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ABSTRACT 

Investigations were carried out towards the “Development and evaluation of diagnostic tools for 
Nucleopolyhedroviruses (NPVs) infecting major lepidopteran pests of legume crops in the semi-arid 
tropics” during 2005-2008 at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), 
Patancheru centre.  

 

Nucleopolyhedroviruses (NPVs) were isolated from three major lepidopteran pests of legume crops 
during natural epizootic conditions at ICRISAT farms. They are: 1) From Helicoverpa armigera (Legume 
pod borer) (Hubner) (Lepidoptera: Noctuidae) larvae on pigeopea and chickpea crops; 2) From Spodoptera 

litura (Tobacco caterpillar) (Fabricious) (Lepidoptera: Noctuidae) and 3) From Amsacta albistriga (Red 
hairy caterpillar) (Walker) (Lepidoptera: Arctiidae) larvae on Groundnut crop and their mass multiplication 
was standardized at ICRISAT-NPV production laboratory. During mass multiplication of H. armigera NPV 
(HaNPV), there was a significant difference in parameters like POBs/ml and POBs/larvae which showed 
that NPV multiplied on field collected larvae recorded significantly higher yield (5.35 ± 0.31×109 

POBs/larva) compared to laboratory reared larvae (5.18 ± 0.45 ×109 POBs/larva). While 5.73 ± 0.17 ×109 

POBs/larva for S. litura NPV (SlNPV) and 7.90 ± 0.54 ×109 POBs/larva for A. albistriga NPV (AmalNPV) 
were recorded when multiplied on laboratory reared larvae emerged from field collected egg masses.  

 

Under scanning electron microscope (SEM) the POBs of NPVs appeared as crystalline structures of 
variable shapes (irregular) of size 0.5 to 2.5µm (HaNPV), 0.9 to 2.92µm (SlNPV) and 1.0 to 2.0µm 
(AmalNPV) in diameter. Under transmission electron microscope (TEM) the cross-sectioned POB revealed 
multiple nucleocapsids in each envelop, which were of bacilliform shaped structures of 277.7 × 41.6nm 
(HaNPV), 285.7 × 34.2nm (SlNPV) and 228.5 × 22.8nm (AmalNPV) in size. The POBs of HaNPV and 
AmalNPV contained 2 to 6 and SlNPV contained 5 to 7 nucleocapsids per envelope.  

 



Purification protocol for polyhedrin protein of NPVs was standardized by initial heat inactivation of 
endogenous proteases; alkali disruption of POBs to release virions and then ultracentrifugation to pellet 
virions. Further purification was achieved by either of the following approaches: (i) in one approach 
polyhedrin was further purified through centrifugation by layering on 10-40% liner sucrose gradient; and 
(ii) in second approach through precipitation of polyhedrin at isoelectric pH. In 10-40% linear sucrose 
gradient centrifugation, the polyhedrin formed one diffused light scattered zone in 10% sucrose region. In 
isoelectric precipitation method the polyhedrin of all the three NPVs was precipitated at pH between 5.5 
and 5.6.  In 12% SDS-PAGE analysis, the molecular weight of major polyhedrin of three NPVs revealed 
that 31.65kDa (± 0.00) of HaNPV, 31.29kDa (± 0.00) of SlNPV and 31.67kDa (± 0.295) of AmalNPV 
respectively. In addition, these preparations contained some minor molecular weight peptides of about 7-
27kDa and a high molecular weight peptide of about 60-70kDa fragment. This has revealed that three NPVs 
have 6-8 minor polypeptides. 

Polyclonal antibodies were raised in New Zealand White rabbits against polyhedrin protein of 
NPVs isolated in the present study. The concentration (500µg) of polyhedrin of NPVs used for 
immunization gave an antibody titer of 1:5000 dilution, 18 weeks after immunization. In western 
immunoblotting all three antibodies were specifically reacted with polyhedrin (31kDa) and did not cross-
reacted with healthy larval proteins indicated that the antibodies are highly specific to polyhedrin. In 
addition to the major polyhedrin (31 kDa), the polyclonal antibodies recognized some minor low molecular 
weight polypeptides of about 11-27 kDa and high molecular weight peptides of about 43.6-99.14kDa 
proteins when sufficient amounts of samples were loaded in to wells. Some of these proteins could not be 
aligned with those polypeptides in silver stained gels of polyhedrin preparations examined previously. The 
antibodies were highly specific to polyhedrin protein and did not cross-reacted with healthy larval proteins 
but, each antiserum had shown different degrees of cross reactivity with heterologous polyhedrins in direct 
antigen coating (DAC) enzyme-linked immunosorbent assay (ELISA) and western immunoblotting.  

Various immunochemical tools were developed using the polyclonal antibodies raised against the 
poly occlusion body (POB) protein (polyhedrin) and evaluated for the detection and quantification of NPV 
in insect larvae and viral insecticide preparations. Indirect immunofluorescence assay and western 
immunoblot assay were developed for detection of POBs in homogenates of NPV-infected larvae. DAC-
ELISA and indirect competitive (IC)-ELISA were developed for detection and quantification of polyhedrin 
protein in insect extracts. The sensitivity of DAC-ELISA is 30ng/ml of polyhedrin in 5µg/ml of insect total 
protein extracts. But in DAC-ELISA there was competition between insect and viral proteins for binding to 
the ELISA plate surface reducing the sensitivity of the assay. To eliminate this, IC-ELISA was developed, 
which has sensitivity of 0.156µg/ml of polyhedrin in 25 or 50µg/ml of alkali dissolved total insect protein 
extracts. The 50% competitive inhibition (IC50) values for HaNPV polyhedrin polyclonal antiserum were 
calculated to be 1.10µg/ml of homologous polyhedrin and heterologous polyhedrins were calculated to be 
2.0µg/ml of SlNPV polyhedrin and 2.20µg/ml of AmalNPV polyhedrin. For SlNPV-polyhedrin polyclonal 
antiserum, IC50 was calculated to be 1.26µg/ml of homologous polyhedrin and heterologous polyhedrins 
were calculated to be 2.25µg/ml of HaNPV polyhedrin and 2.85µg/ml of AmalNPV polyhedrin. For 
AmalNPV-polyhedrin polyclonal antiserum, IC50 was calculated to be 1.19µg/ml of homologous polyhedrin 
and heterologous polyhedrins were calculated to be 1.82µg/ml of Ha NPV polyhedrin and 2.32µg/ml of 
SlNPV polyhedrin. The percent cross-reactivity of each antiserum with their homologous polyhedrins was 
calculated to be 100% while with heterologous polyhedrins the antisera showed differential cross-reactivity. 
The HaNPV- polyhedrin polyclonal antiserum has showed 54.72% and 50.0% of cross-reactivity with 
SlNPV and AmalNPV polyhedrins. The SlNPV- polyhedrin polyclonal antiserum showed 56.0% and 
43.85% of cross-reactivity with HaNPV and AmalNPV polyhedrins. Similarly, AmalNPV-polyhedrin 
polyclonal antiserum showed 65.38% and 51.29% of cross-reactivity with HaNPV and SlNPV polyhedrins. 
In recovery experiments, 25 and 50µg/ml of insect body proteins did not show interference with artificially 
spiked polyhedrin and the percent of amount of polyhedrin spiked in to 25 or 50µg/ml of larval protein 
extract was 82.1 to 116.8 %.  

 



Among these tools the DAC-ELISA is a rapid and highly sensitive tool, which can detect low levels 
of NPV at early stages of infection in larvae as well as latent infection in pupae. While competitive-ELISA, 
western immunoblotting and indirect immunofluorescence tools were highly specific but not much sensitive 
than DAC-ELISA to detect low levels of NPV infection. Both DAC-ELISA and IC-ELISA tools were 
sensitive to the analysis of alkali dissolved protein extracts of POBs or infected larval extracts than direct 
POBs or larval extracts. Whereas, western immunoblotting and indirect immunofluorescene tools were 
specific to both. As part of the quality control during mass production of NPVs used for commercial viral 
insecticide preparations at ICRISAT, Patancheru, India, the present study developed some sensitive 
immunochemical methods such as DAC and IC-ELISA and evaluated their performance in quantification of 
POBs in commercial NPV preparations. A simple purification protocol was standardized for extraction of 
total polyhedrin from NPV preparations of 6 × 109 to 2.34 × 107 POBs/ml. The purity of the extracted 
polyhedrin was assayed in SDS-PAGE and evaluated in both DAC as well as IC-ELISA with sensitivity of 
4.68 × 107 POBs/ml (0.015LE/ml). The ELISA results were comparable to light microscope counting of 
POBs. 

 

 Application of ELISA and western immunoblot assay in bioassay experiments during optimization 
of conditions for the productivity and quality of NPVs suggested that 4th instar larvae is suitable for H. 

armigera and 5th instar larvae suitable for S. litura and A. albistriga for virus inoculation, and virus 
harvesting 9 days after inoculation from both live and dead larvae was better to get the maximum virus 
yield as well as to reduce bacterial contamination. Application of ELISA tools at field level evaluation of 
efficacy of NPV against H. armigera on pigeonpea crop showed that the concentration of NPV (250 LE/ 
ha) used for field spray was successfully infected the field population. The infection was initiated in field 
population on 3 days post application (dpa) and the per cent of infection in field sampled larvae was peaked 
at 8 and 9 dpa and started declining on 10 dpa. 

 

A double round PCR protocol was standardized using degenerate primer set to isolate the full-
length polyhedrin gene of NPV isolated from H. armigera. This resulted in ~ 750 bp product which was 
cloned and sequenced. Gene sequencing analysis of selected clones resulted in 744 bp nucleotide long ORF 
with a predicted coding capacity for a polypeptide of 247 amino acids. In BLASTX search the sequence 
showed homology with baculovirus occlusion body protein domain of known polyhedrin and granulin 
proteins from the GenBank data base. The sequence was deposited in GenBank with a public accession 
number of EU047914.  

 

 The nucleotide sequence of HaNPV-P polyhedrin gene had a high homology with polyhedrins of 
several NPVs. Among which, it was showing maximum homology of 98.2% with Mamestra configurata 
NPV, 98% with Mamestra brassicae NPV, 96.1% with Leucania seperata NPV and 90.6% with Panolis 

flammea NPV. At the same time with minimum homology of 72.4% was noticed with WsNPV. Similarly, 
the amino acid sequence of HaNPV-P polyhedrin protein was showed maximum homology of 95.5% with 
Mamestra configurata NPV and Mamestra brassicae NPV, 93.9% Panolis flammea NPV and 93.5% with 
Leucania seperata NPV and minimum homology of 79.4% with Wiseana signata NPV and 81.8% with 
Spodoptera littoralis NPV. Phylogenetic analysis at nucleotide as well as amino acid levels showed that the 
virus belongs to group-II NPVs and the virus was named as H. armigera NPV, Patancheru strain (HaNPV-
P). This is the 1st report from the Indian subcontinent and 8th report worldwide to be described the complete 
polyhedrin gene of a NPV isolated from H. armigera. 

  
In the present investigation the HaNPV-P strain was distinguished from other NPVs by developing 

PCR-RFLP marker based on its unique restriction site present in the amplified portion of the polyhedrin 
gene. Restriction mapping analysis of HaNPV-P polyhedrin gene along with other known published 
polyhedrin sequences showed that one unique restriction sites present at particular nucleotide positions in 
polyhedrin gene of HaNPV-P and some other NPVs. This has showed that Xho-I restriction site at 
nucleotide position 131 was found in NPV from M. brassicae and M. configurata, and the same restriction 
site at position 671 was found in NPV of L. seperata. Whereas in HaNPV-P, the Xho-I site was found at 



both 131 and 671 base pairs. But, the Xho-I site was not found in any of the HaNPV polyhedrin gene 
sequences deposited earlier in the GenBank. This indicates that the HaNPV-P is a unique strain among 
earlier reported HaNPV isolates.  
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CHAPTER- I 

 INTRODUCTION 

Legume crops are important sources of human food and animal feed, and also helps 

in managing the soil fertility through biological nitrogen fixation, thus plays a vital role in 

sustainable agriculture (Maiti, 2001). Since their protein content is high, these are principal 

sources of dietary protein for millions of people, especially for vegetarians in the Indian 

subcontinent and other parts of the world. Among legume crops, groundnut (peanut, Arachis 

hypogaea L.), chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L.) are important 

in the semi-arid tropics (SAT), where one-sixth of the world population lives. Unpredictable 

weather, limited and erratic rainfall, and nutrient poor soils, occurrence of pests and diseases 

are the major constraints limiting the productivity of the crops in the SAT regions. Among 

the various insect pests, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae), 

Spodoptera litura (Fabricious) (Lepidoptera: Noctuidae) and Amsacta albistriga (Walker) 

(Lepidoptera: Arctiidae) are major constraints to the production of groundnut, pigeonpea and 

chickpea in the SAT.  

H. armigera popularly known as legume pod borer or cotton bollworm is widely 

distributed in Africa, Australia, South East Asia, New Zealand and Mediterranean Europe 

(Sharma, 2005). It is a polyphagous pest and attacks a great variety of food, fibre, oil seed, 

fodder, and horticultural crops of more than 300 plant species (Arora et al., 2005). In India, it 

has been recorded from over 20 crop and 180 wild plant species (Sharma, 2005).  This 

species causes extensive damage to high value crops such as cotton, pigeonpea, chickpea, 



groundnut, soybean, pepper, tomato, tobacco, maize, sorghum, sunflower and okra (Fitt, 

1989; King, 1994). Global crop losses due to Helicoverpa species exceed US$ 5 billion per 

annum, despite the use of US$ 1 billion worth of pesticides for its control. Whereas, in the 

semi-arid and dry tropics, losses due to H. armigera on cotton, legumes, vegetables and 

cereals alone exceed US$ 1 billion and an additional cost of >US$ 500 million is incurred on 

pesticides (Russell et al., 1998; Sharma, 2001). In India, the extent of losses in chickpea and 

pigeonpea have been estimated at over $300 million per annum (Reed and Pawar, 1982). 

Total losses in both pulses and cotton exceed $530 million per annum, and the insecticides 

applied for Helicoverpa control cost nearly $127.5 million on cotton and pulses (Reed and 

Pawar, 1982). 

S. litura, well known as tobacco caterpillar or tobacco cut worm, is an important 

polyphagous pest in India. It is widely distributed in India, entire South and South-East Asia, 

Australia and Pacific Islands (CAB, 1967). It is known to cause economic damage on 

tobacco, groundnut, cole crops, taro (Colacasia) etc. Ayyanna et al. (1982) has reported it as 

major pest in groundnut in AP, India. It is reported to feed on 112 species of plants belonging 

to 44 families worldwide and reported from 60 species of cultivated crops and wild hosts in 

India (Mousa et al., 1960, Thobbi, 1961). Patel et al. (1971) reported that two, four and eight 

larvae per plant reduced yield by 23, 44 and 50% respectively, on tobacco. In controlled 

experiments on soyabeans in India, crops chemically protected from S. litura and other pests 

yielded over 42% more compared to unsprayed (Srivastava et al., 1972). On Colocasia 

esculenta, an average of five 4th-instar larvae per plant reduced yield by 10 %, while 2.3 and 

1.5 larvae per plant reduced yield of brinjal and Capsicum in glasshouses by 10% (Nakasuji 

and Matsuzaki, 1977).  

A. albistriga, commonly known as red hairy caterpillar (RHC), is a pest of several 

rainy season crops in Asia especially on groundnut in South India (Nagarajan et al., 1957; 

Nagarajan and Ramachandran, 1958; Narayana and Ranga Rao, 1959; Mukundan, 1964; 



Venkataraman et al., 1970; Saroja et al., 1971; Paramasivam et al., 1973). A. albistriga is a 

common pest in south India; this pest is frequent in Coimbatore, Madurai and Pollachi districts 

of Tamil Nadu (Kuppuswamy et al., 1965) and adjoining areas (Nagarajan and Ramachandran, 

1958). Other plants recorded as hosts of this insect are finger millet, cowpea, castor, cholam, 

cotton (Nagarajan et al., 1957); sorghum, pearlmillet, maize, soybean, horsegram, greengram, 

blackgram, clusterbean, pigeonpea, sesame, jute, sunnhemp and several weeds (Nagarajan and 

Ramachandran, 1958). The RHC infestation is sporadic, but the devastation is widespread. In 

certain years it can become serious and cause heavy losses (75%). But there are well-marked 

locations in Tamil Nadu, Andhra Pradesh and Karnataka where it appears regularly in rainy 

season (Venkataramanan et al., 1970; Sandhu and Brar, 1977; Siva Rao et al., 1977). When an 

outbreak of this pest occurs, a total crop loss over a large area is not uncommon (Nagarajan et 

al., 1957).  

  So far, use of synthetic insecticides has been the major approach for controlling these 

pests on different crops in India and most of the developing countries. Chemical control is one 

of the effective and quicker methods in reducing pest population, where farmer obtains 

spectacular results within a short period. However, over reliance and indiscriminate unscientific 

use of pesticides for longer periods resulted in a series of problems, mainly risk of 

environmental contamination, loss of biodiversity, development of insecticide resistant pest 

populations, resurgence, outbreaks of the secondary pests, increase in inputs on chemicals and 

toxicological hazards due to accumulation of pesticide residues in food chain etc., ultimately 

contributing not only to inefficient insect control, but also environmental and health hazards 

(Armes et.al., 1992, Kranthi et al., 2002). Therefore, there is an urgent need to rationalize use 

of chemical pesticides for the management of insect pests. Growing public concern over 

potential health hazards of synthetic pesticides and also steep increase in cost of cultivation 

have led to the exploration of alternative and eco-friendly pest management tactics, such as 

Integrated Pest Management (IPM). IPM combines cultural, biological and chemical measures 



in the most effective, environmentally sound and socially acceptable way of managing diseases, 

pests and weeds. IPM aims at suppressing the pest population by combining available eco-

friendly methods in a harmonious way with emphasis on farm health and net returns. In an 

attempt to overcome the present crisis and to find alternatives to synthetic insecticides, the 

application of ‘biopesticides’ as eco-friendly measure for pest suppression has came up as one 

of the effective tools in IPM approach. 

Biopesticides are developed from natural plant or animal origin, which can intervene 

in the life cycle of insect pests in such a way that the crop damage is minimized. The biological 

agents employed for this purpose, include parasites, predators and disease causing fungi, 

bacteria, nematodes and viruses, which are the natural enemies/pathogens of pests. More than 

three thousand microorganisms, comprising viruses, bacteria, fungi, protozoa and nematodes, 

have been reported as insect pathogens. Of these, microbial pathogens gained significance for 

use as biopesticides primarily due to ease in production and application. Many species of insect 

pathogenic microorganisms have been exploited as biopesticides, and some species have been 

developed into commercial formulations that are being used in many countries. At present the 

world market for the biopesticides exceeds US$ 125 million per annum, which is expected to 

increase to US$ 300-500 million by 2010 (Dhaliwal and Arora, 2001). 

Among microbial insecticides, the insect pathogenic viruses such as baculoviruses 

are attractive alternatives for biological control under IPM and have been used for more than 

20 years with great success (Zhang, 1989). There are several advantages of using insect 

viruses for pest control: these are highly host specific and are known to be completely safe to 

humans, animals and non-target beneficial insects such as bees, predatory insects and 

parasitoids (Monobrullah & Nagata 1999, Nakai et al., 2003, Ashour et al., 2007). In 

addition, these are highly compatible with other methods of pest control and are well suited 

for use in integrated pest management (IPM) programs. Another important reason for the 



interest in baculoviruses as potential insect control agents is that they are relatively easy to 

visualize and monitor using a light microscope. 

 Several viruses belonging to 18 different families are known to infect invertebrates 

and insects (Fauquet et al., 2004). However, biopesticide development is concerned almost 

exclusively with members of one family, the Baculoviridae because of their common 

occurrence in most important insect pests primarily in the order of Lepidoptera and acts as 

natural regulators of pest population dynamics (Blissard et al 2000, Gelernter and Federici, 

1990; Caballero et.al., 1992a; Weiser, 1987). Baculoviruses are enveloped rod shaped 

nucleocapsids having circular, double stranded DNA genome (Blissard and Rohrman, 1990, 

Volkman et al., 1995). The infectious virus particles are embedded in proteinaceous 

occlusion bodies (OBs) specially designed to survive outside their hosts for horizontal 

transmission and persistence in the environment for several years until the availability of 

susceptible host at particular life–stage from a given locality for significant period of time to 

maintain a continuous cycle of infection (Jacques, 1975; Rohrmann, 1986). Based on the 

occlusion body (OB) morphology and virion phenotype, baculoviruses are placed in two 

genera (Blissard et al., 2000, Fauquet et al., 2004). Subgroup-A viruses called 

Nucleopolyhedroviruses (NPVs) (Rohrmann, 1999). The occlusion bodies in this subgroup 

are large (0.13-15 µm) and polyhedral shape called POBs. The virions in this subgroup 

contain either a single nucleocapsid (SNPV) or many nucleocapsids (MNPV) per envelope. 

Both SNPVs and MNPVs form nuclear occlusions late in infection in which many virions are 

embedded per occlusion body. Sub group-B viruses, the Granuloviruses (GVs) (Winstanley 

and O.Reilly, 1999) the occlusion bodies in this subgroup are small (0.3-05 µm) and 

ovicylindrical shaped, called granules. The virion has only one nucleocapsid per envelope 

and one virion per inclusion body. Baculoviruses infect more than 600 species of insects, 

mostly Lepidoptera, including many important pest species but also various insect species in 



Hymenoptera (31 species), Diptera (27 species) and Coleoptera (5 species) as well as from 

the crustacean order Decapoda (shrimp) (Martignoni and Iwai, 1986b; Adams and Bonami, 

1991; Couch, 1974). Baculoviruses do not infect any non-arthropod species. This high host 

specificity is one attraction of baculoviruses as biopesticides.  

Among the 633 potential baculovirus species compiled by the International 

Committee on Taxonomy of Viruses (ICTV) (Fauquet et al., 2004), 15 NPVs were categorized 

as assigned species where as 483 NPVs are tentative species. The GV contains 5 assigned and 

131 tentative species. In the USA, NPV was first produced as viral insecticide against Heliothis 

species and registered by the Environmental Protection Agency (EPA) for agricultural use in 

the year 1973 (Ignoffo and Couch, 1981). Since then, several isolates and strains of NPV have 

been used to develop commercial biopesticides in USA, Australia, India, China and Thailand. 

Although the NPVs have distinct advantages to fit suitably in IPM module, some difficulties 

exist with its production and storage.  

The reliability of the product is crucial in ensuring acceptance and sustained use by 

the farmers. The issue of erratic performance of viral biocontrol agents has been recognized as 

a significant factor in the limited successful commercialisation (Lisansky, 1997). It has been 

widely perceived that viral agents have not achieved a level of efficacy comparable with that of 

chemicals or other biopesticides such as Bacillus thuringiensis (Berliner). Many of the viral 

products available in the markets in developing countries were characterized as weak, with poor 

efficacy, questionable quality control (Harris, 1997) and are failing to meet acceptable 

standards (Kern and Vaagt, 1996). Unless this matter is addressed effectively, there is serious 

danger in these countries that poor quality products with their inevitable failures will erode the 

farmers confidence in microbial control products like NPV and significantly retard the 

promotion of this potential technology.  

Mass production of NPV insecticide is simple and widely produced even at farmer 

level. Healthy larvae reared in the laboratory or collected from the fields are fed with low dose 



of NPV and the virus produced in the insect is harvested and its concentration is estimated by 

counting polyocclusion bodies (POBs) using a light microscope fitted with hemocytometer. 

Recently local production and utilization of NPV gained momentum in India through 

participation of scientists, farmers, NGOs and state agricultural and extension departments. 

Although, commercial production, quality and storage were still contentious issues, NPV is 

multiplied on field collected larvae and being applied on crops. Multiplying NPV on field-

collected larvae was found to be easier and cost effective compared to laboratory-reared larvae, 

but efficacy and quality of which may be effected due to contaminants such as bacteria and 

fungi.  

The effectiveness of the viral insecticide is critically dependent on concentration of 

POB, which is expressed as LE (Larval Equivalent). Generally, a standard stock preparation 

consists of 1LE, i.e. 6 × 109 POBs/ml. Microbial pesticides including NPVs and GVs have now 

been brought under the ambit of the Central Insecticide Act, 1968. Commercialisation of 

microbial pesticides is possible only after registration with the Central Insecticide Board (CIB) 

in India, a body constituted under the insecticides act that regulated their manufacture and use. 

Section 9(3b) of the act specifies a minimum quantity of active ingredient in formulation.  

While NPV insecticide production methods have been well established in many 

developing countries, the microscopic counting procedure used to screen the larvae for NPV 

infection and quality control of the viral insecticide lots has low-detection efficiency, unknown 

specificity and is laborious and requires considerable skill (Wigley, 1976). Because of this 

many NPV products produced have poor efficacy and found to be ineffective under field 

conditions. To over come this problem and for effective production of viral insecticides, it is 

necessary to have an efficient strategy for virus production, combined with rapid and specific 

diagnostic and quality control tools (Shieh, 1989). Development of appropriate, sensitive and 

reliable serological tools (Kıhler & Milstein, 1975; Kelly et al., 1978b; Towbin et al., 1979; 



Crook and Payne, 1980; Smith & Summers, 1981; Zhang and Kaupp, 1988 and Lu et al., 1995) 

are not available at this stage and will go a long way in the quality control of insect viruses in 

developing countries. Once developed, the tools would be of immense value to public and 

private entrepreneurs, such as state biopesticide production laboratories and regulatory 

agencies. In addition to this, the highly standardized, accurate, and sensitive diagnostic tools for 

NPV detection in field-collected larvae would be beneficial to pest management personnel, 

because early detection of NPV disease could make it possible to predict the occurrence of an 

imminent epizootic and thus alter the pest control tactics to be employed (Volkman and Falcon, 

1982). 

In addition to the development of immunochemical tools for diagnosis and 

quality control of NPVs, molecular level identification and evaluation of phylogenetic 

status of a particular baculovirus species is also important for establishment of purity of 

seed stock or master stock. The information is very limited in India on molecular level 

identification and evaluation of phylogenetic status of commercial baculovirus 

preparations against major insect pests. Other potential methods are available for 

confirming preservation of the particular strain includes DNA sequencing and the use 

of polymerase chain reaction (PCR) with specific primers for variable and highly 

conserved regions. These methods are not available for several NPVs and not used 

routinely. Detailed protocols and expected results will be required if these methods are 

pursued. Once the master stock is proved to be particular strain it will be used for 

production batches. The master stock will be replenished with the production batch 

once they are shown to be identical in conserved gene sequence. Given the in-field 

production process all batches must be subjected to appropriate quality assurance 



protocols, including an analysis and characterization of the active ingredient to ensure 

consistency between production batches.  

Therefore, to address the diagnostic and quality control issues pertaining to 

successful production of NPV against these major insect pests, the present research was 

undertaken to develop and evaluate the immunochemical tools for quantitative estimation of 

NPVs in commercial lots; to apply these tools in diagnosis of NPV infection at field level and 

to characterize and determine the phylogenetic status of NPV used for commercial viral 

insecticide preparations at ICRISAT, Patancheru, India. 

The objectives of this study are: 

1. Development and evaluation of immunochemical tools for diagnosis and quality 

control of NPV infecting Helicoverpa armigera, Spodoptera litura and Amsacta 

albistrga. 

2. Applications of immunochemical tools for quantitative estimation of NPVs in insects 

and viral insecticide preparations.  

3. Characterization of polyhedrin gene and development of a PCR-based assay and 

determination of phylogenetic status of Nucleopolyhedrovirus infecting Helicoverpa 

armigera. 

Work plan: 

To achieve the above objectives the following work plan has been developedTo achieve the above objectives the following work plan has been developedTo achieve the above objectives the following work plan has been developedTo achieve the above objectives the following work plan has been developed    

1.1 Isolation of Nucleopolyhedrovisrus (NPV) from Helicovera armigera, Spodoptera litura 

and Amsacta albistriga insect species at ICRISAT farms and their mass multiplication in 

laboratory conditions. 



1.2 Electron microscopic studies (SEM and TEM) of polyocclusion bodies (POBs) purified 

from infected larvae. 

1.3 Standardization of POB protein (polyhedrin) purification from HaNPV, SlNPV and 

AmalNPV. 

1.4 Production of polyclonal antibodies against polyhedrin in New Zealand White inbred 

rabbits and their characterization. 

1.5 Development of western immunoassay and indirect immunofluorescence assay for 

detection of NPV in insect extracts. 

1.6 Development and evaluation of direct antigen coating (DAC)-enzyme-linked 

immunosorbent assay (ELISA) and Indirect Competitive (IC)-ELISA for detection and 

quantification of polyhedrin in NPV infected insect extracts and commercial NPV 

preparations. 

2.1 Application of ELISA tools at field level evaluation of NPV infection through detection 

and quantification of polyhedrin in larvae days after field application against Helicoverpa 

armigera on pigeonpea crop. 

2.2  Application of ELISA and Western immunoassay in optimization of inoculation age of 

larvae and harvesting time of virus for obtaining maximum virus yield with low levels of 

bacterial contaminants. 

3.1 Design of degenerate oligomers and amplification of polyhedrin gene of NPVs. 

3.2 Purification of amplified polyhedrin gene and cloning in to pJET1 cloning vector. 

3.3  Sequencing of cloned polyhedrin gene using pJET1 forward and reverse primers. 

3.4 Phylogenetic analysis of NPV (from H.armigera) based on polyhedrin gene at nucleotide 

and amino acid levels using Lasergene software (DNASTAR, Madison, USA), MgAlign 

tool of Lasergene software and CLC workbench 3 software (CLC Bio). 



3.5 Development of PCR based RFLP marker for identification and differentiation of NPV 

isolated from H.armigera (HaNPV-P, Patancheru strain). 
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CHAPTER - II 

REVIEW OF LITERATURE 

 

The literature pertaining to the related work has been reviewed and presented in this 

chapter. 

2.1 Major Lepidopteran Pests of Legume Crops in the Semi-Arid 

Tropics: 

The important legume crops of semi-arid tropics (SAT) such as chickpea, pigeonpea, 

groundnut, mung bean, urd bean and cowpea are susceptible to a number of insect pests. Among the 

various insect pests, three lepidopteran species Helicoverpa armigera (Hubner) (Lepidoptra: 

Noctuidae), Spodoptera litura (Fabricious) (Lepidoptera: Noctuidae) and Amsacta albistriga 

(Walker) (Lepidoptera: Arctiidae) are major constraints to the production of legumes in the semi-

arid tropics (Figs 1 and 2). In this section the literature related to the distribution, host range, 

biology, pest status and crop losses caused by these three species were detailed as follows: 

2.1.1 Helicoverpa armigera (Hubner) (Lepidoptra: Noctuidae): 

Helicoverpa armigera popularly known as legume pod borer or cotton bollworm is widely 

distributed in Africa, Australia, South East Asia, New Zealand and Mediterranean Europe (Sharma, 

2005). It is a polyphagous pest attacks more than 300 plant species (Arora et al., 2005). In India, it 

has been recorded on over 20 crops and 180 wild species (Sharma, 2005), representing a great 



variety of food, fibre, oilseed, fodder, and horticultural crops (Fitt, 1991; Manjunath et al., 1989). 

Extensive damage to high value crops such as cotton, pigeonpea, chickpea, groundnut, soybean, 

pepper, tomato, tobacco, maize, sorghum, sunflower, and okra account for most of the revenue loss 

(Fitt, 1989; King, 1994). Its preference for nitrogen rich reproductive organs such as 

flowering/fruiting parts of cotton, pulses, tomato and corn confers a high socio-economic cost to its 

depredations in subsistence agriculture in the tropics (Sharma, 2005). H. armigera significance as a 

pest is based on its biotic potential such as high degree of polyphagy, high mobility, facultative 

diapause, high fecundity and multi generation (Fitt, 1989). Its biology and population dynamics 

follows different patterns in various agro-climatic zones. It completes seven or more generations a 

year in the southern states of India, and 3-4 generations in the northern states of India. It is a 

holometabolous insect; its developmental stages include eggs (2 to5 days), six larval instars (15 to 

24 days), pupa (6 to 30 days at 150C) and adult (1 to 23 days for males and 5 to 28 days for 

females). Its life cycle on several crops has been studied at several locations by many workers 

(Reed, 1965; Singh and Singh, 1975; Doss, 1979; Jayaraj, 1982; Rajagopal and Channa Basavanna, 

1982). 

Various stages of the life cycle are outlined in Fig 6. The developmental period of the 

various stages depend upon the weather conditions and food (Bhatt and Patel, 2001). The 

importance of H. armigera is largely due to its well-developed survival strategies, diapause, and 

dispersal, which enable it to exploit food sources separated by unfavorable times and distance. This 

also enables it to escape the natural enemies. It exhibits a facultative diapause, which enables it to 

survive the adverse weather conditions in both winter as well as in summer (Ditman and Cory, 

1931; Roome, 1979; Hackett and Gatehouse 1982a; Jayaraj, 1982; King, 1994; Masaki, 1980). It is 

a facultative migrant, and responds largely to local environmental cues and undertakes short or long 

distance flight in the direction largely governed by prevailing weather systems (Fitt, 1989). Larval 

stage attracts the maximum importance due to its relevance to the crop damage. The habit of 

particularly damaging many fruiting structures makes it a highly destructive crop pest. For example 



on cotton, 2 to 3 larvae per plant can destroy all the bolls within 15 days, on pigeonpea, one larva 

per plant reduces 4.95 green pods, 7.05 dry pods, 18.01 grains, 3.79 g pod weight, and 2.05 g grain 

weight per plant (Sharma, 2005). 

 

 

Fig 1: Larva of legume pod borer (Helicoverpa armigera) feeding on pigeonpea (A) 

and chickpea (B) pods 
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A unit increase in larvae per plant results in 2.61 and 4.93% increase in pod damage at the 

green and dry stages, respectively (Meenakshisundaram and Gujar, 1998). Global crop losses due to 

Helicoverpa species exceed US$ 5 billion per annum, despite the use of US$ 1 billion worth of 

pesticides. Whereas, in the semi-arid and dry tropics, losses due to H. armigera on cotton, legumes, 

vegetables and cereals alone exceed US$ 1 billion and an additional cost of >US$ 500 million is 

incurred on pesticides (Russell et al., 1998; Sharma, 2001). In India, the extent of losses in pulses 

such as chickpea and pigeonpea have been estimated at over $300 million per annum and total 

losses in both pulses and cotton exceed $530 million per annum, and the insecticides applied for 

Helicoverpa control cost nearly $127.5 million on cotton and pulses (Reed and Pawar, 1982). In 

Queensland, Australia, the cost of crop loss and control has been estimated to be A$ 16 million 

(Alcock and Twine, 1981) and A$ 25 million (Twine, 1989). In the tropics, total losses due to H.  

armigera on cotton, legumes, vegetables, and cereals may exceed 1000 million, and the cost of 

insecticides used to control H. armigera may be nearly $500 million (Reed and Pawar, 1982).  In 

Africa (Tanzania), the loss of cotton exceeds $20 million in most years (Reed and Pawar, 1982).  

2.1.2 Spodoptera litura (Fabricious) (Lepidoptera: Noctuidae): 

Spodoptera litura (Fabricious) well known as tobacco caterpillar or tobacco armyworm is 

an important polyphagous crop pest of national status in India. It enjoys wide distribution and 

besides all over India it has been recorded in entire South and South-East Asia, Australia and 

Pacific islands (CAB 1967). The distribution of this pest in India was reported by Hampson (1919), 

Cotes and Swinhoe (1888). Earlier it is known to be a sporadic pest but in recent past it has 

emerged as major polyphagus pest. It is a major pest on tobacco, groundnut, chillies, cole crops, 



sunflower, cotton and taro (Colacasia) etc (Mousa et al., 1960). Ayyanna et al. (1982) has reported 

it as a major pest on groundnut.  It is reported to feed on 112 species of plants belonging to 44 

families’ worldwide and 60 species of cultivated crops and wild plants are recorded as hosts in 

India (Thobbi, 1961).  

The biology of Spodoptera litura varies with the host and climatic conditions. The outbreak 

of this pest generally followed by a good rainfall after a long dry spell (Chellaiah, 1985). Field 

studies conducted in Japan on the seasonal abundance of S. litura on crops like groundnut, sweet 

potato, and taro indicated that there were four generations between July and October (Miyahara et 

al., 1971). In southern part of India this pest is known to complete 10-12 generations in a year (Rao 

et al., 1991). The occurrence and abundance of S. litura on different crops in various geographical 

locations was studied by various workers world widely (Singh and Hoi, 1972; Islam et al., 1983; 

Tiwari et al., 1980; Saini and Verkya, 1985; Khuhro et al., 1986; Rajagopal et al., 1988). Its life 

cycle on several crops has been studied at several locations by many workers (Tiwari et al., 1980; 

Bhalani and Talati, 1984). Various stages of the life cycle are outlined in Figure 6.  The egg, larval 

and pupal period is 3, 12-26 and 6-16 days, respectively, with a total life span 49 to 53 days 

(female) and 50 to 56 days (male) at 200C. Threshold temperatures and thermal requirements for 

development of S. litura were determined by Rao et al., (1989).  Garad, et al., (1984) recorded 

greatest net reproductive rate on okra and least on groundnut at 26.8 ± 20C in the laboratory.  

The eggs hatch in 3-4 days and the young larvae (1st to 3rd instars) initially feed in groups 

on the surface cells of the leaves (scraping injury) leaving the opposite epidermis of the leaf intact. 

Generally the later instar (4th to 6th instars) larvae disperse and spend the day in ground under the 

host plant, feeding at night and early in the morning. These larvae start feeding the whole leaf 

resulting in complete skeletinization of the plants. Under natural infestation in epidemic conditions, 

the entire foliage is consumed leaving only the mid ribs.  It is an extremely serious pest on tobacco 

in India. It was estimated that two, four and eight larvae per plant reduced yield by 23-24%, 44.2% 

and 50.4%, respectively (Patel et al., 1971). In controlled experiments on soyabeans in India, crops 



chemically protected from S. litura and other pests yielded over 42% more than crops which were 

not sprayed (Srivastava et al., 1972). On Colocasia esculenta, an average of 4.8 4th-instar larvae per 

plant reduced yield by 10%, while 2.3 and 1.5 larvae reduced yield of brinjal and capsicum in 

glasshouses by 10% also (Nakasuji and Matsuzaki, 1977).  

2.1.3 Amsacta albistriga (Walker) (Lepidoptera: Arctiidae): 

Amsacta albistriga (Walker), commonly known as Red Hairy Caterpillar (RHC) is a pest of 

several rainy season crops in Asia especially on groundnut in South India (Nagarajan et al., 1957; 

Nagarajan and Ramachandran, 1958; Narayana and Ranga Rao, 1959; Mukundan, 1964; 

Venkataraman et al., 1970; Saroja et al., 1971; Paramasivam et al., 1973). A. albistriga is a 

common species in south India and A. moorei is a common species in north India. This pest 

frequently occurs in Tamil Nadu at Coimbatore, Madurai and Pollachi districts (Kuppuswamy et 

al., 1966) and adjoining areas (Nagarajan and Ramachandran, 1958). Epidemics of this pest also 

occurred in Srikakulum, Visakhapatnam, Cuddapah, Kurnool, Anantapur, and Chittoor districts of 

Andhra Pradesh; an outbreak of this pest in Chittoor district occurred in 1975 (Siva Rao et al., 

1977). In Karnataka, the pest is of some importance in Raichur district.  

It is a polyphagous insect but particularly destructive to groundnuts (Mukundan, 1964). 

Other plants recorded as hosts of this insect are finger millet, cowpea, castor, cholam, cotton, 

sorghum, pearl millet, maize, soybean, horsegram, greengram, blackgram, clusterbean, pigeonpea, 

sesame, jute, sunnhemp and several weeds (Nagarajan et al., 1957). The RHC infestation is 

sporadic, but in certain years it can become serious and cause heavy losses (75%). In some areas in 

Tamil Nadu, Andhra Pradesh and Karnataka this pest occurs regularly in rainy season 

(Venkataraman et al., 1970; Sandhu and Brar, 1977; Siva Rao et al., 1977).  

The field biology of RHC has been studied by many researchers (Nagarajan et al., 1957; 

Nagarajan and Ramachandran, 1958; Mukundan, 1964; Ramaswamy and Kuppuswamy, 1973). The 

adult moths emerge from pupae present in the soil after the heavy rains at the onset of the south-

west monsoon (usually in June). Various stages of the life cycle is depicted in Figure 6. They 



copulate immediately and oviposit in the same night. The female moths lay 800-1000 eggs in 

masses on leaves, grasses and soil surface. After 3-4 days small larvae come out and feed 

gregariously by scraping the green portion of the leaves giving them papery appearance. Once the 

larvae become older (3nd to 5th instar), they feed individually on leaf lamina leaving only the petiole, 

midrib and the main stem. In severe cases it feeds all the parts of plant leaving only main stem 

(Nagarajan et al., 1957). After 20-30 days of active feeding grown up (6th instar) larva move 

towards barren areas, burrow into undisturbed soil and pupate at a depth of 10 to 20 cm. The pupae 

remain in the soil in diapause stage till the next monsoon. The pupation behaviour of A. albistriga 

was studied by Reddy et al. (2004). In most places this pest has one generation per year. However, 

a second generation was reported from Pollachi region of Tamil Nadu in the month of August 

(Ramaswamy et al., 1968) and from Pavagada region of Karnataka after the northeast monsoon 

during October and November (Veenakumari et al., 2007). This insect can adapt and synchronize 

with weather to its best advantage (Nagarajan and Ramachandran, 1958). When an outbreak of this 

pest occurs, a total yield loss over a large area is not uncommon (Nagarajan et al., 1957). However, 

no clearcut relationship between larval numbers and yield loss has been worked out and most pest-

control trials have only indicated the reduction in larval number 24 h after pesticides application 

without reporting any yield gains (Narayana and Ranga Rao, 1959; Kuppuswamy et al., 1965; 

Ramaswamy et al., 1969; Venkataraman et al., 1970; Saroja et al., 1971; Paramasivam et al., 

1973). 

 

 

 

 

 

 

 



 

 

 

 

Figure 2: Larva of tobacco caterpillar (Spodoptera litura) (A) and red hairy caterpillar 

(Amsacta albistriga) (B) in the act of defoliating groundnut crop. 
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2.2 Need for the Alternative Pest Management Strategies for Chemicals: 

Intensive and indiscriminate use of insecticides to control these three pests, in particular H. 

armigera, has resulted in development of resistance to synthetic insecticides such as organochlorine, 

organophosphate and carbamate groups of insecticides (Harries et al., 1971). The first report on 

development of resistance in H. armigera to pyrethroids was published in late eighties (Dhingra et al., 

1988; McCaffery et al., 1989). Subsequently, high levels of pyrethroid resistance were reported in 

cotton and pulse growing regions of India (Mehrotra and Phokela, 1992; Armes et al., 1992, 1994 and 

1996; Sekhar et al., 1996). Kranthi et al. (2001) has been studied the pyrethroid resistance in 54 field 

strains of H. armigera collected between 1995 and 1999 from 23 districts in seven states of India and 

concluded that the enhanced cytochrome p450 and esterase enzyme activities were probably 

important mechanisms for pyrethroid resistance in some parts of the country where the use of 

pyrethroids was high. Kranthi et al. (2002) reported the high level of resistance in H. armigera to 

many of the commonly used insecticides. In China, extensive spraying with chemical insecticides has 

decimated natural enemies and has reduced natural control of cotton bollworm infestations (Liu et al., 

2000; Yang et al., 2000). 

In Andhra Pradesh, insecticide resistance to the populations of S. litura was first reported by 

Ramakrishnan et al. (1984). Issa et al. (1984a, b) surveyed the resistance to organophosphorous 

insecticides and pyrethroids in field strains of the S. litura during 1980-1984 cotton growing seasons 

in Egypt. Sawicki (1986) reported that the resistance to synthetic pyrethroids in S. litura and S. 

litturalis can be countered successfully. In Pakistan, the insecticide reisistance was evaluated in field 

populations of S. litura to endosulfan, organophosphates, carbamates and pyrethroids during 1997-



2005 (Mushtaq Ahmad et al., 2007). The base line toxicity of diffeent insecticides against common 

cutworm S. litura was studied by diffeent monitoring methods, according to this data, the two field 

populations were shown to have high resistance to organophosphates and carbamates (Huang et al., 

2006). Armes et al. (1997) reported the status of insecticide resistance in S. litura in Andhra Pradesh. 

Murugesan and Dhingra (1995) reported the variability in resistance pattern of various groups of 

insecticides evaluated against S. litura during a period spanning over three decades. The relative 

susceptibility of different larval instars of S. litura to some synthetic pyrethroids has studied by Rao 

and Dhingra (1996).  

The published data on resistance to synthetic insecticides in larvae of A. albistriga is very 

limited. Every year, several tons of pesticides are used to control this pest in Tamil Nadu, Andhra 

Pradesh and Karnataka. In spite of this, the pest recurs unabated each year causing considerable 

damage to sesamum, red gram, cotton, cowpea and castor in addition to groundnut (Veenakumari et 

al., 2007).  

In addition to the development of resistance to synthetic insecticides, it has also resulted in 

resurgence of secondary pests, destruction of natural enemies, environmental pollution and health 

hazards (Armes et al., 1992, Kranthi et al., 2002). These problems reaffirmed the need to focus 

attention on alternate pest management strategies with special emphasis on these pests. Integrated 

Pest Management (IPM) methodology has been developed through the establishment of farmer field 

schools to improve the farmer’s knowledge. Many farmers were trained to implement IPM with 

significant profits (Wang, 2000). Alternative pest management strategies include use of parasitoids; 

predators, plant products, pheromones and microbial biopesticides were emphasized. Currently, there 

are reports on more than 170 active ingredients in over 500 biocontrol products (Copping, 1998). 

Approximately 45 biopesticide products were registered by the US-EPA (United states environment 

protection agency) by 1995 and it was estimated that this number would increase as more products 

being developed / tested (Murphy et al., 1995; Copping and Menn, 2000). 



