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A B S T R A C T   

Rice cultivation in the Northwestern Indo-Gangetic Plains (IGP) of India is often associated with high energy use, 
calling into question its sustainability. We applied a bootstrapped meta-frontier with a truncated regression to a 
database of 3,832 rice farms from the input-intensive rice production tracts of the Northwestern IGP as part of an 
assessment of energy use efficiency aimed at identifying entrypoints for more sustainable and efficient practices. 
District-specific technical efficiency score ranged between 0.68 and 0.99, with a mean of 0.86–0.90, suggesting 
an average potential for improvement in energy use efficiency of 10–14% within each district. Observed mean 
meta-frontier technical efficiency scores ranged between 0.60 and 0.81. On average, energy use efficient farms 
had 42% or higher energy use efficiency in the districts of Ambala, Fatehgarh Sahib, and Karnal. In contrast, in 
other districts efficient farms had 5-19% higher energy use efficiency than the inefficient farms. Higher rates of 
tillage, irrigation, and fertilizer application were identified among inefficient farms, with patterns of energy use 
efficiency varying to some extent between study districts. Both efficient and inefficient farms in Kapurthala and 
Ludhiana exhibited similar patterns of energy for tillage and land preparation, whereas the energy output from 
both efficient and inefficient farms were similar in Kurukshetra. These data suggest that in order to improve the 
efficiency of energy use in rice farms in the Northwestern IGP, district-level policy interventions and incentives 
might be required. The methodological approach and evidence provided in this study may be of use to identify 
pathways toward sustainable energy use in other intensively managed rice production landscapes in other 
countries. Similar analyses that employ meta-frontier and truncated regression approaches can be carried out for 
other performance indicators, for example profitability and carbon footprints, to explore and identify manage-
ment and policy interventions to assist farmers to more appropriately utilize scarce and costly resources.   
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1. Introduction 

Rice plays a critical role in maintaining food security in India, ac-
counting for over a quarter of the country’s total calorie intake [1]. The 
Green Revolution of the 1960s transformed India’s rice production 
landscape through the adoption of high yielding varieties, greater input 
use, and the expansion of irrigation and mechanization [2,3]. However, 
rice cultivation is an energy-intensive process, requiring greater inputs 
compared to other cereal crops. This is due to the intensive puddling and 
tillage practices in rice paddies, as well as the higher use of agrochem-
icals [4]. The energy inputs for rice production come from various 
sources, including diesel-powered tractors for preparatory tillage and 
puddling, diesel or electric pumps for irrigation, and the use of fertil-
izers. On average, 6.4 MJ of energy is required to produce 1.0 kg of rice, 
with the majority of energy input attributed to irrigation and fertilizer 
use [5,6]. 

In the North-western Indo-Gangetic Plain (IGP) of India, long 
standing policies of providing highly subsidized nitrogen fertilizer and 
electricity for irrigation to farmers has incentivized the excessive use of 
fertilizer and water for rice production. However, these additional in-
puts do not always result in a corresponding increase in yield [7,8]. Such 
excessive resource use not only results in low resource use efficiency and 
high carbon footprint [33,51], but also creates multiple environmental 
sustainability issues. In the past, increased rice production was achieved 
through energy-intensive methods, relying heavily on electricity and 
diesel consumption. The production, transportation, and application of 
inputs also require energy and carbon from non-renewable sources [9]. 
As India faces an energy crisis from non-renewable sectors, the need for 
sustainable energy use has become imperative to fulfil energy demands 
without rapidly depleting non-renewable resources. Agriculture, as a 
sector, transforms energy inputs such as fertilizers, agrochemicals, ma-
chinery, diesel, electricity, and manpower into nutritive energy sources 
through photosynthesis. Hence, energy inputs in agriculture cannot be 
avoided and the level of input affects the energy output. On farm de-
cisions around the amount and timing of energy inputs vary greatly 
based on knowledge, technology availability, perceived benefits, and 
prevailing biophysical conditions, in turn affecting energy output in the 

form of rice yield and contributing to highly heterogenous energy use 
efficiency in the region. . Increased energy use may not always be 
economically viable, and it can also increase the carbon footprint of 
farming [8]. A recent study in the Gangetic Plains of India indicates that 
the energy use efficiency of cereal crops, including rice, is decreasing 
[10]. TDesigning a pathway for judicious use of energy in rice produc-
tion is the need of hour, given the huge demand for energy by other 
non-agricultural sectors and activities and importance for the sustain-
ability of future rice production. 

An inventory of the energy use associated with key management 
practices like tillage, irrigation, fertilizer application, labor, and agro-
chemicals; and energy output in rice grain yield is required to compute 
the energy use efficiency and to estimate its variability among farms. 
Although numerous studies estimated the energy use efficiency for rice- 
wheat cropping systems in Northwestern India [11], only few compared 
and classified farms as efficient and less efficient and identified the key 
drivers affecting energy use efficiency [5,6]. Singh et al. [5] concluded 
energy use efficiency for rice production in Western Punjab was in the 
range of 0.94–0.97 and that ca. 2200 MJ ha− 1 could be saved with 
efficient crop management. The latter was also observed in Karnataka 
where energy use can be reduced by 6% in puddled transplanted con-
ditions [6]. Yet, the aforementioned studies relied on a limited number 
of observations and hence, do not capture well the diversity of 
input-output combinations observed across farms and tend to over-
estimate the energy use efficiency scores derived from Data Envelop-
ment analysis (DEA) [12]. Thus, our study is novel in employing the 
bootstrapped meta frontier approach using DEA to classify farms as 
efficient and less efficient from the inventory of energy use and using a 
truncated regression to find the drivers of energy use efficiency across a 
large number of farms. The farm level inventory of energy use pattern is 
important for policy planning in this region, as the farms in the IGP rely 
on external inputs. This study can guide policy planners on targeting 
inefficient farm clusters and operations. DEA is a benchmarking tech-
nique, which provides an efficiency score indicating the extent to which 
a farm is efficient relative to its most energy efficient peers (i.e., farms 
producing a given level of output with the least possible energy)[6,13, 
14]. The use of DEA invites erroneous estimates of efficiency scores if 
outliers are present near the boundary of the frontier. Therefore, boot-
strapped DEA was applied in this study as such approach does not rely 
on single most boundary points. 

The present study was designed to i) assess the main sources of en-
ergy use for rice cultivation and estimate energy input, output, and 
hence efficiency, ii) benchmark energy use efficiency against the most 
energy use efficient farms observed in the sample while identifying 
options to reduce energy input without compromising energy output, i. 
e., designing a sustainable energy use pathway for rice farms and, iii) 
identify the determinants of energy use efficiency in the intensive rice 
production systems in the Northwestern IGP of India. It was hypothe-
sized that farmers spend additional energy in most of the field opera-
tions like tillage, irrigation, fertilizer, and labor, which can be reduced 
without compromising energy output. Such study at the regional level 
involved the analysis of 3,832 fields from 7 different districts and con-
tributes to better understand the sustainability of rice cultivation in 
India with respect to energy use. 

