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ABSTRACT: Rising awareness of the risks regarding chemical formulations and the surging need for eco-friendly inputs in
sustainable agriculture have driven the use of bacterial biocontrol agents to the frontline of plant protection. Bacterial biocontrol
agents (BBCAs) have been preferred as feasible alternatives to synthetic formulations due to their increased specificity and safety.
Nanotechnology has facilitated the better addressing of product development and performance concerns related to BBCAs.
Leveraging nanotechnology in the synthesis of novel nanomaterials with amended properties at the nanoscale has offered eflicient
and ecologically sound nanoformulations such as nanobiopesticides. The nanobiopesticides of bacterial origin, known as bacteria
premised nanobiopesticides (B-NBPs), are efficient alternatives to agrochemicals. The B-NBPs include living or nonliving bacterial
nanoformulations or nanoparticles synthesized using bacteria (BNPs) as the nanofactories. The B-NBPs were synthesized using
high-pressure homogenization (HPH), jet milling, and hammer milling, giving rise to competent bacterial nanoformulations of size
ranging from 250 to S00 nm. Following an overview of bacteria-based nanobiopesticides (B-NBPs) employed to prevent/treat plant
diseases, the article highlights the role of BBCA’s role in plant protection as well as its antagonistic mechanisms. Further, the concept
of B-NBPs, concentrating on Bacillus thuringensis-driven forms, is reviewed. The review then briefly explains the significance of BNPs
in plant infection management. Finally, the concerns related to the efficacy of B-NBPs along with the prospects are also described.
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1. INTRODUCTION alternatives with limited pesticide wastes, reduced toxicity, and
production expenses are imperative.3

The empbhasis has been on creating nontoxic and environ-
mentally sustainable substitutes to agrochemicals for pest and
disease control to ensure long-term agricultural output.®*~"!
Traditional tactics in agricultural operations, such as integrated
pest control, are inadequate, prompting a desire for alter-
natives.'>"? Biological control agents meet these criteria,
enabling them as a viable solution to synthetic chemicals."*"
Biological control agents or biocontrol agents (BCA)'“™ are
naturally occurring compounds or producers of plants, animals,
microorganisms, specific minerals, etc., that are capable of
combating plant pathogens and pests.” In terms of geography,
the global BCA market has five major regions: North America,
Europe, Asia Pacific, Latin America, and the Middle East and
Africa (MEA). Europe and North America are the market
leaders for BCA. BlueWeave Consulting,20 a leading strategic
consulting and market research firm, in its latest report,
estimated the size of the global biological control agents market
size at USD 4.32 billion in 2021.>° During the forecast period

Numerous advancements in the agriculture sector make a
substantial contribution to the economies of many nations.'
Population growth and shifts in climatic conditions have
intensified the need to enhance agricultural food production
to cater to the increasing consumer demand. The green
revolution, predicated primarily on synthetic crop protection
agents like chemical pesticides and fertilizers, brought about
significant changes, including improved productivity, decreased
yield reduction, etc. Pesticides/fertilizers are chemicals utilized
to prevent plant diseases and control pests. The most prevalent
effective ingredients (Els) in these chemicals include organo-
phosphates, carbamates, chlorinated hydrocarbons, and deriv-
atives of carbamide.” These agrochemicals have drawbacks such
as increased content of organic solvents, limited dispersibility,
and dust drift.”

Furthermore, they are reported to be carcinogenic,” cause
prenatal abnormalities,” and are nonbiodegradable.” Owing to
their hazardous effects, conventional pesticides leveraged for
crop protection and containing pathogens in farmlands pose
various protracting perils to living beings. Eventually, many pests
and pathogens acquire resistance to the agrochemicals employed
to eliminate them,®’ entailing the extended use of existing
chemicals or the development of novel, presumably more toxic,
chemicals. The overuse of these resources has resulted in serious
soil, surface water, and groundwater pollution, adversely
affecting the environment. Thus, environmentally acceptable
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Figure 1. Classification of various biopesticides utilized for the management of different insect-pest species and phytopathogens.

between 2022 and 2028, Blue Weave expects the global BCA
market size to grow at an impressive compound annual growth
rate of 15.1% to reach a value of USD 11.48 billion by 2028."**
Similarly, according to Maximize Market Research,” a private
firm specializing in business and market research in multiple
disciplines including agriculture, the Global BCA Market was
worth US$ 2.83 billion in 2019 and is anticipated to grow at a
CAGR of 13.5% by 2027, reaching US$ 7.79 billion. As reported
by Maximize Market Research Private Limited,”® North
America has a significant share of the international BCA market.
This is owing to the widespread recognition and acceptance of
these products among farmers.””

Bacteria constitute one of the most substantiated biological
control agents that are capable of utilizing numerous
mechanisms to hinder plant diseases. The bacterial biocontrol
agent (BBCA) is capable of lowering the phytopathogen/pest
population by multiple mechanisms, such as direct antibiosis,
competition, hyperparasitism, etc. In this article, biopesticides
relate to the diversity of BBCAs employed to regulate
phytopathogens/pests and protect plants. As biopesticides,
several bacterial-based products have previously been registered
and commercialized.”* Nonetheless, greater initiatives are
necessary to expand the number of bacterial biopesticides that
are commercially accessible. The unpredictability of the efficacy
of BBCAs has impeded their widespread application in
agricultural production.