2.3 Biopesticides as Alternatives to Chemical Insecticides: 

Biopesticides mainly include parasitoids, predators, fungi, bacteria, viruses, protozoa, 

nematodes, plant products and pheromones for the biological control of insect pests, among these 

entomopathogenic bacteria, fungi and viruses such as Baculoviruses have the potential to play an 

important role for the management of economically important insect pests (Dent and Jenkins, 2000; 

Moscardi, 1999). Insect-resistance based on a genetic modification through the introduction of toxic 

genes from Bacillus thuringiensis (e.g. Bt cotton), became available to farmers. There is renewed 

interest in classical biological control as a strategy in the management of severe pests like 

Helicoverpa by introducing natural enemies (King and Coleman, 1989). A more frequently tried 

method to achieve control with natural enemies has been used by augmentation of artificially reared 

parasites or predators (King and Coleman, 1989; Xia, 1997b). While the technical feasibility for 

controlling by this method has been demonstrated, the results in the field have not always been 

consistent (King and Coleman, 1989). Pathogens such as baculoviruses are attractive alternatives and 

have been used for more than 20 years with great success (Zhang, 1989). There are several 

advantages of using insect viruses in pest management: they are nonpathogenic to vertebrates and 

plants; They are well-studied systems from both pest management and molecular biology points of 

view; they leave no undesirable residues and can be used at the ‘cottage scale’ (FAO/WHO, 1973; 

Moscardi, 1999). 

2.4 Entomopathogenic Viruses:   

Insect viruses have been studied for many years due to an intrinsic interest in the general 

study of diseases of invertebrates and, more particularly, because of their potential as environmentally 

benign pest management agents (Evans, 1986). It is possible that association of viruses with 

invertebrates is ancient, possibly antedating the colonization of dry land by arthopods (Reik, 1970). 

The interest in insect diseases can be traced to the sixteenth century when a ‘wilting disease’ of 



silkworms was first formally described (Benz, 1986). The study of ecology of insect viruses and their 

potential use for pest management agents began with the pioneering work of Steinhaus (1956).  

Insect viruses are obligate, intracellular pathogenic entities. According to the International 

Commission on Taxonomy of Viruses (ICTV), those pathogenic to arthropods (insecta in 

particular) belong to at least 12 distinct families (Van Regenmortel et al., 2000). In Table 1 

classification of viruses that infect invertebrate (insect) hosts were listed. Early in the 20th century 

the disease in silkworms was attributed to a virus infection, and in 1947, visualization of rod-shaped 

virions, which are known to be characteristic of the virus family baculoviridae, was reported 

(Miller, 1996). Out of 12 families, baculoviruses have been well studied because of their potential 

as pest control agents (Black et al., 1997; Van Beek and Hughes, 1998) and, more recently, for their 

prominence as expression vectors for a wide range of heterologous genes (Luckow, 1995; Miller, 

1988; Choi et al., 1999; Smith et al., 1983). The advantages of baculoviruses for pest control 

include, their restricted host range (Grıner, 1986) and non-target effects on useful insects and lack 

of toxic residues, allowing growers to treat their crops even shortly before harvest, with low 

probability to develop stable resistance (Monobrullah, 2003). In vivo and in vitro tests with several 

vertebrate, invertebrate, and plant species have not demonstrated any pathogenic, toxic, 

carcinogenic, or teratogenetic effects after exposure to these viruses (Banowetz et al., 1976; Huber 

and Krieg, 1978; Ignoffo, 1973; Ignoffo and Rafajko, 1972; Lautenschlager et al., 1977; Roder and 

Punter, 1977). Baculoviruses are stable and can be stored as aqueous suspensions or dried powders 

for long periods without any loss of activity (David and Gardiner, 1967a). They are resistant to 

many chemicals and persist in the soil for many years (David and Gardiner, 1967b), and their 

activity is not altered significantly by relative humidity (David et al., 1971), precipitation (David 

and Gardiner, 1966), or prolonged exposure to normal field temperatures (Yendol and Hamlen, 

1973). In addition, they are highly compatible with other methods of pest control and are well 

suited for use in integrated pest management programs. They can be used concurrently with most 



chemical insecticides, reducing effective doses of the latter to environmentally acceptable levels 

(Falcon, 1971; Hunter et al., 1975; Jaques and Long, 1978). Baculoviruses differ significantly from 

chemical insecticides in that they are components of nature. Large quantities of virus are released 

into the environment during natural epizootics, which are common, widespread, and often 

important in regulating insect population levels (Federici, 1978; Injac, 1973). There is evidence that 

the amount of virus which is artificially placed into the environment for insecticidal purposes is 

minimal compared with the amount produced during such epizootics (Thomas, 1975).  

2.5 Baculoviruses: 

Baculoviruses are occluded, double stranded DNA (dsDNA) viruses, and characterized by the 

presence of occlusion or inclusion bodies (OBs). The nature and significance of these occlusion 

bodies remained a mystery for a long time until the electron microscope (EM) was available that the 

virus particle could be isolated and identified as the infectious viral agent. Based on the size, shape 

and occluded virion phenotype the baculoviruses are classified in to two genera, 

Nucleopolyhedroviruses (NPVs) and Granuloviruses (GVs) (Rohrmann, 1999; Winstanley and 

O.Reilly, 1999; Blissard et al., 2000; Fauquet et al., 2004).  

The EM observation of NPVs reveal polyhedral to irregular shaped occlusion bodies with 

size 0.15 to 15 µm in diameter composed of matrix protein (30-40 % of total viral protein) called 

polyhedrin, which crystallizes around many enveloped nucleocapsids (Hooft van Iddekinge et al., 

1983). Different NPVs are characterized by their occluded virions being present either as single 

(SNPV) or multiple (MNPV) nucleocapsids within the envelope (Fig 3). Both SNPVs and MNPVs 

may contain 20–200 virions depending upon species (Rohrmann, 1999). The GVs have small 

occlusion bodies (0.25 to 0.5 µm in cross- section) ellipsoidal in shape; normally contain a single 

nucleocapsid, which are enveloped and are composed of a major matrix protein called granulin (Funk 

et al., 1997; Winstanely and O’ Reilly, 1999; Crook, 1991).  



NPVs are found moslty in the order Lepidoptera but they are also present in other insect 

species in the orders such as Hymenoptera (31 species), Diptera (27 species) and Coleoptera (5 

species) as well as from the crustacean order Decapoda (shrimp), where as GVs are only found 

within the order Lepidoptera (Blissard et al., 2000; Federici, 1997; Martignoni and Iwai, 1986b; 

Adams and Bonami, 1991; Couch, 1974). In India, about 35 insect viruses have been recorded from  

 

Table 1: Classification of virus families containing insect pathogenic viruses. 

 

Family Genera occuring in insects Examples of virus 

DNA viruses   

Ascoviridae Ascovirus Trichoplusia ni AV 

Nucleopolyhedrovirus Helicoverpa armigera NPV 
Baculoviridae 

Granulosis virus Cydia pomonella GV 

Iridovirus Chilo iridiscent virus 
Iridoviridae 

Chloriridovirus Mosquito iridescent virus 

Parvoviridae Densovirus Galleria mellonella densovirus 

Ichnovirus Campoletis sonorensis PV 
Polydnaviridae 

Bracovirus Cotesia melananoscela PV 

Poxviridae Entomopoxvirus Amsacta moorei EPV 

Unclassified - 
Oryctes virus 
Hz-1 virus 
Bee filamentous virus 
Tsetse virus  
Narcissus bulb fly virus 

RNA viruses   

Birnaviridae Birnavirus Drosophila X virus 

Caliciviridae - Chronic stunt virus 

Nodaviridae Nodavirus  Black beetle virus 

Picornaviridae - Cricket paralysis virus 

Reoviridae Cytoplasmic polyhedrosis virus Bombyx mori CPV 

Rhabdoviridae - Sigma virus 

Tetraviridae Tetravirus Nudarelia β virus 

Unclassified - Various bee paralysis viruses 

 - Various Drosophila viruses 

Source: Fujitha et al. (1998) 



 

 

 

 

the baculovirus group, the most important being the NPV of H. armigera, S. litura, Spilosoma 

obliqua (Walker), Achoea janata (Linnaeus) and A. albistriga (Walker) and GVs of A. janata, S. 

litura, H. armigera and Chilo spp. (Pawar and Thombre, 1992).  

The size and shape of occlusion bodies in NPVs varies considerably not only between the 

POBs from different insects, but often also within the same species. For example, majority of the 

polyhedral occlusion bodies of H. armigera NPV are spherical while some of them are irregular in 

shape and the size ranged from 0.6 to 2.3µm average to 1.35µm. The diameter of polyhedra ranges 

about 0.5 to 1.5µm, depending on the insect species. Fig. 3 shows the differentiation in the cross 

section of a typical baculovirus (NPV and GV) occlusion bodies (OBs). In the boundary of OB the 

protein envelope (PE) appears as an electron dense layer made up of PE protein or envelope protein 

and shown to be very sensitive to alkaline proteases (Russell and Rohrmann, 1990a; Van Lent et al., 

1990). The distance between envelope and crystalline matrix (polyhedrin or granulin) is not uniform 

around the occlusion body. The fine structure of occlusion body reveals crystalline lattice of the 

occlusion body protein molecules, which are arranged in cubic system. Although there is no true 

membrane covering the OB, difficulties in staining OB, the retention of their shape, and the presence 

of a membrane-like coat following chemical and physical treatment indicate that the exterior portion 

of OB is different for the interior portion. On the whole they are very stable and can persist 

indefinitely in the environment (Bergold, 1982). 

The infectious, rod-shaped virions are randomly occluded in OBs without any apparent 

disruption of the lattice; an 8 nm layer separates virion from the protein matrix. The size of the virions 



with dimensions in the range from 4.0 -140nm × 250 - 400nm. Alkaline-liberated virions readily lose 

their envelopes to reveal nucleocapsids each made up of a capsid surrounding a DNA core. The 

capsid, in turn, consists of protein subunits arranged along its long axis. The virions contain large 

circular, covalently closed, dsDNA genome with size in range of 80- 180 kbp packed in the 

nucleocapsid (Blissard and Rohrman, 1990, Volkman et al., 1995).  Among the baculoviruses, NPVs 

attracted the attention of pest control scientists interested in looking for an alternative to pesticides 

because they cause a highly infectious disease that kills in 5-7 days. These viruses attack some of the 

most important Lepidopteran crop pests including species of Heliothis, Helicoverpa and Spodoptera. 

Some of the related GV species are also highly infectious e.g. Cydia pomonella (apple codling moth) 

GV and Plutella xylostella (diamond back moth) GV. However not all GVs are as fast acting as NPV 

because morphologically they had single envelop with single nucleocapsid per occlusion body 

(Winstanely and O’ Reilly, 1999) (Fig 3). In general, the host range of most NPV is restricted to one 

or a few species of the genus or family of the host where they were originally isolated. However, it 

also represents an important commercial draw back, restricting the use of these products to specific 

key pests or closely related pest complexes, such as Heliothis and Helicoverpa species (Chakraborthy 

et al. 1999). Some of the few exceptions having a broader host range are (i) Autographa californica 

MNPV infecting more than 30 species from about 10 insect families, all within the order Lepidoptera, 

(ii) A. falcifera NPV infecting more than 31 species of Lepidoptera from 10 insect families and (iii) 

M. brassicae MNPV which was found to infect 32 out of 66 tested Lepidopteran species from 4 

different families (Groner, 1986; Doyle et al., 1990; Hosteller and Puttler, 1991). In contrast to NPV, 

the host range of GV appears to be even narrower and mostly restricted to a single species. Over 20 

species of baculoviruses have been developed or registered as commercially available insecticides 

and over 30 different products have been registered as commercial insecticides based upon NPV or 

GV. Some examples of commercially available virus-based pesticides registered for pest control in 

different countries were listed in Table 2. 



 

 

 

 

Table 2: Examples of commercially available virus-based pesticides registered for pest 

control in different countries 

 

S.No Host insect Crop Commercial name Country 

1 
Anagrapha falcifera (Kirby) 

Cotton 

Vegetables 

 USA 

2 Anticarsia gemmmatalis (Hubner) Soybean Baculoviron 

Baculovirus 

Nitral  

Coopvirus 

Brazil 

3 Autographa californica (Speyer) Cabbage 

Cotton 

Ornamentals 

VPN 80 Gautemala 

4 Buzurz suppresalis (Guenee) Oil tree, Tea   Tung China 

5 Heliothis virescens (Fab.) Cotton Elcar USA 

6 Helicoverpa armigera (Hubner) Cotton, 

Tomato 

Virin-HS Russia 

7 Helicoverpa zea (Boddie) Cotton Elcar, Gemstar USA 

8 Hyphantria cunea (Drury) Forest 

mulberry 

Virin-ABB Russia 

9 Lymantria dispar (Linnaeus) Forests Gypcheck 

Disparvirus 

virin-ENSH 

USA  

Canada  

Russia, China 

10 Mamestra brassicae  (Linnaeus) Cabbage Mamestrin,Virin-EKS France, Russia 

11 Neodiprion lecontei (Fitch)  Lecont virus USA,Canada 

12 Neodiprion sertifer (Geoffroy)  Monisarmio 

Virus 

Virox 

Finland  

UK 

UK 

13 Orgyia pseudotsugata (McDunnough) Forests TM biocontrol  

Virtuss 

USA  

Canada 



14 Spodoptera exigua (Hubner) Ornamentals 

Vegetables 

Garden pea 

Grapes 

SSPOD-X USA 

Thailand 

15 Spodoptera frugiperda (J.E.Smith) Maize  Brazil 

16 Spodoptera littoralis (Boisduval) Cotton Spodopterin Africa 

17 Spodoptera litura (Fabricius) Vegetables  China 

18 Spodoptera sunia (Guenee) Vegetables VPN 82 Guatemala 

Source:  Moscardi, 1999 



                Figure 3: Morphological Characteristics of Nucleopolyhedroviruses (NPVs) and Granulovirues (GVs) 
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2. 6 The Life Cycle of a Typical Baculovirus: 

An understanding of the lifecycle of baculovirus and its mode of replication (Figs 4 and 

5) is essential for an understanding of virus production dynamics. The replication of Autographa 

californica MNPV has been most extensively studied in larvae of Trichoplusia ni and in cultured 

cells of S. frugiperda and serves as a model for NPV and GV replication in Lepidoptera 

(Granados and Williams, 1986; Federici, 1997; Williams and Faulkner, 1997). The infection 

occurs when the susceptible larva feed on the virus-lased plant parts and it must be emphasised 

that these viruses have no contact effect and cannot infect an insect unless eaten (Blissard and 

Rohrmann, 1990).  A unique feature of the baculovirus life cycle is the production of two virion 

phenotypes: Those virions found within polyhedra are termed polyhedra-derived virus (PDV) or 

occlusion derived virus (ODV) which is important for the horizontal spread of the virus in the 

environment and a second form which is involved in the spread of the viral infection and found in 

the haemocoel of the infected host insect is termed budded virus (BV) (Fig 3). These two 

phenotypes are structurally distinct and destined for two different functions, both of which are 

essential for virus survival in nature (Funk et al., 1997). The differences between BV and ODV 

and various functions were detailed in Table 3. 

Following consumption of occlusion bodies, in the alkaline environment of the midgut 

(pH >9.5), the protective crystal matrix protein (polyherin / granulin) dissolve rapidly and the 

infectious occlusion derived virions (ODVs) are released in to the gut (Blissard and Rohrmann, 

1990). There is evidence that the dissolution of the occlusion body matrix might be facilitated by 

an insect derived alkaline protease, which is associated with the occlusion body matrix (Harrap et 

al., 1977). The released virions pass through the peritrophic membrane (PM) (proteinaceous-

Chitinaceous layer secreted by midgut cells to protect epithelium) and after the attachment to the 

microvilli of the midgut epithelium, the nucleocapsids enter the cell lumen either via fusion of the 

virion envelope with epithelial membrane or by viropexis (Patel et al., 1967).  



Table 3: Differences between BV and PDV phenotypes (Fig. 3): 

 

Character BV 

 

ODV 

 

 

 

 

Virions 

 

 

 

As single nucleocapsids in loose – 
fitting viral envelope 

 

 

Possess one or many nucleocapsids 
in single tight – fitting envelopes. 

 

Time of 

production 

 

During early stages of infection 

 

During terminal stages of viral 
infection 

 

Responsible for 

Secondary infection  

(Spreads the infection from cell to 
cell within the host) 

 

Primary infection 

 

 

Virion envelope 

 

 

Derived from plasma membrane 

 

 

 

Acquired in the nucleus 

 

Mode of entry 

into host cells 

 

By adsorptive endocytosis 

 

By fusion of viral envelope with 
microvilli of midgut epithelial cells 

 

 

 

 

 

 

 

 

 



The nucleocapsids are transported, most likely under involvement of the cellular 

microtubular structures, to the nucleus. Where they uncoat as early as 1 h post infection (PI), the 

DNA is exposed and the virus replication is initiated in the host cell (Miller and Lu, 1997). The 

newly produced nucleocapsids traverse the nuclear membrane, the cytosol and bud through the 

basal lamina of the mid gut cells into the hemolymph. These progeny virus particles are called 

extra cellular virus (ECV) or budded virus (BV) and consists of naked nucleocapsids (Miller and 

Lu, 1997).  During exit from the cells, BVs acquire a new envelope and protein structures 

(peplomers), which consists of plasma membrane containing viral encoded glycoprotein, termed 

GP64 (Blissard and Rohrmann, 1989) (Fig 3). Gp64 is expressed both early and late in infection 

and is transported to and incorporated into the cell membrane. As nucleocapsids bud through the 

cell membrane and exit the cell, they become enveloped in the GP64-modified cell membrane. 

GP64 is required for the spread of the infection to other cells and for the virus to exit from an 

infected cell (Monsma et al., 1996). GP64 appears to be pivotal for the interaction between the 

BV envelope and susceptible host cells through a possible interaction with a cell membrane 

receptor molecule and then a final fusion with the endosomal membrane (Blissard, 1996). BV 

primarily enters cells by endocytosis, a pathway in which the entire virion is endocytosed into an 

intracellular vesicle called an endosome. The acidification of the endosome is thought to initiate 

fusion of the virus envelope with endosomal membrane, releasing the viral nucleocapsid into the 

cytoplasm (Kingsley et al., 1999; Markovic et al., 1998). Some production of polyhedra may also 

occur during the first 48 h PI, but these OB are usually small and defective containing no virions 

(Miller and Lu, 1997). At this point the first cycle of viral replication completes and the second 

phase of infection in the other body tissues follows. Just as the OB is the form of the virus 

designed to carry the infection from insect to insect, the ECV or BV is the form in which the virus 

spreads from the initial site of infection in the midgut to the other tissues of the body of the insect 

(Monsma et al., 1996; Oomens and Blissard, 1999). For most NPV and GV infecting 

lepidopteran host larvae, virus occlusion is not observed in midgut epithelial cells. These cells 



release BV into the hemolymph which then systematically spread the virus infection among 

susceptible cells and tissues. Engellhard et al. (1994) studied the infection pathway in fourth 

instars of Trichoplusia ni larvae, based on the observations they postulated that in early infection 

of midgut, the tracheal system (tracheoblast and the tracheal matrix) might directly contribute to 

the systemic spread of BV. It is in the midgut tissue that the host insects are sometimes able to 

contain and halt the infection by destroying or shedding infected cells before the first cycle is 

completed (Engelhard and Volkman, 1995).  

After the midgut cycle the BV particles spread throughout the body in the haemolymph 

and infect in turn the cells of haemocytes, tracheal cells, fat body, muscle cells, hypodermis, nerve 

cells, as well as reproductive and glandular tissues (Granados and Lawler, 1981; Federici, 1997). It 

is in these tissues that a second cycle of infection occurs and occlusion bodies (OBs) are produced. 

If the infection gets established and this second cycle of virus replication occurs it is often found 

that 90% or more of susceptible cells may become infected (Federici, 1997). In these the nuclei 

become swollen and nucleocapsids are produced, but unlike in the first cycle large amounts of 

polyhedrin or granulin are also synthesised and condense to form crystals in which the 

nucleocapsids become embedded to form new OBs and so complete the cycle (Hamblin et al., 

1990; Wood et al., 1994). This OB production in a species such as H. armigera starts around 5 days 

after infection and peaks 7-8 days post infection (PI). The massive destruction of body tissue that 

accompanies the production of OB eventually kills the insect. The final stage of baculovirus 

infection is breakdown of the larval cuticle and the release of the occlusion bodies into the 

environment to spread and infect other insects. The cuticles of insect larvae consist mainly of chitin 

fibres embedded into a proteinacous matrix. Two baculovirus genes, encoding a chitinase (ChiA) 

and cathepsin (cath), have been described to contribute to the liquefaction of the larval carcass and 

the release of occlusion bodies. Chitninase is a chitin-degrading enzyme with endo- and exo- 

molecular specificity, whereas cathepsin has cysteine protease activity (Slack et al., 1995; Hawtin 

et al., 1995; O’Reilly, 1997). In a typical nucleus 10-50 OBs are produced giving 109-1010 OB per 



insect. On death these OB may comprise in total 10% of the insects weight. This astonishing high 

productivity of NPV or GV in larvae is another reason for their attraction as biopesticides and is 

unmatched by any other type of virus. Successfully infected insects secrete NPV or GV during the 

later stages of infection and move about host plants spreading virus extensively before death. OBs 

also remain active if eaten and passed through predators and, therefore, the activities of birds, 

mammals and other larval predators may be important in spreading baculovirus epidemics (Boucias 

et al., 1987; Entwistle et al., 1993; Vasconcelos et al., 1996b). 

The gross pathology of a typical baculovirus (NPV) infection in lepidopteran larvae was 

summarised by Granados and Williams, 1986; Federici, 1997; Williams and Faulkner, 1997 as 

follows: 

� Day 1-3 PI: Infected larvae normally do not show obvious signs of disease. 

� Day 4-6  PI: Diseased larvae only react slowly to tactile stimuli. The larvae 

start to appear swollen, glossy and moribund. 

� Day 6-7  PI: Diseased larvae stop feeding and begin to die. Diseased larvae of 

some species (e.g. Lymantria, Heliothis, Amsacta etc) crawl to the top of the twings 

(negative geotropism) on which they were feeding (Fig 10). 

� Day 7-10 PI: Diseased larvae die and may liquefy, the cuticle ruptures  

     and polyhedra are released. 

 

 

 

 

 

 

 



          Figure 4: The mode of infection of a typical baculovirus in lepidopteran larvae 

                         

 

 

 

 

 

 

 

 

 

 

 

Figure 5: An general overview of the replication cycle of NPVs 

 

    

Source: http://www.microbiologybytes.com/virology/kalmakoff/baculo/baculo.html 
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    2.7. Helicoverpa armigera nucleopolyhedrovirus (HaNPV): 

NPVs are naturally occurring pathogens of H. armigera and have wide distribution in 

Asia, Africa and Australia. Strains of these viruses have been developed as commercial 

biopesticides in America, Australia, India, China and Thailand. Development of NPV-based 

pesticides to manage Helicoverpa species began in 1961. Progressed through various research and 

developmental phases, and attained technical realization as first commercial viral pesticide in 1973 

(Ignoffo and Couch, 1981). The history of baculoviruses in India reveals that an impetus for the 

development of an NPV of H. armigera (HaNPV) was provided through its first discovery from the 

laboratory culture of its host in Gujarat (Patel et al., 1968). Jacob (1972) and Rabindra and 

Subramanian (1974) described the symptoms of disease, susceptibility of different instars of H. 

armigera and host-pathogenic relationship. 

  HaNPV has been shown to be highly effective in controlling H. armigera on a range of 

crops, including legumes (Rabindra et al., 1992), oil seeds (Rabindra et al., 1985), cotton (Jones, 

1994) and vegetables (Jones et al., 1998). Field trials on chickpea in India showed that HaNPV 

applications could control H. armigera more effectively than either chemical insecticides or 

commercially formulated B. thuringiensis (Cherry et al., 2000). H. armigera single-nucleocapsid 

nucleopolyhedrovirus (HaSNPV), has been used successfully in china to control this pest in an area 

of about 100,000 hectares since its first isolation in 1975 in Hubei province of China (Zang 1994), 

with minimal adverse effects on the biotic environment (Chen et al., 2000b). For insect species 

such as cotton bollworm that have developed resistance to chemical and/or Bt insecticides, the 

application of HaNPV is one of the few options left for effective bollworm control (Trumble, 

1998). Eight HaSNPV genotypes have been identified and partially purified from wild-type 

HaSNPV isolation by using an in vivo cloning method, among these one genotype (HaSNPV-G4) is 

present at the highest frequency and is the predominant genotype of this isolate (Sun et al., 1998). 

HaSNPV appears to have a host range restricted to members of the genus Helicoverpa including H. 



zea, H. virescens and H. assulta (Herz et al., 2003; Ignoffo and Couch, 1981). H. zea single 

nucleocapsid NPV (HzSNPV) has almost the same host range (Ignoffo et al., 1983). There is no 

significant difference in the infectivity of HaSNPV and HzSNPV in H. armigera larvae (Sun and 

Zhang, 1994) or in H. zea (Hughes et al., 1983). HzSNPV was registered as one of the first 

commercial baculovirus pesticides (Viron-H, Biocontrol-VHZ, ElcarTM) in the 1970s and has been 

extensively used to control the cotton bollworm in the USA and other countries (Shieh, 1989; 

Cunningham, 1998). HaSNPV has been adopted for mass production as a viral pesticide and has 

been widely used to control the insect pests in China (Zhang et al., 1995) and in other countries 

(Jones, 1994) as well. HaSNPV insecticide is recommended to be applied to control early instars of 

the pest larvae through either a high volume spray or an ultra low volume spray method.  

Depending on the size and density of the crop and the age and density of the pest population, the 

dosage of virus application is suggested to be 1.2-2.4 × 1012 POBs/ ha, which is 1.2-2.4 kg of 

wettable powder, or 0.6-1.2 L of liquid concentrate. Normally 2-3 sprays are needed to control 

natural infestation with 4-5 days interval. The surviving number of cotton bollworm larvae was 

reduced by 83.7-91.7 % when cotton was sprayed with this spray regime (Zhang et al., 1995). 

However, like other baculoviruses HaSNPV have some limitations which restricted its widespread 

commercial use. The major disadvantage is slow speed of action when compared to chemical 

insecticides. During which the insects can still cause serious damage to the crop. To enhance the 

efficacy of HaSNPV as a pesticide, it has been genetically modified by deletion of the egt gene 

from its genome (recombinant HaCXW1) and insertion of an insect-selective scorpion toxin (AaIT) 

gene controlled by the HaSNPV polyhedrin promoter (recombinant HaCXW2) (Chen et al., 2000b). 

In cotton field plots, artificially released H. armigera larvae treated with either HaCXW1 or 

HaCXW2 were killed faster than larvae in plots treated with wild-type HaSNPV (Sun et al., 2002b, 

2004).  

 



2.8. Spodoptera litura nucleopolyhedrovirus (SlNPV): 

  Dhandapani et al. (1982) observed an epizootic in larvae of S. litura on daincha 

(Sesbania bispinosa, a green manure crop) in Tamil Nadu, which was traced to a NPV, not 

previously observed in India. It is suggested that virus is spread through soil-borne particles.  

  In field test in Japan, SlNPV at the rate of 1 ×1011 POB/0.1 ha gave good results against 

larvae in the 1st-3rd instar, but 3 × 1011 POB/0.1 ha was necessary to control 4th stage instars. Active 

polyhedra were recovered in the soybean plots 1 month after the treatments (Okada et al., 1977). In 

Tamil Nadu, application of SlNPV against S. litura on knolkhol, beetroot, tobacco, cotton, 

cauliflower, cabbage and castor was studied in pot experiments. Maximum larval mortality was 

obtained on tobacco (96.6 %), cauliflower (96.6 %) and cabbage (93.3 %). Application of the virus 

to the lower leaf surface of tobacco or cotton caused higher mortality than on upper leaf surface 

(Santharam and Jayaraj, 1987). Sachithanandam et al. (1989) tested the efficacy of dust and 

wettable powder formulations of nuclear polyhedrosis virus (SlNPV) under greenhouse conditions 

on groundnut. Wettable powder and dust formulations at the rate of 4-6 × 107 POBs/pot were as 

effective as chlorpyrifos 0.04% spray or carbaryl 5% dust against 3rd instar larvae of S. litura. The 

virus formulations, however, were inferior to the unformulated virus. At higher doses, the wettable 

powder (0.8 × 108 POB/pot) and dust (1.2 ×108 POB/pot) were equivalent to unformulated virus 

(0.8 × 108 POB/pot) causing 76.6, 70.0 and 80.0% mortality, respectively. Rao et al. (1987) added a 

number of adjuvants to SlNPV to observe its efficacy against S. litura on tobacco in nurseries and 

in the field in Andhra Pradesh. The addition of 0.25% boric acid enhanced the mortality of S. litura 

due to SlNPV. The virus application reduced leaf damage to a grater extent than endosulfan in the 

nursery. 

   In Japan, green house studies were carried out on the use of SlNPV @ 3 × 108/m2 and 

Dipterex (trichlorfan) @ 0.05% a.i./200 ml/m2 on strawberries against S.litura. The virus was slow 

in its action, but 20 days after spraying with SlNPV or trichlorfan the number of larvae per plant 



was 1 and 2 respectively, compared to 17 in the untreated greenhouse plants. To examine the 

persistence, neonate larvae were released in plots 1, 11, and 19 days after treatment with virus, B.t. 

or trichlorfan. Larvae were controlled only in the SlNPV- treated plants (Nemoto and Okada, 1987). 

In soybean, field applications of SlNPV@ 3 × 1012 and 1.5 × 1012 POB/25 litres/ha increased the 

yield to 170% compared to that of untreated field and suppression continued for one month in 

comparison to 10 days when methomyl was applied @ 450 g a.i./ha (Asayama and Takimoto, 

1987). In aerial application of the SlNPV @ 1. 3 × 109 POB/ml was found to be ineffective while 

ground application @ 1.2× 107 POB/ml was most effective. Larval mortality in aerially and ground 

treated plots was 54-83% and 87-93%, respectively (Okada, 1987).  

  In India, two field trials were conducted in Tamil Nadu, during the Kharif seasons of 

1985 and 1986 with SlNPV @ 250 LE/ha (3 sprays), 0.08% chlorpyrifos (2 sprays), 0.08% 

chlorpyrifos + SlNPV @ 250 LE/ha (2 sprays) and initial spraying of SlNPV followed 3 days later 

with 2 sprays of chlorpyrifos against S. litura on cowpea. An initial treatment of SlNPV followed 3 

days later by 2 sprays of chlorpyrifos gave the greatest reduction in pest numbers and highest grain 

yield in both years (705 and 467 kg/ha., respectively) (Sivaprakasam et al., 1988). Dhandapani and 

Jayaraj (1989) observed that SlNPV @ 250 LE/ha at 10 day intervals was as effective as 

fenpropathrin @ 100 g a.i./ha + SlNPV (water dispersible powder) @ 125 LE/ha against S.litura on 

chillies. 

  In Vietnam, a new isolate of SlNPV was applied in local soybean fields, and the effect of 

its application was examined at high and low doses (1.7 × 108 and 3.3 × 107 POB/m2, respectively). 

The percentage of larvae infected with NPV increased from 22.2% on the day before NPV 

application (Day 0) to 50.8% (Day 6) in the high dose treatment plot, and from 7.9% (Day 0) to 

35.7% (Day 6) in the low dose plot (Madoka Nakai and Nguyen Thi Thu Cuc, 2005). 

            

    



2.9 Amsacta albistriga nucleopolyhedrovirus (AmalNPV): 

The occurrence of NPV in groundnut red hairy caterpillar, Amsacta albistriga was first 

reported by Jacob and Subramaniam (1972). After that both field as well as laboratory studies 

were conducted on this virus in Tamil Nadu (Rabindra and Subramaniam, 1975; Jayaraj et al., 

1976; Narayanan et al., 1978; Chandramohan and Kumaraswami, 1979; Baskaran et al., 2001). 

Limited field application of this virus in 1979 resulted in large-scale outbreak of the disease in A. 

albistriga populations on groundnut during the succeeding year in Lakkepalayam village in Tamil 

Nadu (Rabindra and Balasubramanian, 1980). Muthukrishnan et al. (1998) conducted the in vivo 

studies on the susceptibility of Amsacta albistriga, to nuclear polyhedrosis virus. Similar studies 

were conducted at Pavagada in Karnataka; the results were quite encouraging as the virus 

effectively suppressed the pest, indicating that A. albistriga NPV (AmalNPV) has potential to be 

used as an effective microbial pesticide against this pest without posing any environmental hazard 

(Veenakumari et al., 2005). The bio-safety studies of this NPV showed that it is non-hazardous to 

white mice and common carp Cyprinus carpio L. proving its safety to mammals and other non-

target organisms (Narayan et al., 1977a, b). The effect of host plants on the infectivity, incubation 

period and yield of NPV to groundnut red hairy caterpillar; A. albistriga was studied by Murali 

Baskaran et al. (1998). ICRISAT’s research resulted in utilization of the NPV to control the RHC 

population on groundnut (Rao et al., 2006). Currently, researches at the School of Biological 

Sciences, Madhurai Kamraj University, Tamil Nadu, India, has been working on the development 

of a recombinant baculovirus against H. armegira and A. albistriga (Personal communication). 

                

    

    

    



2.10 Mass Multiplication of NPVs on Field Collected and Laboratory 

Reared Larvae: 

Historically, several entomopathogenic viruses have been produced in susceptible host 

insects, because of the following reasons. i) The insect host is an efficient virus producer (Ignoffo and 

Couch, 1981). ii) Automation of in vivo rearing and in vivo production systems is feasible (Powell 

and Robertson, 1993; Bell and Hardee, 1995). Some baculovirus species may be produced in insect 

cell cultures, but the associated costs are relatively high (Hink, 1982). Therefore, all NPVs that have 

been developed as commercial products thus far have been produced in host larvae. 

  Like several other entomopathogenic viruses HaNPV, being an obligate pathogen, can be 

multiplied only on its host larvae (Ignoffo and Anderson, 1979). Rabindra and Jayaraj (1986) and 

Kennedy and Sathiah (2001) described mass multiplication techniques of HaNPV in detail. The in 

vivo virus production has several advantages like (1) Successful use of viruses produced in the host to 

control insect pests (Ignoffo and Couch, 1981; Bell, 1991). (2) Research is continuing in this area to 

produce more efficient systems, which makes this approach an economically viable one. (3) In many 

areas of the world, virus production in the host is the only approach feasible (Katagiri, 1981; 

Moscardi et al., 1981).     

   In vivo mass production systems have changed little over the past 30 years. The 

development of semi-synthetic artificial diets by Vanderzant et al. (1962) resulted in rearing and virus 

production systems for the cotton bollworm (H. zea), the tobacco bud worm (H. virescens) and the 

cabbage looper [Trichoplusia ni (Hubner)] by Ignoffo (1965). The initial rearing system was made 

more efficient by the introduction of disposable multicelled plastic trays (Ignoffo and Boeing, 1970), 

automation in rearing and automation in virus inoculation and harvesting. Optimal virus production is 

the result of interrelationships of host-pathogen-environment and each factor in this triad must be 

assessed for influence on quantity and quality of the product. Research in these areas has been 

summarized (Shapiro et al., 1986; Shapiro and Bell, 1981, 1982). Basic methods were described in 



compact form by Klmakoff and Longworth (1980).  A broader and more complete account of some 

aspects on virus production and role of virus in insect pest control has been given by Burges (1981).  

Falcon (1976) reviewed the problems associated with commercialization. Subsequent development 

and industrialization for mass rearing process, improvements in viral recovery procedures and 

formulation of the viral product made it possible for commercialization of HaNPV (Shieh, 1978). 

Further, Ignoffo and Couch, 1981 improved the method of mass production of baculovirus of 

Helicoverpa from the laboratory reared Helicoverpa larvae through which seven to nine times more 

active virus and two to five times more polyhedral occlusion bodies (POBs) were obtained from dead 

and diseased larvae. 

  Field collection of diseased larvae led to contamination with adventitious agents, which 

would pose a major problem in terms of safety and quality control, and as such it was not desirable 

for HaNPV production (Sherman, 1985). Because of the developments of semi-synthetic diet, 

containerization and automation, laboratory reared insect have been the hosts of choice. The 

advantages of these insects are i) Laboratory reared insects tend to be larger than field collected 

insects, because of the selection and adaptation to the laboratory environment (diet, temperature, 

humidity and photoperiod). ii) They are normally disease free, which should result in virus product 

that is free from other pathogens. iii) The growth and development of laboratory-reared insects tend 

to be faster than field insects, because of selection. iv) Virus yield among laboratory-reared insects 

tends to be greater than among field insects, since virus yield is dependent on host biomass (Hedlund 

and Yendol, 1974; Shapiro and Bell, 1981). 

Although laboratory colonized insects provide several advantages over field insects as virus 

producers, field insects have also been used successfully to produce NPV from larvae of potato tuber 

moth (Phthorimaea operculella (Zeller)) in Australia (Matthiessen et al., 1978), the velvet bean 

caterpillar (A. gemmatalis) in Brazil (Moscardi et al., 1981), the European pine sawfly (N. sertifer) in 



the United States (Rollinson et al., 1970) and a CPV from the pine caterpillar (D. spectabilis) in Japan 

(Katagiri, 1981) on natural foliage. 

Different methods of mass production of baculoviruses, according to Pawar and Thombre 

(1992) are: i) large scale rearing of insects in the laboratory, ii) field collection of host larvae from 

infested crops and infecting them in the laboratory iii) field collection of diseased larvae from infested 

fields. Large collection of insect viruses at the rate of 20,000 host larvae have been reported from 

different crops viz., cotton, sunflower, pigeonpea, chickpea (Ignoffo, 1966a and 1966b; Anderson et 

al., 1972; Battu, 1992). Battu (1992) reported relatively lower levels of POBs obtained from field 

collected, diseased and dead insects. The number of larvae required to produce one LE (6x109 POBs) 

of virus from field collected larvae were higher (2.97) than laboratory reared ones (2.14) since field 

collected larvae were of different size unlike the uniform stages in the laboratory reared ones (Gopali 

and Lingappa, 2001a). At ICRISAT, for effective mass multiplication of AmalNPV, the field-

collected larvae are released into an aluminum or polythene grid/enclosure (10 cm height) to confine 

the larvae inside the shaded enclosure and fed with plants already inoculated with the virus. The field 

technique for rearing larvae is advantageous, particularly in avoiding the handling of huge larval 

populations, rearing and inoculation. This would also facilitate farm level production and access to 

the biopesticide at the village level (Rao et al., 2006). The laboratory level mass production technique 

for AmalNPV has been standardized by Veenakumari et al. (2006). In situ field level mass production 

of AmalNPV in a groundnut ecosystem was developed first time at Project Directorate Biological 

Control (PDBC), Bangalore, India (Veenakumari et al., 2007).  

2.11 Method of Virus Inoculation and POB Yield: 

The virus used for the inoculation must confirm the quality control specifications of viral 

products as reported by Shieh and Bohmfalk, 1980. The inoculation dose is expressed in units of 

POB/ml, and the optimal dose varies with the virulent virus and age of the host (Ignoffo and Couch, 

1981). Angelini and Labonne (1970) suggested that the best method to propagate the virus was to 



spray a suspension on larval diet. They could get the larval mortality after seven to eight days. 

Shapiro and Bell (1981) reported that surface treatment is an efficient system that is easily automated 

and requires much less virus than diet incorporation. However, Odak et al. (1984) used soaked 

chickpea seeds treated with HaNPV to feed Helicoverpa larvae and found that the method was 

effective for mass production of virus. Bioassays were used to determine the activity of each batch of 

virus. Several modes of administration of virus were tried using different larval instars viz., surface 

treatment, diet incorporation and direct feeding (Ignoffo, 1966a). Earlier instars were highly 

susceptible to the virus (Rabindra and Subramanian, 1974) with LT50 shorter than older ones. 

Narayanan (1979) reported that the early instars recorded 100% mortality. Whereas, late instars 

particularly from fifth instars pupated and gave rise to malformed adults with short and ruffled wings. 

The effect of NPV was directly related to the age of the larvae at the time of infection (Battu, 1990). 

Further, Battu (1992) reported that increasing dosages are required to kill the older larvae. The 

relative resistance of eight days old larvae was 2000 times more than that of one-day-old larvae. 

Further, he observed that fifth and sixth instar larvae could not be infected with the virus even at 

higher concentrations. Rabindra and Subramanian (1974) inoculated fourth instar larvae with a dose 

of 106 POBs/ ml to harvest maximum yield. The LC50 values for the first and third instar of H. 

armigera were 8.3×103 and 28.6×105 POBs per larva, respectively (Backwad, 1979). Narayanan 

(1979) found that the optimum dose of inoculum required for obtaining the maximum harvest of virus 

from the fourth instar larvae was 5×104POBs/cavity/larva by the diet surface contamination method. 

Where as, Shieh (1978) used 5×105 to 5×106 POBs/ml inoculum in each cavity and observed that 

there was significant interaction between the age of the larvae and dose of the virus with the recovery 

of POB. 

Taun et al. (1989) described the pathogenicity of HaNPV to H. armigera using three different 

inoculation methods. The LD50 values of fourth instar larvae that were fed on diet containing NPV or 

maize kernels soaked in virus suspension were 1.85 ×106 and 2.55 × 105 POBs per larva, respectively. 



The inoculum imbibing method was more sensitive and convenient for inoculating the pest with virus. 

Whereas, Jayaraj and Sathiah (1993) described three methods of inoculation viz., head dipping, oral 

feeding and diet surface contamination and the latter method was the most economical and convenient for 

easy application. Ignoffo (1966b) estimated that at least 6 × 109 virus polyhedra were produced per larva 

in late instars of H. zea and he defined it as “one larval equivalent”. The average yield of virus per larva 

infected after 5 to 7 days at 30°C was 1.5 × 109 polyhedra (Ignoffo, 1973). Teakle et al. (1985) observed 

that the least yield of 1.18 ×107 POBs/insect was from younger larvae of H. armigera compared to 3.6 

×109 POBs/insect from grownup larvae. Whereas, Shieh (1978) recovered 5 × 109 POBs/larva indicating 

that the yield of POBs was directly related to the age of the infected larvae. The host insect, insect diet, 

insect age and virus dosage, incubation, environment and preservation of virus infectivity were some of 

the major factors, which optimize the production of HzNPV (Carter, 1984). The virus yield increased 

exponentially with the age of larva at dosing in the range of zero to six days, the overall increase being 

approximately 100 fold (Teakle and Byrne, 1989). Battu (1990) reported an average yield of 1.81 ×109 

POBs per larva of H. armigera. Similarly Pawar and Thombre (1992) reported that HaNPV yields per 

larva ranged from 0.95 × 109 to 3.5 × 109. Gopali and Lingappa (2001a) suggested 108 POBs/ml as the 

optimum dose required for third and fourth instar larvae to achieve quicker and higher mortality of larvae 

for virus production and among different instars of H. armigera, the fourth instar larva was found ideal 

for virus production as it yielded higher quantity of virus per larva (2.81 × 109 POBs).  

In vivo mass production and control efficacy studies of S. litura NPV (SplNPV) were 

positively correlated with larval weight from 3rd instar to 5th instar larvae, maximum yield of 1.4 × 109 

POBs/ml was obtained with early 5th instar larvae individually infected by diet–incorporation of inoculum 

of 3x106 POBs/ml for 7 days of incubation at 300C (Tuan et al., 1998). Similarly, a maximum yield of 

5.57 × 109 POBs / larva was obtained at the inoculum dose of 1966.2 POB/ mm2 of S. litura NPV when 

exclusive harvest of cadaver was done (Senthil Kumar et al., 2005). Jun et al. (2007) reported that the 

volume of POBs of SpltMNPV harvested at 5th day of post inoculation period was significantly lower 



than that harvested on 7th day of post incubation period, which was significantly lower than that harvested 

after larval death and similar trend was observed in biological activity by dosing fifth instar larvae. To 

study the influence of virus inoculation method and host larval age on productivity of the NPV of the teak 

defoliator, Hyblaea puera (Cramer) was determined by different methods of inoculation (Biji et al., 

2006a).  

2.12 Physico-Chemical Properties of the Occlusion bodies (OBs): 

The physical and chemical properties of OBs from five NPVs and GVs were studied and 

compared by Summers and Smith (1976) and out lined as follows:    

1) Occlusion bodies are insoluble in hot or cold water, alcohol, ether, chloroform, benzol or acetone. 

2) They dissolve in aqueous solutions of NaOH, KOH, NH3, H2So4 and CH3COOH. 

3) They are not digested by proteinases such as papain (pH 8.3), trypsin (pH 6.8) or pepsin (pH 3.3 

to 4.0) but by pepsin at pH 2.0 to 2.9 and by trypsin and papain after alkali treatment.   

4) They are heavier than water, a characteristic feature which helps to distinguish them from fat 

droplets which always float on top. 

5) They are not destroyed by bacterial putrefaction. 

6) The major component of the occlusion body is a single, viral encoded protein of molecular weight  

25-33 kDa, called polyhedrin or granulin (Hooft van Iddekinge et al., 1983). 

7)  Occlusion bodies normally band at 54-56% sucrose on 40-65% w/w sucrose gradients at 100,000 

g.  

8) The buoyant density of ODVs in CsCl is 1.18-1.25 g/cm3, which of BV in sucrose is 1.17-

1.18 g/ cm3. 



2.13 Major Occlusion Body Protein or Matrix Protein (Polyhedrin / 

Granulin):  

The most extensively characterized structural protein of baculoviruses is major occlusion 

body protein also called matrix protein or polyhedrin / granulin. The important characteristic 

feature of occluded insect viruses is their ability to produce virions sequesterd (occluded) within 

this crystalline matrix of occlusion body (Jacques, 1975; Rohrmann, 1986 and Rohrmann, 1992).  

This occlusion body protein (Fig 3) stabilizes virions for long time survival and dispersal 

in the environment and, in the context of biological control, is convenient, safe and simply 

manipulated product (Blissard and Rohrmann, 1990). Occlusion provides such a selective 

advantage for insect viruses that it has apparently evolved independently at least three times 

(Rohrmann, 1992). In addition to baculoviruses, insect viruses from both the Reoviridae 

(cytoplasmic polyhedrosis viruses) (Payne and Mertens, 1983) and the Poxviridae [entomopox 

viruses (EPVs)] (Arif, 1984) also occlude their virions in protein matrix. Occlusion in both these 

virus groups is similar to that of baculoviruses in that the occlusion body protein gene is highly 

expressed during the very late phase of virus infection (Rohrmann, 1992; Funk et al., 1997), 

protect the virions out side the host insect, and occluded virions are released by the high pH 

encountered in the midgut of a susceptible insect. Despite these similarities, there is no evidence 

of amino acid sequence functional identity between any of the occlusion body proteins from these 

different virus families has been detected (Arella et al., 1988; Fossiez et al., 1989; Yuen et al., 

1990).  