2. Material and methods 

2.1. Survey data collection 

Agronomic management and socio-economic data referring to the 
2020–2021 rainy season (Kharif rice) were collected from 3,832 
farmers’ fields located in the Haryana and Punjab states of India. The 
districts and villages were purposively selected to represent the level of 
intensification, technology adoption, and access to extension services in 
the region. Farms within each village were randomly selected from the 
voter list. All surveyed fields were geo-referenced and the number of 

List of abbreviations including units and nomenclature 

CSISA Cereal System Initiative for South Asia 
CCAFS CGIAR research program on Climate Change, 

Agriculture and Food Security 
CIMMYT International Maize and Wheat Improvement Center 
CRS Constant Returns to Scale 
DEA Data Envelopment Analysis 
DMU Decision Making Unit 
EI Energy input (MJ ha− 1) 
Eo Energy output (MJ ha− 1) 
EUE Energy use efficiency 
IGP Indo-Gangetic Plains 
IQR Inter Quartile Range 
ME score Meta efficiency score 
MTR Meta technology ratio 
ODK Open Data Kit 
TE score Technical efficiency score 
VRS Variable Returns to Scale 
Power of pump unit used: HP, 1 HP = 746 W 
Depth of water table unit used: Feet, 1 feet = 0.3048 m 
EUE, TE score, ME score, and MTR are dimension less 
All energy input and output in MJ ha− 1  
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surveyed farms per district is presented in Fig. 1. A structured ques-
tionnaire (see Appendix 1) was prepared to include the key variables 
affecting rice crop productivity and needed to characterize the socio- 
demographic situation of each farm. The questionnaire was tested 
before the actual survey and was implemented with an Android smart 
phone-based Open Data Kit: ODK application survey by trained enu-
merators. In about 25% of the surveyed fields, the research team 
determined the grain and straw yield by manually harvesting the crop 
from 2 × 2 m2 randomly selected quadrants besides recording farmers’ 
self-reported yield, whereas, in the remaining 75% of the sample, only 
the self-reported yield from the largest plot was recorded [7]. After data 
collection, the ODK forms were uploaded to the Cereal System Initiative 
for South Asia (CSISA) server by the enumerators. 

2.2. Data processing 

A web-based dashboard was developed to visualize the data uploa-
ded to the CSISA server and to identify potential errors during data 
collection. Real-time error checking was done with the help of univar-
iate statistical methods like boxplot and histogram and enumerators 
were requested to revalidate outliers. Upon completion of data collec-
tion, univariate outlier screening for rice yield, fertilizer application, 
and number of irrigations was done per variety using the Inter Quartile 
Range (IQR) (boxplot technique). Quartile 1–1.5 x IQR was considered 
the lower threshold and Quartile 3 + 1.5 x IQR was considered the upper 
threshold. Bivariate outliers were identified using the robust Mahala-
nobis distance [15] and such cases were not used in the analyses. Further 
details about the survey and outlier screening are provided in Nayak 
et al. [7]. 

Expert knowledge was used to correct data requested on labor use. 
To do so, the relationship between different variables was considered 
while examining the outliers in data, e.g., labor use for fertilizer appli-
cation depends on the amount of fertilizer applied, labor cost of trans-
planting depends on labor man-days used for transplanting. The time 

required to apply mineral fertilizers was estimated based on the reported 
fertilizer amount and the assumption that average laborers take 1.4 hr to 
apply a 50 kg fertilizer bag manually and at the same time a 50 kg 
fertilizer bag can be applied in 1 hr if laborers are most efficient and a 
maximum of 2.2 hr if they are not efficient. Moreover, it was checked if 
the reported application times were between the minimum and 
maximum application times calculated and if not, such values were 
replaced with the nearest minimum or maximum application time. 
When family laborers were used for transplanting, the reported labor use 
by farmers was generally small and thus replaced by a minimum of 7- 
man days of labor used for transplanting. Similarly, maximum labor 
use for transplanting was fixed at 25 man-days. 

2.3. Computation of energy input, energy output, and energy use 
efficiency 

The main sources of energy input were selected based on the man-
agement practices reported by rice farms in Punjab and Haryana. The 
latter included inputs such as mineral fertilizers, electricity for irriga-
tion, diesel for tillage operations, agrochemicals, manual labor, and 
seeds. Farmers used electricity mainly for pumping groundwater used in 
irrigation and diesel in field operations involving machinery. Standard 
coefficients were retrieved from the literature (Table 1) to estimate the 
energy input associated with the use and manufacturing of mineral 
fertilizers and other agrochemicals. The energy input of mineral fertil-
izers and other agrochemicals was then calculated by multiplying the 
physical units of each input recorded in each field with coefficients 
retrieved from the literature. For the machinery involved in the tillage 
operations, the time required to complete land preparation at one go, the 
diesel consumption per hour, and the number of operations as reported 
by farmers were used to calculate the energy input associated with 
tillage operations. The energy input associated with the use of ma-
chinery was calculated as follows: 

Fig. 1. Location and number of surveyed rice fields in the states of Punjab and Haryana in the Indo-Gangetic Plains of India.  
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Energy input from tillage=
∑

Ei (1)  

Ei =
∑

(Number of hrs required for field preparation per ha

× Diesel consumption per hr

× Number of times specific machinery was used

× Energy coefficient of diesel
)

(2)  

where Ei is the energy used in tillage operation i. Suppose three tillage 
implements were used, then diesel consumption was computed for each 
machinery based on the time required for field preparation, which were 
further summed to get the total energy use in field preparation. 
Although the energy equivalent coefficients were available in the liter-
ature [16], the time required to prepare a one ha field and the associated 
diesel consumption were used as per the data in Table 2. The latter refers 
to a standard working depth and were estimated in the Central Soil 
Salinity Research Institute (CSSRI), Karnal, India. The energy consumed 
during manufacturing the machinery was not considered in the calcu-
lation of energy input. 

Electricity is the main source of energy used for irrigation in the 
Northwestern IGP of India, and it is heavily subsidized by the govern-
ment in the region. However, for the purpose of this study, the exact 
energy expenditure for irrigation was computed. For the computation of 
electricity requirements for irrigation, a secondary survey was con-
ducted to gather further information about irrigation management in 
which farmers were asked through a scheduled questionnaire the in-
formation related to the power of the pumps used, the depth of the water 
table, and the number of hours taken to irrigate a field of one ha (i.e., the 
time for complete irrigation) among others. This secondary survey 
comprised a sample size of 582 farms representing all the blocks of the 
districts which are the next tier administrative sub-units of a district. The 
secondary survey was carried out across all these blocks for irrigation 
pumps for their power outputs and irrigation durations. A median value 
of the pumping power outputs (HP) and irrigation durations (in h) were 
assumed representative across a block and used to calculate electricity 
consumption of a single field unit according to Kashyap and Agarwal 

[17],: 

Electricity consumption (kW hr) = Time required for single irrigation (hr)

× Number of irrigations

× Power of pump (HP) × 0.75
(3) 

