
1286	7270	25	4800	1331.	7562	22	40 9 0
1287	7273	23	4.30	1332.	7565	20	90 0 0
1288.	7276	26	42.30	1333,	7616	24	95 80
1289.	7283	26	30.80	1334.	7618	27	96 30
1290	7286	28	96.40	1335.	7619	31	100 00
1291.	7289	28	92.80	1336.	7623	25	8 0 0
1292	7290	27	5550	1337.	7624	19	000
1293.	7291	20	35.00	1338.	7625	19	100 00
1294.	7293	30	90.00	1339	7626	25	92 00
1295	7295	24	41.70	1340.	7626	25	92 00

1	2	3	4	1	2	3	4
1341	7643	30	86.70	1386.	7703		
1341	7645 7645	22	95.40	1387.	7703 7704	33	78 . 80
1343	7646	26	65.40	1388.	7704 7705	34	85 30
1344	7657	22	0.00	1389.	7705 7706	36 34	22.20
1345	7658	26	7 6.9 0	1390.	7706 7707	3 4 32	35.30
1345.	7659	24	95.80	1390.	7707 7708	32 33	50 00 75 70
1347	7660	21	100.00	1391.	7708 7709	33 41	75 70 78.00
1348	7661	16	81.20	1392.	7710	36	69.40
1349	7662	24	79.20	1394.	7711	32	25 00
1350	7663	16	93.70	1395.	7712	17	70 60
1351	7665	26	100.00	1396.	7713	36	55.50
1352	7666	19	94,70	1397.	7715	19	31,60
1353	7667	24	20.80	1398.	7716	30	83.30
1354	7668	27	100.00	1399.	7717	40	70.00
1355	7669	21	14.30	1400.	7718	37	48.60
1356	7671	25	76.00	1401.	7719	35	68.60
1357	7672	28	0.00	1402	7720	27	63 00
1358	7673	25	92.00	1403.	7721	35	8280
1359	7674	27	59.20	1404.	7722	35	5430
1360	7675	30	86.70	1405.	7723	28	71.40
1361	7676	22	90.90	1406.	7724	46	76.10
1362	7677	24	87.50	1407.	7725	47	89.40
1363	7678	26	57.70	1408	7726	43	88.40
1364	7680	22	27 .30	1409.	7727	40	6250
1365.	7681	19	52.60	1410.	7728	35	42.80
1366	7682	34	88.20	1411.	7729	49	20.40
1367	7683	27	100.00	1412.	7730	43	60.50
1368	7684	30	100.00	1413.	7731	37	48.60
1369	7685	29	100,00	1414.	7732	42	83 30
1370	7686	30	96 . 7 0	1415.	7733	33	75 70
1371	⁷ 687	27	100.00	1416.	7734	27	70 4 0
1372	7688	26	96 .10	1417.	7735	30	50 00
1373	7689	25	100 .00	1418.	7736	39	61.50
1374	7691	23	69 , 6 0	1419.	7737	34	47.00
1375	7692	28	3 6 0	1420	7738	41	78 0 0
1376	7693	33	39.4 0	1421.	7739	44	38 60
1377	7694	35	22,80	1422.	7740	32	43.70
1378	7695	28	50.0 0	1423.	7741	37	35 10
1379	7696	28	78.6 0	1424	7742	16	31 20
1380	7697	29	41.40	1425	7743	27	96 30
1381	7698	27	37.00	1426.	7744	19	73 70
382	7699	21	85.70	1427	7745	33	54 50
1383	7700	22	81.80	1428.	7746	14	000
1384	7701	33	9.10	1429.	7747	23	47.80 95.60
1385	7702	32	34 .40	1430.	7748	23	90.00
				1			

1	2	3	4	1	2	3	4
1431.	7749	20	0.0	1447	7765	35	85.7
1432.	7750	16	93.7	1448	7766	41	87.8
1433.	7751	30	80.0	1449	7767	33	81.8
1434.	7752	29	75.9	1450	7768	29	75.9
1435.	7753	36	100.0	1451.	7769	21	95.2
1436.	7754	42	0.0	1452	7770	22	95.4
1437.	7755	26	96.1	1453.	7771	23	86.9
1438.	7756	39	74.3	1454.	7772	27	37.0
1439.	7757	41	100.0	1455.	7773	28	89.3
1440.	7758	45	100.0	1456.	7774	27	40 . 7
1441.	7 7 59	47	76.6	1457.	7775	16	62 . 5
1442.	7760	11	1000	1458	7776	19	100.0
1443.	7761	15	66.7	1459.	7777	27	70.4
1444.	7762	42	71 . 4	1460.	7778	20	100 0
1445.	7763	19	68 . 4	1461.	7779	27	96.3
1446.	7764	44	31.8	, 401.	,,,,	-,	JO . J
				<u> </u>			

^{*} Average of two tests.

APPENDIX-XLV

Screening of sterility mosaic resistant (SMR) germplasm selections against Phytophthora blight of pigeonpea (pot culture)

S1. No.	Pedigree	No. of plants tested	Percent blight
1	2	3	4
1.	ICP-504-1-4-S159	10	100.00
2.	-2828-1-5-S1 Q	10	100.00
3.	-3782-160 -3783-3-21-ISQB	10 10	100.00
4.	-4765-3-5S Q	15	100.00
5. 6.	-4765-3-55 w -4769-3-25 Q	15	0.00* 80.00
7.	-4866-1-6S 0	28	0.00*
8.	-5097-1-25 Q	10	60.00
9.	-5277-1-35 Q	9	22.20
10.	-5436-3-2S Q	10 ·	90.00
11.	-5467-1-1S Q	ii	72.70
12.	-5651-1-7SQ	10	70.00
13.	-5656-1-2S Q	21	0.00
14.	-5701-1-3S 0	10	90.00
15.	-5729-1-1S @	10	100.00
16.	-590 7-1-3 S Q	9	77.80
17.	-6831-1-2S @	10	100.00
18.	-6975-1-2S @	10	100.00
19.	-6997-139-12-1S Q B	10	100.00
20.	-7035-34-34-1SQB	10	100 00
21.	-7119-2-2-S4Q	10	100,00
22.	-7185-1-6S Q	20	30 . 00 *
23.	-7194-2-15 0	10	10.00 100.00
24.	-7196-3-7S Q	8 16	6 20*
25. 26.	-7197-3-S1 Q -7201-7-4S Q	10	100.00
27.	-7207-7-43 & -7217-7 - 25 &	10	100.00
28.	-7217-7-23 & -7232-2-45 Q	10	80,00
29.	-7233-3-2S Q	13	100,00
30.	-7234-6-4S Q	10	100.00
31.	-7237-2-1SQ	8	100.00
32.	-7239-3-1S Q	10	100,00
33.	-7240-7-1S 0	10	90.00
34.	-7246-2-8S 0	13	100.00
35.	-7248-9-4 S @	10	100 00
36.	-7249-1-4S }@	9	100.00
37.	-7250-3 -1 50	9	100.00

1	2	3	4
38.	ICP-7258-1-5S@	9	100.00
39.	-7282	11	100.00
40.	-7306-1-3SQ	10	100 00
41.	-7336-2-8S9	10	100 00
42	-7337-3-4S Q	10	100 00
43.	-7345-9-189	14	
	-7345-9-10W -7346-3-25W		100.00
44.		9	100.00
45.	-7349-9 -150	11	100.00
46	-7353-2-S4 9	10	100.00
47.	-7372-3-3SQ	9	100 00
48	-7378-2-4 S0	10	100,00
49 .	-7387-5-5S Q	10	100.00
50.	-7403-1-S1@	10	10000
51.	-7411-1-3S @	10	100 00
52.	-7414-1-4S Q	20	0.00*
53.	-7445-5-S2 Q	10	100 00
54.	-7501 <i>-</i> 2-4S ₽	10	100.00
55.	-7864-1 <i>-</i> 45 0	9	100.00
56.	-7867-1-5S @	10	100.00
57.	-7870-1-1S Q	10	100.00
58.	-7871-1-1SQ	9	100.00
59.	-7873-8-S1 Q	10	100.00
60.	-7874-6-3S Q	10	100.00
61.	-7875-1-5S Q	10	100.00
62	- 7878	10	100.00
63.	-7893-7S 9	10	100.00
64.	-7898-2-3S Q	10	100.00
65.	-7904-5-5SQ	10	100.00
66.	-7906-3-1S ®	10	100.00
	-7942-1-25 Q	10	100.00
67. 68.	-7942-1-25 8 -7983-1-65 9	9	100.00
		10	
69.	-7997-1-8S 0		100.00
70.	-7998-4-5S Q	10	100 00
71.	-8014-3-3S Q	9 7	100 00
72.	-8021-4-2SØ	, ,	100 00
73.	-8029-1-5S Q	10	100 00
74.	-8032-1-1S @	7	100.00
75.	-8033-2-1S @	9	100.00
76.	-8035-1-259	10	90 00
77.	-8036-13-5S Q	10	100.00
78.	-8038-2-3S Q	10	100.00
79 .	-8042-10-1S @	10	100 00
80.	-8051 -2 - 6S @	10	100.00
81.	-8057-3-3S Q	9	88 90

1	2	3	4
82 .	1CP-8058-3-1S@	10	100 00
83	-8061-4 - 85 0	9 .	100 00
84	-8063 <i>-</i> 5 <i>-</i> 3 SQ	10	100 00
85	-8067-1-1-1S Q	10	100.00
86	-8075-2-3S Q	9	100 00
87	-8084 - 7 - 1 S Q	10	100 00
88	-8093-2-1S 0	9	88.90
89	-8094-1-1S 9	10	100 00
90 -	-8101-5·1S@	24	0 00*
91	-8103-5-5S @	10	90 00
92	-8106 - 2-55 0	20	5.00*
93	-8111-3-3S @	8	12 50
94	-8113-1-3S Q	10	100.00
95 .	-8120-1-1S 0	15	6 70*
96	-8121-1-1S Q	11	100 00
97	-8123-2-4S 9	10	100 00
98	-8127-8-1S 9	27	0 00*
99	-8128 -1-4 5 0	10	90 00
100	-8130-5-3S @	10	100 00
101	-8132 - 2-35 0	22	0.00*
102	-8133 - 1- 4 5 @	9	100 00
103	-8134-2-3S @	9	88 90
104	-8136-1 -4 5@	8	100 00
105	-8137×3-1S 0	10	4000
106	-8138-3-3S @	8	100.00
107	-8139-3-1S 0	24	0.00*
108	-8140-3-1S 9	9	33 30
109	-8141-3-3S@	9	88 90
110	-8144-3-3SQ	29	6 90
117	-8146-1 - 55 0	9	100 . 00
115	-8147-1-250	21	0 00 *
113	-8151-7-3S 9	28	0.00*
114	-8160-1-55@	9	100.00
115	-8167-1-1S0	9	100 00
116	-8501 - 2150	10	100 00
117	Pant-B-76-5-1S@	9	88 90
	HV-3C (susceptible check)	27	85 20*

^{*} Average of two test results

APPENDIX-XLVI

Trip report of Dr. J. Kannaiyan

Visit to : Delhi

September 6 and 9, 1978 Dates

: 1. To study pigeonpea Phytophthora blight situation Purpose

2. To obtain Phytophthora isolates

Dr. J.S. Grewal, Sr. Pulse Pathologist, IARI Contact

Other persons met Dr. V.V. Chenulu, Head, Division of Mycology and

Plant Pathology, IARI; Dr. M. Pal and Dr. Kulshresht,

Pulse Pathology staff, IARI

Places visited IARI (Pulse Pathology Lab. and experimental plots)

Notes

Moderate incidence of Phytophthora blight was observed at a particular location of the IARI farm. It was in the same location that considerable blight disease was observed last year also.

The intensity of Phytophthora blight (as observed in an Agronomy trial) did not seem to differ between sole and mixed crops. However, variation in intensity was observed between different blocks in the same trial.

Diseased plant samples were collected and isolations were made at IARI itself.

Visit to Kanpur

September 7 and 8, 1978 Dates

: 1. To study the prevalence of pigeonpea Phytophthora Purpose

blight in and around Kanpur

2. To obtain *Phytophthora* isolates

3. To look at ICRISAT lines being grown in the

National Uniform Wilt Trial

: Drs. H.K. Saksena, Head, Department of Plant Contact

Pathology, and P. Shukla, Pulse Pathologist

Other persons met

: Dr. Laxman Singh, Director, Pulses; Dr. Mathai, Breeder; Mr. A.N. Mishra and Mr. R.R. Singh, Pulse Pathology staff and Mr. R.N. Gupta, Superintendent, Deeg Farm

Places visited

: C.S. Azad University of Agriculture and Technology, Kanpur; Directorate of Pulses, Kalyanpur and Deeg Farm

Notes

- 1. At Kanpur, a visit was made to the wilt sick plot for observing the National Uniform Wilt Trial where ICRISAT lines are also under test. In this plot, natural incidence of Phytophthora blight was about 10 percent. Diseased plant samples were collected and isolations were subsequently made of the pathogen in the laboratory.
- 2. At Kalyanpur, pigeonpea experimental plots were visited and Phytophthora blight was observed at two locations. The incidence was around 5 percent. A *Phytophthora* isolate was obtained from the diseased samples.
- At Deeg Farm, the blight incidence was much higher (50 percent) in Cv. T-21. Diseased samples were collected for isolation.

Conclusions

: In the places visited, the prevalence of pigeonpea Phytophthora blight could be seen both in sole and mixed crops. Isolates of *Phytophthora* were obtained from Delhi, Kanpur, Kalyanpur and Deeg.

Two possible testing locations for Phytophthora blight were identified; one at IARI, Delhi and the other at Deeg Farm, Kanpur.

APPENDIX - XLVII

Results of screening sterility mosaic resistant progenies (F₃ & F₄) in multiple disease nursery

S1. No.	Pedigree	No. of plants	Percent blight	Percent SM	No. of plants	Percent W:3+
1	2	3	4	5	6	7
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	ICP-7035-45-27-S2@ P1 C.NO-74360-F4B-S1@-VII -S2@-VIII -S4Q-VIII -S5Q-VIII -S6Q-VIII -S7Q-VIII -S8Q -S9Q-VII -S10Q-VIII -S12Q-VIII -S12Q-VIII	27 NDT 31 NDT 24 NDT 29 NDT 53 NDT 22 NDT 27 NDT 50 31 NDT 7 NDT 31 NDT 45 NDT 45 NDT 55 NDT 61	88.9 54.8 16.7 68.9 41.5 54.5 70.0 51.6 71.4 32.2 24.4 14.5 32.8 45.4	0.0 0.0 0.0 0.0 0.0 6.4 0.0 0.0 0.0 0.0 4.8 0.0 0.0	3 15 22 9 35 11 22 16 18 4 21 34 47 18	33.3 80.0 27.3 11.4 40.0 18.2 22.7 25.0 72.2 25.0 57.1 79.4 78.7 43.9 77.4
16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33.	-S15Q-VIII -S16Q-VIII -S17Q-VIII -S17Q-VIII -S19Q-VIII -S19Q-VIII -S20Q-VII -S21Q-VIII -S22Q-VIII -S25Q-VIII -S25Q-VIII -S27Q-VIII -S29Q-VII -S31Q-VII -S31Q-VIII -S33Q-VIII -S34Q-VII	NDT 43 NDT 50 NDT 30 NDT 29 NDT 18 NDT 38 NDT 40 NDT 32 NDT 40 NDT 36 NDT 48 NDT 36 NDT 48 NDT 31 NDT 56 NDT 44 NDT 27 NDT 40 NDT 27 NDT 40 NDT 27 NDT 40 NDT 54 NDT 28	30.2 36.0 60.0 51.7 38.9 47.4 27.5 43.7 47.5 50.0 33.3 10.5 71.0 85.7 25.0 35.0 74.1 32.5 74.1 64.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	31 32 12 15 11 22 30 18 23 18 33 37 12 8 33 30 8 28 14	87.1 90.6 58.3 80.0 72.7 13.6 23.3 50.0 60.9 55.6 21.2 27.4 16.7 25.0 42.8 71.4 50.6 80.8
		NDT 28 NDT 54 NDT 35				5

1	2	3	4	5	6	7
39 .	C.NO-74360-F4B-S38Q-VIII NDT	22	0.0	4.2	24	62.5
40.	-S39Q-VIII NDT	40	37.5	0.0	25	96 0
41	-S40@-VIII NDT	43	44.2	0.0	27	70.4
42.	-S41 Ω -S42 Q	75	38.7	0.0	46	97.8
43. 44.	-542₪ -S43₽	30 44	83.3	0.0	8	62.5
44. 45.	-343₩ -S44₩-VIII NDT	44 47	84.1 87.2	0.0	9	77.8
46.	-3448-VIII NDT	36	30.5	16.7 0.0	6 25	66 7 84 0
47.	-S46Q-VII NDT	19	73.7	0.0	25 5	100.0
48.	-S479-VII NDT	44	38.0	0.0	32	84.4
49.	-S48Q-VIII NDT	29	13.8	0.0	25	96.0
50。	-S49Q-VIII NDT	30	86.7	0.0	4	100.0
51.	-S50 Q	49	57.1	0.0	21	76.2
52	-S5194-VII NDT	44	18.2	0.0	36	61 1
53.	-S520-VII NDT	24	25.0	0.0	18	83.3
54.	-S53₽-VIII NDT	57	10.5	0.0	54	35 2
55 .	-S540-VIII NDT	33	54.5	0.0	15	53.3
56	-S55@-VIII NDT	48	39.6	0.0	29 26	65.5
57。 58。	-S569-VIII NDT -S570-VII NDT	49 38	51.0 18.4	4.2 0.0	26 31	84 .6 77 .4
59.	-3578-VII NDT -S58Q-VII NDT	36 4 8	58.3	0.0	21	66.7
60	-S59Q-VII NDT	39	74.3	0.0	12	75 . O
61.	-S60@-VII NDT	49	49.0	0.0	25	100.0
62	-S610-VII NDT	33	24.2	0.0	25	100.0
63.	-S62Q-VII NDT	27	14.8	0.0	24	75.0
64	-S63Q-VII NDT	43	11.6	00	30	89.5
65 a	-S64@-VII NDT	36	44.4	0.0	20	90.0
66 .	-S65Q-VII NDT	25	0.0	0.0	25	40.0
67.	-S66Q-VII NDT	49	28.6	0.0	35	60.0
68	-S67Q-VII NDT	42	42.8	0.0	29	48.3
69	-S68Q-VII NDT	54	20.4 37.2	0.0	45 32	22 2 93 7
70 , 71 .	-S69@-VII NDT -S70@-VII NDT	51 38	50.0	0.0	32 22	36.4
72.	-370M-VII NDI -S71M	53	52.8	0.0	25	72.0
73.	-571 2 -572 2	57	15.8	0.0	48	81.2
74.	-572 w -573 9	27	25.9	0.0	22	68.2
75	-S74 2	65	56.9	0.0	31	51.6
76.	-S75 2	36	44.4	0.0	22	31.8
77.	-S76 Q	18	83.3	0.0	5	0.0
78	-S77 Q	33	69.7	0.0	11	0 0
79	-S78 9	48	33.3	00	35	62.8
80.	-S79 9	28	64.3	0.0	10	80 .0
81.	-\$80₩	47	23,4	0.0	39	48.7
82 ,	-581@	36	36.1	0.0	32	56,2

1	2	3	4	5	6	7
83.,	C.NO-74360-F4B-S820	46	63.0	0.0	29	69.0
84。	-\$83₽	41	31.7	3.7	34	70.6
۶ 5 ۵	-\$84₽	19	15.8	0.0	16	93.7
86 .	-\$85₽	43	16.3	0.0	36	55 5
87.	-\$86₩	46	34 . 8	0.0	31	83.9
88.	-\$87@	61	44.3	0.0	35	57.1
89.	-\$88@	27	33.3	0.0	20	65.0
90.	-\$89⋒	11	18.2	0.0	9 32	77.8
91.	-S90 Q	44	27.3	0.0		96.9
92.	-S91@	21	9.5	0.0	20 21	80.0 57.1
93.	-S92Ω -S93Ω	41 20	65.8 40.0	0.0	12	41.7
94.	-594 <u>0</u>	47	25.5	0.0	36	75.0
95.	-S95@	35	37.1	0.0	22	86.4
96.	-S96 9	45	37.8	0.0	29	24.1
97. 98.	-590 a -597 a	41	39.0	0.0	29	55.2
99.	-S98 9	43	51.2	0.0	23	78.3
100.	-S99 9	41	31.7	0.0	31	58.1
101.	-S100@	34	50.0	0.0	18	55.5
102.	-S101 Q	58	63.8	0.0	22	27.3
103.	-S102 9	41	31.7	0.0	31	22.6
104.	-S103 Q	47	59.6	0.0	20	40.0
105.	-S104 ₽	19	57.9	0.0	8	25.0
106.	-S105 @	50	56.0	0.0	33	63.6
107.	-S106 ₽	54	48.2	0.0	38	84.2
108.	-S107@	12	83.3	0.0	3	33.3
109.	-S108 Q	23	261	0.0	18	38.9
110.	-S109@	50	36.0	0.0	34	26.5
111.	-S110 2	37	29.7	0.0	26	80.8
112.	-S111 <u>0</u>	35	40.0	0.0	22	45 75 .0
113.	-S112Q	47 53	42.5	0.0	28 40	62.5
114.	-S113Q	36	24.5 30.5	0.0 0.0	25	40.0
115.	-S1149	27	30.5	0.0	27	44.4
116.	-S115Ω -S116Ω	34	50.0	0.0	19	31.6
117.	-S117 0	37	37.8	0.0	15	40.0
118. 119.	-S117@ -S118@	41	68.3	0.0	14	50.0
120.	-S119 2	54	51.8	0.0	28	78.6
121.	-S120 2	45	15.5	0.0	42	35.7
122.	-S121 Q	40	32.5	0.0	33	18.2
123.	-S122 9	40	15.0	0.0	38	68.4
124.	-S123 2	41	39.0	0.0	27	18,5
125.	-S124@	57	38.6	0.0	37	32.4
126.	-S125@	28	50.0	0.0	20	75.0
127.	-S126@	36	75.0	0.0	9	44.4
	*					