For baculoviruses to occlude large numbers of virions efficiently, massive amounts of 

polyhedrin must be produced during the infectious cycle. This high level transcription of the 

polyhedrin gene is accomplished by an α-amanitin-resistant RNA polymerase which appears to 

have a different subunit composition to host RNA polymerase (Yang et al., 1991). Although a 

hyper expressed gene product, polyhedrin is not necessary for growth of the virus in cell culture. 

This has been exploited in the development of the baculovirus expression system, in which the 



polyhedrin gene is replaced by foreign genes under the control of the polyhedrin promoter (Smith 

et al., 1983; Pennock et al., 1984). The advantage of this system is that the recombinant 

baculoviruses express high levels of eukaryotic gene products that are usually folded and 

processed in a manner similar to the native proteins.  

In addition to the current interest in baculoviruses owing to their widespread use as 

expression vectors, with the advent of genetic engineering, genetically modified baculoviruses 

have been shown to be capable infecting insects and expressing insect–specific toxin genes, insect 

hormones or insect enzymes which significantly accelerates the speed with which the virus kills a 

target insect (Tomalski and Miller, 1991; Stewart et al., 1991; Maeda et al., 1991b, Hammock et 

al., 1990; Possee et al., 1991; Bishop et al., 1992; Bonning et al., 1992; Bonning and Hammock, 

1992; Hammock et al., 1993; Hoover et al., 1996; Harrison and Bonning, 2000; Tuan et al., 

2005). The importance of the occlusion body protein for stability and maintenance of infectivity 

of baculoviruses in the environment has been clearly demonstrated by field tests using polyhedrin 

deficient AcMNPV mutants (Hamblin et al., 1990; Wood et al., 1994). 

2.14 Biochemical and Serological Characterization of Polyhedrin / 

Granulin: 

  The crystalline matrix of the occlusion body mainly consists of a single protein, called 

polyhedrin or granulin respectively. These proteins are about 245 amino acids (29 kDa) and hyper 

expressed during very late phase of virus infection and are not required for virus replication 

(Rohrmann, 1986; Rohrmann, 1992; Funk et al., 1997) and constituting up to 18% or more of 

total alkali-soluble protein late in infection (Quant et al., 1984). Summers and Smith (1976) 

compared the physical and chemical properties of five polyhedrins and granulins using 

polyacrylamide gel electrophoresis and two-dimensional high voltage electrophoresis of tryptic 

peptides. It was shown that each of the polyhedrins and granulins has a unique protein for a given 

virus with similar molecular weights of 28,000 + 2000 Daltons. This protein crystal is extremely 

stable against solubilization by many solvents at neutral pH values and physiological conditions, 



and highly resistant against the action of proteolytic enzymes (Bergold, 1947, 1948). The early 

reports on the proteins dissociated from this crystalline structures by weak alkali carbonate 

showed that this matrix consists of a heterogeneous mixture of peptides with sedimentation 

coefficients and estimated molecular weights (by gel electrophoresis) of 11.5S (275,000), 12.7S 

(336,000) and 12.8S (378,000) for NPV from three different insect species and 11.8S (300,000) 

for GV (Bergold, 1959; Summers and Egawa, 1973). The presence of multiple protein species 

also indicated by immunological and amino acid sequence analysis showed that the homogeneous 

protein in the crystalline structures of a NPV and GV contain at least two different antigenic 

structures (Longworth et al., 1972; Scott and Young, 1973). These results suggested a complex 

composition and a possible subunit structure for the matrix. However, the antigenic specificity of 

a structural subunit or determinant thereof may change, dependent upon the state of aggregation 

of a protein (Yamaka and Ueta, 1964). Therefore, during the initial characterization of granulin 

and polyhderin, immunological studies must be correlated with physical and chemical techniques 

to properly characterize the protein. Early reports showed that the macromolecular structures of 

the larger protein subunits (approx 12S) could be dissociated by stronger alkaline treatment into 

subunits which are homogeneous with respect to molecular weights (Bergold, 1948).  

Further studies of biochemical and biophysical properties of the solubilized matrix 

proteins were provided by the discovery that an alkaline protease was associated with the protein 

matrix of NPVs (Eppstein and Thoma, 1975; Summers and Smith, 1975; Payne, 1978). This 

protease was activated by the alkaline conditions used to solubilize the matrix and degraded 

matrix components to a mixture of lower-molecular-weight polypeptides. Several additional 

baculoviruses have been investigated, and similar protease activities have been detected 

(Crawford and Kalmakoff, 1977; Eppstein et al., 1975; Kozlov et al., 1975; McCarthy and Liu, 

1976; Tweeten et al., 1978). Inhibition of this activity by HgC12 or by heat treatment at 70°C for 

30 min has allowed the matrix to be solubilized and recovered in a non degraded form (Eppstein 

et al., 1975; Summers and Smith, 1975a; Tweeten et al., 1978). After such treatment, the matrix 



exhibits one major 12S component when it is analyzed by velocity sedimentation. These studies 

have indicated that the 12S molecule consists of eight subunits of granulin or polyhedrin. 

Comparative studies of granulin and polyhedrin revealed close similarities in molecular weights. 

All of the baculovirus matrix proteins examined to date have molecular weights in the range from 

25,000 to 30,000 Daltons. Some of the previously determined molecular weights of polyhedrins 

and granulins were listed in Table 4. Electrophoretic and Immunological blotting analysis of 

polyhedrin proteins from three Japanese strains (K-3, G1-2 and G10-3) of S. litura multicapsid 

NPV (SlMNPV) indicated that the molecular weights of three strains were different (Ikeda et al., 

2004). Singh et al. (1979) compared the serological properties of polyhedrin protein and virions 

from four nuclear polyhedrosis viruses of Plusiine larvae (Lepidoptera: Noctuidae). Similarly the 

serological relationships of polyhedrin proteins from five different nuclear polyhedrosis viruses 

of lepidopterous insect species were compared (Pritchett et al., 1979). Immunochemical studies 

with the polyhedrins from two O. pseudotsugata NPVs and T. ni NPV suggest that the 12S 

aggregate contains one of the major antigenic determinants observed in matrix preparations, the 

other antigenic site appears to be present in the monomeric polypeptide (Eppstein and Thoma, 

1977; Rohrmann, 1977). 

The solubilizing effects of various solvents on the proteinic crystalline structure of a 

granulosis virus of a T. ni was determined and further kinetic and morphological studies were 

conducted in an attempt to evaluate the nature of intermolecular binding forces which contribute 

to the construction and stability of the structure (Egawa and Summers, 1972; Kawanishi et al., 

1972). In addition to similarities in structure and size of matrix proteins from several 

baculoviruses are similar in amino acid composition. These proteins are characterized by high 

contents of aspartic and glutamic acid residues. Also prominent are the hydrophobic amino acids 

valine, isoleucine, and leucine. Comparative peptide mapping studies of granulins and 

polyhedrins have shown that many common peptides are present in the matrix proteins (Maruniak 

and Summers, 1978; Summers and Smith, 1975b). As suggested by Rohrmann (1977) and 



Maruniak and Summers (1978) these peptides may represent regions of the protein that contribute 

to its aggregative properties and, thus, have been conserved through evolution. Other peptides are 

unique to individual matrix proteins and can be used to distinguish viral species.  

 
The granulins from T. ni and P. interpunctella GV appear to be phosphorylated 

(Summers and Smith, 1975; Tweeten et al., 1980). Whether this is typical of granulins and 

polyhedrins is not known. Yamamoto and Tanada (1978) have reported that a 126,000-molecular-

weight component containing phospholipid and protein is associated with matrix preparations 

from the GV of P. unipuncta. This component enhanced infection of P. unipuncta by an NPV, 

and it has been suggested that this component is involved in the attachment of enveloped 

nucleocapsids to midgut cell membranes (Tanada and Watanabe, 1971).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4: Molecular weights (kDa) of occlusion body (OB) protein (polyhedrin / 

granulin) estimated in NPVs / GVs of some lepidopteran hosts. 

 

 

 

Host species Molecular weight (kDa) Reference 

A. Genus Nucleopolyhedroviruses: 

Autographa californica  30 Summers and Smith, 1978 

Anticarsia gemmatalis       29 Summers and Smith, 1978 

Epiphyas postvittana 28.8  Hyink et al., 1998 

Helicoverpa armigera          28, 32 
Summers and Smith, 1978; Rivkin et 

al., 1998 

Helicoverpa zea                     27 Summers and Smith, 1978 

Helicoverpa assulta 29 Woo et al., 2006 

Lymatria  dispar                 30 Stiles et al., 1983 

Mamestra configurata 31 Li et al., 1997 

Rachiplusia ou                       30 Summers and Smith, 1978 

Spodoptera litura  31 Bansal et al., 1997 

Spodoptera frugiperda 32 Escribano  et al., 1999 

Trichoplusia ni                        31 Summers and Smith, 1978 

B. Genus Granuloviruses: 

Cirphis unipuncta 
26.3 Croizier and Croizier, 1977 

L. pomonella 
28 Croizier and Croizier, 1977 

Mamestra oleracea 
26.4 Croizier and Croizier, 1977 

Pieris brassicae 
28.2, 27.5 

Croizier and Croizier, 1977; Brown et 

al., 1977 

Plodia  interpunctella 
28 Tweeten et al., 1978 

Pseudaletia unipuncta 

Hawaiian strain 
Oregon strain 

28.7 
29.1 

Yamamoto and Tanada, 1978 
Yamamoto and Tanada, 1978 

Pygera anastomosis 
26.9 Croizier and Croizier, 1977 

Spodoptera. frugiperda 
28, 26 Summers and Smith 1975a;1978 

Trichoplusia  ni 
28 Summers and Smith 1975b, 1978 

Zeiraphera diniana 
27.2 Croizier and Croizier, 1977 



2.15 Purification of Polyhedrin / Granulin:  

Polyhedrin or Granulin is a highly stable protein it is insoluble in many solvents at 

neutral pH values and physiological conditions, and highly resistant against the action of 

proteolytic enzymes (Bergold, 1947, 1948). At the same time it is highly sensitive to alkali 

conditions. A standard protocol has been established by many workers for purification of 

polyhedrin or granulin, which involves the following common steps:  

� Initial heat inactivation of alkaline proteases associated with larva-derived 

polyhedra.  

�  Alkali treatment (weak or strong Sodium carbonate buffer) of purified occlusion 

bodies to solubilize the polyhedrin or granulin.  

�  The alkali solubilized polyhedrin / granulin is further purified by either ultra 

centrifugation or isoelectric precipitation methods.  

The quality of the polyhedrin preparation depends on the purity of the occlusion body 

suspensions. Therefore, before extraction of polyhedrin from occlusion bodies it is essential to 

purify the OBs by isopycnic banding in zonal rotors (Martignoni et al., 1968). In this section, 

some of the protocols standardized previously for purification of polyhedrin or granulin were 

reviewed.  

Purification of polyhedrin from T. ni NPV was standardized by initial heat treatment of 

gradient purified POBs, followed by incubation of POBs in 0.01M HgCl2 in 0.01 M tris buffer 

(pH 7.8), dissolution of POBs in dilute alkaline saline (DAS) (0.1 M Na2 CO3, 0.15 M NaCl, pH 

10.9) and then polyhedrin was collected as supernatant by ultra centrifugation of dissolved POBs 

at 100,000 × g for 30 min (Volkman and Falcon, 1982). Similarly, after initial heat treatment 

polyhedrin from two Orgyia pseudotsugata nucleopolyhedroviruses (OpSNPV and OpMNPV) 

was purified by dissolution of POBs in 0.1 volume of 1 M Na2CO3 0.5 M NaCl buffer at 560C for 

10 min followed by centrifugation at 120,000 × g for 45 min (Quant et al., 1984). Summers and 



Egava (1973) purified the granulin from Trichoplusia ni granulovirus by dissolution of OBs in 

0.07 M Na2 CO3 0.05 M NaCl (pH10.7) at 5mg of OBs/ml for 1.5 to 2.0 h at room temperature 

then the granulin was clarified by the following two approaches. In first approach the dissolved 

OB suspension was subjected to centrifugation at 100,000 × g for 30 min. In second approach the 

dissolved OB suspension was layered on 10 to 40% (wt/vol) sucrose gradients and centrifuged at 

25,000 rev/min by use of a SW41 rotor. Similarly, after heat treatment and alkali dissolution of 

gradient purified OBs of A. californica, P. dispar, Trichoplusia ni, and Heliothis zea and 

granulovirus from T. ni the polyhedrins or granulins were recovered from the top of sucrose 

gradients (density range of 1.15 to 1.27 g/ml) after centrifugation at 100,000 × g for 1 h (Smith 

and Summers, 1981). Brown et al. (1977) standardized the purification of granulin from gradient 

purified granules of Pieris brassicae granulovirus by alkaline disruption of granules using 0.1 M 

Na2 CO3 then virus particles were pelleted at 75,000 × g for 1 h and the supernatant contains 

mainly the granulin was subjected to iso- electric precipitation (pH 5.6) by slow addition of 0.1 M 

HCl then the precipitated polyhedrin was collected as sediment by centrifuging at 4000 × g for 20 

min. Similarly polyhedrin from three nucleopolyhedroviruses from closely related hosts such as 

Spodoptera littoralis, Spodoptera exempta and Spodoptera frugiperda was purified by the alkali 

(0.1 M Na2 CO3) treatment of polyhedra followed by centrifuged at 70,000 × g for 1 h, 

supernatant was decanted and adjusted to pH 5.8 with 0.1 N HCl and the precipitated polyhedrin 

was pelleted at 4000 × g for 20 min (Harrap et al., 1977). Instead of gradient purification, the 

POBs from Autographa californica nucleopolyhedrovirus were extensively washed with 0.1% 

SDS, virus particles were released by alkali (0.1M Na2 CO3) and centrifuged the dissolved POB 

suspension at 50,000 × g to pellet the virions then polyhedrin was precipitated from the 

supernatant by adjusting the pH to 5.8 (Roberts and Naser, 1982).  Similarly, the polyhedrin from 

nucleopolyhedroviruses of Autographa californica and Trichoplusia ni (Hohmann and Faulkner, 

1982) and granulin from Epinotia aporema granulovirus (EpapGV) (Parola et al., 2003) were 

purified by isoelectric precipitation of alkali solubilized occlusion bodies. The putative 



polyhedrin protein of monodon baculovirus (MBV) was isolated from infected post larvae by 

homogenization, differential centrifugation and density gradient centrifugation with verification 

by transmission electron microscopy (Attaphon et al., 2005).    

2.16 Production of Antibodies (Polyclonal / Monoclonal) Against 

Baculovirus Structural Components: 

It has been well documented that repeated inoculations of a virus antigen into an animal 

will elicit a different antibody response than that obtained with a single or few injections of the 

same antigen (Casals, 1967). The rabbit is most frequently used animal for the preparation of 

polyclonal antibodies against baculoviruses and can be injected with whole OBs (Shamim et al., 

1994) or purified virions (Kelly et al., 1978b and Smith and Summers, 1981), although the OBs 

are usually solubilized before injection (Crawford et al., 1978). If guinea pigs are used, the OB 

must be solubilized before injection. To prepare antibodies against purified individual viral 

structural proteins, most commonly polyhedrin or granulin, purified protein preparations are 

electrophoresed through PAGE gels and the required bands are eluted individually in to PBS 

(Barta and Issel, 1978; Summers and Smith, 1975b and Sridhar Kumar et al., 2007). Factors such 

as antigen purity, variability of antisera, and reaction of antisera with contaminating non viral 

antigens have led to several problems during standardization of serological assays during 

standardization of serological assays. To overcome this, monoclonal antibodies are obtained from 

cloned hybrids produced by the fusion of antigen-stimulated lymphocytes and myeloma cells 

(Chan and Mitchison, 1982). The purpose of this section is to review the polyclonal or 

monoclonal antibodies has been produced against the structural components of baculoviruses by 

researchers around the globe.  

Polyclonal antibodies were prepared against the virus particles rather than polyhedrin 

protein of HaNPV to study the growth kinetics of virus in infected larvae (Kelly et al., 1978b). 

Purified polyhedrin preparations (80µg) were used for production of monoclonal antibodies as 



well as rabbit polyclonal antibodies to diagnose the NPV infection in infected larvae of T. ni 

(Volkman and Falcon, 1982) and in Lymantria dispar (Yu et al., 1992). Quant et al. (1984) 

produced the monoclonal antibodies against purified polyhedrin preparations of two Orgyia 

pseudotsugata Baculoviruses (OpSNPV and OpMNPV). To diagnose the NPV infection, 

monoclonal antibodies were produced against 42K protein of Autographa californica nuclear 

polyhedrosis virus (AcMNPV) (Naser and Miltenburger, 1982). The sequence of events in the 

infection of TN-368-10 and TN-368-13 cells by AcMNPV was investigated by polyclonal 

antibodies produced against purified AcMNPV larvae-derived occluded virions, highly purified 

polyhedrin and plasma membrane budded non-occluded virus (Summers et al., 1978). To identify 

the baculovirus structural proteins that share interspecies antigenic determinants, polyclonal 

antibodies were produced in New Zealand white rabbits with a solution containing 75µg of intact 

virions of AcMNPV, Porthetria dispar MNPV, T. ni GV as well as highly purified polyhedrin of 

AcMNPV and HzSNPV (Smith and Summers, 1981). Knell et al. (1982) prepared six new 

antisera against SDS-disrupted viruses and additional GVs and studied their reactivity with 

structural polypeptides of 17 baculoviruses. To study the immunological relatedness of structural 

proteins of occluded and budded viruses of AcNPV, polyclonal antibodies were raised in New 

Zealand white rabbits against budded virus (BV), larvae-occluded virus, alkali liberated 

(LOVAL) and purified polyhedrin protein by injecting 80 µg of each antigen (Volkman, 1982). 

To detect the NPV infection in Bombyx mori larvae, monoclonal antibodies were produced to 

entire POBs in inbred BALB/c mice by injecting 107/ml of gradient purified POBs (Shamim et 

al., 1994). Crawford et al., (1978) produced the polyclonal antibodies against T. ni SNPV, T. ni 

MNPV, Euxoa messora (EM) NPV, Pieris rapae (Pr) granulovirus and Laspyresia pomonella 

granulovirus and Wiseana spp. SNPV in New Zealand white rabbits as well as in Swiss white 

mice by injecting the purified polyhedra (3 ml) at concentration of 500 µg/ml after dissolving in 

0.1 volume of 1 M Na2CO3 and then neutralized with 1M HCl. To identify the conserved epitopes 

on the polyhedrin protein of Heliothis zea nucleopolyhedrovirus, 12 anti-HzSNPV polyhedrin 



monoclonal antibodies were produced (Huang et al., 1985). To study the immunological 

relatedness of polyhedrin purified from nucleopolyhedroviruses of H. armigera, S. litura and S. 

exigua, polyclonal antibodies were produced against isolectric precipitates of polyhedrin and their 

cross- reactivity was evaluated (Tuan et al., 1999). To study the serological relatedness of 

structural proteins among baculoviruses, monoclonal antibodies were produced against both non 

occluded virus (NOV) and polyhedrin preparations of A. californica (Ac) and Choristoneura 

fumiferana (Cf) nucleopolyhedroviruses (Hohmann and Faulkner, 1982).  Similarly, Roberts and 

Naser (1982) has produced the monoclonal antibodies against a baculovirus, the AcNPV, and 

their ability to recognize other baculoviruses has also been tested. Harrap et al. (1977) has 

produced the polyclonal antibodies to purified polyhedra (5mg/ml), isolectric precipitated 

polyhedrin (5mg/ml), and purified virus particles (500µg /ml) of nucleopolyhedroviruses isolated 

from three closely related hosts such as S. littoralis, S. exempta and S. frugiperda.  

To develop the diagnostic tools for detection and quantification of baculoviruses from 

infected larvae at field and laboratory level, to study the biosafety and environmental fate of 

recombinant and wild type baculoviruses, as well as quality control during mass production of 

baculovirus based bio pesticides, polyclonal antibodies were produced against isolectric 

precipitates of polyhedrin or granulin purified from Epinota aporema granulovirus (EpapGV) 

(Parola et al ., 2003), recombinant and wild type Autographa californica nucleopolyhedrovirus 

(AcAaIT and AcMNPV) (Ashour et al., 2007), Ha NPV (Sridhar Kumar et al., 2007). A synthetic 

peptide of 25 amino acid sequence (25Pmbv) generated from N-terminal sequence analysis of 

polyhedrin purified from monodon baculovirus (MBV) was conjugated with bovine serum 

albumin and used as an antigen for antiserum production in mice  (Attaphon et al., 2005). 

    

    



2.17 Applications of Various Serological Tests in Identification, 

Characterization, Classification and Quantitative Detection of 

Baculoviruses: 

 
There is clear evidence which suggests that intrinsic differences in baculovirus genomes 

and structural polypeptides are reflected in serological properties (Harrap et al., 1977). Thus, 

another promising system for classification of baculoviruses is a system based on antigenicity 

(Huang et al., 1985). Several immunological techniques in which antibodies formed against 

matrix proteins, enveloped nucleocapsids, and nucleocapsids are used are being investigated for 

their sensitivity and specificity in detection of baculovirus antigens. By comparative analyses of 

the antigenicities of polypeptides from these viral components, structural proteins that may 

determine virus strain-specific antigens can be identified (Harrap et al., 1977). Of particular 

interest is the use of this information for developing procedures for reliable identification and 

monitoring of baculovirus levels in field insects and other environmental samples (Mazzone and 

Tignor, 1976). In this section the literature related to different immunochemical tools has been 

developed and evaluated for identification, characterization, classification and quantitative 

detection of baculoviruses has reviewed. 

2.17.1 Tube precipitation and gel immunodiffusion: 

When antibodies and macromolecular antigens react, they frequently form insoluble 

complexes (lattices) that visibly precipitate from solution. This phenomenon is the basis of many 

classic serologic tests. If the reaction occurs in liquid media in test tubes, it is called tube 

precipitation. If it is done by introducing antigen and antibody into different regions on an agar or 

agarose gel, allowing them to diffuse toward each other and form a band of precipitate at the 

junction of their diffusion fronts, it is called gel immunodiffusion.  

The monoclonal antibodies produced against AcNPV specifically immunoprecipitated a 

polypeptide of MW 42 kDa from tissue culture derived extra cellular virus (Roberts and Naser, 



1982). Similarly the radio immune precipitation assay was performed with monoclonal antibodies 

produced against A. californica and CfNPV, the antibodies AcV5, AcV6, AcV12 and AcV18 

precipitated 12 or 13 [35S] methionine-labeled polypeptides from non occluded viruses (NOV). 

Among those polypeptides, a single peptide of 64K was precipitated by AcV5, AcV6 and AcV18 

while 42K polypeptide was specifically precipitated by Ac12 (Hohmann and Faulkner, 1982). 

In insect virology, gel immunodiffusion tests have been used for characterization of 

structural proteins and identification of insect viruses of small, spherical DNA and RNA viruses 

because they move easily in the gel and antigen concentration usually is not a problem (Harrap 

and Payne, 1979). The properties of nucleocapsids and polyhedrin protein of a 

nucleopolyhedrovirus isolated from Oryctes rhinoceros and three closely related hosts such as S. 

litturalis, S. exempta and S. frugperda were determined by gel immunodiffustion in 1% (w/v) 

agarose in phosphate-buffered–saline (PBS), pH 7.4 in 60 min glass Petri dishes (Payne et al., 

1977 and Harrap et al., 1977). Since precipitation is dependent upon antigen cross–linkage to 

form insoluble lattices, monoclonal antibodies cannot be used effectively in this procedure if they 

bind to only one determinant on a monomeric antigen (Yelton and Scharff, 1981). This can be 

overcome by mixing monoclonal antibodies that are reactive to different sites on an antigen. 

Huang et al. (1985) used this approach to determine whether monoclonal antibodies elicited to 

HzMNPV polyhedrin reacted with single or multiple epitopes of that molecule, and determined 

which pairs of monoclonal antibodies reacted with different epitopes, sufficiently separated to 

avoid antibody steric hindrance. 

2.17.2 Hemagglutination inhibition: 

Many intact viruses or viral–coded proteins have the capacity to agglutinate erythrocytes 

of certain species (hemagglutination). In some cases, the adsorption of viruses to host cells has 

been shown to involve the same receptor that mediates hemagglutinating activity (Howe and Lee, 

1970). This hemagglutination (HA) reaction can be inhibited if specific antibodies attach to the 

effector proteins (the hemagglutinins) and prevent their attaching to receptors on the red blood 



cells. The hemagglutination inhibition (HI) test has been used extensively for classification and 

identification of arthropod borne viruses (Clarke and Casals, 1958). With some viruses, the HI 

test is capable of identification to a subtype, group of strains, or even a strain level, while with 

other viruses it is useful for classification to the group level only (Casals, 1967). Similarly some 

insect-restricted viruses have demonstrated hemagglutinating activity (Cunningham et al., 1966; 

Anderson et al., 1981). Of these, the most extensive testing has been done with baculoviruses, but 

there is considerable disagreement as hemagglutinating activity. In some instances the 

polyhedrins have been implicated (Reichelderfer, 1974; Norton and Dicapua, 1975), while in 

others; enveloped nucleocapsids were found to be responsible (Anderson et al., 1981). 

2.17.3 Neutralization: 

The neutralization test is based on the fact that many viruses are inactivated (neutralized) 

by antibodies that bind to critical sites, usually on the viral surface (Mandel, 1979). In the 

neutralization test, the remaining infectious activity is determined after virus exposure to 

antiserum. If the remaining activity is assessed in vivo, the antiserum concentration usually is held 

constant and the virus concentration is varied; if it is assessed in vitro, then the opposite is usually 

the case (Casals, 1967; Martignoni et al., 1980).  

The sensitivity (in terms of amount of antigen required to do the test) is closely 

associated with the infectious to physical particle ratio of the virus in the host system used. For 

example, it has been calculated that the physical to infectious particle ratio of the budded 

phenotype of AcMNPV infecting TN-368 cells in vitro is 1.28 × 102:1, while the ratio for the 

occluded phenotype (LOVAL) is 2.4 × 105:1 (Volkman et al., 1976). To perform a neutralization 

test in this system, starting with 100 plaque forming units (PFU) in the absence of any 

inactivation, 1.4 ng of budded virus and 2.8 µg of LOVAL is required (Volkman et al., 1976).  

The specificity of the neutralization test is based on the “critical site” binding feature. In a 

sense, cross-reactivity is a measure of shared “critical sites”. Differences in the rate of binding of 

antibody to cross-reactive critical sites can be measured in kinetic neutralization experiments, 



which is useful in discriminating among virus strains. Kelly et al. (1979) have used kinetic 

neutralization experiments to detect strain differences in insect-restricted viruses. It is thought 

that antibody usually neutralizes the virus by interfering with the initial virus-host cell interaction 

either directly or indirectly (Mandel, 1979). The neutralization assay can, therefore, be useful in 

detecting differences in specific interactions of viruses and host cell surfaces. This may be the 

case with the budded and occluded phenotypes of AcMNPV, which are neutralized by different 

populations of antibodies in vitro (Volkman et al., 1976). It has been known for some time that 

the budded and occluded phenotypes of subgroup A and B baculoviruses (nuclear polyhedrosis 

viruses and granulosis viruses) are morphologically different from each other (Summers and 

Volkman, 1976; Adams et al., 1977).  

The neutralizing monoclonal antibodies were elicited to the budded phenotype of 

AcMNPV, four hybridoma clones produced antibody which neutralized the infectivity of 

AcMNPV NOV (Hohman and Faulkner, 1982). Subsequently, one neutralizing antibody was 

shown to bind specifically to envelop surface antigens of the budded virus. That same antibody 

did not neutralize or bind the occluded phenotype of AcMNPV (Volkman et al., 1984).  

2.17.4 Radioimmunoassay (RIA): 

RIA is a simple theoretical model for detection of antigen-antibody-binding reaction of 

using radio labeled antibody (125I) developed by Klmakoff et al. (1977). General predictions from 

the theory were confirmed by experimental results using a wide range of antigen-antibody 

systems. It was found that the greatest sensitivity of the RIA is achieved when the smallest 

amount of labeled antibody is used, and that whenever possible the antigen-antibody ratio should 

be greater than unity (Klmakoff et al., 1977). 

RIA provides a cheap and simple procedure that permits quantitation of low levels of 

baculovirus in infected larvae and in environment and to discriminate among distantly and closely 

related NPVs and GVs (Crawford et al., 1978; Klmakoff et al., 1977; Ohba et al., 1977; 

Rohrmann, 1977). The sensitivity and cross-reaction of four solid-phase radioimmunoassays for 



T. ni nuclear polyhedrosis virus containing singly enveloped virions were investigated (Crawford, 

et al., 1978). Immunological comparisons were made to detect similar antigenic determinants 

among the structural polypeptides of NPVs and GVs using protein blot RIA (Summers and 

Hoops, 1980; Smith and Summers, 1981, Knell et al., 1982).  

2.17.5 Enzyme linked immunosorbent assay (ELISA): 

In principle, ELISA and RIA are precisely the same, the ELISA makes use of an enzyme 

labeled (usually alkaline protease or penicillinase or peroxidase) antigen or antibody to signal the 

occurrence of an antigen-antibody reaction, further more the antigen does not have to be 

infectious for the assay to work as it does for neutralization (Weir, 1978 and Voller et al., 1979, 

1982). ELISA has been used more extensively than RIA in insect virology, probably because of 

expense and safety considerations involved in using 125I, its relatively short half life (60 days), 

and the cost of a gamma counter. Crook and Payne (1980) compared the three methods of ELISA 

for baculoviruses and agreed that the most sensitive assay for antigen detection in the absence of 

plentiful extraneous matter was the indirect test and in the presence of plentiful extraneous matter 

was the sandwich test.  

2.17.5.1 The Indirect ELISA: 

The applications of indirect ELISA in insect virology include host range studies, 

assessment of antigen purification techniques, and viral relatedness determinations. Some 

examples of these are given below. Indirect ELISA has been used as a sensitive test for viral 

antigen production in non permissive cells. Rubenstein et al. (1982) used it to detect Estigmene 

acrea granulosis virus antigen increase when fat body cells in culture were exposed to the virus. 

An increase in AcMNPV antigens in AcMNPV-exposed codling moth cells (cell line Cp 169) 

was detected using indirect ELISA (Langridge et al., 1981a). Langridge et al. (1981b) also used 

the indirect ELISA when they repeated a published study to determine whether alkali liberated 

virus of the occluded phenotype of a NPV could be separated completely from polyhedrin by 



sequential sucrose gradient and sepharose column purification techniques and concluded that 

even highly purified virions had elicited a considerable antibody titer to polyhedrin, indicating 

that they, in fact were not free of the protein (Bell and Orlob, 1977).  Crook (1981) found he was 

able to discriminate between the granulosis virus of Pieris brassicae and Pieris rapae, using 

indirect ELISA. Brown et al., (1982) reported using a variation of the indirect ELISA wherein 

enzyme-linked protein A was substituted for the second antibody in a study demonstrating 

antigenic relatedness of four baculoviruses from Spodoptera species. Roberts and Naser (1982) 

used monoclonal antibodies to probe for differences between in vivo and in vitro generated 

AcMNPV polyhedrin using direct and indirect ELISA. Hohmann and Faulkener (1982) used 

Indirect-ELISA to characterize the monoclonal antibodies produced against AcNPV and CfNPV 

were found to cross-react differently with polyhedrins and granulins from several species of 

baculoviruses. The relationship between three nucleopolyhedroviruses isolated from the larvae of 

H. armigera, S. exigua and S. litura in Taiwan was determined by assaying the polyhedrin in 

indirect ELISA with polyclonal antipolyhedrin antisera specific to each polyhedrin (Tuan et al., 

1999). A monoclonal antibody based indirect ELISA was developed and used for the 

differentiation of OpMNPV and OpSNPV and also for identification of their homologous 

polyhedrin in larval extracts (Quant, et al., 1984). By using monoclonal antibodies in indirect 

ELISA, it was possible to detect virus antigens in NPV infected H. armigera and Choristoneura 

fumiferana larvae at about 6-9 hours after virus exposure, whereas disease symptoms of the 

larvae could only be observed after 5-6 days (Zang and Kaupp, 1988; Lu et al., 1995). Similarly, 

the polyclonal antibody based indirect ELISA was developed for detection of HaNPV polyhedrin 

in infected larval extracts (Sridhar Kumar et al., 2007). Alternatively, a monoclonal antibody 

against the 42K protein of AcMNPV was used in indirect ELISA for virus detection in dead 

larvae and for safety investigation (Naser and Miltenburger, 1982). An indirect competitive (IC) 

ELISA was developed and validated with various molecular methods to detect 

nucleopolyhedroviruses in larvae of the Douglas-Fir Tussock Moth Orgyia pseudotsugata 



(Thorne et al., 2007). Similarly, an IC-ELISA was standardized to evaluate the biosaftey of 

recombinant and wild type of nucleopolyhedroviruses of A. californica (Ashour et al., 2007). 

2.17.5.2 The Sandwich ELISA: 

Sandwich ELISA is generally not as sensitive as the indirect ELISA, it can be used to 

detect antigen in a preparation which is highly contaminated with host tissue components. It is 

therefore, the method of choice for virus detection in crude virus extracts.  The direct sandwich 

ELISA was very effectively used by Morris et al. (1981) to quantitatively monitor the degree of 

contamination of AcMNPV preparations with a small RNA virus, TRV. Kelly et al. (1978a) 

found that the direct sandwich ELISA was an effective tool for discriminating among purified 

preparations of five small iridescent viruses. In another study, Kelly et al. (1978b) used the same 

assay for detecting Ha NPV in H. armiger larval extracts. They reported a sensitivity of 1 ng 

virus per ml of extract. Langridge et al. (1981a) used the direct sandwich ELISA to monitor 

possible AcMNPV antigen increase in L. dispar larvae fed AcMNPV occlusion bodies but found 

no evidence for viral activity. An indirect sandwich ELISA assay has been established and used 

for monitoring the presence of O. rhinocerous baculovirus in field populations (Longworth and 

Carey, 1980). Payment et al.(1982) developed an indirect sandwich ELISA for Euxoa scandens 

cytoplasmic polyhedrosis virus that is sensitive enough to detect 10ng virus per ml of larval 

extract. Volkman and Falcon (1982) examined the possibility of using a monoclonal antibody as 

one component of an indirect sandwich ELISA for the detection of T. ni SNPV in infected T. ni 

larvae. They determined that the assay worked well if the monoclonal antibody was used as 

primary antibody, but not if it was used as the secondary antibody. With an antiserum against the 

polyhedrin component of the NPV of Mamestra brassicae, it was possible to detect polyhedra at a 

concentration of 2.44 ×104 polyhedra/ml by means of indirect sandwich ELISA (Riechenbacher 

and Schliephake, 1988). Similarly, polyhedrin specific monoclonal antibody based double 

antibody sandwich ELISA was developed for detection of Lymantria dispar MNPV and 

Borrelina bombycis NPV in infected host larvae or cultured insect cells (Ma et al., 1984; Yu et 



al., 1992; Shamim et al., 1994). As part of quality control of the production of a bioinsecticide 

based on Epinotia aporema granulovirus (EpapGV), a sensitive double antibody sandwich ELISA 

was developed for detection and quantification of the virus using polyclonal antibodies produced 

against granulin (Parola et al., 2003). 

2.17.6 Western blots: 

Western blotting is a variation of immunoelectrophoresis that combines SDS-PAGE and 

RIA or ELISA can be used to determine which viral structural proteins are involved in serologic 

cross-reactions and it is a powerful tool for understanding the basis of serologic groupings of 

complex insect viruses (Towbin et al., 1979). Smith and Summers (1981) demonstrated the power 

of western blotting by comparing the antigenic relatedness of 17 different species of 

baculoviruses from lepidopteran hosts. Knell et al. (1983) expanded these studies to find 

additional common antigenic determinants among different baculovirus sub groups. Smith and 

Summers (1981) also used the western blotting technique to compare the antigenic relatedness of 

the occluded and budded phenotypes of AcMNPV that they found to be considerably different. 

Volkman (1983) explored this further by doing reciprocal western blots of the two phenotypes. 

Roberts and Naser (1982) and (1983) used western blotting as a method of determining which of 

the AcMNPV structural proteins were reactive with monoclonal antibodies elicited to that virus. 

Furthermore, Naser and Miltenburger (1982) explored the possibility of using western blots in 

conjunction with a specific monoclonal antibody for the identification of AcMNPV. Similarly, 

western blotting was used to screen the monoclonal antibodies produced against the polyhedra of 

nuclear polyhedrosis virus infecting Bombyx mori larvae (Shamim et al., 1994) and polyclonal 

antibodies produced against polyhedrin of HaNPV (Sridhar Kumar et al., 2007).Western blotting 

was used to diagnose the NPV infection in the field larvae of Orgyia pseudotsugata by detecting 

the polyhedrin levels at various stages of infection in insects days post inoculation (Quant et al., 

1984).  



2.17.7 Immunofluorescent and immunoperoxidase staining: 

The first immunoassay developed by tagging an antibody with a substance to signal its 

reaction with an antigen was the fluorescent antibody (FA) technique. Coons et al. (1942) 

determined that fluorescein isothiocyanate (FITC) could be used to label antibodies without 

destroying their specificity. The FA technique has long been used for viral identification and for 

determining the location of viral antigens in infected cells during the course of replication 

(Casals, 1967; Schmidt and Lennette, 1973). Since the development of FA, immunocytochemical 

techniques have expanded to overcome some of the inherent limitations in using fluorescein as 

the signal, such as the requirement for a special microscope, signal fading, and incompatibility 

with histological staining operations (Volkman, 1982). One very successful method of 

overcoming these limitations, in additions to achieving much greater sensitivity and specificity, is 

the use of horseradish peroxidase-labeled antibodies. In addition to the usual direct and indirect 

strategies of staining used with FA, three and four-layered peroxidase anti-peroxidase (PAP) 

techniques have been developed which have enhanced sensitivity significantly (Naritoku and 

Taylor, 1982). Both immunofluorescent and immunoperoxidase staining procedures have been 

used to detect insect viruses. Krywienczyk (1963) and Shamim et al. (1994) used 

immunofluorescence to detect an NPV in Bombyx mori, and Kurstak and Kurstak, 1974 reported 

the use of immunoperoxidase to detect infections of Tipula iridescent virus and densonucleosis 

virus in Galleria mellonella. The indirect immunoperoxidase technique was used to monitor time 

course studies of AcMNPV in cell culture (Summers et al., 1978). Peroxidase anti-peroxidase 

staining has been used to develop a quantitative assay for AcMNPV, for studying the kinetics of 

viral replication in single cells and to determine the location of viral antigens (Volkman and 

Goldsmith, 1981, 1982; Volkman, 1983). An extensive host range study of AcMNPV in 

vertebrate cell lines was conducted using the PAP technique to monitor intracellular increase in 

viral antigen (Volkman and Goldsmith, 1983). Recently, the indirect immunofluorescence was 



used for evaluation of antigen-antibody reactivity on the surface of proteinaceous occlusion body 

towards application in reusable protein chip (Yoshikawa et al., 2006). 

2.17.8 Immunoprecipitation and immunoaffinity chromatography: 

        Immunoprecipitation is a widely used method for identifying the specificities of 

monoclonal antibodies (Yewdell and Gerhard, 1981). It can also be used for identification of viral 

antigens when specificity of the antisera is known. Immunoprecipitation has been used in insect 

virology to identify in vitro translated protein products of AcMNPV mRNA (Vlak et al., 1981; 

Adang and Miller, 1982). In addition, it was used to identify the specificity of monoclonal 

antibodies generated to AvMNPV- (Roberts and Naser, 1982; Volkman et al., 1984). 

Immunoaffinity chromatography is a technique that will become more and more popular as 

monoclonal antibodies gain wider usage. Roberts and Naser (1982) used to show specific binding 

of some of their monoclonal antibodies with AcMNPV polyhedrin. Similarly, Shamim et al., 

(1994) used immunoaffinity chromatography to screen the monoclonal antibodies produced 

against polyhedra of B. mori NPV. 

2.18 Need for the Molecular Level Identification and Characterization 

of Baculoviruses: 

Molecular level identification, characterization and evaluation of phylogenetic status of a 

particular baculovirus are also important for establishment of purity of seed stock or master stock. 

Apart from the multiple or singly enveloped feature, NPV or GV cannot be identified visually from 

either light or electron microscopic studies. Microscopic and serological tools are unreliable for 

establishing the real identity of a given isolate and is not particularly helpful in providing clues 

about its host range and infectivity (Rovesti et al., 2000). To identify viruses beyond the grouping 

in to GV or NPV we need to look at the DNA sequence using restriction endonuclease analysis or 

molecular probes, offers a relatively simple method for identification and differentiation of 

baculoviruses (Smith and Summers, 1978).  



Examination of the DNA using these techniques has shown that many variants of a 

species may exist for example the MNPVs from A. californica, T. ni, S. exempta, R. ou, Anagrpha 

falcifera and Galleria mellonella can be considered to be variants of the same virus (Miller and 

Dawes, 1978; Smith and summers 1979; Summers et al., 1980; Brown et al., 1984, 1985; Harrison 

and Bonning, 1999). Many of the known baculoviruses could be grouped together depending on 

their degree of genetic relatedness, which does not reflect the taxonomic grouping of their 

host/hosts (Zanotto et al., 1993). Among the NPVs with potential as pest control agents, the 

MNPVs isolated from M. brassicae (Lepidoptera: Noctuidae) and H. armigera (Lepidoptera: 

Noctuidae) were shown to be similar in terms of both biological activity and genomic homology 

(Smith and Summers, 1982; Figueiredo et al., 1999; Rovesti et al., 2000).  

For identification of a particular NPV strain, the bioassay studies and restriction 

endonuclease profiles of different NPV species have been studied and compared by several 

investigators (Shapiro and Ignoffo, 1970; Odak and Rawat, 1982; Hughes et al., 1983; William and 

Payne, 1984; Rabindra, 1992; Arora et. al., 1997; Somasekhar et.al., 1993; Geetha and Rabindra, 

1999; Sudhakar and Madhavan 1999; Figueiredo et. al., 1999; Rovesti et.al., 2000).The existence 

of genetic variants with different biological activities may have important implications for 

development of biopesticides both in the possibility to select better naturally occurring strains and 

as a source material for genetic manipulation (Guo et. al., 2006). 

2.19 Identification and Molecular Characterization of Polyhedrin / 

Granulin Gene: 

Polyhedrin / granulin is the major component of occlusion body (OB) and as often been 

studied. After the first report about localization of the polyhedron gene in AcNPV (Vlak and Smith, 

1982; Hoofft van Iddekimge et al., 1983) determined its nucleotide sequences. Polyhedrin / 

granulin is a protein of about 245 to 250 amino acids, and appear to be the most highly conserved 

baculovirus protein. These characteristics lead to the use of polyhedron or granulin sequences as the 



base of baculovirus phylogenetic studies (Zanotto et al., 1993). In this section, the literature has 

reviewed related to the baculovirus OB protein (polyhedron or granulin) gene has been identified 

and characterized previously by several workers.  

A restriction digested fragment obtained from genome of the Bombyx mori 

nucleopolyhedrovirus contains the gene coding the viral occlusion body protein (polyhedrin) has 

been cloned, sequenced in its entirely together with some of its 5’and 3’ flanking sequences and the 

primary structure of polyhedrin protein predicted from the nucleotide sequence of the gene was 

found to be somewhat different from the one previously reported (Latrou et al., 1985). Polyhedrin 

gene of Anticarsia gemmatalis multiple nucleocapsid nucleopolyhedrovirus (AgMNPV) was 

identified in 2085 base pair fragment obtained by restriction digestion of its genome with SphI-PstI 

restriction endonucleases was cloned and sequenced, and the amino acid sequence obtained agreed 

with that deduced from the DNA coding region (Zanotto et al., 1992). Similarly, the nucleotide 

sequence of granulin gene of the Pieris brassicae grnulovirus (Chakerian and Nesson, 1985) and 

polyhedrin gene of Helicoverpa zea single nucleocapsid nuclear polyhedrosis virus (Cowan et al., 

1994) was determined. The polyhedrin gene of SlMNPV was identified and characterized in the 

Hind III-F fragment of the viral DNA. The nucleotide sequence of the 1057 base pair (bp) region of 

this fragment contains an open reading frame without any intervening sequences for coding a 

polypeptide of 246 amino acids (Bansal et al., 1997). The polyhedrin gene of a NPV isolated from 

bertha army worm, Mamestra configurata was identified from physical map constructed by 

digesting the genome with six restriction endonucleases, which has by convention been used as the 

zero point of REN maps of NPV, was determined by hybridizing the A. californica multicapsid 

nuclepolyhedrovirus HindIII-V fragment clone, which contains most of the polyhedrin gene, with 

genomic blots of MacoNPV (Li et al., 1997). Similarly, the polyhedron gene region of a 

multinucleocapsid nuclear polyhedrosis virus (MNPV) isolated from the celery looper, Anagrapha 

falcifera was identified by hybridizing with the AcMNPV EcoRI-I fragment (Fedirici and Hice, 



1997). The polyhedrin gene of an Israei H. armigera single nucleopolyhedrovirus was identified 

and characterized from restriction fragment; the nucleotide sequence encoded for a polypeptide of 

246 amino acids and coincided with previously published HaNPV polyhedrin gene sequences 

(Rivkin et al., 1998). Hyink et al. (1998) characterized the genome of a NPV isolated from the New 

Zealand light brown apple moth, Epiphyas postvittana using a strategy of single-stranded 

sequencing of the termini of restriction endonuclease fragment clones was employed to map the 

virus genome and the mapping was completed with Southern blotting and restriction analysis, 

polyhedrin gene has been fully sequenced and an ORF of 738 bp encodes a predicted protein of 

28.8 kDa. As part of an effort to characterize the New Zealand’s endemic Wiseana SNPV genome 

the polyhedrin gene was cloned and the nucleotide sequence was determined and the gene sequence 

was used, in conjunction with morphological and restriction endonuclease analysis to compare 

isolates from different sites and species of Wiseana (Sadler et al., 1998). The 7.8 kb EcoRI-G 

fragment of Rachiplusia ou multicapsid nuclepolyhedrovirus (RoMNPV), containing the 

polyhedrin gene was cloned and sequenced, the nucleotide sequence and predicted amino acid 

sequence was used along with EcoRI and HindIII restriction profiles and bioassay studies to 

compare with other MNPVs (Harrison and Bonning, 1999).  