The total labor required (in hours) for irrigation was assumed the 
same as the duration of irrigation. Correspondingly, the labor used for 
irrigation was added with other labor use for seedbed preparation, 
sowing, fertilizer and pesticide application, harvesting, and threshing. 
Finally, the total energy input was calculated as the sum of energy inputs 
from tillage operations, irrigation, mineral fertilizer, agrochemicals, and 
total labor use (Equation (4)). The energy input for harvesting through a 
combine harvester was excluded from the calculation of energy input 
and energy use efficiency because it was constant across all the farms 
cultivating non-basmati rice. Energy input, energy output, and energy 
use efficiency (EUE) were calculated as follows: 

Energy input
(
EI ; MJ ha− 1)=

∑n

i=1
(I1 + I2 +…+ In) (4)  

Energy output
(
Eo; MJ ha− 1)= rice yield

(
kg ha− 1)

× energy coefficient (EC) (5)  

EUE (MJ/MJ) = Eo / EI (6)  

where, I1, I2, …, In, refer to the energy input involved in the 
manufacturing and application of fertilizers and pesticides, the energy 
used for tillage operations and irrigation, and total labor use. 

2.4. Energy use efficiency analysis: A double bootstrapped meta-frontier 
approach 

Energy use efficiency (EUE) is defined here as the ratio between the 
energy obtained in the useful output (e.g., crop yield) and the energy 
input used during the crop production process (Equation (6) [14,18]). A 
farm is considered energy use efficient if it produces the maximum en-
ergy output (i.e., rice yield) with the least possible energy input used in 
production process [19]. Energy use efficient farms are defined as those 
leading to a “best-practice frontier” of energy use efficiency but may not 
essentially form a “production frontier” [20]. If a farm’s actual pro-
duction is lower than the frontier yield (i.e., it lies beneath the frontier), 
then this farm is considered energy inefficient. In contrast, if a farm’s 
actual production is identical to the frontier yield (i.e., the farm lies on 
the frontier), then this farm is most efficient with respect to energy use 
[21]. The estimation of the energy use efficiency frontier is crucial in 
understanding pathways to minimize the energy input for the produc-
tion of output in agriculture. Conversely, estimating a single frontier for 
the entire sample of farms within a given region assumes that all farms 
operate under a similar biophysical environment and have similar 
expertise, technology, and market accessibility. Thus, there is a high 
chance of a false interpretation of varying energy use efficiency at the 
farm level due to heterogeneity in the production environment (Sup-
plementary Tables 1A and B). To overcome the above, EUE estimation 
based on a meta-frontier approach can be employed using either the 
parametric stochastic frontier analysis or the non-parametric data 
envelopment analysis (DEA). The latter was used in this study. 

The DEA meta-frontier approach [22–24] involves estimating the 
frontier at local or group level (here district) with distinct biophysical 
environment and technology accessibility and estimating a global 
frontier (meta-frontier) with the pooled energy input–output data set of 
all the sample of rice farms surveyed (n = 3832), without any bio-
physical or technology differentiation. By taking two hypothetical re-
gions as an example, Fig. 2 illustrates the concept of meta-frontier 
technical efficiency as the input-output efficiency with respect to the 
energy that provides the robust estimation of EUE. Assuming that the 

Table 1 
Energy equivalent coefficients used to estimate energy input for rice farms in 
the Northwestern Indo-Gangetic Plains of India.  

Variables Energy equivalent (MJ unit− 1) 

Manual labor (hour)  1.96 
Diesel (L)  56.31 
Fertilizer Nitrogen (kg)  60.60 
Fertilizer P2O5 (kg)  11.10 
Fertilizer K2O (kg)  6.70 
Fertilizer Zinc (kg)  20.90 
Herbicide (kg)  254.40 
Insecticide (kg)  184.60 
Fungicide (kg)  184.60 
Electricity (kW h− 1)  11.93 
Rice grain (kg)  14.70 

References: [18, 42], Fertilizer P2O5: Phosphorus fertilizer, Fertilizer K2O: 
Potassic fertilizer. 

Table 2 
Diesel consumption per hour and time required to complete land preparation for 
1 ha as measured for the standard working depth of the machinery in the Central 
Soil Salinity Research Institute-Karnal.  

Tillage 
implements 

Diesel consumption (L 
hr− 1) 

Time for land preparation (hr 
ha− 1) 

Harrow  8.18  1.59 
Planker  4.55  1.05 
Tiller  7.82  1.22 
Wet harrow  10.00  2.37 
Rotavator  11.27  2.37  
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two regions are biophysically heterogeneous, and/or operate at different 
technology levels, would result in entirely different EUE frontiers for the 
two regions. Let the EUE frontiers of the groups be C, C′, and G, G’ 
(Fig. 2). The technology gap of the ith farm is represented by the dis-
tance between θi and θi*, where θi represents the global meta-frontier 
and θi* represents the local or district specific frontier for ith farm’s 
EUE. The ratio between the θi and θi* is called meta technology ratio 
(MTR), with reference to EUE. The M, M′ in Fig. 2 represents the global 
meta frontier (Fig. 2). Generally, the point estimate of EUE is produced 
by DEA models, which are often deterministic in nature. Simar and 
Wilson [25] showed that the technical efficiency scores of a standard 
DEA are serially correlated and biased. Hence Simar and Wilson [26] 
introduced the procedure of smoothing and bootstrapping. The same 
was used in this study to estimate bias-corrected EUE efficiency scores 
and confidence intervals around them. 

2.4.1. Step 1: Group frontiers with biophysical and technological 
heterogeneity 

Let us assume a sample of ‘n’ farms (each farm is a decision-making 
unit; DMU, converting inputs into output) functioning in one of the 
seven study districts. Further, the ith farm (DMUi) in district ‘j’, produces 
‘m’ outputs (yij…ymj) using ‘k’ energy inputs (xij…xkj) and the observed 
rice production data (crop yield) represents an unbiased approximation 
for the true rice production output (crop yield) of the respective ith farm. 
In general, EUE is represented by θ, the ratio between the weighted sum 
of energy outputs and the weighted sum of energy inputs. For optimi-
zation of EUE, a vector of weights for energy input and output are 
assigned to each of the farms. Let (k × n) input matrix “X” and (m × n) 
output matrix “Y” represent the weighted sums of input and output 
vectors for all the surveyed farms and each farm belongs to one of seven 
different districts j. In the present study, k = 5 inputs (i.e., energy use in 
tillage operations, fertilizer, agrochemicals, irrigation water, and 
manual labor) and m = 1 output (energy output from rice grain yield; 
Equation (5)) are input-output parameters for the DEA model. The R 
package “Benchmarking” was used for fitting the DEA model [27]. 