128. C NO-74360-F4B-S1279 36	1	2	3	4	5	6	7
129			36	94.4	0.0	2	100.0
130.				70.6	0.0		
132. -5131@ 50 40.0 0.0 32 64.0 133. -5132@ 42 61.9 0.0 16 62.5 134. -5133@ 34 61.8 0.0 19 36.8 135. -5134@ 34 35.3 0.0 23 30.4 136. -5136@ 32 28.1 0.0 29 11.1 137. -5136@ 32 28.1 0.0 23 26.1 138. -5137@ 43 48.8 0.0 22 27.3 139. -5138@ 28 64.3 0.0 10 60.0 140. -5139@ 0 0.0 10.0 0 0.0 141. -5140@ 45 37.8 0.0 28 35.7 142. -5141@ 44 38.6 0.0 27 74.1 143. -5142@ 27 18.5 0.0 25 36.0 <tr< td=""><td></td><td></td><td></td><td>8.3</td><td>0.0</td><td>12</td><td>16.7</td></tr<>				8.3	0.0	12	16.7
132			9	22.2	0.0	9	
133		-51310	50	40.0	0.0	32	
134. -51330 34 61.8 0.0 19 36.8 135. -51340 34 35.3 0.0 23 30.4 136. -51350 16 43.7 70.0 9 11 137. -51360 32 28.1 0.0 22 27.3 138. -51370 43 48.8 0.0 22 27.3 139. -51380 28 64.3 0.0 10 60 0 140. -51390 0 0 0 10.0 0 0 0 141. -51400 45 37.8 0.0 28 35.7 142. -51410 44 38.6 0.0 27 74.1 143. -51420 27 18.5 0.0 25 36.0 144. -51430 29 82.7 0 0 7 28.6 145. -51430 29 82.7 0 0 7 28.6 145. -51450 30 90.0		-S132 0	42	61.9	0 0		
135			34	61.8			
136. -S1360 16 43.7 0.0 9 11 1 137. -S1360 32 28.1 0 0 23 26.1 138. -S1370 43 48.8 0.0 22 27.3 139. -S1380 28 64.3 0.0 10 60 0 140. -S1399 0 0 10.0 0 0.0 141. -S1400 45 37.8 0.0 28 35.7 142. -S1419 44 38.6 0.0 27 74.1 143. -S1420 27 18.5 0.0 25 36.0 144. -S1439 29 82.7 0.0 7 28.6 145. -S1450 30 90.0 0.0 39 94.9 146. -S1450 30 90.0 0.0 37 67.6 148. -S1470 17 76.5 0.0 5 40.0 149. -S1480 26 46.1 0.0 14 78.6	135.	-S134 9	34				
137. -\$136@ 32 28.1 0 0 23 26.1 138. -\$137@ 43 48.8 0.0 22 27.3 140. -\$138@ 28 64.3 0.0 10 60 0 140. -\$139@ 0 0 0 10 0 0 0 141. -\$140@ 45 37.8 0.0 28 35.7 142. -\$141@ 44 38.6 0.0 27 74.1 143. -\$142@ 27 18.5 0.0 25 36.0 144. -\$143@ 29 82.7 0.0 7 28.6 145. -\$144@ 43 9.3 0.0 39 94.9 146. -\$145@ 48 29.2 0.0 37 67.6 147. -\$146@ 48 29.2 0.0 37 67.6 148. -\$147@ 17 76.5 0.0 3 100.0 149. -\$148@ 26 46.1 0.0 34 <td>136.</td> <td>-S135Q</td> <td>16</td> <td></td> <td></td> <td></td> <td></td>	136.	-S135 Q	16				
138. -\$1370 43 48.8 0.0 22 27.3 139. -\$1380 28 64.3 0.0 10 60.0 140. -\$1390 0 0.0 10.0 0 0.0 141. -\$1400 45 37.8 0.0 28 35.7 142. -\$1410 44 38.6 0.0 27 74.1 143. -\$1420 27 18.5 0.0 25 36.0 144. -\$1430 29 82.7 0.0 7 28.6 145. -\$1440 43 9.3 0.0 39 94.9 146. -\$1430 30 90.0 0.0 3 100.0 147. -\$1460 48 29.2 0.0 37 67.6 148. -\$1470 17 76.5 0.0 5 40.0 149. -\$1480 26 46.1 0.0 14 78.6 \$50. -\$1490 54 63.0 0.0 34 44.1	137.	-S136 Q					
139. -\$1380 28 64.3 0.0 10 60.0 140. -\$1390 0 0.0 10.0 0 0.0 141. -\$1400 45 37.8 0.0 28 35.7 142. -\$1410 44 38.6 0.0 27 74.1 143. -\$1420 27 18.5 0.0 25 36.0 144. -\$1430 29 82.7 0.0 7 28.6 145. -\$1440 43 9.3 0.0 39 94.9 146. -\$1450 30 90.0 0.0 3 100.0 147. -\$1460 48 29.2 0.0 37 67.6 148. -\$1470 17 76.5 0.0 5 40.0 149. -\$1480 26 46.1 0.0 14 78.6 150. -\$1490 54 63.0 0.0 34 44.1 151. -\$1500 39 25.6 0.0 33 33.3	138.	-S1379					
140. -\$1390 0 0 10.0 0 0.0 141. -\$1409 45 37.8 0.0 28 35.7 142. -\$1410 44 38.6 0.0 27 74.1 143. -\$1420 27 18.5 0.0 25 36.0 144. -\$1430 29 82.7 0.0 7 28.6 0.0 145. -\$1440 43 9.3 0.0 39 94.9 146. -\$1450 30 90.0 0.0 39 94.9 146. -\$1450 30 90.0 0.0 37 67.6 148. -\$1470 17 76.5 0.0 5 40.0 148. -\$1470 17 76.5 0.0 37 67.6 149. -\$1480 26 46.1 0.0 14 78.6 150. -\$1490 54 63.0 0.0 34 44.1 151. -\$1500 39 25.6 0.0 33 33.3 <							
141 -S1400 45 37.8 0.0 28 35.7 142 -S1410 44 38.6 0.0 27 74.1 143 -S1420 27 18.5 0.0 25 36.0 144 -S1430 29 82.7 0.0 7 28.6 145 -S1440 43 9.3 0.0 39 94.9 146 -S1450 30 90.0 0.0 3 100.0 147 -S1460 48 29.2 0.0 37 67.6 148 -S1470 17 76.5 0.0 5 40.0 149 -S1480 26 46.1 0.0 14 78.6 150 -S1490 54 63.0 0.0 34 44.1 151 -S1500 39 25.6 0.0 33 33.3 152 -S1510 38 26.3 0.0 29 93.1 153 -S1520 49 24.5 0.0 37 70.							
142. -\$141@ 44 38.6 0.0 27 74.1 143. -\$142@ 27 18.5 0.0 25 36.0 144. -\$143@ 29 82.7 0.0 7 28.6 145. -\$144@ 43 9.3 0.0 39 94.9 146. -\$145@ 30 90.0 0.0 3 100.0 147. -\$146@ 48 29.2 0.0 37 67.6 148. -\$147@ 17 76.5 0.0 5 40.0 149. -\$148@ 26 46.1 0.0 14 78.6 150. -\$149@ 54 63.0 0.0 34 44.1 151. -\$150@ 39 25.6 0.0 33 33.3 152. -\$151@ 38 26.3 0.0 29 93.1 153. -\$152@ 49 24.5 0.0 37 70.3 154. -\$153@ 43 39.5 0.0 28 92.8	141			37.8			
143.							
144. -\$143@ 29 82.7 0 0 7 28 6 145. -\$144@ 43 9.3 0.0 39 94.9 146. -\$145@ 30 90.0 0.0 3 100.0 147. -\$146@ 48 29.2 0.0 37 67 6 148. -\$147@ 17 76.5 0 0 5 40.0 149. -\$148@ 26 46.1 0.0 14 78.6 150. -\$149@ 54 63.0 0.0 34 44.1 151. -\$150@ 39 25.6 0.0 33 33.3 152. -\$151@ 38 26.3 0.0 29 93.1 153. -\$152@ 49 24.5 0 37 70.3 154. -\$153@ 43 39.5 0.0 28 92.8 155. -\$154@ 41 68.3 0.0 13 100.0 156. -\$159@ 43 39.5 0.0 28 92.8 157. -							
145. -S1440 43 9.3 0.0 39 94.9 146. -S1450 30 90.0 0.0 3 100.0 147. -S1460 48 29.2 0.0 37 67 6 148. -S1470 17 76.5 0.0 5 40.0 149. -S1480 26 46.1 0.0 14 78.6 150. -S1490 54 63.0 0.0 34 44.1 151. -S1500 39 25.6 0.0 33 33.3 152. -S1510 38 26.3 0.0 29 93.1 153. -S1520 49 24.5 0.0 37 70.3 154. -S1530 43 39.5 0.0 28 92.8 155. -S1540 41 68.3 0.0 13 100.0 156. -S1550 27 92.6 0.0 2 50.0 157. -S1560 25 24.0 0.0 19 94.7	144			82 7			
146. -\$1450 30 90.0 0.0 3 100.0 147. -\$1460 48 29.2 0.0 37 67 6 148. -\$1470 17 76.5 0 0 5 40.0 149. -\$1480 26 46.1 0.0 14 78.6 150. -\$1490 54 63.0 0.0 34 44.1 151. -\$1500 39 25.6 0.0 33 33.3 152. -\$1510 38 26.3 0.0 29 93.1 153. -\$1520 49 24.5 0.0 37 70.3 154. -\$1530 43 39.5 0.0 29 93.1 153. -\$1540 41 68.3 0.0 13 100.0 156. -\$1550 27 92.6 0.0 2 50.0 157. -\$1560 25 24.0 0.0 19 94.7 158. -\$1570 34 55.9 0.0 15 60.0 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
147. -\$1460 48 29.2 0.0 37 67.6 148. -\$1470 17 76.5 0.0 5 40.0 149. -\$1480 26 46.1 0.0 14 78.6 150. -\$1490 54 63.0 0.0 34 44.1 151. -\$1500 39 25.6 0.0 33 33.3 152. -\$1510 38 26.3 0.0 29 93.1 153. -\$1520 49 24.5 0.0 37 70.3 154. -\$1530 43 39.5 0.0 29 93.1 155. -\$1540 41 68.3 0.0 13 100.0 156. -\$1550 27 92.6 0.0 2 50.0 157. -\$1560 25 24.0 0.0 19 94.7 158. -\$1570 34 55.9 0.0 15 60.0 159. -\$1580 25 68.0 0.0 9 22.5 5							
148. -S1479 17 76.5 0 0 5 40.0 149. -S1489 26 46.1 0.0 14 78.6 150. -S1499 54 63.0 0.0 34 44.1 151. -S1509 39 25.6 0.0 33 33.3 152. -S1519 38 26.3 0.0 29 93.1 153. -S1529 49 24.5 0.0 37 70.3 154. -S1539 43 39.5 0.0 28 92.8 155. -S1549 41 68.3 0.0 13 100.0 156. -S1559 27 92.6 0.0 2 50.0 157. -S1569 25 24.0 0.0 19 94.7 158. -S1579 34 55.9 0.0 15 60.0 159. -S1589 25 68.0 0.0 9 22.5 5 160. -S1699 45 46.7 0.0 30 76.7							
149. -\$148@ 26 46.1 0.0 14 78.6 150. -\$149@ 54 63.0 0.0 34 44.1 151. -\$150@ 39 25.6 0.0 33 33.3 152. -\$151@ 38 26.3 0.0 29 93.1 153. -\$152@ 49 24.5 0.0 37 70.3 154. -\$153@ 43 39.5 0.0 28 92.8 155. -\$154@ 41 68.3 0.0 13 100 0 156. -\$155@ 27 92.6 0.0 2 50 0 157. -\$156@ 25 24.0 0 0 19 94 7 158. -\$157@ 34 55 9 0 0 15 60 0 159. -\$158@ 25 68.0 0.0 9 22 5 160. -\$159@ 45 46.7 0.0 30 76 7 161. -\$160@ 38 44.7 0.0 21 95.2 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>40.0</td></tr<>							40.0
150. -S149@ 54 63.0 0.0 34 44.1 151. -S150@ 39 25.6 0.0 33 33.3 152. -S151@ 38 26.3 0.0 29 93.1 153. -S152@ 49 24.5 0.0 37 70.3 154. -S153@ 43 39.5 0.0 28 92.8 155. -S154@ 41 68.3 0.0 13 100.0 156. -S155@ 27 92.6 0.0 2 50.0 157. -S156@ 25 24.0 0.0 19 94.7 158. -S157@ 34 55.9 0.0 15 60.0 159. -S158@ 25 68.0 0.0 9 22.5 5 160. -S159@ 45 46.7 0.0 30 76.7 161. -S160@ 38 44.7 0.0 21 95.2 162. -S161@ 40 22.5 0.0 31 35.5							
151. -S150@ 39 25.6 0.0 33 33.3 152. -S151@ 38 26.3 0.0 29 93.1 153. -S152@ 49 24.5 0.0 37 70.3 154. -S153@ 43 39.5 0.0 28 92.8 155. -S154@ 41 68.3 0.0 13 100.0 156. -S155@ 27 92.6 0.0 2 50.0 157. -S156@ 25 24.0 0.0 19 94.7 158. -S157@ 34 55.9 0.0 15 60.0 159. -S158@ 25 68.0 0.0 9 22.5 160. -S159@ 45 46.7 0.0 30 76.7 161. -S160@ 38 44.7 0.0 21 95.2 162. -S161@ 40 22.5 0.0 31 35.5 163. -S162@ 29 48.3 0.0 15 13.3 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
152. -S1510 38 26.3 0.0 29 93.1 153. -S1520 49 24.5 0.0 37 70.3 154. -S1530 43 39.5 0.0 28 92.8 155. -S1540 41 68.3 0.0 13 100 0 156. -S1550 27 92.6 0.0 2 50 0 157. -S1560 25 24.0 0 0 19 94 7 158. -S1570 34 55 9 0 0 15 60 0 159. -S1580 25 68.0 0.0 9 22 5 160. -S1590 45 46.7 0.0 30 76 7 161. -S1600 38 44.7 0.0 21 95.2 162. -S1610 40 22.5 0 31 35.5 163. -S1620 29 48.3 0.0 15 13.3 164. -S1630 42 19.0 0.0 35 5.7	151	-51500					
153. -S1520 49 24.5 0.0 37 70.3 154. -S1530 43 39.5 0.0 28 92.8 155. -S1540 41 68.3 0.0 13 100 0 156. -S1550 27 92.6 0.0 2 50 0 157. -S1560 25 24.0 0 0 19 94 7 158. -S1570 34 55.9 0 0 15 60 0 159. -S1580 25 68.0 0.0 9 22.5 160. -S1590 45 46.7 0.0 30 76.7 161. -S1600 38 44.7 0.0 21 95.2 162. -S1610 40 22.5 0.0 31 35.5 163. -S1620 29 48.3 0.0 15 13.3 164. -S1630 42 19.0 0.0 35 5.7 165. -S1640 53 24.5 0.0 45 26.7							
154. -S1539 43 39.5 0.0 28 92.8 155. -S1549 41 68.3 0.0 13 100 0 156. -S1559 27 92.6 0.0 2 50 0 157. -S1569 25 24.0 0 0 19 94 7 158. -S1579 34 55 9 0 0 15 60 0 159. -S1589 25 68.0 0.0 9 22.5 160. -S1599 45 46.7 0.0 30 76.7 161. -S1609 38 44.7 0.0 21 95.2 162. -S1619 40 22.5 0.0 31 35.5 163. -S1629 29 48.3 0.0 15 13.3 164. -S1639 42 19.0 0.0 35 5.7 165. -S1649 53 24.5 0.0 45 26.7 166. -S1659 41 56.1 0.0 22 45.4	153	_S151W		20.5			
155. -S154Q 41 68.3 0.0 13 100 0 156. -S155Q 27 92.6 0.0 2 50 0 157. -S156Q 25 24.0 0 0 19 94 7 158. -S157Q 34 55 9 0 0 15 60 0 159. -S158Q 25 68.0 0.0 9 22 5 160. -S159Q 45 46.7 0.0 30 76 7 161. -S160Q 38 44.7 0.0 21 95.2 162. -S161Q 40 22.5 0 0 31 35 5 163. -S162Q 29 48.3 0.0 15 13 3 164. -S163Q 42 19.0 0.0 35 5.7 165. -S164Q 53 24.5 0.0 45 26 7 166. -S165Q 41 56.1 0.0 22 45.4 167. -S166Q 46 73.9 0.0 14 57.1							
156. -\$1550 27 92.6 0.0 2 50.0 157. -\$1560 25 24.0 0.0 19 94.7 158. -\$1570 34 55.9 0.0 15 60.0 159. -\$1580 25 68.0 0.0 9 22.5 160. -\$1590 45 46.7 0.0 30 76.7 161. -\$1600 38 44.7 0.0 21 95.2 162. -\$1610 40 22.5 0.0 31 35.5 163. -\$1620 29 48.3 0.0 15 13.3 164. -\$1630 42 19.0 0.0 35 5.7 165. -\$1640 53 24.5 0.0 45 26.7 166. -\$1650 41 56.1 0.0 22 45.4 167. -\$1660 46 73.9 0.0 14 57.1 168 -\$1670 42 30.9 0.0 29 44.8							
157. -\$1569 25 24.0 0 0 19 94 7 158. -\$1579 34 55 9 0 0 15 60 0 159. -\$1589 25 68.0 0 0 9 22 5 160. -\$1599 45 46.7 0 0 30 76 7 161. -\$1609 38 44.7 0.0 21 95.2 162. -\$1619 40 22.5 0 0 31 35 5 163. -\$1629 29 48.3 0.0 15 13 3 164. -\$1639 42 19.0 0.0 35 5.7 165. -\$1649 53 24.5 0.0 45 26 7 166. -\$1659 41 56.1 0.0 22 45.4 167. -\$1669 46 73.9 0.0 14 57.1 168 -\$1679 42 30.9 0.0 29 44.8 169. -\$1689 53 49.1 0.0 27 96.3 170. -\$1699 41 46.3 0.0 22 95.4							
158. -\$1579 34 55 9 0 0 15 60 0 159. -\$1589 25 68.0 0.0 9 22 5 160. -\$1599 45 46.7 0.0 30 76 7 161. -\$1609 38 44.7 0.0 21 95.2 162. -\$1619 40 22.5 0 0 31 35 5 163. -\$1629 29 48.3 0.0 15 13 3 164. -\$1639 42 19.0 0.0 35 5.7 165. -\$1649 53 24.5 0.0 45 26 7 166. -\$1659 41 56.1 0.0 22 45.4 167. -\$1669 46 73.9 0.0 14 57.1 168 -\$1679 42 30.9 0.0 29 44.8 169. -\$1689 53 49.1 0.0 27 96.3 170. -\$1699 41 46.3 0.0 22 95.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
159. -\$1589 25 68.0 0.0 9 22.5 160. -\$1599 45 46.7 0.0 30 76.7 161. -\$1609 38 44.7 0.0 21 95.2 162. -\$1619 40 22.5 0.0 31 35.5 163. -\$1629 29 48.3 0.0 15 13.3 164. -\$1639 42 19.0 0.0 35 5.7 165. -\$1649 53 24.5 0.0 45 26.7 166. -\$1659 41 56.1 0.0 22 45.4 167. -\$1669 46 73.9 0.0 14 57.1 168 -\$1679 42 30.9 0.0 29 44.8 169. -\$1689 53 49.1 0.0 27 96.3 170. -\$1699 41 46.3 0.0 22 95.4							
160. -\$1599 45 46.7 0.0 30 76.7 161. -\$1600 38 44.7 0.0 21 95.2 162. -\$1610 40 22.5 0.0 31 35.5 163. -\$1620 29 48.3 0.0 15 13.3 164. -\$1630 42 19.0 0.0 35 5.7 165. -\$1640 53 24.5 0.0 45 26.7 166. -\$1650 41 56.1 0.0 22 45.4 167. -\$1660 46 73.9 0.0 14 57.1 168 -\$1670 42 30.9 0.0 29 44.8 169. -\$1680 53 49.1 0.0 27 96.3 170. -\$1690 41 46.3 0.0 22 95.4	150.						
161. -\$1600 38 44.7 0.0 21 95.2 162. -\$1610 40 22.5 0.0 31 35.5 163. -\$1620 29 48.3 0.0 15 13.3 164. -\$1630 42 19.0 0.0 35 5.7 165. -\$1640 53 24.5 0.0 45 26.7 166. -\$1650 41 56.1 0.0 22 45.4 167. -\$1660 46 73.9 0.0 14 57.1 168 -\$1670 42 30.9 0.0 29 44.8 169. -\$1680 53 49.1 0.0 27 96.3 170. -\$1690 41 46.3 0.0 22 95.4	160						
162 S1610 40 22.5 0 0 31 35 5 163 -S1620 29 48.3 0.0 15 13 3 164 -S1630 42 19.0 0.0 35 5.7 165 -S1640 53 24.5 0.0 45 26 7 166 -S1650 41 56.1 0.0 22 45.4 167 -S1660 46 73.9 0.0 14 57.1 168 -S1670 42 30.9 0.0 29 44.8 169 -S1680 53 49.1 0.0 27 96.3 170 -S1690 41 46.3 0.0 22 95.4							
163. -\$1620 29 48.3 0.0 15 13.3 164. -\$1630 42 19.0 0.0 35 5.7 165. -\$1640 53 24.5 0.0 45 26.7 166. -\$1650 41 56.1 0.0 22 45.4 167. -\$1660 46 73.9 0.0 14 57.1 168 -\$1670 42 30.9 0.0 29 44.8 169. -\$1680 53 49.1 0.0 27 96.3 170. -\$1690 41 46.3 0.0 22 95.4							
164. -\$1630 42 19.0 0.0 35 5.7 165. -\$1640 53 24.5 0.0 45 26.7 166. -\$1650 41 56.1 0.0 22 45.4 167. -\$1660 46 73.9 0.0 14 57.1 168. -\$1670 42 30.9 0.0 29 44.8 169. -\$1680 53 49.1 0.0 27 96.3 170. -\$1690 41 46.3 0.0 22 95.4	102.						
165. -\$\frac{1}{640}\$ 53 24.5 0.0 45 26.7 166. -\$\frac{1}{650}\$ 41 56.1 0.0 22 45.4 167. -\$\frac{1}{660}\$ 46 73.9 0.0 14 57.1 168. -\$\frac{1}{670}\$ 42 30.9 0.0 29 44.8 169. -\$\frac{1}{680}\$ 53 49.1 0.0 27 96.3 170. -\$\frac{1}{690}\$ 41 46.3 0.0 22 95.4	163.						
166. -\$1650 41 56.1 0.0 22 45.4 167. -\$1660 46 73.9 0.0 14 57.1 168. -\$1670 42 30.9 0.0 29 44.8 169. -\$1680 53 49.1 0.0 27 96.3 170. -\$1690 41 46.3 0.0 22 95.4	164.						
167 -S1669 46 73.9 0.0 14 57.1 168 -S1679 42 30.9 0.0 29 44.8 169, -S1689 53 49.1 0.0 27 96.3 170 -S1699 41 46.3 0.0 22 95.4							
168 -S1679 42 30.9 0.0 29 44.8 169S1689 53 49.1 0.0 27 96.3 170S1699 41 46.3 0.0 22 95.4							
169S1680 53 49.1 0.0 27 96.3 170S1690 41 46.3 0.0 22 95.4							
170\$1690 41 46.3 0.0 22 95.4							
-S1699 41 46.3 0.0 22 95.4 171 -S1709 44 20.4 0.0 38 78.9							
1/1, -S1700 44 20.4 0.0 38 78.9	170						
	931.	-S1709	44	20.4	0.0	<i>3</i> 8	78.9