A polymerase chain reaction (PCR) based detection system was developed for 

identification of polyhedrin gene in multiple nucleopolyhedroviruses by using a degenerate primers 

designed by comparing the polyhedrin amino acid sequences of twenty-six NPVs (Woo, 2001). 

Similarly, PCR based RFLP was developed for rapid identification and differentiation of HaNPV 

isolated from the environment by amplifying the 400 bp fragment from polyhedrin gene using 

degenerate primes (Christian et al., 2001). A baculovirus was identified from Lonomia obliqua 

(Lepidoptera: saturniidae) is a pest of medical importance due to a potent toxin found in their 

spines, its molecular characterization was carried out by the identification of polyhedrin gene 

through constructing a partial genomic library with DNA fragments generated with  EcoRI and its 



DNA sequence was determined (Wolff et al., 2002). The molecular characteristics of three 

Japanese strains (K-3, G1-2 and G10-3) of S. litura multicapsid nucleopolyhedrovirus was 

determined by restriction endonuclease analysis followed by cloning and sequencing of the 

polyhedrin gene fragment indicated that the three strains had different deduced amino acid 

sequences and molecular weights (Ikeda et al., 2004). PCR with complementary primers to the 

polyhedrin gene region was used to diagnose Bombyx mori nucleopolyhedrovirus (BmNPV) 

infection, the PCR products were sequenced and the specificity of the amplification was confirmed 

by comparison with BmNPV polyhedrin sequences available in GenBank (Ikuno et al., 2004). Woo 

et al. (2005) characterized the polyhedrin gene of Korean strain (SlNPV-K1) of SlNPV by the 

amplification of polyhedrin gene using a degenerate PCR primers, the sequencing results showed 

that the about 430 bp PCR product was a fragment of corresponding polyhedrin gene and further 

used it as a probe in Southern blot analysis of SlNPV-K1 restriction fragments.  

The molecular characterization of a nucleopolyhedrovirus (SpliMNPV-Az) was isolated 

from diseased larvae of S. littoralis, at the island of S. Miguel in Azores, was carried out by 

restriction endonuclease analysis of the viral genome and further complete codons sequencing of 

the polyhedrin gene resulted in 750 bp fragment and was identical to the sequence of a SpliMNPV 

previously published (Martins et al., 2005). Molecular characterization of a baculovirus 

(LyxyMNPV) isolated from infected larvae the casuarina moth, Lymantria xylina Swinehoe 

(Lepidoptera: Lymantriidae) through restriction endonuclease (BamHI, EcoRI and EcoRV) analysis 

and the polyhedrin gene located in the BamHI-D, EcoRI-C and EcoRV-K fragments was sequenced 

and furthermore, a rapid PCR-RFLP method was developed to distinguish LyxyMNPV from 

LdMNPV polyhedrin genes (Wu and Wang, 2005). The molecular cloning and characterization of 

Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV) polyhedrin gene was done by 

converting the segments 10 (S10) of the 11 double stranded RNA genomes to cDNA, cloned and 

sequenced (Uma et al., 2005). Molecular characterization of a multicapsid nucleopolyhedrovirus 



isolated from satin moth Leucoma salicis (Lepidoptera: Lymantriidae) was done by the 

amplification of conserved baculovirus conserved genes such as polyhedrin, lef-8 and pif-2 using 

degenerate  primers and the resulting PCR products were cloned and sequenced (Jakubowska et al., 

2005). The polyhedrin gene sequence of a Korean strain of H. assulta nucleopolyhedrovirus was 

identified by the initial amplification of partial (430 bp) polyhedrin gene using degenerate primers 

and the resulting PCR product was cloned and sequenced, the sequenced polyhedrin (430 bp) 

fragment was used to probe the Southern blots to identify the location of the complete polyhedrin 

gene with in 6 kb EcoRI, 15 kb NcoI, 20 kb XhoI, 17 kb BglII and 3 kb ClaI fragments respectively 

and the fragment containing polyhedrin gene was cloned and sequenced. The open reading frame of 

HasNPV polyhedrin showed that 735 nucleotides which could encode 245 amino acids with 

predicted molecular mass of 29 kDa (Woo et al., 2006).  

The polyhedrin gene of a nucleopolyhedrovirus isolated from the diseased larvae of Orgyia 

ericae Germar was firstly analysed by cloning and sequencing of the restriction digested fragments 

of its genome (Yang et al., 2006). First time the molecular characterization of a 

nucleopolyhedrovirus isolated from tea looper caterpillar, Ectropis oblique was done by sequencing 

the restriction digested fragments of EcoRI-L, EcoRI-N and HindIII-F and the location of potential 

ORF for polyhedrin gene was identified and compared the polyhedrin gene with previously 

published sequences (Ma et al., 2006). The nucleopolyhedrovirus was firstly isolated from legume 

pod borer (LPB), Maruca vitrata, at Tainan in Taiwan and its complete polyhedrin gene was 

identified by initial amplification of partial polyhedrin gene (530 bp) using degenerate primers and 

the resulting PCR product was cloned and sequenced, then two internal primers within the partial 

sequence of polyhedrin gene were synthesized and used for extending the sequenced regions from 

the termini successively by using genomic DNA as a template then cloned and sequenced the 

complete polyhedrin gene (Lee et al., 2007). The partial polyhedrin gene (405 bp) of an Egyptian 



isolate of SlNPV was successfully amplified by PCR using degenerate primes and subsequently, 

this DNA segment was cloned and sequenced (Seufi, 2008, unpublished). 

2.20 Evaluation of Phylogenetic Status of Baculoviruses Based on 

Polyhedrin / Granulin Gene Sequences: 

Investigation of phylogenetic relationships between baculoviruses and their hosts has 

provide potential clues about the understanding of biological adaptations such as virus- host 

specificity, but only broad aspects of virus-host associations have so far been identified (Brooks 

and McLennan, 1991; Zanotto et al., 1993). Host range is of practical importance for pest control, 

since these characteristics are natural barriers that determine the use of these viruses and are 

relevant to safety assessment of genetically modified viruses. The methodology for phylogenetic 

estimation is undergoing refinement, but no one particular inference method has emerged which 

is superior for estimating phylogenies (Nei, 1996). Most baculovirus phylogenies consider 

estimations from tree construction algorithms of occlusion body protein (polyhedrin/granulin) 

sequences. The earlier polyhedrin / granulin based phylogenetic studies established that 

lepidopteran NPVs evolved from a common lepidopteran NPV ancestor rather than cross-

infecting from different orders of arthropods (Rohrmann et al., 1981). Studies by Zanotto et al. 

(1993) have revealed that prior to the divergence of the two major clades of lepidopteran NPVs 

(namely, Groups I and II) a clade comprising GVs diverged early in the evolution of the 

lepidopteran NPVs (Rohrmann, 1992; Zanotto et al., 1993). Some of the representatives of 

Groups I and II are listed in Table 6 used for this study (Cowan et al., 1994; Zanotto et al., 1993). 

In this section, the phylogenetic status of some baculoviruses has been estimated previously based 

on polyhedrin /granulin gene sequences are reviewed as follows:  

Comparison of primary structures of polyhedrin genes of nucleopolyhedroviruses of B. 

mori with that of A. californica suggest that considerable selective pressure has been exercised at 

the protein level during evolution and the nucleotide sequence comparisons of the two structural 



genes reveal that the coding sequence have diverged significantly through the accumulation of 

silent and replacement substitutions. In contrast, a remarkable degree of sequence conservation 

was found to exist in the domains corresponding to the 5’ and 3’ non coding regions of the 

polyhedrin mRNAs (Latrou et al., 1985). Anticarsia gemmatalis multiple nucleopolyhedrovirus 

(AgMNPV) and Orgyia pseudotsugata MNPV (OpMNPV) are similar in terms of promoter 

structure and polyhedrin primary sequence, the polyhedrin gene of both viruses is transcribed in 

the anti-clockwise direction in relation to their physical maps and the region upstream from the 

polyhedrin gene of AgMNPV, OpMNPV, Bm NPV and AcMNPV was compared and this 

showed that the ORF common to all four viruses (Zanotto et al., 1992). Analysis of the nucleotide 

sequence and deduced amino acid sequence of polyhedrin gene of a characteristically distinct 

SltMNPV indicate that this has more than 70% sequence identity to known polyhedrins, the 

coding region is preceded by an AT rich region containing the conserved late promoter motif 

TAAG and the upstream promoter and coding regions of this polyhedrin gene are more similar to 

polyhedrin of the NPVs of S. frugiperda, S. exigua and Panolis flamea (Bansal et al., 1997). The 

sequence analysis of M. configurata nucleopolyhedrovirus polyhedrin gene showed that the ORF 

coding for a 246 amino acid polypeptide with 98.7% sequence identity with Panolis flammea 

nucleopolyhedrovirus (PaflNPV) polyhedrin protein and the putative polyhedrin gene sequence 

had 97.2% and 91.2% identity with the PaflNPV and Mamestra brassicae multicapsid 

nucleopolyhedrovirus (MabrMNPV) polyhedrin gene sequences respectively (Li et al., 1997). 

Organization and molecular characterization of genes (p78, tyrosine phosphatase, protein kinase, 

lef-2 and ORF 327, 453 and 603) in polyhedrin gene region of Anagrapha falcifera multicapsid 

NPV (AfMNPV) showed that nucleotide sequence identity of 97% and amino acid sequence 

identity of greater than 98% with AcMNPV but the polyhedrin gene showed least relatedness 

between the two viruses, with a nucleotide sequence identity greater than 80% and deduced 

amino acid sequence identity of 90% , based on these results they concluded that the AfMPNV 

should be considered as a variant of the AcMNPV (Federici and Hice, 1997). Rivikin et al., 



(1998) found that the polyhedrin gene of an Israeli H. armigera single nucleopolyhedrovirus was 

99.4% of homology to the H. zea NPV polyhedrin. Similarly, the phylogenetic relationship of 

Epiphyas postvittana nucleopolyhedrovirus with 23 other NPVs based on polyhedrin gene 

sequences shows EppoNPV to be a group I NPV and is very closely related to Orgyia 

pesudotsugata MNPV (Hyink et al., 1998). The extent of divergence between the nucleotide 

sequence of polyhedrin gene of a New Zealand Wiseana SNPV isolate and other separate 

Wiseana species was small enough, however, to consider three SNPVs from W. signata, W. 

cervinata and W. umbraculata as different strains of a single SNPV species. In addition, the 

phylogenetic relatedness of this virus to 16 other NPVs from diverse insect genera suggests that 

the Wiseana SNPV was unique with in the baculoviridae, but was more closely related to the 

group II NPVs (Sadler et al., 1998). The predicted amino acid sequence of RoMNPV polyhedrin 

shared more sequence identity with the polyhedrin of Orgyia pesudotsugata MNPV, in addition, 

the RoMNPV polyhedrin nucleotide sequence was almost completely identical (99.9%) to the 

previously published polyhedrin gene of Anagrapha falcifera MNPV (AfMNPV) (Harrison and 

Bonning, 1999). Phylogenetic analysis of the polyhedrin gene showed that the Lonomia obliqua 

MNPV (LoobMNPV) polyhedrin belongs to group I NPV and that it is closely related to the 

polyhedrin of the NPV of Amsacta albistriga (Wolff et al., 2002). The nucleic acid sequence 

homology of the polyhedrin gene of Japanese SlMNPV is as high as 98.9% compared with 

Chinese strain, and 61.7% to 74.2% with other six NPVs compared (Ikeda et al., 2004). The 

complete codon sequence of SpliMNPV-Az polyhedrin gene sequence was compared with other 

38 polyhedrin genes from NPVs and with 6 granulin genes from GVs and resulted to be identical 

to the sequence of SpliMNPV previously published, thus indicating that natural host of 

SpliMNPV-Az must be S. littoralis (Martins et al., 2005). Similarly, the phylogenetic analysis of 

polyhedrin gene of a nucleopolyhedrovirus isolated from Lymantria xylina multiple 

nucleopolyhedrovirus (LyxyMNPV) showed that LyxyMNPV is closely related to the Lymantria 

dispar MNPV (LdMNPV) (Wu and Wang, 2005). The nucleotide sequence comparison of 



European Leicoma Salicis NPV (LesaNPV) polyhedrin gene with other published polyhedrin 

gene sequenced conformed the close relationship between LesaMNPV and OpMNPV 

(Jakubowska et al., 2005). Similarly, the phylogenetic analysis of the polyhedrin gene sequenced 

from Helicoverpa assulta nucleopolyhedrovirus (HasNPV) showed that the polyhedrin gene of 

HasNPV shared 73.7% identity with the polyhedrin gene from AcNPV but were most closely 

related to Helicoverpa and Heliothis species NPVs with over 99% sequence identity (Woo et al., 

2006). The phylogenetic analysis of NPV isolated from Orgyia ericae Germer using polyhedrin 

gene sequence revealed that O.ericae NPV (OeNPV) was a member of the group II NPVs and 

was closely related to the Buzura suppressaria SNPV (BusuSNPV) and OpSNPV cluster (Li et 

al., 2006). The phylogenetic analysis based on polyhedrin along with other conserved gene 

sequences of Ectropis obliqua single-nucleocapsid nucleopolyhedrovirus (EcobSNPV) indicated 

that this virus is closely related to the Spodoptera exigua multicapsid NPV (SeMNPV) and 

belongs to the previously described group II NPV (Ma  et al., 2006). 

    

    

    

    

    

    

    

    

    

    

    

    

    

    

    



    

    

    

    

    

    

    

    

    

CCHHAAPPTTEERR  --  IIIIII  

Materials & MethodsMaterials & MethodsMaterials & MethodsMaterials & Methods    
    

    

    

    

    

    

    

    

    

    

    

    

    

    

    

CHAPTER - III 

MATERIALS AND METHODS 



Isolation and Propagation of NPVs from Major Lepidopteran Pests of 

Legume Crops in the Semi-Arid Tropics:  

During natural epizootic conditions nucleopolyhedrovirus (NPV) symptoms were observed in 

the following lepidopteran pest populations on legume crops at ICRISAT farms.  

1. Helicoverpa armigera on pigeonpea and chickpea crops,  

2. Spodoptera litura on groundnut and 

3. Amsacta albistriga on groundnut 

The diseased larvae with fresh symptoms were carefully collected in to 2ml micro-

centrifuge tubes and shipped to the laboratory for further studies. 

3.1.1 Extraction of polyhedral occlusion bodies (POBs): 

The viral occlusion bodies (OBs) were extracted from individual diseased larvae collected 

from fields with slight modifications to the method described by Christian et al. (2001). To each 

cadaver 1ml sterile distilled water was added. Then the cadaver was disrupted by vortexing for 60 - 

120s and extract was filtered through glass wool. The glass wool was washed with 500µl of sterile 

distilled water and the filtrate centrifuged at 15000 × g for 5min. The supernatant was removed 

carefully; pellet was washed with 2ml of distilled water and centrifuged as described above. The 

pellet was resuspended in 1ml of sterile distilled water and stored at 40C. The occlusion bodies were 

enumerated using Neubauer’s haemocytometer mounted on a phase–contrast light microscope. 

 

3.1.2 Mass multiplication:  



Mass multiplication of HaNPV, SlNPV and AmalNPV were standardized at ICRISAT-

NPV production laboratory. For mass multiplication, 4th instar larvae of H. armigera (Gopali and 

Lingappa, 2001a), late 4th instar or 5th instar larvae of S. litura (Jun et al., 2007) and A. albistriga 

(Veenakumari et al., 2006) were inoculated with virus. The method of virus inoculation and larval 

rearing procedures were detailed below: 

3.1.2.1 HaNPV mass multiplication:  

HaNPV was mass multiplied on laboratory reared as well as field collected healthy larvae 

as detailed below. 

3.1.2.1.1 Field collection of H. armigera larvae: 

During 2006, third and fourth instar larvae of H. armigera were collected on various 

crops like pigeonpea, chickpea, pearl millet and occasionally on the weed, Lagascea mollis Cav. 

(during the off season). Collection was done in multicavity cell well trays (containing 50 cells) 

(size: 25x12 cm2). Cell wells were kept ready one day before larval collection after sterilizing 

with 1% clorex solution, exposure to UV light. 

Small pieces of semi-synthetic diet or soaked chickpea seeds were provided as diet in 

each cell well. From this collection uniform sized fourth instar larvae were selected and 

transferred to virus inoculation laboratory which is situated 2km away from rearing laboratory 

(insectary) for the multiplication of NPV on field collected H. armigera larvae. 

 

 

3.1.2.1.2 Establishment of laboratory culture of H. armigera: 



Late fifth instar larvae were selected from the field collection and transferred on to semi-

synthetic diet (Appendix I) in sterilized multicavity trays. The diet was supplemented regularly to 

ensure sufficient food and proper care was taken for sanitation. The pupating larvae were handled 

with care to minimize the disturbance. On pupation, pupae were surface sterilized in 1% clorex 

solution and washed with distilled water. Later they were transferred into plastic jars with 

vermiculate for adult emergence. After 7 to 8 days adults were separated based on sex and 

released into oviposition cages (45cm length: 30cm diameter) in 1:2 ratio of males to females. 

Adults were provided with 10% honey solution and vitamin stock solution as food using cotton 

swabs placed in a small plastic dish, which was placed at the bottom of plastic jar. Oviposition 

cages were provided with nappy liners for egg laying and they were regularly checked and 

replaced daily from day three to death of moths. Liners loaded with eggs were sterilized by 

dipping in 0.1% sodium hypochlorite solution. Liners were allowed to dry and then placed in 

clean sterilized plastic cups finely coated with a layer of artificial diet. The larvae emerged from 

eggs were reared together till second instar stage, and later they were transferred into individual 

sterilized cell wells provided with artificial diet to avoid cannibalism. Larvae were regularly 

monitored for their growth. Life cycle of H. armigera was shown in Fig 6. Once they attained the 

desired size i.e. late third instar they were used for the multiplication of virus. Before inoculation, 

larvae were weighed and average weight was calculated. 

3.1.2.1.3 Virus multiplication: 

Insects beginning to molt out of the third instar stage, determined by head-capsule 

slippage, were transferred to cell well trays with out diet for 16-24h. Artificial diet, which was 

prepared and poured in plastic trays prior to the inoculation was cut into pieces of 1 cm2 and 0.5 

cm thick were placed in virus inoculation cell well trays. Virus inoculation was done by the 

surface contamination method as given by Evans and Shapiro (1997). Fifty µl of virus suspension 

containing 108 POBs/ml was dispensed over the surface of diet in the cell wells and spread 



uniformly over the surface using blunt end of glass rod and allowed it to dry for 10-20min. 

Larvae were transferred to virus-infected diet and they were observed daily for mortality. 

Mortality of larvae started from 4th day and it continued up to 8-10 days. NPV was multiplied on 

300 larvae in 6 batches with 50 4th instar larvae in each batch. After larval death, the cadavers 

were collected, in jars containing distilled water and stored at 40C for further processing. 

3.1.2.2 SlNPV mass multiplication:  

SlNPV was mass multiplied on laboratory reared healthy larvae as detailed below. 

3.1.2.2.1 Establishment of laboratory culture of S. litura: 

Initially, the Spodoptera culture was established from field collected egg masses at 

ICRISAT center. The egg masses collected from groundnut fields were disinfected with 1% 

clorax solution and pinned in jars containing artificial diet (Appendix II). After the 4th instar the 

culture was thinned and continued on fresh diet until pupation. On pupation, pupae were surface 

sterilized in 1% clorax solution and washed with distilled water. Later they were transferred into 

plastic jars with vermiculate for adult emergence. After 7 to 8 days adults were separated based 

on sex and released into ovipositional cages (45cm length: 30cm diameter) in 1:2 ratio of males to 

females. Adults were provided with 10% honey solution and vitamin stock solution as adult diet 

using cotton swabs placed in a small plastic dish, which was placed at the bottom of plastic jar. 

Ovipositional cages were provided with filter papers for egg laying and they were regularly 

checked and replaced daily from day three to death of moths. Filter papers loaded with egg 

masses were separated and pinned in jars containing artificial diet. In this process, the culture was 

continued under laboratory conditions. Various stages in the life cycle of S. litura were shown in 

Fig 6. 

Figure 6: Life cycle of Helicoverpa armigera (Hubner), Spodoptera litura 

(Fabricious) and Amsacta albistriga (Walker) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.2.2.2 Virus multiplication: 

   

Various stages in the life cycle of H. armigera (A) S. litura (B) and A. albistriga (C). The 
adult moths and their oviposition behaviour were clearly represented. The larval instars and 
pupal stages were commonly represented for three insects. 

 



For multiplication of virus, healthy late 4th instar larvae from the culture was shifted to 

plastic tubs (30 cm diameter, 10 cm height) with a thin layer of artificial diet. After shifting the 

larvae to virus production laboratory, the diet was treated with virus inoculum [previously 

preserved in the laboratory @ 0.25 LE per tub or 108POBs/ml, this rate maximizes the POB yield 

(Okada, 1977)] and insect rearing was continued. Since, Spodoptera has very low cannibalistic 

behavior, 200-250 larvae were reared in each tub until the disease symptoms appeared (mostly 

from 7th day onwards). After the larval death, the cadavers were collected and processed for virus 

as explained in case of HaNPV.  

3.1.2.3. AmalNPV mass multiplication:  

AmalNPV was mass multiplied on laboratory reared as well as field collected healthy 

larvae as detailed below. 

3.1.2.3.1 Virus production from laboratory reared larvae: 

Amsacta cultures were established in the laboratory from the field collected egg masses 

during early June from cowpea fields meant for green manure in ICRISAT farm. These egg 

masses were disinfected and kept for hatching. After egg hatch, the neonates were transferred on 

to groundnut leaves kept as bouquets in small wooden cages (50 × 30 × 30 cms). Enough foliage 

was maintained in the cages to provide sufficient food for the larvae particularly, as the larval 

stage advanced. Various stages in the life cycle of A. albistriga were shown in Fig 6.  In order to 

produce NPV, some larvae were shifted to virus production unit, where the foliage was infected 

with previously collected virus. About 1 LE inoculum was used to cover 1000 larvae for virus 

production. The foliage was sprayed with virus for couple of times after larvae attained late 4th 

instar or early 5th instar. Larval infection was observed a week after inoculation and the dead 



larvae were collected from the cage in distilled water and processed for virus as in case of 

HaNPV.  

3.1.2.3.2: Virus production from field collected larvae: 

Since this species has one to two generations under field conditions, and they come as 

epidemic form in some locations, production of virus from field-collected larvae seems highly 

feasible, as laboratory rearing is not feasible due to its diapause behavior. Several thousands of 

above 4th instar larvae were collected from groundnut fields at ICRISAT during the month of 

August, and were placed in big cages with ample plant material such as castor, sorghum as feed. 

The plant material in the insect rearing cages was treated with virus incoulum in order to infect 

and produce large quantities of virus from field-collected larvae. As the larvae start dying mostly 

a week after releasing in the cages, the dead larvae were collected in distilled water and processed 

for virus. Since Amsacta larvae has no cannibalism, about 1000 larvae were reared in 1 sq. m. 

cage area. Sowing of host plants 15 days before shifting the larvae can facilitate easy larval 

rearing and avoids replacing food with fresh plants. However, virus production from field-

collected larvae cannot provide good proofing to prevent contamination from other viruses and 

bio-control agents.  

3.1.3 Harvesting of POBs:  

After collecting all dead larvae in distilled water, the larvae were ground in a blender. 

Suspension containing POBs was collected and filtered through the four layers of muslin cloth or 

plastic strainer to remove larval debris. Virus suspension centrifuged at 5000rpm for 10 to 15min 

(Remi R8C). POBs were collected as sediment at the bottom of the tube (Fig 7), which was 

dissolved in distilled water and stored at 40C for further studies. 

 



3.1.4 Enumeration, Dilution and Counting of POBs: 

Enumeration of polyhedra in the viral suspension was done with the help of Neubauer’s 

haemocytometer, which comprised a glass slide carrying calibrations in two replicates (Evans and 

Shapiro, 1997). One ml virus suspension was made up to 1000 ml by serial dilution, 1000 was 

taken as dilution factor. For counting of polyhedra, haemocytometer was used.  Diluted virus 

suspension of 1 ml containing 0.1% teepol was drawn into pipette. Then the pipette was shaken 

vigorously closing the rubber tube tightly. The first three drops were discarded and the fourth 

drop was put in the groove of the haemocytometer and then standard cover slip was placed over 

the slide. Care was taken to see that the haemocytometer was clean and only required quantity of 

suspension was put to fill the calibrated area. After allowing polyhedra to settle down for two 

minutes, the polyhedra count was taken in 80 squares of the 1/400 sq. mm area at random with 

the help of stereomicroscope under 10 × 40 magnification. Proper care was taken to avoid 

duplication of counts of polyhedra on the lines of calibrations. This was done by counting 

polyhedra inside the squares as well as the polyhedra on the top and left sidelines only. Virus 

suspension of known concentration was prepared from the stock solution by suitable dilution with 

distilled water for various experiments. Concentration of stock solution was expressed as POB/ml 

which was calculated by using the following equation. 

                                                   D × X 

Number of POBs/ml = 

                                                   N × K 

Where: 

D= Dilution factor,  

X= Total number of POBs counted,  

N= Number of squares counted and   K= Constant (2.5 × 10-7). 



Figure 7: Sedimented polyhedra at the bottom of tube after centrifugation in 

      Remi R8C 
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Supernatant 

NPV pellet 

Centrifugation of virus-infected larval extracts at 5000 rpm in Remi-R8C resulted in 
sedimentation of POBs at the bottom of the tube. The Pellets of HaNPV (A) and SlNPV (B) 
were smaller than AmalNPN (C) subsequently the number of POBs also higher in C than A 
and B 



Working example: 

After centrifuge, 1 ml of the solution was diluted 1000 times and POBs counted in 100 

squares was 421, then 

D= 1000,  

X= 421,  

N= 100 and 

K= 2.5 × 10-7 

                                               1000 × 421                           10 × 421                           4210 
Thus POBs per ml =  =  =  
                                       100 × 2.5 × 10-7                        2.5 × 10-7                       2.5 × 10-7   

                                               1684 
                               =      
      10-7 

                               = 1684 × 107 POBs/ml 

    Calculation of larval equivalent (LE): 

1 LE is equal to 6 × 109 POBs 

1684 × 107 POBs/ml is equal to:  

                                          1684 × 107 
                               =      
       6 × 109 

                               = 2.806 LE/ml 

3.2 Electron Microscopic (EM) Studies: 

To study the morphology (external and internal) of NPVs isolated from H. armigera, S. 

litura and A. albistriga, the purified POBs were studied by electron microscope (EM). The external 

morphology was studied by observing the POBs in scanning electron microscope (SEM) while the 

internal morphology was studied by the observation of cross sections of pellets of purified POBs in 

transmission electron microscope (TEM). 

    



3.2.1 Scanning electron microscopic (SEM) studies: 

The purified POB suspensions were transferred to vials and fixed in 2.5% glutaraldehyde 

in 0.05 M phosphate buffer (pH 7.2) for 24 hr at 40C and post fixed in 2% aqueous osmium 

tetroxide in the same buffer for 2 hr. After fixation, samples were dehydrated in a series of graded 

alcohol and dried to critical point drying. Dried samples were mounted over the stubs with 

double-sided conductivity tape. Finally, applied a thin layer of gold metal over the sample using 

an automated sputter coater (Model: JEOL-JFC 1600) for about 3 min. Then scanned the samples 

in scanning electron microscope (Model: JOEL-JSM 5600, JAPAN) at various magnifications. 

The sizes of the OBs were measured directly from the amplified photograph using a scale and 

dividing the value by the magnification of the photograph. 

3.2.2 Transmission electron microscopic (TEM) studies: 

Pellets of purified POBs were fixed in 2.5% glutaraldehyde in 0.05 M phosphate buffer 

(pH 7.2) for 24 hr at 40C and post fixed in 0.5% aqueous osmium tetroxide in the same buffer for 

2 hr. After the post fixation samples were dehydrated in a series of graded alcohol, infiltrated and 

embedded in Araldite 6005 resin. Ultra thin sections (50-70 nm thickness) were cut with a glass 

knife on a Leica Ultra cut UCT-GA-D/E-1/00 ultramicrotome and mounted on grids. Then 

sections were stained with saturated aqueous uranyl acetate and counter stained with 4% lead 

citrate. Observed under TEM (Model: Hitachi, H-7500 from JAPAN) at various magnifications 

and at 80 KV current. The sizes of the OBs and nucleocapsids were measured directly from the 

amplified photographs using a precision ruler and dividing the value by the magnification of the 

photograph. 

 

 



3.3 Purification of Polyhedral Protein (Polyhedrin) of NPVs: 

Purification of polyhedrin from POB suspensions was standardized as per the protocols 

given by Quant et al. (1984), Harrap et al. (1977) and Summers and Egawa (1973) with slight 

modifications. The protocol steps were presented schematically in Fig 8.  

3.3.1 Standardization of purification protocol: 

� POB suspension was centrifuged at 5,000 rpm for 20 minutes in a Sorvall HB4 rotor. 

Supernatant was discarded and the pellets were resuspended in sterile distilled water 

and adjusted its concentration to 109 POBs/ml. 

� The aqueous POB suspension was subjected to heat-treatment at 700C for 20-30min 

to inactivate the endogenous alkaline proteases.  

� Then dissolved the POBs by adding 0.1 volume of dissolution buffer containing 1M 

Na2CO3-0.5M NaCl and incubated at 560C for 15-20min in a water bath with 

occasional shaking. 

� After dissolution of POBs, the suspension was cooled to 40C and centrifuged at 120, 

000 × g (26,000 rpm in a Beckman SW-28 rotor) for 60min to pellet virions and 

undissolved POBs.  

� The supernatant containing predominantly the polyhedrin was further purified by two 

different approaches. The purity and yield of protein obtained in both the approaches 

was compared.  

First approach:  

� The supernatant was collected and the remaining polyhedral remnants were cleared 

by layering on 10-40% sucrose gradient and centrifuged at 26,000 rpm for 2h in a 

Beckman SW-28 rotor.  

� The light scattered zone was collected and dialyzed against 0.01M Tris buffer (pH 

8.9) overnight at 40C. The protein concentration was determined by Bradford’s 



reagent using a commercially available kit. The polyhedrin protein preparations were 

stored at -200C for further analysis. 

Second approach: 

� The supernatant was collected into a beaker and adjusted the pH to 5.8 - 5.6 

by slow addition of 0.1N HCl. The polyhedrin is insoluble at this pH 

(isoelectric point of polyhedrin) and forms the precipitate. 

� Then the beaker was left at 40C for 2-3h before centrifuging at 400 × g (6000 

rpm in a SA-600 rotor) for 20 min and the polyhedrin pellet was resuspended 

in sterile distilled water.  

� The pelleting step was repeated for 3-4 times and the final pellet was 

dissolved in same volume of sterile double distilled water and dialyzed 

against 0.01M Tris buffer (pH 8.9) overnight at 40C. The protein 

concentration was determined by Bradford’s reagent using a commercially 

available kit. The polyhedrin preparations were stored at -200C for further 

analysis. 

 

 

 

 

 

 

 



Figure 8: Schematic representation of polyhedrin purification protocol 

NPV infected larvae was extracted and clarified by filtration through muslin cloth and 
centrifuged (5,000rpm for 20min in Sorvall HB4 rotor) 

                         

Supernatant                                    Pellet 

Pellet dissolved in distilled water and adjusted its concentration to 109 POBs/ml. 

POB suspensions were subjected to heat-treatment at 700C for 20-30min. 

Dissolved the POBs by adding 0.1 volume of dissolution buffer containing 1M Na2CO3-
0.5M NaCl and incubated at 560C for 10-15min. 

 

The suspension was cooled to 40C and centrifuged at 120,000 × g for 1h (26,000rpm in 
Beckman SW-28 rotor). 
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The supernatant layered on 10-40% 
sucrose gradient and centrifuged at 
26,000rpm for 2h in Beckman SW-28 
rotor. 

 

The supernatant was collected into 
a beaker and adjusted the pH to 5.8 
- 5.6 by slow addition of 0.1N HCl. 

The light scattered zone was   collected 
and dialyzed against 0.01 M Tris buffer 
(pH 8.9) overnight at 40C. 

The beaker was left at 40C for 2-3 
h and centrifuged at 400 × g 
(6000rpm in SA-600 rotor) for 
20min.  

The protein concentration was 
determined by Bradford’s reagent 
using a commercially available kit and 
stored at -200C for further analysis. 

 



      

   

 

 

 

3.3.2 SDS–PAGE analysis of polyhedrin preparations: 

The purity and integrity of polyhedrin preparations were analyzed in 12% SDS-PAGE 

gels as described in Kumar and Waliyar (2007). Purified polyhedrin samples at concentration 

about 100-200µg/10µl were assayed by separating them in polyacrylamide (PAGE) gels. The 

purified protein samples were mixed with equal volume of Laemmli buffer (Appendix III) and 

denatured by heat treatment in boiling water-bath for 3min. Samples (10µl) were loaded into 

wells of 12% SDS-PAGE (discontinuous gel, composition given in Appendix III) and 

electrophoresed at 100 volts for approximately 2 h in Broviga® apparatus. The gel was taken out 

from the apparatus and silver stained to visualize the proteins as detailed in Kumar et al. (2004) 

as given below: 

� The gel was placed in fixative solution for 30min at room temperature with 

gentle shaking and solution was discarded.  

� Then the gel was washed for three times (10min each wash) in distilled water. 

� The gel was placed in DTT solution for 30min and then it was rinsed with 

distilled water.  

� The gel was placed in silver nitrate solution for 30min with gentle shaking and 

then rinsed with distilled water.  

� Then the gel was placed in developer solution till the bands appeared clearly.  

� Reaction was stopped using stopper solution [1% (v/v) sodium acetate]. 

The pellet was resuspended in sterile distilled water. The pelleting was repeated for four times and 
the final pellet was dissolved in same volume of sterile distilled water and dialyzed against 0.01M 
Tris buffer (pH 8.9) overnight at 40C. 

The protein concentration was determined by Bradford’s reagent using a commercially available kit 
and stored at -200C for further analysis. 

 



The molecular weights of the protein bands were estimated by comparing with the 

protein molecular weight standards (MBI Fermentas Cat# SM0441). Standard graph was prepared 

by plotting the distance migrated by protein standards on X-axis and molecular weights on Y-

axis. The molecular weights of viral proteins were calculated from the standard graph by plotting 

the distance migrated by the viral proteins. Standard graph was prepared for each PAGE and 

average molecular weight calculated from three graphs was taken as molecular weight of the viral 

protein. 

3.3.3 Electro-elution of polyhedrin: 

In order to improve the quality of the polyhedrin protein preparation for immunization 

purpose to produce polyclonal antibodies, the polyhedrin protein (31 kDa molecular weight, Figs 

21 and 23) was electro-eluted from the 10% SDS-PAGE gel as given in Harlow and Lane (1998) 

and the procedure was detailed below: 

� The isoelectric precipitated polyhedrin sample (2ml) was mixed with equal volume 

of Laemmli buffer and denatured by heat treatment in boiling water-bath for 3min.  

� Sample (4ml) was loaded into 10% SDS-PAGE maxi gel (discontinuous gel casted 

with 2mm thickness single welled comb (gel composition given in Appendix III) 

and electrophoresed at 100 volts for approximately 4-5h in Broviga ® apparatus.  

� The gel was taken out from the apparatus and 1/4th of the gel was separated 

longitudinally from one edge with the help of glass rod and blade. The remaining 

3/4th of the gel was placed in a glass tray having TE buffer (pH 7.8) and kept at 40C 

until staining of the separated piece. 

� The separated gel piece was stained for 1h with Comassie brilliant blue R250 at 

room temperature. 



� After distaining, both stained and unstained parts of the gel were placed side by 

side on a glass plate. The exact portion corresponding to the polyhedrin protein 

band in unstained gel was separated. 

� The separated gel (polyhedrin band) piece was made in to further small pieces and 

transferred in to a dialysis bag, which was already filled with TE buffer (pH 7.8). 

The dialysis bag was tagged properly and placed in SDS-PAGE tank buffer in 

horizontal electrophoresis unit and electrophoresed at 100 volts for 3-4h. 

� The polyhedrin protein eluted in to dialysis bag was collected and protein 

concentration was determined specrophotometrically through Bradford method.  

� The quality of the eluted polyhedrin protein was checked in 12% SDS-PAGE and 

stored as aliquots at -200C for further analysis. 

� Before immunization the protein sample was concentrated up to required volume 

by evaporating the sample in speed vacuumed evaporator for 3-4h. 

3.4 Production of Polyclonal Antibodies Against Polyhedrin:  

The New Zealand White inbreed rabbits reared at the institute animal facility house were 

immunized intramuscularly (im) with 500 µg of electro-eluted polyhedrin per animal emulsified 

with complete Freund’s adjuvant (CFA). Five injections were given at weekly intervals, and two 

weeks after the 5th injection, animals were bled for polyclonal antiserum (Harlow and Lane, 

1998). Animals were boosted (im) after 5 weeks with the same dose of antigen emulsified in 

incomplete Freund’s adjuvant (IFA). Animals were boosted at the time of decline in antibody 

titers. After the 5th injection, blood was collected from rabbits by making an incision in the 

marginal vein of the ear. The blood was allowed to clot at room temperature for 2-3 h or by 

exposed to 370C for 30min. After overnight refrigeration, the serum was collected with a Pasteur 

pipette and then centrifuged at 5,000rpm for 10min. The antisera were stored at 40C by adding 

0.02% Sodium azide or in lyophilized form at -200C. 



3.4.1 Monitoring antibody titers: 

The titers of antisera produced against NPVs were determined by direct antigen coating 

(DAC) enzyme-linked immunosorbant assay (ELISA) as described in Kumar and Waliyar (2007) 

as detailed below: 

3.4.1.1 Direct antigen coating (DAC) enzyme-linked immunosorbant assay (ELISA): 

Polyclonal antibodies were screened for the reactivity with polyhedrin protein of 

nucleopolyhedroviruses by DAC-ELISA. The reagents and buffers used for ELISA were given in 

Appendix IV. The polyhedrin (electro-eluted) purified from HaNPV, SlNPV and AmalNPV was 

used as coating antigen. Briefly, polyvinyl microtitration plates (Nunc MaxiSorb, Denmark) were 

coated with 100µl/well of polyhedrin (1µg/ml) diluted in coating buffer (50 mM Sodium 

carbonate/bicarbonate, pH 9.5) and incubated the plate in a humid chamber for 2h at 370C or in a 

refrigerator (40C) overnight. After coating, the buffer was decanted gently and washed the plate 

with 3-4 changes of PBS-T, allowing 3min for each wash to remove unbound coating antigen, 

then serial dilutions of antiserum in PBS-T (1:500 to 1:128,000) were added at 100 µl/well, 

followed by incubation at 370C for 1h or in a refrigerator (40C) overnight. Duplicates were 

maintained for each dilution of antiserum and assayed together 2 to 3 bleeds per plate. The plates 

were again washed 3-4 times with PBS-T. To detect the antigen-antibody complex goat anti-

rabbit IgG-alkalinephosphatase (ALP)-labelled conjugate (Sigma, USA) diluted in PBS-T 

(1:4,000) was added at 100µl/well and incubated at 370C for 1h. After another 3-4 times of 

washing phosphatase activity was measured by adding 100µl/well of Para-nitrophenyl phosphate 

substrate at 0.5mg/ml in 10% (v/v) diethanolamine buffer, pH 9.8 and incubated in dark place, at 

room temperature. The absorbance readings were recorded by an ELISA reader (Titertek 

Multiskan, Labsystems, Finland) at a single wavelength of 405nm after 1h of substrate reaction 

time. Maximum binding and background binding antibody concentrations were measured 

whether neither analyte nor antibody were added to the system. 



3.5 Characterization of Polyhedrin-Polyclonal Antibodies: 

Polyclonal antibodies produced against the polyhedrin of three NPVs were characterized 

by determining the specificity with their respective polyhedrins and cross-reactivity with 

heterologous polyhedrins from other NPVs.  

3.5.1 Determination of Specificity of polyhedrin polyclonal antibodies by western 

immuno- blotting:  

The specificity of polyhedrin polyclonal antibodies were determined by Western 

immunoblotting analysis of isoelectric precipitated polyhedrins (IPP), entire POB particle 

proteins (EPP), electro–eluted polyhedrin (EP) and healthy larval proteins (HLP) as described in 

Kumar and Waliyar (2007) as detailed below: 

The reagents and buffers used for western immunoblotting were given in Appendex-V. 

Protein samples (10µl of each sample) were electrophoretically separated in 12% PAGE as 

described in section 3.3.2. Following SDS-PAGE, the separated proteins were electrophoretically 

transferred to nitrocellulose membrane. Transfer was performed at 200mA (constant current) 

using TE-22 mini transfer apparatus (Hoefer Scientific) and performed for 2-3h. After transfer, 

the nitrocellulose membrane was blocked with non-fat mild powder (eg. Nestle or Everyday) at 

5% (w/v) in PBS-T by incubating the plate at room temperature with gentle shaking. Then the 

membrane was washed with PBS-T, thrice for 5 min each and incubated the membrane at room 

temperature for 1h in antibody buffer containing respective NPV- polyhedrin polyclonal 

antiserum at 1:5000 (v/v) dilution. After washing, the antigen-antibody reaction was visualized by 

colorimetric reaction by incubating the membrane at room temperature for 1 h in antibody buffer 

containing ALP-labelled anti-rabbit IgG at 1:4000 (v/v) dilution. After washing, the membrane 

was incubated with BCIP-NBT substrate solution in dark chamber at room temperature. The color 

development was recorded and stopped the reaction by washing the membrane in PBS-T for 5min 

and then placed it in distilled water. Then dried the membrane and photographed or digitized 

using a scanner. 



3.5.2 Determination of cross-reactivity of polyhedrin-polyclonal antibodies: 

The cross-reactivity of polyclonal antibodies was determined by subjecting the electro-

eluted polyhedrin (EP) samples to DAC-ELISA and western immuno blotting as detailed below: 

3.5.2.1 DAC-ELISA:  

DAC-ELISA was performed as described in section 3.4.1.1 in two different approaches as 

detailed below: 

3.5.2.1.1: Reciprocal test to determine the cross reactivity of the three polyclonal 

antisera: 

In this approach variable concentrations (2000ng  to 7.8ng /ml) of heterologous polyhedrins 

were coated in to ELISA plate in duplicate wells and fixed dilution (1:5000) of homologous 

antiserum (after booster dose bleed) was used to evaluate the cross-reactivity of the heterologous 

polyhedrins with that particular antiserum.  

3.5.2.1.2: Reciprocal DAC-ELISA with fixed heterologous polyhedrin concentration 

vs. variable homologous antiserum dilutions: 

In this approach fixed concentration (1000ng/ml) of heterologous polyhedrins were coated 

into ELISA plate in duplicate wells and variable dilutions (1:1000 to 40,000) of homologous 

antiserum (after booster dose bleed) was used to evaluate the cross-reactivity of that particular 

antiserum with heterologous polyhedrins. 

3.5.2.2: Western immunoblotting:  

To determine the cross-reactivity of homologous polyhedrin polyclonal antiserum with 

heterologous polyhedrins, the electro-eluted polyhedrins of three NPVs were separated in 12% 

SDS-PAGE as described in section 3.3.2 and subjected to western blotting as described in section 

3.5.1 with respective antiserum at 1:5000 dilution.  

 

 



3.6 Development and Evaluation Diagnostic Tools for NPVs: 

  To determine if the of polyhedrin specific polyclonal antibodies would be useful to 

monitor the various stages of NPV infection in larvae and to quantify the POBs in commercial 

NPV preparations, different immunochemical tools were standardized and evaluated their 

validation in routine application of diagnosis and quality control of NPVs. 

3.6.1 Development of diagnostic tools:  

  To examine the ability of the polyclonal antibodies to diagnose the NPV infection, 

different age group larvae (4th and 5th instars) of H. armigera, S. litura and A. albistriga were 

infected with their respective NPV in laboratory and evaluated the infection status by using 

various immunochemical tools. For example, for detection of POBs in larval homogenates, 

western immunoblotting and indirect immunofluorescence assay tools were developed, and for 

detection and quantification of polyhedrin content, DAC-ELISA and IC-ELISA were developed. 

The details of the standardization procedures were given below. 

3.6.1.1 Infection of larvae and extraction of polyhedrin: 

 Healthy 4th and 5th instar larvae were transferred to cell well trays (H. armigera and S. 

litura) or plastic cages (A. albistriga) with out diet for 16-24h before released on to virus 

inoculated diet material. Larvae were infected with respective NPV by surface inoculation [as 

given by Evans and Shapiro (1997)] of their diet with greater than 50% lethal doses (108 

POBs/ml). The larvae were reared under controlled conditions with 16:8h (L: D) photoperiod, 25 

± 20C temperature and 70% relative humidity. Healthy controls for each instar were also 

maintained. Larvae were daily monitored for NPV infection until pupation. Larvae under live, 

dead, putrified and pupal stages were collected in to 2ml micro-centrifuge tubes, weighed and 

frozen at -200C. Polyhedrin was extracted from NPV infected larvae as described in Quant et al., 

(1984) as detailed below:  



 Frozen larvae and pupae were homogenized at 0.1g of insect per ml in 0.01 M Tris (pH 8.2) 

- 0.15 M NaCl – 0.1 mM phenylmethylsulfonyl fluoride for 3-5min with a virtis blender at 

medium speed. This raw homogenate was directly used for Western immunoassay and indirect 

immunofluorescence assay for detection of POBs. For ELISA the total polyhedrin was extracted 

as follows: The larval homogenates were incubated with 0.1 volume of 1 M Na2CO3–0.5 M NaCl 

for 15-20min at 560C to dissolve polyhedra. These preparations were centrifuged at 120,000 × g 

for 45min at 40C (26,000 rpm in a Beckman SW-28 rotor) and the supernatants except those used 

in SDS-PAGE were heat treated for 20min at 700C. Simultaneously healthy larvae were 

processed and prepared the extracts similarly. Total protein concentrations were determined by 

Bradford’s reagent using a commercially available kit. Healthy and infected larval extracts were 

assayed in SDS-PAGE and then assayed in DAC and IC-ELISA to estimate the polyhedrin 

content. 