The standard DEA model proposed by Charnes et al. [28], often 
referred to as the Charnes, Cooper, and Rhodes (CCR) model, is the basis 
of the meta-frontier estimation. The CCR input-oriented model for the 
ith farm in the jth district is defined as follows: 

Minθij θ, and j= 1, 2,…, 7 (7)  

subject to: 

− yij +Yλ ≥ 0 θxij − Xλ ≥ 0  

where θ is the EUE score for farm i in district j, and λ is an n × 1 weights 
vector corresponding to peer weights. For the ith farm of the jth district, 
these are represented by the vectors xij and yij, respectively. The EUE 
scores (θ) are computed by restricting the energy output to input ratio 
between 0 and 1. Further to maximize θ, the weights are assigned to the 
energy inputs and outputs, such that the jth districts’ EUE is obtained by 
solving Equation (7). 

The CCR input-oriented model (Equation (7)) assumes constant re-
turn to scale (CRS), i.e., the ratio between the change in outputs to 
change in inputs is constant. If with successive addition of inputs, the 
farm produces less and less output, the farm can be categorized as 
operating under variable returns to scale (VRS), which is assumed to be 
the case for rice production in the Northwestern IGP of India [7]. 

The VRS assumption refers to (a) an increasing return to scale, i.e., if 
output increases by more than the proportional change in all inputs or 
(b) a decreasing return to scale, i.e., if an increase in inputs leads to less 
than proportional increase in output [21]. In the case of crop produc-
tion, often the relationship between input and output follows the 
diminishing rate of marginal return or variable return to scale 
(decreasing return) [19,21]. Thus, an additional constraint pertaining to 
convexity (λ ≤ 1; see Equation (8)) was added to the CCR model to 
capture VRS, which then is called the Banker, Charnes and Cooper (BCC) 
model [29]: 

EUEij =Min
θVRS

ij λ
θVRS

ij subject to Yij≤ Yλ; θVRS
ij Xij ≥ Xλ;≥ 0, given

∑n

j=1
λij = 1

(8)  

where Y represents the energy output vector and X represents the energy 
input vector, respectively, and θVRS

ij is the EUE score of the ith farm in the 
jth district under VRS. For any district j, the average EUE score ranges 
between 0 ≤ θVRS

j ≤ 1. However, θVRS
j equals 1 when all the farms lie 

perfectly on the production frontier, and all the farms are thus energy 
use efficient. Although the “total” or “overall” technical efficiency is 
distinguished from “pure” technical efficiency (Equation (8)) [30], the 
1-θVRS

i value represents the inefficiency measure (the distance between 
the efficiency frontier to the current efficiency level) for the ith farm. 
The smoothed bootstrap procedure was employed on θVRS

j to generate 

the bias-corrected district-specific technical efficiency scores ‘θi’ (TE 
scores) [26]. The district-specific TE scores indicate how efficient is the 
DMU’s with respect to the peers of the same districts. So, a high mean 
district-specific TE score with small standard deviation indicates the 
farms in a particular district are homogenous with respect to energy 
input and output. 

2.4.2. Step 2: Approximation for global meta-frontier 
Specified that the farms in the respective districts of the study area 

use different crop management practices under different biophysical 
conditions, then the global meta-frontier encompasses input-output 
combinations of the seven districts surveyed (Fig. 2). Further, the con-
ceptual illustration shows that the estimation procedure used here is 
based on a piece-wise linear frontier for both the global meta-frontier 
and the district-specific frontiers (Equations (9) and (10)). As 
explained in step 1 of the DEA model, the same technique can simply be 
applied to all surveyed farms by pooling the observations. Thus, for all 
the farms in different districts the deterministic meta-frontier DEA 
model can be stated as follows (see Equation (8) for an explanation of 
the abbreviations used): 

EUEi =Min
θVRS

i λ
θVRS

i subject to Yi ≤ Yλ; θVRS
i Xi ≥ Xλ; λ ≥ 0, given

∑n

i=1
λi = 1

(9) 

Fig. 2. Meta-frontier approach depicting the true frontier, the bootstrapped 
data envelopment analysis (DEA) meta frontier (MM’), and the group wise 
frontier (GG’ and CC’). The reader is referred to the main text for further 
explanation of the figure. Source: Modified by authors after Aravindakshan 
et al. (2018). 
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In Eq. (9), a bootstrap procedure was employed to generate the bias- 
corrected meta-frontier efficiency scores (θi∗, ME scores). The meta- 
technology ratio (MTR) is presented as the distance between the 
district-specific frontier and the global meta-frontier. The MTR is 
calculated as the ratio of obtained output for the jth district, relative to 
the potential output defined by the meta-frontier given the observed 
level of energy input [23]. The MTR thus captures energy use efficiency 
differences between the meta-frontier encompassing the pooled sample 
and the respective district-specific frontier, and is expressed as: 

MTR =
θi
=

θ
∗

i
=

(10) 

The MTR indicates the scope of energy use efficiency improvement 
(ME scores) of the farms for a specific district and it reflects the distance 
between the meta-frontier and the district-specific efficiency frontier. As 
an illustration, a comparatively small average MTR for a specific district 
indicates a large output gap between the meta-frontier and the farm in 
the respective group. 

2.4.3. Step 3: Bootstrapped truncated regression 
In step 3, the determinants of energy use efficiency of rice farming in 

the studied districts were investigated using a bootstrapped truncated 
regression [31], which was estimated as follows: 

θi=
ia+Ziδ + εi, i = 1,…, n (11)  

where θi are the bias-corrected estimates of DEA energy use efficiency 
scores from the district-specific frontier analysis (TE scores), εi ∼

N(0, σ2
ε ) with right-truncation at 1 − Ziδ; a is a constant term, and Zi is a 

vector of explanatory variables. We included in the bootstrapped trun-
cated regression of the efficiency scores agronomic factors like delay in 
sowing beyond 132nd Julian days (10th of May), crop duration, the 
timing of 1st and 2nd urea top-dress application, scaled herbicide, 
fungicide and insecticide used (kg active ingredient kg− 1 of formulation) 
and soil texture. Socioeconomic factors like age of the household head, 
landholding size, and family size were also included. The variable water 
table depth was also used as a regressor. The bootstrap truncated 
regression was estimated using the “truncreg” package in R [32]. 

Farms were classified as most and least efficient based on the bias- 
corrected ME scores (θi∗; Equation (9)) to gain insights on how farms 
in each district perform with respect to energy management. Farms with 
a ME score in the top 20% percentile of ME scores were classified as most 
efficient farms whereas farms with a ME score in the bottom 20% per-
centiles of ME scores were classified as least efficient farms. A non- 
parametric Wilcox-test was used to test whether the mean energy 
input per operation, total energy input, and total energy output differed 
between the most and least energy efficient farms. Electricity use for 
irrigation accounted for a large share of the total energy input as it 

Fig. 3. (A) Variability of energy input (Energy_input; MJ ha− 1) from all sources (in primary y-axis) and energy output (Energy_output; MJ ha− 1) in rice grain (in 
secondary y-axis) and (B) share of energy input from different sources across the surveyed districts in the Northwestern Indo-Gangetic Plains of India. The districts 
Ambala, Karnal and Kurukshetra are located in Haryana state whereas Ludhiana, Fatehgarh Sahib, Kapurthala and Patiala are located Punjab state. Irrigation: Energy 
input in irrigation; Tillage: Energy input in tillage operations; Fertilizer: Energy input in fertilizer; Labor: Energy input in Labor; Agrochemicals: Energy input in 
agrochemicals. 

