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Abstract: Salinity is increasingly becoming a significant problem for the most important yet intrin-
sically salt-sensitive grain legume chickpea. Chickpea is extremely sensitive to salinity during the
reproductive phase. Therefore, it is essential to understand the molecular mechanisms by comparing
the transcriptomic dynamics between the two contrasting genotypes in response to salt stress. Chick-
pea exhibits considerable genetic variation amongst improved cultivars, which show better yields in
saline conditions but still need to be enhanced for sustainable crop production. Based on previous
extensive multi-location physiological screening, two identified genotypes, JG11 (salt-tolerant) and
ICCV2 (salt-sensitive), were subjected to salt stress to evaluate their phenological and transcriptional
responses. RNA-Sequencing is a revolutionary tool that allows for comprehensive transcriptome
profiling to identify genes and alleles associated with stress tolerance and sensitivity. After the first
flowering, the whole flower from stress-tolerant and sensitive genotypes was collected. A total of
~300 million RNA-Seq reads were sequenced, resulting in 2022 differentially expressed genes (DEGs)
in response to salt stress. Genes involved in flowering time such as FLOWERING LOCUS T (FT) and
pollen development such as ABORTED MICROSPORES (AMS), rho-GTPase, and pollen-receptor
kinase were significantly differentially regulated, suggesting their role in salt tolerance. In addition
to this, we identify a suite of essential genes such as MYB proteins, MADS-box, and chloride ion
channel genes, which are crucial regulators of transcriptional responses to salinity tolerance. The
gene set enrichment analysis and functional annotation of these genes in flower development suggest
that they can be potential candidates for chickpea crop improvement for salt tolerance.

Keywords: salinity; pollen tube; transcription factor; phytohormone signalling; ion-homeostasis;
co-expression network

1. Introduction

Chickpea is the most important cool-season food legume and provides nutritional
food to the growing population [1,2]. With climate change, chickpea will become an
increasingly important crop [3–5]. Over the years, chickpea production has increased from
6.4 to 14.7 million tons due to its growing demand and economic viability [6]. However,
salinity is a significant constraint that reduces chickpea production by 8-10 per cent at a
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global scale— a static which is increasingly alarming in the context of growing population
and climate challenged food security [7–10].

Chickpea is intrinsically sensitive to salinity during the reproductive stages, affecting
the crop yields [1,11]. It can withstand salinity up to an electrical conductivity (EC) value
of less than or equal to 1.0 dS/m compared to cereals, which can tolerate up to an EC equal
to 10.0 dS/m [12]. Considerable breeding efforts have been made to underpin the salt
tolerance traits; however, confounding effects of abiotic stress during the field trials and
the polygenic nature of salt stress have rendered these approaches inadequate to uncover
the intricate nature of complex gene networks. The QTLs identified for salt tolerance
traits do not span the major and minor genes underlying the salt tolerance molecular
mechanisms [13]. Furthermore, due to continued climatic shifts, these QTLs ought to be
unstable and thus far could not be deployed in crop breeding programs to improve salt
tolerance and develop new crop varieties.

Flowering time plays a crucial role in crops’ adaptations and yield stabilisations in
response to environmental cues [14–16]. Physiological studies have shown that salinity de-
lays flowering time and severely affects the pod filling stages [9,17]. Despite pollen viability,
sensitive genotypes show a higher occurrence of empty pods and seed abortions [12,18,19].
This observation suggests a failure in ovule fertilisation as the main reason for pod abortion
or empty pods, despite the viable pollen and pollen tube growth. Additionally, chickpea
has a narrow genetic base. It shows phenotypic plasticity, making it challenging to under-
pin the physiological responses and uncover the genes responsible for flower development
during salt stress [20,21]. It is essential to understand the transcriptome dynamics and
elucidate the molecular mechanisms in response to salt tolerance to unravel the phenotypic
plasticity barriers.

Uncovering the molecular mechanisms and identifying potential candidate genes to
overcome the phenotypic plasticity barriers would allow crop improvement, tapping into
the genetic variation. Several studies reported that salt stress induces complex regulatory
mechanisms and major transcriptional reorganisation [22–25]. These genes were differ-
entially up- and down-regulated between the contrasting genotypes and developmental
stages, and they encode for cell wall biogenesis, heat shock proteins, and transcription fac-
tors [26,27]. Despite considerable efforts, the cis-acting genes that regulate this multigenic
trait and their complex interplay, which changes the function of genes upon interactions in
a network, could not be intuitively elucidated till now.