1	2	3	4	5	6	7
172.	C.NO-74360-F4B-S1719	49	30.6	0.0	40	77.5
173.	-S172 Q	63	30.1	0.0	45	95.5
174.	-S173 ₽	36	61.1	0.0	14	71.4
175.	-S174 ₽	51	29.4	0.0	37	8.1
176.	-S175 9	48	20.8	0.0	38	60.5
177.	-S176Q	30	26.7	0.0	22	72.7
178.	-S177@	63	12.7	0.0	57	43.8
179.	-S178 Q	43	37.2	0.0	32	12.5
180.	-S179Q	44	20.4	0.0	35	77.1
181.	-S180 Q	17	29.4	0.0	17	35.3
182.	-\$181@	39	25.6	0.0	29	24.1
183.	-S182 0	38	26.3	0.0	31	29.0
184.	-\$183₽	45	15.5	0.0	38	34.2
185.	-\$1849	50	16.0	0.0	43	67.4
186.	-\$185@	15	0.0	0.0	15	53.3
187.	-\$1869	34	35.3	0.0	22	95.4
188.	-S187 ₽	40	47.5	0.0	27	51.8
189.	-\$1889	24	20.8	0.0	<u>1</u> 9	73.7
190.	-\$189@	25	76.0	0.0	7	71.4
191.	-S190 0	46	60.9	0.0	28	53.6
192.	-S191 2	28	64.3	0.0	10	60.0
193.	-S192 2	57	31.6	0.0	41	85.4
194.	-S193 0	52	25.0	0.0	41	56.1
195.	-S194 Q	44	61.4	0.0	19	42.1
196.	-S195 Q	48	35.4	0.0	32	0.0
197.	-S196 0	33	33.3	00	23	60.9
198.	-S1979	52	19.2	0.0	42	71.4
199.	-\$1989	41	51.2	0.0	20	80.0
200.	-S199 Q	41	21.9	0.0	33	66.7
201.	-\$200 9	53	28.3	0.0	38	100.0
202.	- S201 Q	49	38.8	0.0	30	76.7
203.	~\$202 9	40	15.0	0.0	34	70.6
204.	-S203 9	30	40.0	0.0	20	70.0
205.	-S204 0	30	46.7	0.0	17	52.9
206.	-S205@	57	33,0	0.0	40	47.5
207.	-S206 2	19	68.4	0.0	6	50.0
208.	-S207 Q	45	22.2	0.0	39	25.6
209.	-S208 9	40	15.0	0.0	35	45.7
210.	-S209 2	22	4.5	0.0	21	71.4
211.	-S210 9	47	25.5	0.0	36	33.3
212.	-3210w -S2110	55	49.1	3.6	28	46.4
213.	-S212 9	22	100.0	0.0	0	0.0
214.	-3212 w -S213 Q	45	60.0	0.0	21	28.6
215.	-S2149	45	8.9	0.0	43	93.0
۷١٥,	一つと「竹匠	70	0.9	0.0	70	50.0

1	2	3	4	5	6	7
216.	C.NO-74360-F4B-S2159	38	34.3	0.0	27	55.5
217.	-S216 Q	13	38.5	0.0	9	44.4
218	-S217 9	24	70.8	0.0	7	28.6
219.	-S218@	55	23.6	0.0	42	9.5
220.	-S219 0	39	33.3	0.0	27	
221.	-S220Q	44	56.8	0.0		0.0 52.6
222.	-5221 Q -7NDT	41	34.1	0.0	19 29	52.6 79.3
223.	-S222 Q -8NDT	17	47.0	0.0		
224.	- S223Q-8NDT	40	72.5		11 29	54.5 24.1
225.	-5224 9 -8NDT	37	64.9	0.0		
226.	-32249-8NDT -S2259-8NDT	37 41	61.0	0.0	15	26.7
227.	-S226 9	51	49.0	0.0	16	68.7
228.	-32209 -S2279-8NDT	42	33.3	0.0	29	31.6
229.	-3227@-6NDT -S228@-8NDT	31		0.0	29	24.1
230.			41.9	0.0	21	38.1
	-S229@-VIII		41.5	0.0	35	42.8
231.	-S2309	36	38.9	0.0	25	40.0
232.	-\$231 Q	44	90.9	0.0	4	50.0
233.	-S232Q-VIII		74.0	0.0	18	36.0
234.	-52339	64	21.9	0.0	52	25.0
235.	- \$2349	46	15.2	0.0	39	12.8
236.	-S235 <u>Q</u>	67	16.4	0.0	56	30.3
237.	-\$2369	44	2.3	0.0	44	70.4
238	-\$2379	38	60.5	0.0	17	76.5
239.	-\$2389	61	68.8	0.0	19	73.7
240.	-S239@-VIII		34.2	0.0	26	42.3
241 .	-S240@-VIII		75.9	0.0	7	42.8
242.	-S241Q-VIII		74.5	0.0	17	47.0
243.	-S2420-VIII		70.7	0.0	15	46.7
244.	-52439	41	75.6	0.0	12	0.0
245.	-S244Q	45	422	0.0	30	20.0
246	-S245@	51	29.4	0.0	36	22.2
247	-\$246 Q -VIII		83.9	0.0	12	8.3
248 .	-S247Q	42	69.0	0.0	14	92.8
249.	-S248 Q	61	27.9	0.0	44	63.6
250 .	-S249Q-VIII		28.0	0.0	36	97.2
251.	-S250 @	50	40.0	0.0	30	80.0
252.	-S25 1Q	49	16.3	0.0	42	30.9
253.	-S252 9	61	82.0	0.0	11	45.4
254.	-S 253Q	60	90.0	00	8	0.0
255.	-S254@-VI	NDT 53	45.3	0.0	32	90.6
256.	-S255 Q- VIII		48.8	0.0	30	0.0
257.	-S256 9	52	26.9	0.0	40	77.5
258.	-S257 0	51	0.0	0.0	51	58.8
259.	-S258 Q ≠VII	NDT 31	45.2	0.0	19	89.5
260.	-S259Q-VII	NDT 65	41.5	0.0	39	84 . 6

1	2	3	4	5	6	7
261.	C.NO-74360-F4B-S2609-VII NDT	66	57.6	0.0	34	73.5
262.	-S261Q-VII NDT	65	6 84.6	0.0	11	90.9
263.	-S262 9	23	60.9	0.0	ii	81.8
264.	-S263Q-VII NDT	54	42.6	0.0		14.7
265.	-S264Q-VII NDT	40	87.5	20.0	34 8	25.0
266.	-S265Q-VI NDT	54	59.2	0.0	24	91.7
267.	-S266@-VIII NDT	48	72.9	0.0	16	18.7
268.	-5267 9- VII NDT	48	83.3	0.0	15	40.0
269.	-S268@	14	35.7	0.0	9	44.4
270.	-3268₩ -S269₩	16	12.5	0.0	14	
271.	ICP-7065-1-P2	64	12.5 FO 0			92.8
	ICP-7005-1-P2 ICP-6997-137-1-Br-P1		50.0	9.4	37	62.2
272.		51	98.0	0.0	1	0.0
273.	C.NO-74236-F4B-S1Q-VIII NDT	40	10.0	0.0	36	97.2
274.	-S2Q-VI NOT	21	23.8	0.0	16	100.0
275.	-S30-VII NDT	62	21.0	0.0	49	95.9
276.	-S4Q-VII NDT	13	46.1	0.0	8	62.5
277.	-S5Q-VI NOT	52	34.6	0.0	39	15.4
278.	-S60-VI NDT	34	88.2	0.0	4	1000
279.	∸S7Q-VII NDŤ	69	56.5	0.0	34	88.2
280.	-S8@-VIII NDT	38	94.7	0.0	3	66.7
281.	-S9 @ -VI NDT	29	72.4	0.0	8	100.0
282.	-S10@-VII NDT	50	34.0	0.0	24	79.4
283.	-S110-VIII NDT	72	30.5	0.0	50	100.0
284.	-S12 0	28	7.1	0.0	26	100.0
285.	-S13@-VII NDT	72	34.7	0.0	48	87.5
286.	-S140-VII NDT	57	77.2	0.0	13	100.0
287.	-S15Q-VII NDT	70	28.6	0,0	52	86.5
288.	-S16Q-VII NDT	50	22.0	0.0	39	66.7
289.	-S17Q-VII NDT	45	48.9	0.0	26	65.4
290.	-S18Q-VII NDT	37	24.3	0.0	28	46.4
291.	-S19Q-VII NDT	64	39.1	0.0	39	56.4
292.	-S20Q-VII NDT	65	23.1	0.0	51	70.6
293.	-S21Q-VII NDT	58	13.8	0.0	50	72.0
294.	-S229-VII NDT	70	14.3	0.0	60	61.7
295.	-S23@-VII NDT	58	22.4	0.0	48	89.6
296.	-S249-VII NDT	61	22.9	0.0	47	95.7
297.	-S25@-VII NDT	57	26.3	0.0	44	9.1
298.	-S26Q-VII NDT	44	29.5	0.0	33	12.1
299.	-S27 Q- VII NDT	41	56.1			50.0
299. 300.	-527M-VII NDT -S28Q-VII NDT	67	22.4	0.0	18	
300. 301.	-528@-VI NDT	51	22.4	0.0	53	30.2
			33.3	0.0	35	54.3
302.	÷S30Q-VII NDT	51	45.1	0.0	28	92.8
303.	-S31@-VII NDT	46	32.6	0.0	34	35.3
304.	-S32Q-VII NDT	52	36.5	0.0	33	78.8
305.	-S33@-VII NDT	62	50.0	0.0	31	93.5

1	2		3	4	5	6	7
306.	C.NO-74236-F4B-S349-VI	NDT	47	61.7	0.0	20	750
307.	-S35@-VII	NDT	47	38.3	0.0	31	83.9
308 .	-S36 9 VI	NDT	41	56.1	0.0	18	100.0
309	-S37 0 VII	NDT	42	50.0	0.0	21	76 2
310.	-\$38 0 -VII	NDT	39	48.7	0.0	20	55.0
311.	-\$39 Q -VI	NDT	23	60.9	0.0	9	77.8
312.	-\$40 @ -VII	NDT	41	39.0	0.0	27	74 . 1
313.	-S41 Q -VII	NDT	12	25.0	0.0	12	41.7
314	-\$42 @- VII	NDT	48	25.0	0.0	36	66.7
315.	-\$43 Q -VIII		56	30.3	0.0	41	58.5
316.	-S44 Q -VII	NDT	4 8	25.0	0.0	39	56.4
317.	-S45 Q-V II	NDT	45	46.7	0.0	26	8. 08
318.	-S46 Q -VII	NDT	53	56,6	00	23	91.3
319.	-\$47 @ -VIII		46	39.1	0.0	30	70.0
320.	-\$48 @ -VII	NDT	50	94.0	0.0	3	100.0
321.	-S49 @ -VIII		53	37.7	0.0	35	62.8
322.	-S50 Q -VII	NDT	16	37.5	0.0	12	16.7
323.	-S51 Q -VIII		30	50.0	0.0	15	800
324.	-S52 Q -VIII		24	0.0	0.0	24	95.8
325	- S53Q-VII	NDT	66	30.3	0.0	47	57.4
326.	-S54 Q -VII	NDT	41	41.5	0.0	24	79.2
327	-S55 Q -VII	NDT	45	24.4	00	34	82 .3
328.	-S569VI	NDT	47	47.5	0.0	28	67.8
329.	-S57Q-VIII		62	35.5	0.0	40	95.0
330 .	-S589VII	NDT	51	45.1	0.0	27	14.8
331 .	-S59@-VII	NDT	58	41.4	00	34	73.5
332	-S60@-VII	NDT	76	64.5	0.0	29	82.7
333	-S61@-VII	NDT	25	48.0	0.0	15	33.3
334	-S629-VII	NDT	48	12.5 79.5	0.0	47 11	63.8 81.8
335.	-S639-VIII		44	795 700	0.0		
336	-\$64@-VIII		30		0.0	10	30.0 4.5
337. 338.	-\$659~VIII	NDT	36 42	41.7 57.1	0.0	22 18	44.4
	-S66@-VII	NDT		41.2	00	12	33.3
339	-S67 9-V III		1 <i>7</i> 55	38.2	0 0 0 0	35	17.1
340 . 341 .	-S68@~VII	NDT	35	91.4	0.0	4	0.0
342	-S690-VIII -S700-VII	NDT	33 44	52.3	00	22	31.8
342°			37	43.2	0.0	22	13 6
	-S71@-VIII		29	27.6	0.0	21	23.8
344 345	-S720 VIII	NDT	23	39.1	0.0	16	68 7
345 . 346 .	-S739-VIII -S749-VIII	NDT	47	14.9	0.0	40	ر 52 ، 5
340 ·	-5740-VIII -5750-VIII	NDT	9	33.3	0.0	6	50.0
			26	38.5	0.0	16	75.0
348.	-S760-VIII	NDT	46	34.8	0.0	30	43.3
349	-S77@-VII			29.8	0.0	35	51.4
350 .	-S78 @- VII	NDT	47	49,0	0.0	33	J1 ,4

1	2	3	4	5	6	7
351.	C.NO-74326-F ₄ B-S79Q-VIII NDT -S80Q-VIII NDT	15	0.0	0.0	15	26.7
352.	⁻-S80₽-VIII NDT	46	39.1	0.0	28	96 4
353.	-S81@-VIII NDT	43	51.2	0.0	30	93.3
354.	-S82@-VIII NDT	43	41.9	0.0	25	100.0
355.	-S83Q:-VII NDT	54	25.9	0.0	41	73.2
356.	-S84@-VII NDT	64	20.3	0 0	54	74.1
357.	-S85 @ -VI NDT	33	21.2	0.0	29	65 , 5
358.	-S86@-VIII NDT	54	33.3	0.0	37	676
359.	-S87Q-VIII NDT	39	35.9	0.0	26	96.1
360.	-S88Q-VII NDT	42	64.3	0.0	15	100.0
361.	-S89@-VII NDT	49	42.8	0.0	28	78.6
362.	-S90@-VII NDT	47	40.4	0.0	29	86 . 2
363.	-S91@-VII NDT	45	95.5	0.0	2	0.0
364.	-S92Q-VII NDT	39	38,5	0.0	25	4 0
365.	-S93Q-VII NDT	35	54.3	0.0	17	17.6
366.	-S94Q-VII NDT	30	80.0	0.0	8	25 .0
367.	-S95@-VII NDT	19	36.8	3.8	8	0.0
368.	-S960-VII NDT	54	11.1	0.0	48	50.0
369.	-S97@-VII NDT	55	47.3	0.0	29	89.6
370.	-S98@-VIII NDT	21	19.0	0.0	17	82.3
371.	-S99@-VII NDT	19	0.0	0.0	19	684
372.	-S100Q-VIII NDT	53	30.2	0.0	44	25.0
373.	-S101@-VII NDT	56	21.4	0.0	46	82.6
374.	-S1020-VIII NDT	46	45.6	0.0	28	67.8
375. 376.	-S103Q-VII NDT	45	40.0	0.0	27	96.3
376. 377.	-S104@-VIII NDT -S105@-VII NDT	34 20	0.0 20.0	0.0 0.0	34 16	88.2 100.0
377. 378.	-5105m-VII NDT -5106@-VIII NDT	50	62.0	0.0	27	70.4
379.	-S107@-VII NDT	25	0.0	00	25	88.0
380.	-S108@-VIII NDT	24	4.2	0.0	23	69 6
381.	-S109@-VII NDT	38	10.5	8.8	37	29 7
382.	No-148-P2	59	22.0	19.6	48	93.7
383.	ICP-6997-P1	61	98.4	0.0	4	25.0
384.	C.NO-74335-F ₄ B-S19-V NDT	8	100.0	0.0	ó	0.0
385.	-S29-VII NDT	48	79.2	20.0	18	50.0
386.	-S3@-VII NDT	51	68.6	0.0	25	24.0
387.	-S4Q-VIII NDT	43	44.2	0.0	26	61.5
388.	-S5@-VII NDT	50	72.0	0.0	17	17.6
389.	-S6Q-VII NDT	23	65.2	0.0	12	0.0
390.	-S7Q-VII NDT	17	100.0	0.0	0	0.0
391.	-S8@-VII NDT	47	21.3	0.0	47	44.7
392.	-S9@-VII NDT	46	47.8	0.0	30	33.3
393.	-S10@-VII NDT	48	45.8	0.0	29	37.9
394 .	-S11@-VII NDT	46	36.9	00	29	82.7
39 5 .	-S12@-VII NDT	20	90.0	0.0	3	66.7

1	2		3	4	5	6	7
396	C.NO-74335-F4B-S13Q-VII	NDT	22	95.4	0.0	1	0.0
397	-S140		11	90.9	0.0	1	100.0
398	-S15Q		27	96.3	0.0	1	0.0
399 .	-5169		41	56.1	0.0	24	37 5
400	-S17Q-VII	NDT	35	85.7	0.0	8	12.5
401	-\$18 Q- VII	NDT	37	83.8	0.0	8	37.5
402.	-S19 2		34	100.0	0.0	2	0.0
403.	-\$20 @ -VII	NDT	33	66.7	0 . 0	13	53.8
404	-S21Q-VIII	NDT	37	78.4	0.0	16	43.7
405	-S22 Q-V II	NDT	19	57.9	00	10	30.0
406.	-S23 Q -VI	NDT	25	80.0	0 ., 0	5	20.0
407.	-S2 4₽-V II	NDT	17	47.0	0.0	10	30.0
408 թ	-S25 @ -VII	NDT	35	42.8	0.0	23	39.1
، 409	-S26 Q -VII	NDT	38	89.5	0.0	6	33 3
410.	-S2 7Q -VI	NDT	28	100.0	0.0	0	0.0
411.	-S28 Q -VII	NDT	10	90.0	0.0	1	0.0
412.	-S29 Q -VII	NDT	31	87.1	0.0	4	500
413.	-S30 № -VII	NDT	30	96.7	0.0	1	0 0
414.	-S3 1Q -VIII	NDT	26	84.6	0.0	4	25 0
415.	-S32 Q -VIII	NDT	48	958	00	2	500
416.	-S33 Q -VII	NDT	42	85.7	00	9	11.1
417.	-S34 @ -VII	NDT	37	45.9	0.0	24	45.8
418.	-S35Q-VIII	NDT	22	59.1	0.0	12	16.7
419.	-S36Q-VII	NDT	48	81.2	0.0	11	18.2
420.	-S37 Q-V II	NDT	17	88.2	0.0	3	00
421	-S38 Q-V II	NDT	47	93.6	00	5	40.0
422	-S39 Q -VII	NDT	25	92.0	0.0	5	6.0
423	-S40@-VII	NDT	45	51.1	0.0	25	52.0
424.	-S41@-VII	NDT	31	80.6	0.0	8	0.0
425	-S42Q-VIII	NDT	39	92.3	0.0	8	12.5
426	-S43@-VII	NDT	28	67.8	0.0	11	54.5
427	-S44@-VII	NDT	47	553	0.0	21	42.8
428	-S450-VII	NDT	45	93.3	0.0	3	33.3
429.	-S46Q-VII	NDT	18	83.3	0.0	4	50.0
430	-S470-VIII	NDT	46	609	0.0	19	73.7
431.	-S48Q-VIII	NDT	18	77.8	0.0	8	12.5
432	-S49 0 -VIII	NDT	38	92.1	0.0	4	0.0
433	-S50@-VIII	NDT	28	89.3	0.0	4	75.0
434	-S519-VII	NDT	16	62.5	00	7	14.3
435	-5520		35	42.8	0.0	20	35.0
436	-S53 Q		24	75.0	0.0	6	33.3
437	-S54 Q -VII	NDT	16	81.2	0.0	3	0.0
438	-S55 Q -VII	NDT	35	71.4	0.0	10	50.0
439	-S56 9 -VII	NDT	38	97.4	0.0	1	0.0
440	-S579-VII	NDT	25	96.0	0.0	ì	0.,0
170,	30, m - VII	.,,,,,					