H.S. Nayak et al.                                                                                                                                                                                                                               



Energy 272 (2023) 126986

7

depends on the depth of the water table and the pump size. A linear 
regression was thus fitted between the water table depth and pump size, 
and between pump size and cumulative hours of irrigation. 

3. Results 

3.1. Energy use efficiency and main sources of energy use for rice 
production in Northwest India 

The total energy input for rice production across Punjab and Haryana 
ranged between 18,466–45,119 MJ ha− 1 and 17,250–61,857 MJ ha− 1, 
respectively, and the energy output from rice grain yield varied between 
73,500–132,682 MJ ha− 1 in Punjab and 66,275-129,361 MJ ha− 1 in 
Haryana (Fig. 3A). In Haryana, the lowest mean energy input was 
observed in Ambala (32,966 MJ ha− 1), followed by Karnal (36,4823 MJ 
ha− 1), and the mean energy input in Kurukshetra was 43 and 58% 
higher than the mean energy input of Karnal and Ambala, respectively 
(Fig. 3A). In Punjab, the lowest energy input was observed in Patiala and 
the highest in Ludhiana, the latter having 28% higher average energy 
input than the former. The EUE varied between 1.24 and 5.93 in Har-
yana and 1.97–5.89 in Punjab, with a median EUE of 2.43 and 3.61 in 
Haryana and Punjab, respectively (data not shown). 

On average, the largest share of energy input was from irrigation 
independently of the district, contributing between 43% in Patiala to 
66% in Kurukshetra (average = 51.3%) of the total energy input 
(Fig. 3B). The energy input for irrigation ranged between 4,614–40,000 
MJ ha− 1 in Haryana and 6,708–30,198 MJ ha− 1 in Punjab (Table 3). The 
largest variability in energy input for irrigation was observed in Ambala, 
followed by Karnal and the least variability was observed in the districts 
of Punjab (Table 3). Next to irrigation, fertilizer manufacturing and 
application was the second most important source of energy input, ac-
counting for about 21–36% of the total energy input in all districts 
(Fig. 3B). On average, farms in Kapurthala had the largest energy input 
from fertilizer (11,001 MJ ha− 1), which was 25% higher than those in 
Fatehgarh Sahib (Table 3). Contrary to irrigation, the variability in en-
ergy input from fertilizer use was smallest in Patiala (465 MJ ha− 1) and 
largest in Ambala (1,602 MJ ha− 1, Table 3). Tillage operations, and the 
respective diesel consumption, were the third-largest source of energy 
input in the surveyed districts (Fig. 3B). Across the districts, rice farms 

spent 10–19% of the total energy input in tillage operations. Tillage- 
related energy inputs were highest in Ludhiana (5,595 MJ ha− 1) and 
the lowest in Kapurthala (4,399 MJ ha− 1), (Table 3). The average energy 
input in agrochemicals (herbicide, insecticide, and fungicide) was 
smallest in Fatehgarh Sahib (269 MJ ha− 1) and largest in Kurukshetra 
(1,048 MJ ha− 1, Table 3). Energy input from manual labor was the 
lowest among all considered sources (Fig. 3B and Table 3). 

3.2. Bias corrected group-specific and meta-frontier technical efficiency 
scores and meta technology ratio 

The TE score for all the districts ranged between 0.68 and 0.99, with 
a mean value of 0.86–0.90. Moreover, farms from Punjab were more 
homogenous than the farms from Haryana (Fig. 4A). More than 90% of 
the farms in Ludhiana and Kapurthala had a TE score greater than 0.8, 
whereas in Patiala and Fatehgarh Sahib, ca. 85% of the farms had TE 
scores between 0.8 and 1.0, indicating that least efficient farms can 
reduce energy inputs by 20%, as compared to the most efficient farms in 
the respective districts, without compromising energy output (Fig. 4A). 
The TE scores in the districts of Haryana were, on average, smaller than 
the TE scores in the districts of Punjab, ranging between 0.48 and 0.97 in 
Ambala and 0.63–0.98 in Karnal and Kurukshetra. A considerable 
number of farmers (>50%) from Ambala district had TE scores lower 
than 0.80. 

The meta-frontier identifies the efficient farms from all the districts, 
and the bias-corrected meta-frontier efficiency (ME) score (Fig. 4B) was 
used for inter-districts comparison of DMU’s for energy use efficiency. 
Alike TE scores, the districts of Punjab had higher ME scores than the 
districts of Haryana, more specifically, the farms from Patiala and 
Fatehgarh Sahib districts were most efficient and operating closer to the 
input-oriented meta-frontier. About 81% and 56% of the farms from 
Fatehgarh Sahib and Patiala had ME scores greater than 0.75, respec-
tively, whereas all other districts had less than 30% of the farms with a 
meta-efficiency score as high as 0.75 (Fig. 4B). Only 4–7% of the farms 
from the Karnal and Kurukshetra had a ME score greater than 0.75. 
Although farms in Ambala had more heterogeneous TE scores, they had 
a greater ME score than farms in other districts of Haryana and in the 
district of Ludhiana. The order of mean ME score was as follows: Fate-
hgarh Sahib (0.81) > Patiala (0.77) > Ludhiana (0.70) > Kapurthala 

Table 3 
Energy input by source for rice production across the surveyed districts in the Northwestern Indo-Gangetic Plains of India.   

Ambala (n = 644) Fatehgarh Sahib (n = 568) Kapurthala (n = 507) Karnal (n = 571) Kurukshetra (n = 619) Ludhiana (n = 378) Patiala (n = 546) 

Energy use in tillage (MJ ha− 1) 
min 2808 1270 2409 3068 2067 3116 1872 
max 8342 7142 6752 7609 7748 8047 7481 
median 5143 5208 4841 5135 4866 5672 5477 
mean ± SD 5007 ± 882 4713 ± 838 4399 ± 1094 5152 ± 887 5063 ± 905 5595 ± 853 5083 ± 870 
Energy use in mineral fertilizer (MJ ha− 1) 
min 4880 6125 6474 4880 5880 6274 6274 
median 10,490 8505 11,411 10,510 11,411 9510 9410 
max 14,627 12,546 14,747 14,758 15,128 13,646 11,501 
mean ± SD 10,117 ± 1602 8685 ± 667 11,001 ± 1398 10,845 ± 1440 11,127 ± 1375 9989 ± 1118 9472 ± 465 
Energy use in irrigation water (MJ ha− 1) 
min 4614 6708 11,744 8948 20,132 10,066 7340 
max 40,000 30,198 26,843 38,922 40,000 21,608 20,132 
median 12,331 13,730 17,783 14,092 34,001 18,848 11,077 
mean ± SD 16,771 ± 10,808 13,058 ± 4614 16,837 ± 3307 19,200 ± 8857 34,320 ± 4511 17,799 ± 3011 11,681 ± 2362 
Energy use in manual labor (MJ ha− 1) 
min 186 180 508 265 326 402 208 
max 1104 570 902 980 1080 976 413 
median 380 323 718 588 752 590 282 
mean ± SD 445 ± 156 318 ± 50 715 ± 65 598 ± 116 766 ± 98 636 ± 108 288 ± 31 
Energy use in agrochemicals (MJ ha− 1) 
min 25 28 6 102 46 82 50 
max 1777 1676 1779 2841 2296 1974 1647 
median 688 217 328 1023 1050 408 250 
mean ± SD 625 ± 404 269 ± 253 532 ± 471 1028 ± 624 1048 ± 437 714 ± 560 282 ± 132 