Transcriptomics has offered a deep understanding of gene regulation. Therefore,
identifying the differentially regulated candidate genes from flowers of contrasting the
tolerant and sensitive genotypes grown under saline conditions can shed light on salt
tolerance mechanisms [28,29]. There are success stories on improving salt tolerance in
crops such as wheat, rice, and soybean, where identification of potential candidates such as
transmembrane ion-transporter proteins was reported to regulate cellular ion homeostasis.

The ability of the chickpea genotype to maintain more seeds under salinity is a measure
of crop salt tolerance [30]. Based on this trait, two contrasting salt responsive genotypes,
JG11 and ICCV2, were selected from a chickpea mini-core collection and a reference set of
diverse genotypes showing consistent salt tolerance variations in field trials [31]. These
contrasting genotypes are parents of Recombinant Inbred Lines (RILs) mapping population
segregating for salt tolerance. The study aims to compare the transcriptomes of these
genotypes to understand the molecular mechanisms regulating salt tolerance and identify
the minor and major genes underlying the QTLs identified in the RILs to overcome the
phenotypic plasticity of chickpea to the environmental stress.

2. Results
2.1. Transcriptome Assembly

A total of twelve flower transcriptomes from three biological replicates of JG11 and
ICCV2 subjected to control and salt stress conditions were sequenced to ~50 million reads
per sample (Figure 1). A reference guided transcriptome assembly was generated from



Plants 2022, 11, 434 3 of 20

the reads sequenced from two chickpea genotypes to study the differential transcriptomic
regulation involved in reproductive success during salt stress. The reference guided
assembly comprised 36,154 genes, which is 8.4% more than the currently reported genes in
the chickpea genome (33,351), and additionally identified 3465 novel genes unannotated
in the latest version [32]. A total of 2022 genes were differentially expressed between the
flowers of the two contrasting genotypes in response to the salt stress compared against
control conditions. The tolerant genotype had a more significant number of up-regulated
(572) genes and a smaller number of down-regulated (303) genes, whereas the sensitive
genotype had less up-regulated (488) and more down-regulated genes (702) (Figure 2). On
comparing the commonalities between the differentially expressed genes (DEGs) expressed
in the two genotypes, 448 genes were induced while 245 genes were repressed exclusively
in the tolerant genotype.

On the contrary, 417 genes were induced while 636 genes were repressed exclusively in
the sensitive genotype. Interestingly, genes such as Cytochrome P450 and MYB transcription
factor were commonly differentially expressed between the contrasting genotypes. However,
these were induced in the tolerant genotype and repressed in the sensitive genotype.
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Figure 1. (a) Physiological responses of chickpea tolerant genotype (JG11) to salt stress in the 
glasshouse. A total of 80 mM NaCl was added and electrical conductivity (EC) was maintained at 1 
dS/m as a measure of salinity throughout the experiment. The first flower was observed in JG11 
after 34 days and ICCV2 after 30 days of sowing. As an effect of salt stress, plants show reduced 
plant height, slightly delayed flowering in the stressed tolerant plants, and fewer flowers in the 

Figure 1. (a) Physiological responses of chickpea tolerant genotype (JG11) to salt stress in the
glasshouse. A total of 80 mM NaCl was added and electrical conductivity (EC) was maintained
at 1 dS/m as a measure of salinity throughout the experiment. The first flower was observed in
JG11 after 34 days and ICCV2 after 30 days of sowing. As an effect of salt stress, plants show reduced
plant height, slightly delayed flowering in the stressed tolerant plants, and fewer flowers in the
sensitive genotype. (b) Flower developmental stages. Stage 3 fully opened flowers from both control
and stress conditions were collected for transcriptomic analysis.
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2.1.1. Gene Set Enrichment Analysis

The False Discovery Rate (FDR) values (0.05) of differentially expressed genes were
converted to gene ID table and used for GSEA in Blast2GO software. On comparing DEGs
from the tolerant against sensitive, the significant GO categories enriched were a response
to salt stress (GO:0009651); gibberellin-mediated signalling pathway (GO:0009740); pollen
tube development (GO:0009860); sexual reproduction (GO:0019953); transition metal ion
binding (GO:0046914); and regulation of hormone level (GO:0010817) (Figure 3).
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2.1.2. Differentially Expressed Genes in Response to Salt Stress