Nanotechnology permits the synthesis of materials with
amended properties/functionalities at the nanoscale. The use of
nanomaterials as carriers of agrochemicals has enhanced
application efficiency and lower dose requirements.”” Through
the emergence of nanobiopesticides (NBPs), nanotechnology
establishes the improved efficacy of BBCAs and thus improved
global crop production. NBPs in the context of the review could
be defined as nanostructures involving either very small particles
of a BBCA or other small engineered structures derived from
BBCAs with antagonistic activity against plant pathogens/
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pests.”* ' The functional molecules or delivery components
employed in these NBP formulations are at the nanoscale. These
nanosized particles outperform typical pesticides due to their
smaller size, which assists in appropriate insect surface
distribution. Owing to their compact size, these NBPs excel
the conventional agrochemicals in terms of better penetration
into plant cells and improved insect surface dispersion.”’
Furthermore, when employed as a delivery agent, it shields
BBCAs from undesirable environmental conditions like high
temperature, excess rainfall, etc., with their significantly
increased chemical stability. It also improves the BBCA
formulation’s dispensability and wettability and offers an
intelligent delivery platform with sustained release at the
intended site.”> NBPs are an emerging technology that offers
great potential in the fight against agricultural pests/pathogens.
They are natural, eco-friendly substitutes to traditional agro-
chemicals that are made up of nanomaterials, such as
nanoparticles and nanocapsules. These nanomaterials are
designed to contain and deliver active ingredients such as
enzymes, proteins, and other bioactive molecules that target
specific pests. NBPs can be used as direct applications or as part
of integrated pest management strategies, which can help reduce
the amount and types of chemical pesticides used. Thus,
integrative multidisciplinary strategies of employing nano-
systems for efficient delivery of EIs/BCA are crucial.

The review introduces the concept of bacteria-based nano-
biopesticides (B-NBPs) and their application in the manage-
ment of plant diseases caused by diverse plant pathogens and
pests. Primarily, we discuss the relevance of BBCA in plant
protection together with the main mechanisms involved in the
antagonistic nature of BBCAs. Furthermore, we describe the
various approaches of B-NBPs, emphasizing Bacillus thuringen-
sis-driven NBPs. Then, we outline the notion of bacteriogenic
nanoparticles (BNPs) and their significance in the mitigation of
plant infections. Lastly, we conclude by exploring the concerns
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as well as future trends related to the efficient utilization of NBPs
together with their safety implications.

2. SIGNIFICANCE OF BACTERIAL BIOCONTROL
AGENTS (BBCAS)/BIOPESTICIDES IN PLANT
DISEASE MANAGEMENT

Living systems or their products reduce plant pathogens and
pests to facilitate the biological management of plant diseases
(Figure 1).>* BBCA, referred to as a biopesticide, is one such
approach that acts via various modes for the biological control of
phytopathogens and pests.”* Bacteria belonging to the genera
such as Bacillus, Rhizobium, Serratia, Agrobacterium, Xanthomo-
nas, Pseudomonas, Alcaligenes, Streptomyces, Erwinia, Arthro-
bacter, Enterobacter, etc., have been identified as prospective
candidates for mitigating plant diseases and developing
NBPs.”**> Among these, bacteria from the genera Streptomyces,
Bacillus, and Pseudomonas have been explored extensively, and
several are currently registered and commercialized. There are
currently 13 bacteria-premised BCA registered as biopesticides

in the EU for the suppression of phytopathogens/pests (Table
1)‘24

Table 1. List of the Several Bacteria-Premised BCA
Registered As Biopesticides in the EU”

genus species/sub species strains
Bacillus amyloliquefaciens ® QST 713
e AH2
e MBI 600
o FZB24
o IT 45
amyloliquefaciens subsp. plantarum e D747
Firmus e [-1582
pumilus e QST 2808
subtilis ® JAB/BS03
Pseudomonas e DSMZ
chlororaphis o MA 342
Streptomyces griseoviridis ® K61
lydicus o WYEC 108

“Prepared as of June 1% 2022 based on https://food.ec.europa.eu/
plants/pesticides/eu-pesticides-database_en.”*.

They either indirectly kill pests/pathogens by discharging
siderophores or directly by creating crystalline proteins,
resulting in a shortage of resources required for the survival of
pests/pathogens.”” One significant benefit of using BBCA is that
they are environmentally safe, easily degraded, and thus leave no
harmful residues.*® The rationale behind the recent upsurge in
the use of BBCAs include (i) resistance of pests to synthetic
pesticides, (ii) decrease in the rate of discovery of novel
insecticides, (iii) rise in public awareness of the environmental
concerns related to agrochemicals, (iv) host-specificity of
BBCA, and (v) advancements in BBCA manufacturing.37 The
BBCA are self-regulating and thus do not require complicated
management, impart minimal toxicity on plants, are effective for
long-term disease management, and influence plant growth
favorably.38 Hence, they could be the finest feasible solution to
harmful synthetic agrochemicals.

2.1. Bibliometric Analysis and Relevance Study. The
application of BCAs (Figure 2A) and BBCAs (Figure 2B) in pest
and plant disease management appears to be rapidly expanding,
as revealed by the significant rise in research published between
2012 and 2020. The bibliometric data for BCA were retrieved
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from the SCOPUS database (https://www.scopus.com/,
extracted on March 20, 2023) utilizing specified keyword search
biocontrol AND agents OR microorganisms OR plants OR
plant AND protection, yielding 1968 publications. The
bibliometric data for BBCA were derived from the SCOPUS
database (https://www.scopus.com/, obtained on March 20,
2023) again using particular keywords like bacteria AND based
AND biocontrol AND agents OR microorganisms OR plant
AND protection, generating 153 documents. The bibliometric
assessment was accomplished using several bibliometric indices,
such as the most prevalent keyword phrases, nations, and
research groups, and was generated using the VOSviewer
processing program (VOSviewer version 1.6.18) (Figure 2). For
acquiring a detailed outlook of the prevailing investigation in this
field, network analysis (Figure 2A1,B1), cluster density
visualization (Figure 2A2,B2), and overlay analysis (Figure
2A3,B3) of information on BCA and BBCA were conducted.

2.2. Mechanism of Action of Bacterial Biocontrol
Agents (BBCAs) against Pests and Pathogens. BBCA
employs a broad range of strategies to defend plants against
pathogen/pest invasion (Figure 3). They either utilize one or a
combination of tactics to avoid or eliminate plant disease,
appealing to the pathogen directly or indirectly.”” BBCA may
engage in direct antagonism by secreting antimicrobials,
meddling with virulence, and competing for resources and
space. Certain BBCAs secrete antimicrobial secondary metab-
olites like iturin, fengycin, surfactin, bacteriocins, cell-wall
disintegrating enzymes, etc., and thereby curb the colonization
of pathogens.’”*” BBCA also may impact the pathogens’
quorum sensing (QS) systems by deteriorating or reducing
the production of signal molecules required to launch infections.
For instance, the synthesis and release of QS blockers including
lactonases, glucanases, pectinases, lyases, and chitinases, which
disintegrate QS signal compounds, diminish pathogen invasion
and manifestations of plant disease.”"

