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ABSTRACT 

A study on “Rice yield estimation using Remote Sensing and crop simulation 

model in Nalgonda district, Telangana” was carried out during kharif, 2021. 

Precise and real-time agricultural yield data at the national, international and 

regional levels is becoming increasingly crucial for global food security. Crop yield 

forecasting could be very useful in advanced crop planning, strategy creation, and 

management. Because of the importance of yield prediction in food security, the present 

study used the APSIM-ORYZA model and remote sensing to estimate rice yield. The 

core objective of this study was to develop a method to integrate remotely sensed data 

and APSIM model for rice yield estimation in Nalgonda district, Telangana. This study 

includes mapping of rice growing areas and execution of APSIM model, followed by 

integration of remote sensing and crop simulation model for rice yield prediction and 

verification using government statistics.  

Based on stratification, two villages, Telakantigudem from Kangal mandal and 

Mallaram village from Kattangoor mandal in Nalgonda district were selected and ten 

fields from each village were chosen for the study to collect the measured LAI values 

with the help of ceptometer in the fields and the crop management data from the respected 

farmers. Crop classification was performed on Sentinel-1 and Sentinel-2 time series data 

using a Random Forest (RF) classifier and ground reference points collected from field 

surveys in the Google Earth Engine platform. The results demonstrated an overall 

accuracy of 92% and a kappa coefficient of 0.85, and rice area was validated with the 

crop coverage report (kharif, 2021) provided by the Department of Agriculture (DOA), 

Telangana state showed a relative variation of -0.16%. 

Remote sensing products like VV, VH AND VH/VV from Sentinel-1 and NIR, 

Red and NDVI from Sentinel-2 were derived using GEE and were calibrated with the 

measured LAI data collected from farmers’ fields. The result showed that there was a 



significant relation (R2=0.78) between NDVI and field LAI and hence it was considered 

for integration with the crop model output. Maps were derived showing spatial variation 

in crop extent, and leaf area index (LAI), which are crucial in yield assessment. 

 Execution of APSIM-ORYZA model was done using the weather parameters, 

soil parameters, genetic coefficients and crop management data. The evaluation of the 

model with simulated yield and observed yield in the farmers’ fields showed linear 

regression of R2 = 0.79, root mean square error (RMSE)=804 kg ha-1 and mean absolute 

error (MAE)=728 kg ha-1. The overall spatially averaged model yield for the district 

showed 4925 kg ha-1 which is deviated by 2% from the average yield in the government 

statistics with 5024 kg ha-1. The study showed that by assimilation of remotely sensed 

data with the crop models, crop yields before harvest could be successfully predicted. 

 



Chapter I  

INTRODUCTION 

Rice is one of the most vital food crops and considered as a primary food for over 

half of the world's population, particularly in Asia (IRRI, 2006), and its cultivation is a 

key source of income for many billions of people worldwide. The world's rapidly rising 

population is fed by limited land and input resources, while the expense of cultivation and 

poverty rises. As a result, more food production is required, particularly in the case of 

rice, which is consumed in greater proportions globally. India is the second largest rice 

producer and cultivator in the world. Rice accounts for 42% of total food grains and 45% 

of total cereal production in India (Nikitha et al., 2018). In Kharif 2021–22, acreage in 

India increased by 0.20% from 41.33 M ha to 41.41 M ha. Telangana escalated its land 

area by 0.382 M ha, which was 2.12 M ha, during the previous year to 2.50 M ha in 2021. 

Within the state, Nalgonda has around 0.186 M ha of rice area (AMIC. 2022). 

The growth and development of rice crop is intensely affected by diverse 

environmental conditions, ensuing in significant disparities in crop yields from year to 

year. Hence, precise and instantaneous information on crop yields at national, 

international and regional scales is becoming gradually more essential for overcoming 

food security in the world (Basso et al., 2013). Accurate yield predictions help farmers to 

make informed economic and management decisions to support famine prevention efforts 

and advanced crop planning.   

Remote sensing (RS) is essential in crop classification, crop monitoring, and yield 

estimation. RS data is required in the field for agronomical research since soil, climate, 

and other physicochemical changes are highly fragile. It is a technique that uses space-

borne sensors to collect repetitive (from minutes to days) and synoptic (from local to 

regional coverage) data on the spectral performance of crops in a changing environment 

(soil and atmosphere). These methods are essential for timely monitoring because they 

provide an accurate image of the agricultural sector with a high revisit frequency and 

accuracy (Shanmugapriya et al., 2019). RS data can be used for a variety of applications, 

including yield prediction that use biophysical variables extracted from remote sensing 

data, crop inventory, crop yield estimates, drought monitoring, flood damage evaluation, 

pest and disease infestation, and irrigated land monitoring and control. (Kasampalis et al., 

2018). Processing a significant volume of satellite pictures taken by numerous sensors is 

necessary in order to produce high resolution crop maps for vast areas (>10,000 sq. km). 



Freely available satellite images for vast areas can be easily accessed and processed using 

the cloud infrastructure offered by the Google Earth Engine (GEE). Additionally, the 

GEE offers a collection of cutting-edge classifiers for pixel-based categorization that may 

be applied to crop mapping (Shelestov et al., 2017).  Analysis of RS data alone or along 

with other ancillary data permits the determination of crop yield prior to the harvest period 

and provides information on crop status and health (through NDVI and LAI) for the 

estimation of potential crop yield (Gumma et al., 2022). 

   Crop growth models can be used to estimate the best planting dates and assess 

weather hazards for crop management and decision making (Van and Donatelli. 2003). It 

is also possible to use crop growth models to predict performance to introduce a new crop 

in a locality (Moorthy et al., 2004). Different crop models were used to analyse the 

potential effects of climate change on crop yields in different regions (Challinor et al., 

2004, Watson et al., 2015, Lobell et al., 2006). 

 The application of crop growth models over the vast areas for monitoring crop 

growth or projecting crop production is hampered by a lack of geographical information 

regarding model inputs. Remote sensing and crop growth modeling are two independent 

technologies developed to solve several agronomic concerns at the field and regional 

levels (Batchelor et al., 2002). A lot of research has been attempted to estimate the 

agricultural output using a process-based crop growth simulation model and satellite data. 

Some examples of such research using different crop models are APSIM (Ziliani et al., 

2018; Yang et al., 2021; Masjedi et al., 2018), Aquacrop (Jin et al., 2016; Jin et al., 2020), 

DSSAT (Li et al., 2020; Son et al., 2020), ORYZA (Setiyono et al., 2018; Setiyono et 

al., 2019) and Rice-Grow model (Wang et al., 2014). 

Agricultural Production Systems Simulator (APSIM) is a software application 

that combines numerous sub-models (or modules) to simulate crop growth, soil processes, 

and various management options from the standpoint of cropping systems (Masjedi et al., 

2018). The APSIM-ORYZA model has been developed (Zhang et al., 2004) for the 

APSIM framework (Keating et al., 2003) based upon the original ORYZA2000 model. It 

enables rice metabolism, like photosynthesis, phonological development, and 

productivity, to be modelled in ORYZA2000 by utilising the present APSIM suite of 

modules for water, nitrogen, and other soil processes and management issues. This system 

feature enables the examination of a continuous cropping system, carry-over effects, and 

field management options. (Zhang et al., 2007).  



 

             The integrative method of remotely sensed data with crop simulation models has 

been progressively adopted for crop yield estimation because of the ability of satellites to 

attain information over an extensive coverage at a high revisit frequency. For this, LAI 

derived from satellite data is interpolated daily to offer daily observations that correspond 

to the interactive time-step of crop models. Better prediction can be achieved through 

models by considering the factors that affect crop growth and yield. Information such as 

meteorological and climate data (surface temperature, rainfall, etc.), soil properties and 

farming practices are combined with spatially explicit remote sensing derived information 

such as slope and vegetation indices (NDVI) to model crop growth and eventual 

estimation of the crop yield (Dorigo et al., 2007). 

Therefore, keeping the above facts in view and to make yield estimation more accurate 

and precise, the study entitled “Rice Yield Estimation using Remote sensing and crop 

simulation model in Nalgonda district, Telangana” was undertaken with the following 

objectives: 

1. Mapping of rice-growing areas in the study area by applying a crop classification 

algorithm on satellite imagery. 

2. Derivation of remote sensing-based products to integrate with crop model output. 

3. Execution of a crop simulation model to calculate yields with various remote sensing 

derived inputs. 

4. Integration of remote sensing data with crop model data to estimate optimised rice 

yields. 

5. Verification of yield estimates obtained from crop model against government yield 

statistics. 

 

 

 

 



Chapter II  

REVIEW OF LITERATURE 

Crop simulation models need a lot of inputs, such as crop parameters, soil 

properties, meteorological parameters, and crop-specific management techniques. The 

absence of enough spatial information regarding model inputs makes it difficult to apply 

crop models on vast regions to analyse crop growth conditions or forecast crop yield.  

Additionally, it has been demonstrated that remote sensing technology based on satellite 

data is capable of delivering crop characteristics and real-time information on 

circumstances altering as a result of different weather phenomena. The inclusion of 

remote sensing data in crop yield simulations for calibrating or changing the input 

parameters to assure that satellite observed and modelled conditions are the same has 

also been demonstrated in earlier field-scale investigations. 

As a result, an effort was made to examine the accessible and relevant research 

findings that are directly or indirectly connected to the main concern. Keeping the 

current investigation's aims in view, the reviews have been collated and presented in 

this chapter under the six key headings: 

2.1 Crop yield estimation 

2.2 Mapping of Crop areas using classification algorithm on satellite images 

2.3 Derivation of remote sensing-based products 

2.4 Crop growth simulation model for rice yield estimation 

2.5 Integrating Remote sensing derivatives with Crop simulation model 

2.6 Verification of estimated yield  

 

2.1 Crop yield estimation 

Crop yield estimation is an important stage in planning for a district's or the 

entire nation's food security. Consequently, it is essential to be able to predict yields 

with some degree of precision before to harvest so that, if poor yields be foreseen, 

appropriate interventions can be implemented. Crop simulation models, remote sensing, 

machine learning algorithms, and other techniques may all be used to estimate crop 

yield. 

In Sahibganj district, Jharkhand (India), during the 2017 rainy season, Ranjan 

and Parida (2019), mapped paddy acreage and yield estimation using sentinel-based 



optical and SAR data. The paddy acreage mapping was prepared using a dependable 

machine learning Random Forest (RF) classification technique. A linear regression 

yield model was developed to forecast yields. The major conclusions showed that 68.3–

77.8 T ha of paddy were present, based on Sentinel-1A and Sentinel-2B satellite data. 

Filippi et al., 2019 developed a method to predict grain crop yield using machine 

learning (random forest models) and multi-layered, multi-farm data sets. Several big 

farms in Western Australia were employed as case studies for this work, and yield 

monitor data from wheat, barley and canola crops from three distinct seasons (2013, 

2014, and 2015) that covered between 11,000 and 17, 000 ha per year were used.  The 

results showed that the models' cross-validated predictions of yield had a root mean 

square error of 0.36 to 0.42 t ha-1 and a Lin's concordance correlation coefficient of 0.89 

to 0.92 at the field resolution. 

In order to predict the sugarcane yield grade of a farmer plot, Charoen-Ung et 

al., 2018 employed a RF based technique using the train dataset and test dataset of 

8,765 records and 3,756 records, respectively, gathered from a group of sugarcane plots 

surrounding a sugar mill in Thailand. Their approach has a 71.88 % accuracy rate. This 

suggests that the suggested technique can be utilised to support decision-making for the 

operation planning of sugar mills.  

In Faisalabad, Punjab, Pakistan, Ahmad et al., 2018 developed a method for 

yield forecasting of spring maize using remote sensing and crop modeling. In order to 

anticipate maize output using a crop model at farmers' fields, a field survey of 64 farms 

was done to gather information on the initial field conditions and crop management 

data. The CERES-Maize calibration and evaluation findings revealed a mean absolute 

percent error (MAPE) range for all recorded variables of 0.35 to 6.71 %. While remote 

sensing indicated an RMSE of 397 kg ha-1, crop model yield predictions findings were 

accurate with an RMSE of 255 kg ha-1. 

Khanal et al., 2018 used high resolution remotely sensed data and machine 

learning approaches for the spatial prediction of soil characteristics and corn 

production. Multispectral aerial images and topographic data, both collected in 2013, 

were combined with field-based data on five soil properties (soil organic matter (SOM), 

cation exchange capacity (CEC), magnesium (Mg), potassium (K), and pH), as well as 

yield monitor-based corn yield data from seven fields at the Molly Caren Farm near 

London, Ohio. Five machine learning algorithms—RF, Neural Network (NN), Support 



Vector Machine (SVM) with radial and linear kernel functions, Gradient Boosting 

Model (GBM), and Cubist (CU)—were used to construct models for the prediction of 

soil characteristics and maize yield.   RF consistently outperformed other models and 

had greater accuracy for corn yield (R2 = 0.53; RMSE = 0.97 t ha-1). 

Gandhi et al., 2016 used the WEKA (Waikato Environment for  Knowledge 

Analysis) tool and a dataset of 27 districts in the Indian state of Maharashtra to 

demonstrate the prediction of rice crop yield using one of the machine learning 

techniques, and Sequential minimal optimization (SMO). The experimental findings 

demonstrated that alternative classifiers, including as Naive Bayes, BayesNet, and 

Multilayer Perceptron, outperformed SMO classifier, which had previously been 

claimed to have the lowest accuracy, sensitivity, and specificity for the same data set. 

The algorithm obtained 78.76 %, 68.17 % sensitivity, and 83.97 % specificity. The 

experimental findings demonstrated that alternative approaches performed significantly 

better than SMO on the same dataset. 

Nain et al., 2004 developed a methodology using a crop simulation model and a 

discrete technological trend for yield forecasting for broad area and then applied to the 

coherent wheat yield variability zones of Eastern Uttar Pradesh, India. The outcomes 

demonstrated that this method could reasonably capture year-to-year variations in wide 

area wheat output. For the mean yield of 2.072 t ha-1, RMSE between observed and 

projected yield was reported as 0. 098 t ha-1 (4.72 %). In contrast to the calibration 

period, the RMSE was somewhat greater during the forecasting period. 

2.2. Mapping of Crop areas using classification algorithm on satellite images: 

Panjala et al., 2022 assessed the performance of various supervised machine 

learning (ML) classifiers in the GEE platform and Spectral Matching Technique (SMT) 

using Sentinel-2 10 m satellite imagery in specific crop type classification for the year 

2018-19 (rabi season) for Jhansi District using supervised classifiers like Random 

Forest (RF), Support Vector Machine (SVM), and Classification and Regression Trees 

(CART) The results showed the accuracy for RF was 81.8%, SVM was 68.8%, CART 

was 64.9%, and SMT was 88%. Results from the RF classifier were remarkably similar 

to those from the SMT classification map. The study found that RF classification beats 

other classifiers taken into account in the study. 

Kpienbaareh et al., 2021 tested the ability to map crop kinds and land cover in 

two small-holder agricultural regions using Sentinel-1 (S-1) radar data, Sentinel-2 (S-2) 



optical data, S-2 and PlanetScope data fusion, and S-1 C2 matrix and S-1 H/α  

polarimetric decomposition. For the categorization studies, they employed a random 

forest algorithm combined with data digitised from Google Earth Pro and DigitalGlobe. 

Overall accuracies (>85%) and Kappa coefficients (>0.80) were higher as a result. 

Gumma et al., 2020a used a Spectral Matching Technique (SMT) approach 

based on temporal NDVI signatures and crop phenology to assess the capabilities and 

limitations of mapping cultivated areas in the rabi season and corresponding cropping 

patterns using Sentinel-2 Normalized Difference Vegetation Index (NDVI) 15-day time-

series at 10 m resolution. The temporal signatures of wheat, chickpea, and mustard were 

easily distinguished, resulting in an overall accuracy of 84%, with wheat and mustard 

achieving 86% and 94% accuracy, respectively. 

Hegarty-Craver et al., 2020 created a high-fidelity ground-truth dataset from 

imagery acquired by unmanned aerial vehicles, which included large mono-cropped 

fields, small intercropped fields, and natural vegetation. They collected the imagery in 

three rounds of flights at six different agro-ecological zones to capture growing 

conditions, and it was used to train and test a random forest model for classifying 

cropped land in Google Earth Engine using freely available Sentinel-1 and Sentinel-2 

data. The model achieved an overall accuracy of 83% and a maize-specific accuracy of 

91%. 

Bazzi et al., 2019 used Sentinel-1 SAR, VV/VH polarisation data to map rice 

crops in the Camargue region of Southern France. Rice crop area was classified using 

decision trees and Random Forest (RF) classification algorithms. Each approach's 

classified rice crop map was validated using national data. The overall accuracy 

acquired using a conventional decision tree was 96.3 %, whereas the overall accuracy 

gained using the RF classifier was 96.6%. The results showed that using RF and 

decision together improves classification accuracy  

 

Using Sentinel-1 data from two separate sites, Xu et al., 2019a developed a new 

classification technique to identify different crop growing zones in (i) Wuqing District 

and (ii) Fuju City, China. This method made use of multitemporal backscattering 

coefficients. To characterise the phenology information of the relevant crop, temporal 

models were developed from multitemporal intensities for each class. The overall 

accuracies were all above 90%, with the exception of Site-1's VV band result, which 



had an overall accuracy of 89.74%, only 2.3% lower than the VH band. The overall 

accuracies of the VH and VV bands in Site-2 were extremely close, with both being 

about 90%. 

In the Tamil Nadu district of Tiruvarur, the rice crop area was estimated using 

Sentinel-1A SAR satellite data utilising VV and VH polarisation (Raman et al., 2019). 

The rice area was assessed to be 91,007 ha in VV polarisation with an overall accuracy 

of 79.5% and 0.59 kappa index, while the rice area was estimated to be 91,007 ha in VH 

polarisation with an overall accuracy of 82.1% and 0.64 kappa coefficient. The lower 

accuracy in VV polarisation was related to an underestimation of the direct seeded rice 

area, while the underestimation in VH polarisation was due to an underestimation of the 

transplanted rice area. 

RF and SVM classification methods were used to delineate rice crops using 

multi-temporal Sentinel -1 C-band SAR data. (Son et al., 2018). Overall accuracy and 

Kappa coefficient acquired by RF were 86.1% and 0.72, respectively, slightly higher 

than SVM (overall accuracy of 83.4% and Kappa coefficient of 0.67). 

Using time series Sentinel-1 and Sentinel-2 data, Cai et al., 2019 established an 

RF approach for mapping paddy rice in China. The classification results showed overall 

accuracy and Kappa coefficient greater than 95% and 0.93, respectively and stated that 

this approach can offer technological assistance for mapping rice in regions with a lot of 

cloud and rainy weather. 

Kenduiywo et al., 2018 demonstrated the utility of Sentinel-1 multitemporal 

data for crop-type mapping. They used the framework of dynamic conditional random 

fields (DCRFs), which provides a flexible, robust, and low-cost classification approach. 

They used an ensemble classifier to generate an optimal map based on posterior class 

probabilities estimated from the image sequence. When subjected to high-dimensional 

images with fewer training data, the result showed high accuracy when compared to 

MLC-stack. 