The top differentially expressed genes in the tolerant genotype were thaumatin pro-
teins, oxoglutarate-dependent dioxygenase, spermidine synthase, and aminocyclopropane-
1-carboxylate oxidase. Thaumatin protein gene was highly induced in the tolerant genotype
(Ca30893; FC: 1698.44 ↑) while repressed in the sensitive genotype (Ca30893; FC: −1.16 ↓).
Thaumatin proteins are osmotins that belong to the pathogenesis-related (PR) genes.
Thaumatin gene has been reported to be up-regulated in response to biotic and abiotic
stresses [33]. Thaumatin is a stress-responsive gene that imparted salt tolerance in Ocimum
and peanut [34,35]. Another vital gene, Enzyme inactive 2- (AOP2), was highly induced
in both tolerant (Ca20688; FC: 873.0 ↑) and sensitive genotype (Ca06612; FC: 349.7 ↑). The
AOP2 has biochemical significance and is involved in the biosynthesis of phytochemicals
such as flavonoids, gibberellins, and ethylene [36]. The genotypes significantly differen-
tially regulated other essential salt stress-related genes such as jasmonic acid, gibberellin
responsive, polygalacturonase, and pollen receptor (Figures 4 and 5).
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2.1.3. Genes That May Determine Reproductive Success under Salt Stress

• Pollen tube development

Reproductive success measures crop yield that depends on the flower development
and growth of the pollen tube, delivering male gametes to the ovary [37]. We identified a
suite of genes that are thought to regulate flowering as an essential mechanism in response
to salt stress. The important genes that control flowering time include flowering time
control (FTC), early flowering, and histone modification genes. These genes were highly co-
expressed with Na+/K+ ion channel, chromatin genes, MYB-TFs, and flowering locus (FLC)
(Figure 6). The upregulation of these genes in the tolerant genotype and down-regulation
in the sensitive genotype suggest their essential role in regulating flower development
during salt stress.
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Figure 6. Correlogram showing co-expression of flowering locus gene with transcription factors
and cell transporter during flower development in response to salt stress. Flower genes show high
Pearson correlation coefficient values (red) with essential salt responsive genes.

Interestingly, several highly induced differentially expressed genes showing strong
co-expression with ‘hub genes’ such as MYB and MADS-box in the gene network are
thought to be involved in pollen development. We identified genes such as Guanine-
nucleotide exchange factor, rop-guanine, lectin receptor kinase, and pollen allergen, which
play an essential role in controlling the polarised pollen tube development through rho-
GTPase activation pathways. The rop guanine nucleotide exchange gene was significantly
induced in the tolerant genotype (Ca05726; FC: 3.36 ↑) but repressed in the sensitive
genotype (Ca18294; FC: −2.77 ↓). Similarly, pollen receptor-like kinase (Ca16817; FC:
2.36 ↑) was induced in the tolerant genotype but significantly repressed in the sensitive
(Ca16817; FC: −4.19 ↓). Many studies have reported the active role of lectin receptor
kinase in pollen development, pollen interaction with stigma, pollen rupture in the embryo
sac, pollen tube, and ovule interaction and response to environmental stimuli [38,39].
In Arabidopsis, the expression of lectin receptor kinase was shown to influence pollen
development, pollen sterility, and microsporogenesis [40,41]. Significantly, G-type lectin S-
receptor-like serine/threonine-protein kinase was highly induced in the tolerant genotype
(Ca17969; FC: 6.77 ↑) but repressed in the sensitive (Ca17969; FC: −1.16 ↓). As reported
in an earlier physiology study, this gene may determine seed abortion and an increased
number of empty pods in the sensitive chickpea [10].
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Further, pollen allergen protein catalyses methionine formation and lignification of
the cell wall. It is thought to be involved in recognising pollen-stigma, pollen tube-style,
cell wall metabolism, and abiotic stress responses [42]. The upregulation of this protein is
associated with anatomical changes and vessel development in tissues under salt stress [43].
Pollen allergen protein was 38-fold more induced in the tolerant genotype (Ca15856; FC:
152.2 ↑) compared to the sensitive (Ca15856; FC: 4.05 ↑). Another most critical factor for
fertilisation is gamete fusion. It has now been studied that gamete adhesion and membrane
adhesion are caused by fusion proteins such as GAMETE EXPRESS (GX2) [44,45]. This
vital gene was highly repressed in the sensitive genotype (Ca31124; FC:−3.53 ↓), indicating
possible failure of reproductive success and seed formation in the sensitive genotype.