Furthermore, BBCA may reduce pathogen load by competing
with pathogens and lowering their multiplication rate without
eliminating them. Hypercompetitive bacterial BBCA may
proliferate and persist in the infected area, and they could
possess an effective mechanism for absorption of nutrients than
the pathogen, for example, discharging low-molecular-weight
siderophores having ferrous iron affinity.** They also potentiate
direct encounters with pests/pathogens via antibiosis or
hyperparasitism. Hyperparasites invade and damage bacterial
and fungal pathogens’ cells and resting structures (mycelium,
spores, etc.).”

Outside of direct antagonistic interaction, BBCAs protect
plants indirectly through the mechanism of stimulating the plant
defense system to elicit amplified resistance to plant infections
caused by pests/pathogens.’® This leads to the formation of
structural barriers and the activation of several biochemical and
molecular defensive reactions in the host, protecting against a
broad spectrum of pathogens/pathogens.*** Additionally,
BCA may stimulate plant growth by promoting mineral and
water uptake or synthesizing molecules that drive plant growth
such as hormones, hence improving plant health and vitality.
Thus, antagonistic microbes can limit pathogen populations via
different modes. The environment, risks of acquiring resistance,
pathogen specificity, etc.,, might vary. Preferences regarding
specific modes of action for the intended use of a BBCA will also
impact the screening processes used to identify novel
antagonists.”* The aspect of the mode(s) of action determines
both characteristics and the impact of the antagonist on the

https://doi.org/10.1021/acsagscitech.3c00025
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Figure 2. (A) Bibliometric analysis of 1968 articles published on biocontrol according to the Scopus database using specific keywords such as
biocontrol AND agents OR microbes OR plants OR plant AND protection: (A1) network analysis of their worldwide distribution, (A2) cluster density
visualization; the larger the circle the more intense the scientific activity, and (A3) overlay analysis of the groups working on the same. (B) Bibliometric
analysis of 153 articles published on biocontrol according to the Scopus database using specific keywords bacteria AND based AND biocontrol AND
agents OR microbes OR plant AND protection: (B1) network analysis of their worldwide distribution, (B2) cluster density visualization; the larger the
circle the more intense the scientific activity, and (B3) overlay analysis of the groups working on the same. The data evaluated using VOSviewer version
1.6.18 accessed on March 2023.
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Figure 3. Schematic representation of the major mechanism of action adopted by BBCAs to protect the plant from phytopathogens/pests.
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Figure 6. Mode of action of B-NBPs derived from Bacillus thuringensis against various lepidopteran insect pests.
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pathogen population. Depending on the mechanism of action,
the major implications on the population or the environment,
risks of acquiring resistance, pathogen specificity, etc., might

vary.

3. NANOBIOPESTICIDES: AN EFFICIENT
BIODEGRADABLE APPROACH FOR PLANT DISEASE
MANAGEMENT

The term “nanobiopesticide (NBP)” in connection to the review
refers to the coupling of the environmentally benign BBCAs
derived from natural sources for crop protection purposes and
the biocompatible nanomaterials used either as ElIs or for
creating NBPs.** Briefly, they are nanostructured BBCAs/
biopesticides leveraged to combat pests and pathogens affecting
plants. Owing to their low pest resistance and minimal
detrimental effect on the environment, sustainable and green
NBPs derived from natural products create an avenue for
combating pests and phytopathogens.”” Nevertheless, NBPs
account for a minor portion of the whole global plant protection
sector, with an approximate value of $3 billion, representing
abal;t 5% of the overall sustainable agricultural industry (Figure
4).

The application of NBPs is increasing by almost 10% every
year worldwide.** > However, NBPs are yet to acquire the level
of application necessary to surpass their chemical equivalents.
Stability, field applications, and delivery strategies are all areas of
concern.””>" Although low retention of biopesticides can be
beneficial where environmental residues are an issue, there
remains a risk that it might not elicit the intended impact in
regulating phytopathogens and pests. Other downsides of
biopesticides include higher cost, low activity, short shelf life,
and performance volatility application.”’ The application of
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nanotechnology to managing plant diseases holds potential,
primarily in substituting agrochemicals with natural agents while
preserving productivity and efficacy.”>”° Thus, researchers are
striving to develop NBP formulations for plant pathogens/pests
for plant protection that are comparable to traditional
formulations but have better properties such as greater
solubility, delayed release, and are not prematurely degradable.

This emerging sector of agricultural nanotechnology com-
prising nanostructuring of biopesticides facilitates a better
understanding of the interface between weeds/pests/phytopath-
ogens and nanoscale materials. It also entails the incorporation
of biopesticides into nanoemulsions and dispersions and the
production of novel B-NBPs utilizing nanomaterials as active
pesticide agents or nanocarriers for their delivery.”* " The
nanostructuring of biopesticides permits the enhancement of
their physicochemical parameters, such as solubility, resilience,
permeability, crystallinity, thermal stability, and biodegrad-
ability, in comparison to the existing ones. Figure S depicts the
frequently employed nanomaterials involved in the nano-
structuring of biopesticides and the production of NBPs as
well as the limits and benefits they are likely to pose. These
multifunctional organic and inorganic nanocarriers have enabled
the efficient delivery of diverse biopesticides through their
increased ability to encapsulate and permit the gradual release of
the biopesticides into the soil.”’~>” Importantly, coupling
nanocarriers with biopesticides permits controlled or sustained
release, better efficiency, and the utilization of lower dosages of
the biopesticide. The large surface area offered by NBPs
increases the affinity to the target species/groups and reduces
the amount of biopesticide required for pest/pathogen
control.®’ Similarly, recent studies have focused on the
implementation of nanotechnology to augment biopesticide
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efficacy and reduce losses owinég to physical deterioration (such
g ) 1—63
as volatilization and leaching).