1	2		3	4	5	6	7
441.	C.NO-74335-F4B-S58Q-VII	NDT	22	72.7	0.0	8	50.0
442.	-S59 0 -VII	NDT	29	96.5	0.0	4	25.0
443.	-S60@-VIII		15	100.0	0.0	0	0.0
444.	-S61 0 -VIII	NDT	31	58.1	00	18	50.0
445.	-\$62 Q -VII	NDT	37	16.2	0.0	32	53.1
446.	-S63 Q-V	NDT	34	970	0.0	1	100.0
447.	-S64 Q -V	NDT	20	650	0.0	11	36.4
448.	-S65 Q -VII	NDT	37	81.1	0.0	12	8.3
449.	-S66 Q -VIII		34	76.5	00	10	40.0
450.	-S67 Q -VII	NDT	27	85.2	0.0	4	0.0
451.	-S68 0 -VII	NDT	42	61.9	0.0	20	25.0
452.	-S699-VII	NDT	32	78.1	0.0	10	50.0
453.	-S70@-VII	NDT	25	100.0	0.0	0	0.0
454.	-S 719 ÷VII	NDT	14	71.4	0.0	6	0.0
455.	-S720-VII	NDT	44	75.0	0.0	15	40.0
456.	-S 73Ω -VII	NDT	50	98.0	0.0	1	100.0
457.	-S 742 -VI	NDT	25	68.0	0.0	9	55.5
458.	-S75 @ -VI	NDT	31	419	0.0	21	38,1
459.	-S76Q-VII	NDT	25	84.0	0.0	5	20.0
460.	-S77 @ -VIII		30	80.0	0.0	6	100.0
461.	-S78 Q- VII	NDT	31	71.0	0.0	12	50.0
462.	-S79 @ ~VI	NDT	36	66 . 7	0.0	16	25 0
463.	-S80 0 -VII	NDT	22	86 . 9	00	4	25.0
464.	-S81 <u>Q</u>		20	100.0	0.0	0	0 0
465.	-S82 0 -VII	NDT	26	100.0	0.0	-	
466.	-S83 Q -VII	NDT	51	78.4	0.0	14	14.3
467.	-S84 @-V II	NDT	41	90 . 2	0.0	5	60,0
468.	-S85@~VII	NDT	50	96.1	00	1	0.0
469.	-S86@-VII	NDT	15	100.0	00	-	-
470.	-S87 @ -VI	NDT	40	62.5	0.0	17	76.0
471.	-S88@-VII	NDT	42	100.0	0.0	-	-
472.	-\$89@-VII	NDT	45	73.3	0.0	15	20 0
473.	-S90@-VII	NDT	46	78.3	00	11	54.5
474.	-5919		35	94 3	0.0	2	100.0
475.	-S92 9 -VII	NDT	18	94 . 4	0.0	2	50.0
476.	-S93 Q -VII	NDT	51	76.5	0.0	16	6.2
477.	-S949-VII	NDT	39	82.0	00	7	85.7
478.	-S95 Q -VII	NDT	14	78.6	0.0	3	100.0
479.	-S96 Q -VIII		45	93,3	0.0	.6	0.0
480.	-S97 Q- VII	NDT	22	45 . 4	0.0	13	7.7
481.	-S98@-VII	NDT	30	63.3	91	12	50.0
482.	-S99 Q -VII	NDT	14	100.0	0.0	-	10 5
483.	-S100@-VII		23	78.3	0.0	8	12.5
484.	-S101@-VII		30	93.3	0.0	3	33.3
485.	-S102 9- VII	NDT	25	92.0	0.0	4	0.0