Min: Minimum value; max: Maximum value; SD: standard deviation. 
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(0.69) > Ambala (0.69) > Karnal (0.63) > Kurukshetra (0.59). 
A higher value of the meta-technology ratio (MTR), i.e., the ratio 

between group-specific TE score and ME score, indicates that a given 

district has access to adequate resources, improved technologies, and/or 
more favorable biophysical conditions than other districts. Farms in 
Fatehgarh Sahib had the greatest mean MTR (~0.94) followed by farms 

Fig. 4. Cumulative density distribution of the bias-corrected district-specific efficiency score (A) and meta-frontier efficiency score (B); density plot of the meta- 
technology ratio (C) and, variation between meta-frontier efficiency score and energy use efficiency (D) for rice production in the Northwestern Indo-Gangetic 
Plains of India. 

Fig. 5. District-wise differences in energy input used for rice production from fertilizers (A), tillage operation (B), irrigation (C), and total energy input (D) and 
energy output (E) between top 20% energy use efficient farms and the bottom 20% least energy use efficient farms in the Northwestern Indo-Gangetic Plains of India. 
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in Patiala (0.90) and farms in Ambala (0.88) (Fig. 4C). Farms in all other 
districts (i.e., Kapurthala, Karnal, Kurukshetra, and Ludhiana) had 
nearly similar mean MTR (0.71–0.76) and distribution of MTR (Fig. 4C). 
The latter indicates that if farms in the districts with low mean MTR 
could adopt the management practices observed in farms across Patiala 
and Fatehgarh Sahib (assuming no major biophysical constraints), then 
it would be possible to further increase the EUE of rice production in the 
Northwestern IGP of India. All surveyed districts exhibited a significant 
positive correlation between ME score and EUE, although the strength of 
the correlation varied between the districts (Fig. 4D). The significant 
linear relationship indicates that increases in efficient crop management 
can lead to improvements in EUE in all districts. 

3.3. Categorization of farms as most and least efficient based on 
efficiency scores 

There were marked differences in the energy input used in the 
different operations, the cumulative energy input, energy output, and 
EUE between the most and least energy use efficient farms in all districts 
(Fig. 5). Considering the energy input for fertilizers, all districts except 
Kapurthala had significantly different energy use between the most and 
least energy use efficient farms (Fig. 5A). The largest difference in the 
energy input for fertilizers between most and least efficient energy use 
farms was observed in Kurukshetra and Ambala, where the most energy 
use efficient farms used ca. 30% less energy in fertilizers than the least 
energy use efficient farms. Similarly, the most energy use efficient farms 
in Karnal, Ludhiana, and Fatehgarh Sahib used 21, 17, and 7% less en-
ergy input in fertilizers than least energy use efficient farms, respec-
tively. Energy input from tillage operations was also significantly 
different between the most and the least energy use efficient farms, yet 
the differences in energy input for tillage operations between both 
groups were small (Fig. 5B). The latter was true for all districts except for 
Kapurthala and Ludhiana where the most and the least energy use 
efficient farms had a similar energy input for tillage operations. The 
mean energy input for tillage operations of the most energy use efficient 
farms from all the districts of Haryana and Patiala district in Punjab was 
21–26% lower than that of the least energy use efficient farms in the 
respective district (Fig. 5B). 

The energy input for irrigation was similar between the most and the 
least energy use efficient farms in the districts of Patiala, Kapurthala, 
and Kurukshetra, whereas significant differences in energy input for 
irrigation were observed between both groups in all other districts 
(Fig. 5C). The mean energy input for irrigation by the most and least 
energy use efficient farms in the district of Kurukshetra (ca. 34,500 MJ 
ha− 1) was greater than the mean energy input for irrigation of the 
pooled sample (ca. 18,802 MJ ha− 1), while in the district of Kapurthala 
the energy input for irrigation (ca. 17,800 MJ ha− 1) was closer to mean 
energy input for irrigation observed for the pooled sample (Fig. 5C). A 
minimum of 42% less energy was used for irrigation by the most energy 
use efficient farms in Ambala, Fatehgarh Sahib, and Karnal districts. In 
Ludhiana, the most energy use efficient farms had a greater energy input 
use for irrigation than least energy use efficient farms (19,117 vs. 
15,925 MJ ha− 1; Fig. 5C). The total energy input was significantly 
different between the most and the least energy use efficient farms in all 
the districts except Kapurthala (Fig. 5D). Overall, the most energy use 
efficient farms in Karnal, Fatehgarh and Ambala used 25% less energy 
input than the least energy use efficient farms in the same districts, 
whereas the difference between both groups was only 9% in Kuruk-
shetra. In Ludhiana, the most energy use efficient farms had a slightly 
greater mean energy input than the least energy use efficient farms 
(34,656 vs. 33,428 MJ ha− 1). 

Energy output from rice production was significantly different be-
tween the most and the least energy use efficient farms in all the dis-
tricts, except Kurukshetra (Fig. 5E). In all districts, the most energy use 
efficient farms had higher energy output in the range of 5–12% than the 
least energy use efficient farms. Overall, the most energy use efficient 

farms from Karnal, Fatehgarh Sahib and Ambala used 25% less energy 
input than least energy use efficient farms in the respective districts, 
whereas that difference was 9% lower in Kurukshetra (Fig. 5D). In 
Ludhiana, the most energy use efficient farms had slightly greater en-
ergy input than the least energy use efficient farms. On average, the most 
energy use efficient farms had 42% or higher EUE than the least energy 
use efficient farms in the districts of Ambala, Fatehgarh Sahib, and 
Karnal, whereas in other districts EUE in the most energy use efficient 
farms were 5–19% higher than in the least energy use efficient farms. 