3.6.1.2 SDS-PAGE analysis of healthy and infected larval extracts:  

  Extracts of infected and healthy larvae were assayed for detection of polyhedrin by 

separating them in 12% SDS-PAGE. Protein samples were mixed with equal volume of Laemmli 

buffer (Appendix III) and denatured by heat treatment in boiling water-bath for 3 min. Samples 

were loaded in to SDS-PAGE (discontinuous gel, composition given in Appendix III) at protein 

concentration of 200µg /10µl per well and electrophoresed at 100 volts for approximately 2h in 

Broviga ® apparatus. Gels were silver stained to visualize the proteins by the method given by 

Kumar et al. (2004). The molecular weights of the protein bands were estimated as described in 

section 3.3.2. 

3.6.1.3 Western immuno assay for detection of POBs in larval extracts:  

 The raw insect homogenates (healthy and infected) were separated in 12% SDS-PAGE 

and subjected to western blotting as described in section 3.5.1 with respective antiserum at 1:5000 

dilution. 



3.6.1.4 Indirect immunofluorescence assay for detection of POBs in larval extracts:  

The raw insect homogenates (healthy and infected) were heat-fixed on glass slides at 100 

µl per slide for 2-3min. After fixing, the slides were washed for 3-4 times with PBS. Then slides 

were placed in a petri dish having a filter paper and incubated at 370C for 1h with polyhedrin 

polyclonal antiserum (1:500) at 100µl per slide. After incubation slides were again washed with 

PBS, incubated with anti-rabbit Ig FITC conjugate (Sigma) at 1: 80 dilution for 1h at 370C, 

followed by extensive washing with PBS. To confirm the antigen-antibody reactivity through 

fluorescence evaluation, slides were mounted in 80% glycerol and examined at various 

magnifications under fluorescence microscope (Olympus, Model: AX-70).  

3.6.1.5 DAC-ELISA for detection and quantification of polyhedrin content in larval 

extracts: 

All insect extracts (healthy and infected) were analyzed in DAC-ELISA as per the 

procedure given by Hobbs et al. (1987) as described in section 3.4.1.1. The total protein 

concentration for coating the ELISA plate was optimized by assaying the infected larval extracts 

at different concentrations (40, 20, 10, 5, 2.5 and 1.25µg/ml). ELISA readings were considered 

virus positive if the absorbance values of a sample differed by three-folds than those given by the 

healthy larval control. 

To estimate the amount of poyhedrin present in infected larvae and to determine the 

effect of insect body proteins on the results of DAC-ELISA tests, extracts of uninfected larvae 

spiked with various amounts of polyhedrin. The polyhedrin was serially diluted from 1000 to 7.8 

ng/ml in to fixed amount of healthy larval extract prepared in 50 mM carbonate buffer (pH 9.5). 

All homogenates (healthy and infected extracts) were adjusted to optimum coating concentration 

with coating buffer before being assayed. The results from DAC-ELISA were compared with a 

standard curve determined by serial dilution of spiked polyhedrin. The amount of polyhedrin 

present in larval extract was expressed as µg/mg of total protein concentration of larval extracts.  



3.6.1.6 IC-ELISA for estimation of Polyhedrin content in larval extracts: 

To eliminate the competition between insect and viral proteins for binding sites in the 

ELISA plate surface particularly when crude insect extracts were used in DAC-ELISA, an 

indirect competitive ELISA (IC-ELISA) was standardized and evaluated to estimate the 

polyhedrin content in insect extracts. The IC-ELISA was standardized as detailed below: 

3.6.1.6.1 Assay optimization: 

  
   Using a chequerboard system optimal concentrations for the coating antigen and 

antisera required for neutralization were determined by screening in a two dimensional titration 

analysis by DAC-ELISA and used in competitive inhibition studies. In order to optimize the 

assay protocols for estimation of heterologous polyhedrins, each homologous antiserum was 

screened with other two heterologous polyhedrins by two-dimensional (2D) titration analysis. The 

polyhedrin standards of HaNPV, SlNPV and AmalNPV were tested at concentrations ranging 

from 4 to 0.25µg/ml in 10-fold intervals. Each antiserum was tested at dilutions ranging from 

1:1000 to 1:64,000. The combination of coating antigen and antibody dilution that resulted in the 

highest titer was selected for further development i.e. the antigen-antibody combination at which 

the lowest antigen concentration and highest antiserum dilution gives the maximum absorbance 

value after 60 min of substrate reaction time were considered as optimal concentration of antigen 

for coating ELISA plate and antibody dilution for ELISA. The polyhedrin standards were 

optimized from serial dilutions of 40 to 0.156, 20 to 0.078 and 10 to 0.039µg/ml. The dilution 

which gave the maximum regression was selected for further development. Before assay the total 

protein concentration of all insect extracts (healthy and infected) were adjusted to same optimum 

concentration.     

3.6.1.6.2 Assay procedure: 

The procedure for IC-ELISA was essentially the same as that for the DAC-ELISA except 

that dilutions of standards and samples were incubated at 370C for 1h with the antisera in PBS-T. 



Samples (healthy and infected) were prepared as detailed in section 3.6.1.1. The details of the 

protocol steps were presented below:  

The coating antigen (polyhedrin) was diluted in coating buffer (50 mM carbonate buffer, 

pH 9.5) to optimum concentration (1µg/ml) and added to the mocrotitre plate (150µl/well) and 

incubated the plate in a humid chamber for 2 hours at 370C or in a refrigerator (40C) overnight. 

After coating, the buffer was decanted gently and washed the plate with 3-4 changes of PBS-T, 

allowing 3min for each wash to remove unbound coating antigen, then 100µl/well of serially 

diluted polyhedrin standards and samples were added to the wells then antiserum diluted in PBS-

T at 1:4000 was added at 50µl/well, followed by incubation at 370C for 1h or in a refrigerator 

(40C) overnight. The antibodies compete for bound antigen (to plate) and unbound antigen (in 

samples and standards) in the well. For each assay one row of buffer control (BC) was maintained 

by adding 100µl/well of PBST and one row of healthy control (HC) was maintained by adding of 

100µl/well of healthy larval extract. The plates were again washed 3-4 times with PBS-T. To 

detect the antigen-antibody complex goat anti-rabbit IgG-alkalinephosphatase (ALP)-labelled 

conjugate (Sigma, USA) diluted in PBS-T (1:4,000) was added at 150µl/well and incubated at 

370C for 1h. After another 3-4 times of washing, phosphatase activity was measured by adding 

150µl/well of Para-nitrophenyl phosphate substrate at 0.5mg/ml in 10% (v/v) diethanolamine 

buffer, pH 9.8 and incubated in dark place, at room temperature. The absorbance readings were 

recorded by an ELISA reader (Titertek Multiskan, Labsystems, Finland) at a single wavelength of 

A405 nm after 1h of substrate reaction time. The results from IC-ELISA were compared with 

standard regression curves obtained by plotting log10 values of polyhedrin standards against 

optical density at A405. Concentration of polyhedrin in the sample extract was determined from 

standard curves and expressed in µg/mg of total protein concentration of larval extracts. 

 

 



3.6.1.6.3 Determination of percent competitive inhibition (CI): 

To determine the affinity, specificity and sensitivity of polyhedrin polyclonal antiserum 

against homologous and heterologous polyhedrins, IC-ELISA was performed as described above. 

The percent of competitive inhibition (CI) was calculated by the following formula: 

                                                 B     
% of competitive inhibition (CI) =      × 100 

                                                 B0 

   Where: B is the extinction of the well containing polyhedrin, 

      B0 is the extinction of the well without polyhedrin (Buffer control). 

From the above data standard competitive inhibiton curves were prepared by plotting the 

log10 values of polyhedrin standards against % of competive inhibiton of each standard 

concentration. The sensitivity of the assay was determined by calculating the concentration of 

polyhedrin required for 50% competitive inhibiton (IC50) from the standard competitive inhibiton 

curve. 

3.6.1.6.4 Determination of percent cross-reactivity (CR):  

The percent of cross-reactivity of each polyclonal antiserum with heterologous 

polyhedrin was calculated as the IC50 of the homologous polyhedrin divided by the IC50 of the 

heterologous polyhedrin times 100.      

                                      IC50 of homologous polyhedrin 

% of cross reactivity (CR) =    × 100 
                                                                  IC50 of heterologous polyhedrin    

 3.6.1.6.5 Determination of percent recovery (PR): 

To study the effect of insect body proteins on IC-ELISA results and to test the recovery 

of polyhedrin artificially spiked in to healthy insect extracts, polyhedrin standards at 

concentration of 20 - 0.078µg/ml were mixed into 25 and 50 µg/ml total protein concentrations of 

healthy larval extracts and both spiked and non-spiked samples were assayed in IC-ELISA. The 

recovery of polyhedrin in spiked healthy extracts were estimated by comparing the absorbance 



values with the standard regression curve obtained from non-spiked samples and the % of 

polyhedrin recovered in spiked healthy extracts was calculated by using the following formula:  

                                                        Amount of polyhderin estimated in  

                                                                    spiked sample 

% of recovery of polyhedrin (PR) =                                                                               × 100  

                                                                  Amount of polyhedrin estimated in  

                                                                               non-spiked sample 

3.6.2 Development of quality control tools: 

As part of the quality control during mass production of bio-insecticides based on 

HaNPV, SlNPV and AmalNPV, sensitive immunochemical tools such as DAC and IC-ELISA 

were developed and evaluated for the quantification of POBs in commercial NPV preparations. 

The protocols for the quality control tools were standardized as follows: 

3.6.2.1 Preparation of standards and samples for ELISA:  

 
A simple purification protocol was standardized for extraction of total polyhedrin from 

standard and sample NPV preparations as described below: 

� Recently harvested NPV bottle was selected as stock standard POB suspension and the 

total POB concentration of the bottle was determined by counting the number of POBs as 

described in section 2.6 and its concentration was adjusted to 1 LE/ml (6 × 109  POBs/ml) 

as working standard. 

� 1 ml of known working standard POB suspension (1LE/ml) and unknown sample POB 

suspensions were taken in to 2ml micro centrifuge tubes and centrifuged at 10,000 rpm 

for 5min in a table top centrifuge. The supernatant was discarded and the pellet was 

dissolved in 1ml of resuspension buffer (0.01M Tris pH 8.2, 0.15 M NaCl and 0.1mM 

phenylmethylsulfonyl fluoride) and serially diluted in the same buffer from 1LE to 0.015 

LE.   



� To the standard and sample tubes 100 µl  of  POB dissolving buffer (1M Na2CO3 + 0.5 M 

NaCl) was added and incubated at 560C for 15-20min in a water bath with occasional 

shaking. 

� After dissolution of POBs, the suspension was cooled to 40C on ice and centrifuged at 

13000rpm for 60 min in a table top centrifuge. Supernatant was carefully collected and 

subjected to heat treatment at 700C for 20 min and cooled to 40C on ice. The total protein 

concentration was determined by Bradford’s reagent using a commercially available kit. 

� To check the purity, total polyhedrin extracted from standard and sample POB 

suspensions was assayed in 12% SDS-PAGE before being assayed in ELISA. 

Note: To minimize the errors during extraction, 1LE/ml standard polyhedrin solution was 

prepared along with samples instead of all the standards at every time and serially diluted (1LE to 

0.015LE) during ELISA experiment. 

3.6.2.2 Assay optimization: 

The extracts of standards and samples were evaluated in both DAC and IC-ELISA at 

1:1000 dilution as described in sections 3.4.1.1 and 3.6.1.6. To calculate the number of POBs 

present in the unknown POB suspension, the absorbance values were compared with the standard 

regression curve obtained from the known standard POB suspension.  

In order to determine the difference between microscope counting and ELISA results, 

some known and unknown samples were assayed in ELISA (DAC and IC-ELISA) and % of 

recovery was calculated by the following formula. 

 

                              Number of POBs estimated in ELISA 

% of recovery of POBs =                × 100 

                                             No of POBs estimated in microscope counting                                           



3.7 Application of immunochemical tools in optimization of conditions 

for productivity and quality of NPVs: 

The immunochemical tools developed in this study were applied in optimization of 

conditions for the productivity and quality of NPVs during commercial production .The 

conditions optimized in this study were as follows: 

� Identification of optimum age of the larvae for inoculation of virus to obtain 

maximum yield of virus. 

� Identification of optimum time for harvesting of virus to obtain maximum yield of 

virus with low levels of bacterial contaminants. 

3.7.1 Identification of optimum age of larvae for virus inoculation: 

To study the effect of age of larvae on POB yield and to identify the optimum age of the 

larvae for inoculation of virus, NPVs were mass multiplied on different age group larvae. The 

total yield of NPV obtained was monitored by ELISA tools. The experiment was detailed as 

below:  

Mass multiplication of NPVs was conducted on 2nd, 3rd, 4th, and 5th instar larvae by diet 

surface contamination method (Fig 9) [as given by Evans and Shapiro (1997)] with greater than 

50% lethal doses (108 POBs/ml). This rate maximizes the POB yield during mass multiplication 

(Okada, 1977). For each instar three replications were maintained each with twenty larvae. The 

larvae were reared under controlled conditions with 16:8 h (L: D) photoperiod, 25 ± 20C 

temperature and 70% relative humidity. Larvae were observed daily for mortality. Mortality of 

larvae started from 4th day and it continued up to 8-12 days depending up on the age of the larvae. 

At death, the cadavers were collected in jars containing approximately 10 times their own volume 

of distilled water. After collecting all dead larvae, the POBs were harvested as described in 

section 3.1.3. POBs harvested from all the age group larvae were dissolved in the same volume 

(10ml) of sterile distilled water. Then, total polyhedrin of POBs harvested from different age 



group larvae was extracted as described in section 3.6.2.1 and assayed for the yield of NPV in 

ELISA (DAC as well as IC-ELISA) as described in section 3.6.2.2. From ELISA results the total 

POB yields among different age group larvae were determined and identified the optimum age of 

larvae for virus inoculation to obtain maximum virus yield. 

3.7.2 Identification of optimum time for harvesting of virus: 

To study the effect of period of harvest on POB yield during mass multiplication of 

NPVs and to establish the relationship between larval mortality and productivity and quality of 

NPV in larvae during mass multiplication, a bioassay experiment was conducted on optimum 

aged larvae of H. armigera, S. litura and A. albistriga. The productivity of virus in larvae at 

different intervals (post inoculation days) of experiment was monitored through ELISA (DAC 

and IC-ELISA) and western immunoassay tools. The experiment was detailed as below:  

Healthy larvae of H. armigera, S. litura and A. albistriga were infected with respective 

NPV by surface inoculation [as given by Evans and Shapiro (1997)] of their diet with greater than 

50% lethal doses (108 POBs/ml). This rate maximizes the POB yield during mass multiplication 

(Okada, 1977). For each virus three replications were maintained each with 20 larvae. As a 

control, the same number of larvae was fed the diet without POBs. For each virus three 

replications were maintained with twenty five larvae each. The larvae were reared under 

controlled conditions with 16:8 h (L: D) photoperiod, 25 ± 20C temperature and 70% relative 

humidity. Two larvae from each replication were sampled on 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 

12 days post exposure (dpe) to POBs, transferred to preweighed sterile micro-centrifuge tubes 

and weighed again in an electronic top pan balance. One larva was frozen at -200C for extraction 

of total polyhedrin and second larva was stored at 40C for bacterial activity studies. Live larvae 

were sampled at 0 to 7 dpe, but both live and dead (virus killed) larvae were sampled at 8 and 9 

dpe. At 10 to12 dpe, only dead larvae were sampled. Viral death generally caused liquefaction of 

the cadaver. Only cadavers that could be transferred whole from the cell wells or cages were 

used. 



 Insects were homogenized individually and assayed for detection of POBs by Western 

immunoblotting as described in section 3.6.1.3. Total polyhedrin was extracted from individual 

frozen larva as described in section 3.6.1.1 and all insect extracts were assayed for detection and 

quantification of polyhedrin levels by ELISA (DAC and IC-ELISA) as described in sections 

3.6.1.5 and 3.6.1.6. For quantification of POBs the same extracts were again assayed in ELISA 

(DAC and IC-ELISA) as described in section 3.6.2. 

 

 

 

 



Figure 9:  Bioassay studies 

 
 

            
 

                         

Bioassay studies of NPVs against Helicoverpa armigera (A), Spodoptera litura (B) and Amsacta albistriga (C) by surface diet 
contamination method to optimize the age of larvae for virus inoculation and the time of virus harvest to obtain maximum virus yield with 
less bacterial contaminants.  

                         A          B       C 



3.7.3 Screening of bacterial activity in infected larvae days post exposure (dpe) to 

NPV: 

The larvae collected on different days post exposure (dpe) to NPV were homogenized 

individually and screened for the bacterial load by plating samples on nutrient agar media (Miles 

and Misra, 1938). Sterilized molten agar medium (Himedia) was aseptically dispensed in volumes 

of 15ml into sterile petriplates and allowed to settle. One ml of larval homogenate was taken and 

ten fold serial dilutions ranging from 10-1 to 10-9 were prepared using sterile distilled water. 

Before plating, each petriplate was marked into six equal segments using a marker pen and each 

segment was plated with a different dilution. Six replicates for each dilution were maintained. 

Overcrowding has occurred at the higher concentrations (smallest dilutions) resulting in an 

underestimate of the numbers of viable bacteria present.  Hence, in the present study observations 

were recorded at 10-3 dilution. Colony forming units per ml of solution was calculated using the 

following formula. 

                           Number of colonies observed 
CFU/ml =                                                                       × Dilution factor 
                                      Volume plated 

3.8. Evaluation of ELISA tools at field level efficacy studies of NPV: 

ELISA tools developed in this study were also applied to monitor and evaluate the efficacy 

of NPV at field level at days post application (dpa). To study the infection status in individual 

larva and to estimate the % of infection in pest population after field application of NPV, field 

experiment was conducted during 2007 kharif season at ICRISAT forms with respect to H. 

armigera on pigeonpea crop. The experiment was detailed as below:   

Field experiment was conducted with two treatments in three replications in randomized 

block design (RBD). Pigeonpea was sown with 60 × 15 cm spacing. The treatments used to study 

the effect on H. armigera were HaNPV and control (no treatment). The field was sprayed with 

HaNPV@ 250 LE / ha (Fig 10A) after the pest population was reached above ETL (Economic 

Threshold Level). From each plot (treatment and control) ten plants were randomly selected  and 



sampled 30-40 larvae per day (irrespective of the age), immediately shipped to the laboratory, 

weighed and frozen at -200C on  0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 dpa of NPV.  Live larvae were 

sampled at 0 to 4 dpa, both live and dead larvae were sampled at 5 to 10 dpa. Viral death 

generally caused liquefaction of the cadaver. Only cadavers that could be transferred whole from 

the plant parts were collected.  

Total polyhedrin was extracted from individual frozen larva (Fig 10B) as described in 

section 3.6.1.1 and assayed for detection of polyhedrin by DAC-ELISA as described in sections 

3.6.1.5 and for quantification of virus (POBs) by DAC and IC-ELISA as described in section 

3.6.2. DAC-ELISA readings were considered as virus +ve if the absorbance values of a sample 

differed by three-folds than those given by the healthy insect control. Based on the ELISA results 

of individual larvae the % of NPV infection and gross virus concentration per day of field 

sampled larvae were estimated.  



Figure 10: Field application of NPV and extraction of polyhedrin from field sampled larvae to evaluate 

the efficacy of NPV by ELISA. 
 

  

          
 

                                                                            A          B 

To evaluate the efficacy of NPV at field level by ELISA, field study was conducted by applying the NPV (250 LE/ ha) against 
Helicoverpa armigera on pigeonpea crop (A). Larvae were sampled from field at 0 to 10 days of post application (dpa), 
homogenized (B) and extracted the total polyhedrin to evaluate in ELISA. 

 



3.9 Isolation and Characterization of Polyhedrin gene of NPVs:  

In order to establish the purity of seed stock or master stock of NPV used for commercial 

viral insecticide preparations at ICRISAT, molecular level identification and evaluation of 

phylogenetic status of NPVs done by isolation, cloning, sequencing of polyhedrin gene and 

evaluation their phylogenetic status. The molecular studies were conducted as detailed below: 

3.9.1 Optimization of PCR for amplification of complete polyhedrin gene 

of NPVs:  

 The complete polyhedrin gene of NPVs was isolated by optimizing the PCR using 

degenerate primers as detailed below: 

3.9.1.1 Design of degenerate primers:  

The coding region of the polyhedrin gene, which is highly conserved among NPVs was 

targeted as template DNA. The sequence for this gene was previously determined for each of the 

NPVs infecting Helicoverpa, Spodoptera and Amsacta insect complexes (Table 5) were used to 

design the primers for this study. The polyhedrin gene sequences were analyzed by Multiple 

Sequence Alignment [CLUSTAL W (1.83)] in order to obtain a consensus sequence (Thompson et 

al., 1994). Three degenerate oligomers were synthesized by solid phase chemistry and were 

generally obtained from commercial sources (Bioserve, Hyderabad, India).  

 

 

 

 



Table 5: List of full length polyhedrin gene sequences previously determined for 

NPVs of Helicoverpa, Spodoptera and Amsacta species used in this study 

to design degenerate oligomers. 

 

S.No 

 

Virus  

 

Host 

Public database  

accession number 

A. Helicoverpa complex: 

1 HaNPV Helicoverpa armigera AF157012 

2 HaNPV Helicoverpa armigera AJ001917 

3 HaNPV Helicoverpa armigera NC003094 

4 HaNPV Helicoverpa armigera AF303045 

5 HaNPV Helicoverpa armigera A25670 

6 HaNPV Helicoverpa armigera U97657 

7 HaNPV Helicoverpa armigera NC002654 

 
8 HzNPV Helicoverpa zea NC003349 

9 HasNPV Helicoverpa assulta DQ157735 

 

B.Spodoptera complex: 

 
10 SlNPV Spodoptera litura NC003102 

11 SlNPV Spodoptera litura AF325155 

12 SlNPV Spodoptera litura AF037262 

13 SlNPV Spodoptera litura AY549963 

14 SlNPV Spodoptera litura AY549964 

15 SlNPV Spodoptera litura AY552474 

16 SlNPV Spodoptera litura DQ350142 

17 SlNPV Spodoptera litura DQ152923 

18 SlNPV Spodoptera litura X94437 

19 SliNPV Spodoptera litturalis D01017 

20 Sf NPV Spodoptera frugiperda J04333 

21 SeNPV Spodoptera exigua AF169823 

C. Amsacta complex: 

22 AmalNPV Amsacta albistriga AF118850 



3.9.1.2 Extraction of viral DNA: 

The genomic DNA of NPVs infecting H. armigera, S. litura and A. albistriga was 

extracted directly from POBs using the protocol given by Rabindra (2001) with slight 

modifications as detailed below: 

� POB suspension (1ml) was taken in to 2ml micro-centrifuge tube and centrifuged at 

10,000rpm for 2 min, supernatant was discarded carefully and the pellet was suspended 

in 1ml of 100mM Tris, 10 mM EDTA pH 7.8, 1.0 M NaCl and 5% PVP and 

centrifuged at 10,000rpm for 2 min.  

� The supernatant was discarded and the pellet was dissolved in 0.5 ml of the same 

buffer. To this half the volume (250 µl) of 1M Na2CO3 was added and incubated at 

370C for 1hr followed by addition of 1% SDS and incubated at 370C for 30min. 

� Then centrifuged for 60sec at 6,500 rpm and the supernatant was taken in to a clean 

tube and to that equal volume of Tris saturated phenol was added and agitated gently 

for 5 min and centrifuged at 12,000 rpm for 2min in tabletop centrifuge. 

� The upper aqueous layer was collected and to that equal volume Phenol: Chloroform: 

Isoamylalcohol (25:24:1) was added and centrifuged at 12,000 rpm for 2min in tabletop 

centrifuge. 

� The upper aqueous layer was collected and it was reclarified twice with equal volume 

of chloroform by spinning at 12,000 rpm for 2min. 

� The upper aqueous phase was collected to which 1/10th volume of 3M sodium acetate 

and 2.5% (v/v) cold ethanol were added and incubated at –700C for 1h. 

� Then centrifuged at 12,000rpm for 15min, followed by washing the pellet with 70% 

cold ethanol and pellet was air dried at 370C for 10min and dissolved in TE buffer and 

stored at -200C until use. 



� The purity and concentration of the isolated genomic DNA sample was estimated by 

measuring the absorbance at 260 nm and 280 nm using UV-Visible spectrophotometer 

(Beckmann). The genomic DNA concentration was measured using the following 

formula: 

  Genomic DNA concentration in µg/ml = absorbance at 260nm × 50µg/µl × dilution 

factor. 

3.9.1.2.1 Electrophoresis: 

The genomic DNA of NPVs was analysed by 0.8% agarose gel electrophoresis using 

horizontal gel electrophoresis system. A gel slab of required size containing 0.8% agarose and 

6µl of 10mg/ml ethidium bromide was prepared in 1x TBE using gel mould. After setting time of 

20 min the gel mould was placed in a tank containing sufficient quantity of 0.5 x TBE buffer 

(Appendix VI). The DNA along with DNA Marker (λ DNA Marker; Roche, Cat# 528 552) was 

loaded in wells of 0.8% agarose gel and electrophoresed at 100V for 1-2h. Removed the gel from 

the tray and visualized on a UV-transilluminator and photographed with a PolaroidR camera fitted 

with a UV filter. 

3.9.1.3 Optimization of PCR conditions: 

The PCR conditions were standardized as follows: each 25µl reaction mixture 

was set up as shown below: 

 

 

 

 

Component  Volume (µl) 

10 X  reaction buffer 3µl   

MgCl2 (25mM) 3µl 

Forward primer (10pm/µl) 1µl 

Reverse primer (10pm/µl) 1µl 

AmpliTaq GoldTM (1U) 0.3µl   

dNTPs mixture (100mM) 1µl 

Template DNA (50-60ng/µl) 1µl 

Double sterile distilled water 14.7µl 

Total volume 25µl 



PCR was carried out in Applied Biosystems thermocycler. The thermal cycles of the 

reaction were standardized by performing the PCR at various combinations of denaturation, 

annealing, and extension temperatures according to the Tm of the degenerate primers. PCR 

product was separated by 1% agarose gel electerophoresis as described in section 9.1.2.1. DNA 

Marker (λ DNA Marker; Roche, Cat# 528 552) was used to determine the size of PCR amplified 

product. Gel was stained with ethidium bromide (0.5µg/ml), viewed on a UV-transilluminator 

and photographed with a polaroidR camera fitted with a UV filter.  

3.9.2 Cloning and sequencing of PCR product: 

The PCR product was eluted from agarose gel, cloned and sequenced. The experimental 

details were given below.  

3.9.2.1 Gel elution and purification of PCR product:  

The PCR product of expected band with a size of approximately 750 bp was excised from 

the gel and eluted by using gel elution kit (Qiagen, MinElute Gel Extraction Kit) following 

manufacturer protocol as detailed below: 

� The amplified DNA fragment was excised from the agarose gel with a clean, sharp 

scalpel and its size was minimized by removing extra agarose. 

� Weighed the gel slice in a colorless tube and added 3 volumes of gel dissolving 

buffer (Buffer QG) to 1 volume of gel (300µl /100mg of gel). 

� Incubated at 500C until the gel slice has completely dissolved by vortexing the tube 

every 2-3min during the incubation.  

�  After the gel slice has dissolved completely, added 1 gel volume of isopropanol to 

the sample and mixed by inverting the tube several times. 

�  To bind DNA, the sample was transferred on to the MinElute column and 

centrifuged for 1min at 13000rpm on table top centrifuge. 



� Added 500µl of Buffer QG to the MinElute column and centrifuged for 1 min at 

13000rpm on table top centrifuge. 

�  To wash, added 750µl of Buffer PE to the MinElute column and centrifuged for 1 

min at 13000rpm on table top centrifuge. 

� Transferred the MinEute column to a clean 1.5ml microcentrifuge tube and 

centrifuged for 1min at 13000rpm on table top centrifuge to remove residual ethanol 

(Buffer PE). 

� Placed the MinElute column in a clean 1.5 ml microcentrifuge tube. 

�  To elute DNA, added 10µl of Buffer EB (10mM Tris-HCl, 8.5) to the center of the 

membrane, allowed to stand for 1min, and then centrifuged for 1min at 13000rpm on 

table top centrifuge. 

 3.9.2.2 Ligation of purified PCR product in to cloning vector: 

 The purified PCR product was ligated in to pJET1/blunt cloning vector (Fig 11) 

(Fermentas, # K1221). The blunting reaction was set up as shown below:  

 

Component Volume (µl) 

2 x reaction buffer 10µl 

PCR product (purified) 5µl 

DNA blunting enzyme (Fermentas, 
# K1221) 1µl 

Water, nuclease-free 2µl 

Total volume 18µl 

The reaction mixture was vortexed briefly and centrifuged for 3-5s. Then incubated at 

700C for 5 min and chilled on ice for several seconds. Then ligation reaction was set up by adding 

the following components to blunting reaction mixture:  

 

 



 

Component  Volume (µl) 

pJET1/blunt cloning vector  
 (50ng/µl) 1µl   

T4 DNA ligase (5 U/µl) 1µl 

Total volume  20µl 
 

The reaction mixture was vortexed briefly and centrifuged for 3-4s. Then incubated at 

room temperature (220C) for 5min. The ligation mixture was used directly to transform competent 

E.coli cells. 

3.9.2.3 Preparation of competent E.coli cells (DH5α strain): 

� The log phase culture of E.coli (400µl) cells were inoculated in to 15ml of sterile LB 

broth and incubated at 370C for 4h.  

Note: The optical density of the culture was measured during the incubation period and 

stopped the incubation period when the optical density reached to 0.5 OD at A 600nm.  

� The culture was chilled on ice for 30min, transferred in to pre chilled 30ml glass 

tubes and the cells were collected as pellet by centrifugation at 5000rpm for10 min in 

SS34 rotor (Sorvall). 

� The pellet was suspended in 1/10 volume (initial bacterial culture) of 100mM CaCl2 

solution and kept on ice for 15min. 

� The cells were again pelleted and the final pellet was suspended in 1/20 volume of 

100 mM CaCl2 solution. 

� To the cells, sterile glycerol was added to a final concentration of 15%, aliquoted 

(50µl/ tube) and stored at -700C for further use.  



 

 

            Figure 11: pJET1/blunt end cloning vector map 

 

                

 

 

 

 

 

 

 

 

 

 

 



3.9.2.4 Transformation: 

Competent cells were thawed rapidly by warming between hands and dispensed 100µl 

immediately into test tubes containing 10µl of ligation mixture. Gently swirled the tubes to mix 

and then immediately placed on ice for 10min. Then heat shocked the cells by placing tubes in to 

a 420C water bath for exactly 2min and immediately placed on ice for 10min. Then added 1ml LB 

medium to each tube and placed the tubes on a roller drum at 250rpm for 1h at 370C. Then plated 

aliquots of transformation culture on LB/ampicillin containing plates. When plates are dry, 

incubated for 12 to 16 hrs at 370C.  

3.9.2.5 Selection of clones for sequencing and BLAST search: 
 

Single colonies were picked up with a sterile toothpick from overnight incubated plates 

and suspended in 50µl of LB broth and incubated at 370C for 3-4h. After incubation, 4-6 colonies 

were screened for the conformation of polyhedrin gene insert in the putative recombinant clones. 

3.9.2.5.1 Colony PCR for the conformation of inserted gene: 

 The colony PCR was performed using universal pJET1 forward and reverse 

sequencing primers [Bioserve Biotechnologies (India) Pvt.Ltd, Catalogue No # 51314 and 

51315]. Each 25µl reaction mixture was set up as shown below: 

 
   

 
 
 
 
 
 
 
 
 

 

Component  Volume (µl) 

10 X  reaction buffer 3µl   

MgCl2 (25mM) 3µl 

 pJET1 forward primer (10pm/µl) 1µl 

pJET1 reverse primer (10pm/µl) 1µl 

AmpliTaq GoldTM (1U) 0.3µl   

dNTPs mixture (100mM) 1µl 

Bacterial culture  2µl 

Double sterile distilled water 13.7µl 

Total volume 25µl 



PCR was carried out in Applied Biosystems thermocycler using the following 

parameters:  initial denaturation step at 950C for 10min followed by 35 thermal cycles of 950C for 

1min, 550C for 1min and 720C for 1min, with the final extension step increased to 10min. PCR 

product was verified by resolving the fragment in a 1% agarose gel electrophoresis along with 

DNA Marker (λ DNA Marker; Roche, Cat# 528 552) to check for the insert size.  

 3.9.2.6 Plasmid isolation:  

Three clones were selected from the transformation event after colony PCR. The 

selected clones were inoculated in 5ml of LB medium with ampicillin (100µg/ml) in culture tubes 

and grown overnight at 370C with vigorous agitation (220rpm). The plasmid DNA was isolated 

from over night culture by using QIA prepR Spin Miniprep Kit (250) (Qiagen) protocol according 

to the manufacturer recommendations. The protocol steps were presented below: 

� The sub cultures (2ml) of each colony were centrifuged at 10,000rpm for 5min in a table 

top centrifuge to pellet the cells. 

� Resuspended the bacterial pellet in 250µl of solution P1 (containing RNase A). 

� Added 250µl of solution P2 and inverted the tube gently for 4-6 times. 

� Added 350µl of buffer N3 and inverted immediately for 4-6 times and centrifuged at 

12,000rpm for 10min in a table top centrifuge. 

� The supernatant was applied to the QIA prep column, centrifuged at 12,000rpm for 30-

60sec and discarded the flow through. 

� Washed the QIA prep spin column by adding 0.75ml of buffer PE and centrifuge at 

12,000 rpm for 30-60sec. 

� Discarded the flow through and centrifuged for additional 1min to remove residual wash 

buffer. 

� Then placed the QIA prep mini column in a clean 1.5ml micro centrifuge tube, added 

50µl of buffer EB to the centre of the column and allowed to stand for 1min and 

centrifuged at 12,000 rpm for 1 min and collected the flow through. 



� The elute (µl) was analyzed in 1% agarose gel electrophoresis. 

3.9.2.7 Gene sequencing: 

Plasmid confirmed that having inserted polyhedrin gene was subjected to sequencing. The 

sequencing PCR was carried out using Beckman Quick Master Mix, 100ng of plasmid DNA, and 

5pm of pJET1 forward and reverse primers. The PCR conditions are as follows: 940C (30sec), 

500c (30sec), 600C (4 min) for 30 cycles. The PCR product was precipitated using Sodium acetate 

and absolute alcohol to remove dye terminators. The sequencing reaction was performed using 

Beckman Coulter CEQ 8000 machine. 

3.9.2.8 BLASTX search: 

The nucleotide sequence of each clone was compared with sequences from various 

databases of National Centre for Biotechnology Information (http://www.ncbi.nlm.nih.gov) by 

means of the basic local alignment search tool (BLAST) (Altschul et al., 1997). 

3.9.3 Phylogenetic Relation at Nucleotide Level of HaNPV-P Polyhedrin 

Gene with Known Polyhedrin and Granulin Genes:  

Sequence data was analyzed using Lasergene software (DNASTAR, Madison, USA). A 

total 55 gene sequences of 41 NPV polyhedrin genes (including HaNPV-P strain) and 14 GV 

granulin genes (Table 6) were aligned by ClustalW (Thompson et al., 1994) method using MgAlign 

tool of Lasergene software. The method parameters used for alignment are Gap penalty: 10.0; Gap 

length penalty: 0.20; Delay divergent seqs: 30%; DNA transition weight: 1.0; DNA weight matrix: 

IUB). Bootstrapping of phylogenetic tree was carried out using CLC workbench 3 software (CLC 

Bio). 

 



3.9.4 Phylogenetic Relation at Amino acid Level of HaNPV-P 

Polyhedrin Protein with Known Polyhedrin and Granulin 

Proteins:  

Nucleotide sequence of HaNPV-P polyhedrin gene clone was translated and the 

corresponding amino acid sequence along with known polyhedrins (40) and granulins (14) (Table 

6) were aligned using MgAlign tool of Lasergene software. Bootstrapping of phylogenetic tree was 

carried out using CLC workbench 3 software (CLC Bio).  

 

 

 

 

 

 

 

 

 

 

 

 



Table 6: Accession numbers of known polyhedrin and granulin nucleic acid and 

amino acid sequences in public database used in this study for 

determination of phylogenetic status of HaNPV-P strain. 

 

Public database accession 

numbers 
 

S.No 

 
 

 

Virus 

 
 
 

Group 

 
 
 

Host Nucleotide 

sequence 

Amino acid 

sequence 

 
A. Genus: Nucleopolyhedroviruses (NPVs): 

 
1 

 
AcNPV 

 
I Autographa californica 

 
K01149 AAA46719 

 
2 

 
AfNPV 

 
N/D Anagrapha falcifera 

 
U64896 

 
AAB53357   

 
3 AhNPV N/D 

 

Adoxophyes honmai 

 
NC_004690 

 
NP_818648 

 
4 

 
AgMNPV 

 
I Anticarsia gemmatalis 

 
Y17753 

 
CAA76844 

 
5 

 
AmalNPV 

 
I Amsacta albistriga 

 
AF118850 

 
AAD24463   

6 
 
ApNPV N/D Anthraea pernyi 

 
AB062454 

 
BAB58969 

 
7 

 
ArceNPV N/D Archips cerasivoranus 

 
U40834 

 
AAA93290 

 
8 

 
AsNPV N/D 

 

Agritis segetum 

 
DQ123841 

 
AAZ38167   

 
9 

 
ArNPV N/D Attacus ricini 

 
S68462 

 
AAP16625   

 
10 

 
BmNPV 

 
I Bombyx mori 

 
U75359 

 
AAB18336 

 
11 

 
BsNPV 

 
II Buzura suppressaria 

 
X70844 

 
CAA50194 

12 
 
CfMNPV 

 
I 

Choristoneura 

fumiferana 

 
U40833 

 
AAA93292 

 
13 

 
CrNPV 

 
N/D 

Choristoneura 

rosaceana 

 
U91940 

 
AAB51303 

 
14 

 
EoNPV 

 
II Ecotropis oblique 

 
DQ837165 

 
AAQ88174 

 
15 

 
EpMNPV 

 
N/D Epiphyas postvittana 

 
AF061578 

 
AAC72189 

 
16 

 
HaSNPV 

 
II Helicoverpa armigera 

 
NC_003094 

 
NP_203559  

17 
 
HasNPV 

 
II Helicoverpa assulta 

 
DQ157735 

 
AAZ83723 



 
18 

 
HzSNPV 

 
II 

 

Helicoverpa zea 

 
NC_003349 

 
NP_542624 

 
19 

 
HcNPV 

 
I 

 

Hyphantria cunea 

 
D14573 

 
BAA03427 

 
20 

 
LdMNPV 

 
II Lymantria dispar 

 
M23176 

 
AAA46742 

 
21 

 
LoMNPV 

 
I Lonomia obliqua 

 
AF232690 

 
AAF98122 

22 
 
LsNPV 

 
II Leucania seperata 

 
U30302 

 
AAA99736   

 
23 

 
MbNPV 

 
II Mamestra brassicae 

 
AB198073 

 
BAE06244 

 
24 

 
McNPV 

 
II 

 

Mamestra configurata 

 
AY126275 

 
AAM94988 

 
25 

 
MdNPV 

 
II 

 

Malacosoma disstria 

 
U61732 

 
AAD00095 

 
26 

 
MnNPV II 

 

Malacosoma neustria 

 
AJ277555 

 
CAB91643 

 
27 

 
OpMNPV 

 
I 

 

Orgyia pseudostugata 

 
M14885 

 
AAA64926 

 
28 

 
OpSNPV 

 
II 

 

Orgyia pseudostugata 

 
M32433 

 
AAA46739 

 
29 

 
PfNPV 

 
II 

 

Panolis flammea 

 
D00437 

 
BAA00338 

 
30 

 
PnNPV 

 
I 

 

Perina nuda 

 
U22824 

 
AAA64782 

 
31 

 
PoNPV 

 
N/D 

 

Plusia orichalcea 

 
AF019882 

 
AAC64234 

 
32 

 
PxMNPV N/D 

 

Plutella xylostella 

 
NC_008349 

 
YP_758474 

33 
 
RoMNPV 

 
N/D 

 

Rachiplusia ou 
 
NC_004323 

 
NP_702998 

34 
 
SeMNPV 

 
II 

 

Spodoptera exigua 

 
AF169823 

 
AAF33532 

 
35 

 
SfMNPV 

 
II 

 

Spodoptera frugiperda 

 
J04333 

 
AAA46737 

 
36 

 
SlNPV 

 
II Spodoptera litura 

 
X94437 

 
CAA64211 

37 SliNPV 
 
II Spodoptera littoralis 

 
D01017 

 
BAA00824 

 
38 

 
ToMNPV N/D 

Thysanoplusia 

orichalcea 

 
AF169480 

 
AAD51629 

 
39 

 
TnSNPV 

 
N/D 

 

Trichoplusia ni 

 
AF093405 

 
AAC64160 



 
40 

 
WsNPV 

 
II Wiseana signata 

 
AF016916 

 
AAB97154 

 
B. Genus: Granuloviruses (GVs): 

 
41 

 
AbGV N/A Andraca bipunctata 

 
AY518318 

 
AAS86810 

42 
 
AoGV N/A Adoxophyes orana 

 
NC_005038 

 
NP_872455 

 
43 

 
AsGV N/A Agrotis segetum 

 
NC_005839 

 
YP_006343 

44 CfGV N/A 

Choristoneura 

fumiferana AF439352 

 
 
AAC69544 

45 ClGV N/A 

Cryptophlebia 

leucotreta AY229987 

 
 
AAQ21599 

46 CoGV N/A 

Choristoneura 

occidentalis NC_008168 

 
 
YP_654422 

 
47 

 
CpGV N/A Cydia pomonella 

 
U53466 

 
AAK70668 

 
48 

 
HbGV N/A Harrisina brillians 

 
AF142425 

 
AAF66610 

 
49 

 
PbGV N/A Pieris brassicae 

 
X02498 

 
CAA26331 

 
50 

 
PoGV 

 
N/A 

Phthorimaea 

operculella 
 
AF499596 

 
 
AAM70199 

 
51 

 
PxGV N/A Plutella xylostella 

 
AF270937 

 
AAG27302 

 
52 

 
SlGV N/A Spodoptera litura 

 
NC_009503 

 
YP_001256952 

 
53 

 
TnGV N/A Trichoplusia ni 

 
K02910 

 
AAA43834 

54 
 
XcnGV N/A Xestia c-nigrum 

 
U70069 

 
AAB42059 

N/D-Not determined; N/A-Not applicable 

            

    

    



3.10. Development of PCR Based RFLP Marker for Identification and 

Differentiation of HaNPV-P (Patancheru) Strain: 

In order to distinguish the HaNPV-PC strain with other NPVs based on its unique 

restriction sites present in the amplified portion of the polyhedrin gene a PCR-RFLP marker was 

developed. The experiment was as detailed below. 

3.10.1 Restriction mapping analysis for identification of unique restriction sites:  

To identify the unique restriction sites present in polyhedrin gene of HaNPV-P, the 

sequenced polyhedrin gene of HaNPV-P along with other known published polyhedrin gene 

sequences were subjected to restriction mapping analysis using BioEdit version 5.0.9. The unique 

restriction sites present at particular nucleotide positions in polyhedrin gene of HaNPV-P were 

identified and short listed the other NPVs which have same restriction sites at same positions. 

3.10.2 PCR-RFLP analysis: 

The unique restriction sites present in HaNPV-P strain polyhedrin gene was verified by 

PCR-RFLP study. The experiment was detailed as follows. Initially the polyhedrin gene of the 

HaNPV-P strain was amplified by using the degenerate primer set as described in section 9.1.3 

then the PCR product was subjected to restriction endonuclease (REA) analysis with the selected 

restriction enzyme unique to HaNPV-P strain. The restriction digestion reaction was setup as 

shown below. 

DNA sample 

(PCR product) 

10x reaction 

buffer  

BSA  

(2µg/ µl) 

Restriction 

enzyme 

 (10 U/ µl) 

Milli Q 

water 

Total volume  

 

12µl 

 

2µl 

 

1µl 

 

1µl 

 

4µl 

 

20µl 

  

The reaction mixture was incubated at 370C for 3-4h and reaction was stopped by heat 

inactivation at 70 0C for 10 min. To this mixture 5µl of DNA loading dye was added and 

separated in 12% native PAGE gel along with DNA Marker (λ DNA Marker; Roche, Cat# 528 



552). The gel was stained by soaking in ethidium bromide solution (0.5µg/ml of distilled water) 

for 20min, visualized on a UV-transilluminator and photographed with a polaroidR camera fitted 

with a UV filter.  

The size of the restriction fragments was estimated by comparing with the marker DNA 

standards (λ DNA Marker; Roche, Cat# 528 552). Standard graph was prepared by plotting the 

distance migrated by DNA standards on X-axis and fragment lengths on Y-axis. The size of 

polyhedrin gene restriction fragments were calculated from the standard graph by plotting the 

distance migrated by the restriction fragmets. Finally the size of restriction fragmets was 

compared with the restriction map for verification of the unique restriction site present at 

particular nucleotide position.  
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CHAPTER - IV 

RESULTS 

 

Results of various experiments conducted in the present investigation are presented in 

this chapter. 

4.1 Isolation and Propagation of NPVs from Major Lepidopteran Pests of 

Legume Crops: 

During natural epizootic conditions NPV infections were observed in H. armigera; 

S. litura and A. albistriga pest populations at ICRISAT farms. Diseased larvae showed the 

following features:  

� The diseased larvae were swollen, glossy and moribund. 

� The larvae of H. armigera (Fig 12A) and A. albistriga (Fig 12B) were crawled to 

the top of the twings (negative geotropism) on which they were fed.  

� The diseased larvae were died and the body tissues were liquefied, in some larvae 

the cuticle was ruptured and discharging of body fluid on to plant parts was 

observed. 

� Observation of discharged body fluid under phase contrast microscope revealed 

that it consists of poly occlusion bodies (POBs) (Fig 13). 

� Propagation of NPVs on respective larvae resulted in virus infection. The age of 

larvae used for multiplication of NPV, concentration of virus used for inoculation 

and yield of NPV obtained were presented in Table 7. 



Figure 12: NPV infected larvae of H. armigera and A. albistriga 

 

 

 

 

 

 

 

 

 

 

             
 

 

           NPV infected larvae of H. armigera on pigeonpea (A) and A. albistriga on groundnut (B). 