Furthermore, STIG1 is an important gene that increases pollen tube growth. STIG1
binds to pollen receptor kinase and has improved pollen tube growth and seed produc-
tion [46]. STIG1 was highly induced in the tolerant genotype (Ca07478; FC: 58.4 ↑) while
repressed in the sensitive genotype (Ca07478; FC: −1.87 ↓) (Figure 7). The flowering
time control (FTC) gene instigates an important gene involved in signalling, splicing, and
transcription, leading to upregulation of the FLC and STIG1 gene in the tolerant geno-
type. FTC gene significantly targets genes such as CCR4, syntaxin, Zn-finger TF, and
ubiquitin-proteasome, suggesting that flower time is controlled through cell trafficking and
homeostasis [47]. Membrane trafficking is often associated with floral organ separation
and development. Modulations in these pathways could be an important mechanism that
helps chickpea to maintain flower numbers during salt stress [48].
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Figure 7. Weighted gene co-expression network analysis (WGCNA) shows gene signalling pathways
involved in flowering time control response to salt stress. CW: cell wall genes; PO: polyamine oxidase;
SeCa: serine carboxypeptidase; BP: mRNA binding protein, CCR4: CCR4-NOT transcription complex,
IF: initiation factor; VP: vesicle protein, FTC: flowering time control; mRNA B: mRNA binding
protein; CTBP: carboxy-terminal binding protein.

• Transcription factors (TFs) involved in flower development

A total of 183 transcription factor genes were differentially expressed, especially those
specific to flower development. Out of these, 87 were up-regulated, while 101 were down-
regulated. These families include MYB (25), bZIP (2), bHLH (24), WRKY (14), Zn-finger,
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NAC (5), ERF (18), TF-agamous MADS-box (8), HSF (6), TF-CYCLOIDEA (1), TF-ABORTED
MICROSPORES (3), GATA (8), GRAS (3), trihelix (6), and PLATZ (2). Amongst these, MYB,
agamous MADS-box, bHLH, bZIP, and TF-ABORTED MICROSPORES were induced while
mainly NAC and ERF were repressed in the tolerant genotype (Table 1).

Table 1. List of the important differentially expressed genes in flowers of the tolerant and the sensitive
genotype in response to the salt stress.

Gene ID Gene Name Tolerant Genotype
(Fold Change)

Sensitive Genotype
(Fold Change)

Ca30893 Thaumatin protein 1448.2 −1.3
Ca05548 EIN1 6.1 −12.1
Ca01237 Auxin Efflux Carrier 2.6 −36.8
Ca25222 Auxin transporters 3.2 −14.9
Ca12043 Glycosyltransferase 337.8 −48.5
Ca14828 AT5PTase 3.2 −29.9
Ca31090 Peroxidase 3.5 −13.9
Ca27453 Expansins 294.1 −1.9
Ca33278 Xyloglucan endotransglucosylase/hydrolase 3.2 −27.9
Ca14533 Transcription factor AMS 415.9 −1.1
Ca02821 bHLH79 4.9 −19.7
Ca09486 Cytochrome P450 97.0 −337.8
Ca13032 Squamosa promoter binding protein 3.5 −548.7
Ca25411 WRKY 75 2.8 −1.2
Ca05149 MYB 114 5.3 −6.5
Ca11519 WIP6 1.2 −36.8
Ca06632 Chalcone synthase 2.5 −1.1
Ca10483 Uridine 5””monophosphate synthase 194.0 −0.9
Ca33071 Sucrose transport protein 18.4 −5.7
Ca05726 Rop guanine 3.2 −2.8
Ca16817 Pollen receptor−like kinase 2.3 −4.3
Ca17969 Gtype lectin Sreceptor 7.0 −1.1
Ca07478 STIG1 59.7 −1.9
Ca29596 Potassium transporter 2.3 −5.7
Ca21157 Spermidine synthase 256.0 −3.0
Ca14413 NRT1/PTR 97.0 −97.0
Ca18241 WAT1 3.7 −11.3
Ca15101 Nramp3 3.2 −9.8
Ca30961 Purple acid phosphatase 3.0 −1.1
Ca10443 Serine/threonine phosphatase 20.2 −3.68
Ca04326 High mobility group protein 59.3 −3.22
Ca04967 Cucumusin 25.9 6.4
Ca14115 Polygalacturonase 3.22 −14.5
Ca11519 WIP6 1.25 −35.5
Ca20075 Glutathione S-transferase/chloride channel 5.93 −1.18
Ca30961 purple acid phosphatase 3.11 −1.15
Ca01426 Nucleoporin 45.8 −1.80