488\$1058-VII NDT 25 80.0 0.0 5 0.0 489\$1068-VII NDT 33 48.5 0.0 19 26 7.7 491\$1088-VII NDT 16 93.7 0.0 1 100.0 492\$1094-VII NDT 17 19 78.9 0.0 4 0.0 493\$1108-VII NDT 37 89.2 0.0 7 14.3 494\$1118-VII NDT 37 89.2 0.0 7 14.3 495\$1128-VII NDT 25 92.0 0.0 2 50.0 496\$1138-VII NDT 8 100.0 0.0 0 - 497\$1149-VII NDT 37 89.2 0.0 7 14.3 498\$1158-VII NDT 37 100.0 0.0 0 - 498\$1158-VII NDT 37 100.0 0.0 0 - 499\$1168-VII NDT 37 100.0 0.0 0 - 500\$1178-VII NDT 37 100.0 0.0 0 - 501\$1189-VII NDT 36 75.0 0.0 12 33.3 502\$1199-VII NDT 36 75.0 0.0 12 33.3 502\$1199-VII NDT 38 89.5 0.0 5 0.0 504\$1218-VII NDT 38 89.5 0.0 5 0.0 505\$1228	1	2	3	4	5	6	7
488\$105@-VII NDT 25 80.0 0.0 5 0.0 489\$106@-VII NDT 33 48.5 0.0 19 21.0 490\$107@-VII NDT 35 31.4 0.0 26 7.7 491\$108@-VII NDT 16 93.7 0.0 1 100.0 492\$109@-VII NDT 19 78.9 0.0 4 0.0 493\$110@-VII NDT 28 21.4 0.0 25 10.6 494\$111@-VII NDT 37 89.2 0.0 7 14.3 495\$111@-VII NDT 25 92.0 0.0 2 50.0 496\$113@-VII NDT 37 89.2 0.0 7 14.3 495\$111@-VII NDT 37 89.2 0.0 7 14.3 496\$113@-VII NDT 31 100.0 0.0 0 - 498\$113@-VII NDT 31 100.0 0.0 0 - 499\$116@-VII NDT 37 100.0 0.0 0 - 500\$117@-VII NDT 37 100.0 0.0 0 - 501\$118@-VII NDT 37 100.0 0.0 0 - 501\$118@-VII NDT 36 75.0 0.0 12 33.3 502\$119@-VII NDT 35 85.7 0.0 12 8.3 503\$120@-VII NDT 35 85.7 0.0 12 8.3 504\$121@-VII NDT 38 89.5 0.0 5 0.0 505\$122@-VII NDT 38 89.5 0.0 0 - 506\$123@-VII NDT 38 89.5 0.0 0 - 507\$124@-VII NDT 38 89.5 0.0 0 - 508\$123@-VII NDT 49 100.0 0.0 0 - 509\$124@-VII NDT 41 95.1 0.0 3 0.0 509\$126@-VII NDT 41 95.1 0.0 3 0.0 509\$126@-VII NDT 41 95.1 0.0 3 0.0 511\$128@-VII NDT 41 95.1 0.0 3 0.0 511\$128@-VII NDT 41 99.2 0.0 7 28.6 512\$129@-VII NDT 41 90.2 0.0 7 28.6 512\$139@-VII NDT 19 89.4 0.0 2 50.0 514\$131@-VII NDT 18 89.4 0.0 2 50.0 515\$132@-VII NDT 19 89.4 0.0 2 50.0 516\$133@-VII NDT 19 89.4 0.0 2 50.0 517\$134@-VII NDT 39 92.3 0.0 5 0.0 518\$133@-VII NDT 19 89.4 0.0 2 50.0 519\$136@-VII NDT 19 89.4 0.0 2 50.0 510\$133@-VII NDT 19 89.4 0.0 2 50.0 511\$134@-VII NDT 39 92.3 0.0 5 0.0 520\$133@-VII NDT 39 92.3 0.0 5 0.0 521\$133@-VII NDT 39 92.3 0.0 5 0.0 522\$133@-VII NDT 39 92.3 0.0 5 0.0 523\$140@-VII NDT 37 19.9 0.0 2 50.0 524\$141@-VII NDT 37 19.9 0.0 2 50.0 525\$142@-VII NDT 37 19.9 0.0 2 50.0 526\$143@-VII NDT 37 19.9 0.0 2 50.0 527\$1449@-VII NDT 37 19.9 0.0 5 40.0					0.0		-
489\$1068-VIII NDT 33 48.5 0.0 19 21.0 490\$1078-VII NDT 35 31.4 0.0 26 7.7 491\$1088-VII NDT 16 93.7 0.0 1 100.0 492\$1098-VII NDT 19 78.9 0.0 4 0.0 493\$1108-VII NDT 37 89.2 0.0 7 14.3 494\$1118-VII NDT 37 89.2 0.0 7 14.3 495\$1128-VII NDT 25 92.0 0.0 2 50.0 496\$1138-VII NDT 8 100.0 0.0 0 - 497\$1148-VII NDT 34 100.0 0.0 0 - 498\$1159-VII NDT 37 100.0 0.0 0 - 499\$1168-VII NDT 37 100.0 0.0 0 - 499\$1168-VII NDT 37 100.0 0.0 0 - 500\$1178-VII NDT 37 100.0 0.0 0 - 501\$1189-VII NDT 36 75.0 0.0 12 8.3 502\$1199-VII NDT 35 85.7 0.0 12 8.3 503\$1209-VII NDT 35 85.7 0.0 12 8.3 503\$1209-VII NDT 38 89.5 0.0 5 0.0 504\$1218-VIIN NDT 38 89.5 0.0 5 0.0 506\$1238-VII NDT 38 89.5 0.0 5 0.0 507\$1248-VII NDT 38 89.5 0.0 5 0.0 508\$1259-VII NDT 49 100.0 0.0 0 - 508\$1259-VII NDT 49 100.0 0.0 0 - 510\$1288-VII NDT 49 95.1 0.0 3 0.0 509\$1268-VII NDT 49 95.1 0.0 3 0.0 509\$1268-VII NDT 41 95.1 0.0 3 0.0 511\$1318-VII NDT 41 95.1 0.0 3 0.0 511\$1318-VII NDT 41 95.1 0.0 3 0.0 511\$1318-VII NDT 41 99.2 0.0 7 28.6 512\$1299-VII NDT 41 90.2 0.0 7 28.6 513\$1309-VII NDT 41 90.2 0.0 7 28.6 515\$1328-VII NDT 41 90.2 0.0 7 28.6 516\$1338-VII NDT 39 92.3 0.0 5 0.0 519\$1368-VII NDT 39 92.3 0.0 5 0.0 510\$1378-VII NDT 39 92.3 0.0 5 0.0 522\$1399-VII NDT 39 92.3 0.0 5 0.0 523\$1399-VII NDT 39 92.3 0.0 5 0.0 524\$1349-VII NDT 39 92.3 0.0 5 0.0 525\$1338-VII NDT 41 99.2 0.0 6 33.3 521\$1389-VII NDT 41 99.2 0.0 6 33.3 522\$1399-VIII NDT 41 99.2 0.0 6 33.3 523\$1409-VII NDT 39 92.3 0.0 5 0.0 524\$1419-VII NDT 37 19.9 0.0 2 50.0 525\$1429-VII NDT 37 19.9 0.0 2 50.0 526\$1439-VII NDT 37 19.9 0.0 2 50.0 527\$1449-VII NDT 37 19.9 0.0 5 40.0 528\$1449-VII NDT 37 19.9 0.0 5 40.0							80.0
490\$107\(9\)-VII \(\text{NDT} \) 35 \\ 31.4 \\ 0.0 \\ 26 \\ 7.7 \\ 491\$108\(\text{NDT} \) 100 \\ 100 \\ 0.0 \\ 492\$109\(\text{NDT} \) 107 \\ 107 \\ 493\$109\(\text{NDT} \) 107 \\ 108 \\ 494\$111\(\text{NDT} \) 107 \\ 28 \\ 21.4 \\ 0.0 \\ 25 \\ 16.0 \\ 494\$111\(\text{NDT} \) 107 \\ 37 \\ 89.2 \\ 0.0 \\ 7 \\ 14.3 \\ 495\$112\(\text{NDT} \) 107 \\ 496\$113\(\text{NDT} \) 107 \\ 497\$114\(\text{NDT} \) 107 \\ 498\$115\(\text{NDT} \) 107 \\ 499\$116\(\text{NDT} \) 107 \\ 499\$116\(\text{NDT} \) 107 \\ 499\$116\(\text{NDT} \) 107 \\ 499\$117\(\text{NDT} \) 107 \\ 490\$117\(\text{NDT} \) 107 \\ 490\$117\(\text{NDT} \) 107 \\ 491\$118\(\text{NDT} \) 107 \\ 500\$117\(\text{NDT} \) 107 \\ 501\$118\(\text{NDT} \) 107 \\ 502\$119\(\text{NDT} \) 107 \\ 503\$120\(\text{NDT} \) 107 \\ 504\$122\(\text{NDT} \) 107 \\ 505\$122\(\text{NDT} \) 107 \\ 506\$122\(\text{NDT} \) 107 \\ 507\$124\(\text{NDT} \) 107 \\ 508\$122\(\text{NDT} \) 107 \\ 508\$122\(\text{NDT} \) 107 \\ 509\$124\(\text{NDT} \) 107 \\ 509\$124\(\text{NDT} \) 107 \\ 509\$126\(\text{NDT} \) 107 \\ 509\$126\(\text{NDT} \) 107 \\ 511\$128\(\text{NDT} \) 107 \\ 512\$139\(\text{NDT} \) 107 \\ 513\$130\(\text{NDT} \) 107 \\ 514\$131\(\text{NDT} \) 107 \\ 515\$132\(\text{NDT} \) 107 \\ 516\$132\(\text{NDT} \) 107 \\ 517\$134\(\text{NDT} \) 107 \\ 518\$132\(\text{NDT} \) 107 \\ 519\$132\(\text{NDT} \) 107 \\ 510\$132\(\text{NDT} \) 107 \\ 511\$133\(\text{NDT} \) 107 \\ 512\$132\(\text{NDT} \) 107 \\ 513\$132\(\text{NDT} \) 107 \\ 514\$133\(\text{NDT} \) 107 \\ 515\$132\(\text{NDT} \) 107 \\ 516\$133\(\text{NDT} \) 107 \\ 517\$134\(\text{NDT} \) 107 \\ 518\$							0.0
491\$108@-VII NDT 16 93.7 0.0 1 100.0 492\$109@-VII NDT 19 78.9 0.0 4 0.0 493\$110@-VII NDT 28 21.4 0.0 25 16.0 494\$111@-VII NDT 37 89.2 0.0 7 14.3 495\$112@-VII NDT 25 92.0 0.0 2 50.0 496\$113@-VII NDT 37 89.2 0.0 0 - 497 -\$114@-VII NDT 37 89.2 0.0 0 - 498\$115@-VII NDT 34 100.0 0.0 0 - 499 -\$116@-VII NDT 37 100.0 0.0 0 - 499 -\$116@-VII NDT 37 100.0 0.0 0 - 500\$117@-VII NDT 37 100.0 0.0 0 - 501\$118@-VII NDT 37 100.0 0.0 0 - 502\$118@-VII NDT 36 75.0 0.0 12 33.3 503 -\$120@-VII NDT 35 85.7 0.0 12 83.3 503 -\$120@-VII NDT 35 85.7 0.0 12 83.3 503 -\$120@-VII NDT 38 89.5 0.0 5 0.0 504 -\$121@-VII NDT 38 89.5 0.0 5 0.0 505\$122@ 37 100.0 0.0 0 - 506\$123@-VII NDT 38 89.5 0.0 5 0.0 507\$124@-VII NDT 19 100.0 0.0 0 - 507\$124@-VII NDT 19 100.0 0.0 0 - 508\$125@-VII NDT 19 100.0 0.0 0 - 510 -\$126@-VII NDT 19 100.0 0.0 0 - 511 -\$126@-VII NDT 38 97.4 0.0 1 0.0 511 -\$128@-VII NDT 38 97.4 0.0 1 0.0 512 -\$129@-VII NDT 38 97.4 0.0 1 0.0 513 -\$129@-VII NDT 38 97.4 0.0 1 0.0 514 -\$130@-VII NDT 38 97.4 0.0 1 0.0 515 -\$122@-\$130@-VII NDT 38 97.4 0.0 1 0.0 516 -\$133@-VII NDT 38 97.4 0.0 1 0.0 517 -\$134@-VII NDT 38 97.4 0.0 1 0.0 518 -\$133@-VII NDT 38 97.4 0.0 1 0.0 519 -\$136@-VII NDT 38 97.4 0.0 1 0.0 510 -\$137@-VII NDT 38 97.4 0.0 1 0.0 511 -\$138@-VII NDT 39 90.0 0.0 0 - 512 -\$134@-VII NDT 39 90.0 0.0 0 - 515 -\$133@-VII NDT 39 90.0 0.0 0 - 516 -\$133@-VII NDT 39 90.0 0.0 0 - 517 -\$134@-VI NDT 39 90.0 0.0 0 0 - 518 -\$135@-VI NDT 39 90.0 0.0 0 0 - 522 -\$137@-VI NDT 39 90.0 0.0 0 0 0 - 523 -\$137@-VI NDT 39 90.0 0.0 0 0 0 0 0 0 524 -\$139@-VII NDT 30 90.0 0.0 0 0 0 0 0 525 -\$134@-VII NDT 30 90.0 0.0 0 0 0 0 0 526 -\$132@-VII NDT 39 90.0 0 0 0 0 0 0 0 0 526 -\$132@-VII NDT 39 90.0 0 0 0 0 0 0 0 0 526 -\$134@-VII NDT 39 90.0 0 0 0 0 0 0 0 0 0 526 -\$134@-VII NDT 39 90.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
492\$109@-VII NDT 19 78.9 0.0 4 0.0 493\$110@-VII NDT 28 21.4 0.0 25 16.0 494\$111@-VII NDT 37 89.2 0.0 7 14.3 495\$112@-VII NDT 37 89.2 0.0 7 14.3 496\$113@-VII NDT 8 100.0 0.0 0 - 497 -\$114@-VII NDT 38 100.0 0.0 0 - 498\$115@-VII NDT 37 100.0 0.0 0 - 499 -\$116@-VII NDT 37 100.0 0.0 0 - 500\$117@-VII NDT 37 100.0 0.0 0 - 500\$117@-VII NDT 37 100.0 0.0 0 - 501\$118@-VII NDT 37 100.0 0.0 12 33.3 503 -\$120@-VII NDT 35 85.7 0.0 12 83.3 503 -\$120@-VII NDT 29 100.0 0.0 0 - 504\$121@-VII NDT 38 89.5 0.0 5 0.0 504\$121@-VII NDT 38 89.5 0.0 5 0.0 505\$122@ 37 100.0 0.0 0 - 506\$122@-VII NDT 38 89.5 0.0 5 0.0 507\$124@-VII NDT 38 89.5 0.0 5 0.0 508\$125@-VII NDT 19 100.0 0.0 0 - 509\$126@-VII NDT 24 95.8 0.0 2 0.0 509\$126@-VII NDT 41 95.1 0.0 3 0.0 510 -\$127@-VII NDT 38 97.4 0.0 1 0.0 511 -\$128@-VII NDT 38 97.4 0.0 1 0.0 511 -\$128@-VII NDT 38 97.4 0.0 1 0.0 511 -\$128@-VII NDT 38 97.4 0.0 1 0.0 512 -\$130@-VII NDT 38 97.4 0.0 1 0.0 513 -\$130@-VII NDT 38 97.4 0.0 1 0.0 514 -\$131@-VII NDT 38 99.4 0.0 2 50.0 515\$132@-VII NDT 38 99.4 0.0 2 50.0 516 -\$133@-VII NDT 39 90.5 0.0 5 0.0 517 -\$134@-VI NDT 39 90.5 0.0 5 0.0 518 -\$136@-VII NDT 39 96.5 0.0 1 0.0 519 -\$136@-VII NDT 39 96.5 0.0 1 0.0 520 -\$137@-VI NDT 39 96.5 0.0 1 0.0 510 -\$138@-VII NDT 39 96.5 0.0 1 0.0 511 -\$138@-VII NDT 39 96.5 0.0 1 0.0 521 -\$134@-VI NDT 39 96.5 0.0 1 0.0 522 -\$134@-VI NDT 39 96.5 0.0 1 0.0 523 -\$134@-VI NDT 39 96.5 0.0 2 50.0 524 -\$134@-VI NDT 39 96.5 0.0 1 0.0 525 -\$134@-VI NDT 39 96.5 0.0 2 50.0 526 -\$134@-VI NDT 39 96.5 0.0 2 50.0 527 -\$134@-VI NDT 39 96.5 0.0 2 50.0 528 -\$144@-VII NDT 39 96.9 0.0 2 50.0 526 -\$142@-VI NDT 39 96.9 0.0 2 50.0 527 -\$144@-VII NDT 37 19.9 0.0 5 40.0 528 -\$145@-VII NDT 53 98.1 0.0 2 50.0 528 -\$145@-VII NDT 53 98.1 0.0 2 50.0 528 -\$145@-VII NDT 53 98.1 0.0 2 50.0						26	7.7
493S110@-VII NDT 28 21.4 0.0 25 16.0 494S1110W-VII NDT 37 89.2 0.0 7 14.3 495S112@-VII NDT 25 92.0 0.0 2 50.0 496S113@-VII NDT 8 100.0 0.0 0 - 497 -S114@-VII NDT 34 100.0 0.0 0 - 498S115@-VII NDT 10 100.0 0.0 0 - 499 -S116@-VII NDT 37 100.0 0.0 0 - 500S117@-VII NDT 45 95.5 0.0 4 0.0 501S118@-VII NDT 36 75.0 0.0 12 33.3 502S119@-VII NDT 35 85.7 0.0 12 8.3 502S119@-VII NDT 38 89.5 0.0 5 0.0 504S121@-VII NDT 38 89.5 0.0 5 0.0 505S122@ 37 100.0 0.0 0 - 506S123@-VII NDT 38 89.5 0.0 5 0.0 507S124@-VII NDT 38 89.5 0.0 5 0.0 508S125@-VII NDT 41 95.1 0.0 3 0.0 509S126@-VII NDT 41 95.1 0.0 3 0.0 509S126@-VII NDT 41 95.1 0.0 3 0.0 509S126@-VII NDT 41 95.1 0.0 3 0.0 511S128@-VII NDT 41 95.1 0.0 3 0.0 512S129@-VII NDT 41 90.2 0.0 7 28.6 513S129@-VII NDT 41 90.2 0.0 7 28.6 514S131@-VII NDT 41 90.2 0.0 7 28.6 515S132@-VII NDT 41 90.2 0.0 7 28.6 515S132@-VII NDT 41 90.2 0.0 0 0 - 516S133@-VII NDT 42 100.0 0.0 0 0 - 517 -S134@-VII NDT 39 90.5 0 0 1 0.0 518 -S132@-VII NDT 39 90.5 0 0 1 0.0 519 -S136@-VII NDT 39 90.5 0 0 1 0.0 520 -S137@-VI NDT 41 90.2 0.0 6 33 3 521 -S136@-VII NDT 41 90.2 0.0 6 33 3 521 -S136@-VII NDT 41 90.2 0.0 6 33 3 522 -S139@-VII NDT 41 90.2 0.0 6 33 3 523 -S146@-VII NDT 41 90.2 0.0 6 33 3 524 -S149@-VII NDT 41 90.2 0.0 6 33 3 525 -S149@-VII NDT 41 90.2 0.0 6 33 3 526 -S149@-VII NDT 41 90.2 0.0 6 33 3 527 -S144@-VII NDT 53 98.1 0.0 2 50.0 528 -S145@-VII NDT 53 98.1 0.0 2 50.0 526 -S144@-VII NDT 53 98.1 0.0 2 50.0 527 -S144@-VII NDT 53 98.1 0.0 2 50.0 528 -S145@-VII NDT 53 98.1 0.0 2 50.0 528 -S145@-VII NDT 53 98.1 0.0 5 50.0							
494S111@-VII NDT 37 89.2 0.0 7 14.3 495S112@-VII NDT 25 92.0 0.0 2 50.0 496S113@-VII NDT 8 100.0 0.0 0 - 497 -S114@-VII NDT 34 100.0 0.0 0 - 498S115@-VII NDT 10 100.0 0.0 0 - 500S116@-VII NDT 37 100.0 0.0 0 - 500S117@-VII NDT 36 75.0 0.0 12 33.3 502S119@-VII NDT 36 75.0 0.0 12 33.3 502S119@-VII NDT 36 85.7 0.0 12 8 3 503S120@-VII NDT 29 100.0 0.0 0 - 504S121@-VII NDT 38 89.5 0.0 5 0.0 505S122@ 37 100.0 0.0 0 - 506S123@-VII NDT 19 100.0 0.0 0 - 507S124@-VII NDT 19 100.0 0.0 0 - 508S125@-VII NDT 19 100.0 0.0 0 - 509S126@-VII NDT 41 95.1 0.0 3 0.0 509S126@-VII NDT 15 100.0 0.0 0 - 511S126@-VII NDT 18 97.4 0.0 1 0.0 511S126@-VII NDT 18 97.4 0.0 1 0.0 511S126@-VII NDT 18 99.4 0.0 2 50.0 513S130@-VII NDT 19 89.4 0.0 2 50.0 514S133@-VII NDT 19 89.4 0.0 2 50.0 515S132@-VII NDT 19 89.4 0.0 2 50.0 516S133@-VII NDT 19 89.4 0.0 2 50.0 517S134@-VII NDT 19 89.4 0.0 2 50.0 518S136@-VII NDT 19 89.4 0.0 2 50.0 519S136@-VII NDT 38 94.7 0.0 2 50.0 510S136@-VII NDT 39 92.3 0.0 5 0.0 520S137@-VI NDT 39 92.3 0.0 5 0.0 521S136@-VII NDT 39 92.3 0.0 5 0.0 522S139@-VII NDT 39 92.3 0.0 5 0.0 523S140@-VII NDT 39 92.3 0.0 5 0.0 524S149@-VII NDT 39 92.3 0.0 5 0.0 525S149@-VII NDT 39 92.3 0.0 5 0.0 524S149@-VII NDT 39 92.3 0.0 5 0.0 525S149@-VII NDT 39 92.3 0.0 5 0.0 526S143@-VII NDT 39 92.3 0.0 5 0.0 527S134@-VII NDT 39 92.3 0.0 5 0.0 528S149@-VII NDT 39 92.3 0.0 5 0.0 529S139@-VII NDT 39 92.3 0.0 5 0.0 520S139@-VII NDT 39 92.3 0.0 5 0.0 521S139@-VII NDT 39 92.3 0.0 5 0.0 522S139@-VII NDT 39 92.3 0.0 5 0.0 523S140@-VII NDT 37 19.9 0.0 5 40.0 526S143@-VII NDT 37 19.9 0.0 5 540.0 527S144@-VII NDT 37 19.9 0.0 5 540.0 528S145@-VII NDT 37 19.9 0.0 5 540.0			19				0.0
495S112@-VII NDT 25 92.0 0.0 2 50.0 496S113@-VII NDT 8 100.0 0.0 0 - 497 -S114@-VII NDT 34 100.0 0.0 0 - 498S115@-VII NDT 37 100.0 0.0 0 - 499 -S116@-VII NDT 37 100.0 0.0 0 - 500S117@-VII NDT 36 75.0 0.0 12 33.3 501S118@-VII NDT 36 75.0 0.0 12 33.3 502S119@-VII NDT 36 85.7 0.0 12 8.3 503S120@-VII NDT 36 85.7 0.0 12 8.3 504S121@-VIII NDT 38 89.5 0.0 5 0.0 504S121@-VIII NDT 38 89.5 0.0 5 0.0 505S122@ 37 100.0 0.0 0 - 507S124@-VII NDT 38 89.5 0.0 5 0.0 508S123@-VII NDT 19 100.0 0.0 0 - 507S124@-VII NDT 24 95.8 0.0 2 0.0 508S125@-VII NDT 41 95.1 0.0 3 0.0 509S126@-VII NDT 41 95.1 0.0 3 0.0 509S126@-VII NDT 41 90.2 0.0 7 28.6 511S126@-VII NDT 41 90.2 0.0 7 28.6 512S129@-VII NDT 41 90.2 0.0 7 28.6 513S130@-VII NDT 42 100.0 0.0 0 - 514 -S131@-VII NDT 42 100.0 0.0 0 - 515S132@-VII NDT 19 89.4 0.0 2 50.0 516S133@-VII NDT 19 89.4 0.0 2 50.0 517 -S134@-VI NDT 19 89.4 0.0 2 50.0 518 -S135@-VI NDT 19 89.4 0.0 2 50.0 519 -S136@-VII NDT 38 94.7 0.0 2 50.0 510S136@-VII NDT 39 92.3 0.0 5 0.0 520S137@-VI NDT 39 92.3 0.0 5 0.0 521S136@-VII NDT 39 92.3 0.0 5 0.0 522S139@-VII NDT 41 90.2 0.0 6 33.3 521S136@-VII NDT 41 90.2 0.0 6 33.3 522S140@-VII NDT 41 92.8 0.0 2 50.0 523S149@-VII NDT 41 92.8 0.0 2 50.0 524 -S141@-VII NDT 32 96.9 0.0 2 50.0 525 -S142@-VII NDT 37 19.9 0.0 5 40.0 528S145@-VII NDT 53 98.1 0.0 2 50.0 527 -S144@-VII NDT 53 98.1 0.0 2 50.0 528S145@-VII NDT 53 98.1 0.0 2 50.0						25	16.0
496S113@-VII NDT 8 100.0 0.0 0 -497 -S114@-VII NDT 34 100.0 0.0 0 -5115@-VII NDT 10 100.0 0.0 0 -5115@-VII NDT 37 100.0 0.0 0 -5500S117@-VII NDT 37 100.0 0.0 0 -5500S117@-VII NDT 36 75.0 0.0 12 33.3 502S119@-VII NDT 36 75.0 0.0 12 8.3 502S119@-VII NDT 36 85.7 0.0 12 8.3 502S119@-VII NDT 38 89.5 0.0 5 0.0 504 -S121@-VII NDT 38 89.5 0.0 5 0.0 505S122@ 37 100.0 0.0 0 -5505S122@ 37 100.0 0.0 0 -5506 -S123@-VII NDT 38 89.5 0.0 5 0.0 506 -S123@-VII NDT 38 89.5 0.0 5 0.0 508S125@-VII NDT 49 100.0 0.0 0 -5507 -S124@-VII NDT 41 95.1 0.0 3 0.0 509 -5125@-VII NDT 41 95.1 0.0 3 0.0 509 -5125@-VII NDT 38 97.4 0.0 1 0.0 511 -S128@-VII NDT 39 97.4 0.0 1 0.0 511 -S128@-VII NDT 39 97.4 0.0 2 50.0 515 -S132@-VII NDT 39 97.4 0.0 2 50.0 515 -S132@-VII NDT 39 97.4 0.0 2 50.0 515 -S132@-VII NDT 39 97.4 0.0 2 50.0 516 -S133@-VII NDT 39 97.4 0.0 2 50.0 517 -S134@-VI NDT 39 97.4 0.0 2 50.0 518 -S133@-VII NDT 39 97.4 0.0 2 50.0 519 -S136@-VII NDT 39 97.4 0.0 2 50.0 510 -S136@-VII NDT 39 97.4 0.0 2 50.0 510 -S136@-VII NDT 39 97.4 0.0 2 50.0 510 -S136@-VII NDT 30 97.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0							
497S114@-VII NDT 34 100.0 0.0 0 -498S115@-VII NDT 10 100.0 0.0 0 -5116@-VII NDT 37 100.0 0.0 0 -5500S116@-VII NDT 37 100.0 0.0 0 -5501S118@-VII NDT 36 75.0 0.0 12 33.3 502S119@-VII NDT 35 85.7 0.0 12 8.3 503S120@-VII NDT 35 85.7 0.0 12 8.3 503S120@-VII NDT 35 85.7 0.0 12 8.3 503S120@-VII NDT 29 100.0 0.0 0 -5504S121@-VIII NDT 38 89.5 0.0 5 0.0 505S122@ 37 100.0 0.0 0 -5505S122@ 37 100.0 0.0 0 -5507S124@-VII NDT 19 100.0 0.0 0 -5507S124@-VII NDT 19 100.0 0.0 0 -5508S125@-VII NDT 41 95.8 0.0 2 0.0 508S125@-VII NDT 41 95.8 0.0 2 0.0 508S125@-VII NDT 41 95.1 0.0 3 0.0 509S126@-VII NDT 38 97.4 0.0 1 0.0 511S128@-VII NDT 38 97.4 0.0 1 0.0 511S128@-VII NDT 38 97.4 0.0 1 0.0 511S128@-VII NDT 41 90.2 0.0 7 28.6 512S129@-VII NDT 41 90.2 0.0 7 28.6 512S129@-VII NDT 38 97.4 0.0 1 0.0 514S131@-VII NDT 38 94.7 0.0 2 50.0 515S132@-VII NDT 39 100.0 0.0 0 -5515S132@-VII NDT 39 100.0 0.0 0 -5516S133@-VII NDT 39 100.0 0.0 0 -5519S134@-VI NDT 39 92.3 0.0 5 0.0 519S136@-VII NDT 39 92.3 0.0 5 0.0 520S137@-VI NDT 39 92.3 0.0 5 0.0 520S137@-VI NDT 41 90.2 0.0 6 33.3 521S136@-VII NDT 39 92.3 0.0 5 0.0 522S139@-VII NDT 41 92.8 0.0 2 50.0 522S144@-VII NDT 32 96.9 0.0 2 50.0 522S144@-VII NDT 32 96.9 0.0 2 50.0 522S144@-VII NDT 37 19.9 0.0 5 40.0 528S145@-VII NDT 37 19.9 0.0 5 40.0 5528S145@-VII NDT 37 19.9 0.0 5 5							50.0
498S1150-VII NDT 10 100.0 0.0 0 - 499S1160-VII NDT 37 100.0 0.0 0 - 500S1170-VII NDT 37 100.0 0.0 0 - 501S1180-VII NDT 36 75.0 0.0 12 33.3 502S1190-VII NDT 35 85.7 0.0 12 8 3 503S1200-VII NDT 29 100.0 0.0 0 - 504S1210-VIII NDT 38 89.5 0.0 5 0.0 505S1220 37 100.0 0.0 0 - 506S1230-VII NDT 19 100.0 0.0 0 - 507S1240-VII NDT 19 100.0 0.0 0 - 508S1250-VII NDT 41 95.1 0.0 3 0.0 509S1260-VII NDT 41 95.1 0.0 3 0.0 509S1260-VII NDT 41 95.1 0.0 3 0.0 510S1270-VII NDT 38 97.4 0.0 1 0.0 511S1280-VII NDT 41 90.2 0.0 7 28.6 512S1290-VII NDT 41 90.2 0.0 7 28.6 513S1300-VII NDT 41 90.2 0.0 7 28.6 514S1310-VII NDT 38 94.7 0.0 2 50.0 515S1320-VII NDT 39 96.5 0.0 1 0.0 516S1330-VII NDT 39 96.5 0.0 1 0.0 517S1340-VII NDT 39 96.5 0.0 1 0.0 518S1350-VI NDT 39 92.3 0.0 5 0.0 520S1360-VII NDT 39 92.3 0.0 5 0.0 521S1380-VII NDT 41 90.2 0.0 6 33 3 521S1380-VII NDT 41 90.2 0.0 6 6 33 3 522S1400-VII NDT 14 57.1 0.0 10 20.0 523S1400-VII NDT 14 92.8 0.0 2 50.0 524S1410-VII NDT 14 57.1 0.0 10 20.0 525S1420-VII NDT 17 0.0 0.0 17 94.0 526S1430-VII NDT 17 0.0 0.0 17 94.0 527S1440-VII NDT 53 98.1 0.0 2 50.0 528S1440-VII NDT 53 98.1 0.0 2 50.0 527S1440-VII NDT 37 19.9 0.0 5 40.0 528S1450-VII NDT 37 19.9 0.0 5 40.0							-
499							-
500. -\$1178-VII NDT 45 95.5 0.0 4 0.0 501. -\$1188-VII NDT 36 75.0 0.0 12 33.3 502. -\$1198-VII NDT 35 85.7 0.0 12 8.3 503 -\$1208-VII NDT 29 100.0 0.0 0 - 504. -\$1218-VIII NDT 38 89.5 0.0 5 0.0 505. -\$1228 37 100.0 0.0 0 - 506. -\$1238-VII NDT 19 100.0 0.0 0 - 507. -\$1249-VII NDT 41 95.8 0.0 2 0.0 508. -\$1259-VII NDT 41 95.1 0.0 3 0.0 509. -\$1269-VII NDT 15 100.0 0.0 0 - 510. -\$1279-VII NDT 15 100.0 0.0 0 - 511 -\$1389-VII NDT 13 84.6 0.0 3 0.0 512. -\$1319-VII NDT 10 100.0							-
501. -\$1189-VII NDT 36 75.0 0.0 12 33.3 502. -\$1199-VII NDT 35 85.7 0.0 12 8.3 503. -\$1209-VII NDT 29 100.0 0.0 0 - 504. -\$1219-VIII NDT 38 89.5 0.0 5 0.0 505. -\$1229 37 100.0 0.0 0 - 506. -\$1239-VII NDT 19 100.0 0.0 0 - 507. -\$1249-VII NDT 41 95.8 0.0 2 0.0 508. -\$1259-VII NDT 41 95.1 0.0 3 0.0 509. -\$1269-VII NDT 15 100.0 0.0 0 - 510. -\$1279-VII NDT 15 100.0 0.0 0 - 511. -\$1289-VII NDT 41 99.2 0.0 7 28.6 512. -\$1319-VII NDT 13 84.6 0.0 3 0.0 513. -\$1319-VII NDT 10 10							
502. -S119@-VII NDT 35 85.7 0.0 12 8.3 503 -S120@-VII NDT 29 100.0 0.0 0 - 504. -S121@-VIII NDT 38 89.5 0.0 5 0.0 505. -S122@ 37 100.0 0.0 0 - 506. -S123@-VII NDT 19 100.0 0.0 0 - 507. -S124@-VII NDT 19 100.0 0.0 2 0.0 508. -S125@-VII NDT 41 95.1 0.0 3 0.0 509. -S126@-VII NDT 15 100.0 0.0 0 - 610. -S127@-VII NDT 38 97.4 0.0 1 0.0 511. -S128@-VII NDT 41 90.2 0.0 7 28.6 512. -S139@-VII NDT 13 84.6 0.0 3 0.0 0 513. -S131@-VII NDT 19 89.4 0.0 2 50.0 515. -S132@-VII NDT 19		-S1170-VII NDT					0.0
503 -\$120@-VII NDT 29 100.0 0.0 0 -500.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 5 0.0 0 0 -5 0.0 0 0 0 -5 0.0 0 0 0 0 -5 0.0 0 0 0 -5 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
504. -\$121@-VIII NDT 38 89.5 0.0 5 0.0 505. -\$122@ 37 100.0 0.0 0 - 506. -\$123@-VII NDT 19 100.0 0.0 0 - 507. -\$124@-VII NDT 24 95.8 0.0 2 0.0 508. -\$125@-VII NDT 41 95.1 0.0 3 0.0 509. -\$126@-VII NDT 15 100.0 0.0 0 - 510. -\$127@-VII NDT 38 97.4 0.0 1 0.0 511. -\$128@-VII NDT 41 90.2 0.0 7 28.6 512. -\$129@-VII NDT 13 84.6 0.0 3 0.0 0 - 512. -\$131@-VII NDT 13 84.6 0.0 3 0.0 0 - 514. -\$131@-VII NDT 10 0.0 0.0 0 - - 515. -\$132@-VII NDT 19 89.4 0.0 2 50.0 0							8.3
505. -\$122\text{0} 37 100.0 0.0 0 -506. 506. -\$123\text{0}-VII NDT 19 100.0 0.0 0 -507. 507. -\$124\text{0}-VII NDT 24 95.8 0.0 2 0.0 508. -\$125\text{0}-VII NDT 41 95.1 0.0 3 0.0 509. -\$126\text{0}-VII NDT 15 100.0 0.0 0 - \$10. -\$127\text{0}-VII NDT 38 97.4 0.0 1 0.0 \$11. -\$128\text{0}-VII NDT 41 90.2 0.0 7 28.6 \$12. -\$129\text{0}-VII NDT 41 90.2 0.0 7 28.6 \$12. -\$129\text{0}-VII NDT 42 100.0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0.0 0 <							. - .
506. -\$123@-VII NDT 19 100.0 0.0 0 - 507. -\$124@-VII NDT 24 95.8 0.0 2 0.0 508. -\$125@-VII NDT 41 95.1 0.0 3 0.0 509. -\$126@-VII NDT 15 100.0 0.0 0 - \$10 -\$127@-VII NDT 38 97.4 0.0 1 0.0 \$11 -\$128@-VII NDT 41 90.2 0.0 7 28.6 \$12. -\$129@-VII NDT 13 84.6 0.0 3 0.0 \$13. -\$130@-VII NDT 13 84.6 0.0 3 0.0 \$13. -\$130@-VII NDT 30 100.0 0.0 0 - \$14 -\$131@-VII NDT 19 89.4 0.0 2 50.0 \$15. -\$132@-VII NDT 19 89.4 0.0 2 50.0 \$15. -\$134@-VII NDT 39 100.0 0.0 0 - \$15. -\$137@-VI NDT 41 90.2 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td>							0.0
507. -S1240-VII NDT 24 95.8 0.0 2 0.0 508. -S1250-VII NDT 41 95.1 0.0 3 0.0 509. -S1260-VII NDT 15 100.0 0.0 0 - 610. -S1270-VII NDT 38 97.4 0.0 1 0.0 511. -S1280-VII NDT 41 90.2 0.0 7 28.6 512. -S1290-VII NDT 13 84.6 0.0 3 0.0 513. -S1300-VII NDT 13 84.6 0.0 3 0.0 514. -S1310-VII NDT 30 100.0 0.0 0 - 515. -S1320-VII NDT 19 89.4 0.0 2 50.0 516. -S1330-VII NDT 38 94.7 0.0 2 50.0 517. -S1340-VI NDT 39 96.5 0.0 1 0.0 518. -S1350-VI NDT 39 92.3 0.0 5 0.0 520. -S1370-VI NDT 40 95.0<							
508. -S125Q-VII NDT 41 95.1 0.0 3 0.0 509. -S126Q-VII NDT 15 100.0 0.0 0 - 610. -S127Q-VII NDT 38 97.4 0.0 1 0.0 511. -S128Q-VII NDT 41 90.2 0.0 7 28.6 512. -S129Q-VII NDT 13 84.6 0.0 3 0.0 513. -S130Q-VII NDT 13 84.6 0.0 3 0.0 514. -S131Q-VII NDT 30 100.0 0.0 0 - 515. -S132Q-VII NDT 19 89.4 0.0 2 50.0 516. -S133Q-VII NDT 19 89.4 0.0 2 50.0 517. -S134Q-VII NDT 39 96.5 0.0 1 0.0 518. -S135Q-VI NDT 39 92.3 0.0 5 0.0 519. -S136Q-VII NDT 39 92.3 0.0 5 0.0 520. -S137Q-VI NDT 41 90.2							
509. -S126Q-VII NDT 15 100.0 0.0 0 - 510. -S127Q-VII NDT 38 97.4 0.0 1 0.0 511. -S128Q-VII NDT 41 90.2 0.0 7 28.6 512. -S129Q-VII NDT 13 84.6 0.0 3 0.0 513. -S130Q-VII NDT 42 100.0 0.0 0 - 514. -S131Q-VII NDT 30 100.0 0.0 0 - 515. -S132Q-VII NDT 19 89.4 0.0 2 50.0 516. -S133Q-VII NDT 19 89.4 0.0 2 50.0 517. -S134Q-VII NDT 39 96.5 0.0 1 0.0 518. -S135Q-VI NDT 39 92.3 0.0 0 - 519. -S136Q-VII NDT 39 92.3 0.0 0 - 520. -S137Q-VI NDT 41 90.2 0.0 6 33.3 521. -S134Q-VII NDT 14 57.1 <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td>						2	
\$10.				95.1			
511. -S128@-VII NDT 41 90.2 0.0 7 28.6 512. -S129@-VII NDT 13 84.6 0.0 3 0.0 513. -S130@-VII NDT 42 100.0 0.0 0 - 514. -S131@-VII NDT 30 100.0 0.0 0 - 515. -S132@-VII NDT 19 89.4 0.0 2 50.0 516. -S133@-VII NDT 38 94.7 0.0 2 50.0 517. -S134@-VI NDT 39 96.5 0.0 1 0.0 518. -S135@-VI NDT 39 100.0 0.0 0 - 518. -S136@-VII NDT 39 92.3 0.0 0 - 519. -S136@-VII NDT 39 92.3 0.0 5 0.0 520. -S137@-VI NDT 41 90.2 0.0 6 33.3 521. -S138@-VII NDT 14 92.8 0.0 2 50.0 522. -S140@-VII NDT 14 57.1 </td <td>509.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	509.						
512. -\$1299-VII NDT 13 84.6 0.0 3 0.0 513. -\$1309-VII NDT 42 100.0 0.0 0 - 514. -\$1319-VII NDT 30 100.0 0.0 0 - 515. -\$1329-VII NDT 19 89.4 0.0 2 50.0 516. -\$1339-VII NDT 19 89.4 0.0 2 50.0 517. -\$1349-VII NDT 29 96.5 0.0 1 0.0 518. -\$1359-VI NDT 39 100.0 0.0 0 - 519. -\$1369-VII NDT 39 92.3 0.0 5 0.0 520. -\$1379-VI NDT 41 90.2 0.0 6 33.3 521. -\$1389-VII NDT 40 95.0 0.0 2 50.0 522. -\$1399-VIII NDT 14 92.8 0.0 2 50.0 523. -\$1409-VII NDT 14 57.1 0.0 10 20.0 524. -\$1499-VII NDT 17	510.						
513. -\$130@-VII NDT 42 100.0 0.0 0 - 514. -\$131@-VII NDT 30 100.0 0.0 0 - 515. -\$132@-VII NDT 19 89.4 0.0 2 50.0 516. -\$133@-VII NDT 19 89.4 0.0 2 50.0 517. -\$134@-VII NDT 38 94.7 0.0 2 50.0 518. -\$135@-VI NDT 29 96.5 0.0 1 0.0 518. -\$135@-VI NDT 39 100.0 0.0 0 - 519. -\$136@-VII NDT 39 92.3 0.0 5 0.0 520. -\$137@-VI NDT 41 90.2 0.0 6 33.3 521. -\$138@-VII NDT 40 95.0 0.0 2 50.0 522. -\$139@-VIII NDT 14 92.8 0.0 2 50.0 523. -\$140@-VII NDT 14 57.1 0.0 10 20.0 524. -\$141@-VII NDT 32 96.9 0.0 2 50.0 525. -\$142@-VI NDT 17 0.0 0.0 17 94.0 526 -\$143@-VII NDT 37 19.9 0.0 5 40.0 5							
514 -S131@-VII NDT 30 100.0 0.0 0 - 515. -S132@-VII NDT 19 89.4 0.0 2 50.0 516. -S133@-VII NDT 38 94.7 0.0 2 50.0 517. -S134@-VI NDT 29 96.5 0.0 1 0.0 518. -S135@-VI NDT 39 100.0 0.0 0 - 519. -S136@-VII + NDT 39 92.3 0.0 5 0.0 520. -S137@-VI NDT 41 90.2 0.0 6 33.3 521. -S138@-VII NDT 40 95.0 0.0 2 50.0 522. -S139@-VIII NDT 14 92.8 0.0 2 50.0 523. -S140@-VII NDT 14 57.1 0.0 10 20.0 524. -S141@-VII NDT 17 0.0 0.0 17 94.0 525. -S142@-VI NDT 17							
515. -S132Q-VII NDT 19 89.4 0.0 2 50.0 516. -S133Q-VII NDT 38 94.7 0.0 2 50.0 517. -S134Q-VI NDT 29 96.5 0.0 1 0.0 518. -S135Q-VI NDT 39 100.0 0.0 0 - 519. -S136Q-VII NDT 39 92.3 0.0 5 0.0 520. -S137Q-VI NDT 41 90.2 0.0 6 33.3 521. -S138Q-VII NDT 40 95.0 0.0 2 50.0 522. -S139Q-VIII NDT 14 92.8 0.0 2 50.0 523. -S140Q-VII NDT 14 57.1 0.0 10 20.0 524. -S141Q-VII NDT 32 96.9 0.0 2 50.0 525. -S142Q-VI NDT 17 0.0 0.0 17 94.0 526 -S143Q-VII NDT 37 19.9 0.0 5 40.0 527. -S145Q-VII NDT 15 86.7 0.0 5 40.0 528. -S145Q-VII NDT 15 86.7 0.0 5							-
516. -S133Q-VII NDT 38 94.7 0.0 2 50.0 517. -S134Q-VI NDT 29 96.5 0.0 1 0.0 518. -S135Q-VI NDT 39 100.0 0.0 0 - 519. -S136Q-VII + NDT 39 92.3 0.0 5 0.0 520. -S137Q-VI NDT 41 90.2 0.0 6 33.3 521. -S138Q-VII NDT 40 95.0 0.0 2 50.0 522. -S139Q-VIII NDT 14 92.8 0.0 2 50.0 523. -S140Q-VIII NDT 14 57.1 0.0 10 20.0 524. -S141Q-VII NDT 32 96.9 0.0 2 50.0 525. -S142Q-VI NDT 17 0.0 0.0 17 94.0 526. -S143Q-VII NDT 37 19.9 0.0 5 40.0 527. -S145Q-VII NDT 15						Ü	- -
517. -S134@-VI NDT 29 96.5 0.0 1 0.0 518. -S135@-VI NDT 39 100.0 0.0 0 - 519. -S136@-VII * NDT 39 92.3 0.0 5 0.0 520. -S137@-VI NDT 41 90.2 0.0 6 33.3 521. -S138@-VII NDT 40 95.0 0.0 2 50.0 522. -S139@-VIII NDT 14 92.8 0.0 2 50.0 523. -S140@-VII NDT 14 57.1 0.0 10 20.0 524. -S141@-VII NDT 32 96.9 0.0 2 50.0 525. -S142@-VI NDT 17 0.0 0.0 17 94.0 526. -S143@-VII NDT 37 19.9 0.0 5 40.0 527. -S145@-VII NDT 15 86.7 0.0 5 40.0 528. -S145@-VII NDT 15						2	
518 -S135@-VI NDT 39 100.0 0.0 0 - 519 -S136@-VII + NDT 39 92.3 0.0 5 0.0 520 -S137@-VI NDT 41 90.2 0.0 6 33.3 521 -S138@-VII NDT 40 95.0 0.0 2 50.0 522 -S139@-VIII NDT 14 92.8 0.0 2 50.0 523 -S140@-VII NDT 14 57.1 0.0 10 20.0 524 -S141@-VII NDT 32 96.9 0.0 2 50.0 525 -S142@-VI NDT 17 0.0 0.0 17 94.0 526 -S143@-VII NDT 53 98.1 0.0 2 50.0 527 -S144@-VII NDT 37 19.9 0.0 5 40.0 528 -S145@-VII NDT 15 86.7 0.0 5 40.0						2	
519 -S136@-VII * NDT 39 92.3 0.0 5 0.0 520 -S137@-VI NDT 41 90.2 0.0 6 33.3 521 -S138@-VII NDT 40 95.0 0.0 2 50.0 522 -S139@-VIII NDT 14 92.8 0.0 2 50.0 523 -S140@-VII NDT 14 57.1 0.0 10 20.0 524 -S141@-VII NDT 32 96.9 0.0 2 50.0 525 -S142@-VI NDT 17 0.0 0.0 17 94.0 526 -S143@-VII NDT 53 98.1 0.0 2 50.0 527 -S144@-VII NDT 37 19.9 0.0 5 40.0 528 -S145@-VII NDT 15 86.7 0.0 5 40.0							
520. -S137@-VI NDT 41 90.2 0.0 6 33.3 521. -S138@-VII NDT 40 95.0 0.0 2 50.0 522. -S139@-VIII NDT 14 92.8 0.0 2 50.0 523. -S140@-VII NDT 14 57.1 0.0 10 20.0 524. -S141@-VII NDT 32 96.9 0.0 2 50.0 525. -S142@-VI NDT 17 0.0 0.0 17 94.0 526 -S143@-VII NDT 53 98.1 0.0 2 50.0 527. -S144@-VII NDT 37 19.9 0.0 5 40.0 528. -S145@-VII NDT 15 86.7 0.0 5 40.0						0	
521. -S138@-VII NDT 40 95.0 0.0 2 50.0 522. -S139@-VIII NDT 14 92.8 0.0 2 50.0 523. -S140@-VII NDT 14 57.1 0.0 10 20.0 524. -S141@-VII NDT 32 96.9 0.0 2 50.0 525. -S142@-VI NDT 17 0.0 0.0 17 94.0 526 -S143@-VII NDT 53 98.1 0.0 2 50.0 527. -S144@-VII NDT 37 19.9 0.0 5 40.0 528. -S145@-VII NDT 15 86.7 0.0 5 40.0							
522. -S139@-VIII NDT 14 92.8 0.0 2 50.0 523. -S140@-VII NDT 14 57.1 0.0 10 20.0 524. -S141@-VII NDT 32 96.9 0.0 2 50.0 525. -S142@-VI NDT 17 0.0 0.0 17 94.0 526 -S143@-VII NDT 53 98.1 0.0 2 50.0 527. -S144@-VII NDT 37 19.9 0.0 5 40.0 528. -S145@-VII NDT 15 86.7 0.0 5 40.0						9	
523. -S140@-VII NDT 14 57.1 0.0 10 20.0 524. -S141@-VII NDT 32 96.9 0.0 2 50.0 525. -S142@-VI NDT 17 0.0 0.0 17 94.0 526 -S143@-VII NDT 53 98.1 0.0 2 50.0 527. -S144@-VII NDT 37 19.9 0.0 5 40.0 528. -S145@-VII NDT 15 86.7 0.0 5 40.0						2	
524S141@-VII NDT 32 96.9 0.0 2 50.0 525S142@-VI NDT 17 0.0 0.0 17 94.0 526 -S143@-VII NDT 53 98.1 0.0 2 50.0 527S144@-VII NDT 37 19.9 0.0 5 40.0 528S145@-VII NDT 15 86.7 0.0 5 40.0	522.						
525S142@-VI NDT 17 0.0 0.0 17 94.0 526 -S143@-VII NDT 53 98.1 0.0 2 50.0 527S144@-VII NDT 37 19.9 0.0 5 40.0 528S145@-VII NDT 15 86.7 0.0 5 40.0						10	
526 -S143@-VII NDT 53 98.1 0.0 2 50.0 527S144@-VII NDT 37 19.9 0.0 5 40.0 528S145@-VII NDT 15 86.7 0.0 5 40.0							
527S144@-VII NDT 37 19.9 0.0 5 40.0 528S145@-VII NDT 15 86.7 0.0 5 40.0							54.U 50.0
528S145@-VII NDT 15 86.7 0.0 5 40.0							
						5 5	
					0.0	2	50.0
						11	28.6
-S147@~VII NDT 29 69.0 0.0 14 28.6	o 30 ,	-214/M~ATT UNI	29	0.60	0.0	(**	20.0