Onojeghuo et al., 2018 explored the use of multi-temporal Sentinel-1A data and 

Landsat-derived NDVI data during the rice crop growing season (May to October) to 

map the geographical distribution of paddy rice fields throughout areas of the Sanjiang 

plain in Northeast China. To map paddy rice fields, SVM and RF machine learning 

classification algorithms were applied to a co-registered set of ten dual polarisation 

(VH/VV) SAR and NDVI images that show crop phenological development. When the 

NDVI time-series data were combined with the different multi-temporal polarisation 



channel combinations (i.e., VH, VV, and VH/VV), the findings demonstrated a 

considerable improvement in the overall classification. The RF algorithm applied to 

combined multi-temporal VH polarisation and NDVI data yielded high overall 

accuracy (95.2%) and for rice (96.7%). The dual polarisation (VH and VV) SAR data 

alone provided the best results for the SVM classifier, with classification accuracy for 

rice of 91.6% and overall accuracy for rice of 82.5%. 

Van Tricht et al., 2018 created a crop map for Belgium using Sentinel-1 radar 

and Sentinel-2 optical imagery. They achieved this by creating Sentinel-1 12-day 

backscatter mosaics after incidence angle normalisation and smoothing Sentinel-2 

normalised difference vegetation index (NDVI) images to produce 10-daily cloud-free 

mosaics. Using an optimised random forest classifier, they predicted the eight crop 

types with a maximum accuracy of 82% and a kappa coefficient of 0.77. Their findings 

revealed that a classification based on a combination of radar and optical imagery 

always outperformed a classification based on single-sensor inputs, and that 

classification performance increased throughout the season until July, when crop type 

differences were greatest. 

On Google Earth Engine, Xiong et al., 2017 developed a method for mapping 

agricultural extent using Sentinel-2 data in conjunction with Landsat-8 data (GEE) of 

2015-2016 for the whole African continent. Random Forest (RF) was utilised as the 

primary supervised classification technique, while Support Vector Machine (SVM) was 

used when Random Forest overfitting concerns occurred due to noise in the input 

training data in specific locations. The map-derived cropland area results were 

compared to UN FAO statistics. The cropland class had an overall accuracy of 94 %, 

with a producer accuracy of 85.9 % and a user accuracy of 68.5%, according to an 

independent accuracy assessment. For the nominal year 2015, Africa's total net cropland 

area (TNCA) was estimated to be 313 M ha. 

Gumma et al., 2011a mapped rice area for six South Asian countries using 

MODIS time series data for the period 2000 to 2001.They have used composite images 

from the MODIS sensor to produce rice maps and rice characteristics (e.g., intensity of 

cropping, cropping calendar) taking data for the years 2000 to 2001 and by adopting 

spectral matching techniques, decision trees, and ideal temporal profile data banks to 

identify and classify rice areas over large spatial extents. A fuzzy classification accuracy 

assessment for the 2000-2001 rice-map product, based on field-plot data, demonstrated 



accuracies from 67% to 100% for individual rice classes, with an overall accuracy of 

80% for all classes.  

Oliphant et al., 2019 used 30-m (1 pixel = 0.09 ha) data from Landsat 8 

Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper (ETM+) in 

their study. They developed a code and run a pixel-based random forest (RF) supervised 

machine learning algorithm on the Google Earth Engine (GEE) cloud computing 

environment to separate croplands from non-croplands. For the South and Northern 

Asian Countries areas which included 7 refined agro-ecological zones (RAEZ), the 

overall accuracy was 88.1% with a producer’s accuracy of 81.6% and user’s accuracy of 

76.7%. For each of the 7 RAEZs overall accuracies varied from 83.2 to 96.4%.  

Gumma et al., 2014 showed how hyper temporal moderate-resolution image 

spectro-radiometer (MODIS) data may be used to map the seasonal rice crop extension 

and area. They carried out research in Bangladesh, where rice can be harvested once, 

twice, or three times per year. When compared to field-plot data, the rice versus non-

rice maps were more than 90% accurate in all three seasons. During the boro season, 

MODIS-derived rice area estimates were 6% higher than sub-national statistics, 7% 

higher during the aus season, and 3% higher during the aman. For the boro, aus, and 

aman seasons, the MODIS-derived sub-national areas explained 9%, 9%, and 96% of 

the variability at the district level, respectively. 

Gumma et al., 2020bxu used Landsat satellite time-series big-data and machine 

learning algorithms (MLAs) on the Google Earth Engine (GEE) cloud computing 

platform to create a high spatial resolution (30 m or greater) baseline farmland extent 

product for South Asia for the year 2015. According to the results, the South Asia 

agricultural product had a producer accuracy of 89.9%, a user accuracy of 95.3 %, and 

an overall accuracy of 88.7%. When compared to national statistics from South Asian 

countries, the national and sub-national (districts) areas estimated from this agricultural 

extent product explained 80-96 % variability. 

Gumma et al., 2016 used MODIS 250 m time-series data to map rainfed and 

irrigated rice-fallow farmland areas across South Asia, identifying where the 

agricultural system may be strengthened by the addition of a short-season crop during 

the fallow period. The accuracy of the maps was assessed using independent ground 

survey data and compared to accessible sub-national statistics. The accuracy of the 

agricultural fallow groups was between 75 and 82 % for both producers and users. For 



rice classes, the total accuracy and kappa coefficient were estimated to be 82 % and 

0.79, respectively. According to the study, South Asia has roughly 22.3 million hectares 

of ideal rice-fallow land, with 88.3 % in India, 0.5 % in Pakistan, 1.1 % in Sri Lanka, 

8.7% in Bangladesh, 1.4 % in Nepal, and 0.02 % in Bhutan. 

Gumma et al., 2011b mapped irrigated agricultural areas as well as other land 

use/land cover (LULC) classes in Ghana using Landsat Enhanced Thematic Mapper 

(ETM+) data and time-series Moderate Resolution Imaging Spectroradiometer 

(MODIS) data. The irrigated classes' fuzzy classification accuracy varied between 67 

and 93 %. A remote sensing-derived irrigated area (32,421 ha) was 20–57% larger than 

irrigated areas reported by Ghana's Irrigation Development Authority (GIDA). 

2.3 Derivation of Remote Sensing-based products  

Bhargav 2021 have derived Remote Sensing products like VV, VH, VV/VH using 

Sentinel-1 and NDVI using Sentinel-2 for differentiation of rice ecosystems in 

Jogulamba Gadwal district, Telangana. Results indicated that linear regression analysis 

performed between the LAI and maximum NDVI showed R2 values of 0.869 for direct 

seeded rice and 0.79 for transplanted rice. 

Fan et al., 2009 determined linear relation between NDVI and LAI and reported 

a correlation of 0.79, with the measured insitu NDVI and LAI values in semi-arid 

grassland in Inner Mongolia, China during the growing season in 2005 and 2006.  

Goswami et al., 2015, investigated relationships between NDVI, Biomass, and 

LAI for six key plant species near Barrow, Alaska, and reported that NDVI was 

correlated with LAI with an R2 of 0.70. 

Clevers et al., 2017 used Sentinel-2 satellite images to test the hypothesis that 

LAI, leaf chlorophyll content (LCC), and canopy chlorophyll content (CCC) of a potato 

crop may be calculated using vegetation indices. For that, they calculated the WDVI 

using Sentinel-2 TOC spectral measurements to predict the LAI. Sentinel-2 results 

showed that the weighted difference vegetation index (WDVI) with bands at 10 m 

spatial resolution can be utilised to estimate the LAI (R2 of 0.809; RMSEP of 0.36).  

Xavier and Vettorazzi, 2004 investigated the link between Leaf Area Index and 

Spectral Vegetation Indices for different land covers in a subtropical rural watershed (in 

Piracicaba, State of Sao Paulo, Brazil), to use the best relationship to build an LAI map 



for the watershed. Spectral Vegetation Indices produced from Landsat-7 ETMz data 

included the Simple Ratio (SR), NDVI, and Soil Adjusted Vegetation Index (SAVI). 

For all vegetation types, the LAI–SVI connections were comparable, and the 

prospective model provided the best fit. The LAI–NDVI correlation (R2 0.72) was 

found to be statistically similar to the LAI–SR correlation (R 2 0.70). LAI–SAVI 

produced a poor correlation (R2 0.56). 

Rastogi et al., 2000 calculated the Leaf Area Index (LAI) for two wheat-growing 

regions in India (Karnal and Delhi) using data from the Linear Imaging Self Scanner-III 

(LISS-III) onboard the Indian Remote Sensing Satellite-1C (IRS-1C). In addition to red 

and near-infrared (NIR) readings above the vegetation canopy, the model only requires 

a priori crop specific attenuation constants. These constants for wheat were computed 

using published and field ground reflectance measurements. When applied to 36 fields 

using ground estimates of LAI, the model gave an RMSE of 1.28 and 1.07 for the 

Karnal and Delhi sites, respectively. 

Campos-Taberner et al., 2018 compared and validated various LAI satellite 

products from operational services and customised solutions based on novel Earth 

Observation (EO) data such as Landsat-7/8 and Sentinel-2A. The comparison was made 

to evaluate the overall quality of LAI estimates for rice, which are used as a 

fundamental input in various scale (regional to local) operational crop monitoring 

systems, such as those developed as part of the "An Earth obseRvation Model based 

RicE information Service" (ERMES) project. In all seasons, the results revealed good 

consistency between Landsat-7/8 LAI estimations and ground measurements, with high 

correlations (R2 0.89) and low root mean squared errors (RMSE 0.75). 

Future directions for enhanced evapotranspiration modelling: Assimilation of 

remote sensing data into crop simulation models and SVAT models has been researched 

by Olioso et al., 2005. They calculated LAI from NDVI using microwave data and then 

incorporated the information into ISBA and ISBA-Ags (Interactions between Soil, 

Biosphere, and Atmosphere) (Ags holds for net assimilation and stomatal conductance). 

ISBA-Ags simulations were also corrected using the estimated LAI from NDVI. The 

simulated LAI was compared to the NDVI-estimated LAI over the course of the 

soybean crop cycle. Results showed that the use of remote sensing data to correct the 

time variation of LAI had only a minor effect on LAI values as well as ET and water 



reserve simulations. In the case of the entire rectification, ET outcomes improved 

marginally. 

Ines et al., 2013 developed a data assimilation-crop modelling framework that 

uses sequential data assimilation to include remotely sensed soil moisture and leaf area 

index (LAI) into a crop model. They employed the MODIS leaf area index (LAI). They 

processed LAI from 2003 to 2009 for testing and assessment of the data assimilation-

crop modelling system. Assimilation of MODIS-LAI resulted in a minor improvement 

in simulated yields compared to the open-loop simulation (R2 = 0.51), including a tiny 

reduction in a systematic error. 

2.4 APSIM-ORYZA for Rice Simulation 

Biswas et al., 2021 studied the effect of transplanting date on (consumptive 

water footprints) CWFs of paddy by using field experimental data and APSIM-ORYZA 

for Kharagpur, West Bengal State of India. In kharif and rabi of 2015–2016 and 2016–

2017, medium duration rice variety (IR–36) was chosen and grown using AWD and 

CON (convential) irrigation techniques while utilising the current transplanting dates 

(i.e. 16 July in kharif and 14 January in rabi). The impact of different transplanting 

dates on paddy yield, ETC, and CWFs predicted, demonstrated that AWD practise 

saved 22-29% more seasonal water than CON practise at a cost of 2-4% lower output. 

The grain production predicted calibration was found to be closely matched with the 

observed for both CON and AWD practises (R2=0.96, RMSE=400 kg ha-1). 

Radanielson et al., 2018 used the APSIM model and Oryza V3 to see the effect 

of salinity on rice growth and grain yield. It has been concluded that both the models 

resulted in good accuracy for simulating biomass, LAI, and grain yield.  Variability of 

simulated yield under stressed and non-stressed conditions showed an RMSE, of 191 kg 

ha−1 and 222 kg ha−1, respectively, for ORYZA v3 and APSIM-Oryza where these 

values were inbound with the experimental results. These findings reveal that model can 

be used for simulating yields under different scenarios. 

Amarasingha et al., 2015 used the APSIM model to simulate crop and water 

productivity under diverse agro-climatic conditions and different water management 

methods (rainfed with supplemental irrigation) in Srilanka. Results reveal that the 

model simulated grain yield with an R2 of 0.97 and RMSE 484 kg ha−1. When the onset 

of rainfall is delayed, crop modeling scenarios using the validated APSIM model 

showed an increased dependence on supplementary irrigation for rice cultivation. 



Alternatively, in years when an early onset was observed, late planting in the season 

reduced the use of rainwater by 95% while increasing the irrigation water requirement 

by 11% compared with planting at rainfall onset. 

Fernanado et al., 2015 validated the APSIM-ORYZA module for two long 

duration rice varieties, Bg403 and Bg379-2 (4months maturity). The results shown a 

strong fit (R2 of 0.88 and 0.77, respectively, and CV of 9.9% and 14.4%, respectively) 

for observed rice yield and and claimed that yield was lower when grown under rainfed 

conditions than under irrigation for both kinds.  

Subhash et al., 2015 examined the APSIM model's capability to simulate the 

impacts of various irrigation regimes on yield, irrigation water requirement, and 

irrigation water productivity (WPi) of rice, wheat, and RW (rice-wheat) system in 

upper-gangetic plains of India. Long-term simulated wheat yields showed a lesser 

dropping trend at an average rate of 48 kg ha-1 yr-1 (R2 = 0.48, p<0.05), and long-term 

simulated rice yields showed a continuously declining trend at an average rate of 120 kg 

ha-1 yr-1 (R2 = 0.94, p<0.05). The RW system with the rice irrigation regime (IR) of 8 

days of alternating wetting and drying (AWD) and five irrigations for wheat with a 

yield penalty of 25.5% showed the greatest WPi of 8.31 kg ha-1 mm-1. 

Kumar et al., 2014 used the APSIM agricultural simulation model to investigate 

the effect of transplanting dates on rice production and water productivity in Faizabad, 

located in the middle Indo Gangetic Plains (IGP). Using soil, crop, and meteorological 

data from the research site, the model was initially parameterized for the study site. The 

calibrated model was then used to simulate yield and water productivity for six possible 

transplanting dates over an 11-year period. Based on the findings of the simulation, 10 

June was determined to be the best day to transplant rice in Faizabad due to the crop's 

greater yield, lower coefficient of variation (CV), and higher water productivity on that 

day compared to alternative delayed transplantation dates. 

Suriadi et al., 2009 used rice-rice-soybean crop sequence data from a field experiment 

conducted at the Assessment Institute for Agricultural Technology, Indonesia in 2007-

2008 to evaluate the efficacy of APSIM-ORYZA with and without nitrogen limitation. 

N fertiliser was administered at three rates to rice: 0 kg N ha-1 (F0), 70 kg N ha-1 (F1), 

and 140 kg N ha-1 (F2), as well as three rates for soybean: 0 kg N ha-1 (S1), 12 kg N ha-1 

(S1), and 24 kg N ha-1 (S2). From the results, it was showed that the model accurately 

predicted the dynamics of crop variables (phenological phases, yield, and biomass), soil 



factors, and water variables (ponded water depth, pH, temperature and daily infiltration 

rate). For both the first (wet) and second (dry) rice seasons, simulated biomass 

resembled the pattern of rice growth when nitrogen was not a limiting factor (F2), with 

minor over-prediction under both F1 and F0 treatments. 

Zhang et al., 2007 used APSIM to know the effect of different nitrogen levels 

and transplanting time on yields. The model predicted yields were compared with the 

observed yields. Results show an RMSE of 242 kg ha-1. It has been concluded that 

model results were acceptable for simulating different varieties in a continuous rice 

cropping system over the long term. 

2.5 Integrating Remote sensing derivatives with Crop simulation model 

Clevers et al., 1996 employed optical and microwave remote sensing data for 

crop growth monitoring and estimated LAI using a basic reflectance model from optical 

data and a simple backscattering model from radar data for sugarbeet crop. To calibrate 

the crop growth model to actual growing circumstances, the remote sensing models 

were inverted to get LAI estimations during the growing season for using it in 

calibrating the crop model to actual growing conditions.   Results showed that 

simultaneous optical and radar observations did not increase estimations of LAI over 

optical data alone.   

Hong et al., 2004 estimated leaf area index (LAI) as a function of image-derived 

vegetation indices, and compared measured and estimated LAI to crop model 

simulation results during the 2001 growing season in two central Missouri experimental 

fields, one with corn (Zea mays L.) and the other with soybeans (Glycine max L.) 

(Glycine max L.). The CERES-Maize and CROPGRO-Soybean models were calibrated 

using measured soil moisture and yield data and then used to replicate LAI throughout 

the growing season. At all corn monitoring sites, the CERES-Maize model over-

predicted LAI. For most soybean monitoring sites, simulated LAI using CROPGRO-

Soybean was similar to observed and image-estimated LAI. The results suggested that 

crop growth model predictions might be improved by incorporating image-estimated 

LAI.  

Bouman (1995) developed two methods for combining remote sensing data with 

crop growth models. In the first, optical remote sensing-derived estimates of light 

interception (ground cover, LAI) are utilised as a forcing function in the models. Crop 

growth models are augmented with remote sensing sub-models in the second method, 

which simulates time-series of optical and radar remote sensing signals. The crop 



growth model is re-calibrated to match simulated with observed remote sensing data 

once these simulated signals are matched to measured signals. The suggested methods 

improved the accuracy of wheat and sugar beet crop growth and yield simulations. 

Fang et al., 2011 integrated MODIS LAI and vegetation index products with the 

CSM–CERES–Maize model for corn yield estimation in Indiana, USA. The remotely 

sensed data was used to build the CSM–CERES–Maize model's parameters. Results 

indicated that the predicted corn yield correlated very well with the US Department of 

Agriculture (USDA) National Agricultural Statistics Service (NASS) data. The best 

results were obtained when both the MODIS vegetation index and the LAI products 

were used, and the relative deviations from the NASS data were less than 3.5%. 

By integrating field, weather, and satellite data with crop simulation models, 

Milesi et al., 2022 calculated yields of bajra and rice at Gram Panchayat scale in 

Firozabad district of Uttar Pradesh and Kendujhar district of Odisha, respectively. In 

both crops, a comparison of modelled yields with CCE yields revealed that the model 

performed well (rice: R2 = 0.80, root-mean-square error (RMSE) = 411 kg ha-1, mean 

absolute error (MAE) = 359 kg ha-1, percent error (PE) = 7, observed mean = 1500 kg 

ha-1; Bajra: r = 0.84, RMSE = 309 kg ha-1, MAE = 262 kg ha-1, PE = -1). 

Muslim et al., 2015 used a GIS-based environment policy integrated climate 

(GEPIC) model to estimate paddy rice yield at the regional level. According to the 

simulated yield, the projected production is 4305.55 kg ha-1. Plains crop cultivars such 

as Jhelum, K-39, Chenab, China 1039, China-1007, and Shalimar rice-1 had an average 

yield of 4783.3 kg ha-1. Meanwhile, yields of 4102.2 kg ha-1 were obtained in high 

altitude locations using cultivars such as Kohsaar, K-78 (Barkat), and K-332. The 

measured and simulated yields matched well, with R2=0.95 and RMSE=132.24 kg ha-1, 

respectively. 

Zhao et al., 2020 tested the potential for indices derived from Sentinel-2 data to 

estimate dryland wheat yields at the field scale and the potential for enhanced 

predictability by incorporating a modelled crop water stress index (SI) with the 

observations taken from 103 study fields over the 2016 and 2017 cropping seasons 

across North-eastern Australia. Vegetation indices derived from Sentinel-2 showed 

moderately high accuracy in yield prediction and explained over 70% of the yield 

variability. The model combined with optimized soil-adjusted vegetation index 

(OSAVI), Chlorophyll (CI) and Stress index (SI) generated a much higher correlation, 

with R2 = 0.91 and RMSE = 0.54 t ha-1. When validating the models on an independent 

set of fields, this model also showed high correlation (R2 = 0.93, RMSE = 0.64 t ha-1). 