4. BACTERIA-DERIVED NANOBIOPESTICIDES
(B-NBPS) AS PLANT PROTECTION AGENTS

Bacteria are unicellular prokaryotes with distinctive physio-
logical, morphological, and evolutionary attributes.””*> They
could be used to combat pests and phytopathogens. Bacteria
used as BCAs or BBCAs belong to four major categories,"”®”
namely, crystalliferous spore formers,'”**~"" obligate patho-
gens,” "’ potential pathogens,”””* and facultative patho-
gens.””””” BBCAs are a widely utilized microbial biological
control (MBCA) that works in various ways for the eradication
of pests. The two significant prerequisites to achieving efficacy
are interaction and ingestion by the potential pests. Table 2 lists
the most commonly used bacteria and their function as plant
protection agents. Bacteria ingested by insects impede digestion
by producing endotoxins causing the death of the insect
pest.’®7°

Bacteria-premised nanobiopesticides (B-NBPs) are a type of
NBP that utilizes beneficial bacteria or their components to
control pests/pathogens. These types of NBPs can be either
living or nonliving and can be used to control a variety of pests,
including insects, nematodes, and plant pathogens.”” One
example of a living B-NBP is Bacillus thuringiensis (Bt), which is
used to control a wide range of lepidopteran pests, including
moths and butterflies.”” The average particle size of nanosized Bt
was observed to be between 250 and 500 nm, with a minor
fraction of particles falling below 1 ym. Besides, nonliving B-
NBPs pertain to the inclusion of bacterial spores, metabolites,
and enzymes such as lipopeptides or chitinases in ecologically
viable nanocarriers and their deployment for plant protection.

A significant proportion of insect pathogenic bacteria are
found in the Bacillaceae, Enterobacteriaceae, Pseudomonada-
ceae, and Streptococcaceae families.”* As MBCAs Bacillaceae
members, particularly Bacillus spp.,°>”>~"” have garnered great
attention. The Bacillaceae family constitutes Gram-positive, rod-
shaped, heterotrophic, endospore-forming bacteria. Bacillus
thuringiensis,”>”® B. sphaericus,"° B. popillae,”"”* B. pumilus,""!
Brevibacillus laterosporus,'*” among others. Bacillus thuringiensis
(Bt) is a prevalent soil-borne bacteria capable of producing
spores and crystals during the stationary phase of its develop-
ment.*® The majority of the crystals are composed of various &-
endotoxins—Cry and/or Cyt having antagonistic activity
against specific insect pests infesting plants (Figure 6). Each
variant of Bt produces and secretes unique type toxins that attack
pests belonging to a particular taxon. Therefore, toxins
synthesized by Bt protect crops against significant pests such
as Plutella xylostella, Lymantriidae ninayi, Helicoverpa armigera,
Callosobruchus maculatus, Ostrinia nubilalis, Spodoptera frugiper-
da, Agrotis ipsilon, Spodoptera exigua, etc."*>'** Amidst Bt’s great
target selectivity and eco-sustainable green properties, the Bt
pesticide market accounts for only 1% of the worldwide plant
protection sector yet 97% of the global MBCA industry.'* Early
Bt products failed to compete with chemical pesticides owing to
low performance, despite their beneficial attributes. Commercial
research concentrated on two schemes to tame these obstacles:
(i) augmenting the synthesis of Bt products via the development
of novel techniques and (ii) strain improvement to enhance the
bacterium’s innate lethality.*’

In addition to the formulation, the method of manufacture
and stability of the biomass of the BBCA are also important
factors, which affect the efficacy of Bacillus-based products in the
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field. Spray coverage on foliage will be improved due to the small
particle-size distribution.'”® Liquid suspensions were the
simplest to manage but had limited shelf life, whereas powders
were convenient to transport as well as store, but curing/
reformulation was costly and cumbersome for the consumer.
Nanostructuring of the formulation resolved these concerns.
This prevented suspensions from settling and hence a rise in
shelflife. Nanotechnology also helped incorporate UV screening
agents that could resist rapid photolysis of the biocontrol agent
after spraying.””'%” These enhancements, coupled with stricter
quality standards and validation of potency screening, could
contribute to a 6-fold or greater’"'*® upsurge in ineffectiveness
in the field. Regrettably, the use of Bt nanoparticles (Bt NPs) in
plant protection is an elusive goal that remains to be addressed.
There is minimal data available about research into enhancing
efficiency through the generation of Bt NPs.

4.1. Microionization-Driven Synthesis Nanobiopesti-
cidal Formulations of Bacillus thuringiensis (Bt). Top-
down initiatives for microionization, such as high-pressure
homogenization (HPH), jet milling, and hammer milling,
leveraged for converting coarse particles to superfine powders,
are utilized to create Bt in nanoform. Using these approaches,
the average particle size was determined to be between 250 and
500 nm, with a tiny percentage of particles dropping below 1
um.'”” Although these strategies facilitate easy scale-up, batch-
to-batch fluctuation in extraction and contaminations resulting
from milling balls restrict their application.'' In addition, the
heat produced by the high-speed milling process may diminish
the vitality and efficacy of Bt. As a result, milling must be
performed while assisted with cooling.'"’

Few studies have attempted to enhance the functionality of Bt
by reducing the size of Bt powders using a top-down strategy.
These studies have been limited to hammer and/or air milling
techniques and HPH.'>'"""'* Bt powder homogenization in
water has shown great promise. Kim and Je''” in 2012 revealed
that a homogenized Bt suspension with smaller particles
outperformed an unblended spray-dried powder of Bt aizawai
NTO0423 in regulating diamondback moth infestation in plants.
After 2 min of homogenization in water at 6000 rpm, the particle
size was effectively reduced from 37.1 to 1.9 ym. Notably, the
larval mortality of the diamondback moth was 78.3% 2 days after
treatment (DAT) with homogenized Bt suspension and 27.5%
with unmilled powder. Analogously, the mortality rate of larvae
3 DAT was 100% (homogenized Bt suspension) and 72%
(unmilled powder). Comparably, Murthy et al."'® proved that
homogenization in water via HPH could significantly decrease
the size of Bt powder particles from 105 ym to 32—1000 nm.
Furthermore, in laboratory conditions, they observed a
progressively higher larvicidal effect of Bt NPs, at 50% reduced
doses than the unblended Bt powder. Compared with the
unblended Bt powder, the overall alkali-soluble protein and Cry
protein of Bt NPs increased 2.18- and 2.24-fold, correspond-
ingly. This was attained even though the number of heat-viable
dormant spores in unhomogenized Bt powder was greater when
compared with those in Bt NPs. The enhanced larval mortality of
Bt NPs was attributed to a greater dissolution rate of the toxin in
the midgut. The ensuing proteolytic stimulation rendered the
toxin more accessible for interacting with the surface receptors
of the alkaline midgut cells, resulting in immediate immobility
and subsequent paralysis of midgut cells.""?