1	2		3	4	5	6	7
531.	C.NO-74335-F4B-S1480-VII	NDT	14	85.7	0.0	2	0.0
532.	-S1490-VII	NDT	19	78.9	0.0	8	50.0
533.	-S150@-VII	NDT	14	100.0	0.0	0	-
534.	-S151@-VII	NDT	42	59.5	0.0	21	23 8
535.	-S1529-VII	NDT	47	55.3	0.0	26	23.1
536.	-S153@-VII	NDT	15	93.3	00	1	100.0
537.	-S1549-VII	NDT	30	100.0	0.0	0	-
538.	~S155@-VII	NDT	36	91.7	0.0	6	50.0
539.	-S156Q-VI	NDT	48	79.2	0.0	16	18.7
540.	-S157Q-VI	NDT	43	97.7	0.0	1	100.0
541.	-S1589-VII	NDT	40	52.5	0.0	22	27.3
542.	-S159@-VII	NDT	48	85.4	0.0	11	18.2
543.	-S160@-VII	NDT	50	100.0	0.0	0	
544.	-S1619-VI	NDT	45 25	93.3	0.0	4	00
545.	-S1629	NDT	35	80.0	00	9	44.4
546.	-S1639-VII	NDT	18 19	61.1 68.4	0.0	10	0.0
547.	-S164@-VI	NDT			0.0	6	33.3
548. 549.	-S1650-VI	NDT NDT	32 21	78.1 71.4	0.0	9 13	22.2
549. 550.	-S16609-VI -S16702-VI	NDT	40	85.0	0.0		25.0
550.	-51689-VI	NDT	17	88.2	0.0	8 2	50.0
552.	-S169@-VII	NDT	28	78.6	0.0	6	16.7
552. 553.	-S1709a-VII	NDT	40	70.0	0.0	18	0.0
553. 554.	-S1719-VII	NDT	28	35.7	0.0	19	21.0
555.	-S1720-VII	NDT	24	58.3	00	13	15.4
556.	-S172 % -VII	NDT	8	50.0	0.0	5	20.0
557.	-S1749-VII	NDT	45	48.9	0.0	33	39.4
558.	-S175 @- VII	NDT	41	90.2	0 0	4	100.0
559.	-\$1769	1101	29	93.1	0.0	3	333
560.	-S1779-VII	NDT	40	60.0	0.0	22	9 1
561.	-S178Q-VII	NDT	40	80.0	0.0	3	37.5
562.	-S179 9- VII	NDT	25	96.0	0.0	ĭ	0.0
563.	-S180 9 -VII	NDT	50	50.0	0.0	34	38.2
564.	-\$1819		28	42.8	0.0	24	16.7
565.	-S1829-VII	NDT	42	83.3	00	9	55 ₋ 5
566.	-S1839-VII	NDT	13	69.2	00	6	33.3
567.	-S1849-VII	NDT	38	71.0	0.0	15	33.3
568.	-S185@-VII	NDT	35	94.3	0.0	3	66 . 7
569.	-S1869-VII	NDT	13	84.6	0.0	3	33.3
570.	-S187Q-VII	NDT	20	85 , 0	0.0	4	75.0
571.	-S188@-VII	NDT	15	73.3	0.0	4	0.0
572 a	-S189 @- VII	NDT	25	100.0	0.0	0	-
573.	-S190@-VII	NDT	17	88.2	0.0	2	50.0
574.	-S191 Q		37	97,3	00	1	100.0
575.	-S1920-VII	NDT	47	100.0	0.0	0	-

1	2	3	4	5	6	7
576.	C.NO-74335-F4B-S1939-VIII NDT		94.7	0.0	1	100.0
577	-S1940-VII NDT		100 0	0.0	0	-
578	-S1950-VII NDT		100.0	0.0	0	- .
579	-S196@-VIII NDT		82.3	0.0	14	42.8
580	-\$197@-VII NDT		65.8	00	21	42.8
581	-S198@-VII NDT		100.0	0.0	0	
582 .	-S1990-VII NDT		60.4	0.0	19	47.4
583.	-S200@-VI NDT		65.6	00	15	26.7
584.	-S201@-VII NDT		68.7	0.0	10	60 0
585 ·	-\$202@-VII NDT		95.2	0.0	2	0.0
586.	-S2030-VII NDT		62.5	0.0	21	14.3
587.	-\$204 Q -VII NDT		95.2	0.0	3	33.3
588 . 589 .	-S2050-VII NDT -S2060-VII NDT		76.2	0.0	7 3	0.0
590.	-3200m=VII NUI -S2070	24 9	91.7 100.0	0.0 0.0	0	333
590. 591.	-3207W -S208@-VIII NDT		82.1	0.0	7	42.8
592.	-5208@-VIII NDT -S209@-VIII NDT		64.3	0.0	14	35.7
593	-3209W-VIII NDT -S210Q-VIII NDT		84.6	0.0	7	28.6
594.	-S211@-VIII NDT		70.8	0.0	á	33.3
595.	-S212@-VIII NDT		82.8	0.0	9 7	0.0
596.	-S2139-VIII NDT		81.5	0.0	5	0.0
597.	-S2140-VIII NDT		94.7	0.0	3	66.7
598.	-S215Q-VIII NDT		100.0	00	ĭ	0.0
599.	-S216Q-VIII NDT		27.3	00	36	22.2
600	-S217@-VIII NDT		92.3	0.0	2	0.0
601	-S2189-VIII NDT		63.6	00	15	13.3
602.	-S2190-VII NDT		757	0.0	11	36.4
603.	-S2209-VIII NDT		96.3	0.0	1	100.0
604	-S2210-VII NDT		77.3	20.0	15	0 , 0
605.	-S2220-VII NDT		27.1	2.8	39	46 1
606.	-S223@-VIII NDT		78.6	0.0	3	33 3
607	-S224@÷VIII NDT		90.6	00	3	0.0
608.	-S225 @ -VII NDT		894	00	7	0.0
609 a	-S226 @-V II NDT		867	0.0	4	0.0
610	-S2279-VII NDT		78.9	00	6	16.7
611.	-S228@-VIII NDT		100.0	00	0	-
612.	-S229@-VI NDT		62.2	0.0	17	82.3
613.	-S230@-VII ND1		83.3	0.0	6	50.0
614.	-S231@-VIII NDT	32	84.4	00	9	44.4
615.	-S2329-VIII NDT	52	92.3	0.0	4	75.0
616.	-S2330-VIII NDT		96.9	00	3 4	0.0 75.0
617.	-S2349-VIII NDT	13	769	0.0	11	75.0 36.4
618.	-S235@-VIII NDT		81.2	00		0.0
619,	-S2369 VIII ND	15	93.3	0.0	1	100.0
620.	-S237@-VIII ND	37	97.3	0.0	,	100.0

]	2	3	4	5	6	7
621 .	C.NO-74335-F4B-S238@	33	100.0	0.0	0	-
622.	-S239Q-VII NDT	32	90 . 6	0.0	3	0.0
623.	-S240Q-VII NDT	25	100.0	0.0	0	-
624.	-S241₽-VIII NDT	31	87.1	0.0	5	200
625.	-S2420-VIII NDT	36	944	0.0	5	20.0
626 .	-S243@-VIII NDT	32	93.7	0.0	4	50.0
627	-S2449-VIII NDT	34	73.5	0.,0	10	80.0
628.	-S245Q-VIII NDT	33	51.5	0.0	20	50.0
629.	-S246@-VIII NDT	33	93.9	00	2	50.0
630.	-S247Q-VIII NDT	30	80.0	00	9	33 . 3
631.	-\$248@-VII NDT	25	100.0	0.0	0	-
632	-S249Q-VII NDT	30	1000	0.0	0	-
633.	-S250@-VII NDT	36	889	0.0	6	0.0
634	-S251@-VII NDT	49	81.6	00	12	8,3
635.	-S2529-VII NDT	30	90.0	00	4	0.0
636.	-S253@-VII NDT	30	46.7	00	16	0.0
637.	-S254Q-VII NDT	47	100.0	0.0	0	-
638.	-S255@-VII NDT	37	81.1	0.0	10	0.0
639.	-S2560-VIII NDT	49	55.1	00	24	58.3
640.	-S257@-VII NDT	50	98.0	0.0	1	100.0
641.	-S258@-VII NDT	31	48.4	00	21	4.8
642.	-S259@-VII NDT	38	55.3	00	28	7.1
643.	-\$260@-VII NDT	29	82.7	0.0	7	14.3
644 .	-S261@-VII NDT	36	88.9	0.0	6	0.0
645.	-S262@-VII NDT	50	56.0	0.0	27	3.7
646.	-S2639-VII NDT	24	100.0	0.0	0	^-
647.	-S2649-VIII NDT	38	52.6	0.0	12	25.0
648.	-S265@-VII NDT	31	100.0	00	0	-
649.	-S2669-VII NDT	35 32	100.0	00	0 8	50.0
650.	-S2679-VII NDT -S2689-VII NDT		87.5 71.1	0.0		15.4
651. 652.	-S268@-VII NDT -S269@-VII NDT	45 32	90.6	0,.0 0.0	13 4	50.0
653.	-3209&-VII NDT -8270@-VII NDT	35	90.6 82.8	00	10	30.0
	-52719-VIII NDT	31	93.5	0.0	3	333
654 655.	-52719-VIII NDT	40	100.0	00	0	33.3
656.	-52729-VII NDT -S2739-VII NDT	37	51.3	5.5	21	23.8
657.	-5273@-VII NDT -S274@-VIII NDT	41	65.8	0.0	15	73.3
658.	-32749-VIII NDT -S2759-VII NDT	34	35 . 3	0.0	33	24,2
659 .	-3275@-VII NDT -S276@-VIII NDT	46	35.3 89.1	0.0	33 10	30.0
660.	-5277@-VIII NDT -S277@-VII NDT	45	93.3	0.0	3	33.3
661.	-32//W-VII NDT -S278Q-VI NDT	43	100.0	0.0	0	
662.	-5279@-VIII NDT	17	82.3	0.0	3	333
663.	-32/98-VIII NDT	45	60.0	0.0	22	4.5
664.	-32819-VII NDT	37	91.9	0.0	3	33.3
004.	-25018-AII MAI	3/	フリップ	O . O	J	33.3

						
_1	2	3	4	5	6	
665	C.NO-74335-F4B-S2820-VII ND	T 25	100.0	0.0	0	_
566.	-S283@-VIII ND		81.8	0.0	10	30 0
667	-S284Q-VII ND		78.6	0.0	4	0.0
668 .	-S285@-VII ND		71.8	0.0	15	20.0
669.	-S286Q-VIII ND	T 43	88.0	0.0	7	28.6
670.	-S287@-VIII ND		40.5	0.0	34	26.5
671	-S288@-VII ND		74.3	0.0	19	10.5
672	-S289@-VIII ND	T 26	88.5	0.0	6	0.0
673.	-S2909-VIII ND		93.6	0.0	3	33.3
674.	-S291 Q	39	41.0	0.0	24	29.2
675.	-5292@-VIII ND		92,3		1	100.0
67 6 .				00		
			628	00	18	22.2
677.	-S294Q-VII ND		92.3	00	5	40 0
678	-S295Q-VIII ND		97.6	0.0	1	0.0
679.	-S296Q-VII ND		70.3	0 0	14	28.6
680.	-S297@-VII ND		48.6	0.0	20	45.0
681	~S298 Q-V III ND		95.6	0.0	11	18 2
682.	-S299 @ -VII ND		66.7	0.0	19	21.0
683.	-S300 Q- VII ND		915	0.0	9	33.3
684 。	-S3O1Q-VIII ND	T 50	98.0	00	1	100.0
685.	-S302@-VIII ND	T 32	56.2	0.0	16	37.5
686 .	-S303@	32	78.1	00	9	22.2
687.	-S304@-VI ND		100.0	0.0	0	-
688	-S3059-VIII ND		84.2	0.0	6	33 3
689	-S306Q-VIII ND		100.0	0.0	Ō	_
690	-S307@-VIII ND		100.0	0,0	Ō	-
691	-S308 Q -VII ND		38.0	0.0	Ō	_
692	-S309@-VII NE	_	96.0	0.0	2	50 0
693.	-53100	38	92.1	0.0	5	20.0
694	-5310 6 -5311 9 -VII NE		69.0	0 0	18	5.5
695	-S3129-VII NE		81.1	0.0	7	57 1
	-53128-VII NE		97.8	0.0	2	0 0
696			88.4	0.0	6	66.7
697	-S3149-VII NE	_	812	0.0	6	66 7
698.	-\$31 50 -VII NE		62.5	0.0	21	47.6
699,	-S316@-VII NI			0.0	23	39.1
700 。	-\$31 7@- VII NI		74.5		17	47.0
701.	-S318 Q -VII ND		69.4	0.0		30.4
702 ,	-\$3190	52	71.5	0.0	23	
703.	-S320@-VII N		73.8	00	13	30 8
704.	-S321@-VII N		88 .9	0,0	7	14.3
705.	-S322@-VI N		98.0	0,0	2	0.0
706	-S323Q-VII NI	DT 20	95.0	0 0	2	50.0
707.		DT 44	65 . 9	0.0	21	23.8
708	-S325@-VII NI	DT 31	83.9	0.0	. 7	28 6
709	S3269-VIII NI		50.0	00	31	19.3
710	-S3270-VII N	DT 43	74.4	0 0	15	20.0
5 1 U a	-22514.411 m					