• MYB transcription factor may regulate salt stress response through agamous MADS-
box cell dynamics

The two essential transcription factors, MYB and AGAMOUS-MADS-box protein,
are thought to be widely distributed in plants. They regulate the elongation of stamen
filament, anther development, pollen viability, pollen development, and flavonoid synthesis
pathways [49,50]. Similarly, co-expression network analysis in our findings revealed that
MADS-box—a target of the MYB gene—instigates the expression of genes involved in
cell polarity and trafficking (Figure 8). The MYB transcription factor MYB 114, which
is involved in pollen development, was induced in the tolerant genotype (Ca05149; FC:
5.24 ↑) while being highly repressed in the sensitive genotype (Ca01728; FC: −6.29 ↓).
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Interestingly, the upregulation of MYB induced AGAMOUS-MADS-box protein, which
was 19-fold up-regulated in the tolerant genotype (Ca20056; FC: 76.10 ↑) compared to the
sensitive genotype (Ca20056; FC: 4.08 ↑). The upregulation of this gene suggests floral
and reproductive organ development, and cell division and enlargement in the tolerant
genotype, as noted above during the salt stress.
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Figure 8. WGCNA gene regulatory network shows the ‘hub gene’ agamous MADS-box control the
expression of genes involved in flower cell transport and development in response to salt stress.
MADS: Agamous MADS-box; Ca An: α carbonic anhydrase; MLO: calmodulin binding defence
response gene; NSF: N-ethylmaleimide sensitive factor; CSC1: Calcium permeable stress-gated
cation channel 1; GT: glycosyltransferase; PK: protein kinase; Cl− ion T: chloride channel; UC: UDP-
glucuronic acid decarboxylase; GPT: glycerol-3-phosphate transporter; GAD: UDP-glucuronic acid
decarboxylase; TF: truncated transcription factor; Rho GDP: Rho GDP dissociation inhibitor.

Further, MADS-box gene targets the chloride ion channel, which is up-regulated in
the tolerant genotype (Ca20075; FC: 5.93 ↑) and down-regulated in the sensitive genotype
(Ca20075; FC: −1.18 ↓). This is an important salt tolerance mechanism, as chloride ions are
more toxic for floral development during salinity. MADS-box triggered upregulation of
the chloride transporter, which indicates an attempt to exclude these ions to avert flower
abortion during salinity stress [51]. Further, this important signalling cascade coordinates
the function of RhoGDP, which triggers the chloride ion channel [52]. Therefore, it may
be hypothesised that the ‘hub gene’ MADS-box regulates the ion-exclusion mechanism to
eliminate the toxic chloride ions promoting flower development in response to salt stress.

• AMS transcription factor may affect pollen development under salt stress

The pollens are surrounded by a protective cell wall that provides resistance against
environmental factors, desiccation, and pathogens, and helps pollen adhesion and devel-
opment. Transcription factor ABORTED MICROSPORES plays a crucial role in tapetum
development and is essential for male fertility and pollen differentiation within the develop-
ing anther [53]. Transcription factor ABORTED MICROSPORES (AMS) was highly induced
in the tolerant genotype (Ca14533; FC: 427.5 ↑) while being repressed in the sensitive geno-
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type (Ca14533; FC: −1.10 ↓) (Figure 9). This factor is reported to bind to the promoter of the
genes responsible for pollen development, and its upregulation in the tolerant genotype
suggests that this gene may be crucial for pollen viability during salt stress [54]. On the
contrary, the repression of AMS genes in sensitive genotypes suggests a possible failure in
anther and pollen development in the sensitive genotype. The inability of the pollen tube
to develop and reach the ovary under salt stress conditions leads to flower abortion and
low crop productivity in sensitive genotypes.
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2.1.4. Response of Hormone Signalling Genes

Several studies have suggested that jasmonic acid mediates drought and salt stress
response [55,56]. In our findings, the Jasmonic acid-amido synthetase (JAR1) gene was 15-
fold up-regulated in the tolerant genotype (Ca33319; FC: 39.3 ↑) as compared to the sensitive
(Ca33319; FC: 2.58 ↑) (Figure 10). The jasmonic acid-induced response is significant for
pollen maturation; therefore, its upregulation suggests considerable involvement in stress
management during reproductive processes [57].