Hammer milling and air-jet milling were two other methods
adopted for the reduction of the size of Bt particles. Kim and
Je''” indicated that hammer milling failed to reduce the particle
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size, whereas air-jet milling was capable of lowering it to 5.3 ym.
Conversely, Vineela et al.''' were fruitful in achieving Bt
powders with particle sizes ranging from 105 ym to 210 nm with
hammer milling. Total alkali-soluble protein was greater at 153—
175 mg/g in milled Bt powders than that in unmilled Bt powder,
depicting a clear correlation to particle size. As opposed to
unmilled Bt powder, all the samples of milled powders
contributed to high fatalities of third-instar Spodoptera litura
larvae. Hence, microionization represents a promising approach
to enhancing Bt efficacy, but its commercial viability is yet to be
investigated. Alternatively, it is also required to evaluate the
possibility of directly delivering protoxins to the host plant for
their rapid stimulation midgut, as the initial phase of crystal
solubilization could be conquered.

4.2. Nanocomposites of Bacillus thuringiensis (Bt) as
Prospective NBPs. Bt nanocomposite Els like crystals coupled
with metal oxide nanoparticles might function as UV protectants
for Bt, considerably enhance effectiveness and storage stability,
reduce dose, and conform to nanotechnology norms. There
ought to be some mechanism in Bt-based nanocomposites to
preserve both activities without limiting their effectiveness as
nanobiopesticides. This field is also underexplored, and much
effort is needed before its application.''* Additives encapsulated
in nanoparticles containing Bt through various nanoformula-
tions, including nanoemulsion, nanosuspension, and nano-
capsules, can enhance the reliability and residual action of Bt,
potentially increasing its field efficiency and applica-
tion."®'>~""7 A Bt formulation equipped with graphene oxide
nanosheets(GONs) shielded the Bt from high temperature and
UV radiation. The formulation strengthens the capability of
olive oil as a Bt UV filter agent. The integrated formulation
spawned a 68.89% larvicidal effect in the population of the
Mediterranean flour moth Ephestia kuehniella, whereas free
spores caused 40% lethality in the larvae."'® At a 25 g/Ml dose,
Bt-coated zinc oxide nanoparticles were 100% lethal to the
Callosobruchus maculatus.""” Nanosized Bt chitinases incorpo-
rated silica nanoparticles (Bt SNPs) contributed to increased pH
tolerance, thermostability, and UV resistance ability, while
cohesively enhancing Bt’s nematicidal effects. This was verified
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on the nematode Caenorhabditis elegans was suppressed by the
Bt SNPs with a lower lethal dose and at a shorter lethal
period."*” Additionally, micro- and nanotechnology are utilized
to treat Bt strains requiring enhanced protection, fortification,
and dispersion in the field. Tamez-Guerra et al."*" researched
the insecticidal activity of Bt spore toxin microencapsulations
against Trichoplusiani and revealed elevated residual insecticide
action in Brassica oleracea var. capitata. Bt parasporal crystal
protein packed with nano-Mg(OH), efficaciously amended the
protein’s larvicidal activity, protected the structure of the protein
from damage, and increased resistance to UV.'** Under
environmental conditions, nanoencapsulation of Bt (HD-703
and HD-95) primed through HPH of 2.53% surfactant and
ap?gsoximately 98.79% glycerol greatly inhibited Tuta absolu-
ta.

5. BACTERIOGENIC NANOPARTICLES (BNPS) AS
B-NBPS FOR PLANT PROTECTION

Owing to their unique morphology (shape and size), which is
controlled by biological, chemical, and physical variables,
nanoparticles have recently received significant interest in the
disciplines of biology and medicine. Nanoparticles generated
from chemical synthesis were shunned in the food and
pharmaceutical industries due to the toxicity of the chemical
agents employed in their synthesis. A preferred technique for the
production of nanoparticles should offer materials that are better
encapsulated, 2provicle cost-effectiveness, and contain no toxic
components.'”> Green syntheses of nanoparticles mediated by
bacteria against pests and microbes affecting plants has opened
up new avenues for the design and synthesis of biogenic
nanoparticles. These biogenic nanoparticles are nontoxic and
economical when compared to traditional pesticides in
use.124—126

The nanoparticles synthesized using bacterial enzymes/
metabolites/proteins as the reducing/capping agent are
known as bacteriogenic nanoparticles (BNPs). The primed
biosynthesis of such BNPs occurs in two potential sites
intracellular and extracellular (Figure 7A)."””” The BNPs are
reported to demonstrate strong antagonistic activity against
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plant-infecting pests and pathogens through various mecha-
nisms (Figure 7B)."*%"*® In the case of extracellular synthesis,
the metal salts are reduced by the bacteria when supplied
extracellularly and the color change explains the production of
BNPs. Whereas, nanoparticles synthesized intracellularly can be
isolated by disruption of cell membranes via heat shocks or
sonication.'”” Due to the availability of several reductase
enzymes that may convert metal salts to metal nanoparticles
(MNPs), bacteria are significant nanofactories that can
accumulate and detoxify heavy metals.'*°

The extracellular method was used to create silver nano-
particles (AgNPs) from the Bacillus strain GP23 isolated from
the coastal area, which inhibited Fusarium oxysporum, the
ascomycete fungus causing the wilt disease of legumes, bananas,
cucurbits, and tobacco.'*” Extracellularly generated AgNPs from
the Bacillus strain SBT8 exhibit antibacterial characteristics and
function as biocatalysts.'*»"*' Nanoparticles were produced by
combining silver nitrate with B. subtilis and B. amyloliquefaciens
protected plants against several bacterial and fungal pathogens
displayed specifically Candida albicans.'>> The nanocrystalliza-
tion of cyclic lipopeptides derived from B. subtilis enhances
storage stability by inhibiting oxidation and antifungal action by
the regulated administration of cyclic lipopeptides. Additionally,
these cyclic lipopeptide nanocrystals (solid lipid nanoparticles)
suppress the development of Aspergillus carbonarius, A.
fumigatus, and A. niger spores as well as hyphae."”” The
zerovalent AgNPs generated utilizing Bacillus spp. strain AW1—
2 greatly diminished the population of Colletotrichum falcatum,
the pathogen causing sugar cane red rot.">" A few of the several
types of biogenic nanoparticles synthesized using bacteria are
listed in Table 3.