1	2	3	4	5	6	7
711.	C.NO-74335-F4B-S328@-VII NDT	50	100.0	0.0	0	-
712.	-S329@-VII NDT	37	72.9	0.0	13	0.0
713.	-S330@-VIII NDT	50	100.0	0.0	0	-
714.	-S331Q-VII NDT	25	100.0	0.0	0	-
715.	-S332Q-VII NDT	47	89.4	0.0	5	40.0
716.	ICP-7035-34-4-P2	44	95.4	0.0	3	66.7
717.	ICP-7035-45-4-P1	50	100.0	0.0	0	
718.	C.NO-75237-F3B-S1Q-VII NDT	25	92.0	0.0	2	50.0
719.	-S20-VI NDT	50	80.0	0.0	48	8.3
720.	-S3@-VIII NDT	22	90.9	0.0	4	25.0
721.	-\$40	43	79.1	0.0	14	21.4
722.	-S5Q-VIII NDT	39	92.3	0.0	3	66.7
723.	-S6Q-VII NDT	23	73.9	0.0	9 3	33.3
724.	-S7Q-VIII NDT	37	91.9	0.0		0.0
725.	-58@	50	100.0	0.0	0	-
726.	-590	41	92.7	0.0	6	0.0
727.	-S10@	46	82.6	0.0	8	0.0
728.	-5110	50	90.0	0.0	7	0.0
729.	-5120	31	61.3	0.0	13	0.0
730.	-S13@	18	44.0	0.0	10	70.0
731.	-S14Q-VIII NDT	25	100.0	0.0	0	-
732.	-S15Q-VII NDT	25	100.0	0.0	0	-
733.	-S16Q-VII NDT	50	100.0	0.0	0	-
734.	-S17@-VII NDT	31	96.8	0.0	2	0.0
735.	-S18Q-VIII NDT	42	95.2	0.0	4	25.0
736.	-S19Q-VII NDT	48	520	0.0	26	11.5
737.	-S20@-VII NDT	34	76.5	0.0	10	0.0
738.	-S21@-VII NDT	42	76.2	0.0	11	36.4
739.	-S22@-VII NDT	50	78.0	0.0	19	36.8
740.	-S230-VII NDT	55	63.6	0.0	22	13.6
741.	-S240-VII NDT	50	96.0	0.0	2	100.0
742.	-S25@-VII NDT	37	70.3	0.0	14	0.0
743.	-S26Q-VI NDT	48	91.7	0.0	6	16.7
744.	-S27Q-VII NDT	38	42.1	0.0	27	29.6
745.	-S28@-VII NDT	36	30.5	0.0	32	0.0
746.	-S29@-VII NDT	37	89.2	0.0	5	20.0
747.	-S30@-VII NDT	38	73.7	0.0	13	53.8
748.	-S31@-VI NDT	48	75.0	0.0	21	19.0
749.	-S32@-VII NDT	25	96.0	0.0	2	50.0
750.	-S33Q-VII NDT	43	72.1	0.0	19	10.5
751.	-S34@-VI NDT	25	96.0	0.0	2	50.0
752.	-S35@-V NDT	50	98.0	0.0	2	0.0
753.	-S36@-VII NDT	50	100.0	0.0	0	-
754.	-S37@-VII NDT	25	100.0	0.0	0	-

1	2		3	4	5	6	7
755.	C.NO-75237-F3B-S389-VI	NDT	50	100.0	0.0	0	
756.	-S39@-VII	NDT	52	53.8	0.0	30	30.0
757.	-S40@-VI	NDT	36	36.1	0.0	24	29.2
758 ·	-S41 Ω -V	NDT	46	97.8	0.0	2	0.0
759.	-S42 @- VI	NDT	50	100.0	0.0	0	-
760.	-S43@-VII	NDT	40	55.0	5.5	26	0.0
761.	-S44Q-VII	NDT	43	93.0	0.0	3	0.0
762.	-S 45Q -VI	NDT	50	100.0	0.0	0	-
763.	-:S 46Q-V II	NDT	47	70.2	0.0	16	12.5
764.	-S47 Q -VII	NDT	47	872	0.0	6	16.7
765.	-S48 @ -VI	NDT	50	100.0	0.0	0	-
766.	-S49Q-VII	NDT	50	100.0	0.0	0	-
767.	-S50Q-VII	NDT	25	100.0	0.0	0	-
768.	-S51 Q -VII	NDT	25	100.0	0.0	0	-
769.	-S52 Q -VII	NDT	43	95.3	0.0	2	0.0
770 .	-S53 Q -VII	NDT	40	90.0	0.0	5	60.0
771.	-S54 @ -VII	NDT	25	100.0	0.0	0	-
772.	-S5 5@- VII	NDT	50	100.0	0.0	0	-
773 。	-S56Q-VII	NDT	50	98.0	0.0	}	0.0
774.	-S57 @-V II	NDT	50	100.0	0.0	0	_
775 。	-S58Q-VII	NDT	25	100.0	0.0	0	-
776.	-S59 2 -VII	NDT	50	100.0	0.0	0	-
777.	-S60 Q -VII	NDT	34	85.3	0.0	7	0.0
778.	-S61Q-VII	NDT	43	100.0	0.0	0	-
779.	-S62 Q-V II	NDT	47	72.3	0.0	15	20.0
780 a	-S63 @- VII	NDT	48	58.3	0.0	26	0.0
781.	-S64 Q- VII	NDT	45	80.0	0.0	10	30.0
782 .	- S65 @ -VII	NDT	52	86.5	0.0	9	0.0
783.	-S66 @- VII	NDT	36	91.7	0.0	5	0.0
784 。	-S67Q-VII	NDT	46	89.1	0.0	6	16.7
785 .	-\$68 @- VII	NDT	45	75.5	0.0	15	13.3
786.	-S69 @- VII	NDT	50	44.0	0.0	36	11.1
787.	-S70@-VII	NDT	41	85.4	0.0	7	0.0
788.	-S71@-VII	NDT	33	96.9	0.0	3	0.0
789.	-S72@-VII	NDT	43	58.0	0.0	21	30.0
790.	-S73@-VII	NDT	. 50	100.0	0.0	10	90.0
791.	-S7 4@-V II	NDT	36	88.9	0.0	6	0.0
792。	-S75@-VII	NDT	32	75.0	0.0	3	38.5
793 .	-S760-VIII	NDT	46	84 .8	00	11	9.1
794.	-S77@-VII	NDT	48	89 6	0.0	5	40.0
795.	-\$78 Q		48	79 . 2	0.0	16	25.0
796	-\$790		48	68.7	0.0	23	4.3
797	-S80@-VII	NDT	46	82 6	0.0	12	16.7
798	-S810-VII	NDT	15	1000	00	0	-
799.	-S829-VII	NDT	49	97.,9	0.0	1	100.
800.	-S83 Q-V II	NDT	50	96.0	0,0	2	50.
	0000 111						

1	2		3	4	5	6	7
801.	C.NO-75237-F3B-S84Q-VII	NDT	50	88.0	0.0	6	0.0
802.	-S85 Q -VI	NDT	25	52.0	0.0	16	18.7
803.	-S86 Q -VI	NDT	25	96.0	0.0	3	0.0
804.	-S870-VII	NDT	53	69.8	0.0	18	11.1
805.	-S88 9 -VI	NDT	48	60.4	0.0	24	4.2
806.	-S89 0 -VII	NDT	40	87.5	0.0	5	0.0
807.	-S90@-VII	NDT	25	92.0	0.0	3	0.0
808.	-\$91@		36	83.3	0.0	8	0.0
809.	-S92Q		50	100.0	0.0	0	-
810.	-S93 Q		50	100.0	0.0	0	-
811.	-S94@		50	94.0	0.0	3	33.3
812.	-S950		50	98.0	0.0	2 4	50.0
813.	-S969	NOT	47	95.7	0.0		25.0
814.	-S979-VI	NDT	44	84.1	0.0	9	55.5
815.	-\$98 Q-V II	NDT	39	94.9	0.0	2	50.0
816.	-S99@-VII	NDT	35	68.6	0.0	12	66.7
817.	-S100Q	NOT	20	70.0	0.0	12	33.3
818.	-S101 Q -VI	NDT	34	58.8	0.0	18	38.9
819.	-S102 Q- VII	NDT	43	81.4	0.0	12	33.3
820.	-S103Q-VI	NDT	50	32.0	0.0	43	13.9
821.	-S104Q-VII	NDT	48	77.1	0.0	14	28.6
822.	-\$105@-VII	NDT	13 44	69.2 65.9	0.0	5	80.0 19.0
823.	-S1069-VII -S1079-VI	NDT NDT	44 49	53.1	0.0 0.0	21 29	24.1
824.	-S1079-VI	NDT	33	63.6	0.0	13	46.0
825.	-S108M-VII -S109M-VII	NDT	33 49	73.5	0.0	21	0.0
826. 827.	-S1109a-VII	NDT	39	73.5 84.6	0.0	11	0.0
828.	-S1110-VII	NDT	50	96.0	0.0	3	0.0
829.	-S1120-VII	NDT	41	34.1	0.0	30	0.0
830.	-S1139-VII	NDT	24	41.7	0.0	17	29.4
831.	-S1149-VII	NDT	15	86.7	0.0	3	0.0
832.	-S1150-VI	NDT	25	100.0	0.0	0	0.0
833.	-S116Q-VI	NDT	50	100.0	0.0	Ö	_
834.	-S1170-VII	NDT	30	96.7	0.0	1	0.0
835.	-S118 Q -VII	NDT	46	100.0	0.0	ò	-
836.	-S1190-VI	NDT	50	98.0	0.0	2	0.0
837.	-S120Q-VII	NDT	22	72.7	0.0	8	0.0
838.	-S1210-VII	NDT	48	81.2	0.0	9	11.1
839.	-S122 Q -VII	NDT	50	100.0	0.0	Ő	
840.	-S123 9-VII	NDT	33	45.4	0.0	22	13.6
841.	-S124 9 -VII	NDT	26	53.8	0.0	12	8.3
842.	-S125 9- VII	NDT	35	85.7	0.0	7	0.0
843.	-S126Q-VII	NDT	50	100.0	0.0	ó	-
844.	-S1279-VII	NDT	50	100.0	0.0	Ö	-
845.	-S1289-VII	NDT	25	100.0	0.0	0	_
040.	-2:50%-411	NO I	20	100.0	0.0	J	

1	2		3	4	5	6	7
846	C.NO-75237-F3B-S1290-VII	NDT	50	96 0	0 0	0	-
847	-5130@-V[[NDT	50	100 0	0.0	Ó	• -
848.	-S131 9 -VI	ΝDτ	41	100 0	0.0	1	100.0
849	-S132@-V!	NDI	50	96 0	0 0	2	0.0
850	-S133 <u>₽</u>		37	100 0	0.0	0	•
851	-S134Q-VI	NDT	50	100.0	0 0	0	_
852.	-S135 9 -VI	NDT	50	96 0	0 0	3	0 0
853	-S1360-V1	NDT	50	100 0	0 0	0	•
854.	-S137Q-VI	тди	50	100 0	0 0	0	-
855	-S138@-V!	NDT	50	90 0	0.0	6	0.0
856	-S139@-VII	ИDт	25	100 0	0 0	0	-
857.	-S140@-V[]	NDT	37	100 0	0 0	0	-
858	-S1410-VII	ΝDτ	25	100.0	0 0	0	-
859	-S142@ VI!	NDT	25	100 0	0 0	0	-
860.	-S1430-V!!	NDT	25	100 0	0 0	0	-
861	-S1449-VI	NDT	22	77.3	0 0	6	33.3
862.	-S1450-VII	NDT	50	100.0	0 0	0	_
863	-S146Q:VI	NDT	36	94.4	0 0	4	25.0
864 .	-S14 <i>7</i> 9-VI	NDT	44	100 0	0 0	0	-
865 .	-S148@ VII	1 NDT	14	71 4	0.0	5	00
866	-S149@-VII	NDT	31	645	0 0	16	18.7
867	-S150@-VII	NDT	3 2	87.5	0 0	5	20.0
868	-S151@-VII	NDT	50	100.0	0 0	0	-
869.	-S1529-VII	NDT	30	70 0	0 0	16	18.7
870	-S153@-VII	NDT	25	80.0	0.0	7	14.3
871	-S154@-V1!	NDI	23	60 9	0 0	9	0.0
872	-S1559-V:1		27	74 1	0 0	10	40.0
873.	-S156Q-V!!	ΝDτ	36	83 3	16.7	13	23.1
874	ICP-7186-P2		34	95 8	91	14	42.8

APPENDIX-XLVIII

Results of screening of *Phytophthora* resistant F₃ progenies of pigeonpea for sterility mosaic resistance during 1978-79

\$1.	Particular	No. of	Infected	Percent		
No.		<u>plants</u>	plants	infection		
1	2	3	4	5		
	BDN - 1	22	1	4.54		
1.	C.No.74332-P18	43	5	11.62		
2.	-P2 Ø	35	3	8.57		
3.	-P3 @ .	43	1	2.32		
4.	-P4 ⊗	19	0	0.00		
5.	-P5 ⊠	26	0	0.00		
6.	-P6 0	25	0	0.00		
7.	-P8 8	8	2	25.00		
8.	-P9 8	30 -	0	0.00		
9.	-P10 0	42	0	0.00		
10.	-P11 0	26	0	0.00		
11.	-P12 0	17	1	5.88		
12.	-P13 ®	41	1	2.43		
13.	-P14 0	44	2 2	4.54		
14.	-P15 0	36	2	5.55		
15.	-P16 0	15	2 1	13.13		
16.	-P17 ⊠	35		2.85		
17.	-P18 0	25	0	0.00		
18.	-P19 &	33	0	0.00		
	BDN-1	25	0	0.00		
19.	C.No.74332-P208	36	1	2.77		
20.	-P21 0	36	0	0.00		
21.	-P22 8	46	0	0.00		
22.	-P23 @	37	0	0.00		
23.	-P24 ⊠	13	1	7.69		
24.	-P25 ⊗	8	0	0.00		
25 .	-P26 ®	35	0	0.00		
26.	-P27 ®	15	0	0.00		
27	-P28 ®	30	0 .	0.00		
28.	-P29 &	27	3	11.11		
29.	-P30 0	44	0	0.00		
30.	-P31 8	37	0	0.00		
31.	-P32 ®	44	1	2.72		
32.	-P33 @	37	0	0.00		
33.	-P34 ⊗	39	0	0.00		
34.	-P35 @	23	1	4.34		
35.	-P36 @	32	3	9.37		
				contd		

1	2	3	4	5
36	C.No.74332-P376	42	6	14.28
37	-P38 0	41	0	000
	BDN-1	33	4	12.12
38 .	C No.74332-P390	40	2	5.00
39.	-P40 0	27	4	14.81
40.	-P41 8	37	2	5.40
41	-P42 0	26	1	3.84
42	-P438	44	8	18.18
43	-P44®	27	0	0 " 00
44.	-P45 &	35	1	2,85
45.	-P46 @	29	1	2.56
46	-P47 @	26	0	0 , 00
47.	-P48 8	21	0	0 . 00
48	-P49 ®	42	1	2,38
49.	-P508	28	0	000
50	-P51 @	40	1	2.50
51.	-P52 %	22	0	0 , 00
52	-P53 &	26	4	15.38
5 3	-P54 8	22	1	4,54
54.	-P55 0	40	0	0.00
5 5.	-P56®	22	0	0 00
56 .	-P57 &	13	0	0.00
	BDN-1	25	0	0.00
57.	C_No.74332-P580	35	0	0,00
58 .	-P59 0	3 3	0	0.00
59 .	-P60 ®	37	0	0.00
60	-P618	24	0	0,00
61.	-P62 ®	5	0	0,00
62	-P63 0	7	Ó	0.00
63	-P64®	31	j	3.22
64	-P65 0	18	0	0.00
65	-P66 ®	32	0	0.00
66 .	-P67 8	25	0	0,00
67	-P68®	32	0	0.00
68	-P69 8	31	0	0.00
69	-P70 8	31	2	6 45
70.	-P71 0	13	0	000
71.	-P72 ®	14	0	0.00
72.	-P73 0	2	0	0.00
73.	-P74 8	29	0	000
74.	-P75 Ø	24	0	0.00
75	-P76 Ø	8	0	0.00
	BDN-1	7	0	0.00
76.	C. No. 74332-P778	24	0	0.00
77.	-P78 0	14	00	0.00
				contd

1	2	3	4	5
78 -	C.No.74332-P796	31	0	0.00
79.	- P 80 ⊠	21	0	0.00
80.	-P81 0	15	0	0,00
81.	-P82 0	30	0	0.00
82.	-P83 0	16	0	0.00
83.	-P84 0	7	1	14.28
84.	-P85 0	2 5	0	0.00
85	-P86 8		0	0.00
8 6 .	- P870 - P880	13 28	2 27	15.38 96.42
87. 88.	-P00W -P90M	32	20	62.50
89.	-P91 8	25	0	0.00
90	-P93 8	11	0	0.00
91	C. No. 74363-P10	30	ĭ	3.33
92.	-P28	18	Ö	000
93.	-P38	31	ŏ	0.00
94	-P4 0	35	Ö	0.00
J.,	BDN-1	17	4	23.52
95.	C.No.74363-P5@	24	3	12.50
96.	-P6 ∆	30	0	0 , 00
97	P7 ®	32	6	18.75
9 8.	-P8 0	22	0	0.00
99.	-P9 0	21	3	14.28
100.	-P10@	13	5	3846
101.	-P120	14	1	7.14
102.	-P13@	17	1	5,88
103.	-P1480	19	0 1	0.00
104.	-P15 0	40 34	0	2.50
:05.	-P160 -P170	34 17	6	0.00 3529
106. 107.	-P180	29	0	0.00
108.	-P19 8	31	0	0.00
109.	-P20 8	27	ŏ	000
110.	-P21 0	12	ŏ	0.00
111	-P22 0	1	Ö	000
112	-P23 &	47	3	6 38
113.	-P248	28	0	0.,00
	BDN-1	32	3	9 . 37
114.	C.No.74363-P258	5	0	000
115	-P26 0	8	0	0.00
116.	-P27 0	41	0	0.00
117.	-P28 0	38	0	000
118.	-P29 &	35	0	000
119.	-P30 0	30	0	0.00
120.	-P31 @	33	0	0.00
				contd

1	2	3	4	5
121.	C.No.74363-P328	42	0	0.00
122.	-P33 @	21	Ö	0.00
123	-P34 8	29	Ö	0.00
124.	−P35 &	21	Ö	0.00
125	-P36 8	25	ĭ	4.00
126,	-P37 0	5	ò	0.00
127.	-P38₩	4	Ö	0.00
128.	-P39 0		-	- '
129.	-P40 8	10	0	0.00
130.	-P418	5	0	
131.	-P42 8	15		0.00
132.	-P43 2	2	0	0.00
106,	BDN-1	7	0	0.00
133.	C.No.74363-P440	4	0	0.00
134.	-P458	4 6 7	0	0.00
		D 7	0	0.00
135.	-P46 0		0	0.00
136.	-P47 ®	21	0	0.00
137.	-P48 @	28	0	0.00
138.	-P49 8	15	1	6.66
139.	-P50 0	27	0	0.00
140	-P51 6	30	0	0.00
141.	-P52 0	26	0	0.00
142.	-P53 ®	29	0	0.00
143.	-P54 ⊠	17	0	0.00
144.	−P55 8	33	σ	0.00
145.	-P5 60	21	0	0.00
146.	-P57 ₽	4	0	0.00
147.	-P58 @	10	0	0,00
148	-P59 0	11	0	0.00
149.	-P60 2	5	0	0.00
150.	-P61 0	18	0	0.00
151.	-P62 0	25	0	0.00
	BDN-1	16	2	12.50
152.	C.No.74363-P638	45	0	0.00
153.	-P64 B	34	ĺ	2.94
154.	-P65 0	37	0	0.00
155.	-P66 8	38	0	0.00
156.	-P67 8	33	ì	3.03
157	-P68 8	39	Ó	0.00
158	-P69 8	29	Ö	0.00
159.	-P70 6	28	Ŏ	0.00
160	-P718	36	Ö	0.00
161	-P728	-	_	-
162.	-P738	45	2	4 . 44
163.	-P748	36	Ō	0.00
164.	-P748 -P758	11.7	Ö	0,00
165.	-P75W -P76M	1 3 // 12	0	0.00
100.	-r/0W	16		contd.
				COILCG

1	2	3	4	5
166.	C.No.74363-P770	34	0	0.00
167.	-P78 0	31	Ō	0.00
168.	-P79 &	35	Ó	0.00
169.	-P80 ®	42	1	2.38
170.	-P81 6	40	0	0.00
	BDN-1	43	3	6.97
171.	C.No.74363-P82∰	25	0	0.00
172.	-P83 ®	39	0	0.00
173.	-P84 8	32	0	0.00
174.	-P85 0	35	0	0.00
175.	-P8 6₽	44	0	0.00
176.	-P87 @	30	2	66.66
177.	-P88 0	38	0	0.00
178.	-P90 ⊠	42	0	0.00
179.	-P91 8	35	0	0.00
180.	-P928	9	0	0.00
181.	-P93 ⊠	44	1	2.27
182.	-P94 0	39	2	5.12
183.	-P95 0	25	0	0.00
184.	-P96 8	31	0	0.00
185.	-P97 @	35	0	0.00
186.	C.No.74360-P1@	31	1	3.22
187.	P2 ®	9	0	0.00
188.	-P3@	10	0	0.00
189.	-P46	9	0	0.00
190.	BDN-1 C.No.74360-P5⊠	2	0 0	0.00 0.00
190.	-P60	3 2	0	0.00
191.		2	U	0.00
192.	-7/5 -P8 8	-	<u>-</u>	_
193.	-row -r9 8	_	_	_
195.	-P10 0	_	_	_
196.	-P110	<u>-</u>	<u>-</u>	_
197.	-P12 0	1	0	0.00
198.	-P13 8	ż	Ŏ	0.00
199.	-P14 0	2	ŏ	0.00
200.	-P15 8	11	ŏ	0,00
201.	-P16 8	16	Ŏ	0.00
202.	-P17 0	17	Ō	0.00
203.	-P18 0	30	Ō	0.00
204.	-P19 0	31	0	0.00
205.	- P 20 ®	16	0	0.00
206.	-P21 8	29	0	0.00
207.	-P22 0	24	1	4.16
208.	-P23 0	36	1	2.77
	BDN-1	42	00	0.00
				contd.