     A      B 



Table 7: Yield of NPVs obtained during mass multiplication 

 

Virus yield 

(±STDEV) 
NPV 

Age of the larvae used for 

virus inoculation 

 

 

Concentration of 

virus used for 

inoculation 
 
 

 

POBs/ml 

 

POBs/larva 

Field collected larvae: 

14.38 ± 0.32 ×109 5.35 ± 0.31×109 

Lab reared larvae: 

HaNPV 
4th instar (Field collected / 

lab reared) 
108  POBs/ml 

12.47 ± 0.7 ×109 5.18 ± 0.45 ×109 

SlNPV 5th instar (Lab reared) 108  POBs/ml 14.45 ± 0.28 ×109 5.73 ± 0.17 ×109 

AmalNPV 5th instar (Lab reared) 108  POBs/ml 18.79 ± 0.37 ×109 7.90 ± 0.54 ×109 



Figure 13: Enumeration of poly occlusion bodies (POBs) under phase-contrast 

microscope (1000 X) 

 

 

    

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

    

4.2 Electron Microscopic (EM) Studies: 

               
  

           

POBs of NPVs were purified by differential centrifugation and enumerated under 
phase-contrast microscope at 1000 X magnification.  



  Electron microscopic (EM) studies of NPVs isolated from H. armigera; S. litura and A. 

albistriga revealed typical baculovirus occlusion bodies (OBs) with rod shaped nucleocapsids 

(NCs). The details of the EM study results were presented in Table 8. Under scanning electron 

microscope the POBs of HaNPV and SlNPV appeared as crystalline structures of variable shapes 

of size 0.5 to 2.5µm and 0.9 to 2.92µm in diameter (Figs 14 and 15); the POBs of AmalNPV 

were of 1.0 to 2.0µm in diameter (Fig 16). Under transmission electron microscope the cross-

sectioned POBs revealed multiple nucleocapsids in each envelop, which were of bacilliform 

shaped structures of 277.7 × 41.6nm (HaNPV), 285.7 × 34.2nm (SlNPV) and 228.5 × 22.8nm 

(AmalNPV) in size. The POBs of HaNPV, and AmalNPV contained 2 to 6, (Figs 17 and 19) and 

SlNPV contained 5 to7 nucleocapsids per envelope (Fig 18).  

 

 

 

 

 

 

 

 

 



Table 8: Electron microscopic studies of NPVs 

 

 
SEM-Scanning electron micrograph, TEM- Transmission electron micrograph; 

OB- Occlusion bodies; NC- Nucleocapsid.

SEM TEM 

Virus 

Shape of OB Size of OB Type of virion 
No of 

NCs/envelope 
Dimensions of NC 

HaNPV 

 
Irregular 0.5 – 2.5µm Multiple enveloped 2 - 6 277.7 × 41.6nm 

SlNPV 

 
Irregular 0.92 –2.92µm Multiple enveloped 5 - 7 285.7 × 34.2nm 

AmalNPV Irregular 1.0 – 2.0µm Multiple enveloped 2 - 6 228.5 × 22.8nm 



Figure 14: Scanning electron micrograph (SEM) showing H. armigera 

nucleopolyhedrovirus (HaNPV) polyhedra purified by differential 

centrifugation (6, 500 X). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                  
 

          

The purified aqueous POBs of HaNPV were dehydrated, mounted over the stubs, 
applied a thin layer of gold metal over the sample using sputter coater and then 
scanned under EM.  Bar = 2µm. 
 



Figure 15: Scanning electron micrograph (SEM) showing S. litura 

nucleopolyhedrovirus (SlNPV) polyhedra purified by differential 

centrifugation (6, 500 X). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

The purified aqueous POBs of SlNPV were dehydrated, mounted over the stubs, 
applied a thin layer of gold metal over the sample using sputter coater and then 
scanned under EM.  Bar = 2µm. 
 



Figure 16: Scanning electron micrograph (SEM) showing A. albistriga 

nucleopolyhedrovirus (AmalNPV) polyhedra purified by differential 

centrifugation (6, 500 X). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
             

                

The purified aqueous POBs of AmalNPV were dehydrated, mounted over the stubs, 
applied a thin layer of gold metal over the sample using sputter coater and then scanned 
under EM.  Bar = 2µm. 



Figure 17: Transmission electron micrograph (TEM) of cross section of polyhedra 

(POB) of H. armigera nucleopolyhedrovirus (HaNPV).  
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
 

            

Multiple 
nucleocapsids 

Polyhedral 
envelope 

Polyhedrin 

Pellet of HaNPV POBs was subjected to ultra thin sections, mounted on copper grids and 
stained with saturated aqueous uranyl acetate and counter stained with 4% Lead citrate and 
observed under TEM.  Magnification = 20, 000 and Bar = 500 nm.  
 
Details of polyhedra showing multiple nucleocapsids surrounded by a single membrane. The 
polyhedron envelope, the rod- like nucleocapsids and major occlusion body protein or 

matrix protein (polyhedrin) are indicated by arrow marks. 
 



Figure 18: Transmission electron micrograph (TEM) of cross section of polyhedra 

(POB) of S. litura nucleopolyhedrovirus (SlNPV).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

         

Multiple 
nucleocapsids 

Polyhedral 
envelope 
 

Polyhedrin 

Pellet of SlNPV POBs was subjected to ultra thin sections, mounted on copper grids and 
stained with saturated aqueous Uranyl acetate and counter stained with 4% Lead citrate and 
observed under TEM. Magnification = 25,000 and Bar = 400 nm.  
 
Details of polyhedra showing multiple nucleocapsids surrounded by a single membrane. The 
polyhedron envelope, the rod-like nucleocapsids and major occlusion body protein or matrix 

protein (polyhedrin) are indicated by arrow marks. 



Figure 19: Transmission electron micrograph (TEM) of cross section of polyhedra 

(POB) of A. albistriga nucleopolyhedrovirus (AmalNPV).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

 

 

           
           

     

Multiple 
nucleocapsids 

Polyhedral 
envelope 

Polyhedrin 

Pellet of AmalNPV POBs was subjected to ultra thin sections, mounted on copper grids 
and stained with saturated aqueous Uranyl acetate and counter stained with 4% Lead 
citrate and observed under TEM.  Magnification = 25,000 and Bar = 400 nm.  
 
Details of polyhedra showing multiple nucleocapsids surrounded by a single membrane. 
The polyhedron envelope, the rod- like nucleocapsids and major occlusion body protein 
or matrix protein (polyhedrin) are indicated by arrow marks. 



4.3 Purification of Polyhedral Protein (Polyhedrin) of NPVs: 

Purification protocol for polyhedrin protein of NPVs was standardized by the following 

steps: initial heat inactivation of endogenous proteases; alkali disruption of POBs and release of 

virions, and ultracentrifugation to pellet virions. Further purification was achieved by either of the 

following approaches: (i) in this approach further purification of polyhedrin was achieved through 

centrifugation by layering on 10-40% liner sucrose gradient; and (ii) in this approach further 

purification of polyhedrin was achieved through precipitation of polyhedrin at isoelectric pH.  

In 10-40% linear sucrose gradient centrifugation, the polyhedrin formed one diffused 

light scattered zone in 10% sucrose region (Fig 20). In isoelectric precipitation method the 

polyhedrin of all the three NPVs was precipitated at pH between 5.5 and 5.6. The precipitated 

polyhedrins of HaNPV, SlNPV and AmalNPV were settled as sediments at the bottom of the 

beakers were showed in Fig 22. 

In 12% SDS-PAGE analysis, samples derived from light scattered zone as well as sample 

layers of sucrose gradients revealed that both samples were equally pure and proteins resolved as 

single band of estimated molecular weight ~31 kDa (HaNPV) (Fig 21).  Similarly, polyhedrin 

purified by isoelectric precipitation method reveled that the molecular weight of major polyhedrin 

proteins of three NPVs were 31.65 kDa (± 0.00) (HaNPV), 31.29 kDa (± 0.00) (SlNPV) and 

31.67 kDa (± 0.295) (AmalNPV), respectively. In addition, these preparations contained some 

minor molecular weight peptides of about 7-27 kDa and a high molecular weight peptide of about 

60-70 kDa fragment (Fig 23). This has revealed that three NPVs have 6-8 minor polypeptides.  

The yield of the polyhedrin obtained in sucrose gradient method was 1mg/ml, while the 

isoelectric precipitation method was about 15-20mg/ml from standard POB preparations (109 

POB/ml). Due to lack of consistency in the purity and quality of the polyhedrin preparation in 

both the methods, the polyhedrin was electro-eluted from 10% SDS-PAGE for immunization 

purpose. In 12% SDS-PAGE the electro-eluted polyhedrin was appeared as single protein band 



without any degraded peptides (Fig 24). Before immunization the polyhedrin was electro-eluted 

freshly. The purified polyhedrin preparations (of both methods) were aliquoted in to small tubes 

and stored at -200C for further use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 20: Purification of polyhedrin protein through 10-40% linear sucrose 

gradients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
 

                                                
               
Purification of polyhedrin protein from NPVs in 10-40% linear sucrose 
gradients resulted in single light scattering zone in 10% sucrose region. 
Length of sucrose gradient and sample layered on it are indicated. Position 
of light scattering zones in both the preparations (I and II) are indicated 
with arrows. 
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Figure 21: Separation of HaNPV polyhedrin collected from sucrose gradient in 12% SDS-PAGE 

                                                                            
 
 
 
 
 
 
 
 
 
 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                            
 
 

                                                                                                                                      

Lane 1, Protein molecular weight marker 

Lane 2, Light scattered zone (Preparation I) 

Lane 3, Light scattered zone (Preparation II) 

Lane 4, Sample layer (preparation I) 

Lane 5, Sample layer (Preparation II) 

10-40% linear sucrose 
gradient  

 

 kDa        1       2          3           4             5 

Sample layer 
Light scattered 
zone 

Light scatter zone and sample layer were collected and separated in 12%SDS- PAGE and the gel was silver stained (B). Sizes of protein 
molecular weight marker (kDa) are indicated. Pictorial representation of sample separation in sucrose gradient is shown in A. 
 

  B) Silver stained 12% SDS -PAGE gel 
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      Figure 22: Isoelectric precipitation of NPV polyhedrin 

 

 

 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

           

        A                   B              C 

Purification of polyhedrin by isoelectric precipitation method. The polyhedrins of HaNPV 
(A), SlNPV (B) and AmalNPV(C) were precipitated at their isoelectric points and settled as 
sediment at the bottom of beaker. 



Figure 23: 12% SDS-PAGE profiles of isoelectric precipitated polyhedrin protein preparations 
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Lanes 1, 3 and 5 Protein molecular weight markers 

Lane 2, HaNPV polyhedrin preparation 

Lane 4, SlNPV polyhedrin preparation 

Lane 6, AmalNPV polyhedrin preparation 

 

Purification of polyhedral protein of HaNPV (A), SlNPV (B) and AmalNPV (C) by isoelectric precipitation method. The purity and 
integrity of the preparations were checked in 12% SDS-PAGE and the gels were silver stained. Sizes of protein molecular weight 
marker (kDa) are indicated. The major polyhedrin protein band at 31 kDa was indicated with arrow marks. Several minor polypeptides 
were also detected in three preparations. 
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Figure 24: 12 % SDS-PAGE profile of electro-eluted polyhedrin 

 

 

                                    

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                
 
 

                                                                                           

  kDa           1    2         3               4 

Polyhedrin band from a preparative 10% SDS-PAGE was excised and electro-eluted. The eluted 
polyhedrin (100-200µg) was seperated in 12% SDS-PAGE. The polyhedrin was appeared as single protein 
band in silver stained gel. Sizes of protein molecular weight marker (kDa) are indicated. 
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Lane 1, Molecular weight marker, 

Lane 2, HaNPV polyhedrin, 

Lane 3, SlNPV polyhedrin, 

Lane 4, AmalNPV polyhedrin 



4.4 Production of Polyclonal Antibodies against Polyhedrin of NPVs: 

 
To produce the polyclonal antibodies against the polyhedrins of HaNPV, SlNPV and 

AmalNPV, 500 µg of the electro-eluted polyhedrin was used as antigen to immunize the New 

Zealand White inbreed rabbits. The reactivity and the antibody titers of the bleeds were 

determined by DAC-ELISA reveled that the protocol used for immunization gave a good immune 

response in rabbits.  

The DAC-ELISA results indicated that the polyclonal antibodies are highly reactive with 

the polyhedrin and the antibody titer in the bleeds was gradually increased up to 5 weeks (up to 

5th bleed) and then declined. After booster dose (from 8th bleed onwards) antibody titer was 

increased. The absorbance readings of different bleeds of antiserum (against HaNPV-polyhedrin) 

at various dilutions were represented in the Fig 25. 

The concentration (500µg) of polyhedrin of three NPVs used for immunization gave an 

antibody titer of 1:5000 dilution, 18 weeks after initiation of immunization. The antibody titer of 

each bleed was determined; the working dilution was optimized and labeled on each vial. The 

antisera vials were lyophilized and stored at -300C for further use. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 



Figure 25: The antibody titer of polyhedrin polyclonal antiserum  
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4.5 Characterization of Polyhedrin-Polyclonal Antibodies: 

Polyclonal antibodies produced against the polyhedrin of HaNPV, SlNPV and AmalNPV 

were characterized by determining the specificity of antisera to detect their respective polyhedrins 

and investigated their ability to cross-react with other two heterologous polyhedrins.  

The specificity was determined by Western immunoblotting analysis with three forms of 

polyhedrin [1. isoelectric precipitated polyhedrin (IPP) 2. electro-eluted polyhedrin (EP) and 3. 

Entire POB particle proteins (EPP)] and healthy larval proteins (HLP). The cross-reactivity of the 

antibodies was determined by DAC-ELISA and Western immunoblotting analysis of EP.  

4.5.1 Specificity of antisera: 

In western immunoblotting all three antibodies were specifically reacted with polyhedrin 

(31 kDa) and did not cross-reacted with HLP (Fig 26) indicating that the antibodies are highly 

specific to polyhedrin. The concentration of polyhedrin detected by polyhedrin polyclonal 

antibodies of three NPVs was 50-100µg of total protein in 10µl of isoelectric precipitations or 

electro-eluted polyhedrin preparations and 200µg of total protein concentration in 10µl of crude 

POB solutions.  

The molecular weight of major polyhedrin protein belongs to three NPVs recognized by 

their respective antibodies was as follows: In HaNPV, 31.55 kDa in EPP, 31.27 kDa in IPP and 

31.2 kDa in EP. In SlNPV and AmalNPV, the antibodies recognized the polyhedrin with similar 

molecular weights in three forms of polyhedrin (i.e. EPP, IPP and EP); they are 31.77 in SlNPV 

and 30.95 kDa in AmalNPV. Antibodies recognized some low molecular weight bands, which 

could be degraded polyhedrin peptides. 

The low molecular weight proteins (molecular weights below polyhedrin protein) 

recognized by polyhedrin polyclonal antibodies were as follows: The antibodies of HaNPV 

polyhedrin detected the low molecular weight proteins with sizes of 26.64 kDa in IPP, 24.75 kDa 

in EPP, 20.47kDa in IPP, 16.49 in IPP, 15.14 in EPP and 11.43 in EP. Similarly, the antibodies of 



SlNPV polyhedrin detected the low molecular weight proteins with size of 26.1 kDa, 24.57 kDa 

and 18.17 kDa in EPP and 16.91 kDa in IPP. Whereas the antibodies of AmalNPV polyhedrin 

detected the low molecular weight proteins with sizes of 26.54 kDa, 22.49 kDa and 18.74 kDa in 

IPP and 26.32 kDa, 18.86 kDa and 15.37 kDa in EP.  

4.5.2 Cross-reactivity of antisera: 

The cross-reactivity of the antisera was determined by DAC-ELISA and western blotting 

analysis of electro-eluted polyhedrin (EP). The antiserum with maximum antibody titer (i.e. after 

booster dose) was used for this study. 

4.5.2.1 DAC-ELISA: 

The DAC-ELISA was performed essentially by two different ways to characterize the 

polyclonal antibodies as detailed below: 

4.5.2.1.1 Reciprocal test to determine the cross reactivity of the three polyclonal 

antisera: 

DAC-ELISA performed to determine the cross reactivity of antiserum in detecting other 

NPVs, each antiserum showed strong cross reactivity with other two heterologous polyhedrins. 

The antibodies at 1:5000 dilutions were able to detect minimum 10-15ng/ml and maximum 

1000ng/ml of their homologous polyhedrin and minimum 25-30ng/ml and maximum 1500-

2000ng/ml of heterologous polyhedrins. Fig 27 showing the extent of cross-reactivity of fixed 

homologous antiserum dilution with variable concentrations of heterologous polyhedrins.  

4.5.2.1.2 Reciprocal DAC-ELISA with fixed heterologous polyhedrin concentration 

vs. variable homologous antiserum dilutions: 

  In reciprocal DAC-ELISA at fixed heterologous polyhedrin concentration (1000 ng/ml) 

and variable dilutions of homologous polyhedrin polyclonal antisera (1:1000 to 1: 40,000), the 

polyclonal antiserum of each NPV showed strong cross-reactivity with other two heterologous 

polyhedrins. The absorbance reading at particular dilution of the antiserum gave minimum of 1.0 

OD or above within 1 h was considered as the maximum dilution of the antiserum to detect 



polyhedrin. The HaNPV polyhedrin antiserum detected the homologous polyhedrin at 1: 25000 

antiserum dilution and at the same the heterologous polyhedrins were detected at 1:15000 

dilution. The SlNPV polyhedrin antiserum detected the homologous polyhedrin at 1:40000 

dilution of antiserum and heterologous polyhedrins were detected at 1:25000 dilution. Similarly, 

the AmalNPV polyhedrin antiserum detected the homologous polyhedrins at 1:30000 dilution of 

antiserum and heterologous polyhedrins were detected at 1:15000 dilution. Fig 28 showing the 

extent cross-reactivity of the fixed concentration of heterologous polyhedrins at different 

dilutions of homologous antiserum. The combination of 1000ng/ml of polyhedrin concentration 

and 1:40,000 dilution of antiserum, the cross-reactive curves were diverged from each other, low 

level of cross-reactivity was observed and the antibodies were able to distinguish the homologous 

and heterologous polyhedrins. The combination at 1000ng/ml of polyhedrin concentration and 

1:1000 dilution of antiserum, the cross-reactive curves were converged together, high level of 

cross-reactivity was observed and the antibodies were unable to distinguish the homologous and 

heterologous polyhedrins (Fig 28). 

4.5.2.2 Western immunoblotting: 

 
In western immunoblotting the polyhedrin polyclonal antibodies were recognized both 

homologous and heterologous polyhedrins to a great extent indicates that the antibodies have 

strong cross-reactivity with heterologous polyhedrins (Fig 29).  

 

 

 

 

 



                        Figure 26: Polyclonal antiserum showing the specific reactivity with polyhedrin protein. 

 
    

    

    

    

    

 

 

 

 

    

       
 
 

                 

 

       

 

             

 

            
 

 kDa           1        2       3       4          5                  6       7        8       9         10              11       12       13       14     15 

Lanes 1, 6 and 11, Protein molecular weight markers; Lanes 2, 7 and 12,  Entire POB particles; Lanes 3, 8 and 13, healthy larval proteins; 
Lanes 4, 9 and 14, iso-electric precipitated polyhedrin; Lanes 5, 10 and 15, Electro-eluted polyhedrin.  

 

In western immunoblotting, the polyclonal antibodies produced against polyhedrin protein of HaNPV (A), SlNPV (B) and AmalNPV(C) are 
specifically recognized the polyhedrin and are able to detect the polyhedrin in three forms such as polyhedrin in entire POB particle (EPP), 
iso-electric precipitated polyhedrin (IPP) and electro-eluted polyhedrin (EP)  (rabbit injected polyhedrin). In addition to major polyhedrin, 
they also recognized some minor low and high molecular weight peptides. Sizes of the protein molecular weight marker was indicated. The 
major polyhedrin (31kDa) was indicated with arrow marks. Some minor low molecular weight bands recognized by antibodies could be 
degraded polyhedrin peptides. 
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Figure 27: Reciprocal DAC-ELISA to determine the extent of HaNPV, SlNPV and AmalNPV polyhedrin antibody cross-reaction 
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The homologous polyhedrin polyclonal antiserum of HaNPV (A), SlNPV (B) and AmalNPV (C) at fixed dilutions (1:5000) showing different 
degrees of cross reactivity with variable concentrations (2000 - 7.8ng) of heterologous  polyhedrins. 
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Figure 28: Reciprocal DAC-ELISA with fixed heterologous polyhedrin concentration vs. variable homologous antiserum dilutions 
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The homologous polyhedrin polyclonal antiserum of HaNPV (A), SlNPV (B) and AmalNPV (C) at variable dilutions (1:1000 to 1:40,000) showing 
different degrees of cross-reactivity with fixed concentration (1000 ng/ml) of heterologous polyhedrins.  
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Figure 29: Cross-reactivity of homologous polyhedrin polyclonal antiserum with 

heterologous polyhedrins in western immunoblotting.  
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kDa      1          2         3       4        5       6    7       8         9      10     11      12  

The homologous polyhedrin polyclonal antiserum of HaNPV (A), SlNPV (B) and 
AmalNPV(C) showed strong cross-reactivity with heterologous polyhedrins in 
Western immunoblotting analysis.  
 
Lanes 1, 5 and 9, Protein molecular weight markers. 
 
Lane 2, HaNPV polyhedrin 
Lane 3, SlNPV polyhedrin 
Lane 4, AmalNPV polyhedrin 
 
Lane 6, SlNPV polyhedrin 
Lane 7, HaNPV polyhedrin 
Lane 8, AmalNPV polyhedrin 
 
Lane 10, SlNPV polyhedrin 
Lane 11, HaNPV polyhedrin 
Lane 12, AmalNPV Polyhedrin 

A (HaNPV antiserum) 

B (SlNPV antiserum) 

C (AmalNPV antiserum) 



4.6 Development and Evaluation Diagnostic Tools for NPVs: 

 By using the polyhedrin polyclonal antibodies various immunochemical tools were 

developed and evaluated for the detection and quality control of NPVs.   

4.6.1 Development of Diagnostic Tools: 

The ability of the polyhedrin polyclonal antibodies to detect the polyhedrin in laboratory 

infected insect extracts was determined using artificially infected larvae, with uninfected larvae as 

controls.  

4.6.1.1 Infection of larvae:  

 Healthy 4th and 5th instar larvae of H. armigera, S. litura and A. albistriga were 

infected with respective NPVs at >50% lethal doses (108 POBs/ml). The symptoms of NPV 

infection were observed from 4th day after infection; the infected larvae reacted slowly to tactile 

stimuli and appear swollen, glossy and moribund. From 6th day onwards the diseased larvae 

stopped feeding. On 7th to 10th days, most of the diseased larvae were dead and liquefied. Some 

larvae were survived after 10th day and pupated. After 10th day most of the dead larvae were 

putrefied and emitted the malodour. The infected larvae (live and dead), pupae and uninfected 

healthy larvae were sampled, homogenized and extracted the polyhedrin. Total protein 

concentrations of the larval extracts were listed in Table 12. The results of 12% SDS-PAGE assay 

of healthy and infected protein extracts, western immunoassay, indirect immunofluorescence 

assay of healthy and infected larvae and their evaluation in DAC and IC-ELISA were detailed 

below. 

4.6.1.2 Separation of healthy and infected larval proteins in 12% SDS-PAGE: 

Following separation of larval proteins in 12% SDS-PAGE there were some common 

proteins observed among healthy and infected larval extracts of these insect species. Some of 

them are present in both healthy and infected extracts but some are specific to healthy and 

infected larval extracts. In NPV infected larval extracts of three insect species, a highly expressed 



protein (polyhedrin) with molecular weight of ~31 kDa was observed. The estimated molecular 

weights of polyhedrins are as follows: 31.0 kDa in H armigera and 31.3 kDa in S. litura and A. 

albistriga infected larval extracts.   

4.6.1.3 Western immunoassay for detection of POBs in larval extracts: 
 

Analysis of healthy and infected larval homogenates showed that the polyhedrin 

polyclonal antibodies specifically detected a single polyhedron protein but not reacted with 

healthy larval homogenates, indicating antibody specificity to polyhedrin (Fig 30). Some times 

the antibodies recognized the minor polyhedrin fragments of sizes about 27kDa, which appears to 

be degraded polyhedron proteins (Fig 30C). 

4.6.1.4 Indirect immunofluorescence assay for the detection of POBs in larval extracts:  

 The efficacy of antibodies to react with POBs in infected larval homogenates was tested 

by indirect immunofluorescence assay. Fig 31 shows the stained POBs in infected larval 

homogenate of H. armigera that was probed with the HaNPV polyclonal antibodies. Some times 

in infected homogenates, both POBs and dissolved polyhedrins were uniformly stained. There 

was no detectable staining (fluorescence) in the controls. 

4.6.1.5 Standardization of DAC-ELISA for quantitative detection of   polyhedrin in 

larval extracts: 

  In DAC-ELISA the NPV infection was diagnosed successfully. The total protein 

concentration of 5µg/ml of larval extracts gave the maximum sensitivity to detect the NPV 

infection. The ELISA readings were considered virus positive if the absorbance values of a 

sample differed by three-folds than those observed in the healthy insect control. The samples 

tested in DAC-ELISA were infected larvae of either live, dead or putrefied conditions at 4th, 5th 

instar and pupal stages. Simultaneously, healthy controls of each stage were also assayed. Based 

on the absorbance value the severity of the disease or virus titer in the larvae was determined 

(Table 9). To estimate the polyhedrin content in DAC-ELISA purified polyhedrin standards 

(1000 to 7.8ng/ml), healthy larval extracts (5µg/ml) spiked with purified polyhedrin standards 



and healthy larval extracts were assayed. All homogenates (healthy and infected extracts) were 

adjusted to 5µg/ml with coating buffer before being assayed. The difference in the absorbance 

values of unspiked and spiked standards are indicated in the Fig 32. Antibodies detected the 

polyhedrin concentration as low as 15ng/ml of purified form and up to 30ng/ml in 5µg/ml of 

larval extracts. There was no cross-reaction between antibodies and healthy larval extracts (Fig 

32). The results from DAC-ELISA were compared with a standard curve determined by serial 

dilution of polyhedrin spiked in healthy larval proteins.  

 

 



 

 

Figure 30: Diagnosis of NPV infection by western immunoblotting 

 

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

  
 
          

                                                                                         

Westernimmunoassay of NPV infected and healthy larval homogenates of H. armigera (A), S. litura (B) and A. albistriga (C) shows that the 
antibodies are specifically detected the POBs by recognizing the single polyhedrin protein of size 31 kDa. Some cases the antibodies 
recognized the polyhedrin degraded fragments of sizes 27-20 kDa (C). 
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and A. albistriga, 

 

Lanes 3, 6 and 9, healthy controls of H. 

armigera, S. litura and A. albisriga. 
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            Figure 31: Diagnosis of NPV infection by indirect immunofluorescence assay 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

      
 

Reactivity of polyhedrin polyclonal antiserum with POBs in infected larval extracts 
(A) by indirect immunofluorescence using anti-rabbit IgG FITC-conjugate. The 
specific fluorescence of HaNPV POBs and their disrupted empty polyhedral sacs with 
polyhedrin polyclonal antiserum observed under fluorescence microscope (Olympus, 
Model: AX-70) at magnification of (300 X). Same trarment did not resuled any 

detectable staining (fluorescence) in healthy controls (B)  

                    AAAA                        BBBB    



Figure 32: Quantitative detection of NPV polyhedrin using DAC-ELISA 
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Lanes 1 to 9 (rows A, B and C, D): polyhedrin 1000 to 7.8ng /ml; 
Lane 10 (rows A, B, C, D, E and F): Buffer control (BC) 
Rows A and B: Purified polyhedrin; 
Rows C and D: Pure polyhedrin artificially spiked into 5 µg/ml of healthy larval extract;  
Rows E and F:  Healthy control (5 µg/ml)  
(A405nm values are directly proportionally to the polyhedrin concentration). 

 



Table 9: Diagnosis of NPV infection by DAC-ELISA 

 

S.No 
Age and condition 

 of the larvae 

Total protein 

concentration  

(mg/ml) 

Protein concentration  

used for DAC-ELISA 

(µg/ml) 

A 405 nm 
Symptom 

severity  

A. H. armigera: 

1 Healthy, 4th instar  (live) 5 5 0.082 - 

2 Infected, 4th instar  (live) 16.0  5 2.802 ++++ 

3 Infected,4th instar (dead) 20.62 5 2.95 ++++ 

4 Infected, 4th instar  (putrefied) 22.l 5 3.05 ++++ 

5 Healthy, 5th instar  (live) 3.58 5 0.086 - 

6 Infected, 5th instar  (live) 7.74  5 0.682 ++ 

7 Infected, 5th instar  (dead) 21.66 5 2.664 ++++ 

8 Infected, 5th instar  (putrefied) 22.8 5 0.885 +++ 

9 Infected, pupa  (live) 4.82 5 0.315 + 

10 Infected, pupa  (dead) 24 5 0.2945 + 

B. S. litura: 

11 Healthy, 4th instar  (live) 5.21  5 0.036 - 

12 Infected, 4th instar  (live) 7.2 5 0.483 + 

13 Infected, 4th instar (dead) 20.21  5 2.673 ++++ 

14 Infected, 4th instar  (putrefied) 20.5 5 0.832 +++ 

15 Healthy, 5th instar  (live) 5.3 5 0.04 - 

16 Infected, 5th instar  (live) 6.07  5 2.678 ++++ 

17 Infected, 5th instar  (dead) 22.11 5 3.03 ++++ 

18 Infected, 5th instar  (putrefied) 21.44 5 2.998 ++++ 

19 Infected, pupa  (live) 9.62 5 0.343 + 

20 Infected, pupa  (dead) 14.59 5 0.429 + 

C. A. albistriga: 

21 Healthy, 4th instar  (live) 10.6 5 0.045 - 

22 Infected, 4th instar  (live) 8.2  5 1.682 ++++ 

23 Infected, 4th instar  (dead) 21.5 5 1.891 ++++ 

24 Infected, 4th instar  (putrefied) 23.2 5 2.862 ++++ 

25 Healthy, 5th instar  (live) 12.3 5 0.041 - 

26 Infected, 5th instar  (live) 17.6 5 2.834 ++++ 

27 Infected, 5th instar  (dead) 22.4 5 3.12 ++++ 

28 Infected, 5th instar  (putrefied) 20.1 5 3.106 ++++ 

29 Infected, pupa  (live) 17.1 5 0.697 ++ 

30 Infected, pupa  (dead) 23.2 5 0.737 ++ 

 

    



4.6.1.6 Standardization of IC-ELISA for estimation of Polyhedrin content in larval 

extracts: 

 The optimal concentrations of coating antigen and respective antisera of HaNPV, SlNPV 

and AmalNPV were obtained by checkerboard titration assays. The combination of coating 

antigen and antibody dilution that resulted in the highest titer was selected for further 

development. The antigen concentration of 1µg/ml and the antibody dilution of 1:4000 were 

optimized to assay homologous antigens (Fig 33A) and the antigen concentration of 2µg/ml and 

the antibody dilution of 1:2000 were optimized to assay heterologous antigens (Fig 33B and C). 

The polyhedrin standards were spiked in to 25 or 50µg/ml of healthy larval proteins and 

optimized from serial dilutions of 40 to 0.156, 20 to 0.078 and 10 to 0.039 µg/ml. The 

concentrations of 20 to 0.078µg/ml was found to be the best regression curve (Fig 35). The 

sensitivity of IC-ELISA was 0.156µg/ml of homologous polyhedrins and 0.31 to 0.35µg/ml for 

detection of heterologous polyhedrins in 25 or 50µg/ml of insect total protein extract.  

A competitive inhibition experiment was conducted in parallel to determine the 

sensitivity of the assay against homologous and heterologous polyhedrins. In Table 10 the 

selected competitive ELISA screening data of homologous polyhedrin polyclonal antisera against 

homologous and heterologous polyhedrins was presented. From this data the concentration of 

polyhedrin required for 50% competitive inhibition (IC50) and % of cross-reactivity of each 

antiserum with heterologous polyhedrins were calculated.  

For HaNPV-polyhedrin polyclonal antiserum, the IC50 (Fig 34A) was calculated to be 

1.10µg/ml and heterologous polyhedrins were calculated to be 2.0µg/ml of SlNPV polyhedrin 

and 2.20µg/ml of AmalNPV polyhedrin. For SlNPV-polyhedrin polyclonal antiserum, IC50 (Fig 

34B) was calculated to be 1.26µg/ml and heterologous polyhedrins were calculated to be 

2.25µg/ml of HaNPV polyhedrin and 2.85µg/ml of AmalNPV polyhedrin. For AmalNPV-

polyhedrin polyclonal antiserum, IC50 (Fig 34C) was calculated to be 1.19µg/ml and heterologous 



polyhedrins were calculated to be 1.82 µg/ml of Ha NPV polyhedrin and 2.32µg/ml of SlNPV 

polyhedrin.  

The percent cross-reactivity of each antiserum with their homologous polyhedrins was 

calculated to be 100% while with heterologous polyhedrins the antisera showed differential cross-

reactivity (Table 11). The HaNPV- polyhedrin polyclonal antiserum has showed 54.72% and 

50.0% of cross-reactivity with SlNPV and AmalNPV polyhedrins. The SlNPV- polyhedrin 

polyclonal antiserum showed 56.0% and 43.85% of cross-reactivity with HaNPV and AmalNPV 

polyhedrins. Similarly, AmalNPV-polyhedrin polyclonal antiserum showed 65.38% and 51.29% 

of cross-reactivity with HaNPV and SlNPV polyhedrins. 

In order to study the effect of insect body proteins on IC-ELISA and test the % of 

recovery of artificially spiked polyhedrin to determine the effect of insect proteins, recovery 

experiments were conducted. In recovery experiments, 25 and 50µg/ml of insect body proteins 

did not show interference with artificially spiked polyhedrin (Fig 37). But when the concentration 

of insect body proteins increased above 50µg/ml the absorbance values were decreased slightly 

and false positive results were obtained. The percentage of recovery of artificially spiked 

polyhedrin was good from 25 or 50µg/ml of un-infected larval protein extracts. The details of the 

recovery experiment was presented in Table-12 and described as below. The % amount of 

polyhedrin (20 - 0.078µg/ml) recovered from 25µg/ml of un-infected larval protein extract was 

95.7  ± 0.15 to 115.2 ± 6.4% for HaNPV polyhedrin, 82.1 ± 5.2 to 115.2 ± 6.4% for SlNPV 

polyhedrin and 89.7 ± 6.7 to  114.5 ± 0.4% for AmalNPV was recorded. Similarly, the % of 

amount of polyhedrin recovered from 50µg/ml of un-infected larval protein extract was 90.1 ± 

1.3 to 116.8 ± 0.8 % for HaNPV polyhedrin, 89.8 ± 5.9 to 110.4 ± 4.8% for SlNPV polyhedrin 

and 88.95 ± 1.3 to 109.8 ± 2.6% for AmalNPV polyhedrin was recorded. Based on the recovery 

experiment the diagnosis of NPV infection by IC-ELISA was optimized for assaying the larval 

extracts by adjusting their total protein concentration to 25 or 50µg/ml. 

 



Figure 33: Titration analysis of various dilutions of polyhedrin polyclonal antiserum against homologous and heterologous 

polyhedrins with different concentrations as the coating antigens. 
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Screening of homologous polyhedrin of HaNPV (A) and heterologous polyhedrins of SlNPV (B) and AmalNPV (C) at variable concentrations (4.0, 
2.0, 1.0, 0.5, 0.25 and 0.0 µg/ml) against variable dilutions (1:1000 to 1:64,000) of homologous (HaNPV) polyhedrin polyclonal antiserum. 
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Figure 34: Competitive inhibition curves for homologous and heterologous polyhedrins. 
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The percent cross-reactivity of homologous polyhedrin polyclonal antiserum with heterologous polyhedrins was determined by competitive 
inhibition experiment carried out with homologous antiserum of HaNPV polyhedrin (A), SlNPV polyhedrin (B) and AmalNPV polyhedrin (C). 
The curves indicating that the amount of polyhedrin required to inhibit the reactivity of polyclonal antiserum in IC-ELISA with coated 
heterologous polyhedrins in the ELISA plate. By calculating the concentration of polyhedrin required for 50% competitive inhibition (IC50) the 
sensitivity of the IC-ELISA was determined. The lines drawled on the figures were IC50 values of homologous and heterologous polyhedrins 
with homologous antiserum.  



Table 10: Selected competitive ELISA screening against homologous and heterologous polyhedrins. 

 

Absorbance  

at 405 nm 
Polyhedrin 

Coating 

antigen  

µg/ml 

Antiserum 

dilution 

IC50  

µg/ml 
min max 

Slope Intercept 

A. HaNPV polyhedrin polyclonal antiserum: 

HaNPV 1.0 1:4000 1.1 0.212 1.348 9.345 1.532 

SlNPV 1.0 1:4000 2.01 0.185 0.854 8.795 12.149 

AmalNPV 1.0 1:4000 2.2 0.192 0.876 9.392 10.672 

B. SlNPV  polyhedrin polyclonal antiserum: 

SlNPV 1.0 1:4000 1.26 0.2 1.46 9.55 2.286 

HaNPV 1.0 1:4000 2.25 0.14 0.89 10.907 4.722 

AmalNPV 1.0 1:4000 2.85 0.15 0.87 10.594 9.865 

C. AmalNPV  polyhedrin polyclonal antiserum: 

AmalNPV 1.0 1:4000 1.19 0.21 1.47 9.523 1.653 

HaNPV 1.0 1:4000 1.82 0.17 1.03 9.888 5.899 

SlNPV 1.0 1:4000 2.32 0.18 0.95 9.557 10.737 

 
Values given were averages of three separate experiments



Table 11: Cross-reactivity of homologous polyhedrin polyclonal antiserum with 

heterologous polyhedrins in IC-ELISA 

 

S.No Origin of polyhedrin protein Cross reactivity* (%) 

A. HaNPV polyhedrin polyclonal antiserum: 

1 HaNPV 100 

2 SlNPV 54.72 

3 AmalNPV 50 

B. SlNPV polyhedrin polyclonal antiserum: 

4 SlNPV 100 

5 HaNPV 56 

6 AmalNPV 43.85 

C. AmalNPV polyhedrin polyclonal antiserum: 

7 AmalNPV 100 

8 HaNPV 65.38 

9 SlNPV 51.29 

 

 
*Cross-reactivity was calculated as (IC50 of homologous polyhedrin/ IC50 of heterologous 

polyhedrin) × 100.  

Heterologous polyhedrins were used as coating antigen. 

 

 

 

 

 

 

 

 

 

 



Figure 35: Recovery of polyhedrin from artificially spiked healthy larval extracts in IC-ELISA 
 

 

Indirect linear relationship between absorbance and polyhedrin concentration in IC-ELISA 
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Table 12: Recovery of polyhedrin from artificially spiked healthy larval extracts as 

determined by IC-ELISA. 
 

Polyhedrin 

estimated (µg/ml) Recovery (%) S.No 
Healthy extract used 

for spiking (µg/ml) 

Polyhedrin 

spiked (µg/ml) 
Mean ±  

A. HaNPV polyhedrin: 

1 25 20 19.14 ± 0.03 95.7  ± 0.1 

2 25 10 11.27 ± 0.38 112.7 ± 3.8 

3 25 5 5.49 ± 0.08 109.8 ± 1.6 

4 25 2.5 2.72 ± 0.02 108.8 ± 0.8 

5 25 1.25 1.25 ± 0.09 100.0 ± 7.2 

6 25 0.625 0.63 ± 0.02 101.1 ± 5.1 

7 25 0.3125 0.32 ± 0.03 101.5 ± 8.7 

8 25 0.15625 0.18 ± 0.01 115.2 ± 6.4 

9 50 20 18.02 ± .02 90.1 ± 1.3 

10 50 10 10.85 ± 0.36 108.5 ± 3.6 

11 50 5 5.69 ± 0.02 113.8 ± 4.0 

12 50 2.5 2.92 ± 0.02 116.8 ± 0.8 

13 50 1.25 1.20 ± 0.08 96.0 ± 6.4 

14 50 0.625 0.66 ± 0.03 105.6 ± 4.0 

15 50 0.3125 0.34 ± 0.03 108.8 ± 9.6 

16 50 0.15625 0.18 ± 0.01 115.2 ± 6.4 

B. SlNPV polyhedrin: 

17 25 20 17.02  ± 0.39 85.1 ± 1.9 

18 25 10  8.21  ± 0.52 82.1 ± 5.2 

19 25 5 5.22  ± 0.09 104.4 ± 1.8 

20 25 2.5 2.85  ± 0.44 94.0 ± 2.4 

21 25 1.25 1.32  ± 0.06 105.6 ± 4.8 

22 25 0.625  0.72  ± 0.04 116.0 ± 7.2 

23 25 0.3125 0.32   ± 0.01 101.7 ± 2.5 

24 25 0.15625  0.17   ± 0.02 115.2 ± 6.4 

25 50 20 19.48  ± 0.06 97.4 ± 0.3 

26 50 10 8.98  ± 0.59 89.8 ± 5.9 

27 50 5 5.02  ± 0.26 100.4 ± 5.2 

28 50 2.5 2.74  ± 0.01 109.6 ± 0.4 

29 50 1.25 1.28 ± 0.03 102.4 ± 2.4 

30 50 0.625 0.69 ± 0.03 110.4 ± 4.8 

31 50 0.3125 0.34 ± 0.01 109.1 ± 3.5 

32 50 0.15625 0.17 ± 0.00 108.8 ± 0.0 

C. AmalNPV polyhedrin:       

33 25 20 17.94 ±1.34 89.7 ± 6.7 

34 25 10 11.45 ± 0.04 114.5 ± 0.4 

35 25 5 5.59 ± 0.35 111.8 ± 7.7 

36 25 2.5 3.92 ± 0.39 109.6 ± 4.4 

37 25 1.25 1.36 ± 0.04 108.8 ± 3.2 

38 25 0.625 0.67 ± 0.05 107.2 ± 8.0 

39 25 0.3125 0.33 ± 0.01 105.6 ± 3.2 

40 25 0.15625 0.16 ± 0.01 105.6 ± 9.6 

41 50 20 17.79 ± 0.26 88.9 ± 1.3 

42 50 10 10.48 ± 0.23 104.8 ± 2.4 

43 50 5 5.49 ± 0.13 109.8 ± 2.6 

44 50 2.5 2.74 ± 0.11 109.6 ± 4.4 

45 50 1.25 1.32 ± 0.01 106.0 ± 1.2 

46 50 0.625 0.64 ± 0.02 101.6 ± 2.4 

47 50 0.3125 0.31 ± 0.01 100.8 ± 4.8 

48 50 0.15625 0.17 ± 0.05 109.4 ± 5.7 



4.6.2 Development of Quality Control Tools: 

As part of the quality control during mass production of bio-insecticides based on 

HaNPV, SlNPV and AmalNPV, sensitive immunochemical tools such as DAC and IC-ELISA 

were developed and evaluated for the quantification of POBs in commercial NPV preparations. 

The number of POBs present in sample was determined by extracting the total polyhedrin and 

compared with the standard regression graph of polyhedrin extracted from known number of 

POB standards such as 6 × 109 to 4.68 ×107 POBs /ml (1 LE to 0.0078 LE). 

 A simple purification protocol was standardized for extraction of total polyhedrin from 1 

ml of standard and sample POB preparations. The protocol is similar to extraction of polyhedrin 

from larval homogenates with slight modifications to the method described in section 3.6.1.1. In 

12% SDS- PAGE the purity of polyhedrin extracted from standards and samples was similar to 

polyhedrin purified by isoelectric precipitation method as detailed in Section 4.3. The intensity of 

the polyhedrin band was gradually decreased with decreasing in the number of POBs and at very 

low concentrations the band was not enough to visible. In addition to major polyhedrin, some 

minor low and high molecular weight polypeptides were also observed (Fig 36A and B). The 

extracts of standards and samples were evaluated in both DAC and IC-ELISA at 1:1000 dilution. 

The maximum regression (R2) value for the standard curves of DAC and IC- ELISA were 0.9953 

(Fig 37A) and 0.9977 (Fig 37B). The sensitivity of ELISA (DAC and IC-ELISA) was as low as 

4.6875 ×107 POBs /ml (0.015 LE/ml). The ELISA results were comparable to the light 

microscope counting of POBs. The results of ELISA and microscope counting were incorporated 

in Table 13. The total number of POBs of NPV samples collected from ICRISAT-NPV 

production laboratory and some private samples collected from market were summarized in Table 

14. 

 

 



Figure 36: 12% SDS-PAGE profiles of polyhedrin extracted from known number of 

POBs of standards and unknown number of POBs of samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Standards:                                                                                           
                                                                              

                                                                                

 
 

B. Samples: 
 

                                                                           

 

kDa       1           2            3          4           5           6 

 kDa         1         2         3         4         5         6         7 
 

The purity of the polyhedrin extracted from POB standards (1LE to 0.0625 LE) (A) and from unknown 
number of POBs of samples (B) were checked in 12% SDS-PAGE and the gels were silver stained. Sizes 
of protein molecular weight marker (kDa) are indicated.  
Note: 1 LE = 6 × 109 POBs/ml 
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Figure 37: Linear relationship between absorbance and number of POBs in DAC and IC-ELISA 
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R2 = 0.9977 R2 = 0.9953 

 

Poly occlusion bodies (POBs) from standard NPV (1 LE/ml) bottle were serially diluted  from 6 × 109 to 2.34 ×107 POBs/ml (1 to 0.0078 
LE/ml), their total polyhedrin was extracted and analyzed in DAC (A) and IC-ELISA (B).  
Note: 1 LE = 6 × 109 POBs/ml 

                                            A                                                                                                  B 



Table 13: Comparison of ELISA results with microscopic counting of POBs 

 

Note: 1 LE = 6 × 109 POBs/ml 

 

 

Number of POBs   

(LE/ml) 

 

Recovery 

(%) 

 

 

Sample 

No. 