Tripathy et al., 2013 attempted to include remotely sensed input data into the 

mechanistic crop simulation model World Food Studies (WOFOST) for in-season 

wheat yield forecasts in India's Punjab state. The leaf area index (LAI) produced from 

remotely sensed data was utilised to forecast spatial yield in the WOFOST simulation 

model. LAI was calculated from AWiFS NDVI data using an empirical model 

developed with the assistance of ground observations (Nigam et al. 2007). Using a 

correction factor, LAI from remotely sensed data at a near-peak vegetative stage was 

put into the model (Chaudhari et al. 2010). Results showed that all growth parameters' 

values decreased after forcing. The LAI was lowered from 5.7 to 2.7 m2 and the above-

ground biomass from 6 to 3 t ha-1. The actual yield per grid was determined using these 

modifications to simulated growth factors. 

Jing-Feng et al., 2002 created a new model (Rice-SRS) that is based on the 

ORYZA1 model and modified to accept remote sensing data from various sources. The 

model is capable of accepting three types of NDVI data: NOAA AVHRR (LAC) - 

NDVI, NOAA AVHRR (GAC) - NDVI, and radiometric measurements - NDVI. The 

integration of NOAA AVHRR (LAC) data and the Rice-SRS simulation model resulted 

in correct estimations for rice yield in the Shaoxing area, with the estimated error 

reduced to 1. 027 %, 0. 794 %, and (-0.787 %) for early, single, and late season, 

respectively. Using NDVI data from NOAA AVHRR (GAC) as input in Rice-SRS can 

result in a good estimate of rice production with an average inaccuracy (- 7.43%). 

Doraiswamy et al., 2005 evaluated the quality of the MODIS 250 m resolution 

data for retrieval of crop biophysical parameters that could be integrated into crop yield 

simulation models. The spatial distribution of LAI was done across the study area 

(McLean County, Illinois, USA) over three stages of crop development of corn and 

soybean to estimate the simulated yields of the model across the study area. Results 

showed by comparing model yield results with NASS/USDA reported county level 

yields showed that the distribution of model yields was within an acceptable range of 

the reported yields computed from statistical ground sampling at the state level. 

Doraiswamy et al., 2004 monitored vegetation changes that are used indirectly 

to assess crop condition and yields at the field level using LANDSAT and MODIS. The 

spatial distribution of LAI was done to estimate yields across the Walnut Creek 

watershed, Ames and lowa. Results showed that the mean of simulated yields for corn 

was lower than reported yields by about 3% and soybean yields were higher by 6.6% 

compared to NASS reported yields. 



Satya Priya and Ryosuke Shibasak, (2001) have simulated spatial crop yield 

using GIS-based crop production model spatial EPIC model developed from EPIC 

(Erosion productivity Impact Calculator) model. Spatial distribution of productivity was 

done across India. Yield simulation of the rainfed maize varied from 0.4 to 3.5 t ha-1. 

The difference between the reported and simulated means was smallest for Rice than the 

wheat and greatest for maize. 

Yongqiang Zhang and Martin Wegehenkel (2006), integrated MODIS data into 

a simple model for the spatially distributed simulation of soil water content and 

evapotranspiration. The good performance of the model was documented by comparing 

the measured and simulated discharged rates and analyzing the correlation between ETa 

rates and LAI in the Ucker catchment in Northeastern Germany.  

 Muslim et al., 2015 estimated paddy rice yield at the regional level using GIS-

based environment policy integrated climate (GEPIC) model. The simulated yield 

showed that estimated production to be 4305.55 kg ha-1. The crop varieties like Jhelum, 

K-39, Chenab, China 1039, China-1007, and Shalimar rice grown in plains recorded 

average yield of 4783.3 kg ha-1 Meanwhile, high altitude areas with varieties like 

Kohsaar, K-78 (Barkat), and K-332 recorded yield of 4102.2 kg ha-1 The observed and 

simulated yield showed a good match with R2=0.95, RMSE=132.24 kg ha-1, 

respectively. 

2.6 Verification of the estimated yield  

Setiyono et al., 2019 methodology of SAR data incorporation into crop yield 

simulation and comprehensive validation of yield forecast and estimates in the Tamil 

Nadu, India. Remote sensing data assimilation into a crop model effectively captures 

the responses of rice crops to environmental conditions over large spatial coverage, 

which otherwise is practically impossible to achieve. A process-based crop simulation 

model is used in the system to ensure that climate information is captured, and this 

provides the capacity to deliver a mid-season yield forecast for national planning and 

policy for rice. In this case, SAR-based yield estimates for the 2014–15 Samba season 

ranged from 3.12 to 3.87 t ha–1, with NRMSE against official yield statistics of 15% and 

RMSE of 552 kg ha-1. 

Srilatha (2020) calculated the acreage and production of soybean crops in 

Telangana's Nizamabad district. The validation results revealed that the yield was 

strongly associated with ground-observed yield data, with a coefficient of determination 

(R2) value of 0.93, and with a high RMSE of 567 kg ha-1.  



Son et al., 2016 developed a methodology to incorporate remotely sensed data 

into a crop simulation model (DSSAT) for estimating rice yield in Taiwan. Using the 

particle swarm optimization (PSO) technique, the data assimilation was processed to 

incorporate biophysical characteristics into the DSSAT model for estimating rice yield. 

 Results of the yield estimation were when compared to the government's yield statistics 

showed the RMSE of 11.7% and the mean absolute error of 9.7 %, respectively. 



Chapter III 

MATERIAL AND METHODS 

This chapter deals with the details of the study area, remote sensing techniques, 

description of the Crop Simulation Model (CSM) and its application in yield estimation. 

The details of materials used and the methodology adopted for the Estimation of Rice 

yield in the Nalgonda district of Telangana state are described below: 

3.1 GENERAL DESCRIPTION OF THE STUDY AREA 

3.1.1 Experimental Site and Location 

Telangana state is located on the Deccan Plateau and is bordered to the north by 

Maharashtra, to the northeast by Chhattisgarh, to the northwest by Karnataka, to the west 

by the Rayalaseema area, and the southeast by the coastal Andhra region. The region is 

drained by two main rivers, the Godavari and Krishna, as well as minor rivers including 

the Bhima, Manjira, and Musi. The climate is primarily hot and dry and falls under a 

semi-arid region. 

The Nalgonda District lies in the southern part of the Telangana region between 

16º25' N & 17º50' N and 78º40' E & 80º05' E. It has the highest number of mandals in the 

state i.e., 31 in total. The borders of the district were covered by Suryapet, Sangareddy, 

Yadadri, and Nagarkurnool districts, and the state boundary of Andhra Pradesh. The 

geographical area of the district is 7,122 sq. km. It is representative of the southern plateau 

and hills under India's agro-climatic zone. Approximately 75% of the population depends 

directly or indirectly on Agriculture in the Nalgonda district. Paddy and cotton are two 

major growing crops with a net irrigated area of 76000 ha. 

3.1.1.1 Selection of villages and farmers: Two major paddy cultivating mandals i.e, 

Kanagal and Kattangoor were selected in Nalgonda district as study areas that explicit the 

conditions of Nalgonda district. They were selected based on the previous season’s rice 

crop map, the soil map with the data taken from NBSSLUP, and the Rainfall map which 

was constructed using the 20 years of rainfall data from USGS Earth Explorer for the 

Nalgonda district. These maps were analysed and two rice-growing mandals were 

selected having low and high rainfall under Alfisols.  The Mandal Agriculture Officers 

of respective mandals, Kangal and Kattangoor helped in the identification of 

Telakantigudem village in Kangal and Mallaram village in Kattangoor (Fig 3.1). From 

each village, 10 paddy cultivating farmers were selected randomly which are at a distance 



of a minimum of 200 m, so that no two fields can collide into a single pixel in the satellite 

image. Thus, total sample size of 20 has been considered for the study.  

 

Fig 3.1 Study area map representing the selected villages in the Nalgonda district 

3.1.2 Climate and Weather conditions 

In Nalgonda, the wet season is oppressive and overcast, the dry season is humid 

and mostly clear, and it is hot, year-round. Over the years, the temperature typically varies 

from 17.2°C to 40°C and is rarely below 14.4°C or above 43.3°C. 

The average annual rainfall of the district is 751 mm, which ranges from 2.0 mm 

in February to 171 mm in July. Fig 3.2 represents the soil map of Nalgonda districts 

generated with 20 years of rainfall data from USGS Earth Explorer 

(https://e4ftl01.cr.usgs.gov/MOLA/MYD13Q1.006/) 

. The rainfall for the 2021 kharif crop period for Kangal and Kattangoor Manda 

are shown in Fig 3.3 respectively where Kanagal mandal showed more amount of rainfall 

than Kattangoor mandal. 

https://e4ftl01.cr.usgs.gov/MOLA/MYD13Q1.006/


Fig 3.2. Rainfall map of Nalgonda district using 20 years data from USGS Earth 

Explorer 

 
Fig 3.3. Rainfall distribution of Kangal and Kattangoor for standard week 
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3.1.3 Soils of Nalgonda  

The soil comprises red soil, black soil, alkaline soil, and alluvium. The red soil 

constitutes 85 % of the area. Black soil is found over the limestone area, in the southeast 

part. Alkaline soil occurs as limited patches in the central part. Alluvial soil occurs along 

Alair, Musi and Kargal rivers. Soil map prepared using the   

Fig 3.4. Soil map of Nalgonda using NBSS&LUP data 

3.2 INSTRUMENTS USED 

3.2.1 Ceptometer LP-80  

The AccuPAR LP-80 Ceptometer (Plate 1) is a portable and lightweight 

instrument with a group of Photosynthetically Active Radiation (PAR) sensors for the 

measurement of the leaf area index (LAI). It allows the user to measure canopy 

intercepted PAR and accurately calculates LAI at any site within a plant canopy. The in-

built PAR sensor in AccuPAR LP-80 measures above and below canopy PAR 

simultaneously to estimate the intercepted PAR. The ceptometer can be operated in clear, 

partly cloudy, or overcast sky conditions to get accurate PAR and LAI data. It can also 

function with temperatures from - 30ºC to 50ºC, and relative humidity up to 100%. The 

LP-80 uses the Eq. (1) to calculate LAI:                                                      



𝐿 =
[(1 −

1
2𝐾) 𝑓𝑏 − 1] 𝑙𝑛𝜏

𝐴(1 − 0.47𝑓𝑏)
 

                                   (3.1) 

Where K = extinction coefficient  

ƒb = beam fraction (ratio between diffuse and beam radiation)  

A = leaf absorptivity  

τ = ratio of transmitted and incident PAR 

 Ceptometer LP-80 was used for recording the LAI and also above and below canopy 

PAR readings for rice crop fields in the 20 fields.  

  

Plate 1. AccuPAR/LAI Ceptometer 

 

3.3 SOFTWARE USED 

3.3.1 Arc map 10.7.1 

ESRI®ArcMap is the application for creating and altering geographic and tabular 

data, in addition to mapmaking and map-based analysis. Shapefiles, coverages, and 

geodatabases can all be edited with ArcMap's single-user interface. ArcMap includes 

advanced, CAD-based editing capabilities that allow rapidly and efficiently creating 

features while retaining the spatial integrity of the GIS information. 



In this study, Arc Map was used for mapping the spatial distribution of LAI and yields by 

integrating remote sensing and the APSIM model with the spatial analyst tool and also 

used for calculating the zonal statistics. 

3.3.2 ERDAS IMAGINE 16.5.1 

ERDAS IMAGINE is a raster-based programme that is simple to use and is 

intended primarily to extract information from images. In this study, ERDAS IMAGINE 

was used for the accuracy assessment of the rice classification. 

3.4 Google Earth Engine Platform 

GEE is a computing platform that allows users to run geospatial analysis on 

Google's infrastructure. The GEE computing engine supports both JavaScript and Python 

application programming interfaces (APIs), allowing developers to quickly create 

algorithms that run in parallel on Google's data processing systems. Data from Landsat 4, 

5, 7, and 8 processed by the US Geological Survey (USGS), many MODIS products, 

including global composites, recent imagery from Sentinel-1, 2, and three satellites, and 

much more may be found in the GEE.  

The Code Editor (code.earthengine.google.com) is a web-based IDE (Integrated 

Development Environment) for writing and running scripts. The components of the Code 

Editor are illustrated in Plate 2. 

In this study, GEE was used for mapping rice growing areas in the Nalgonda district by 

using a supervised classification algorithm and for deriving remote sensing products for 

integrating with the APSIM-Oryza model output. 

https://code.earthengine.google.com/


 

Plate 2. Components of the Google Earth Engine Code 

3.5 Satellite Data Used 

The satellite images used in this study were derived in GEE using coding. The sensor 

specifications of Sentinel-1 and Sentinel-2 are shown in Table 3.2 

Table 3.1. Specifications of Sentinel-1 and Sentinel-2 

 Sentinel-1 Sentinel-2 

Spectral range 3.75-7.5 cm 0.47-0.6 µm 

Resolution 5×20 m 10, 20, 60 m 

Orbital altitude 693 km 786 km 

Sensor complement C-SAR MSI 

Wavelength 1cm to 1mm 1 micron 

 

3.5.1 Sentinel-1  

 Sentinel-1 data have the advantages of being all-weather capable, having a high 

spatial resolution (up to 10 m), and being publicly available, which makes them valuable 

for mapping non-rice crops as well when there is a lack of optical data identification (Jain 

et al., 2019; Milesi and Kukunuri, 2022). The default acquisition of Sentinel-1(SAR) data 

was done in Interferometric Wide swath (IW) mode in dual-polarization. VV and VH 

bands (vertical transmit/vertical receive—VV and vertical transmit/horizontal receive—

VH) of the Sentinel-1 (GRD) data in Interferometric Wide Swath (IW) mode were used 

for this study.  

 



3.5.2 Sentinel-2 Data  

 Sentinel-2 (S2) is a mission for wide-area, high-resolution, multispectral imagery, 

with a global 5-day revisit frequency. It offers information useful for determining the 

condition and change of the plant, soil, and water cover. A time series of monthly 

maximum NDVI for the months of June to October 2021, cloud-screened, was created 

using data from Sentinel-2 bands 4 (red wavelength) and 8 (NIR wavelength), both at 10-

m spatial resolution. The cropland mask created from the supplementary data was 

improved in the study district using the monthly Sentinel-2 NDVI data. 

NDVI: Normalized Difference Vegetation Index (NDVI) is a vegetation index 

computed using red and Near Infrared (NIR) bands, which indicates the greenness of a 

pixel. It varies between -1 and +1, with values closer to +1 indicating high greenness. For 

practical applications, NDVI values greater than 0.3 indicate the presence of vegetation. 

The NDVI product is used to separate crops from non-crop. Normalized Difference 

Vegetation Index (NDVI) was calculated using Eq. (3.2).  

                             NDVI = (NIR – Red) / (NIR + Red)                                       (3.2) 

 

3.6 Simulation Model Used: APSIM 

The Agricultural Production Systems Simulator (APSIM) dynamic simulation 

model is capable of predicting the growth and productivity of plant species based on plant 

genetics, environmental conditions, and management practices (Masjedi et al., 2018). 

          The APSIM framework allows a detailed specification of farmer management 

practices, decision-trees, and the simulation of associated soil water and salinity 

dynamics, together with the interactions between rice and other crops, allowing for a 

much broader assessment of cropping system performance which can be provided by 

ORYZA V3 (Radanielson et al., 2018). 

APSIM -Oryza is a model for rice growth simulation that has been increasingly 

employed in related studies due to the widely established APSIM platform (Amarasingha 

et al., 2015; Gaydon et al., 2017; Holzworth et al., 2014; Radanielson et al., 2018). 

APSIM-crop Oryza's growth process was inspired by the Oryza2000 model 

(https://sites.google.com/a/irri.org/oryza2000/, Bouman et al., 2001; Bouman and Van 

Laar, 2006; Li et al., 2017, Keating et al., 2003). The model's primary goals are to 

accurately replicate rice growth and development while also addressing major 

management issues such as fertilization, transplanting times, and field management 

procedures. It enables rice physiology, including photosynthesis, phenological 



development, and yield, to be modeled in ORYZA2000 while utilizing the existing 

APSIM suite of modules for water, nitrogen, and other soil processes and management 

challenges. This system feature enables the examination of a continuous cropping system, 

carry-over effects, and field management options (Zhang et al., 2007). 

3.6.1 Input Data for the Simulation Model 

Basic biophysical data- These data are required to parameterize the model and allow it 

to run. These include basic weather, soil, and crop parameters, as shown in Table 3.2. 

Table 3.2. Input data and their variables for simulation model (APSIM-ORYZA) 

Input data  Variables 

Site data Longitude (East or West), Latitude (North or South) and 

Altitude (m).  

Weather data Solar radiation (MJm-2) daily maximum and minimum 

temperature (°C), annual average ambient temperature 

(tav, °C), and annual amplitude in mean monthly 

temperature (amp, °C). 

Soil data Soil pH, soil organic carbon, soil texture, coarse 

fragments, cation exchange capacity, bulk density, field 

capacity, wilting point, texture, and hydraulic 

conductivity 

Crop data Variety, genotype coefficient 

Management data Fertilizer application rate (e.g., N, P, K), irrigation date 

and amount, cropping calendar (e.g., sowing and 

harvesting times), plant population, transplanting date, 

and row spacing 

3.7 METHODOLOGY 

The methodology used to evaluate the performance of APSIM in estimating the 

Rice yield in the Nalgonda district is divided into five sections: 

1. Mapping of rice-growing areas in the study area by applying crop classification 

algorithm on satellite imagery. 

2. Derivation of remote sensing-based products to integrate with crop model output. 



3. Execution of crop simulation model to calculate yields with various remote sensing 

derived inputs. 

4. Integration of remote sensing data with crop model data to estimate optimised rice 

yields. 

5. Verification of yield estimates obtained from crop model against government yield 

statistics. 

 

3.7.1 Ground truth data collection 

 Field visits were planned and conducted according to the time of satellite pass 

and weather conditions. The ground truth points were collected for mapping rice areas 

using supervised classification in GEE. A total of 107 ground reference points were 

collected. GPS points were taken in each field and LAI values were recorded by using 

Ceptometer. Fig 3.5 depicts the ground reference points collected for mapping rice 

cultivated areas. 

3.7.1.1 Farmers Interview: Farmers' interview (Plate 3) was conducted during the visits 

to the farmers’ fields. A questionnaire (Appendix A) was followed for every farmer with 

the details like the name of the farmer, contact number, area of rice cultivated, the 

previous crop cultivated, variety of rice, soil type, soil nutrient status, date of 

transplantation, irrigation and its source, amount and type of fertilizer applied, pest and 

disease, date of harvesting and yield obtained. The field IDs were given as T1 to T10 for 

the village Telakantigudem and M1 to M10 for the Mallaram village represented in      

Plate 4.  

As represented in Table 3.3, at Telakantigudem village out of 10 farmers 8 farmers 

cultivated MTU-1010 variety and the other two farmers have sown KNM-118 and BPT-

5204. The transplanting dates ranged from 24 July to 3 August 2021. The rate of nitrogen 

applied ranged from 120 to 160 kg ha-1. The observed yield recorded from the farmers 

varied mostly between 4500 to 6500 kg ha-1. 

In Mallaram village as denoted in Table 3.4, different cultivars were sown like 

MTU-1010, IR-64, JGL-24423, BPT 5204, and RNR-15048. The transplantation was 

done between 20 July and 9 August. The rate of nitrogen applied ranged from 115 to 180 

kg ha-1. Recorded yield data from the farmers varied from 3600 to 6100 kg ha-1. 