Besides AgNPs, copper- and zinc-based nanoparticles have
also been used effectively against phytopathogens. Copper oxide
nanoparticles (CuONPs) produced by Streptomyces capillispir-
alis Ca-1 were effective against both bacterial and fungal
(Alternaria alternata, Pythium ultimum, F. oxysporum, A. niger)
strains. The size of the nanoparticles ranged from 3.6 to 59 nm,
and their FTIR analysis revealed the presence of bioactive
compounds that might have attributed to the antimicrobial
effects.””> Copper nanoparticles (CuNPs) isolated from
Streptomyces griseus were used to prevent the red root diseases
in tea plants caused by Poria hypolateritia. The CuNPs had a size
of 30—50 nm and were produced as a result of the reduction of
copper by protein or enzymatic reactions in S. griseus. The
developed nanoparticles were on par with the commercially
available fungicides."** Zinc oxide nanoparticles (ZnONPs)
derived using bacteria have also been widely studied for their
activity against various plant pathogens. ZnONPs are advanta-
geous over the classic antifungal agents as their use does not
affect soil fertility.">> ZnONPs also aid in the prolonged contact
between the bacterial cell membrane and nanoparticles, thus
causing increased bactericidal activity. ZnONPs isolated from
the Gram-negative heterotroph Aeromonas hydrophila demon-
strated excellent activity against pathogenic bacterial and fungal
strains such as P. aeruginosa and Aspergillus flavus, respec-
tively.*® A. flavus affects oil seed crops by producing aflatoxin
before and after the crop harvest."*” Hence, the use of ZnONPs
could prevent the growth of the pathogen in oil seed crops
without harming the crop health. Furthermore, the design,
development, and application of BNPs have been extensively
discussed elsewhere'*¥'**"*? in addition to the recent studies
presented here.
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5.1. Bacterial metabolites for Synthesizing BNPs.
Bacteria deploy intracellular and extracellular systems to
synthesize nanoparticles. In the intracellular method, the
bacterial cell acts as a transporter, and the negatively charged
bacterial cell attracts positive-charged metal ions via electrostatic
attraction. Further, the enzymes of the cell wall aid the metal
ions in being dipped into the nanoparticles. In the extracellular
method, biosorption of the metal ions onto the bacterial cell aids
in nanoparticle synthesis and diminishes with the extracellular
enzyme secretion.'”

5.2. Bacterial Enzyme-Mediated Synthesis of BNPs.
Bacterial enzymes act as dipping mediators in the synthesis of
nanoparticles. The role of dipping factors is mainly performed by
NADH (nicotinamide adenine dinucleotide) and reduced form
of NADH-reliant enzymes by the electron transport between
NADH and NADH-reliant enzymes.">® The study of gold
nanoparticle (AuNPs) synthesis by Rhodopseudomonas capsulate
revealed that NADH and NADH- reliant enzymes mediated the
process. The AuNPs are synthesized due to the reduction of
Au** to Au’. Hydroquinones, anthraquinones, and naphthoqui-
nones are the other compounds widely exploited for nano-
particle synthesis.">*

5.3. Bacterial Pigment-Mediated Synthesis of BNPs.
One of the active areas of research in nanotechnology is
microbe-mediated nanoparticle synthesis. Several microbes have
been known to synthesize nanoparticles,'>” but microbes take a
long time to grow and reduce metal ions to nanoparticles.' >
However, bioactive molecules such as enzymes, pigments,
proteins, etc., have been widely exploited for the rapid, reliable,
and green synthesis of nanoparticles. Pigments are one of the
primary metabolites of bacteria used in the synthesis of
medically relevant nanoparticles.”>”">*

5.4. Engineered Nanomaterials from Bacteria. AgNps
were synthesized by Kanmani and Lim"’ from Lactobacillus
rhamnosus GG, a lactic acid bacterium, and tested their efficacy
against pathogens in food and the ones causing multidrug
resistance. The initial process involved the production of
exopolysaccharide (EPS). The bacteria were incubated at 37 °C
for 18 h in DeMan, Rogosa, and Sharpe agar broth (MRS) and
heated to 100 °C for 15 min. Debris and probiotic cells were
removed by centrifugation and the supernatant obtained was
mixed with 95% ethanol and incubated for 12 h at 4 °C. The
precipitated EPS was washed and mixed with AgNO5. Sixty days
of incubation of the mixture followed by a 10 h incubation
resulted in the formation of engineered nanomaterials (ENMs),
which was indicated by the formation of a yellowish solution.
The synthesized nanoparticles had a size range of 2—15 nm and
shapes of spheres, triangles, and hexagons. ENMs showed
antibacterial activity against E. coli, L. monocytogenes, and
multidrug-resistant pathogens such as P. aeruginosa, and K.
pneumonia.”>® Photosynthetic bacteria Rhodo-pseudomonas
capsulate was used to synthesize ENMs from gold. The bacteria
were initially let to mature in an appropriate growth media and
then were incubated with chloroauric acid. Slpherical ENMs with
a diameter of 10—20 nm were synthesized. *°