 

Microscope 

count 

(LE/ml) 

 

DAC-ELISA 

 

(LE/ml) 

 

IC-ELISA 

 

(LE/ml) 

STDEV 

DAC-ELISA IC-ELISA 

1 1.0 0.972 1.053 0.0473 97.2 105.3 

2 0.5 0.532 0.483 0.0289 106.5 96.6 

3 0.25 0.235 0.233 0.0153 94.0 93.2 

4 0.125 0.12 0.125 0.0025 96.0 100 

5 0.0625 0.065 0.064 0.0013 104 102.7 

6 0.031 0.030 0.035 0.0045 96.7 112.9 

7         0.015 0.016 0.017 0.0008 108 113.3 

8 0.4 0.43 0.38 0.05 107.5 95 

9 0.246 0.22 0.23 0.013 89.4 93.4 

10 0.14 0.123 0.134 0.009 87.8 95.7 

11 0.086 0.08 0.092 0.012 93 106.9 

12 0.05 0.043 0.048 0.005 86 96 

13 0.026 0.026 0.03 0.002 100 115.3 

14 1.09 0.973 1.02 0.047 89.2 93.57 

15 0.5 0.532 0.55 0.025 106.5 110 

16 0.7 0.77 0.80 0.03 110 114.2 

17 1.0 0.972 1.06 0.0875 97.25 106 

18 0.6 0.62 0.56 0.06 103.3 93.3 

19 0.8 0.88 0.91 0.03 110 113.7 

20 0.25 0.26 0.28 0.02 104 112 



Table 14: Estimation of total POBs NPV based biopesticides collected from the 

ICRISAT-NPV production laboratory and commercial NPV samples 

collected from the market.  

 

 
 

Note: 1 LE = 6 × 109 POBs/ml 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Sample No 

 

Type of NPV 

 

Place of collection 

Total number of POBs  

 

(LE/ml) 

1 HaNPV ICRISAT 1.06 

2 SlNPV ICRISAT 1.02 

3 AmalNPV ICRISAT 1.08 

4 HaNPV Market 0.05 

5 HaNPV Market 0.07 

6 HaNPV Market 0.01 

7 HaNPV Market 0.01 

8 HaNPV Market 0.1 

9 SlNPV Market 0.02 

10 SlNPV Market 0.2 



4.7 Application of Immunochemical Tools in Optimization of Conditions for 

Productivity and Quality of NPVs: 

 By applying the immunochemical tools the production process was optimized for 

impoved productivity and quality of NPVs during commercial production. Also evaluated the 

efficacy of NPV through ELISA by monitoring the infection status in pest populations after field 

application.  

To optimize the conditions for productivity and quality of NPVs during commercial 

production, the optimum age of the larvae for virus inoculation and optimum time for virus 

harvesting were determined by applying the immunochemical tools in bioassay experiments. The 

results of the experiments were as follows. 

4.7.1 Determining the optimum age of larvae for virus inoculation: 

The effect of age of larvae on POB yield and optimum age of the larvae for inoculation of 

virus were determined by mass multiplying the NPVs on 2nd, 3rd, 4th, and 5th instar larvae. The 

total yield of NPV obtained in each age group larvae determined by ELISA showed that the yield 

of NPV during mass multiplication was increased with increasing in age of larvae but it was not 

common with all the three insect species.  For H. armigera the yield of NPV was increased 

gradually from 2nd instar to 4th instar stage and decreased in 5th instar stage; whereas in S. litura 

and A. albistriga the yield was increased up to 5th instar stage (Fig 38). The highest yield of NPV 

obtained for HaNPV when 4th instar larvae were infected (1.97 ± 0.035 LE/ml). The highest yield 

obtained for SlNPV when 5th instar larvae were infectd (2.47 ± 0.097 LE/ml). The yield of 

AmalNPV was maximum when 5th instar larvae were infected and was higher than HaNPV and 

SlNPV i.e. 3.11 ± 0.05. Based on these results, for H. armigera 4th instar and for Spodoptera 

litura and A. albistriga 5th instar larvae were identified as the optimum stages for inoculation of 

virus to obtain maximum yield. Different age group larvae and their POB yields determined by 

ELISA were furnished in Table 15. 

 



Figure 38: Effect of age of larvae on yield of NPV as determined by ELISA 
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Application of ELISA in detemining the optimum age of larvae for inoculation to 
obtain maximum virus yield.  
Note: 1 LE = 6 × 109 POBs/ml 



 

Table 15: Effect of age of larvae on NPV yield as determined by ELISA 

 

Note: 1 LE = 6 × 109 POBs/ml 

Stage of  infection / Yield (LE/ml) 

Virus 
2

nd
 

instar 

3
rd

  

instar 

4
th

  

instar 

5
th

 

instar F.pr SE± LSD CV 

HaNPV 0.207 0.992 1.973 1.104 < 0.001 0.03 0.12 0.60 

SlNPV 0.283 1.066 1.997 2.47 < 0.001 0.03 0.11 0.70 

AmalNPV 0.32 1.153 2.217 3.113 < 0.001 0.03 0.11 0.20 



4.7.2 Determining the optimum time for harvesting of virus: 

The optimum period for harvesting POBs from the inoculated larvae were determined 

and established the relationship between larval mortality, productivity of virus and bacterial 

activity in larvae days post exposure to NPV by conducting bioassays (time course) experiment 

on optimum aged larvae. The productivity of virus in larvae at different intervals (post 

inoculation days) of the experiment was monitored through ELISA (DAC and IC-ELISA) and 

Western immunoassay tools. In ELISA the virus load was detected in infected larvae from 3 days 

after inoculation (dpi), but in western immunoblotting the virus load was detected from 4 dpi. In 

Fig 39A, the ELISA results were represented that the concentration of polyhedrin in sampled 

larvae was increased gradually from 3 to 10 dpi and subsequently no further increase was 

observed up to 12 dpi. Similar trend was observed with yield of virus on 3 to 12dpi which was 

presented in Fig 39B. The concentration of virus harvested from exclusively dead larvae on 10, 

11 and 12 dpi were slightly higher than virus harvested on 9 dpi. However, in western 

immunoassay (Fig 40) the intensity of polyhedrin band was increased only from 4 to 9 dpi and 

subsequently no further increase was observed up to 12 dpi indicating that the virus harvested on 

9 dpi was not greatly affect the total yield of NPV. The details of the polyhedrin content and POB 

yield estimated by ELISA on 1 to 12 dpi were presented in Table 16.  

    

    

    

    



Figure 39: Application of ELISA in bioassay (time course) experiment to study the effect of post inoculation period of harvest on 

NPV yield 
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Application of  ELISA tools in bio-assay (time course) experiments to estimate the virus titer in the larvae on different days post 
inoculation (dpi) by means of polyhedrin content (A) and number of POBs (B) in infected larvae collected at different intervals 
of the experiment (1 to 12 days post inoculation).  
Note: 1 LE = 6 × 109 POBs/ml 
 

                                    A                       B 



Figure 40: Application of western immunoassay in bioassay (time course) experiment to 

study the effect of post inoculation period of harvest on NPV yield. 
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Application of Western immunoassay in bioassay (time course) experiment to identify the optimum 
time for harvesting of virus and to study the effect of post inoculation period of harvest on virus 
yield in larvae of H. armigera (A), S. litura (B) and A. albistriga (C). Polyclonal antibodies with 
respect to each NPV used at 1: 5000 dilution were specifically recognized the polyhedrin protein of 
size 31 kDa in larval extracts. Above figures indicates that the detectable virus load was observed 
from 4 days after inoculation (dpi) and virus concentration peaked by 9 dpi. Subsequently, no further 
increase in virus concentration was observed.  
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Table 16: Effect of post inoculation period of harvest on NPV yield as determined by ELISA 

 
Ha-Helicoverpa armigera; Sl-Spodoptera litura; Amal-Amsacta albistriga 

Note: 1 LE = 6 × 109 POBs/ml

Virus titer  

Polyhedrin content  

(mg/ml) 

POB yield 

(LE/ml) 

Ha Sl Amal Ha Sl Amal 

Post inoculation day 

(dpi)  

± STDEV 

1
st 

day 0.26 ± 0.00  0.20 ± 0.01 0.046 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.002 ± 0.00 

2
nd

 day 0.26 ± 0.00 0.21 ± 0.00 0.077 ± 0.014 0.00 ±  0.00 0.01 ± 0.00 0.004 ± 0.00 

3
rd

 day 0.27 ± 0.00 0.21 ± 0.00 0.143 ± 0.045 0.01 ± 0.00 0.01 ± 0.00 0.007 ± 0.00 

4
th

 day 0.61 ± 0.04 0.42 ± 0.05 1.053 ± 0.08 0.03 ± 0.00 0.02 ± 0.00 0.053 ± 0.00 

5
th

 day 1.85 ± 0.22 2.40 ± 0.24 1.624 ± 0.05 0.11 ± 0.01 0.14 ± 0.02 0.083 ± 0.00 

6
th

 day 5.01 ± 0.33 6.39 ± 0.73 4.694 ± 0.57  0.28 ± 0.02 0.32 ± 0.05 0.235 ± 0.03 

7
th

 day 10.11 ± 0.90 10.01 ± 1.19 9.549 ± 0.36 0.57 ± 0.06 0.42 ± 0.05 0.468 ± 0.02 

8
th 

day 12.82 ± 0.74 12.72 ± 0.22 12.028 ± 1.64  0.74 ± 0.05 0.70 ± 0.10 0.601 ± 0.08 

9
th

 day 14.04 ± 1.25 14.22 ± 0.42 16.447 ± 0.30 0.83 ± 0.07 0.82 ± 0.02 0.823 ± 0.01 

10
th

 day 16.97 ± 1.44 16.07 ± 0.67 18.730 ± 1.25 0.86 ± 0.12 0.94 ± 0.06 1.001 ± 0.06  

11
th

 day 16.15 ± 1.03 16.26 ± 0.81 18.581 ± 0.45 0.87 ± 0.09 0.93 ± 0.02 0.961 ± 0.07 

12
th

 day 16.46 ± 0.67 16.50 ± 0.76 18.737 ± 0.34  0.85 ± 0.06 0.98 ± 0.06 1.014 ± 0.07 



4.7.3 Screening of bacterial activity in larvae days post exposure to NPV: 

 Results clearly indicated that the bacterial population increased with the delay in harvest 

of NPV inoculated larvae. The highest number of bacterial colonies and colony forming units per 

ml (CFU/ml) were recorded in the larvae of A. albistriga and the lowest number of bacterial 

colonies and colony forming units per ml (CFU/ml) were recorded in the larvae of H. armigera 

(Table 17). The lowest number of bacterial colonies and CFU/ml of larval homogenate was 

observed on 5th day sampled larvae and the highest number of bacterial colonies and colony 

forming units per ml was observed exclusively in dead larval homogenates after 9th dpi onwards 

(10 to 12 dpi) (Table 17).   

 On 5th dpi the number of bacterial colonies and CFU/ml were recorded as 23 and 1.15 × 

106 for H. armigera, 28 and 1.4 × 106 for S. litura and 31 and 1.55 × 106 for A. albistriga larval 

homogenate. The number of bacterial colonies and CFU/ml recorded exclusively from dead larval 

homogenates were as follows: on 10th dpi the number of bacterial colonies and CFU/ml were 

recorded as 151 and 7.55 × 106 for H. armigera, 162 and 8.1 × 106 for S. litura and 168 and 8.4 × 

106 for A. albistriga larval homogenate. On 11th dpi the bacterial population was recorded as 163 

and 8.15 × 106 for H. armigera, 178 and 8.9 × 106 for S. litura and 181 and 9.05 × 106 for A. 

albistriga larvae. On 12th day the bacterial population was recorded as 159 and 7.95 × 106 for H. 

armigera, 176 and 8.8 × 106 for S. litura and 187 and 9.35 × 106 in A. albistriga larval 

homogenate. 

 

 

 

 



Table 17: Effect of post inoculation period on bacterial activity in NPV infected larvae 

 

 

Ha-Helicoverpa armigera; Sl-Spodoptera litura; Amal-Amsacta albistriga 

 
 
 
 
 

Bacterial activity  in NPV infected larvae 

 No. of  bacterial colonies  
  

CFU/ml 
Post 

inoculation 

day 

 Ha Sl Amal  Ha  Sl 

 

Amal 

 

5
th

 day 23 28 31 1,150,000 1,400,000 1,550,000 

6
th

 day 28 32 38 1,400,000 1,600,000 1,900,000 

7
th

 day 36 47 53 1,800,000 2,350,000 2,650,000 

8
th

 day 73 87 83 3,630,000 4,350,000 4,150,000 

9
th

 day 98 112 121 4,915,000 5,600,000 6,050,000 

10
th

 day 151 166 168 7,550,000 8,300,000 8,400,000 

11
th

 day 163 178 181 8,150,000 8,900,000 9,050,000 

12
th

 day 159 176 187 7,950,000 8,800,000 9,350,000 

Larva F.Pr SE± LSD CV 

Ha < 0.001 1.734 5.261 
 

2.8 

Sl < 0.001 2.624 7.958 5 

Amal < 0.001 3.66 11.11 6.1 



4.8 Evaluation of ELISA Tools at Field Level Efficacy Study of NPV: 

 The ELISA tools developed in the present study was applied to monitor the NPV 

infection status in field population of H. armigera on pigeonpea crop after field application of 

NPV. The DAC-ELISA results showed that the concentration of NPV used for field spray (250 

LE/ha) successfully infected the field population. The details of total number of larvae sampled 

per dpa, number of NPV positive larvae observed by DAC-ELISA, percent of infection among 

sampled larvae per dpa and gross virus concentration (POBs) in infected larvae per dpa estimated 

by ELISA (DAC and IC) were represented in Table 18. 

 In Fig 41A, the percent infection in field sampled larvae per dpa determined by DAC-

ELISA is presented. The curve indicates that 10 ± 1.7% of the field collected larvae were NPV 

positive on 3rd dpa, 15 ± 2.2% on 4th dpa, 32 ± 2.6% on 5th dpa, 50 ± 3.2% on  6th dpa , 65 ± 2.5% 

on 7th dpa, 71 ± 2.5%, on 8th dpa and 70 ± 5.9 on 9th dpa. But, on 10th dpa the percent infection 

was decreased to 27 ± 5.7%. In parallel, the DAC-ELISA results of the individual larvae collected 

from control (untreated) plot showed that most of the larvae were free of NPV and very few 

larvae were found to be NPV positive.  The infection pattern observed in the larvae of control plot 

were as follows: The percent of NPV positive larvae were observed that 1 ± 1.9% on 4th and 5th 

dpa, 6 ± 1.9% on 7th dpa, 4 ± 5.1% on 8th dpa and 1 ± 1.9% on 9th dpa.  

 In Fig 41B the gross virus concentration (POBs) in infected larvae per dpa estimated 

by ELISA (DAC and IC) is represented. The ELISA results were detailed as follows: The 

concentration of virus during 0-4th dpa was negligible. Considerable level of virus tier was 

observed from 5th dpa to 10th dpa. The gross virus concentration in infected larvae was observed 

as 0.07 ± 0.01 LE /ml on 5th dpa, 0.10 ± 0.02 LE/ml on 6th dpa, 0.29 ± 0.067 LE/ml on 7th dpa, 

0.33 ± 0.07 LE/ml on 8th dpa, 0.74 ± 0.07 LE/ml on 9th dpa and 0.41 ± 0.07 LE/ml on 10th day 

was observed. 

 
 



           Figure 41: Monitoring of NPV infection at field level against Helicoverpa armigera on pigeonpea crop using ELISA  
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                                   A         B 

Evaluation of ELISA tools at field level efficacy study of NPV against H. armigera on pigeonpea crop by estimating the 
percent infection in total field sampled larvae per day post application (A) using DAC-ELISA and estimation of virus 
concentration in infected larvae (B) using DAC and IC-ELISA. 
 Note: 1 LE = 6 × 109 POBs/ml 



       Table 18: Evaluation of ELISA tools at field level efficacy study of NPV against H. armigera on Pigeonpea crop  

 

Treatment (250 LE/ ha) plot Control  plot 

Larvae  

sampled / dpa 

(No.) 

NPV + ve  

larvae  

(No.) 

Infection 

 

(%)  

Virus conc. 

 

(LE/ml) 

Larvae  

sampled / dpa 

(No.) 

NPV + ve  

larvae  

(No.) 

Infection 

 

(%)  

 

Post 

application day 

(dpa) 

± STDEV 

0 30 ± 0.0 0 ± 0.0 0 ± 0.0 0.00 ± 0.0  30 ± 0.0 0 ± 0.0 0 ± 0.0 

1 34 ± 4.0 0 ± 0.0 0 ± 0.0 0.00 ±  0.0 32 ± 2.0 0 ± 0.0 0 ± 0.0 

2 38 ± 2.1 0 ± 0.0 0 ± 0.0 0.00 ± 0.0 34 ± 1.0 0 ± 0.0 0 ± 0.0 

3 34 ± 2.0 3 ± 0.6 10 ± 1.7 0.00 ± 0.0 34 ± 2.5 0 ± 0.0 0 ± 0.0 

4 33 ± 3.1 5 ± 1.0 15 ± 2.2 0.02 ± 0.0 32 ± 1.5 0 ± 0.6 1 ± 1.9 

5 36 ± 2.5 12 ± 2.5 32 ± 2.6 0.07 ±  0.01 31 ± 1.2 0 ± 0.6 1 ± 1.9 

6 35 ± 5.0 17 ± 3.1 50 ± 3.2 0.10 ± 0.02 31 ± 1.0 0 ± 0.0 0 ± 0.0 

7 35 ± 4.6 23 ± 3.8 65 ± 2.5 0.29 ± 0.06 31 ± 1.2 2 ± 0.6 6 ± 1.9 

8 36 ± 5.3 25 ± 3.1 71 ± 2.5 0.33 ± 0.07 31 ± 1.0 2 ± 1.2 4 ± 5.1 

9 35 ± 1.2 24 ± 2.1 70 ± 5.9 0.74 ± 0.07 30 ± 0.0 0 ± 0.6 1 ± 1.9 

10 30 ± 0.0 8 ± 1.5 27 ± 5.7 0.41 ± 0.07 30 ± 0.0 0 ± 0.0 0 ± 0.0 

 
Note: 1 LE = 6 × 109 POBs/m



4.9 Isolation and Characterization of Polyhedrin Gene of NPVs: 

 
A PCR protocol was standardized using degenerate primers to isolate the full length 

polyhedrin gene of NPVs isolated from H. armigera, S. litura and A. albistriga in the present 

study. 

4.9.1 Optimization of PCR for amplification of full-length polyhedrin 

gene of NPVs:  

4.9.1.1 Design of degenerate primers:  

Multiple sequence alignment of previously published polyhedrin gene sequences of NPVs 

infecting Helicoverpa, Spodoptera and Amsacta insect complexes available in GenBank showed 

that there is a great conservation among all the NPVs in these three insect complexes. Fig 42 

showed the result of CLUSTAL-W multiple sequence alignment. Based on the output of multiple 

sequence alignment three degenerate primers were designed. The details of the primers are 

presented in Table 19. One degenerate primer (PG-C) was synthesized for 3’end region of 

polyhedrin gene for HaNPV, SlNPV and AmalNPV (polyhedrin gene C-terminal end primer). 

Another degenerate primer (PG-N) was synthesized for 5’ end region of polyhedrin gene for 

HaNPV and SlNPV (polyhedrin gene N-terminal end primer). The third primer (AmalNPV PG-N) 

was synthesized for 5’ end region of polyhedrin gene for AmalNPV (AmalNPV polyhedrin gene N-

terminal end primer). 

 

 

 



Figure 42: (CLUSTAL W v1.83) multiple sequence alignment of previously published polyhedrin gene sequences 

available in NCBI GenBank of NPVs infecting Helicoverpa, Spodoptera and Amsacta insect complexes. 

 

 
gi|10.SlNPV NC_3102     ATGTATAGTCGTTATAGTGCCTACAATTATAGTCCCCATCTGGGCAAAACCTATGTATACGATAACAAGTATTACAAAAATCTAGGTCACGTGATTAAAA 

gi|11.SlNPV AF325155    ATGTATAGTCGTTATAGTGCCTACAATTATAGTCCCCATCTGGGCAAAACCTATGTATACGATAACAAGTATTACAAAAATCTAGGTCACGTGATTAAAA 

gi|13.SlNPV AY549963    ATGTATAGTCGTTATAGTGCCTACAATTATAGTCCCCATCTGGGCAAAACCTATGTATACGATAACAAGTATTACAAAAATCTAGGTCACGTGATTAAAA 

gi|14.SlNPV AY549964    ATGTATAGTCGTTATAGTGCCTACAATTATAGTCCCCATCTGGGCAAAACCTATGTATACGATAACAAGTATTACAAAAATCTAGGTCACGTGATTAAAA 

gi|12.SlNPV AF037262    ATGTATAGTCGTTATAGTGCCTACAATTATAGTCCCCATCTGGGCAAAACCTATGTATACGATAACAAGTATTACAAAAATCTAGGTCACGTGATTAAAA 

gi|15.SlNPV AY552474    ATGTATAGTCGTTATAGCGCCTACAATTATAGTCCCCATCTGGGCAAAACCTATGTATACGATAACAAGTATTACAAAAATCTAGGTCACGTGATTAAAA 

gi|16.SlNPV DQ350142    ATGTATAGTCGCTACAGTGCCTACAATTATAGTCCCCATCTGGGCAAAACCTATGTATACGATAACAAGTATTACAAAAATTTAGGTCACGTGATCAAAA 

gi|20.SliNPV D01017     ATGTATAGTCGCTACAGTGCCTACAATTATAGTCCCCATCTGGGCAAAACCTATGTATACGATAACAAGTATTACAAAAATTTAGGTCACGTGATCAAAA 

gi|17.SlNPV DQ152923    ATGTATAGTCGCTACAGTGCCTACAATTATAGTCCCCATCTTGGGCAAAACTATGTATACGATAACAAGTATTACAAAAATTTAGGTCACGTGATCCAAA 

gi|1.HaNPV  AF157012    ATGTATACTCGTTACAG---------TTACAGCCCTACTTTGGGCAAAACCTATGTGTACGACAACAAATACTTTAAGAATTTAGGTGCTGTTATTAAAA 

gi|4.HaNPV  AJ001917    ATGTATACTCGTTACAG---------TTACAGCCCTACTTTGGGCAAAACCTATGTGTACGACAACAAATACTTTAAGAATTTAGGTGCTGTTATTAAAA 

gi|5.HaNPV NC_003094    ATGTATACTCGTTACAG---------TTACAGCCCTACTTTGGGCAAAACCTATGTGTACGACAACAAATACTTTAAGAATTTAGGTGCTGTTATTAAAA 

gi|6.HaNPV AF303045     ATGTATACTCGTTACAG---------TTACAGCCCTACTTTGGGCAAAACCTATGTGTACGACAACAAATACTTTAAGAATTTAGGTGCTGTTATTAAAA 

gi|3.HaNPV A25670       ATGTATACTCGTTACAG---------TTACAGCCCTACTTTGGGCAAAACCTATGTGTACGACAACAAATACTTTAAGAATTTAGGTGCTGTTATTAAAA 

gi|8.HzNPV Nc_003349    ATGTATACTCGTTACAG---------TTACAGCCCTACTTTGGGCAAAACCTATGTGTACGACAACAAATACTTTAAGAATTTAGGTGCTGTTATTAAAA 

gi|9.HasNPV DQ157735    ATGTATACTCGTTACAG---------TTACAGCCCTACTTTGGGCAAAACCTATGTGTACGACAACAAATACTTTAAGAATTTAGGTGCTGTTATTAAAA 

gi|2.HaNPV  U97657      ATGTATACTCGTTACAG---------TTACAGCCCTACTTTGGGCAAAACCTATGTGTACGACAACAAATACTTTAAGAATTTAGGTGCTGTTATTAAAA 

gi|7.HaNPV NC_002654    ATGTATACTCGTTACAG---------TTACAGCCCTACTTTGGGCAAAACCTATGTGTACGACAACAAATACTTTAAGAATTTAGGTGCTGTTATTAAAA 

gi|18.SlNPV X94437      ATGTATACTCCGTACAG---------CTACAACCCGTCTCTGGGACGCACCTACGTGTACGACAACAAGTTCTACAAAAATCTAGGTTCGGTCATCAAGA 

gi|21.SfNPV J04333      ATGTATACTCGTTACAG---------CTATAACCCATCTTTGGGTCGCACCTACGTGTACGACAACAAGTTCTACAAAAATCTAGGTTCGGTCATCAAGA 

gi|19.SeNPV AF169823    ATGTATACTCGCTACAG---------CTATAACCCAGCCTTGGGTCGCACTTACGTGTACGACAACAAATTCTACAAGAATCTTGGTTCCGTCATCAAAA 

gi|22.AmalNPV AF118850  ATGCCGGATTATTCGTACGC------GTACCGGCCCACCATTGGCCGCACATATGTGTATGACAATAAATATTACAAAAATCTAGGTTCAGTTATTAAAA 

                         ***     *   *              **    **     * **    *  ** ** ** ** ** ** *     ** *** * ***    * **  * * 

                

 

 

                            

     

 

 

 

 

 
 

      

            

 

 

 

Ha-Helicoverpa armigera; Has-Helicoverpa assulta; Hz-Helicoverpa zea;  Sl-Spodoptera litura; Sli-Spodoptera litturalis; Se-

Spodoptera exigua, Sf-Spodoptera frugiperda; Amal- Amsacta albistriga 

1-100 



 

                         

      gi|10.SlNPV NC_3102      TCAAAGAGTTTGCTCCCGACGCGCCTCTATACACGGGTCCCGCGTATTAA 

      gi|11.SlNPV AF325155     TCAAAGAGTTTGCTCCCGACGCGCCTCTATACACGGGTCCCGCGTATTAA 

      gi|13.SlNPV AY549963     TCAAAGAGTTTGCTCCCGACGCGCCTCTATACACGGGTCCCGCGTATTAA 

      gi|14.SlNPV AY549964     TCAAAGAGTTTGCTCCCGACGCGCCTCTATACACGGGTCCCGCGTATTAA 

      gi|12.SlNPV AF037262     TCAAAGAGTTTGCTCCCGACGCGCCTCTATACACCGGTCCCGCGTATTAA 

      gi|15.SlNPV AY552474     TCAAAGAGTTTGCTCCCGACGCGCCTCTATACACGGGTCCCGCGTATTAA 

      gi|16.SlNPV DQ350142     TCAAAGAGTTTGCTCCCGACGCGCCACTCTACACCGGTCCCGCGTACTAA 

      gi|20.SliNPV D01017      TCAAAGAGTTTGCTCCCGACGCGCCACTCTACACCGGTCCCGCGTACTAA 

      gi|17.SlNPV DQ152923     TCAAAGAGTTTGCTCCCGACGCGCCACTCTACACCGGTCCCGCGTACTAA 

      gi|1.HaNPV   AF157012    TCAAAGAATTTGCACCTGACGCTCCGCTATACACTGGTCCTGCATATTAA 

      gi|4.HaNPV   AJ001917    TCAAAGAATTTGCACCTGACGCTCCGCTATACACTGGTCCTGCATATTAA 

      gi|5.HaNPV NC_003094     TCAAAGAATTTGCACCTGACGCTCCGCTATACACTGGTCCTGCATATTAA 

      gi|6.HaNPV AF303045      TCAAAGAATTTGCACCTGACGCTCCGCTATACACTGGTCCTGCATATTAA 

      gi|3.HaNPV A25670        TCAAAGAATTTGCACCTGACGCTCCGCTATACACTGGTCCTGCATATTAA 

      gi|8.HzNPV Nc_003349     TCAAAGAATTTGCACCTGACGCTCCGCTATACACTGGTCCTGCATATTAA 

      gi|9.HasNPV DQ157735     TCAAAGAATTTGCACCTGACGCTCCGCTATACACTGGTCCTGCATATTAA 

      gi|2.HaNPV   U97657      TCAAAGAATTTGCACCTGACGCTCCGCTATACACTGGTCCTGCATATTAA 

      gi|7.HaNPV NC_002654     TCAAAGAATTTGCACCTGACGCTCCGCTATACACTGGTCCTGCATATTAA 

      gi|18.SlNPV X94437       TCAAAGAGTTTGCGCCCGACGCCTCTCTATACAACGGACCCGCATATTAA 

      gi|21.SfNPV J04333       TCAAGGAGTTTGCTCCTGACGCACCCCTGTACAACGGACCCGCGTACTAA 

      gi|19.SeNPV AF169823     TCAAGGAATTCGCACCCGATGCGCCTCTTTACAACGGACCCGCCTATTAA 

      gi|22.AmalNPV AF118850   TGAAAGAGTTTGCGCCCGACGCACCTCTTTTCACAGGACCCGCATATTAA 

                               * ** ** ** ** ** ** **  * ** * **  ** ** ** ** *** 
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      Table 19: Primers used for the amplification of polyhedrin gene region of NPVs isolated from H. armigera, S. litura and A. albistriga 

S.No Primer Target DNA Primer size  Primer Sequence Text (5’-3’) 
Annealing 

Temp (Tm) 

1 PG-C (rp) 

HaNPV, SlNPV and 
AmalNPV polyhedrin 

genes 
24 bp 5’  TTA  RTA  BGC  RGG WCC  NKT GWA  NAG    3’ 510 C 

2 PG-N (fp) 
HaNPV and SlNPV 

polyhedrin genes 
17 bp 5’  ATG TAT  CSB TAY AG  3’ 350 C 

3 
AmalNPV PG-

N (fp) 

AmalNPV polyhedrin 
gene 

23 bp 5’ ATG  CCG  GAT  TAT  TCG  TCG  TAC  GCB TA   3’ 530 C 

Codes for mixed bases: M = A/C;   R = A/G;   W = A/T;   S = C/G;   Y = C/T;   K = G/T;   V = A/C/G;   H = A/C/T;   D = A/G/ T;   B = C/G/T;   N = A/C/G/T 



4.9.1.2 Extraction of viral DNA: 

 Isolated viral DNA from three NPVs resolved as a single high molecular weight band in 

0.8% agarose gels (Fig 43). Concentration of DNA samples was estimated in spectrophotometer 

and A260: 280 ratio was determined and presented in Table 20.  The quantities of viral DNA 

obtained by the optimized protocol for extraction of DNA directly from POBs (infected larval 

extracts) was sufficient to carryout the PCR.  

Table 20: Spectrophotometric analysis of DNA of NPVs 

 

Virus 260 nm 280 nm 260/280 ratio 
   DNA concentration 

(µg/ml) 

 

 

HaNPV 

 

0.026 

 

0.016 

 

1.626 

 

65.287  

 

SlNPV 

 

0.033 

 

0.031 

 

1.061 

 

65.005 

 

AmalNPV 

 

0.026 

 

0.023 

 

1.159 

 

52.534 

    

4.9.1.3 Optimization of PCR conditions: 

 The PCR parameters were standardized as given below: initial denaturation step 

at 950C for 10 min, followed by 25 cycles at 950C for 1 min, 370C for 2 min, 720C for 2 min 

followed by 10 cycles at 950C for 1 min, 450C for 3 min, 720C for 3 min, and a final extension 

step at 720C increased for 7 min. The thermal cycles optimized for amplification of polyhedrin 

gene of NPVs using degenerate primers were schematically represented in Fig 44. 

    



    

    

       Figure 43: Resolution of DNA directly isolated from the NPV infected larval 

extracts (POBs)  

 

    

    

    

    

    

    

    

    

    

    

    

                                                           
      
 

                                                                                             

            1        2        3 

Lane 1, DNA isolated from POBs of 
HaNPV 
 
Lane 2, DNA isolated from POBs of 
SlNPV 
 
Lane 3, DNA isolated from POBs of 
AmalNPV 

DNA isolated directly from the NPV infected larval extracts (POBs) separated in 

0.8% agarose gel and visualized on UV-transilluminator. 



Figure 44: Optimization of thermal cycles in PCR for amplification of polyhedrin gene 

 
 

  The primer combinations of PG-C and PG-N with HaNPV DNA template was 

successfully amplified the full-length polyhedrin gene with a major band of 744 bp (Fig 45A). 

Since the same primer combination with SlNPV DNA template did not result in any amplification 

products, at the same time the reverse primer from set one i.e. PG-C used in combination with 

Amal PG-N and Amal NPV DNA template resulted in non-specific amplicons with major band 

size of 350 bp and some minor bands with sizes of 592, 742, 929, 1188, 1391 bp products (Fig 

45B).  
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Figure 45: PCR amplified polyhedrin gene of NPVs using degenerate primers 

 

 
                       
 

                                                                                                                        

       bps    1    2           3      4            
   

 Lanes 1 and 3, DNA molecular weight 
markers 
 
Lane 2, Amplified PCR product of HaNPV 
genomic DNA 
 
 Lane 4, Amplified PCR product of 
AmalNPV genomic DNA 
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        1000 

  750 

         A            B 

Amplification of polyhedrin gene of HaNPV (A) and AmalNPV (B). The sizes of the DNA molecular weight markers were indicated and 
the DNA band size corresponding to the polyhedrin gene in two viruses was indicated with arrow marks. 
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4.9.2: Cloning and sequencing of PCR product:  
 

Cloning of agarose gel purified PCR product in case of HaNPV was worked well, while 

in case of AmalNPV, similar purification of the band with expected size (742 bp) from the 

agarose gel did not gave good results due to uncertainty in the amplification pattern i.e. multiple 

bands. Hence, the polyhedrin gene of AmalNPV could not be cloned and sequenced in this study. 

In the former case, the ligation and transformation event yielded over 50 colonies from which 10 

colonies were sub-cultured and verified for the inserted gene by colony PCR. In the colony PCR, 

amplification of the clone using universal pJET1 forward and reverse sequencing primers 

[Bioserve Biotechnologies (India) Pvt.Ltd, Catalogue No # 51314 and 51315] gave the 

amplification of the expected size of about ~ 800 bp, that were taken into account for the plasmid 

sequence of  60 bp (Fig 11). Considering the sizes of previously published polyhedrin sequences, 

most amplification products were between 730-750 bp long.      

Based on the colony PCR, three independent colonies with inserted polyhedrin gene were 

selected for sequencing (Fig 46). Gene sequencing analysis of selected clones resulted in 744 bp 

product. In BLASTX search the three sequences showed homology with baculovirus OB protein 

domain of known polyhedrin and granulin proteins from the GenBank data base. The sequence 

was deposited in GenBank with a public accession number of EU047914. In Fig 47, the nucleic 

acid and predicted amino acid sequence of the HaNPV-P (Patancheru strain) polyhedrin was 

represented.    

 

 
 



Figure 46: Colony PCR for the conformation of inserted gene in pJET1 cloning vector 
 

 
 
 
               

                                                                                                    
 

      
 bps          1       2         3          4           5        6           7 

Colony PCR for the conformation of insert size by using universal pJET1 forward and reverse sequencing primers. The sizes 
of the DNA molecular weight markers were indicated. 

Lanes 1 and 6, DNA molecular weight 
markers 
 
Lanes 2, 3, 4, 5 and 7, transformed colonies 
of recombinant clone generated from PCR 
amplified product of PG-C and PG-N primer 
set 
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Figure 47: Nucleic acid and predicted amino acid sequence of HaNPV-P 

(Patancheru strain) polyhedrin (Occlusion body protein) 
 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

atgtatactcgttacagttacaaatccgtcgttgggaacgtccctacgtctacgacaaac 

 M  Y  T  R  Y  S  Y  K  S  V  V  G  N  V  P  T  S  T  T  N  

aagtactacaaaaatcttggatcagtcatcaaaaacgccaaccgcaaaaagcactatatc 

 K  Y  Y  K  N  L  G  S  V  I  K  N  A  N  R  K  K  H  Y  I  

gaacatgaactcgaggagaaaacactcgaccctttagacagatatctggtggccgaagac 

 E  H  E  L  E  E  K  T  L  D  P  L  D  R  Y  L  V  A  E  D  

cccttcctgggaccgggcaaaaaccaaaaactaactttgtttaaagaaatcagaaatgtc 

 P  F  L  G  P  G  K  N  Q  K  L  T  L  F  K  E  I  R  N  V  

aagcccgacaccatgaagcttgtcgtaaactggagcggtaaagagtttctcagagaaact 

 K  P  D  T  M  K  L  V  V  N  W  S  G  K  E  F  L  R  E  T  

tggacccgtttcatggaagacagcttccctattgttaacgaccaagaagtcatggacgtt 

 W  T  R  F  M  E  D  S  F  P  I  V  N  D  Q  E  V  M  D  V  

ttccttgtaatcaacatgcgtcccactagacccaaccgttgtttcaaattcctggctcaa 

 F  L  V  I  N  M  R  P  T  R  P  N  R  C  F  K  F  L  A  Q  

catgctctgcgttgcgatcccgactatgtgccccacgaagtcatccgcatcgttgaaccg 

 H  A  L  R  C  D  P  D  Y  V  P  H  E  V  I  R  I  V  E  P  

tcctacgtgggcagcaacaacgaataccgcgtcagcttagccaagcgtggcggtggctgc 

 S  Y  V  G  S  N  N  E  Y  R  V  S  L  A  K  R  G  G  G  C  

cccgtgatgaatctgcactctgaatacaccaactctttcgaagagttcatcaaccgtgtc 

 P  V  M  N  L  H  S  E  Y  T  N  S  F  E  E  F  I  N  R  V  

atatgggagaacttctacaagccaattgtgtacgtaggcacagattcggctgaggaagag 

 I  W  E  N  F  Y  K  P  I  V  Y  V  G  T  D  S  A  E  E  E  

gaaattcttctcgaggtttctctggtgttcaaaatcaaagagtttgcgcctgatgcgcct 

 E  I  L  L  E  V  S  L  V  F  K  I  K  E  F  A  P  D  A  P  

ctatacatcggtcctgcttattaa 

 L  Y  I  G  P  A  Y  *   



4.9.3 Phylogenetic Relation at Nucleotide Level of HaNPV-P Polyhedrin 

Gene with Known Polyhedrin and Granulin Genes:  

Polyhedrin gene sequence was aligned with previously published polyhedrin and granulin 

gene sequences by ClustalW method (Thompson et al., 1994) using MgAlin tool of Lasergene 

software (DNASTAR, USA). Alignment of DNA sequences of 40 NPV polyhedrins and 14 

sequences of GV granulins along with HaNPV-P polyhedrin gene and construction of 

phylogenetic tree (Fig 48) revealed two major branches that were considered as separate clusters 

of baculovirus occlusion body protein (polyhedrin or granulin), they are NPVs and GVs. NPVs 

were again divided into four major branches. They are group-I and group-II NPVs, LdMNPV and 

WsNPV were formed as separated branches. There are 16 NPVs in group-I, 23 NPVS in group-II 

(including HaNPV-P) were observed in separate clusters.  

The maximum homology of 99.9% among group-I NPVs was noticed between AfNPV and 

RoMNPV and minimum homology of 77.4% among group-I NPVs was noticed between 

AmalNPV and ArNPV (Table 21). Due to less homology with remaining NPVs of Group-I the 

AmalNPV and LoMNPV were formed as separate branch within group-I NPVs. The AmalNPV 

was showing maximum homology of 80.9% with remaining group-I NPVs especially with 

EpMNPV and minimum homology of 77.4% was noticed with ArNPV. Similarly, the LoMNPV 

was showing maximum homology of 80.8% with remaining group-I NPVs especially with 

CrNPV and minimum homology of 77.6% was noticed with HcNPV. The maximum homology of 

99.7% among group-II NPVs was noticed between MbNPV and McNPV and with minimum 

homology of 70.1% among group-II NPVs was noticed between LdMNPV and HzSNPV and 

WsNPV and HaNPV (Table 22). Due to less homology with remaining NPVs, the LdMNPV and 

WsNPV were formed as separate branches. The LdMNPV was showing maximum homology of 

76% with remaining group-II NPVs especially with PfNPV and SfMNPV and minimum 

homology of 69.9% was noticed with HaNPV. At the same time maximum homology of 75.5% 



with group-I NPVs especially with OpMNPV and minimum homology of 68.4% with LoMNPV 

was noticed. Similarly, the WsNPV was showing maximum homology of 74.6% with remaining 

group-II NPVs especially with SlNPV and minimum homology of 70.1% was noticed with 

HaNPV. At the same time maximum homology of 73.4% with group-I NPVs especially with 

ApNPV and minimum homology of 68.9% with AfNPV was noticed. 

The polyhedrin gene sequence of HaNPV-P was more close to group-II NPVs. Among 

which, it was showing maximum homology of 98.2% with McNPV, 98% with MbNPV, 96.1% 

with LsNPV and 90.6% with PfNPV. At the same time with minimum homology of 72.4% was 

noticed with WsNPV. Bootstrapping analysis of phylogenetic tree with CLC work bench revealed 

that LdMNPV and WsNPV were separated as major branches and supported with 100% bootstrap 

values. The remaining branches are supported by high bootstrap values (Fig 49).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 48: Phylogenetic analysis at nucleotide level of HaNPV-P (    ) polyhedrin 

gene with previously published polyhedrin and granulin genes collected 

from GenBank, using Mgalign tool of DNASTAR software. 
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  Table 21: Pair Distances of nucleotide sequence of polyhedrin gene among group-I NPVs, aligned by ClustalW 

(Slow/Accurate, IUB) method (Percent Similarity in upper triangle Percent Divergence in lower triangle). 
 

   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 AfNPV *** 81.3 78.9 83.5 82 83.1 92.3 82.3 82.7 82.8 81.8 79.4 82 82.1 99.9 87 

2 AgMNPV 21.8 *** 79.7 85.2 82.8 84.1 80.6 82.6 82.8 85.1 83.5 79.3 83.6 83.9 81.2 82.4 

3 AmalNPV 25.1 24.1 *** 78.5 80.1 77.4 77.6 79.9 78.9 80.9 78.3 79.2 79.4 78.9 79.1 80.2 

4 ApNPV 19.1 16.6 26.1 *** 85 97.3 82.1 84.4 85.2 86 83.9 80.4 85.2 84.4 83.3 82.1 

5 ArceNPV 21.2 19.8 23.7 17.3 *** 82.9 80.6 89.5 88.9 84.6 82.5 77.7 86.9 86.6 81.8 81.8 

6 ArNPV 19.6 18 27.7 2.8 19.6 *** 81.8 82.7 83.6 84.4 82.7 79.1 84.6 83.7 82.9 81.3 

7 BmNPV 8.2 22.7 27.5 20.9 22.8 21.2 *** 80.8 80.9 81.7 80.8 78.7 81.6 81.3 92.4 86 

8 CfMNPV 20.8 20.3 24.4 18 11.2 20.2 22.7 *** 98.4 84.6 82.7 80.3 87.1 86.7 82.3 81.5 

9 CrNPV 20 19.8 24 16.7 12 18.9 22.3 1.5 *** 85.3 83.7 80.8 88.1 87.5 82.5 81.7 

10 EpMNPV 20.2 17.3 22.9 16.1 17.5 17.8 21.4 17.4 16.6 *** 84.4 80.5 86.2 84.7 82.8 84 

11 HcNPV 21.2 19.4 24.9 18.4 20 20.1 23 20 18.6 18.2 *** 77.6 86 85.2 82 82.4 

12 LoMNPV 24.9 24.7 24.4 23.3 27 25.1 26.5 23 22.5 23.8 27.1 *** 78.2 79.8 79.7 79.7 

13 OpMNPV 21.1 18.8 24.7 16.7 14.5 17.6 21.5 14.4 13.2 15.6 15.6 26.3 *** 95.9 81.8 83.5 

14 PnNPV 20.9 18.3 25.5 17.7 14.9 18.6 21.8 14.9 13.9 17.5 16.6 23.9 4.2 *** 82 83.2 

15 RoMNPV 0.1 22 24.9 19.3 21.2 19.8 8.1 20.8 20.2 20.2 21 24.7 21.3 21.1 *** 87.1 

16 ToMNPV 14.6 20.3 23.2 20.9 20.9 22 15.7 22.1 21.3 18.7 20.3 24.3 18.9 19.3 14.4 *** 

 
 
 
 
 
 
 
 



Table 22:  Pair Distances of nucleotide sequence of polyhedrin gene among group-II NPVs, aligned by ClustalW 

(Slow/Accurate, IUB) method (Percent Similarity in upper triangle Percent Divergence in lower triangle). 