Ethylene is known as a stress hormone and its production increases in response to
environmental stress. Aminocyclopropane-1-carboxylate oxidase is an essential precursor
of ethylene, and its application on Arabidopsis has been shown to delay flowering. Several
aminocyclopropane-1-carboxylate oxidase genes were 137-fold-induced in the tolerant
genotype (Ca26892; FC: 849.2 ↑) compared to the sensitive genotype (Ca26892; FC: 6.23 ↑).
This suggests that the first signalling response is ethylene production during the salt stress,
which delays the flowering in the tolerant genotype. This could be an essential mechanism
to escape salt stress and maintain more flowers. It has been reported earlier that salinity
delays flowering time in chickpea [30], and the tolerant genotypes seem to employ this
strategy to allow time for salt stress adaptation (Figure 11).
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Figure 10. Integrative Genome Viewer (IGV) shows upregulation of jasmonic acid gene (Ca33319)
induces FLC gene (Ca31297) in tolerant genotype in response to salt stress. The tracks include CDC
frontier Kabuli v2.6.3 reference fasta; annotated gene. gff3; accepted.hits.bam from tolerant control
and tolerant stress and differentially expressed gene coordinates.
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Figure 11. The abundance of gene families involved in hormone signalling and cell wall biogenesis
in response to salt stress.

2.1.5. Cell Wall Reorganisation May Be a Key Mechanism for Salt Tolerance

Cell wall remodelling is essential in cell expansion, membrane transport, and stress
signalling [58,59]. Several important genes involved in cell wall organisation such as poly-
galacturonase, pectinesterase, glycosyltransferase, and lipid transfer proteins were amongst
the top differentially expressed genes having more significant fold change in the tolerant
compared to the sensitive genotype. Glycosyltransferase overexpression in tobacco has
been observed to enhance salt tolerance by increased accumulation of proline and sugars,
and reduced Na+/K+ ion concentration [60,61]. We identified that glycosyltransferase
genes were highly induced in the tolerant genotype (Ca12043; FC: 347.2 ↑) but were re-
pressed in sensitive genotype (Ca00611; FC: −48.8 ↓). Notably, essential cell wall genes
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such as pectinesterase, polygalacturonase, and pectate lyase were highly induced during
the salt stress in the tolerant genotype (Figure 12). The expression of these cell wall genes
indicates the floral organs’ developmental process and the ion channels’ regulation. It
could be that induction of these genes in the tolerant genotype denotes the elongation of
the pollen tube during the salt stress.
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Figure 12. Differential expression of genes involved in cell wall biogenesis. Genes are induced in
tolerant genotype stress conditions compared to sensitive genotypes in response to salt stress. The
error bars are standard errors (SE) calculated using three biological replicates across the conditions.

2.1.6. Role of Transporters in Ion-Homoeostasis

Ion-exclusion is an essential mechanism for salt stress tolerance. Important ion chan-
nels such as potassium and chloride were significantly up-regulated in the tolerant geno-
types but repressed in the sensitive genotype. Potassium ion channels exchange Na+ with
K+ and regulate the ion-exclusion mechanism [62]. The potassium transporter gene was
induced in the tolerant genotype (Ca29596; FC: 2.37 ↑) while repressed in the sensitive
genotype (Ca21839; FC: −5.81 ↓). It is important to note that potassium ion uptake is
also necessary for pollen development, and deficiency in K+ leads to infertility [63]. The
repression of these transporter genes in the sensitive genotype confirms their incompetency
to maintain cellular ion-homeostasis during the salt stress. This could have also affected
the ability of the pollen tube to grow and lead the successful fertilisation.

Micronutrients such as copper and boron play an essential role in pollen development,
germination, and seed formation [64]. Plants maintain copper equilibrium below a toxic
level through important transmembrane transporters called copper-transporting ATPase,
and this gene was highly induced in tolerant genotype (Ca22802; FC: 50.9 ↑) while repressed
in sensitive (Ca22802; FC:−3.22 ↓). Boron is an essential micronutrient, and upregulation of
the boron transporter in the tolerant genotype (Ca13752; FC: 2.05 ↑), whilst being repressed
in sensitive genotype (Ca13752; FC: −2.63 ↓), suggests boron uptake through the roots and
xylem is utilised during the reproductive processes. These genes collectively regulate the
ion-homeostasis, helping the flower development, and their upregulation in the tolerant
genotype points to an essential molecular mechanism in response to salinity.