3.4. Key determinants of energy use efficiency 

Agronomic practices had a prominent effect on the ME scores 
whereas the effect of socio-economic characteristics was rather small 
(Table 4). It was observed that ME scores increased with increases in 
landholdings and with decreases in family size (Table 4). For some of the 
variables, the response was consistent across the meta-frontier and most 
of the district-specific frontiers, like the intensiveness of herbicide and 
insecticide use: more frequent application of insecticides and herbicides 
significantly affected the energy use efficiency in a negative way across 
all districts (Table 4). Advancing sowing dates beyond the 132nd Julian 
day had a consistently positive impact on the ME scores in the meta- 
frontier and in the district-specific frontier for Ambala and Patiala, but 
the effect size was very small (Table 4). The depth of the water table had 
a significant negative effect on the ME scores across all districts. Overall, 
in the meta-frontier, as well as in the Karnal, Ambala, Kapurthala, and 
Fatehgarh Sahib district-specific frontiers, when the water table depth 
was less than 90 feet, the average ME score increased by up to 0.15 than 
where the water table was deeper than 90 feet (Table 4). In the districts 
of Kurukshetra, Patiala, and Ludhiana, the average ME score was lower 
when the water table was less than 90 feet deep. In the meta-frontier 
model and in Ambala, Fatehgarh Sahib, and Patiala district-specific 
frontiers, crop duration had a significant positive effect on ME score in 
the range of 0.001–0.003 (Table 4). Finally, the effects of the 1st and 2nd 
top-dress of urea on the ME score varied across the districts and in the 
meta-frontier model both in direction and amount. 

4. Discussion 

4.1. Energy input for rice production in the Northwestern IGP of India 

The intensive rice production systems in the Northwestern IGP of 
India are characterized by high yields but also by significant energy 
input. This is primarily due to the nature of rice cultivation, which re-
quires large amounts of water and fertilizers. Irrigation and fertilizer 
application were found to be the main sources of energy input in this 
region (Fig. 3). However, inefficiencies in the management of these 
operations are prevalent, as farmers tend to over-irrigate their fields due 
to the availability of nearly free electricity and the impact of subsidized 
fertilizer policies. This leads to the application of irrigation and fertilizer 
at rates higher than recommended, leading to higher energy investments 
in rice production than necessary. This is consistent with previous 
research that has found low irrigation water productivity and N-use 
efficiency in the Northwestern IGP of India [34]. Our findings are in line 
with the work of Basavalingaiah et al. [6] and Sekar and Pal [35], who 
also reported irrigation and fertilizers as the dominant sources of energy 
input for rice production. 

The present study found that electricity for irrigation accounted for a 
substantial share of the total energy input in rice production in the 
Northwestern IGP of India (Fig. 3). This is in line with previous studies, 
such as Singh et al. [5], which also identified irrigation as the main 
source of energy consumption. It was observed that there was significant 
variability in energy use for irrigation across different farms (Table 3), 
which can be attributed to factors such as pump size, water table depth, 
irrigation time, and frequency of irrigation. The accurate information on 
soil hydrological properties or texture can be use full for improving the 
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estimates of efficiency of energy use, as these parameters governs the 
frequency of irrigation. The decline of the groundwater table in the IGP 
has led farmers to invest in high-capacity pumps in recent years [36,37]. 
Our data showed a strong correlation between the median water table 
depth and pump size (R = 0.73; Fig. 6a), indicating that pump size 
increased in areas with a deeper groundwater table. However, no evi-
dence was found to suggest that farmers installed higher power pumps in 
areas with shallow water tables to reduce irrigation time. On the con-
trary, a negative relationship was observed between the cumulative 
duration of irrigation and pump size (R = − 0.23; Fig. 6B), suggesting 
that farmers irrigated slightly less in areas with deeper water tables and 
higher pump power requirements. These findings suggest that the 
declining groundwater table in the region may be contributing to the 
reduced energy use efficiency among some farmers. The installation of 

high-capacity pumps to overcome declining water levels has likely 
increased energy consumption in some instances, despite efforts to 
conserve water and reduce irrigation time. Such area may be avoided for 
future rice production in lieu of sustainable use of ground water for 
multiple purposes and energy conservation. 

The findings of our study align with previous on-station trials that 
have identified irrigation and fertilizers as significant sources of energy 
in conventional rice farming [11]. However, our results showed that the 
energy input in irrigation in farmers’ fields was higher than in research 
trials, indicating a need for better management practices (Table 3). This 
highlights the importance of comparing farmers’ practices to the most 
energy efficient practices in the study region and identifying opportu-
nities for improvement. Future research could explore the potential of 
promoting improved agronomic practices that could further enhance 

Table 4 
Determinants of the energy use efficiency for rice farms in the Northwestern Indo-Gangetic Plains of India. Data refer to the pooled sample and district-specific sample 
from the meta-frontier technical efficiency score, right truncated around the maximum values, the point of truncation is presented in the brackets. The variable “water 
table depth less than 90 feet” is categorical with two alternatives, less than 90 feet or more than 90 feet. The “soil texture” variable is also categorical with the al-
ternatives light and medium textured soil.  

Variables Pooled data 
(0.9623) 

Ambala 
(0.9623) 

Karnal 
(0.9089) 

Kurukshetra 
(0.9359) 

Kapurthala 
(0.9315) 

Ludhiana 
(0.9416) 

Patiala 
(0.9484) 

Fatehgarh Sahib 
(0.9561) 

Intercept  0.272***  0.210**  0.662***  − 0.248  1.443  0.696***  0.219***  0.757*** 
Delay in sowing beyond 

132nd Julian days  
0.003***  0.003***  − 0.001  − 0.003  0.008  − 0.001  0.004*** 0 

Water table depth less than 
90 feet  

0.039***  0.147***  0.034***  − 0.001*  0.000#  − 0.113***  − 0.038***  0.077*** 

Age of household head (yr)  0.001***  0.001* 0  − 0.001 0 0  0.000#  − 0.001** 
Land holding size (ha) 0 0 0  − 0.001 0  0.001*  0.001***  0.001* 
Family size (number)  − 0.002* 0  0.001 0 0  − 0.001  − 0.006***  0.001 
Crop duration (days)  0.003***  0.002*** 0  0.005  − 0.006 0  0.003***  0.001# 
1st urea top dress (days 

after transplant)  
0.010***  0.001  0.001  0.010***  − 0.006*  − 0.004  − 0.002  0.003 

2nd urea top dress (days 
after transplant)  

− 0.006***  0.003*  0.001  0.004**  0.006**  0.007*  0.004***  − 0.003 

Medium textured soil  0.020***  0.018*  − 0.003  0.004  0.006  − 0.004  0.002  0.001 
Fungicide used (kg ai kg− 1 

of formulation)  
0.009**  − 0.004  0.019***  0.031***  − 0.022***  − 0.01  − 0.011*  − 0.002 

Herbicide used (kg ai kg− 1 

of formulation)  
− 0.005  − 0.001  − 0.018#  − 0.016**  − 0.040***  − 0.042*  − 0.013*  0.008 

Insecticide used (kg ai kg− 1 

of formulation)  
− 0.018***  − 0.033***  − 0.011***  − 0.014**  − 0.005  − 0.016***  − 0.008*  − 0.003 

sigma  0.100***  0.097***  0.068***  0.066***  0.062***  0.075***  0.051***  0.054*** 

Significant codes: *** indicates significance at P < 0.001, ** indicates significance at P < 0.01, * indicates significance at P < 0.05 and # indicates significance at P <
0.1. 