6. INVENTIVE POTENTIAL OF B-NBPS FOR PLANT
PROTECTION

B-NBPs are an innovative and novel form of pest and pathogen
control that promises to revolutionize how plant diseases are
managed and eradicated. The application of these NBPs is an
exciting prospect due to its potential to reduce the reliance on
traditional chemical control methods, which can be hazardous
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and detrimental to the environment. B-NBPs are created by
combining bacteria with nanosized particles, such as silica or
carbon, in order to create a tiny, microscopic plant disease
mitigation agent. The bacteria are chosen for their ability to
produce substances that are toxic to the targeted pest/
phytopathogens, and the nanoparticles are added to the bacteria
to increase their effectiveness. This combination of bacteria and
nanoparticles results in a plant disease mitigation agent that is
much smaller than conventional agrochemicals, which makes
them easier to apply and less likely to drift or spread to
unintended areas. The administration of B-NBPs is relatively
simple and easy to manage. The nanoparticles are mixed with the
bacteria and then applied to the infected area. Additionally, they
can be applied in ways that reduce the amount of pesticide
residue left on crops, reducing the risk of contamination. The
nanoparticles provide a protective layer around the bacteria,
which helps to prevent the bacteria from being washed away by
rain or other forms of precipitation. This protective layer also
enables the bacteria to stay active and effective for a longer
period.

Polysaccharides such as alginate, gelatin, and chitosan have
been widely used for the encapsulation of bacteria promoting
plant growth to counteract several plant-pathogen induced
diseases.'®' ™' Riseh and Pour'® developed a microcapsule
loaded with Streptomyces fulvissimus Uts22 to control
Gaeumannomyces graminis var. tritici-induced take-all disease in
wheat. The microcapsules of chitosan-gellan gum loaded with S.
Sfulvissimus Uts22 had a size of 140—150 pym. The S. fulvissimus
Uts22 loaded in the microcapsules demonstrated an enhanced
inhibitory effect against G. gramimis. Furthermore, the survival
of encapsulated S. fulvissimus Uts22 was estimated to be 10°
CFU g™! after 60 days of storage at room temperature. The
release of the bacteria from the sprayed microcapsules into the
soil was sustained with a maximum release at day 50 (10° CFU
mL™!) with 90% disease control efficiency.'®® Similarly, Saberi
Riseh et al."® shaped microcapsules loaded with S. fulvissimus
Uts22 to control damping-oft disease caused by Pythium
aphanidermatum in cucumber. The microcapsules were
developed using a layer-by-layer technique consisting of
alginate-Arabic gum and nanoparticles of SiO, and TiO,. The
developed microcapsules had a cubical shape with a size ranging
between 140 and 150 ym. The microcapsules also showed an
inhibitory effect against Pythium aphanidermatum. The
encapsulation efficiency of the bacteria into the microcapsule
was found to be 94%, and the maximum release of bacteria was
observed on day 35 (10° CFU g™') after storage at room
temperature. Greenhouse experiments showed a 95% reduction
in the disease with enhanced plant growth.'°® Recently, Pour et
al. developed microcapsules made up of alginate together with
whey protein, plant-derived gums plus SiO, and TiO,
nanoparticles. The as-prepared microcapsules were led with
Bacillus velezensis against plant pathogens. Here, Gaeumanno-
myces graminis var. tritici was the model plant pathogen in
consideration for various experimental studies. The developed
microcapsules had an almost cubic structure, as observed in
SEM, and they exhibited excellent antifungal activity against
Gaeumannomyces graminis var. tritici. The encapsulation
efficiency was observed to be 94.33%, and the release profile
of the bacteria from the microcapsule was maximum at day 50
after incubation at room temperature. 197 Pour et al,,"*® in 2021,
synthesized a nanocomposite bead composed of alginate-
gelatin, loaded with Bacillus velezensis VRU1, against Rhizoctonia
solani in the bean plant. The synthesized nanocomposite beads
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were measured to be 150 m in diameter. Further release studies
indicated that the maximum release of bacteria from nano-
composite beads was recorded to be on day 35, and after which,
the release profile declined. Greenhouse experiments revealed a
96.33% disease control achieved by the established nano-
composite beads.'”® The use of plant growth-promoting
Rhizobacteria by encapsulating them for reducing salinity stress
in plants has been discussed in detail elsewhere.'® The
suppression of Fusarium solani-mediated infections in potatoes
utilizing nanocomposites of alginate-gelatin was reported by
Pour et al, in 2019."7% The alginate-gelatin nanocomposite
loaded with Pseudomonas fluorescens (VUPFS and T17-4 strains)
presented excellent inhibitory effects against F. solani. Notably,
with an increase in gelatin content, the nanocomposites created
exhibited greater encapsulation. Maximum encapsulation was
obtained at 1.5% gelatin in the nanocomposite, with VUPFS and
T17-4 encapsulated at 91.23% and 87.23%, respectively. In
potatoes treated with the VUPES and T17-4 strains as well as
nanocomposites, a significant reduction in disease incidence was
revealed. The frequency of infection was reduced by 76% and
75%, respectively, when nanocomposites containing VUPES
and T17-4 were employed.'”® Correspondingly, alginate-gelatin
nanoformulation with carbon nanotubes and SiO, was produced
to deliver Bacillus velezensis, for the mitigation of Pistachio
gummosis disease caused by Phytophthora sp. SEM analysis
revealed the globular structure of the nanoformulation with a
large size variation. The as-synthesized formulation containing
B. velezensis was effective against P. drechsleri. Moreover, the
encapsulated bacterial formulation achieved notable postencap-
sulation survivability (10" CFU mL™") and remained stable after
one year of storage.'”" Alginate microbeads encapsulated with
Pseudomonas fluorescens VUPF506 for the management of
Rhizoctonia solani in potatoes were synthesized by Fathi et al."”>
in 2021. The microbeads were nonuniform with a porous
surface. With a 90% pathogen suppression efficacy, the
controlled release of the bacteria from as-prepared microbeads
was proven to remain for over two months.'”* In 2021, the same
group encapsulated the VUPFS06 strain of Pseudomonas in a
microcapsule of alginate-whey protein with carbon nanotubes.
The capsules were prepared by three different techniques: spray
drying, extrusion, and emulsification, and the encapsulation
efficiency was detected to be 80% in extrusion and emulsification
techniques. The size of microcapsules varied according to the
type of synthesis technique employed, for instance, extrusion
(150—250 ym), drying (1—10 ym), and emulsification (50—150
um). Besides, Rhizoctonia infections in potatoes were prevented
by 70% due to the newly designed microcapsules.'””