	2	3	4	5
209	C No 74360-P240	32	0	0.00
210	-P25 %	30	0	0.00
211	-P26 %	44	1	2 27
212.	- P27 Ø	37	5	13 51
213	-P28 0	24	0	0.00
214	-P29 0	24	6	2500
215	-P30 0	2	0	0 00
216	-P31 0	15	3	20 00
217.	-P32 ®	13	0	0.00
218	-P33 0	1	0	0 00
219.	-P34 &	13	0	0 00
220	-P35 %	22	0	0.00
221.	-P36 ®	12	0	0 00
222	-P37 ®	2	0	0.00
223	-P38 0	4	0	000
224	-P39 &	ĺ	Ö	0.00
225	-P40 8	_	-	-
226	-P41 6	-	_	_
227	-P42 8	2	0	0.00
	BDN-1	-		-
228	C. No. 74360-P448	4	0	0 00
229	-P45 ®	5	Ö	0.00
230	-P46 0	11	ŏ	0.00
231	-P4 76	10	Ŏ	000
232	-P48 0	15	ŏ	0.00
233	-P49 8	3	Ö	000
234	-P50 6	16	Ō	0.00
235	-P51 8	21	Ö	0.00
236	-P52 8	14	Ŏ	0.00
237	-P53 8	24	ŏ	0.00
238	- P54 &	35	j	2.85
239	-P55 8	19	0	0.00
240	-P56®	44	2	4 54
24	-P57 &	39	2	5.12
242	-P58 ®	41	ī	2 43
243	-F 388 -P 59 8	41	2	4 87
243		53	1	1.88
244	-P60& -P61&	44	Ô	0 00
		47	Ö	000
246	-P62 8	34	4	11.76
247	BDN-1	35	2	5.71
247	C.No.74360-P638		0	0 00
248	-P64 0	23	4	11 11
249	-P658	36 44	4 1	2.27
250	-P66 &	44		contd

1	2	3	4	5
251.	C.No.74360-P67@	48	0	0,00
252.	-P68 8	45	3	6.66
253.	-P69 ®	40	6	15.00
254.	-P70 8	35	1	285
255.	-P71 8	26	0	000
256. 257.	-P72@	31	0	0.00
257. 258.	-P73 0 -P 740	27 23	0 0	0.00 0.00
259.	-P758	11	0	0.00
260.	-P76 8	45	Ö	0.00
261.	-P77 6	7	ŏ	0.00
262.	-P78 Ø	34	2	5.88
263.	-P79 ®	29	0	0.00
264.	-P80 0	39	0	0.00
265.	-P81 &	37	1	2.70
	BDN-1	41	3	7 31
266.	C.No.74360-P820	42	5	11.90
267.	-P83 0	41	14	34.14
268.	-P84@	28	3	10.71
269. 270.	-P85 0 -P86 0	33 34	3 0	6.06 0.00
270.		17	2	11.76
272.	-P88 8	31	Õ	0,00
273.	-P89 8	32	Ŏ	0.00
274.	-P90 8	28	ĭ	3.57
275.	-P91 0	41	1	2.10
276.	-P92 @	32	0	0.00
277.	-P93 &	8	0	0.00
278.	-P94 ®	14	1	714
279.	-P95 0	36	5	13.88
280.	-P968	47	3	6,38
281. 282.	C.No.74332-P104 -P204	31 38	4 0	12.90 0.00
283.	-P2W -P3M	40	0 ·	0.00
284.	-P4@	37	1	2.70
20	BDN-1	26	5	19,23
285.	C.No.74332-P5	41	Ö	0,00
286.	-P6 ®	29	0	0,00
287.	-P7 ⊗	22	2	9.09
288.	-P8 0	32	2	625
289.	-P9 0	38	0	000
290.	-P10@	39	2	5.12
291.	-P11@	43	0	0,00
292.	-P120 -P130	35 25	0 1	0,00 4,00
293. 294.	-P136 -P146	30	1	3,33
294. 295.	-P15Ø	32	i	3, 12
	,	~~	•	contd
				5511.00

	2	3	4	5
296	C.No.74332-P160	19	0	0.00
297.	-P17 &	26	1	3.84
298	-P18 0	8	0	0.00
299.	-P198	25	0	0 . 00
300.	-P20 8	4	0	0.00
301	-P21 &	13	0	0 , 00
302	-P22 &	3	0	0.00
303.	-P23 0	18	1	5 55
204	BDN-1	13	0	0 ~ 00
304.	C.No.74332-P248	2	0	0 ~ 00
305.	-P258	4	0	0 ′ 00
306.	-P268]	0	0.00
307	-P278	1	0	0.00
308 .	-P28 8	2	0	0.00
309.	-P29 8	1	0	0 . 00
310.	-P30 0	-	-	-
311	-P31 0	-	-	-
312.	-P328	-	-	-
313. 314.	-P33 0 -P34 0	3	- 0	- 00
315.	-P34W -P36M			0 00
316.	-P37 0	10	- 0	0,00
317.	-P38 0	10 E	1	20.00
318	-r36₩ -P39₩	5 2 3	Ó	000
319.	-r39W -P40 8	2	0	0.00
320	-P418	3	-	0.00
321	-P42 &	_	_	_
322	-P43 8	_	_	_
322	BDN-1	=	-	-
323	C. No. 74332-P448	-	-	-
324	-P45 8	_	-	-
325	-P46 8	-	-	-
326	-P47 %	-	-	-
327	-P48 0	1	0	0 00
328.	-P49 0	1	0	0.00
329	-P50 0	-	-	-
330	-P510	- 3 6 4	0	000
331	-P52 0	6	0	000
3 32 。	-P53 8	4	0	000
333.	-P54 %	6	0	0.00
334	-P56 ⊗	18	0	000
335	-P57 ®	9	0	0.00
336	-P58 ®	9	1	11,11
337.	-P59 &	19	0	0.00
338	-P61 0	25	1	4,00
339	-P62 ®	21	0	000
340.	-P63 8	20	0	0.00

1	2	3	4	5
341.	C.No.74332-P648	6	0	0.00
	BDN-1	20	1	5.00
342.	C.No.74332-P65@	8	0	0.00
343.	-P66 8	9	2	22.22
344	-P67 0	18	0	0.00
345.	-P68 8	8		0.00
346.	-P69 &	22	0 2 3 3	9.09
347.	-P70 8	33	3	9.09
348.	-P71 ⊠	45	3	6. 66
349.	-P72 0	20	0 1	0.00
350	-P73 ®	15	1	6.66
35 ³	-P74 8	10	0	0.00
352	-P75 ⊗	23	0	0.00
353	-P76 8	25	1	4.00
354	-P77 &	32	1	3.12
355	-P78 ⊠	40	2	5.00
356	-P79 &	30	0	0.00
357.	-P80 ®	33	0	0.00
358	-P81 &	39	0	0.00
359	-P82 0	41	0	0.00
360	-P83 ®	31	0	0,00
	BDN-1	36	12	33.33
361.	C.No.74332-P848	33	0	0.00
362	-P85 @	20	0	0.00
363	-P86 0	19	0	0.00
364	-P87 ®	11	0	0.00
365	-P8 9 @	8	0	0.00
366.	-P90 ®	16	0 2	0.00
367	-P91 0	32	2	625

APPENDIX-XIIX

Brief report on trips to
Parbhani, Jabalpur, Dharwar, Hissar, Kanpur, Varanasi, and Faizabad
Y.L. Nene

The above locations were visited at different times between November 27 - December 19, 1978 as follows:

Nov.27 - Dec.01 : Parbhani and Jabalpur Dec.07 - Dec.09 : Dharwar/Annigeri

Dec.14 - Dec.19 : Hissar, Kanpur, Varanasi, and Faizabad

Purpose

: Except Hissar, all the other locations were visited to see the performance of ICRISAT pigeonpea entries in the All India National Uniform Trial for pigeonpea wilt/sterility mosaic resistance. Hissar was visited to see (i) experiments on chickpea stunt and (ii) check on chickpea wilt incidence in the plot

which is being developed as a sick plot.

PARBHANI

<u>Contact</u> : Dr. K.K. Zote, Pulse Pathologist

Other scientists met : Drs. Mai, Mali, Godbole and Kore

Notes

- In spite of being an old wilt-sick plot, the plot was not uniformly 'sick'. This is partly because no special attempt has been made to ensure uniform wilt sickness. Fortunately, however, ICRISAT material was by chance planted in the uniformly sick area of the plot.
- 2. The wilt susceptible check, 1258, was planted after every two ICRISAT entries. The incidence of wilt in the susc**ept**ible check varied between 80-100 percent.
- 3. Performance of ICRISAT entries has been given in Table 1. All entries, except ICP-8864 and -8866, were doing extremely well.

- 4. Out of all other entries (about 25) in the All India trial, only AWR-74/15 from Kanpur was doing as well as ICRISAT entries.
- 5. Until last year Parbhani scientists were growing one susceptible check row after every 10 test rows. There was appreciation of our (ICRISAT) method of having one susceptible check row after every two test rows.
- Cultivar, C-11, which shows susceptibility at ICRISAT, was standing well in the sick plot. We shall obtain seed of this C-11 from Parbhani for testing at ICRISAT.
- Cooperation of Parbhani scientists with ICRISAT is excellent.

JABALPUR

Contact

Mr. S.R. Kotasthane, Pulse Pathologist

Other scientists met :

Drs. Sharma (breeder), Vyas (pathologist), Srivastava (germplasm botanist), and Jain (Head, pathology department)

Notes

- 1. The plot was not uniformly sick. The susceptible checks, ICP-6997 and HY-2, were showing between 40-60 percent wilt.
- Performance of ICRISAT entries has been given in Table 1. All the entries were doing extremely well. Only ICP-8866 was showing relatively more wilt.
- I happened to see the germplasm block. Sterility mosaic was severe. Some collections from Orissa were disease-free.

DHARWAR

: Dr. R.V. Hiremath, Pulse Pathologist Contact

Other scientist met : Dr. R.G. Hegde (Head, pathology)

Notes

1. The pigeonpea wilt-sick plot is maintained at the Research Station Annigeri, about 30 km from Dharwar

- 2. The wilt-sick plot has been there since 1935 but not maintained well. Therefore the wilt sickness is not uniform.
- Once again, as in Parbhani, ICRISAT entries got planted by chance in that part of the plot where sickness was relatively more uniform. Susceptible check, 1258, was showing 65-100 percent wilt.
- Performance of ICRISAT entries has been given in Table 1. The wilt incidence at this location was more in all the entries as compared to Parbhani and Jabalpur. ICP-8861, -8863, and -8867 were better than others. All entries, however, were much better than entries from other stations in India. However C-11, 15-3-3, and AWR-74/15 were better amongst Indian entries.
- 5. I gave an informal talk to post-graduate students of the Department of Plant Pathology.

KANPUR

: Dr. Laxman Singh (Project Director, Pulse Research) Contacts and Dr. Prabhakar Shukla (Pulse Pathologist)

Dr. H.K. Saksena (Head, Plant Pathology), Mr.R R Other scientists met:

Singh.

Notes

1. Gave a lecture on pigeonpea pathology work at ICRISAT to the staff of the Regional Research Station (RRS).

- Saw the pigeonpea germplasm block of the RRS. Also saw "sterility mosaic resistant" lines sent by ICRISAT pigeonpea breeders. There were isolated mosaic affected plants in the whole germplasm block; therefore no conclusions could be drawn.
- 3. The pigeonpea wilt-sick plot is not uniformly sick. Phytophthora blight killed many plants. In the remaining plants of ICRISAT entries, no wilt was seen in ICP-8860, -8863, and -8869. All others, except ICP-8864 and -8865, showed traces of wilt. The data have been included in Table 1.
- 4. Saw chickpea plantings at RRS and could see about 5 percent root rot due to *Rhizoctonia solani*. The preceding crop was paddy.
- 5. Many chickpea entries of ICRISAT in the International Chickpea Root Rots/Wilt Nursery 1978-79 were showing wilt. We already have evidence to indicate the existence of a distinct physiologic race of Fusarium oxysporum f.sp. ciceri in Kanpur wilt-sick plot.

VARANASI

Contacts

: Mr. R.B. Singh (Ph.D. student) and Dr. U.P. Singh

Other scientists met

: Mr. Pundir of ICRISAT, and Mr. Chauhan (Research Assistant)

Notes

- Although wilt incidence was severe, the plot was not fully uniform in its sickness.
- 2. Performance of ICRISAT entries has been given in Table 1. Eight entries out of 12 showed little wilt. ICP-8858, -8862, -8866, and -8869 showed higher wilt incidence than observed at any other location.
- Susceptible checks were planted less frequently; one susceptible check row after about 10 test rows.

- 4. AWR-74/15 from Kanpur had low wilt as at other locations including ICRISAT.
- 5. Purple 1 of Varanasi showed resistance. At ICRISAT this line has done very well.

FAIZABAD

Contact

: Dr. R.N. Singh

Notes

- Pigeonpea lines found resistant to sterility mosaic at ICRISAT were sent to Faizabad. The disease incidence was low and none of the ICRISAT lines had any mosaic affected plant. Therefore conclusions can not be drawn. I suggested that they should ratoon all the entries and stapleinoculate fresh leaves.
- ICRRWN was observed. Susceptible check-JG-62 was showing wilt. Stunt was more common.

HISSAR

Notes

- Chickpea wilt is developing in the plot which is marked as wilt-sick plot for future use.
- Plot where advance generation (F₅) material was planted had severe wilt incidence. We will have to discuss ways of avoiding wilt in plots where we do not want it.
- The chickpea stunt nursery had poor germination. Susceptible check, WR-315, was showing high stunt incidence.
- 4. We (M.V. Reddy and I) saw a disease, possibly viral, which could not be identified. We will keep a watch on this disease.
- 5. We worked out an informal cooperative arrangement for basic work on chickpea stunt with Dr.J.P.Verma. Dr. Verma is a well-known virologist and has agreed to cooperate with us.

6. Dr.R.K. Grover, Professor of Plant Pathology, has put a student on chickpea wilt/root rots. He told me that *Verticillium sp.* and *Cephalosporium sp.* have been isolated from wilted plants. If pathogenicity is confirmed, these will be new records for India.

DELHI

I spent a couple of hours with Dr. J.S. Grewal, Principal Investigator (Plant Pathology) in the All India Pulse Improvement Project and had very useful discussions with him. I told him whatever observations I had made on pigeonpea wilt during these trips.

APPENDIX-I

Report on visit to Dholi, Bihar (April 4-6, 1979) M.V. Reddy

The purpose of the visit was to study the performance of ICRISAT pigeonpea entries in Sterility mosaic national uniform nursery jointly conducted by AICPIP and ICRISAT. The nursery was organised from this year only and it consisted of 12 entries, from ICRISAT. It was grown at 6 different locations in India including Dholi. The other locations were Pantnagar (U.P.) Faizabad (U.P.) Varanasi (U.P.) Dharwar (KS) and Hyderabad. The main purpose of the nursery was to study the performance of the lines found resistant at ICRISAT, at other locations where the disease is a problem. It also aimed at knowing if any variability exists in the pathogen.

Dr. Jagadish Kumar, chickpea breeder who had earlier visited Dholi informed that ICRISAT entries in the nursery were showing susceptibility. It was surprising as the lines entered in the nursery were resistant at ICRISAT for at least two years under artificial inoculation conditions. Meanwhile a letter from Dr. J.S. Grewal, Principal Investigator, Pathology, AICPIP, was also received saying that ICRISAT entries were showing susceptibility at Dholi. He suggested ICRISAT Pathologists to visit Dholi.

A visit was undertaken on 4th April. Dr. Mahmood, Pulse Pathologist and his colleagues were very helpful in showing the nursery. The nursery was planted in two replications. Each entry was planted in 2 five meter rows in each replication. After each entry 2 rows of BDN-1 were planted as susceptible check. All the entries were in advanced state of maturity. Quite a few plants had died in some entries. Some entries were in defoliated state.

BDN-1, the susceptible check was showing 100% infection. Entries: ICP-8501, -8849, -8852, -8854, -8855, -8856 and 8857 were having enough fresh growth to facilitate symptom study. The fresh growth in these lines was showing symptoms which are not typical of sterility mosaic. The leaf size was very much reduced and they were in bunches because of drastic reduction in internodal length. Typical mosaic mottle was not clear which generally happens in the latter stages of crop growth. None of the plants were bearing pods. Flowering appeared to have occurred but they dropped off without setting pods. It was evident from the scars left on the peduncles. The growth of the plants was stunted. In other lines: ICP-8847, -8848, -8850, and -8851, some plants were showing similar symptoms. Data on the exact number of plants infected in each line was not possible at this late stage. It would have been clear if the symptoms were studied in early stages of growth. ICP-8853 was also showing infected plants. But the symptoms were typical of sterility mosaic. The healthy plants were bearing pods normally.

The disease incidence in the farmers fields all the way from Patna to Dholi was very alarming. None of the fields was free. The incidence varied from 50-100%. Several fields were left over without harvesting. The incidence in Dholi farm was also very high. Incidence in 1258 was more than 50%. Pathologists at Dholi expressed that the incidence in 1258 in earlier years used to be less than 5%. The reasons for very high disease incidence this year need to be investigated.

Before drawing any final conclusion on the susceptibility of ICRISAT entries at Dholi (All these entries were reported resistant at Faizabad Research centre in U.P.) the aspects to be investigated are:

- To study the symptom picture on the resistant lines from seedling stage onwards.
- 2. To find out whether the disease affecting in lines at Dholi is sterility mosaic or some thing else.
- To find out whether the different symptoms expressed by the lines is due to genotypic effect and
- 4. To see whether the eriophyid mite involved at Dholi is *Aceria* cajani or different one.

Diseased leaves with eriophyid mites were brought from Dholi and the above aspects are being investigated.

Table 1. Incidence of wilt in the pigeonpea lines entered by ICRISAT in the All India Uniform pigeonpea wilt triala

TCD No	ANNIGERI		ICRISAT ^b		JABALPUR		KANPUR ^C		PARBHANI		VARANASI							
ICP No.	WP	TP	%	WP	TP	%	WP	TP	%	WP	TP	%	WP	TP	%	WP	TP	%
8858	7	55	12.7	17	44	38.6	0	42	0,0	ļ	17	5.8	0	85	0.0	18	37	48 - 6
8859	8	50	16.0	3	42	7.1	0	38	0.0	2	13	15,3	2	78	2,5	0	37	0.0
8860	10	63	15.8	2	28	7.1	0	50	0.0	0	19	0.0	1	87	1.1	1	43	2.3
8861	3	61	4.9	9	42	21.4	0	54	0.0	-	-	-	0	81	0.0	0	41	0.0
8862	7	60	11.6	11	33	33.3	1	49	2.0	_	-	-	ļ	79	1.2	16	41	39,0
8863	2	78	2.5	1	40	2.5	0	46	0.0	0	24	0,0	0	80	0.0	1	37	2,7
8864	11	68	16.1	13	39	33.3	0	58	0.0	5	37	13.5	6	78	7.6	j	34	2.9
8865	8	72	11.1	2	36	5.5	0	55	0.0	7	22	31.8	2	82	2.4	2	41	4 8
8866	6	56	10.7	-6	32	18.7	5	51	9.8	2	16	12.5	4	78	5.1	11	36	30.5
8867	5	66	7.5	2	40	5.0	1	55	1.8	-	-	-	0	80	0.0	Į	36	2.7
88 6 8	8	71	11.2	12	34	35.2	0	51	0.0	j	14	7.1	Ţ	82	1.2	0	37	0.0
8869	7	62	11.2	2	38	5 . 2	1	51	1.9	0	4	0.0	j	83	1.2	21	41	51.2
Suscep- tible check ^d	-	- 1	65-100	-	-	100.0	-	-	40-60	_	-	50-100	-	-	80-10	0 -	-	60-70

^aPeriod of observations Nov. 27-Dec. 18, 1978

DICRISAT data included for the purpose of comparison

^CPhytophthora blight caused a lot of damage; some lines destroyed completely

dRange of wilt incidence in rows of susceptible checks planted intermittently Soil types: Vertisol at Annigeri, Jabalpur, and Parbhani; Alfisol at ICRISAT; Alluvial at Kanpur and Varanasi

WP - Wilted plants; TP - Total plants; % - Percent wilt PROMISING LINES: ICP-8859, -8860, -8861, -8863, and -8867.

APPENDIX-LI

PUBLICATIONS

Published |

- 1. Kannaiyan, J., and Y.L. Nene. 1977. Alternaria leaf spot of pigeonpea. Tropical Grain Legume Bulletin No.9: 34.
- 2. Kannaiyan, J., and Y.L. Nene. 1978. Screening of pigeonpea for resistance to Phytophthora blight. Third International Congress of Plant Pathology, Munchers, 16-23 August 1978: 302 (Abstract).
- Kannaiyan, J., D.C. Erwin, O.K. Ribeiro, and Y.L. Nene. 1979.
 P. drecheleri f. sp. cajani, the causal organism of blight of pigeonpea in India. Phytophthora Newsletter No.7: 32-33.
- 4. Kannaiyan, J., and O.K. Ribeiro. 1979. Phytophthora cryptogea:
 Oospore formation in single culture at low temperature.
 Phytophthora Newsletter No.7: 13.
- 5. Sheldrake, A.R., A. Narayanan and J. Kannaiyan. 1978. Some effects of the Physiological state of pigeonpea on the incidence of the wilt disease. Tropical Grain Legume Bulletin 11 & 12: 24-25.
- 6. Kannaiyan, J., and Y.L. Nene. 1979. Association of different Fusarium species with wilt disease of pigeonpea. Tropical Grain Legume Bulletin No. 15: 26-27.
- 7. Kannaiyan, J., and Y.L. Nene. 1979. Occurrence of powdery mildew on Atylosia species. Tropical Grain Legume Bulletin No.15: 22-23.

<u>Accepted</u>

1. Kannaiyan, J., O.K. Ribeiro, D.C. Erwin and Y.L. Nene. 1979. Phytophthora blight of pigeonpea in India. Mycology (in press).

Communicated

1. Kannaiyan, J., Y.L. Nene and V.K. Sheila. 1979. Control of mycoflora associated with pigeonpea seed. Seed Research.

- Reddy, M.V., and Y.L. Nene. 1979. Influence of sterility mosaic resistant pigeonpeas on multiplication of the mite vector.
- 3. Reddy, M.V., and Y.L. Nene. 1979 Additional hosts of pigeonpea sterility mosaic virus and its vector

Presented

- 1. Nene, Y.L., J. Kannaiyan, M.P. Haware, and M.V. Reddy 1979
 Review of the Work Done at ICRISAT on Soil-Borne Diseases of Pigeonpea and Chickpea Prepared for the Consultants Group Discussion on the Resistance to Soil-Borne Diseases of Legumes January 8-11, 1979, ICRISAT, Hyderabad, India
- 2. Kannaiyan, J., Phytophthora blight of pigeonpea in India.
 At University of California, Riverside, U.S.A.
- 3. Reddy, M.V., and Y.L. Nene 1978. Sources of Resistance in Pigeonpea to Sterility Mosaic disease Paper presented at 7th meeting of the International Working Group on Legume Viruses. 24-25 August, 1978, Zurich, Switzerland.

ICR 79-0096