 



 

 

 

 Plate 3. Interaction with the farmers for the collection of crop management data 

Fig 3.5. Ground reference points collected 

 

 

 



Table 3.3. Ground truth data collected at Telakantigudem village during the field 

visits 

Field-ID Variety DOT Nitrogen applied 

(kg ha-1) 

Observed yield 

(kg ha-1) 

T1 MTU 1153 27 July 2021 127 6500 

T2 MTU 1010 30 July 2021 160 5500 

T3 MTU 1010 24 July 2021 128 6000 

T4 MTU 1010 3 Aug 2021 160 3600 

T5 MTU 1010 1 Aug 2021 120 5300 

T6 MTU 1010 24 July 2021 122 5800 

T7 KNM 118 30 July 2021 108 4500 

T8 MTU 1010 30 July 2021 108 4600 

T9 MTU 1010 30 July 2021 124 5100 

T10 BPT 5204 24 July 2021 140 6300 

 

 

 

 

 

 

 

 

 

 



Table 3.4. Ground truth data collected at Mallaram village during the field visits 

Field-ID Variety DOT Nitrogen applied 

(kg ha-1) 

Observed yield 

(kg ha-1) 

M1 MTU 1010 25 July 2021 127 4400 

M2 IR 64 27 July 2021 115 6100 

M3 JGL 24423 24 July 2021 180 4600 

M4 BPT 5204 20 July 2021 130 4400 

M5 MTU 1010 24 July 2021 100 4500 

M6 RNR 15048 4 Aug 2021 160 3800 

M7 MTU 1010 3 Aug 2021 160 4100 

M8 MTU 1010 27 July 2021 130 3920 

M9 BPT 5204 9 Aug 2021 122 3600 

M10 BPT 5204 24 July 2021 130 3650 

 



 

Plate 4. Images of the selected fields in the study area 

3.7.1.2 Measuring LAI with Accupar LP-80 Ceptometer  

LAI was estimated using Accupar LP-80 Ceptometer placing it above and below the plant 

canopy at two points in every field. The average of the values is considered the main 

value of the field. The readings were taken when PAR is above 400 nm as the Ceptometer 

cannot calculate LAI under PAR below 400nm. LAI values were recorded at two visits 

on Oct-8th and Oct-26th when the crops were under panicle initiation to maturity stage. 

Plate 6 represents the points of the fields in which ground LAI data was recorded. The 

factory-calibrated external PAR sensor was utilized to calibrate the LP-80 probe before 

each measurement session, guaranteeing that the PAR response between the external 

sensor and the probe is the same. To lessen the impact of unintentional leaf movements 

four readings were taken at each position (Pokovai et al., 2019). Locations were chosen 

with the intention that the row direction would not coincide with the direction of the sun 

at that time of day. Plate 5 represents the images of recording field LAI using a 

Ceptometer. 



Plate 5. Field LAI recorded in the selected fields at Telakantigudem and Mallaram 

villages. 

 

Plate 6. Nalgonda LAI Ground Data Collection 

3.7.2 Mapping of Rice growing areas 

The methodology used for the classification of rice growing areas is represented 

in Fig 3.6. GEE was chosen to process and classify the Sentinel-2 and Sentinel-1 data 



because the quality of S-2 data is assured with cloud masks and user-friendly functions 

for image processing and classification. Moreover, the main advantage of GEE is its cloud 

computing capability which reduces the need for the user to have hardware and software 

capabilities. Table 3.5 demonstrate the satellite data and their bands used in the study. 

 

Fig 3.6 Schematic diagram showing the methodology for rice area estimation using 

GEE 

The procedure for mapping of rice areas for kharif, 2021 in the Nalgonda district 

by combining Sentinel-1 and Sentinel-2 data has been adapted as shown in Fig.3.7 (Milesi 

and Kukunuri, 2022). GEE was used for satellite data processing and classification 

(Gumma et al., 2020, Gumma et al., 2022). The collection of Sentinel-1 of GEE provides 

data from a dual-polarization C-band Synthetic Aperture Radar (SAR) instrument. 

Imagery in the Earth Engine 'COPERNICUS/S1_GRD' Sentinel-1 ImageCollection 

consists of Ground Range Detected (GRD) scenes processed to backscatter coefficient 

(σ°) in decibels (dB). VV and VH of Sentinel-1 and NDVI of Sentinel-2 were derived 

and stacked. The stacked composite image was passed through a supervised classification 

by giving the training data with 107 ground reference points which were pointed in 

Google earth, were given and an RF classifier was used. Accuracy assessment was carried 

out using the ground truth data for the RF algorithm.  

 



 

Table 3.5. Satellite data and their bands with their importance used in the study 

Satellite 

imagery 

Bands Spatial 

resolution(m) 

Importance 

SENTINEL-1 VV and VH 5×20 Helps to quantify the variability in 

the temporal dynamics of the crop   

SENTINEL-2 Band4 (Red) 10 helps in classifying the vegetation 

Band8 (NIR) 10 

 

3.7.2.1 Random Forest Classifier: Random Forest, as the name implies, is a classifier 

that uses several decision trees on different subsets of the provided dataset and averages 

them to increase the dataset's predictive accuracy. Instead of depending on a single 

decision tree, the random forest uses forecasts from each tree and predicts the result based 

on the votes of the majority of predictions. Higher accuracy and overfitting are prevented 

by the larger number of trees in the forest. It takes less training time as compared to other 

algorithms. It predicts output with high accuracy, even for a large dataset it runs 

efficiently. It can also maintain accuracy when a large proportion of data is missing. 

3.7.2.2 Accuracy assessment: Accuracy assessment is an essential step in the processing 

of remote sensing data. It determines the user's information value of the resultant data. 

The overall accuracy of the classified image is determined by comparing how each pixel 

is classified to the definite land cover conditions acquired from the ground truth data. 

Producer accuracy is a measure of how well real-world land cover types can be classified. 

The likelihood of a categorized pixel matching the land cover type of its corresponding 

real-world location is measured by the user's accuracy (MacLean and Longalton, 2012). 

The kappa’s coefficient and error matrix have become basic means of evaluation of image 

classification accuracy. In this study, accuracy assessment was performed using ERDAS 

IMAGINE, which uses an error matrix. 

3.7.3 Derivation of RS-Based Products to Integrate with Crop Model Output. 

Sentinel-1 data was used for deriving RS products like VV, VH, VH/VV and 

Sentinel-2 data for deriving Band 8 (NIR), Band 4 (Red) and NDVI. These products were 

derived using javascript code in GEE by applying the filter date according to the visit 

dates made to the field which were planned as per the satellite passing dates. These 

products were compared to the field LAI to examine the correlation. Among these 



products, based on their correlation to the field LAI, NDVI was used for deriving the 

spatial LAI map by integrating with the model output. 

3.7.4 Execution of APSIM Model 

The APSIM user interface is organized into four panels: a main toolbar at the top, 

a simulation tree on the left that lists all the components in the loaded file, a module 

properties pane on the right, and a bar at the bottom that lists available toolboxes. 

Based on daily climate data (solar radiation, maximum and minimum temperatures, 

rainfall), APSIM-Oryza can simulate soil water, C, and N dynamics and their interactions 

within crop/management systems. In response to various environmental factors such as 

solar radiation, temperature, nitrogen fertilizer management, and soil water content, the 

APSIM-Oryza simulates biomass production, rice phenology, nitrogen accumulation, leaf 

area development, and yield (Bouman et al., 2001, Zhang et al., 2004).  

3.7.4.1 Preparation of Weather File or Met File 

 The met file (Plate 7) must contain a minimum of three constants: latitude, tav 

(annual amplitude in mean monthly temperature), and amp (annual average ambient 

temperature). A year and day column, solar radiation (MJm-2), the maximum and 

minimum temperatures (° C), and rainfall were also required in the met file. The headings 

for these columns were used as year and day (or date), radn, maxt, mint, and rain. In this 

study rainfall data for 1 year (2021) from the AWS located in the Kattangoor and Kanagal 

mandals of the Nalgonda district were acquired separately. The minimum and maximum 

daily temperatures, and solar radiation were taken from NASA Power 

(https://power.larc.nasa.gov/data-access-viewer/). The annual average ambient 

temperature was calculated by averaging the maximum and minimum temperatures of the 

day and annual amplitude in mean monthly temperature was obtained by averaging the 

mean daily temperature of each month over the entire data period resulting in twelve mean 

temperatures and then subtracting the minimum of these values from the maximum. tav is 

obtained by averaging the twelve mean monthly temperatures. (https://www.apsim.info). 

The file was initially prepared in EXCEL, where it was saved as a Formatted Text (Space 

delimited) (*.prn) file with the .met file extension. 

3.7.4.2 Simulation of transplanted rice under ponded conditions 

a) Pond Depth  

To simulate the ponded conditions Pond depth component was applied to the 

manager folder (from “Rice Management Toolbox” -> Rice-> “Manager (Pond depth)”. 

In that component, the start date for ponding was given as the transplanted date and the 

end date as ten days before the harvesting date for all the 20 farmers’ field conditions. 

https://power.larc.nasa.gov/data-access-viewer/
https://www.apsim.info/


b) Soil Water and SOIL N module 

The soil water module necessitates soil bulk density, saturated water content, soil 

water at field capacity and wilting point in the soil layers that make up the profile, crop-

specific parameters that determine root extension. SOILN includes pH, organic carbon, 

electric conductivity EC, CEC, and exchangeable sodium percentage. These were edited 

as per the data collected from ISRIC 2.0 with 250 m as shown in Table 3.6. The soil 

component window is represented in Plate 9. 

c) Cultivar file generation 

For adding new cultivars, the “ini” component was used from the Standard 

Toolbox under the Structural folder onto the crop module. A new cultivar was created by 

copying and pasting the cultivar in the document next to the current cultivar. The 

cultivar’s name was changed to recorded cultivars sown from the farmers and the genetic 

coefficients were given as per Swain et al., 2007 considering the long and medium 

duration varieties of rice grown and maintaining document's XML structure. 

d) Rice Transplant Aman 

Rice transplant Aman (from “Rice Management Toolbox” -> Rice-> “Manager 

(Rice-Transplant Aman)” was the component used in APSIM-ORYZA for simulating the 

crop sown during June to July. This component requires the information such as start and 

end of sowing dates, duration of seedbed, number of plants on hills, fertiliser type and 

amount of fertiliser at transplanting as shown in Plate 8. 

e) Fertiliser Application 

Fertilise on growth stage component was added to the Manager Folder (from 

“Rice Management Toolbox” -> Rice-> “Manager (Fertilise on growth stage)”. Split 

application of nitrogen was adopted based on the data recorded from the respective 

farmers at three stages of rice, at the time of transplanting, end of juvenile (DVS=0.4), 

and at the panicle initiation stage (DVS=0.65). 

f) Generating Output file  

In the output component, output variables that were needed for the study such as 

biomass, LAI and yield were added and the frequency of output was selected as harvesting 

time and also as daily. The simulation was saved and executed the model by clicking on 

run option at the top of the interface. Plate 10 shows the sample of output file generated 

in APSIM. 

 



Table 3.6. Input variables and parameters for major physiological processes simulated 

in APSIM-ORYZA 

Simulation Input variables and 

parameters 

Source Module 

Phenology Meteorological data: 

daily max. and min 

Temp, rainfall, solar 

radiation 

Automatic Weather 

Station and NASA 

Power 

‘Oryza’ module in 

APSIM 

Soil water 

balance 

and 

soil nitrogen 

supply 

Water availability in 

soil profiles 

Default values in 

APSIM 

 

‘SoilWat2’ module 

in APSIM 

 

Soil N supply is 

determined from the 

ground truth data 

from the farmers 

Farmers ‘Oryza’ module in 

APSIM 

Irrigation, 

fertilizer 

application, and 

other field 

management 

 

Irrigation (depth of 

ponding water), 

application levels of 

nitrogen fertilizer, and 

transplanting dates 

Farmers Oryza module in 

APSIM 

Physical and 

chemical 

properties of soil 

Bulk density, pH, soil 

organic carbon, 

Electric conductivity, 

cation exchange 

capacity 

ISRIC 2.0 

(https://www.isric.org) 

Apsoil module in 

APSIM 

 



 

Plate 7: A sample of the weather file in the APSIM model 

 

Plate 8: Window showing the details of transplanted rice component in APSIM 

model 



 

Plate 9: Window showing the details of soil component file in APSIM 

 

 

Plate 10: A sample of the output file in the APSIM model 

3.7.5 Model evaluation using the statistical measures: 

The model's performance was evaluated using both a graphical comparison of results and 

statistical analyses. The statistical measures included root mean square error (RMSE), 

root mean absolute error (MAE), standard deviation (SD), and coefficient of variation 

(CV). (Bouman and van Laar, 2006; Zhang et al., 2007).  RMSE is a good measure of 



how accurately the model predicts the response. It's the most important criterion for fit as 

the main purpose of the model is prediction. The RMSE and MAE were calculated using 

Eq. (3.3) and (3.4). 

RMSE = {Σ(Ys – Yo)
2 / n}0.5                                                  (3.3) 

MAE = Σ(Ys-Yo)/n                                                                 (3.4) 

In the above cases, Ys is the simulated yields, Yo is the observed yields and n is the 

sample size. 

 

 
Fig 3.7 Schematic diagram for calculating the spatial rice yield estimation using RS 

data integrating with the simulation model  

3.7.6 Integration of remote sensing data with crop model data to estimate optimized 

rice yields.  

The rice mask from the crop map which was generated using the supervised 

classification was used to mask out the other vegetation and uncertain areas. The noise 

obtained in the classified rice mask was reduced by giving the NDVI threshold of above 

0.4 value and it was used for further process of the spatial distribution of yield. Fig 3.7 

represents the methodology used for integrating Remote Sensing products into the model 

for spatial yield distribution for the whole district. 

 



3.7.6.1 Comparision of field LAI to model LAI: To determine the correctness of the 

model in simulating the LAI, the field LAI and model LAI were compared. After the 

correlation and the linear relation were known further proceeding to integrate the model 

LAI with the Remote Sensing derived NDVI was integrated.   

3.7.6.2 Comparision of NDVI to model simulated LAI and biomass: Model outputs 

like LAI and biomass were considered to integrate with the Remote Sensing products. 

For that, model LAI and model biomass were compared with the Remote Sensing derived 

NDVI and based on the correlation, LAI was further considered. 

3.7.6.3 Generation of spatial LAI map: Based on the linear relationship between the 

model LAI and the NDVI obtained by correlation, the linear equation was used on the 

NDVI image to generate a spatial LAI map for the Nalgonda district.  

3.7.6.4 Generation of Spatial rice yield map: For generating the spatial rice yield map 

for the Nalgonda district, model LAI and yield were compared. The correlation and the 

linear relation were obtained and the linear equation was applied to the spatial LAI map. 

3.7.7 Validation of yield estimates obtained from crop model against government 

yield statistics. 

The yield obtained from the spatial distribution over the Nalgonda district was verified 

with the government yield from Telangana statistical abstract 2021 

(https://www.telangana.gov.in/) 



 Chapter IV 

RESULTS AND DISCUSSION 

This chapter presents the experimental results from the current study, "Rice yield 

estimation using Remote Sensing and crop simulation model in Nalgonda district, 

Telangana" which was conducted during kharif 2021. The findings of this research were 

given in the form of tables, graphs, and images. This chapter attempts to assess and 

explain the significant observations and conclusions of the current investigation under the 

following sub-headings. 

4.1 LAI Estimation at the Field Using Ceptometer 

4.1.1 Ceptometer readings at Telakantigudem village: The LAI readings of the crop 

cultivars obtained in the farmer fields of Telakantigudem for DAT are represented in 

Table 4.1. Only one farmer out of ten was seen to sow long-duration varieties like BPT-

5204; instead, most medium-duration varieties like MTU-1010 were sown. The crops 

were at their maximum stages of tillering, heading, flowering, and maturity during the 

visits made to the fields. The medium duration variety was observed to have LAI 

ceptometer readings ranging from 4.75 to 5.21 during the flowering stage at 60 to 70 

DAT, 4.43 to 4.52 during the grain formation stage at 71 to 80 DAT, 2.9 and 3.86 during 

the maturity stage at 81-90 DAT, and 2.5 to 2.7 above 90 DAT at harvesting. The long 

duration, BPT-5204, recorded 4.52 at the heading stage, i.e., 10-80 DAT, and 3.74 at the 

maturity stage, i.e., above 90 DAT. The LAI was observed to decrease from the 

reproductive stage as the leaf area decreased due to leaf drying. 

4.1.2 Ceptometer readings at Mallaram village: The LAI readings of the crop cultivars 

acquired in the Telakantigudem farmer fields for DAT are shown in Table 4.2. Medium 

duration cultivars such as MTU-1010, RNR-15048, and IR-64, as well as long duration 

varieties such as BPT-5204 and JGL-24423, were mostly sown. The crops were at their 

peak stages of tillering, heading, flowering, and maturity when the fields were visited. 

The medium duration variety displayed LAI ceptometer readings between 3.64 and 4.1 

during the flowering stage at 60 to 70 DAT, between 3.4 and 4.91 during the grain 

formation stage at 71 to 80 DAT, between 2.55 and 4.38 at the maturity stage, or at 81-

90 DAT, and between 2.61 and 3.45 at the harvesting stage above 90 DAT. Long 

durations like BPT-5204 and JGL-24423 recorded 4.1 to 4.9 in the heading stage, or at 

70 to 80 DAT, and 2.75 to 3.2 at the maturity stage, or above 90 DAT. 



Table 4.1. Recorded LAI values at Telakantigudem village during the visits using 

Ceptometer 

Field-ID Variety Julian day-281 

 (Oct 8th) 

 

Julian day-299 

(Oct 26th)  

DAT LAI-1 DAT LAI-2 

T1 MTU 1153 73 4.43 91 3.38 

T2 MTU 1010 70 5.09 88 3.47 

T3 MTU 1010 76 4.47 94 2.50 

T4 MTU 1010 66 4.91 84 3.64 

T5 MTU 1010 68 4.75 86 3.65 

T6 MTU 1010 76 4.48 94 2.70 

T7 KNM 118 70 4.81 88 3.02 

T8 MTU 1010 70 5.01 88 2.90 

T9 MTU 1010 70 5.21 88 3.86 

T10 BPT 5204 76 4.52 94 3.74 

 

  It is difficult to determine if the instrument overestimates or underestimates the 

reference (direct) LAI measurement method based on the scant research that assessed 

ceptometer performance in crops. In contrast to other factors, Hyer and Goetz (2004) 

found that ceptometer-based LAI readings are more sensitive to incident PAR than any 

other factor, with a 10% shift in PAR leading to a 4–20 fold rise in LAI values. 

 

 

 

 

 

 



Table 4.2. Recorded LAI values at Mallaram village during the visits using 

Ceptometer 

Field-ID Variety Julian day-281 

(Oct 8th) 

Julian day-299 

(Oct 26th) 

DAT LAI-1 DAT LAI-2 

M1 MTU 1010 75 3.40 93 2.61 

M2 IR 64 74 3.54 92 3.04 

M3 JGL 24423 76 4.3 94 2.95 

M4 BPT 5204 80 4.1 98 3.2 

M5 MTU 1010 76 4.5 94 3.23 

M6 RNR 15048 65 4.1 83 4.38 

M7 MTU 1010 66 3.64 84 2.55 

M8 MTU 1010 74 4.8 92 3.45 

M9 BPT 5204 60 3.92 78 4.35 

M10 BPT 5204 76 4.91 94 2.75 

 

4.2 Mapping of Rice Growing Areas 

The mapping of rice growing areas was done in GEE using RF algorithm of 

supervised classification (Fig 4.1). Similarly Panjala et al., 2022, Bazzi et al., 2019, Son 

et al., 2018 and Xiong et al., 2017 used RF classification algorithm for mapping crop 

extent. The rice-growing areas of the Nalgonda district were depicted in the classified 

map was 1.56 L ha, which was comparable to the area indicated by the government 

statistics of 1.8 L ha for kharif  2021 (https://agri.telangana.gov.in/) with the deviation of 

-0.16%. 