In addition to their ease of use, B-NBPs are also more
environmentally friendly than chemical pesticides. This is
because they do not contain any harmful chemicals, such as
insecticides and herbicides, which can cause damage to the
environment. Furthermore, as the bacteria are only active in the
proximity of the targeted pest/phytopathogen, there is less risk
of the bacteria drifting and spreading to unintended areas. This
makes them a much more targeted and precise form of plant
disease control. Finally, B-NBPs are also advantageous in terms
of cost and efliciency. They are much less expensive than existing
synthetic chemicals and require fewer applications in order to be
effective. Furthermore, the targeted nature of these B-NBPs
renders them less likely to be ineffective due to environmental
conditions or the presence of other competitors.
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7. OPPORTUNITIES AND FUTURE PERSPECTIVES

Nanobiopesticides have the option of providing an alternative to
chemical-based pesticides that is more effective and safer, but
their application is still in its infancy. Thus, there remain
restrictions to their deployment that must be addressed. The low
efficacy of nanobiopesticides is their primary drawback. They are
rapidly washed away during rainfall or irrigation. Thus, they may
need to be administered more often than conventional
pesticides. A second constraint is that nanobiopesticides are
not currently accessible in sufficient quantities for widespread
commercial use. This implies that they are only used in a
restricted array of industries, and their efficacy is not well-
comprehended. The safety consequences of utilizing nano-
biopesticides are another restriction. Although they are typically
regarded as safer than chemical-based formulations, they may
nevertheless cause damage to people and the environment if
employed improperly. For instance, if the nanoparticles
leveraged in nanobiopesticides are too small, they may be
capable of penetrating the skin, posing a danger to human health.
Moreover, they might accumulate in the environment and affect
wildlife and other ecosystems. There is also the possibility that
nanobiopesticides could be utilized inappropriately, leading to a
rise in pesticide resistance. This might lead to an increase in the
need for pesticides containing chemicals, hence raising the risk
of environmental damage. Nevertheless, the application of
nanobiopesticides is still relatively new, and research on their
long-term environmental consequences is sparse. So, further
study is required to comprehend their safety implications.
Regulatory agencies approach the approval procedure for
various NBPs and B-NBPs with a positive attitude. However, the
use of such B-NBPs demands considerable care and knowledge,
especially during field application. In addition, their cost restricts
their use in agricultural regions of the so-called third world.
Concerning feed and food safety, B-NBPs have the power to
revolutionize worldwide agriculture productivity. They present
superior efficacy due to their tiny size, vast surface area,
durability, improved efficacy, high solubility, adaptability, and
minimal toxicity. They might be used in the conception of smart
nanosystems to lessen primary agricultural issues such as
environmental consequences, food yield, and safety. These B-
NBPs and BNPs exhibit superior controlled-release behavior,
ensuring their long-term efficacy and capability to counteract
eutrophication and pesticide residue buildup. However, the
most important barrier to the advancement of such bacterial
nanoformulations in agriculture is its ethical acceptability.
Farmers are undertrained and uninformed of nanotechnological
agricultural facilities on a global scale. The buildup and/or
toxicity of nanoparticles in biological systems, such as the food
chain, is an additional key issue. Thus, scientists are endeavoring
to identify how to adapt to nanoparticle absorption and
nonabsorption in a cell or system, which eventually expedites
their accumulation. The future study must thus focus on a better
knowledge of the characterization, formulation, morphology,
and application of NBPs to determine their ultimate fate in
animals, people, and plants. Therefore, several elements of
NBPs, such as their current state, limitations, prospects, and
regulatory framework, must be evaluated regularly to guarantee
their effective use for the good of mankind. Further, molecular-
level research using diverse animal models should be prioritized
in order to adequately depict the mechanism of action involved
in pest control. Additionally, the long-term impacts of these
NBPs on plants and animals, as well as their stability, and crop-
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specific application doses, should be examined to ensure
agricultural safety and sustainability.

8. CONCLUSIONS

BBCA are attracting attention worldwide as a more effective
technique to control pest/phytopathogen populations while
posing minimal harm to people and the environment. BBCA
coupled with nanotechnology provides eficient ecologically
acceptable phytopathogen/pest control choices such as B-NBPs.
B-NBPs can be broadly classified into two major categories: the
direct-bacterial nanoformulations, which include living or
nonliving bacterial nanoforumlations as the first category. For
instance, the B-NBP Bacillus thuringiensis (Bt), synthesized using
microionization techniques with an average size 0of 250—500 nm,
is leveraged to control a wide range of lepidopteran pests,
including moths and butterflies. Bacteria-synthesized BNPs
belong to the second category B-NBPs. Metabolites from
bacteria act as capping and plummeting mediators for the
development of nanoparticles. The metal ions are ensnared onto
the bacteria and undergo an enzymatic or nonenzymatic process
to synthesize MNPs. The prospects are bright for new
nanomaterials of bacterial origins referred to as B-NBPs, such
as a range of nanoencapsulated bacterial enzymes or harnessing
the reducing actions of bacteria for the synthesis of MNPs and/
or metal oxide nanoparticles. Given their bacterial origins
together with an apparent reduction of chemical toxicity,
nanoformulations predicated on bacteria are both cost-effective
and environmentally benign. Such B-NBPs are largely accepted
by the common masses, as farmers seek them out due to their
potency even in small amounts.

Overall, B-NBPS has evolved into a viable plant protection
strategy. Plants can withstand insect infestations, diseases, and
other external factors more effectively and efficiently when
treated with B-NBPS. This strategy not only protects the plants
but also benefits the environment by reducing the usage of
chemical pesticides. Further, this method is economical and easy
to use. With the continual advancement of technology, B-NBPs
applications ought to become more extensive. In the future, it
will become an important tool in agricultural production and
bring more convenience to people’s lives. On the whole, B-NBPs
are an innovative and focused form of plant protection approach
that promises to revolutionize the methods of pests/
phytopathogens management and eradication.
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