2.2. Validation of RNA-seq Results with Quantitative Real-Time PCR (qRT-PCR)

Furthermore, to confirm the normalised gene count values obtained from RNA-seq
data, we performed qRT-PCR using ten salt responsive candidate genes. These genes
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majorly include candidate genes such as cation exchanger, blue copper, glutaredoxin,
ascorbate oxidase, and chloride-channel protein. Fold changes obtained from qRT-PCR
showed a significant square of correlation value (r2 > 0.81) with fold changes of cation
exchanger, sodium-coupled amino acid transporter, and chloride channel obtained with
RNA-seq data. Few genes showed fold-change less than RNA-seq data. However, they
were similarly induced in the tolerant genotype while repressed in the sensitive genotype.
These results confirmed the validity of RNA-seq data (Figure 13).
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Figure 13. Validation of gene expression obtained from RNA-seq data using real-time quantitative
PCR. A significant square of correlation value (r2 = 0.81) was obtained between the RNA-seq and
qRT-PCR. The error bars are standard errors (SE) calculated using technical replicate Ct values. (Left
to right) Genes on the graph show expression of sodium coupled neutral amino acid transporter
6, sodium transporter HKT, sodium coupled neutral amino acid transporter 4, folate biopterin
transporter, sodium/pyruvate cotransporter (BASS2), sodium driven chloride bicarbonate exchanger,
K(+) efflux antiporter 2, and chloride channel.

3. Materials and Methods
3.1. Plant Material and Experimental Design

A total of two chickpea genotypes, desi JG11 (salt-tolerant) and Kabuli ICCV2 (salt-
sensitive), were subjected to salt stress in a random complete block design (RCBD) in the
glasshouse at RMIT University, Australia [19]. The experiment comprised three biological
replicates of each genotype subjected to control and salt stress conditions. Plants were
cultivated in 10.5-inch diameter pots that weighed 9.5 kg of pasteurised sandy clay soil
without added fertilisers. The soil was supplemented with a calculated Rhizobium culture
to help plants establish symbiotic nitrogen fixation. Further, to avoid any salt leakage, the
pots were sealed with sturdy tape.

Based on the previous physiological studies, two adaptive salt doses of 40mM NaCl
(~1.75 grams per kg of soil) were added to the soil, one at the sowing and another ten
days after sowing time [31]. The dose of 80 mM NaCl equates to an EC value of 1 dS/m
as a threshold for salt tolerance where plants could be challenged until maturity. After
adding the second salt dose, the EC of the soil was measured and maintained at 1 dS/m
over time. Seeds were soaked overnight and sprouted in Petri-dishes after the surface
was sterilised with 70% EtOH, followed by rinsing twice with MilliQ water. Plants were
routinely watered to the field capacity and fully open flowers at Stage 3 were collected for
RNA isolation.
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3.2. RNA Isolation and Library Preparation

Total RNA was isolated using the Qiagen RNeasy kit (GmBH, Germany). The frozen
flower tissues were ground to a fine powder and weighed to add calibrated volumes
of lysis buffer. Finally, RNA was eluted in 60µl of RNase free water. Total RNA was
quantified using Nanodrop (NanoDrop™ Lite Spectrophotometer, ThermoScientific) and
qualitatively analysed on High Sensitivity RNA ScreenTape (Agilent 2200). Only RNA with
RIN value > 7 was chosen to enrich mRNA.

3.3. mRNA Enrichment

From 1 µg of total RNA as starting material, poly(A+) was isolated using Dynabeads
mRNA purification kit (Thermofisher Scientific, Carlsbad, CA, USA).

A total of twelve RNA-seq libraries were prepared using Truseq Stranded Total RNA
kit (Illumina) from two genotypes at two conditions having three biological replicates
each. A total of 100 ng of mRNA was fragmented, and first-strand, paired-end libraries
(150 bp × 2) were generated following the steps of the standard protocol prescribed by
Illumina. On average, ~50 million reads were generated per sample, with six samples per
lane on HiSeq 3000.