The bright green colour showed the presence of rice which is mainly observed in 

the command areas with the Nagarjuna Sagar canal and in the areas where irrigation 

https://agri.telangana.gov.in/


source is available mainly by the Krishna river in the Nalgonda district. The dark green 

colour in the map represented the area a with other crops sown which included majorly 

cotton and other crops such as groundnut, pulses, etc. The waterbody was represented by 

the dark blue colour and the built up was represented by the red colour and the grey colour 

displays the regions with the other LULC classes such as scrubland, forest areas, 

wasteland etc. 

      Fig 4.1. Mapping of the rice areas in Nalgonda district during kharif 2021 

Table 4.3. Area of the respected classes from the classified map 

Class Area (L ha) 

Rice 1.56 

Other Crop 1.55 

Waterbody 0.37 

Built up 0.13 

Other LULC 3.50 

Total 7.11 

According to the areas of the classes shown in Table 4.3, other land use and land cover 

occupied the largest amount of space (1.56 L ha), followed by rice with 3.5 Lha. About 



1.55 L ha of the district's land was used for crops other than rice, while 0.37 and 0.13 L 

ha of water bodies and built up, respectively. 

4.2.1 Accuracy assessment: The accuracy assessment performed for the classified image 

showed that the confusion matrix of the RF classified image achieved good accuracy in 

both user and producer accuracy, with a kappa coefficient of 0.894 and an overall 

accuracy of around 92 % (Table 4.4) whereas Hegarty-Craver et al., 2020 achieved an 

overall accuracy of 83% by using the similar approach by using a combination of 

Sentinel-1 and Sentinel-2 data and RF classifier. Due to almost identical signatures in 

some regions, some other Lssss which included shrubs is falsely categorised as a rice 

crop.The waterbody has shown 100% accuracy in both users and producers accuracy as 

they have contrast signatures when compared to the other classes. 

Built up showed 100% users accuracy and 88% producers accuracy as identical signature 

with other LULC class. Other LULC class has shown 77% and 95% of users accuracy 

and producers accuracy respectively. 

Table 4.4. Confusion matrix showing classification accuracy in Nalgonda district 

 

Other prior research has shown that utilising an RF algorithm on Sentinel -1 and Sentinel 

-2  offered technological assistance for mapping rice in regions with a lot of clouds and 

rainy weather (Cai et al., 2019 ). Bazzi et al., 2019 achieved an overall accuracy of 96.6% 

for mapping rice fields across the Camargue region of southern France using the Sentinel-

1time-series and for mapping the spatial distribution of paddy rice fields throughout 

Classified 

data 

Rice Other 

crop 

Waterbody Builtup Other 

LULC 

Totals Users 

Accuracy 

(%) 

Rice 46 1 0 0 0 47 97.8 

Other crop 0 12 0 0 1 13 92.3 

Waterbody 0 0 11 0 0 11 100 

Builtup 0 0 0 8 0 8 100 

Other 

LULC 

5 0 0 1 21 27 77.7 

Totals 51 13 11 9 22 106  

Producers 

accuracy  

(%) 

90.2 92.3 100 88.8 95.4   

Overall accuracy (OA) 92.5% 

Kappa coefficient 0.894 



sections of the Sanjiang plain in Northeast China using Sentinel-1A and Landsat-derived 

NDVI data and an RF classifier, Onojeghuo et al., 2018 achieved an overall accuracy of 

95.2% and a paddy accuracy of 96.7%. 

4.3 Derivation of RS Products 

4.3.1 Sentinel-1 derived indices: RS products like VV, VH, VH/VV, band4, band 8, and 

NDVI were used to compare the field LAI values that were measured at farmer fields 

using a ceptometer for the visiting day, further integrating it with the model output also. 

Using Sentinel-1, VV, VH, and VH/VV backscattering values were derived with the GEE 

code for the same dates on which the ground LAI was collected (Oct-8 and Oct-26) based 

on the date of satellite passing and weather conditions. In the comparison of VV with the 

ground LAI, the correlation observed was 0.29 and for VH and VH/VV, the correlations 

observed were 0.30 and 0.20 respectively as shown in Fig 4.2. The correlation of Sentinel-

1 generated products was found to be less than 30, which indicates that they are not well 

aligned with the ground LAI. 

4.3.2 Sentinel-2 derived indices: Sentinel-2 products like band4 (red), band8 (NIR) and 

NDVI reflected values were derived in GEE by applying the filter dates according to the 

visit dates when ceptometer values were recorded. The comparision was made between 

RS products and field LAI values to determine the linear relationship between them, and 

the correlations obtained for band4, band8 and NDVI were R2 of 0.44, 0.41, 0.78, 

respectively as enhanced in Fig 4.3. As the NDVI showed the best fit with LAI having a 

correlation of above 75, it was used for integrating with the model output to estimate 

spatial yield as it is also the most commonly used RS indices for analyzing crop growth 

and estimating crop yield. Fan et al., 2009 determined linear relation between NDVI and 

LAI and reported a correlation of 0.79, with the measured in-situ NDVI and LAI values 

in semi-arid grassland in Inner Mongolia, China during the growing season in 2005 and 

2006. Goswami et al., 2015, reported that NDVI was correlated with LAI  showing an R2 

of 0.70 for six key plant species near Barrow, Alaska.  



 

  

 

Fig 4.2. Comparison of  a) VV, b) VH, c) VH/VV derived using Sentinel-1 to the field LAI collected for the visit day (Oct-8) 
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Fig 4.3. Comparison of  Sentinel-2 products : a) NDVI, b) NIR and c) Red to the field LAI collected for the visit day (Oct-8) 
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Bhargav, 2021 reported the correlation between NDVI, LAI and yield for direct seeded 

rice and transplanted rice with R2 of 0.78 in Jogulamba Gadwal district, Telangana. Xiao 

et al., 2002, observed a linear correlation (R2=0.78) in Jiangning County, Jiangsu 

Province of China during the rice growing season (July to October) of 1999. 

4.4 Crop Simulation by APSIM-ORYZA Model 

4.4.1 Simulation of Grain yield 

4.4.1.1 Yield simulation of Telakantigudem village fields: The APSIM-ORYZA was 

executed to estimate yields using two different weather files for the two villages, a 

different soil component file for each village, and 10 different treatments for each village 

as the transplanting dates and nitrogen amounts varied for all the chosen farmers’ fields. 

The simulated yields ranged from 4400 to 6320 kg ha-1, in Telakantigudem village, while 

the observed yields produced in the farmers' fields ranged from 3600 to 6500 kg ha-1. The 

observed and simulated yields at Telakantigudem village observed were good yields. In 

Fig 4.4, the observed yields are visually compared to the model simulated yields of 

Telakantigudem village. 

4.5.1.2 Yield simulation of Mallaram village fields: The simulated yields ranged from 

3600 to 6100 kg ha-1, in Mallaram village, while the observed yields produced in the 

farmers' fields ranged from 4500 to 5550 kg ha-1. In Fig 4.5, the observed yields are 

visually compared to the model simulated yields of Mallaram village. A large difference 

was observed in the simulated yields to the observed yields in the Mallaram village when 

compared to the Telankantiguden village because the rainfall was low in the village, but 

the model considered little chance of water stress occurring in the crop as the field was 

fully irrigated with a maximum ponding depth of 100 mm in the model. 

4.4.2 Deviation of simulated yields from the observed yields: 

4.4.2.1 Deviation of simulated yields of Telakantigudem fields: The highest observed 

yield was in the T5 field and the lowest observed yield was in T4 field with a variation 

of 3000 kg ha-1. The highest simulated yield with 6392 kg ha-1 was observed in the T5 

field and the lowest yield with 4496 kg ha-1 in the T4 field with a variation of 1900 kg 

ha-1 of yield among the ten fields. According to Table 4.6, the difference ranged 

between 19.9 kg ha-1 and 1300 kg ha-1, where the mean of the observed and simulated 

yields noticed was 5320 kg ha-1 and 5904 kg ha-1 and the SD and CV for the observed 

and simulated yields depicted were 899, 648 and 17, 11 respectively. 



4.4.2.2 Deviation of simulated yields of Mallaram fields: The highest observed yield 

was in the M2 field and the lowest observed yield was in the M10 field with a variation 

of 2400 kg ha-1. The highest simulated yield with 5554 kg ha-1 was observed in the M2 

field and the lowest yield with 4513 kg ha-1 in the M9 field with a variation of 1040 kg 

ha-1 of yield among the ten fields. According to Table 4.5, the difference ranged between 

-545 kg ha-1 and 1239 kg ha-1, where the mean of the observed and simulated yields 

noticed was 3863 kg ha-1 and 4498 kg ha-1 and the SD and CV for the observed and 

simulated yields depicted were 737, 339 and 19, 7 respectively. 

In certain fields, the model simulated higher yields than real yields, whereas, in 

others, it simulated lower yields. The greater yields simulated were because the model 

doesn't account for abiotic stress like nutrient deficiencies or biotic stress like pest and 

disease attacks. The reduced yields could be due to the model's failure to account for the 

application of additional micronutrients and other major nutrients like phosphorus and 

potassium, and the spatial variability of ISRIC data (250m) on soil nutrient status. It was 

found that the model responded more favourably to the early transplantation and to the 

recommended dose of nitrogen (120 kg ha-1). The major drawback of simulation models 

such as APSIM is that they require a huge number of input parameters and some of the 

required inputs are not easy to measure, such as soil initial nutrients. 

 

 

 

   Fig 4.4. Simulated and observed yields of Telakantigudem village 
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Table 4.5. Comparison of observed and simulated rice yields of Telakantigudem 

village 

Field ID Observed yields 

(kg ha-1 ) 

Simulated Yields 

(kg ha-1 ) 

Deviation 

(kg ha-1 ) 

T1 6500 6240 -259 

T2 5500 6085 585 

T3 6000 6285 285 

T4 3600 4496 896 

T5 5300 6600 1300 

T6 5800 6392 592 

T7 4500 5597 1097 

T8 4600 5494 894 

T9 5100 5442 342 

T10 6300 6319 19 

Mean 5320 5904 584 

SD 899 648  

CV 17 11  

 

 

 

Fig 4.5. Simulated and observed yields of Mallaram village 

 

 

 

 

 

 

3000

3500

4000

4500

5000

5500

6000

6500

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Y
ie

ld
 (

k
g

 h
a

-1
)

Field ID

Observed yields Simulated yields



Table 4.6. Comparison of observed and simulated rice yields of Mallaram village 

 

4.4.3 Evaluation of model: The linear regression's coefficient of determination (R2) 

value was 0.795, resulting in smaller differences between the simulated and observed 

yields, as shown in Fig 4.6. The RMSE of the simulated yields was 785 kg ha-1, which is 

lower than the standard deviation, indicating a better simulation of the model. Simulated 

yields had an MAE value of 708 kg ha-1. All of these indications indicate that the model 

performed well while modelling the medium duration variety production in a transplanted 

rice ecosystem during the kharif of 2021. The RMSE of the simulated yields was 804 kg 

ha-1 and an MAE value of 728 kg ha-1. All of these indications suggest that the model 

performed well while modelling the medium duration variety production in a transplanted 

rice ecosystem during the kharif of 2021. 

Field ID Observed yields 

(kg ha-1 ) 

Simulated Yields 

(kg ha-1 ) 

Deviation 

(kg ha-1 ) 

M1 4400 5195 795 

M2 6100 5554 -545 

M3 4600 5150 550 

M4 4400 5133 733 

M5 4500 5150 650 

M6 3800 4594 794 

M7 4100 4880 780 

M8 3920 5114 1194 

M9 3600 4513 913 

M10 3650 4889 1239 

Mean 3867 4498 710 

SD 737 339  

CV 19 7  



Fig 4.6. Correlation between the observed yields and simulated yields of 

Telakantigudem and Mallaram villages. 

The results show the conformity with the findings of  Biswas et al., 2021(R2=0.85, 

RMSE<400 kg ha−1), Amarasingha et al., 2015 (R2 > 0.97, RMSE = 484 kg ha−1) , 

Radanielson et al., 2018 (RMSE of 222 kg ha−1), Zhang et al., 2007 (R2= 0.76,  RMSE = 

515 kg ha-1). The disparity can be attributed to the fact that models are by definition 

simplifications of reality, and some processes may be over-simplified or even incorrectly 

portrayed to effectively explain practical field scenarios. The difference in the simulated 

and measured yields is due to the reasons that may be because of the use of the default 

values from the APSIM-ORYZA model, as the photoperiod sensitivity parameters for the 

Telangana varieties could not be calibrated due to lack of data (Bouman et al., 2001). To 

accurately model the yields of photoperiod-sensitive varieties in Telangana, the 

photoperiod sensitivity characteristics required are to be calibrated.  

4.5 Integration of RS Derived Products and Model Output 

Among the RS products derived, NDVI was used to integrate with model output 

as it is most commonly used to analyze crop growth and to estimate crop yield and the 

correlation between the derived NDVI and ground LAI was found to be more (75%) than 

the other products such as VV, VH, VH/VV,  NIR (band8) and red (band4) (Fig 4.2). 

NDVI is a typical RS measurement that describes the difference between visible and near-

infrared reflectance of plant cover. The quantity of chlorophyll and other pigments 

exposed to the satellite's view influences NDVI. The values of the NDVI range from -1 
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to 1. Zero and below relate to surfaces that are not covered by vegetation. The density 

and vitality of the plants increase with increasing NDVI values. The NDVI derived using 

RS was compared with the model output parameters like biomass and LAI and based on 

the correlation, LAI was used to estimate the spatial rice yield of the Nalgonda district. 

4.5.1 Comparision of field LAI to model LAI: Instead of conducting CCEs in this study, 

validation against government stats was raised as an objection. So, there was no CCE 

yield to compare to the field LAI, model LAI was used to compare with the model yield, 

to generate a spatial rice yield map.  

Fig 4.7. Comparison of field LAI and model LAI 

 

The model simulated LAI and the field LAI during the reproductive stage of the crop was 

compared to determine how accurately the model simulated the LAI for the crop under 

different transplanting dates and different nitrogen rates. The correlation was found to be 

greater than 0.60 as shown in Fig 4.7, indicating a good fit between them. Therefore the 

model simulated LAI was used for generating the spatial LAI map.  

 

 

 

4.5.2 Comparison of NDVI and Model LAI: The maximum NDVI derived using RS 

was compared to the maximum LAI simulated by the model for the crop and the 
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correlation was about 0.78 between them (Fig 4.8). Since the NDVI showed more 

correlation to the model LAI than model biomass, model LAI was used for determining 

the spatial rice yield.  

 

Fig 4.8. Comparison of  Model simulated maximum LAI and the maximum NDVI 

of the crop 

4.5.3 Comparison of NDVI and model Biomass: Using the coding in GEE, the 

maximum NDVI for the crop for each field was derived by applying the filter date over 

the entire crop period from June 2021 to October 2021. The maximum NDVI of the 

season was compared to the total biomass of the crop simulated by the model. The 

correlation between them was shown about 0.60 as in Fig 4.9. Hence based on the 

comparisions between the model LAI and model biomass to the NDVI, it was found that 

model LAI has shown the best fit with the NDVI. therefore model LAI was considered to 

correlate with the yields simulated so that the spatial rice yields map can be generated
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Fig 4.9. Comparison of NDVI and Biomass 

4.5.4 Generating a spatial LAI map for the Nalgonda district: For generation of 

spatial LAI map, the NDVI image was masked with the rice mask which was generated 

using the supervised classification. The noise in the masked image was removed by giving 

the NDVI threshold of above 0.4 indicating the rice growing areas. For deriving RS LAI, 

the linear equation (Eq.4.1) obtained by the correlation of NDVI and model LAI was 

used.  

LAI = 15.028 ×NDVImax - 7.8835                                                               (4.1) 

From that, spatial LAI map was constructed as shown in Fig 4.10 where maximum LAI 

was shown in the rice fields which come under command areas of Nagarjuna Sagar and 

Krishna river flowing areas. The Miryalaguda revenue division has occupied more area 

of rice and observed with maximum LAI followed by the Nalgonda division and the least 

was observed in the Devarakonda revenue division. 
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Fig 4.10. Spatial distribution of RS derived LAI over the Nalgonda district 

4.5.5 Generating a spatial rice yield map for the Nalgonda district: The spatial LAI 

map  and the linear equation between the model LAI and the model yield was used to 

generate spatial rice yield map of the Nalgonda district. The correlation between the LAI 

and the yield simulated by the model was more than 0.80 (Fig 4.11) and linear equation 

(Eq 4.2) obtained from the correlation was applied on the spatial LAI map to generate 

spatial rice yield map.  

Yield = 4.0835×LAImax + 1.0745                                                                (4.2) 



 

Fig 4.11 Comparison of maximum LAI of the model to the simulated yield of the 

model   

The spatially distributed rice yield map as characterized in Fig 4.12 displayed the higher 

yields with more than 5500 kg ha-1 in the Miryalaguda division of the district where 

maximum LAI was distributed since they come under the Nagarjunasagar canal command 

regions, and water for irrigation is readily available in absence of rainfall. The spatial 

yield distribution map was in similarity to the LAI distribution map signifying that LAI 

has the direct relation with the growth and yield of the crop.              
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Fig 4.12 Spatial distribution of rice yield over the Nalgonda district at village level 

 

4.6 Validation of spatially distributed model yield against the 

government statistics 

Zonal statistics was generated on the spatial rice yield map to determine the mean yield 

of the of the whole district. The model mean yield for the whole district was found to be 

4925 kg ha-1 where as the government statistics of Nalgonda district taken from the 

Telangana statistical abstract 2021 (telangana.gov.in./), rice yield was 5024 kg ha-1 

resulting in 2% deviation. 

 

 



Chapter V  

SUMMARY AND CONCLUSION 

The present study entitled “Rice yield estimation using Remote Sensing and crop 

simulation model in Nalgonda district, Telangana” was carried out during the kharif, 

2021. Predicting crop yield is crucial in addressing emerging challenges in food security, 

particularly in an era of global climate change. Accurate yield predictions not only help 

farmers make informed economic and management decisions but also support famine 

prevention efforts. Crop modeling is a way of transferring the research knowledge of a 

system to farmers/ users. It can also be used to evaluate the economic impacts on agricultural 

land and crop and improve the quality of production, yield of the crop, and minimize the 

impact of pests through crop management applications and agronomic decision making. RS 

can provide missing spatial information required by crop models for improved yield 

prediction. Therefore, a combined approach using a crop simulation model and RS was used 

in this study.  

 Rice is the major crop grown in the Nalgonda district followed by cotton. To 

extrapolate the whole Nalgonda district conditions, the selection of the study area was done 

based on the variations in the rainfall and soil conditions. Thus, the villages of Mallaram 

from Kattangoor mandal, with low rainfall, and Telakantigudem from Kangal mandal, with 

high rainfall were chosen. Ground truth data were collected for acquiring ground reference 

points, measured LAI values in the farmer fields from both villages using a ceptometer and 

the crop management data from the farmers.  