Fig. 6. Relationship between median water table depth and median pump size across the surveyed districts (A) and relationship between pump size and cumulative 
irrigation duration (B) for all sampled fields. Blue lines show linear regressions fitted to the data. P indicates the significance level of regression coefficients. Pump 
size expressed in power unit: 1 HP = 746 W and water table depth in feet, 1 feet = 0.3048 m. 
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energy use efficiency in the rice farming sector. Such an effort could lead 
to significant energy savings and contribute to sustainable rice produc-
tion in the Northwestern IGP of India. Such practices may not be 
currently used at on-farm level making it difficult to explore their ben-
efits at farm level. 

4.2. Improving energy use efficiency through reduced tillage, irrigation, 
and fertilizer use 

Effective energy use is crucial to mitigate environmental problems 
and avoid the high economic costs associated with inefficient energy 
use, particularly for non-renewable resources. Our analysis, based on the 
differences in energy use between the most and least efficient farms 
(Fig. 5D and E), suggests that there is a potential to reduce energy inputs, 
especially those related to irrigation and fertilizer use (Fig. 5A and C), 
while maintaining energy output. Other studies, such as those by 
Basavalingaiah et al. [6] and Mohammadi et al. [38], also found that 
reducing fertilizer and irrigation inputs is essential for improving energy 
use efficiency in rice and soybean farms, respectively. In our study, we 
observed that the most energy efficient farms applied N fertilizers at 
recommended levels (i.e., 148 kg N ha-1), while least efficient farms 
applied 22 kg more N per hectare and 10 kg more P2O5 per hectare than 
recommended, leading to higher energy inputs without proportional 
increases in energy output (data not presented). This result is consistent 
with previous studies by Bhatt et al. [34] and Sekar and Pal [35] which 
reported high fertilizer use in rice production, alike high-input cropping 
systems elsewhere [47]. Additionally, tillage was another significant 
source of energy use, with increased tillage operations and frequent use 
of wet harrow for puddling decreasing energy use efficiency in the least 
energy efficient farms. The impact of puddling intensity on crop pro-
ductivity and energy output has been a subject of debate in the past [39, 
40]. 

Although many resource conservation practices have been suggested 
to improve energy use efficiency in the Northwestern IGP of India, those 
are not widely adopted by farmers. For instance, conservation agricul-
ture based direct-seeded rice production technology [41], tensiometer 
based irrigation [42], site-specific nutrient management using leaf color 
charts, chlorophyll meters, or other decision support tools [11,33,43,44] 
are the proven technologies having energy saving potential under 
research trials. Field adoption of resource conservation practices pro-
vides a basis to improve energy use efficiency at the farm level, but 
needs to be embedded within policies that provide incentives for farmers 
to save resources. Alternatively, some easy to scale technologies which 
are already in use in farmers’ field, like precision irrigation based on 
tensiometer, fertilizer recommendation based on site-specific nutrient 
management principles, and adoption of minimum tillage are the entry 
point to improve energy use efficiency. 

4.3. Determinants of energy use efficiency and opportunities for 
improvement 

Our analysis revealed several key determinants of energy use effi-
ciency in the Northwestern IGP of India, including pest management, 
water table depth, crop duration, and fertilizer management. The fre-
quency and amount of insecticide and herbicide applications were 
positively correlated with lower energy use efficiency (Table 4). In 
intensive production systems where high output levels are desired, 
efficient pest, disease, and weed management is crucial to avoid crop 
losses. However, frequent application of agrochemicals results in lower 
energy output and energy use efficiency [45,46]. Additionally, the depth 
of the water table was found to be an important factor, with farms 
having a water table depth less than 90 feet exhibiting higher energy use 
efficiency compared to those with deeper water tables. In the latter 
cases, greater energy inputs are required to extract irrigation water. 
Crop duration was also a determinant of energy use efficiency, with 
long-maturity varieties resulting in greater ME scores and EUE due to 

similar energy inputs, except for irrigation (data not presented). 
Furthermore, the timing of fertilizer management, specifically the 1st 

and 2nd split of urea, was found to have a significant impact on ME 
scores, suggesting that fine-tuning N management could lead to 
improved energy use efficiency. Overall, these findings highlight the 
importance of addressing these determinants in efforts to improve en-
ergy use efficiency in rice cultivation in the Northwestern IGP of India. 

Contrary to on-station research on energy saving potential and meta- 
analysis [48], estimation of energy savings from the farm survey data 
were mostly done by peer-to-peer comparison using DEA. For DEA 
analysis, DMUs must represent a diversity of input-output combinations 
to effectively estimate technical efficiency scores. Yet, field surveys are 
prone to sampling errors. DEA is particularly sensitive to outliers due to 
its deterministic approach to frontier analysis, meaning that the pres-
ence of outliers can provide unrealistic benchmarks for all DMUs and 
thus unrealistic estimates of technical efficiency. Such limitation was 
overcome by adopting a bootstrapped DEA approach, supplemented 
with truncated regression. The two-stage approach followed here pro-
vides an indication of the energy savings possible to obtain for a given 
level of energy output (Fig. 5) and identifies key determinants of energy 
use efficiency (Table 4). The approach can be further strengthened with 
the availability of more precise soil and weather data. Soil and weather 
data can help to better disentangle the effect of biophysical factors from 
that of crop management practices on energy use efficiency as these 
allow to group farms with homogenous biophysical conditions prior to 
the analysis. Further, the methodology can be applied to other perfor-
mance indicators to assess whether farms with low efficiency in energy 
use also perform worse in terms of profit or greenhouse emissions. 

5. Conclusion 

Competition for energy between different economic activities de-
mands efficient energy use in the agricultural sector, particularly in 
intensive cropping systems. Electricity energy for irrigation and energy 
input through fertilizers were two major activities accounting for more 
than 75% of the total energy input used for rice production in the 
Northwestern Indo-Gangetic Plains of India. We observed a large 
disparity among farms in terms of energy use efficiency, and in all the 
districts surveyed it is possible to reduce the energy input in different 
operations yet without reducing energy output. It is possible to improve 
energy use efficiency by at least 42% in the districts of Ambala, Fate-
hgarh Sahib, and Karnal, whereas in other districts energy use efficiency 
can be increased by 5-19%. The timing and amount of irrigation, as well 
as timing and amount of fertilizers deserve particular attention due to 
their large share on the total energy input and their over-application in 
the least energy use efficient farms. Least efficient farms opted for higher 
number of tillage operations like wet harrowing and intensive puddling, 
which must be reduced to increase energy-use efficiency. Further, fine 
tuning sowing dates, along with timely pest and weed management can 
improve energy use efficiency in the future. Precision fertilizer appli-
cation along with optimizing the irrigation number and tillage practices 
are the key to improve energy-use efficiency of rice farms in the 
Northwest India. The methodology and evidence provided in this study 
can help formulate district-specific action plans for sustainable intensi-
fication of rice production in the Northwestern IGP of India and can be 
extended to other production systems and performance indicators. The 
latter is paramount given the environmental and economic concerns 
associated with inefficient resource use in the Green Revolution corridor 
of India. Our study is thus helpful to guide policymakers and researchers 
in identifying pathways towards sustainable energy use for rice pro-
duction in the future. 
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