3.4. RNA-seq Data Analysis

The reads were checked for their quality, length distribution, and adapter contamina-
tion, using FastQC. The rRNA reads were filtered using SortMeRNA (sortmerna-intel/2.1),
which has built rRNA databases [65]. The reads were trimmed to remove any adapter
sequences using trimmomatic/0.36 and mapped to improved CDC frontier Kabuli v2.6.3 ref-
erence genome (http://doi.org/10.7946/P2G596, accessed on 12 December 2021) using
tophat2 (tophat-gcc/2.0.13) [66]. Only the concordant pair alignments were accepted for
further analysis. More than 97% of reads passed the rRNA filtering and QC-filtering, and
87% concordant pair alignment mapping rate to chickpea genome (v2.6.3) was observed.
The accepted hits were used for gene counts using HTSeq (HTSeq-0.6.1p1) [67]. These gene
counts for each replicate and condition were used to find the differentially expressed genes
with EdgeR (GLM likelihood ratio test) using Blast2GO PRO software [68]. To see what
genes and functions are enriched in response to salt stress, gene set enrichment analysis
(GSEA) was performed using Blast2GO PRO software [69].

3.5. Gene Regulatory Networks

The gene regulatory networks were created using R Bioconductor packages ‘WGNCA’;
‘knitr’; ‘limma’; ‘ggplots’; and ‘reshape2′ [70,71]. The low gene counts were masked, and
the remaining 18,654 genes were log-transformed. A similarity matrix was generated upon
computing the correlation distance matrix using function cordist. An adjacency matrix was
developed using the function adjacency.fromSimilarity with a power of 12, type = signed.
We constructed a weighted network, and the threshold chosen to limit the number of
edges was 0.999 and genes with edges lower than the threshold or with no edges were
discarded. The non-positive and negative edges were screened and rescaled to ‘0′ and ‘1′.
The adjacency matrix was converted to graphml format using package ‘igraph’ using the
function graph.adjacency; weighted = TRUE; mode = undirected in R [72]. The graph was
exported as graphml with a threshold correlation value between the nodes (representing
the genes) greater than 0.80. The network of genes was visualised by exporting the graphml
file in Cytoscape (v 3.8.2) [73]. Genes with a high degree of connectivity coefficient were the
central ‘hub gene’ on the network. The network was visualised in Prefuse Force Directed
layout in Cytoscape, and the edge weights were added to identify the source and targets
gene. The correlogram was constructed using the ‘corrplot’ package, and the correlation
matrix of the gene counts was calculated using the ‘cor()’ function in R programming.
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3.6. Real-Time Quantitative PCR (qRT-PCR)

We obtained the FASTA sequences of reported salt-tolerant candidate genes annotated
in chickpea from the NCBI RefSeq [74]. qRT-PCR specific primer-pairs were designed from
these candidate genes using Primer3 (v 0.4.0) and checked for their specificity using primer
BLAST [75] (see Supplementary File). We used elongation factor (eEF-1α) and GAPDH as
the reference gene and obtained the primer sequences reported in the previous study [76].
Total RNA isolated from the tolerant and sensitive flowers subjected to salt stress and
control conditions was converted to cDNA using QuantiTect Reverse Transcription Kit
(Qiagen, GmbH, Germany). The cDNA was amplified using the reference and candidate
gene primers and QuantiFast SYBR® Green PCR Kit (Qiagen, GmbH, Germany). The
cycle of threshold (Ct) values obtained from three technical replicates of control and stress
samples were averaged and subtracted from the reference gene Ct values. The fold-change
of candidate genes was estimated by comparing the Ct values of stress samples against
control samples using ∆∆Ct method [77]. To estimate the variance, fold-changes obtained
from the qRT-PCR were plotted against those obtained from RNA-seq data to calculate the
square of correlation (r2).

4. Conclusions

The deep-sequenced transcriptomes of two contrasting salt responsive chickpea geno-
types uncover the important molecular mechanisms regulating salt stress tolerance. The
essential salt tolerance candidate genes are highly induced in the tolerant genotype but
are repressed in the sensitive genotype, suggesting their potential role in regulating the
tolerance to salinity. Co-expression network analysis reveals the cascade of genes involved
in salt tolerance. Most of the differentially expressed genes have an essential role in pollen
tube development, confirming the pollen tube’s inability to develop and reach the ovary
under salt stress conditions, which leads to flower abortion and low crop productivity.
The induction of pollen development genes in flowers of the tolerant genotype promotes
successful reproduction and restores crop productivity under stress conditions. The com-
prehensive dissection of contrasting salt informed flower transcriptomes would provide
important gene information to screen the RILs variants and facilitate further introgression
of salt tolerance in early maturing and high yielding yet salt-sensitive chickpea genotypes.
The deep-sequenced transcriptome data will assist users to mine the gene of their interest
and its applicability should extend to other crops to improve salt tolerance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/plants11030434/s1. File: qRT-PCR specific primer-pairs.
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