 To map the rice growing areas in the Nalgonda district during kharif 2021, supervised 

classification was performed in the GEE combining Optical and SAR data, as optical data 

limits to provide information on lower levels of canopy and SAR data is not affected by 

atmospheric conditions and can acquire data for day and night.  The monthly composite of 

VV and VH bands of the Sentinel-1 (GRD) data in Interferometric Wide Swath (IW) mode 

and the monthly maximum composite of NDVI of the Sentinel-2 data for the months June to 

October were used for this study. The stack was prepared and ground reference points were 

trained on the stacked image and the RF classification algorithm was applied to the composite 

image with the trained data. The accuracy assessment was carried out for the RF algorithm 

showed an overall accuracy of 92.5% and a kappa coefficient of 0.89 and a rice accuracy of 



97%. From the result, it was observed that the RF classifier performed well in the supervised 

classification of rice-growing areas.  

 To integrate with the crop model output, RS products considered were VV, VH, VH/VV 

of Sentinel-1 data and NIR, Red and NDVI of Sentinel-2 data. These values were 

independently determined for the fields that were chosen and the visited dates that were 

scheduled based on satellite passing dates and weather conditions.  The derived products 

were correlated with the collected ground LAI and observed that Sentinel-1 products were 

not well aligned as the correlations observed were less than 30%. From the Sentinel-2 

products, NIR and Red bands showed a correlation of less than 50, while NDVI showed a 

correlation of above 75%. Thus, it was used for integrating with the model output to estimate 

spatial yield as it is also the most commonly used RS indices for analyzing crop growth and 

estimating crop yield.  

 Execution of APSIM-ORYZA was performed using the basic input parameters such as 

weather data including rainfall, maximum and minimum temperature and solar radiation 

collected from the AWS and NASA power, soil parameters from ISRIC data, crop 

management data from the respective farmers and genetic coefficient data taken from the 

previous studies (Swain et al., 2007) to run the model to simulate the growth and 

development of rice and its yield. The correlation between the observed and simulated yields 

showed an R2 of 0.795 and the RMSE and MAE were found to be 785 and 705 kg ha-1 

respectively. The differences in observed and simulated yields were caused by the models' 

failure to account for micronutrient application as well as biotic and abiotic stress in the field 

conditions. 

  Integration of RS and crop model was done based on the correlation between the NDVI 

and field LAI and the model LAI and field LAI. The correlation between the model LAI and 

field LAI was found to be more than 70%, hence the model LAI was used for integrating 

with the RS NDVI. The linear equation obtained between the NDVI and model LAI was used 

to generate a spatial LAI map using the NDVI image derived in GEE. Correlation between 

the model LAI and model yield showed R2 of 82 and the linear equation was applied on the 

spatial LAI map to generate a spatial rice yield map. Rice average predicted yields were 

calculated at the district, mandal, and village levels by calculating zonal mean statistics after 

overlaying administrative mandal and village boundaries on a spatial variability yield 

distribution map. The district average predicted yield (4925 kg ha-1) was validated against 



the government statistics (5024 kg ha-1) and found to be deviated by 2% demonstrating that 

integrating RS and crop simulation model increases the accuracy of the predicted yields.    

 

CONCLUSIONS  

           

• Mapping of rice growing areas using a classification algorithm on satellite imagery 

showed an accuracy of 92 % with the total rice area compared to the government 

statistics showed a deviation of -0.16 % for kharif 2021. 

• RS products like VV, VH, VH/VV and NDVI, Band 8 and Band 4 using Sentinel-1 

and Sentinel-2 were derived. NDVI was found to have the best fit with the field LAI 

with an R2 of above 75%. 

• The simulated yields obtained by executing the APSIM-ORYZA model, were 

generally close to the reported yields (R2 of 0.79), suggesting that the model can be 

used to estimate rice yield under farmers’ field conditions. 

•  The spatial distribution of rice yield over the Nalgonda district was obtained by 

integrating RS data with crop model, which demonstrated an improvement in 

estimated yield accuracy. 

• The spatially distributed model mean yield of the district when compared to 

government yield statistics showed a 2% deviation. 

 

FUTURE LINE OF WORK 

 

• There is a requirement for calibration of input data parameters to match field 

conditions within some acceptable criteria. 

• There is a requirement to improve the accuracy and consistency of remotely sensed 

information with an insight into accuracy requirements for operational purposes. 

• The model needs further improvement for simulating rice yield in extreme weather 

events such as droughts, waterlogging, pests, diseases, and nutrients other than 

nitrogen. 

• Additional non-destructive methods for measuring LAI can be used as the ceptometer 

may not provide reliable data. 
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APPENDIX-A 

Questionnaire followed to collect the data from the farmers 

Farmer details 

 Name and address  

Contact no  

 

 

 

 

Location of Plot  

Area of land holding   

Previous crop sown  

Soil type    

Soil nutrient status  

Variety name and duration  

Date of transplanting /sowing   

Irrigation details  

No. of irrigations  

Stages of irrigation  

 

Fertilizer details 

Rate of application  

Stage of application with quantity  

 

Organic amendments  (if any applied)  

Pest and disease attack (if any) 

Name and quantity of insecticides/ pesticides 

used  

 

Date of harvesting   

Yield (Kg ha-1)  

Soil health card Details   

Other Comments  

 



APPENDIX-B 

Day Wise Monthly Avg. Rainfall Report for the Month of January to December, 2021 (in mm) collected from AWS for Kattangoor Mandal 

Days Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1 0 0 0 0 0 18.2 0.7 0.0 1.3 4.7 9.2 0 

2 0 0 0 0 0 0 34.9 0.0 0 0.0 15.9 0 

3 0 0 0 0 0 39.7 0.3 0.3 54.2 0.0 1.2 0 

4 0 0 0 0 0 7.4 0 0.0 0.3 0.0 0 0 

5 0 0 0 0 0 0 0 0.0 54.9 0.0 0 0 

6 0 0 0 0 0 2.4 0 0.0 7 0.0 0 0 

7 0 0 0 0 0 0 0 0.0 10.7 0.0 0 0 

8 0 0 0 0 0 0 5.8 0.0 0 0.0 0 0 

9 0 0 0 0 0 0 0 4.6 0 8.3 0 0 

10 0 0 0 0 0 0 9.6 0.0 0 9.0 0 7.4 

11 0 0 0 0 0 3.7 0.3 0.0 0 0.0 0 0 

12 0 0 0 0 25.4 0 24.5 0.0 0 0.0 0 0 

13 0 0 0 0 0 92.9 0 51.6 0 0.0 3.5 0 

14 0 0 0 0 0 16.3 35.7 0.0 0.7 0.0 0 0 

15 0 0 0 13.4 0 0 8 0.0 0 0.0 0 0 

16 0 0 0 0 0 0 4.3 13.2 0 0.0 0 0 

17 0 0 0 0 0 0 2.9 33.5 0 1.3 15.5 0 

18 0 0 0 0 0 0 18.6 0.7 0 0.0 0 0 

19 0 0 0 0 4.1 0 2.6 0.0 0 0.0 2.7 0 

20 0 0 0 0 0 0 0 0.0 1 0.0 1.3 0 

21 0 0 0 0 0 0 4.7 0.0 27.9 0.0 6.6 0 

22 0 0 0 0 0 0 35.9 0.0 11.7 0.0 1.2 0 



23 0 0 0 15.7 0 3.5 15.4 0.0 4.3 0.0 0 0 

24 0 0 0 0 0.9 7.2 0 0.0 0 0.0 0 0 

25 0 0 0 0 0 0 0 21.2 0 0.0 16.4 0 

26 0 0 0 0 0 0 0 25.7 30 0.0 0 0 

27 0 0 0 0 0 22.1 0 12.1 3.1 0.0 0 0 

28 0 0 0 0 0 66.9 0 12.5 29.8 0.0 0 0 

29 0 -- 0 0 0.5 0 0 3.9 0 0.0 0.9 0 

30 0 -- 0 0 0 0 0 98.6 0 0.0 0 0 

31 0 -- 0 -- 0.3 -- 0 13.4 -- 3.1 -- 0 

Rainy Days 0 0 0 2 2 10 13 11 10 4 7 1 

Avg Rainfall 0 0 0 29.1 31.2 280.3 204.2 291.3 236.9 26.4 74.4 7.4 

Normal 

Rainfall 

3.4 0.9 9 6.2 29.5 88.9 143.2 128.7 174 86.9 44.1 2.6 

% Deviation -100 -100 -100 369 6 215 43 126 36 -70 69 185 

Status No Rain No Rain No Rain Excess Normal Excess Excess Excess Excess Scanty Excess Excess 

 

 

 

 

 

 



Day Wise Monthly Avg. Rainfall Report for the Month of June to December, 2021 (in mm) collected from AWS for Kangal mandal 

Days Jun Jul Aug Sep Oct Nov Dec 

1 18.2 0.7 0.0 1.3 4.7 9.2 0 

2 0 34.9 0.0 0 0.0 15.9 0 

3 39.7 0.3 0.3 54.2 0.0 1.2 0 

4 7.4 0 0.0 0.3 0.0 0 0 

5 0 0 0.0 54.9 0.0 0 0 

6 2.4 0 0.0 7 0.0 0 0 

7 0 0 0.0 10.7 0.0 0 0 

8 0 5.8 0.0 0 0.0 0 0 

9 0 0 4.6 0 8.3 0 0 

10 0 9.6 0.0 0 9.0 0 7.4 

11 3.7 0.3 0.0 0 0.0 0 0 

12 0 24.5 0.0 0 0.0 0 0 

13 92.9 0 51.6 0 0.0 3.5 0 

14 16.3 35.7 0.0 0.7 0.0 0 0 

15 0 8 0.0 0 0.0 0 0 

16 0 4.3 13.2 0 0.0 0 0 

17 0 2.9 33.5 0 1.3 15.5 0 

18 0 18.6 0.7 0 0.0 0 0 

19 0 2.6 0.0 0 0.0 2.7 0 

20 0 0 0.0 1 0.0 1.3 0 

21 0 4.7 0.0 27.9 0.0 6.6 0 

22 0 35.9 0.0 11.7 0.0 1.2 0 

23 3.5 15.4 0.0 4.3 0.0 0 0 

24 7.2 0 0.0 0 0.0 0 0 



25 0 0 21.2 0 0.0 16.4 0 

26 0 0 25.7 30 0.0 0 0 

27 22.1 0 12.1 3.1 0.0 0 0 

28 66.9 0 12.5 29.8 0.0 0 0 

29 0 0 3.9 0 0.0 0.9 0 

30 0 0 98.6 0 0.0 0 0 

31 -- 0 13.4 -- 3.1 -- 0 

 Rainy Days 10 13 11 10 4 7 1 

Avg. Rainfall 280.3 204.2 291.3 236.9 26.4 74.4 7.4 

Normal Rainfall 88.9 143.2 128.7 174 86.9 44.1 2.6 

% Deviation 215 43 126 36 -70 69 185 

Status Excess Excess Excess Excess Scanty Excess Excess 

 

 

 

 

 

 



APPENDIX-C 

GEE code for supervised classification 

Map.addLayer(table2) 

var collectionVV = ee.ImageCollection('COPERNICUS/S1_GRD') 

    .filter(ee.Filter.eq('instrumentMode', 'IW')) 

    .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 

    .filterBounds(roi) .select(['VV']); 

    var VV1 = collectionVV.filterDate('2021-06-01', '2021-07-01').min(); 

    var VV2 = collectionVV.filterDate('2021-07-01', '2021-08-01').min(); 

    var VV3 = collectionVV.filterDate('2021-08-01', '2021-09-01').min(); 

    var VV4 = collectionVV.filterDate('2021-09-01', '2021-10-01').min(); 

    var VV5 = collectionVV.filterDate('2021-10-01', '2021-11-01').min(); 

print(collectionVV); 

Map.addLayer(table); 

var collectionVH = ee.ImageCollection('COPERNICUS/S1_GRD') 

    .filter(ee.Filter.eq('instrumentMode', 'IW')) 

    .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 

    .filterBounds(roi) .select(['VH']); 

    var VH1 = collectionVH.filterDate('2021-06-01', '2021-07-01').min(); 

    var VH2 = collectionVH.filterDate('2021-07-01', '2021-08-01').min(); 

    var VH3 = collectionVH.filterDate('2021-08-01', '2021-09-01').min(); 

    var VH4 = collectionVH.filterDate('2021-09-01', '2021-10-01').min(); 

    var VH5 = collectionVH.filterDate('2021-10-01', '2021-11-01').min(); 

print(collectionVH); 

Map.addLayer(roi) 

function addNDVI(image) { 

  var ndvi = image.normalizedDifference(['B8', 'B4']).rename('ndvi') 

  return ndvi 

}              

var ndvi_Nalgonda = ee.ImageCollection('COPERNICUS/S2_SR') 

                  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

                  .map(maskS2clouds) 

                   .filterBounds(roi); 



  var ndvi1 = ndvi_Nalgonda.filterDate('2021-06-01', '2021-07-

01').map(addNDVI).max().clip(roi) 

  var ndvi2 =ndvi_Nalgonda.filterDate('2021-07-01','2021-08-

01').map(addNDVI).max().clip(roi) 

  var ndvi3 =ndvi_Nalgonda.filterDate('2021-08-01', '2021-09-

01').map(addNDVI).max().clip(roi) 

  var ndvi4 =ndvi_Nalgonda.filterDate('2021-09-01', '2021-10-

01').map(addNDVI).max().clip(roi) 

  var ndvi5 =ndvi_Nalgonda.filterDate('2021-10-01', '2021-11-

01').map(addNDVI).max().clip(roi) 

var stack=ndvi1.addBands(ndvi2).addBands(ndvi3).addBands(ndvi4).addBands(ndvi5) 

.addBands(VV1).addBands(VV2).addBands(VV3).addBands(VV4) 

.addBands(VV5).addBands(VH1).addBands(VH2).addBands(VH3).addBands(VH4).ad

dBands(VH5) 

Map.addLayer(stack) 

var bandNames= stack.bandNames(); 

print(bandNames); 

var training = stack.sampleRegions({ 

  collection: table, 

  properties: ['value'], 

  scale: 10 

}); 

var trained = ee.Classifier.smileRandomForest(200).train(training,'value', bandNames); 

var classified = stack.classify(trained); 

Map.addLayer(classified); 

Export.image.toDrive({ 

  image:classified.clip(roi), 

  description: 'nalgonda_cropmap', 

  scale: 10, 

  region: roi, 

  maxPixels: 1e12, 

}); 



 

 

GEE code for downloading Remote Sensing products 

var oct_1 = ee.ImageCollection("COPERNICUS/S2") 

                  .filterDate('2021-10-01','2021-10-10') 

                  .filterBounds(table) 

                   .select(['B8']).median() 

var oct_2 = ee.ImageCollection("COPERNICUS/S2") 

                  .filterDate('2021-10-20','2021-10-30') 

                  .filterBounds(table) 

                           .select(['B8']).median();           

var stack=oct_1.addBands(oct_2) 

var points = stack.reduceRegions({ 

  collection: table2, 

  reducer: ee.Reducer.max(), 

  scale:10 

}) 

print(points) 

Export.table.toDrive(  

                    points, 

                     "table"); 

Map.centerObject(table); 

 

GEE Code for downloading values of NDVI 

function addNDVI(image) { 

  var ndvi = image.normalizedDifference(['B8', 'B4']).rename('ndvi') 

  return ndvi 

} 

var oct_1 = ee.ImageCollection('COPERNICUS/S2_SR') 

                  .filterDate('2021-10-01','2021-10-10') 

                 // .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',20)) 

                  //.map(maskS2clouds) 

                  .filterBounds(table).map(addNDVI).max().clip(table);              



var oct_2 = ee.ImageCollection('COPERNICUS/S2_SR') 

                  .filterDate('2021-10-20','2021-10-30') 

                  .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20)) 

                  .filterBounds(table).map(addNDVI).max().clip(table);            

var stack= oct_1.addBands(oct_2); 

var points = stack.reduceRegions({ 

  collection: table2, 

  reducer: ee.Reducer.max(), 

  scale:10 

}) 

Map.addLayer(stack); 

print(points) 

// Export tables 

Export.table.toDrive(  

                    points, 

                     "table"); 

Map.centerObject(table); 

GEE Code for downloading VV values 

var collectionVV = ee.ImageCollection('COPERNICUS/S1_GRD') 

    .filter(ee.Filter.eq('instrumentMode', 'IW')) 

    .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 

    var oct_1 = collectionVV.filterDate('2021-10-01', '2021-10-20')  

    .filterBounds(table) 

    .select(['VV']).max(); 

    var oct_2 = collectionVV.filterDate('2021-10-21', '2021-10-30') 

    .filterBounds(table) 

    .select(['VV']).max();            

var stack=oct_1.addBands(oct_2) 

var points = stack.reduceRegions({ 

  collection: table2, 

  reducer: ee.Reducer.max(), 

  scale:10 

}) 



print(points) 

Export.table.toDrive(  

                    points, 

                     "table"); 

Map.centerObject(table); 

 

GEE Code for downloading VH values 

var collectionVH = ee.ImageCollection('COPERNICUS/S1_GRD') 

    .filter(ee.Filter.eq('instrumentMode', 'IW')) 

    .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 

    var oct_1 = collectionVH.filterDate('2021-10-01', '2021-10-20')  

    .filterBounds(table) 

    .select(['VH']).max(); 

    var oct_2 = collectionVV.filterDate('2021-10-21', '2021-10-30') 

    .filterBounds(table) 

    .select(['VH']).max();            

var stack=oct_1.addBands(oct_2) 

var points = stack.reduceRegions({ 

  collection: table2, 

  reducer: ee.Reducer.max(), 

  scale:10 

}) 

print(points) 

Export.table.toDrive(  

                    points, 

                     "table"); 

Map.centerObject(table); 



APPENDIX-D 

Weather data used in the APSIM model to simulate rice yields for Mallaram village 

!title = Mallaram 

[weather.met.weather] 

latitude  = 16.961  (DECIMAL DEGREES) 

longitude = 79.2435    (DECIMAL DEGREES) 

 tav =  26.2 (oC)     ! annual average ambient temperature 

 amp =  10.92(oC)     ! annual amplitude in mean monthly temperature 

year day radn maxt mint rain 

() () (MJ/m2) (oC) (oC) (mm) 

2021 1 14.6 26.1 17.1 0.0 

2021 2 16.1 25.6 16 0.0 

2021 3 16.9 25.8 14.8 0.0 

2021 4 17.4 26.2 15.4 0.0 

2021 5 14.3 28.3 16.6 0.0 

2021 6 6.5 26.8 19.7 0.0 

2021 7 11.5 28.4 20.1 0.0 

2021 8 15.9 28.6 19.3 0.0 

2021 9 16.1 28.3 17 0.0 

2021 10 16.3 29 18.4 0.0 

2021 11 15.5 29.4 18.5 0.0 

2021 12 15.3 29.6 18.8 0.0 

2021 13 14.8 29.6 19.6 0.0 

2021 14 16.5 29.4 19.3 0.0 

2021 15 16.3 29.5 17.6 0.0 

2021 16 15.9 29.6 18.2 0.0 

2021 17 17.7 29.3 18 0.0 

2021 18 15.8 28.9 18 0.0 

2021 19 17.2 29.6 18.3 0.0 

2021 20 18.6 30.6 17.3 0.0 

2021 21 18 31.6 17.1 0.0 

2021 22 15.3 30.3 18.2 0.0 

2021 23 16.5 30.4 18.5 0.0 

2021 24 19 31.3 16.9 0.0 

2021 25 19.5 31.4 17 0.0 

2021 26 19.8 31.6 17.2 0.0 

2021 27 16.6 30.8 17.3 0.0 

2021 28 16.5 30.4 17.9 0.0 

2021 29 15.6 30.6 18.5 0.0 

2021 30 17.7 30.5 18.8 0.0 

2021 31 16.9 30.6 18.3 0.0 

2021 32 16.4 29.3 18.3 0.0 

2021 33 17.7 30.1 16.5 0.0 

2021 34 19.1 30.2 17.8 0.0 

2021 35 20.4 30.5 16.5 0.0 

2021 36 21 30.7 15.3 0.0 



2021 37 20.7 31.2 15.4 0.0 

2021 38 21 30.4 14.7 0.0 

2021 39 20.2 30.1 13 0.0 

2021 40 20.3 31.2 17 0.0 

2021 41 21.4 32.2 15.9 0.0 

2021 42 21 32.1 15.7 0.0 

2021 43 21.2 32 16 0.0 

2021 44 21.8 32.4 15.9 0.0 

2021 45 21.6 32.6 16 0.0 

2021 46 21.3 33.1 16.7 0.0 

2021 47 21.3 33.9 16.9 0.0 

2021 48 21.5 33.5 17.1 0.0 

2021 49 21 32.3 17.2 0.0 

2021 50 8.6 29.9 19.3 0.0 

2021 51 17.6 30.3 18.7 0.0 

2021 52 16.2 30.6 18.6 0.0 

2021 53 20.2 31.4 20.2 0.0 

2021 54 21.1 34.2 19.6 0.0 

2021 55 22.1 35.3 17.8 0.0 

2021 56 23 36.3 18.1 0.0 

2021 57 22.7 36.9 20.1 0.0 

2021 58 21.3 37 20.3 0.0 

2021 59 22.5 36.9 20.3 0.0 

2021 60 22.7 37.6 19.7 0.0 

2021 61 22.4 37.1 20.4 0.0 

2021 62 23.9 37.4 18.5 0.0 

2021 63 23.9 37.3 19.3 0.0 

2021 64 24.7 37.5 18.6 0.0 

2021 65 24.7 38.3 18 0.0 

2021 66 23.9 38 19.2 0.0 

2021 67 23.6 37.4 19.2 0.0 

2021 68 23.6 37 19.3 0.0 

2021 69 24.6 37.9 19.8 0.0 

2021 70 25 37.9 19.2 0.0 

2021 71 25.2 36.8 18.7 0.0 

2021 72 26 37.3 19 0.0 

2021 73 24.7 38 18.9 0.0 

2021 74 24.1 38.1 20.4 0.0 

2021 75 21.4 38 20.7 0.0 

2021 76 20.3 38.6 22.3 0.0 

2021 77 18.6 38.4 21.6 0.0 

2021 78 20.4 37.3 22.8 0.0 

2021 79 21.6 37.5 22.3 0.0 

2021 80 21.6 39.1 22.6 0.0 

2021 81 19.7 38.9 23 0.0 

2021 82 25.2 39.3 23.2 0.0 



2021 83 24.6 39.7 22.9 0.0 

2021 84 21.4 40.4 24 0.0 

2021 85 21.7 40.1 25.6 0.0 

2021 86 19.5 40.7 24.4 0.0 

2021 87 22.1 41 23.6 0.0 

2021 88 21.8 41.2 23.1 0.0 

2021 89 22.7 42.4 22.9 0.0 

2021 90 25.9 43.5 24.1 0.0 

2021 91 26.5 42.9 23.7 0.0 

2021 92 26.3 43 25.5 0.0 

2021 93 23.9 41.9 24 0.0 

2021 94 23.6 41.1 24.9 0.0 

2021 95 19.9 40.6 24.5 0.0 

2021 96 23.3 40.6 25 0.0 

2021 97 21.7 40.7 23.7 0.0 

2021 98 23 42 24.6 0.0 

2021 99 22 40.3 24.3 0.0 

2021 100 21.9 39.3 23.9 0.0 

2021 101 23.4 39.4 24 0.0 

2021 102 23.4 40 24.1 0.0 

2021 103 24.4 40.1 25.2 0.0 

2021 104 18.2 38.6 26.8 0.0 

2021 105 25 38.6 26.1 0.0 

2021 106 24.1 39.5 25.5 0.0 

2021 107 24.3 40.5 25 0.0 

2021 108 23.2 41.2 26.1 0.0 

2021 109 21.2 41.7 26.8 0.0 

2021 110 18.4 41.8 28.3 0.0 

2021 111 17.7 40.4 27.4 0.0 

2021 112 19.1 38 27.7 0.0 

2021 113 15.1 35 26.1 0.0 

2021 114 22.3 38.5 25.6 0.0 

2021 115 24.2 40.4 24.7 0.0 

2021 116 22.5 38.8 26.8 0.0 

2021 117 23.4 40.5 26.1 0.0 

2021 118 19.7 41.1 26.9 0.0 

2021 119 22.7 41.7 27.1 0.0 

2021 120 21.7 41.5 26.5 0.0 

2021 121 23.7 40.9 25.3 0.0 

2021 122 24.8 40.8 25.5 0.0 

2021 123 24.3 39.9 25.5 0.0 

2021 124 24.6 40.3 25.6 0.0 

2021 125 25.3 41 26.6 0.0 

2021 126 25 40.8 27 0.0 

2021 127 25.5 40.5 26.6 0.0 

2021 128 26.4 40.4 26.7 0.0 



2021 129 26.1 40.8 26.9 0.0 

2021 130 23 40.3 28.2 0.0 

2021 131 19.1 38.8 28.9 0.0 

2021 132 22.7 40.1 27.3 0.0 

2021 133 16.6 37.9 28.5 0.0 

2021 134 21.9 40.4 27 0.0 

2021 135 22 35.5 26.7 0.0 

2021 136 17 33.8 26.7 0.0 

2021 137 22 34.2 25.9 0.0 

2021 138 22.3 34.3 27.2 0.0 

2021 139 21.9 36.3 27.9 0.0 

2021 140 21.4 34.2 27.3 0.0 

2021 141 15 34.9 26.6 0.0 

2021 142 16.2 35.8 25.9 0.0 

2021 143 20.2 40.6 25.1 0.0 

2021 144 17.5 38.4 27.5 0.0 

2021 145 20.1 40.7 28.2 0.0 

2021 146 22.4 42.7 28 0.0 

2021 147 24.5 41.9 31 0.0 

2021 148 23.5 38.5 30.7 0.0 

2021 149 22.4 39.3 29.2 0.0 

2021 150 24.1 41.5 29.3 0.0 

2021 151 22.5 40.5 29.3 0.0 

2021 152 21.9 38.6 27 0.0 

2021 153 22.3 35.9 28.3 0.0 

2021 154 9.5 31.5 26.9 8.1 

2021 155 19.2 33.6 25.8 4.3 

2021 156 24.2 33.7 25.7 2.3 

2021 157 24.2 35.6 25.5 0.1 

2021 158 25.4 35.5 26.3 0.0 

2021 159 26.3 35.1 26.4 0.0 

2021 160 20.9 33.3 26.6 0.0 

2021 161 17 33.5 25.3 1.0 

2021 162 12.5 35.8 23.9 5.8 

2021 163 18.7 35.2 24.3 0.8 

2021 164 13.3 32 23.7 7.2 

2021 165 13.8 31 24.3 9.5 

2021 166 15.3 34.9 24.4 0.2 

2021 167 17.4 35.1 24 23.1 

2021 168 17.5 34 24.6 0.0 

2021 169 14.3 34.9 25.4 6.4 

2021 170 20.2 35.6 24.9 0.0 

2021 171 20.1 36.2 24.9 0.0 

2021 172 23 35.6 25.3 0.0 

2021 173 17.7 31.8 25.4 0.0 

2021 174 15.4 34.4 24.9 0.0 



2021 175 18.6 33.3 25.3 0.1 

2021 176 19.8 36.5 24.6 0.0 

2021 177 16.5 31.8 25.1 0.0 

2021 178 10.9 30.6 24.9 5.4 

2021 179 20 32.9 24.9 15.7 

2021 180 21.2 33.8 25.6 0.1 

2021 181 22.9 34.9 25.8 0.0 

2021 182 11.6 30.5 26.3 0.8 

2021 183 9.3 31.7 24.7 5.2 

2021 184 19.1 32.6 24.5 0.1 

2021 185 20.9 34.5 25 0.0 

2021 186 19.6 32.6 25.4 0.0 

2021 187 21 32.7 25.8 0.0 

2021 188 17.3 33.4 26.3 6.6 

2021 189 13 29.5 25.3 3.7 

2021 190 14 33.4 24.4 0.0 

2021 191 15.9 30.4 25 21.7 

2021 192 7.4 30.1 23.6 0.3 

2021 193 12.6 32.1 24.1 40.6 

2021 194 14.4 31.1 24.1 2.0 

2021 195 12.6 29.3 23.3 25.4 

2021 196 15 32.7 24.1 33.3 

2021 197 17.9 31.9 23.6 0.5 

2021 198 20.5 31.5 24.9 26.8 

2021 199 13.8 31 25.5 32.4 

2021 200 20.7 31.7 24.7 0.1 

2021 201 19 31.6 24.6 0.0 

2021 202 4.9 29.3 23.8 5.6 

2021 203 4.9 27.7 23.8 49.1 

2021 204 19.1 30.5 24.1 28.4 

2021 205 21.3 33.7 23.7 0.0 

2021 206 21.7 33.6 24.5 0.0 

2021 207 19.5 32.5 24.6 4.7 

2021 208 22.2 30.8 24 0.1 

2021 209 19.5 33.1 23.5 0.0 

2021 210 13.4 31.9 23.7 0.0 

2021 211 17.3 30.5 23.8 0.0 

2021 212 8.6 30.6 23.9 0.0 

2021 213 19.7 32.3 23.9 0.0 

2021 214 21.8 32.9 23.4 0.0 

2021 215 21.5 32.1 23.3 0.0 

2021 216 19.5 32.6 24.3 0.0 

2021 217 20.1 31.3 24.4 0.0 

2021 218 21.5 33.1 24.5 0.0 

2021 219 23.1 32 25 0.0 

2021 220 20.6 30.3 24.7 0.0 



2021 221 19.4 31.9 25.2 0.8 

2021 222 19 32.4 25.2 8.5 

2021 223 20.7 31 25.2 4.0 

2021 224 16.2 29.8 25 0.0 

2021 225 13.7 30.5 24.2 15.9 

2021 226 15.1 31.2 23.9 0.0 

2021 227 17.9 29.2 24.1 0.0 

2021 228 9 28.7 23.6 29.5 

2021 229 10.7 31.7 22.9 11.3 

2021 230 16.9 32.3 23.2 1.9 

2021 231 16 31.9 23.5 0.4 

2021 232 12.3 30.2 23.5 0.0 

2021 233 7.3 29.5 23.5 0.5 

2021 234 23.8 31.5 23 0.0 

2021 235 24.7 31.6 23.5 5.1 

2021 236 23.6 32.9 23.6 0.2 

2021 237 22.4 31.5 24.9 2.3 

2021 238 13.3 30.3 24.8 2.3 

2021 239 13.1 30.2 23.7 52.6 

2021 240 10.3 31.6 23.8 3.1 

2021 241 13.5 31.2 23.6 46.4 

2021 242 6.6 30.7 23.2 41.7 

2021 243 12.6 28.7 22.2 7.3 

2021 244 9.4 30.2 22.7 33.7 

2021 245 19.9 31.3 23.6 0.3 

2021 246 14.2 29.7 24.5 3.8 

2021 247 16.3 30.6 23.6 1.0 

2021 248 20.1 29.1 23.8 11.7 

2021 249 5.6 26.8 23.5 1.0 

2021 250 15.4 30.1 23 17.3 

2021 251 19.1 32.1 22 4.7 

2021 252 21.4 32.1 22.8 0.0 

2021 253 17.7 31.7 23.8 0.0 

2021 254 16.3 30.8 24.3 0.0 

2021 255 16.5 30.3 24 0.0 

2021 256 15.8 30.8 23.7 0.0 

2021 257 17.8 32.5 23.9 5.2 

2021 258 18.8 31.2 23.6 0.0 

2021 259 21.7 31.6 23.7 0.0 

2021 260 21.4 31.8 23.9 0.0 

2021 261 19.8 31.2 23.8 0.0 

2021 262 18.3 31.8 23.8 0.0 

2021 263 17.4 30.8 24.8 0.3 

2021 264 14.6 30 24.2 35.1 

2021 265 15.8 29.8 23.6 3.5 

2021 266 17.3 29.7 23.9 6.6 



2021 267 18.9 30.8 23.2 22.7 

2021 268 19 31 24.3 0.8 

2021 269 18.3 31.4 23.9 7.7 

2021 270 4.8 28.9 23 6.9 

2021 271 15.4 30.7 22.2 21.4 

2021 272 21.9 30.6 20.9 0.0 

2021 273 18.4 31.4 23.1 0.0 

2021 274 21.1 30 24.2 0.0 

2021 275 21.7 29.8 23.1 0.0 

2021 276 22.2 31 24.1 0.0 

2021 277 20.4 31.2 24 0.0 

2021 278 20.3 29.5 24.3 4.0 

2021 279 13.7 29.3 23.7 0.0 

2021 280 19 30.3 23.7 2.6 

2021 281 21.5 30.3 24 0.0 

2021 282 18.4 31 24.4 0.2 

2021 283 18.1 28.8 24.3 35.7 

2021 284 20.1 30.1 22.3 0.0 

2021 285 19.1 31 21.9 0.0 

2021 286 16.7 30.6 22.7 0.0 

2021 287 17.6 30.1 22.8 0.0 

2021 288 15.8 30.9 22 0.0 

2021 289 12 30.4 24.3 6.7 

2021 290 15.8 29.3 23.4 4.1 

2021 291 20 31.3 23.7 0.0 

2021 292 16.2 30.9 22.8 0.0 

2021 293 16.7 29.9 21.1 0.0 

2021 294 18 30.3 21 0.0 

2021 295 19.4 29.9 20.2 0.0 

2021 296 18.4 30 19.6 0.0 

2021 297 16 29.2 20.3 0.0 

2021 298 18.7 29.2 20 0.0 

2021 299 19.1 28.9 19.3 0.0 

2021 300 19.4 28.9 18.7 0.0 

2021 301 16.1 29.3 20.2 0.0 

2021 302 10.3 28.3 22.4 0.0 

2021 303 14.3 28.9 22.9 3.1 

2021 304 13.9 28.7 21.6 0.0 

2021 305 9.1 26.5 19.1 5.2 

2021 306 13.6 28.7 21.7 0.0 

2021 307 12.1 28.3 22 0.0 

2021 308 13.5 28.6 22.1 0.2 

2021 309 15.5 29.3 21.7 0.0 

2021 310 15.4 29 21.1 0.0 

2021 311 12.5 28 19.8 0.0 

2021 312 17.1 27.9 18.5 0.0 



2021 313 14 27.9 17.1 0.0 

2021 314 14.7 27 17.3 0.0 

2021 315 8.1 26.6 18 0.0 

2021 316 7.4 27.2 20.6 0.0 

2021 317 8.7 29.1 22.3 0.8 

2021 318 12.9 29.5 22.8 0.0 

2021 319 12.5 29.8 22.7 15.3 

2021 320 11.2 29.7 22.6 0.0 

2021 321 12 28.9 23.2 7.8 

2021 322 7.4 28.5 22.6 0.0 

2021 323 5.5 27.3 22.7 2.8 

2021 324 10.3 29.7 22.8 6.5 

2021 325 11.1 29.4 22.8 4.2 

2021 326 16.8 30.3 23.3 6.1 

2021 327 17.2 30.4 22.6 0.0 

2021 328 15 29.2 22.9 1.8 

2021 329 15.7 30.1 21.8 7.1 

2021 330 16 29.7 19.2 0.0 

2021 331 13.1 27.8 17.1 0.0 

2021 332 7.4 27 17.3 0.0 

2021 333 7.1 27.1 20.1 0.0 

2021 334 13.9 26.6 19.6 0.0 

2021 335 15.2 28.1 18.5 0.0 

2021 336 16.4 27.8 16.8 0.0 

2021 337 15.8 27.2 17.6 0.0 

2021 338 17.5 29.3 17.4 0.0 

2021 339 17.8 29.7 17.5 0.0 

2021 340 18 29.9 17.1 0.0 

2021 341 17.7 29.2 17.4 0.0 

2021 342 12 28.9 20.4 0.0 

2021 343 12.3 28.8 20.7 0.0 

2021 344 14.5 28.8 20.8 3.2 

2021 345 16 29.2 19.7 3.9 

2021 346 14.4 28.6 20.4 0.0 

2021 347 12.4 27.8 19.3 0.0 

2021 348 12 26.7 19.5 0.0 

2021 349 12.3 25.1 19.3 0.0 

2021 350 13.9 27.6 15.9 0.0 

2021 351 16.7 27.4 14.9 0.0 

2021 352 17.9 27.1 13.3 0.0 

2021 353 16.8 26.8 13.2 0.0 

2021 354 16 26.5 12.2 0.0 

2021 355 17.1 27.3 9.8 0.0 

2021 356 17.2 28.4 11.6 0.0 

2021 357 17 29.3 13.5 0.0 

2021 358 16.5 29.5 13.6 0.0 



2021 359 16.6 30.6 15.3 0.0 

2021 360 15.1 29.9 16.6 0.0 

2021 361 13.5 29.1 17.4 0.0 

2021 362 15.4 29.4 17.7 0.0 

2021 363 16.1 29.7 16.8 0.0 

2021 364 14.8 28.7 16.8 0.0 

2021 365 16.1 28.9 17.1 0.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Weather data used in the APSIM model to simulate rice yields for Telakantigudem 

village  

!title = Telakantigudem 

[weather.met.weather] 

latitude  = 16.961  (DECIMAL DEGREES) 

longitude = 79.2435    (DECIMAL DEGREES) 

 tav =  26.2 (oC)     ! annual average ambient temperature 

 amp =  10.92(oC)     ! annual amplitude in mean monthly temperature 

year day radn maxt mint rain 

() () (MJ/m^2) (oC) (oC) (mm) 

2021 1 14.6 26.1 17.1 0 

2021 2 16.1 25.6 16 0 

2021 3 16.9 25.8 14.8 0 

2021 4 17.4 26.2 15.4 0 

2021 5 14.3 28.3 16.6 0 

2021 6 6.5 26.8 19.7 0 

2021 7 11.5 28.4 20.1 0 

2021 8 15.9 28.6 19.3 0 

2021 9 16.1 28.3 17 0 

2021 10 16.3 29 18.4 0 

2021 11 15.5 29.4 18.5 0 

2021 12 15.3 29.6 18.8 0 

2021 13 14.8 29.6 19.6 0 

2021 14 16.5 29.4 19.3 0 

2021 15 16.3 29.5 17.6 0 

2021 16 15.9 29.6 18.2 0 

2021 17 17.7 29.3 18 0 

2021 18 15.8 28.9 18 0 

2021 19 17.2 29.6 18.3 0 

2021 20 18.6 30.6 17.3 0 

2021 21 18 31.6 17.1 0 

2021 22 15.3 30.3 18.2 0 

2021 23 16.5 30.4 18.5 0 

2021 24 19 31.3 16.9 0 

2021 25 19.5 31.4 17 0 

2021 26 19.8 31.6 17.2 0 

2021 27 16.6 30.8 17.3 0 

2021 28 16.5 30.4 17.9 0 

2021 29 15.6 30.6 18.5 0 

2021 30 17.7 30.5 18.8 0 

2021 31 16.9 30.6 18.3 0 

2021 32 16.4 29.3 18.3 0 

2021 33 17.7 30.1 16.5 0 

2021 34 19.1 30.2 17.8 0 

2021 35 20.4 30.5 16.5 0 

2021 36 21 30.7 15.3 0 

2021 37 20.7 31.2 15.4 0 

2021 38 21 30.4 14.7 0 



2021 39 20.2 30.1 13 0 

2021 40 20.3 31.2 17 0 

2021 41 21.4 32.2 15.9 0 

2021 42 21 32.1 15.7 0 

2021 43 21.2 32 16 0 

2021 44 21.8 32.4 15.9 0 

2021 45 21.6 32.6 16 0 

2021 46 21.3 33.1 16.7 0 

2021 47 21.3 33.9 16.9 0 

2021 48 21.5 33.5 17.1 0 

2021 49 21 32.3 17.2 0 

2021 50 8.6 29.9 19.3 0 

2021 51 17.6 30.3 18.7 0 

2021 52 16.2 30.6 18.6 0 

2021 53 20.2 31.4 20.2 0 

2021 54 21.1 34.2 19.6 0 

2021 55 22.1 35.3 17.8 0 

2021 56 23 36.3 18.1 0 

2021 57 22.7 36.9 20.1 0 

2021 58 21.3 37 20.3 0 

2021 59 22.5 36.9 20.3 0 

2021 60 22.7 37.6 19.7 0 

2021 61 22.4 37.1 20.4 0 

2021 62 23.9 37.4 18.5 0 

2021 63 23.9 37.3 19.3 0 

2021 64 24.7 37.5 18.6 0 

2021 65 24.7 38.3 18 0 

2021 66 23.9 38 19.2 0 

2021 67 23.6 37.4 19.2 0 

2021 68 23.6 37 19.3 0 

2021 69 24.6 37.9 19.8 0 

2021 70 25 37.9 19.2 0 

2021 71 25.2 36.8 18.7 0 

2021 72 26 37.3 19 0 

2021 73 24.7 38 18.9 0 

2021 74 24.1 38.1 20.4 0 

2021 75 21.4 38 20.7 0 

2021 76 20.3 38.6 22.3 0 

2021 77 18.6 38.4 21.6 0 

2021 78 20.4 37.3 22.8 0 

2021 79 21.6 37.5 22.3 0 

2021 80 21.6 39.1 22.6 0 

2021 81 19.7 38.9 23 0 

2021 82 25.2 39.3 23.2 0 

2021 83 24.6 39.7 22.9 0 

2021 84 21.4 40.4 24 0 

2021 85 21.7 40.1 25.6 0 

2021 86 19.5 40.7 24.4 0 



2021 87 22.1 41 23.6 0 

2021 88 21.8 41.2 23.1 0 

2021 89 22.7 42.4 22.9 0 

2021 90 25.9 43.5 24.1 0 

2021 91 26.5 42.9 23.7 0 

2021 92 26.3 43 25.5 0 

2021 93 23.9 41.9 24 0 

2021 94 23.6 41.1 24.9 0 

2021 95 19.9 40.6 24.5 0 

2021 96 23.3 40.6 25 0 

2021 97 21.7 40.7 23.7 0 

2021 98 23 42 24.6 0 

2021 99 22 40.3 24.3 0 

2021 100 21.9 39.3 23.9 0 

2021 101 23.4 39.4 24 0 

2021 102 23.4 40 24.1 0 

2021 103 24.4 40.1 25.2 0 

2021 104 18.2 38.6 26.8 0 

2021 105 25 38.6 26.1 13.4 

2021 106 24.1 39.5 25.5 0 

2021 107 24.3 40.5 25 0 

2021 108 23.2 41.2 26.1 0 

2021 109 21.2 41.7 26.8 0 

2021 110 18.4 41.8 28.3 0 

2021 111 17.7 40.4 27.4 0 

2021 112 19.1 38 27.7 0 

2021 113 15.1 35 26.1 15.7 

2021 114 22.3 38.5 25.6 0 

2021 115 24.2 40.4 24.7 0 

2021 116 22.5 38.8 26.8 0 

2021 117 23.4 40.5 26.1 0 

2021 118 19.7 41.1 26.9 0 

2021 119 22.7 41.7 27.1 0 

2021 120 21.7 41.5 26.5 0 

2021 121 23.7 40.9 25.3 0 

2021 122 24.8 40.8 25.5 0 

2021 123 24.3 39.9 25.5 0 

2021 124 24.6 40.3 25.6 0 

2021 125 25.3 41 26.6 0 

2021 126 25 40.8 27 0 

2021 127 25.5 40.5 26.6 0 

2021 128 26.4 40.4 26.7 0 

2021 129 26.1 40.8 26.9 0 

2021 130 23 40.3 28.2 0 

2021 131 19.1 38.8 28.9 0 

2021 132 22.7 40.1 27.3 25.4 

2021 133 16.6 37.9 28.5 0 

2021 134 21.9 40.4 27 0 



2021 135 22 35.5 26.7 0 

2021 136 17 33.8 26.7 0 

2021 137 22 34.2 25.9 0 

2021 138 22.3 34.3 27.2 0 

2021 139 21.9 36.3 27.9 4.1 

2021 140 21.4 34.2 27.3 0 

2021 141 15 34.9 26.6 0 

2021 142 16.2 35.8 25.9 0 

2021 143 20.2 40.6 25.1 0 

2021 144 17.5 38.4 27.5 0.9 

2021 145 20.1 40.7 28.2 0 

2021 146 22.4 42.7 28 0 

2021 147 24.5 41.9 31 0 

2021 148 23.5 38.5 30.7 0 

2021 149 22.4 39.3 29.2 0.5 

2021 150 24.1 41.5 29.3 0 

2021 151 22.5 40.5 29.3 0.3 

2021 152 21.9 38.6 27 18.2 

2021 153 22.3 35.9 28.3 0 

2021 154 9.5 31.5 26.9 39.7 

2021 155 19.2 33.6 25.8 7.4 

2021 156 24.2 33.7 25.7 0 

2021 157 24.2 35.6 25.5 2.4 

2021 158 25.4 35.5 26.3 0 

2021 159 26.3 35.1 26.4 0 

2021 160 20.9 33.3 26.6 0 

2021 161 17 33.5 25.3 0 

2021 162 12.5 35.8 23.9 3.7 

2021 163 18.7 35.2 24.3 0 

2021 164 13.3 32 23.7 92.9 

2021 165 13.8 31 24.3 16.3 

2021 166 15.3 34.9 24.4 0 

2021 167 17.4 35.1 24 0 

2021 168 17.5 34 24.6 0 

2021 169 14.3 34.9 25.4 0 

2021 170 20.2 35.6 24.9 0 

2021 171 20.1 36.2 24.9 0 

2021 172 23 35.6 25.3 0 

2021 173 17.7 31.8 25.4 0 

2021 174 15.4 34.4 24.9 3.5 

2021 175 18.6 33.3 25.3 7.2 

2021 176 19.8 36.5 24.6 0 

2021 177 16.5 31.8 25.1 0 

2021 178 10.9 30.6 24.9 22.1 

2021 179 20 32.9 24.9 66.9 

2021 180 21.2 33.8 25.6 0 

2021 181 22.9 34.9 25.8 0 

2021 182 11.6 30.5 26.3 0.7 



2021 183 9.3 31.7 24.7 34.9 

2021 184 19.1 32.6 24.5 0.3 

2021 185 20.9 34.5 25 0 

2021 186 19.6 32.6 25.4 0 

2021 187 21 32.7 25.8 0 

2021 188 17.3 33.4 26.3 0 

2021 189 13 29.5 25.3 5.8 

2021 190 14 33.4 24.4 0 

2021 191 15.9 30.4 25 9.6 

2021 192 7.4 30.1 23.6 0.3 

2021 193 12.6 32.1 24.1 24.5 

2021 194 14.4 31.1 24.1 0 

2021 195 12.6 29.3 23.3 35.7 

2021 196 15 32.7 24.1 8 

2021 197 17.9 31.9 23.6 4.3 

2021 198 20.5 31.5 24.9 2.9 

2021 199 13.8 31 25.5 18.6 

2021 200 20.7 31.7 24.7 2.6 

2021 201 19 31.6 24.6 0 

2021 202 4.9 29.3 23.8 4.7 

2021 203 4.9 27.7 23.8 35.9 

2021 204 19.1 30.5 24.1 15.4 

2021 205 21.3 33.7 23.7 0 

2021 206 21.7 33.6 24.5 0 

2021 207 19.5 32.5 24.6 0 

2021 208 22.2 30.8 24 0 

2021 209 19.5 33.1 23.5 0 

2021 210 13.4 31.9 23.7 0 

2021 211 17.3 30.5 23.8 0 

2021 212 8.6 30.6 23.9 0 

2021 213 19.7 32.3 23.9 0 

2021 214 21.8 32.9 23.4 0 

2021 215 21.5 32.1 23.3 0.3 

2021 216 19.5 32.6 24.3 0 

2021 217 20.1 31.3 24.4 0 

2021 218 21.5 33.1 24.5 0 

2021 219 23.1 32 25 0 

2021 220 20.6 30.3 24.7 0 

2021 221 19.4 31.9 25.2 4.6 

2021 222 19 32.4 25.2 0 

2021 223 20.7 31 25.2 0 

2021 224 16.2 29.8 25 0 

2021 225 13.7 30.5 24.2 51.6 

2021 226 15.1 31.2 23.9 0 

2021 227 17.9 29.2 24.1 0 

2021 228 9 28.7 23.6 13.2 

2021 229 10.7 31.7 22.9 33.5 

2021 230 16.9 32.3 23.2 0.7 



2021 231 16 31.9 23.5 0 

2021 232 12.3 30.2 23.5 0 

2021 233 7.3 29.5 23.5 0 

2021 234 23.8 31.5 23 0 

2021 235 24.7 31.6 23.5 0 

2021 236 23.6 32.9 23.6 0 

2021 237 22.4 31.5 24.9 21.2 

2021 238 13.3 30.3 24.8 25.7 

2021 239 13.1 30.2 23.7 12.1 

2021 240 10.3 31.6 23.8 12.5 

2021 241 13.5 31.2 23.6 3.9 

2021 242 6.6 30.7 23.2 98.6 

2021 243 12.6 28.7 22.2 13.4 

2021 244 9.4 30.2 22.7 1.3 

2021 245 19.9 31.3 23.6 0 

2021 246 14.2 29.7 24.5 54.2 

2021 247 16.3 30.6 23.6 0.3 

2021 248 20.1 29.1 23.8 54.9 

2021 249 5.6 26.8 23.5 7 

2021 250 15.4 30.1 23 10.7 

2021 251 19.1 32.1 22 0 

2021 252 21.4 32.1 22.8 0 

2021 253 17.7 31.7 23.8 0 

2021 254 16.3 30.8 24.3 0 

2021 255 16.5 30.3 24 0 

2021 256 15.8 30.8 23.7 0 

2021 257 17.8 32.5 23.9 0.7 

2021 258 18.8 31.2 23.6 0 

2021 259 21.7 31.6 23.7 0 

2021 260 21.4 31.8 23.9 0 

2021 261 19.8 31.2 23.8 0 

2021 262 18.3 31.8 23.8 0 

2021 263 17.4 30.8 24.8 1 

2021 264 14.6 30 24.2 27.9 

2021 265 15.8 29.8 23.6 11.7 

2021 266 17.3 29.7 23.9 4.3 

2021 267 18.9 30.8 23.2 0 

2021 268 19 31 24.3 0 

2021 269 18.3 31.4 23.9 30 

2021 270 4.8 28.9 23 3.1 

2021 271 15.4 30.7 22.2 29.8 

2021 272 21.9 30.6 20.9 0 

2021 273 18.4 31.4 23.1 0 

2021 274 21.1 30 24.2 4.7 

2021 275 21.7 29.8 23.1 0 

2021 276 22.2 31 24.1 0 

2021 277 20.4 31.2 24 0 

2021 278 20.3 29.5 24.3 0 



2021 279 13.7 29.3 23.7 0 

2021 280 19 30.3 23.7 0 

2021 281 21.5 30.3 24 0 

2021 282 18.4 31 24.4 8.3 

2021 283 18.1 28.8 24.3 9 

2021 284 20.1 30.1 22.3 0 

2021 285 19.1 31 21.9 0 

2021 286 16.7 30.6 22.7 0 

2021 287 17.6 30.1 22.8 0 

2021 288 15.8 30.9 22 0 

2021 289 12 30.4 24.3 0 

2021 290 15.8 29.3 23.4 1.3 

2021 291 20 31.3 23.7 0 

2021 292 16.2 30.9 22.8 0 

2021 293 16.7 29.9 21.1 0 

2021 294 18 30.3 21 0 

2021 295 19.4 29.9 20.2 0 

2021 296 18.4 30 19.6 0 

2021 297 16 29.2 20.3 0 

2021 298 18.7 29.2 20 0 

2021 299 19.1 28.9 19.3 0 

2021 300 19.4 28.9 18.7 0 

2021 301 16.1 29.3 20.2 0 

2021 302 10.3 28.3 22.4 0 

2021 303 14.3 28.9 22.9 0 

2021 304 13.9 28.7 21.6 3.1 

2021 305 9.1 26.5 19.1 9.2 

2021 306 13.6 28.7 21.7 15.9 

2021 307 12.1 28.3 22 1.2 

2021 308 13.5 28.6 22.1 0 

2021 309 15.5 29.3 21.7 0 

2021 310 15.4 29 21.1 0 

2021 311 12.5 28 19.8 0 

2021 312 17.1 27.9 18.5 0 

2021 313 14 27.9 17.1 0 

2021 314 14.7 27 17.3 0 

2021 315 8.1 26.6 18 0 

2021 316 7.4 27.2 20.6 0 

2021 317 8.7 29.1 22.3 3.5 

2021 318 12.9 29.5 22.8 0 

2021 319 12.5 29.8 22.7 0 

2021 320 11.2 29.7 22.6 0 

2021 321 12 28.9 23.2 15.5 

2021 322 7.4 28.5 22.6 0 

2021 323 5.5 27.3 22.7 2.7 

2021 324 10.3 29.7 22.8 1.3 

2021 325 11.1 29.4 22.8 6.6 

2021 326 16.8 30.3 23.3 1.2 



2021 327 17.2 30.4 22.6 0 

2021 328 15 29.2 22.9 0 

2021 329 15.7 30.1 21.8 16.4 

2021 330 16 29.7 19.2 0 

2021 331 13.1 27.8 17.1 0 

2021 332 7.4 27 17.3 0 

2021 333 7.1 27.1 20.1 0.9 

2021 334 13.9 26.6 19.6 0 

2021 335 15.2 28.1 18.5 0 

2021 336 16.4 27.8 16.8 0 

2021 337 15.8 27.2 17.6 0 

2021 338 17.5 29.3 17.4 0 

2021 339 17.8 29.7 17.5 0 

2021 340 18 29.9 17.1 0 

2021 341 17.7 29.2 17.4 0 

2021 342 12 28.9 20.4 0 

2021 343 12.3 28.8 20.7 0 

2021 344 14.5 28.8 20.8 7.4 

2021 345 16 29.2 19.7 0 

2021 346 14.4 28.6 20.4 0 

2021 347 12.4 27.8 19.3 0 

2021 348 12 26.7 19.5 0 

2021 349 12.3 25.1 19.3 0 

2021 350 13.9 27.6 15.9 0 

2021 351 16.7 27.4 14.9 0 

2021 352 17.9 27.1 13.3 0 

2021 353 16.8 26.8 13.2 0 

2021 354 16 26.5 12.2 0 

2021 355 17.1 27.3 9.8 0 

2021 356 17.2 28.4 11.6 0 

2021 357 17 29.3 13.5 0 

2021 358 16.5 29.5 13.6 0 

2021 359 16.6 30.6 15.3 0 

2021 360 15.1 29.9 16.6 0 

2021 361 13.5 29.1 17.4 0 

2021 362 15.4 29.4 17.7 0 

2021 363 16.1 29.7 16.8 0 

2021 364 14.8 28.7 16.8 0 

2021 365 16.1 28.9 17.1 0 



APPENDIX-E 

Derivation of VV, VH, VH/VV, Band8, Band4 and NDVI values for the field points 

 during visit-1 

Field ID B8 B4 NDVI VV VH VH/VV 

T1 3826.0 878.0 0.7 -6.4 -12.6 1.9 

T2 3624.0 833.0 0.7 -6.4 -9.2 1.4 

T3 4403.0 1114.0 0.7 -3.3 -8.7 2.6 

T4 3834.0 884.0 0.7 -6.7 -13.5 2.0 

T5 3075.0 794.0 0.7 -5.8 -9.2 1.6 

T6 3116.0 822.0 0.7 -6.0 -13.5 2.2 

T7 3213.0 848.0 0.7 -6.7 -11.4 1.7 

T8 3423.0 834.0 0.7 -4.5 -11.5 2.6 

T9 3815.0 819.0 0.8 -5.0 -10.9 2.2 

T10 2950.0 844.0 0.7 -0.6 -12.0 18.6 

M1 3805.0 1690.0 0.5 -5.4 -15.1 2.8 

M2 2565.0 934.0 0.5 -4.7 -11.2 2.3 

M3 2658.0 811.0 0.7 -6.2 -9.9 1.6 

M4 1900.5 760.0 0.6 -6.9 -14.0 2.0 

M5 2868.0 921.0 0.7 -5.1 -14.8 2.9 

M6 2252.0 851.0 0.6 -5.7 -12.5 2.2 

M7 2369.5 945.0 0.5 4.2 -10.0 2.4 

M8 3322.0 853.0 0.7 -7.3 -10.7 1.5 

M9 3095.5 1181.0 0.6 -6.0 -12.2 2.0 

M10 3639.5 889.0 0.7 -4.0 -10.4 2.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Derivation of VV, VH, VH/VV, Band8, Band4 and NDVI values for the field points 

 during visit-2 

Field ID B8 B4 NDVI VV VH VH/VV 

T1 2864.0 1242.5 0.5 -6.2 -10.6 1.7 

T2 2757.5 1132.5 0.6 -6.6 -14.2 2.1 

T3 3012.0 1578.5 0.4 -4.2 -10.9 2.6 

T4 2952.5 1269.0 0.6 -6.6 -10.8 1.6 

T5 2751.5 1175.5 0.7 -8.6 -13.6 1.6 

T6 2641.5 1234.5 0.5 -7.2 -13.7 1.9 

T7 2783.0 1207.5 0.6 -6.0 -11.8 2.0 

T8 2605.5 1222.0 0.4 -6.9 -13.6 2.0 

T9 2894.0 1051.5 0.7 -7.8 -14.2 1.8 

T10 2799.5 1148.5 0.7 -5.6 -12.0 2.2 

M1 2135.5 1185.5 0.3 -5.1 -12.2 2.4 

M2 2456.0 1125.0 0.4 -6.4 -11.2 1.7 

M3 3126.0 1546.5 0.4 -6.5 -8.5 1.3 

M4 2584.0 1048.5 0.6 -7.7 -13.3 1.7 

M5 2669.0 1256.0 0.6 -6.6 -12.3 1.9 

M6 2986.5 1316.5 0.7 -7.5 -13.7 1.8 

M7 2703.5 1547.0 0.3 -6.6 -10.5 1.6 

M8 2763.5 1183.0 0.6 -7.1 -12.0 1.7 

M9 2722.0 1153.0 0.6 -5.8 -12.7 2.2 

M10 3079.5 1448.5 0.4 -7.1 -11.3 1.6 



 