 
    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

1 AcMNPV *** 74 76.7 74.8 75.7 78.2 72.9 72.9 72.6 74.4 79.1 80.1 79.9 75.7 75.5 75.6 81.7 80.8 99.9 75.5 78.7 76.3 76.3 79.4 73.4 

2 AhNPV 30.3 *** 78 80.2 78.8 80.8 76.1 76.5 76.5 74.1 79.2 80.2 80.4 78.4 77.9 76.8 79.4 77.7 73.6 78.7 78.5 76.4 76.7 77.7 71.4 

3 AsNPV 27.3 27.2 *** 77.5 77.5 79.8 74.5 74.6 74.9 73.8 80.4 80.4 80.3 76.8 76.5 78 82.2 78.1 76.8 82.5 82.2 78.3 81.6 78.9 72.4 

4 BsNPV 30 23.3 27.6 *** 80.3 81.6 79.9 79.8 79.8 71.1 80.2 80.7 80.8 78.9 78.8 81.1 80.2 79.4 74.7 79.4 77.1 74.9 77.6 80 72.4 

5 EoNPV 28.1 25.5 27.4 23.5 *** 82.2 76.5 76.8 76.8 75.5 80.8 82.5 82.3 78.7 78 83 81.5 78.9 75.3 80 78.9 78.1 78.7 78.7 74.3 

6 HaNPV-P 23.3 22.6 24 21.2 20.6 *** 77.2 77.2 77.6 73.7 96.1 98 98.2 77.5 77.6 80 90.6 81.6 78 81.8 82.5 77.6 81.4 79.8 72.4 

7 HaNPV 33.9 29.5 32.3 24.5 28.7 28.3 *** 98.9 98.8 69.9 75.4 76.1 76.1 76.9 77.9 79.1 75.4 76.7 73.2 76.4 75.3 74.8 74.9 77.6 70.1 

8 HasNPV 33.9 28.9 32.3 24.9 28.3 28.3 1.1 *** 99.3 70.3 75.4 76.1 76.1 77.1 78.3 78.8 75.7 76.8 73.2 75.7 75.7 74.5 74.6 77.9 71 

9 HzSNPV 34.4 28.9 31.9 24.9 28.3 27.7 1.2 0.7 *** 70.1 75.8 76.5 76.5 76.8 78.3 78.9 75.8 76.5 72.9 75.8 75.4 74.2 74.9 77.6 71 

10 LdMNPV 30.9 32.1 32.1 39 30 31.9 39.5 38.7 39.3 *** 74.7 75.2 75.2 72.8 73.7 73.3 76 74.4 74.4 72.9 76 75.7 75.1 74.8 73.1 

11 LsNPV 23.8 24.6 23 23.4 22.5 4 30.3 30.3 29.7 31 *** 97.6 97.6 76.7 77.3 79.2 90.6 81.2 79 81.4 82.2 77.5 81.6 79.5 71.3 

12 MbNPV 22.4 23.4 23 22.7 20.3 2.1 29.3 29.3 28.7 30.9 2.5 *** 99.7 78 78.1 80 91.4 81.2 79.9 82.5 82.7 78.1 81.4 80 72.3 

13 McNPV 22.7 23 23.2 22.5 20.5 1.8 29.3 29.3 28.7 30.9 2.5 0.3 *** 78 77.9 79.9 91.1 81.1 79.8 82.5 82.6 78.4 81.4 79.9 72.3 

14 MdNPV 29 26 30.1 25.2 25.5 27 28.2 27.9 28.3 33.8 28.4 26.4 26.4 *** 90.4 77.1 77.1 77.7 75.6 77.5 77.2 78 76.9 77.9 74.5 

15 MnNPV 28.8 27.4 30.1 25.4 26.7 27.1 26.7 26.1 26.1 32.4 27.5 26.3 26.7 10.5 *** 77.6 77.5 79.4 75.6 77.3 77.2 77.6 76.7 78.7 72.1 

16 OpSNPV 28.7 28.8 27.8 22.1 19.6 24.4 25.5 25.9 25.7 34.7 25.4 24.4 24.6 28.4 27.6 *** 81.2 79.1 75.3 79.1 79.9 76.1 76.8 80 70.4 

17 PfNPV 20.9 25.1 20.6 23.5 21.6 10.2 30.5 30.1 29.9 29.1 10.2 9.3 9.6 28 27.4 22.3 *** 81.5 81.6 81.5 82.6 77.1 81.6 79.8 72.4 

18 PoNPV 21.7 27 26.4 24.7 25.2 22 28.6 28.4 28.8 30.9 21.9 21.9 22.1 26.9 24.5 25.1 21.5 *** 80.6 78.5 81.1 76.2 78.8 84.5 72 

19 PxMNPV 0.1 30.5 27.5 30.2 28.3 23.5 34.1 34.1 34.6 31.1 23.9 22.6 22.8 29.2 29.1 28.9 21.1 21.9 *** 75.3 78.6 76.2 76.2 79.3 73.2 

20 SeMNPV 29.3 25.5 20.3 24.4 23.5 21.6 28.9 30 29.8 33.6 21.8 20.7 20.7 27.1 27.3 24.8 21.5 26.3 29.5 *** 86.2 79.6 86.5 78.1 73.2 

21 SfMNPV 24.2 26.7 20.7 27.9 25.2 20.7 30.7 30 30.5 28.5 21 20.3 20.5 27.4 27.5 24.1 20.3 22.1 24.4 15.4 *** 79.5 87.3 80.8 71.3 

22 SliNPV 30 27.1 26.4 30.4 26.4 27 31.5 31.9 32.4 30 27.9 26.9 26.5 24.4 25 29.4 28.6 30.3 30.2 24.3 26.5 *** 78.7 76.2 72.1 

23 SlNPV 26.8 28.3 21.3 27.1 25.5 21.5 32.1 32.6 32.2 30.4 21.2 21.6 21.6 27.8 28.2 28.5 22 25.1 27 15.6 14.5 26.4 *** 78.4 74.6 

24 TnSNPV 22.7 27 25.5 23.7 25.8 24.2 27.2 26.8 27.2 31.7 24.4 23.7 23.9 26.9 25.7 23.7 24.1 17.8 22.9 27 22.4 28.4 26.3 *** 72.5 

25 WsNPV 32.4 35 32.5 34.5 29.8 33.1 37.9 36.1 36.2 32.6 34.9 33.2 33.2 33.7 34.2 35.9 32.8 33.8 32.6 31.5 34.1 34.2 34.7 33.9 *** 

 

 



Figure 49: Phylogenetic analysis at nucleotide level, of HaNPV-P (    )  polyhedrin 

gene with previously published polyhedrin and granulin genes collected 

from GenBank, Tree generated using CLC work bench (version 3.1), 

algorithm used was UPGMA with 1000 bootstrapping and values 

indicated on the branches of tree is the number of replicates taken in 

bootstrap analysis.  
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4.9.4 Phylogenetic Relation at Amino acid Level of HaNPV-P 

Polyhedrin Protein with Known Polyhedrin and Granulin 

Proteins:  

The nucleotide sequence of polyhedrin gene was translated in to protein (Fig 47) and the 

predicted amino acid sequence was aligned with previously published amino acid sequences of 

polyhedrins and granulins by ClustalW method (Thompson et al., 1994) using MgAlin tool of 

Lasergene software (DNASTAR, USA). Alignment of amino acid sequences of 40 NPV 

polyhedrins and 14 GV granulins along with HaNPV-P polyhedrin and construction of 

phylogenetic tree (Fig 50) revealed two major branches that were considered as separate clusters 

of baculovirus occlusion body protein (polyhedrin or granulin), they are NPVs and GVs. NPVs 

were again divided into three major branches, they are group-I, group-II NPVs and LdMNPV 

alone formed a separate branch.  

The maximum homology of 100% among group-I NPVs was noticed between the 

following NPVs: AfNPV and RoMNPV, PnNPV and CrNPV and ToMNPV and TnSNPV and 

minimum homology of 85.7% among group-I NPVs was noticed between the following NPVS: 

AcMNPV and AmalNPV and AcMNPV and BmNPV (Table 23 and Fig 52). Similarly, the 

maximum homology of 100% among group-II NPVs was noticed between MbNPV and McNPV 

and minimum homology of 79.4% was noticed between WsNPV and SfMNPV (Table 24 and 

Fig. 53).  

The third branch NPV i.e. LdMNPV was showed 77.1% to 80.4% homology with group-I 

NPVs and 78.8 to 82.4% homology with group-II NPVs. Due to less homology with other gropu-

II NPVs, WsNPV and SliNPV were formed as separate cluster within group-II NPVs. But, after 

bootstrapping WsNPV was completely separate from group-II NPVs and formed as a seperte 

branch of NPV. The amino acid sequence of HaNPV-P polyhedrin protein was more close to 

group-II NPVs with maximum homology of 95.5% with MbNPV and McNPV, 93.9% with 



PfNPV and 93.5% with LsNPV and minimum homology of 79.4% with WsNPV and 81.8% with 

SliNPV. Bootstrapping analysis of phylogenetic tree with CLC work bench revealed that 

LdMNPV and WsNPV were separated as major branches among all NPVs supported by 100% 

bootstrap values. Remaining all branches were supported by high bootstrap values (Fig 51). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 50: Phylogenetic analysis at amino acid level of HaNPV-P (     ) polyhedrin 

protein with previously published polyhedrin and granulin amino acid 

sequences collected from GenBank, using Mgalign tool of DNASTAR 

software. 
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Table 23: Pair Distances of amino acid sequence of polyhedrin protein among group-I NPVs, aligned by ClustalW 

(Slow/Accurate, IUB) method (Percent Similarity in upper triangle Percent Divergence in lower triangle). 

 

 
 
 
 
 
 
 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 AcMNPV *** 90.2 88.6 85.7 89.4 87.2 87.8 85.7 86.7 89.4 89 86.9 80.4 83.7 89.4 89.4 99.6 90.2 89.4 89.4 

2 AfNPV 10.5 *** 95.9 93.5 97.6 95.1 95.5 92.2 94.7 96.7 97.1 93.5 79.2 89.4 96.3 96.7 90.2 100 98 98 

3 AgNPV 12.4 4.2 *** 93.5 97.1 95.9 95.1 91.4 94.7 96.7 98 94.3 80 90.2 96.3 96.7 88.6 95.9 96.3 96.3 

4 AmalNPV 13.9 5.1 5.1 *** 93.5 93 91.4 89 92.5 94.7 94.7 92.2 77.6 89.1 94.3 94.7 85.7 93.5 93.9 93.9 

5 ApNPV 11.5 2.5 2.9 5.1 *** 96.3 98 93.5 95.1 97.1 98.4 94.3 79.6 91.4 96.7 97.1 89.4 97.6 98 98 

6 ArceNPV 14 5.1 4.2 5.6 3.8 *** 93.4 89.3 95.6 96.7 97.1 92.6 77.8 87.7 96.3 96.7 86.4 94.2 95.9 95.9 

7 ArNPV 13.4 4.6 5.1 7.3 2.1 6 *** 91.4 93.4 95.1 96.3 92.2 78 89.4 94.7 95.1 87.8 95.5 95.9 95.9 

8 BmNPV 15.9 8.2 9.1 11 6.8 10.6 9.1 *** 88.9 91 91.8 89 79.2 88.6 91 91 85.3 92.2 91.8 91.8 

9 CfMNPV 14.6 5.5 5.5 6 5 3.6 7 12 *** 98.2 96.9 91.6 76.5 87.2 97.8 98.2 86.7 94.7 96 96 

10 CrNPV 11.5 3.3 3.3 3.8 2.9 2.5 5.1 9.6 1.8 *** 98.8 93.9 78.8 89.4 99.6 100 89.4 96.7 98 98 

11 EpMNPV 11.9 2.9 2.1 3.8 1.7 2.1 3.8 8.7 3.2 1.2 *** 95.1 79.6 90.6 98.4 98.8 89 97.1 98.4 98.4 

12 HcNPV 14.4 6.8 6 6.4 6 6.9 8.2 11.9 8.9 6.4 5.1 *** 78.4 87.8 93.5 93.9 86.9 93.5 93.5 93.5 

13 LdMNPV 22.3 24 22.9 26.7 23.4 25.4 25.7 23.4 27.7 24.6 23.4 24 *** 77.1 78.8 78.8 79.6 79.2 78.8 78.8 

14 LoMNPV 17.9 11 10.1 12.3 8.7 12.1 11 11.9 13.6 11 9.6 12.9 26.7 *** 89.4 89.4 83.3 89.4 89.8 89.8 

15 OpMNPV 11.5 3.8 3.8 4.2 3.3 2.9 5.5 9.6 2.2 0.4 1.7 6.8 24.6 11 *** 99.6 89.4 96.3 97.6 97.6 

16 PnNPV 11.5 3.3 3.3 3.8 2.9 2.5 5.1 9.6 1.8 0 1.2 6.4 24.6 11 0.4 *** 89.4 96.7 98 98 

17 PxMNPV 0.4 10.5 12.4 13.9 11.5 14 13.4 16.4 14.6 11.5 11.9 14.4 22.9 18.5 11.5 11.5 *** 90.2 89.4 89.4 

18 RoMNPV 10.5 0 4.2 5.1 2.5 5.1 4.6 8.2 5.5 3.3 2.9 6.8 24 11 3.8 3.3 10.5 *** 98 98 

19 TnSNPV 11.5 2.1 3.8 4.6 2.1 3.4 4.2 8.7 4.1 2.1 1.7 6.8 24.6 10.5 2.5 2.1 11.5 2.1 *** 100 

20 ToMNPV 11.5 2.1 3.8 4.6 2.1 3.4 4.2 8.7 4.1 2.1 1.7 6.8 24.6 10.5 2.5 2.1 11.5 2.1 0 *** 



Table 24: Pair Distances of amino acid sequence of polyhedrin protein among group-II NPVs, aligned by ClustalW 

(Slow/Accurate, IUB) method (Percent Similarity in upper triangle Percent Divergence in lower triangle). 
 

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 LdMNPV *** 81.2 79.2 82.4 82.4 80 80 80 80 81.6 82.4 82.4 79.2 78.8 81.2 82.9 82.9 80.8 80 80 80 78.2 

2 AhNPV 21.1 *** 88.6 93.5 92.3 88.6 89 89 89 90.7 91.9 91.9 89.8 90.2 92.3 91.5 91.9 89 88.2 85.8 88.2 84.4 

3 AsNPV 24.4 12.4 *** 90.2 87.8 86.6 86.6 86.6 86.6 88.6 89.8 89.8 87.8 88.2 89.4 89.4 88.6 92.3 91.9 82.5 89.4 81.9 

4 BsNPV 19.5 6.8 10.5 *** 94.3 91.5 90.7 90.7 90.7 93.1 94.7 94.7 91.9 91.9 95.9 95.1 94.7 91.5 91.5 86.2 91.5 84 

5 EoNPV 19.5 8.2 13.3 5.9 *** 90.2 89 89 89 92.7 94.3 94.3 89.4 89.8 95.1 94.7 93.5 89.8 89.4 86.6 89.4 84 

6 HaNPV-P 22.8 12.4 14.8 9.1 10.5 *** 84.6 84.6 84.6 93.5 95.5 95.5 87 87 90.7 93.9 91.5 87.8 87.4 81.8 86.6 79.4 

7 HaNPV 22.8 11.9 14.8 10 11.9 17.3 *** 100 100 86.2 87.4 87.4 90.2 89.8 89.4 87.8 89 86.6 86.2 85.4 86.2 83.5 

8 HasNPV 22.8 11.9 14.8 10 11.9 17.3 0 *** 100 86.2 87.4 87.4 90.2 89.8 89.4 87.8 89 86.6 86.2 85.4 86.2 83.5 

9 HzSNPV 22.8 11.9 14.8 10 11.9 17.3 0 0 *** 86.2 87.4 87.4 90.2 89.8 89.4 87.8 89 86.6 86.2 85.4 86.2 83.5 

10 LsNPV 20.6 10 12.4 7.3 7.7 6.8 15.3 15.3 15.3 *** 98 98 88.6 89 93.1 97.2 93.5 91.5 91.1 84.1 89.8 81.5 

11 MbNPV 19.5 8.6 10.9 5.5 5.9 4.6 13.8 13.8 13.8 2.1 *** 100 90.2 90.7 94.7 98.4 95.1 91.9 91.9 85 91.1 82.7 

12 McNPV 19.5 8.6 10.9 5.5 5.9 4.6 13.8 13.8 13.8 2.1 0 *** 90.2 90.7 94.7 98.4 95.1 91.9 91.9 85 91.1 82.7 

13 MdNPV 23.9 10.9 13.3 8.6 11.4 14.3 10.5 10.5 10.5 12.4 10.5 10.5 *** 99.6 90.7 89.4 91.1 87.4 87.4 86.2 86.2 84.4 

14 MnNPV 24.4 10.5 12.9 8.6 10.9 14.3 10.9 10.9 10.9 11.9 10 10 0.4 *** 91.1 89.8 90.7 87.8 87.8 85.8 86.6 84.4 

15 OpSNPV 21.1 8.2 11.4 4.2 5.1 10 11.4 11.4 11.4 7.3 5.5 5.5 10 9.5 *** 95.1 94.7 91.1 91.1 87 90.2 83.5 

16 PfNPV 19 9.1 11.4 5.1 5.5 6.4 13.3 13.3 13.3 2.9 1.6 1.6 11.4 10.9 5.1 *** 94.3 90.7 90.7 85 90.7 81.9 

17 PoNPV 19 8.6 12.4 5.5 6.8 9.1 11.9 11.9 11.9 6.8 5.1 5.1 9.5 10 5.5 5.9 *** 91.1 91.5 85.4 90.2 83.1 

18 SeMNPV 21.7 11.9 8.2 9.1 10.9 13.3 14.8 14.8 14.8 9.1 8.6 8.6 13.8 13.3 9.5 10 9.5 *** 98 84.1 94.7 81.5 

19 SfMNPV 22.8 12.9 8.6 9.1 11.4 13.8 15.3 15.3 15.3 9.5 8.6 8.6 13.8 13.3 9.5 10 9.1 2.1 *** 83.3 95.5 79.4 

20 SliNPV 22.8 15.8 20 15.3 14.8 20.5 16.3 16.3 16.3 17.9 16.8 16.8 15.3 15.8 14.3 16.8 16.3 17.9 18.9 *** 82.5 81.9 

21 SlNPV 22.8 12.9 11.4 9.1 11.4 14.8 15.3 15.3 15.3 10.9 9.5 9.5 15.3 14.8 10.5 10 10.5 5.5 4.6 20 *** 80.2 

22 WsNPV 24.7 17.6 21.3 16 16 20.2 18.6 18.6 18.6 19.2 17.6 17.6 17.6 17.6 16.6 18.6 17.1 21.3 21.9 18.6 23 *** 

 
 
 
 



Figure 51: Phylogenetic analysis at amino acid level, of HaNPV-P (     ) polyhedrin 

protein with previously published polyhedrin and granulin amino acid 

sequences collected from GenBank, Tree generated using CLC work 

bench (version 3.1), algorithm used was UPGMA with 1000 

bootstrapping and values indicated on the branches of tree is the 

number of replicates taken in bootstrap analysis.  
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Figure 52: Alignment of amino acid sequence of polyhedrin protein group-I NPVs, 

by Megalign using clastalW method. 
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N L R P T R P N R C Y K F L A Q H A L R WD E D Y V P H E V I R I V E P S Y V G MN N E Y R I S L A K K G G G C P I MN I H S  123 RoMNPV

N L R P T R P N R C Y K F L A Q H A L R WD C D Y V P H E V I R I V E P S Y V G MN N E Y R I S L A K K G G G C P I MN I H S  123 TnSNPV

N L R P T R P N R C Y K F L A Q H A L R WD C D Y V P H E V I R I V E P S Y V G MN N E Y R I S L A K K G G G C P I MN I H S  123 ToMNPV  
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E Y T N S F E S F V N R V I WE N F Y K P I V Y I G T D S S E E E E I L I E V S L V F K V K E F A P D A P L F T G P A Y     186 OpMNPV

E Y T N S F E S F V N R V I WE N F Y K P I V Y I G T D S G E E E E I L I E V S L V F K V K E F A P D A P L F T G P A Y     186 PnNPV

E Y T N S F E Q F I D R V I WE N F Y K P I V Y I G T D S T E E E E I L L E V S L V F K V K E F A P D A P L F T G P A Y     186 PxMNPV

E Y T N S F E S F V S R V I WE N F Y K P I V Y I G T D S G E E E E I L I E V S L V F K V K E F A P D A P L F T G P A Y     186 RoMNPV
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Figure 53: Alignment of amino acid sequence of polyhedrin protein group-II NPVs, 

by Megalign using clastalW method. 
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I N MR P T R P N R C Y R F L A Q H A L R C D P D Y V P H E V I R I V E P S Y V G S N N E Y R I S L A K R G G G C P V MN L H  123 BsNPV
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I N MR P T R P N R C Y K F L A Q H A L R C D P E Y V P H E V I R I V E P S Y V G S N N E Y R V S L A K R G G G C P V MN L H  123 PfNPV
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4.10. Development of PCR Based RFLP Marker for Identification and 

Differentiation of HaNPV-P (Patancheru) Strain: 

In order to distinguish the HaNPV-P strain with other NPVs based on its unique 

restriction sites present in the amplified portion of the polyhedrin gene a PCR-RFLP marker was 

developed. 

4.10.1 Restriction mapping analysis:  

Restriction mapping analysis of HaNPV-P polyhedrin gene along with other known 

published polyhedrin sequences showed that one unique restriction site, Xho-I at nucleotide 

position 131 was found in NPV from M. brassicae and M. configurata, and at position 671 in 

NPV of L. seperata. Whereas in HaNPV-P, the Xho-I site was found at both 131 and 671 base 

pairs (Fig 54). But, the Xho-I site was not found in any of the HaNPV polyhedrin gene sequences 

deposited in the GenBank.  

4.10.2 PCR-RFLP analysis: 

The Xho-I restriction sites present in HaNPV-P polyhedrin gene was verified by PCR-

RFLP study.  In 12% native PAGE the digested product was separated as three different sized 

fragments which are corresponding to the restriction map. The sizes of the restriction fragments 

were estimated to be 540, 131 and 73 bps (Fig 55). 



Figure 54: Restriction mapping analysis of HaNPV-P polyhedrin gene using 

BioEdit version 5.0.9 

 
Restriction Enzyme Map: 
 

1       ATGTATACTCGTTACAGTTACAAATCCGTCGTTGGGAACGTCCCTACGTCTACGACAAACAAGTACTACAAAAATCTTGG   80 

1       TACATATGAGCAATGTCAATGTTTAGGCAGCAACCCTTGCAGGGATGCAGATGCTGTTTGTTCATGATGTTTTTAGAACC   80 

            AccI                     BsmFI                 AccI          TatI       Tth111II    

              BstZ17I                     BslI                Pfl1108I      ScaI              

                                                                                          

 

81      ATCAGTCATCAAAAACGCCAACCGCAAAAAGCACTATATCGAACATGAACTCGAGGAGAAAACACTCGACCCTTTAGACA   160 

81      TAGTCAGTAGTTTTTGCGGTTGGCGTTTTTCGTGATATAGCTTGTACTTGAGCTCCTCTTTTGTGAGCTGGGAAATCTGT   160 

            HaeIV                                    MnlI   AvaI            CjePI            

             Hin4I                                     PpiI                    BseRI         

                AlwI                                        SmlI                            

                                                           XhoI                            

                                                                                          

161     GATATCTGGTGGCCGAAGACCCCTTCCTGGGACCGGGCAAAAACCAAAAACTAACTTTGTTTAAAGAAATCAGAAATGTC   240 

161     CTATAGACCACCGGCTTCTGGGGAAGGACCCTGGCCCGTTTTTGGTTTTTGATTGAAACAAATTTCTTTAGTCTTTACAG   240 

           EcoRV   EaeI         BbsI   Sth132I         BsmFI               DraI                

                      GdiII        CjePI   BslI                                              

                                   BslI                                                    

                                   BsaJI                                                   

                                    MboII                                                  

                                    BslI                                                   

                                        NgoGV                                              

                                        NlaIV                                              

                                                                                          

241     AAGCCCGACACCATGAAGCTTGTCGTAAACTGGAGCGGTAAAGAGTTTCTCAGAGAAACTTGGACCCGTTTCATGGAAGA   320 

241     TTCGGGCTGTGGTACTTCGAACAGCATTTGACCTCGCCATTTCTCAAAGAGTCTCTTTGAACCTGGGCAAAGTACCTTCT   320 

                   Sth132I                 BsrI              BpmI         BseMII    Sth132I    

                         HindIII            BsrBI                          NgoGV    BslI      

                                                                         NlaIV             

                                                                                          

 

321     CAGCTTCCCTATTGTTAACGACCAAGAAGTCATGGACGTTTTCCTTGTAATCAACATGCGTCCCACTAGACCCAACCGTT   400 

321     GTCGAAGGGATAACAATTGCTGGTTCTTCAGTACCTGCAAAAGGAACATTAGTTGTACGCAGGGTGATCTGGGTTGGCAA   400 

           BbsI          HincII     DrdI                   BsmFI    CjeI                      

                 MboII    HpaI                                HgaI    NspI                    

                                                                                          

 

 

401     GTTTCAAATTCCTGGCTCAACATGCTCTGCGTTGCGATCCCGACTATGTGCCCCACGAAGTCATCCGCATCGTTGAACCG   480 

401     CAAAGTTTAAGGACCGAGTTGTACGAGACGCAACGCTAGGGCTGATACACGGGGTGCTTCAGTAGGCGTAGCAACTTGGC   480 

              ApoI        CjeI    NspI   AlwI       Hpy178III   FokI                      SfaNI    

                              MwoI                      Sth132I                             

                                                           BmgI                            

                                                           BseSI                           

                                                             Bsp1286I                      

                                                                                       

481     TCCTACGTGGGCAGCAACAACGAATACCGCGTCAGCTTAGCCAAGCGTGGCGGTGGCTGCCCCGTGATGAATCTGCACTC   560 

481     AGGATGCACCCGTCGTTGTTGCTTATGGCGCAGTCGAATCGGTTCGCACCGCCACCGACGGGGCACTACTTAGACGTGAG   560 

              BsaAI            HgaI           Bpu1102I   BbvI      BsgI          Sth132I       

                                BbvI                              MwoI                      

                                                                                          

 

561     TGAATACACCAACTCTTTCGAAGAGTTCATCAACCGTGTCATATGGGAGAACTTCTACAAGCCAATTGTGTACGTAGGCA   640 

561     ACTTATGTGGTTGAGAAAGCTTCTCAAGTAGTTGGCACAGTATACCCTCTTGAAGATGTTCGGTTAACACATGCATCCGT   640 

                         EarI            MboII     NdeI                   MunI       BsaAI    

                           NspV                                                    SnaBI    

                                                                                       BseMII    

                                                                                          

641     CAGATTCGGCTGAGGAAGAGGAAATTCTTCTCGAGGTTTCTCTGGTGTTCAAAATCAAAGAGTTTGCGCCTGATGCGCCT   720 

641     GTCTAAGCCGACTCCTTCTCCTTTAAGAAGAGCTCCAAAGAGACCACAAGTTTTAGTTTCTCAAACGCGGACTACGCGGA   720 

           MnlI   MnlI    MboII    MnlI   AvaI                                SfaNI   MwoI      

                     BbvCI      ApoI     SmlI                                         MwoI    

                     Bpu10I        XmnI   Hpy178III                                    TaqII    

                     EarI            MboII                                                  

                                       XhoI                                                

                                                                                          

721     CTATACATCGGTCCTGCTAAATAA   744 

721     GATATGTAGCCAGGACGATTTATT   744 

                MnlI             



              Figure 55: PCR-RFLP analysis of HaNPV-P polyhedrin gene 
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CHAPTER-V 

DISCUSSION 

Sole reliance on synthetic chemical pesticides to manage noxious pests like H. armigera, 

S. litura and A. albistriga has led to the development of several ill effects on the environment 

leading to ecological hostility and insect resistance to pesticides. To minimize these ill effects of 

synthetic chemicals, and at the same time to reduce the pest population, biological control 

methods through use of entomopathogenic microorganisms form as a potential pest control 

component of IPM. Currently a major focus in the management of these major pests has been 

through the use of NPV. Though NPV has distinct advantages such as host specificity, high 

virulence, economic feasibility, environmental safety and compatibility with other methods of 

pest control, it is underexploited due to its non-availability to farmers, and there is wide gap 

between demand and production due to non-availability of methods to scale up the virus 

production process. The reliability of the product is also a crucial issue in ensuring acceptance 

and sustained use by the farmers. The issue of erratic performance of viral biocontrol agents has 

been recognized as a significant factor in the limited successful commercialization (Lisansky, 

1997). Many of the viral products available in the market were characterized as ‘weak’ with poor 

efficacy and questionable ‘quality’ (Harris, 1997). Many of the viral products produced in 

developing countries are failing to meet the acceptable standards (Kern and Vaagt, 1996). 

Without quality control aspects incorporating into NPV production, poor quality products will 

erode the confidence of farmers in microbial control products like NPV and significantly retard 

the promotion of this potential technology. Therefore it is necessary to have an effective 

diagnostic and quality control system for the development of a successful microbial control 

product (Shieh, 1989). 

Mass production of NPV insecticide is simple and widely produced even at farmer level. 

Healthy larvae reared in the laboratory or collected from the fields are fed with low dose of NPV 



and the virus produced in the insect is harvested and its concentration is estimated by counting 

POBs using a light microscope fitted with hemocytometer. Recently local production and 

utilization of NPV gained momentum in India through participation of scientists, farmers, NGOs 

and state agricultural and agriculture extension departments. Although, commercial production, 

quality and storage were still contentious issues, NPV is multiplied on field collected larvae and 

being applied on crops. Multiplying NPV on field-collected larvae was found to be easier and 

cost effective compared to laboratory-reared larvae, but efficacy and quality of which may be 

affected due to contaminants such as bacteria and fungi. The effectiveness of the viral insecticide 

is critically dependent on concentration of POB, which is expressed as LE (Larval Equivalent). 

Generally, a standard stock preparation consists of 1LE, i.e. 6 × 109 POBs/ml. While NPV 

insecticide production methods have been well established in many developing countries, the 

microscopic counting procedure used to screen larvae for NPV infection and quality control of 

the viral insecticide lots has low-detection efficiency, unknown specificity and is laborious and 

requires considerable skill. Because of this many NPV products produced have poor efficacy and 

found to be ineffective under field conditions. To over come these problems and for effective 

production of viral insecticides, it is necessary to have an efficient strategy for virus production, 

combined with rapid and specific diagnostic and quality control tools. At present appropriate, 

sensitive and reliable serological tools are not available and the development will go a long way 

in the quality control of insect viruses in developing countries. Once developed, the tools would 

be of immense value to public and private entrepreneurs, such as state biopesticide production 

laboratories and regulatory agencies. Furthermore, highly standardized, accurate and sensitive 

diagnostic tools for NPV detection in field-collected larvae would be beneficial to pest 

management personnel, because early detection of NPV disease could make it possible to predict 

the occurrence of an imminent epizootic and thus alter the pest control tactics to be employed. In 

addition, accurate identification of NPV species using molecular approaches is also important for 

establishing the identity of seed stock or master stock. The information is very limited in India on 



molecular level identification and evaluation of phylogenetic status of commercial baculovirus 

preparations against major insect pests. Hence, the present study was undertaken to develop and 

evaluate the immunochemical tools for quantitative estimation of NPVs in commercial lots; to 

apply these tools in diagnosis of NPV infection at field level and to characterize and determine 

the phylogenetic status of NPV used for commercial viral insecticide preparations at ICRISAT, 

Patancheru, India. 

5.1 Isolation and Propagation of NPVs from Major Lepidopteran Pests 

of Legume Crops: 

 During natural epizootic conditions NPV infections were observed in H. armigera; S. 

litura and A. albistriga pest populations at ICRISAT forms. The diseased larvae showed the 

typical baculovirus infection symptoms. The infected larvae showed pale swollen bodies and 

moribund. The larvae of H. armigera and A. albistriga were crawled to the top of the twigs 

(negative geotropism) on which they were fed (Fig 12). But the larva of S. litura was not showed 

this feature due to its burrowing and nocturnal habitat. Hence, the diseased larvae of S.litura were 

collected at the base of the plant or at peripheral layers of the soil near by root system. The initial 

signs of baculoviral infection are gradual changes in the color and luster of the integument. 

Infection of the epidermis caused the host to appear soft and in some larvae the cuticle was 

ruptured and discharging of body fluid on to plant parts was observed. Earlier these symptoms 

were also reported by others (Tanada et al., 1993; Federici 1997; Aizawa 1963). Observation of 

discharged body fluid under phase contrast microscope revealed that it consists of POBs. The 

infectious virions are occluded in proteinaceous POBs also called polyhedra and are protected 

against environmental conditions for several years until the availability of susceptible host at 

particular life–stage from a given locality for significant period of time to maintain a continuous 

cycle of infection (Jacques, 1975; Rohrmann, 1986). Hence, baculoviruses cause lethal epizootic 

diseases in their host-insect populations (Gelertner and Federici, 1990) and have great potential to 



be used as biological insecticides (De Moraes et al., 1997). The role of NPVs in natural 

epizootics and their insect population dynamics were studied by many workers (Blissard et al 

2000, Gelernter and Federici, 1990; Caballero et al., 1992a; Weiser, 1987).  

In the present investigation HaNPV was multiplied both on field collected and laboratory 

reared fourth instar larvae and the yield obtained was compared. There was a significant 

difference in parameters like POBs/ml and POBs/larvae which showed that NPV multiplied on 

field collected larvae recorded significantly higher yield compared to laboratory reared larvae 

(Table 7). Similarly, the field collected larvae of A. albistriga were yielded 5.05 times more 

virus/larva (Veenakumari et al., 2007), the NPV of Hyblaea puera (Cramer) (Lepidoptera: 

Hyblaeidae), the teak defoliator, when mass produced in situ reportedly yielded 2.56 times more 

HpNPV than when mass produced in the laboratory (Sudheendrakumar et al., 2004). By 

multiplying the HaNPV on third instar H. armigera larvae Pawar and Thombre (1992) recorded 

0.95 × 109 to 3.5 × 109 POBs/larva.  Gopali and Lingappa (2001a) inoculated fourth instar H. 

armigera larvae @108 POBs/ml and recorded higher larval mortality and higher quantity of viral 

yield per larva (2.81 × 108 POBs) and suggested 108 POBs/ml as optimum viral dose required for 

mass production of virus both on third and fourth instar H. armigera larvae. In the present study 

the POB yield obtained per larva was slightly higher than the earlier studies conducted by Gopali 

and Lingappa (2001a) and Pawar and Thombre (1992), which may be due to variation in the size 

of the larvae inoculated with the virus and the diet provided to the larvae.  However, Shieh (1978) 

recovered 5 × 109 POBs/larva by inoculating grown up larvae of H. armigera, which is very close 

to the present value. The host insect, insect diet, insect age and virus dosage, incubation, 

environment and preservation of virus infectivity are some of the major factors, which optimize 

the production of HzNPV (Carter, 1984). The optimum dose of viral inoculum also varies with 

the virulent strain and age of the host (Shapiro, 1992; Battu, 1987, 1990). Rabindra and 

Subramanian (1974) harvested maximum virus yield by inoculating 106 POBs/ fourth instar larva. 

There was no much difference in number of larvae required for the production of one LE of virus 



from the field collected and laboratory reared larvae. Where as earlier Gopali and Lingappa 

(2001a) reported that the number of field collected larvae required to produce one LE of virus 

was higher (2.97) than laboratory reared ones. This variation was due to assorted sizes or stages 

in the field collected larvae where as uniformity of larval age in laboratory reared larvae account 

for discrepancy in the viral productivity. However mass production of HaNPV on field collected 

larvae is more feasible when large scale production is aimed in short period. Pawar and Thombre 

(1992) and Thombre (1996) recorded lower productivity per larva than in the current study. This 

could possibly be due to the utilization of larger proportion of early instar larvae. Where as for 

mass multiplication of SlNPV and AmalNPV laboratory reared 5th instar larvae emerged from 

field collected egg masses was used for virus inoculation due to long gestation period during 5th 

instar stage for these insects. Subsequently, due to heavy body weight of these insects the yield of 

NPV was also recorded as higher than HaNPV. In the present investigation the POB yield of 

SlNPV obtained per larva (5.73 ± 0.17 ×109) was higher than the earlier studies (1.4 ×109) 

reported by Tuan et al. (1998) and lower than the earlier studies (9.7 ×109) reported by Jun et al. 

(2007) and close to earlier study (5.572 ×109) reported by Senthil kumar et al., 2005. Whereas, 

the yield of AmalNPV (7.90 ± 0.54 × 109 POBs/larva) was noticed to be higher than HaNPV and 

SlNPV. This is due to higher body weight of A. albistriga larvae and was naturally is always 

larger and heavier than that of other two insects. In situ field level mass production of AmalNPV 

in groundnut ecosystem was studied by Veenakumari et al. (2007) and recorded the yield of 

1.052×1010 POBs/larva this is close to our present study. At ICRISAT, for effective mass 

multiplication of AmalNPV, the field-collected larvae were released into an aluminum or 

polythene grid/enclosure (10 cm height) to confine the larvae inside the shaded enclosure and fed 

with plants already inoculated with the virus. The field technique for rearing larvae was found to 

be advantageous, particularly in avoiding the handling of huge larval populations, rearing and 

inoculation. This would also facilitate farm level production and access to the biopesticide at the 

village level (Rao et al., 2006). 



5.2 Electron Microscopic (EM) Studies:  

The NPVs isolated from the larvae of H. armigera, S. litura and A. albistriga at ICRISAT 

forms were morphologically compared with each other by conducting electron microscopic 

studies this revealed typical baculovirus occlusion bodies. Scanning electron micrographs (SEM) 

showed that the OBs of HaNPV, SlNPV and AmalNPV were appeared as irregular shape 

structures with sizes ranged from 0.5 to 2.5µm, 0.9 to 2.92µm and 1.0 to 2.0µm in diameter (Figs 

14, 15 and 16). This indicated that viruses isolated in this present investigation were NPVs rather 

than GVs.  Generally NPVs are larger size and are irregular to polyhedral shape where as GVs are 

comparatively smaller than NPVs and their shape is round. Before characterization of any 

baculovirus from an insect host, initially it is necessary to conduct electron microscopic study 

(SEM and TEM) to determine whether it is NPV or GV or SNPV or MNPV. Transmission 

electron microscope (TEM) studies on cross-sections of purified POBs of these viruses showed 

that each occlusion body contains 2 to 7 (multiple) nucleocapsids packaged within a single viral 

envelope (Figs 17, 18 and 19). The nucleocapsids are elongated with parallel sides and two 

straight ends, measuring the sizes of 277.7 × 41.6 nm (HaNPV), 285.7 × 34.2 nm (SlNPV) and 

228.5 × 22.8 nm (AmalNPV) (Table 8). Tuan et al. (1999) reported that the occlusion bodies of 

HaNPV and SlNPV isolated in Taiwan were irregular shape with sizes raged from 0.79 ± 0.22 

µm (HaNPV) and 1.61 ± 0.32 µm (SlNPV), both the viruses were MNPVs and the nucleocapsids 

were bacilliform to cylindrical tubular shaped structures with dimensions of 319.80 ± 7.80 × 

44.45 ± 4.54 nm (HaNPV) and 332.26 ± 13.55 × 47.16 ± 1.42 nm (SlNPV). In another study the 

polyhedra of the Lymantria disparMNPV-NM isolate were observed as irregularly shaped, the 

average diameter of the polyhedra was 1.62 ± 0.33 µm, TEM revealed that LdMNPV-NM had 

bundles of virions in the nucleocapsid, which belonged to MNPV (Shim et al., 2003). Similarly, 

Wolf et al. (2002), reported the morphology of a MNPV isolated from Lonomia obliqua 

(Lepidoptera: Saturniidae) with size ranged from 1 to 1.4 µm and the nucleocapsid dimensions of 



270 × 36nm. Ma et al. (2006), observed the occlusion bodies in the mid gut tissues of the tea 

looper (Ectrophis obliqua) under TEM, the micrograh showed that the EcobSNPV were irregular 

shape and ranged in size from 0.7 to 1.7 µm in diameter and multiple rod-shaped virions 

measuring about 250 nm in length and 40 nm in width, were embedded in each OB with a single 

nucleocapsid packaged within the envelope of the virion. Woo et al. (1998) isolated the host 

range-expanded recombinant baculovirus, RecB-8 from BmN-4 cells, coinfected with A. 

californica and B. mori nuclear polyhedrosis viruses and morphology of their polyhedra 

compared in an electron microscope. Interestingly, the polyhedra of RecB-8 were tetrahedral 

although the polyhedrin gene was the same as that of the BmNPV parent which has icosahedral 

polyhedra. Thus the morphology of the RecB-8 polyhedra resulted from host cell factors and/or 

another viral genome in the host cells. Recently, Grasela et al. (2008) demonstrated the MNPV 

nature of a NPV infecting T. ni during isolation and characterization of a baculovirus associated 

with that insect parasitoid wasp, Cotesia marginiventris, or its host. Gales et al.(2007), studied 

the use of immunoglobulin heavy chain binding protein (BiP) as a signal sequence to help guide 

recombinant protein to the rough endoplasmic reticulum (rER), to characterize the distribution of 

recombinant proteins in infected SF9 cells 2 days post-infection using confocal laser scanning 

microscopy (CLSM) and TEM.   

5.3 Purification of Polyhedral Protein (Polyhedrin): 

The crystalline matrix of the occlusion body mainly consists of a single protein, called 

polyhedrin or granulin. These proteins are about 245 amino acids (29 kDa) and hyper expressed 

during very late phase of virus infection and are not required for virus replication (Rohrmann, 

1986, 1992; Funk et al., 1997) and constituting up to 18% or more of total alkali-soluble protein 

late in infection (Quant et al., 1984). It is a highly stable protein, insoluble in many solvents at 

neutral pH values and physiological conditions, highly resistant against the action of proteolytic 

enzymes and at the same time it is highly sensitive to alkali conditions (Bergold, 1947,1948). In 



the present study with an aim of production of polyclonal antibodies against poly occlusion body 

protein (polyhedrin) for the development of diagnostic and quality control tools during mass 

production of NPVs, the purification protocol for polyhedrin protein was standardized (Fig 8) 

with slight modifications to the methods given by Quant et al. (1984); Harrap et al. (1977) and 

Summers and Egawa (1973). The protocol steps involved initial heat inactivation of endogenous 

proteases; alkali disruption of POBs, ultracentrifugation of dissolved POBs to pellet the virions 

and undissolved POBs. Further purification was achieved by either of the following approaches, 

in one approach the supernatant of ultra-centrifuged dissolved POBs was layered on 10-40% liner 

sucrose gradient and in another approach the pH of the supernatant was adjusted to the isoelectric 

point of polyhedrin. Studies on biochemical and biophysical properties of the solubilized matrix 

proteins were provided by the discovery of an alkaline protease was associated with the protein 

matrix of NPVs (Eppstein and Thoma, 1975; Summers and Smith, 1975a; Payne 1978). This 

protease was activated by the alkaline conditions used to solubilize the matrix and degraded 

matrix components to a mixture of lower-molecular-weight polypeptides. Inhibition of this 

activity by HgC12 or by heat treatment at 70°C for 30 min has allowed the matrix to be 

solubilized and recovered in a non degraded form (Eppstein et al., 1975; Summers and Smith, 

1975; Tweeten et al., 1978). Volkman and Falcon (1982) standardized the purification of 

polyhedrin from T. ni NPV by initial heat treatment of gradient purified POBs, followed by 

incubation of POBs in 0.01M HgCl2 in 0.01 M tris buffer (pH 7.8), dissolution of POBs in dilute 

alkaline saline (DAS) (0.1 M Na2 CO3, 0.15 M NaCl, pH 10.9) and then polyhedrin was collected 

as supernatant by ultra centrifugation of dissolved POBs at 100,000 × g for 30 min. Similarly, 

after initial heat treatment polyhedrin from two O. pseudotsugata nucleopolyhedroviruses 

(OpSNPV and OpMNPV) was purified by dissolution of POBs in 0.1 volume of 1 M Na2CO3 0.5 

M NaCl buffer at 560C for 10 min followed by centrifugation at 120,000 × g for 45 min (Quant et 

al., 1984). In the present study of 10-40% linear sucrose gradient centrifugation, the polyhedrin 

formed one diffused light scattered zone in 10% sucrose region (Fig 20) due to its very low 



density in solutions. Similarly, Summers and Egava (1973) purified the granulin from T. ni GV 

by dissolution of OBs in 0.07 M Na2 CO3 0.05 M NaCl (pH10.7) at 5mg of OBs/ml for 1.5 to 2.0 

h at room temperature then the granulin was clarified by the following two approaches. In first 

approach the dissolved OB suspension was subjected to centrifugation at 100,000 × g for 30 min. 

In second approach the dissolved OB suspension was layered on 10-40% (wt/vol) sucrose 

gradients and centrifuged at 25,000 rev/min by use of a SW41 rotor. Similarly, after heat 

treatment and alkali dissolution of gradient purified OBs of A. californica, P. dispar, T. ni, and H. 

zea and granulovirus from T. ni the polyhedrins or granulins were recovered from the top of 

sucrose gradients (density range of 1.15 to 1.27 g/ml) after centrifugation at 100,000 × g for 1 h 

(Smith and Summers, 1981). In isoelectric precipitation method, the polyhedrin of all the three 

NPVs was precipitated at pH between 5.5 and 5.6 (Fig 21). Most of the polyhedrins or granulins 

of baculoviruses are insoluble and precipitated at this pH due to their isoelectric property. 

Similarly, Brown et al. (1977) standardized the purification of granulin from gradient purified 

granules of Pieris brassicae GV by alkaline disruption of granules using 0.1 M Na2 CO3 then 

virus particles were pelleted at 75,000 × g for 1 h and the supernatant contains mainly the 

granulin was subjected to iso-electric precipitation (pH 5.6) by slow addition of 0.1 M HCl then 

the precipitated polyhedrin was collected as sediment by centrifuging at 4000 × g for 20 min. 

Similar approaches were followed by Harrap et al. (1977) for purification of polyhedrin from 

three nucleopolyhedroviruses from closely related hosts such as S. littoralis, S. exempta and S. 

frugiperda. Similarly, the polyhedrin from nucleopolyhedroviruses of A. californica and T. ni 

(Hohmann and Faulkner, 1982) and granulin from Epinotia aporema granulovirus (EpapGV) 

(Parola et al., 2003) were purified by isoelectric precipitation of alkali solubilized occlusion 

bodies. Instead of gradient purification, the POBs from A. californica nucleopolyhedrovirus were 

extensively washed with 0.1% SDS, virus particles were released by alkali (0.1M Na2 CO3) and 

centrifuged the dissolved POB suspension at 50,000 × g to pellet the virions then polyhedrin was 

precipitated from the supernatant by adjusting the pH to 5.8 (Roberts and Naser, 1982).  Recently, 



the putative polyhedrin protein of monodon baculovirus (MBV) was isolated from infected post 

larvae by homogenization, differential centrifugation and density gradient centrifugation with 

verification by transmission electron microscopy (Attaphon et al., 2005). In 12% SDS-PAGE 

analysis, the light scattered zone as well as sample layers of sucrose gradients revealed that both 

samples were almost same, highly pure and appeared as single protein band with estimated 

molecular weight of approximately 31 kDa (HaNPV) (Fig 22). The same purification protocol in 

other preparations resulted in some minor low molecular weight as well as high molecular weight 

polypeptide contaminants. Similarly, the 12% SDS-PAGE analysis of the polyhedrin purified by 

isoelectric precipitation method reveled that the molecular weight of major polyhedrin proteins of 

three NPVs were 31.65 kDa (± 0.00), 31.29 kDa (± 0.00) and 31.67 kDa (± 0.295) Helicoverpa, 

Spodoptera and Amsacta respectively (Fig 23). This report is similar to that reported by Tuan et 

al. (1999) for three lepidopteran NPVs such as HaNPV, SlNPV and SeNPV. Recently, Ashour et 

al. (2007) reported the molecular weight of 32 kDa for recombinant and wild type A. californica 

nucleopolyhedrovirus (AcAaIT and AcMNPV). In addition to the major polyhedrin they are 

contaminated with some minor low molecular weight peptides of about 7-27 kDa and a high 

molecular weight peptide of about 60-70 kDa fragments (Fig 23), which could be the degraded 

peptides or dimmers of the 31 kDa polyhedrin protein. This has revealed that these three NPVs 

have 6-8 minor polypeptides. Finally, the yield of the polyhedrin obtained in sucrose gradient 

method was 1mg/ml, while the isoelectric precipitation method was about 15-20 mg/ml from 

standard POB preparations (109 POB/ml). Due to lack of consistency in the purity and quality of 

the polyhedrin preparation in both the methods, the polyhedrin was electro-eluted from 10% 

SDS-PAGE for immunization purpose.  

The early reports on the proteins dissociated from this crystalline structures by weak 

alkali carbonate showed that this matrix consists of a heterogeneous mixture of peptides with 

sedimentation coefficients and estimated molecular weights (by gel electrophoresis) of 11.5S 



(275,000), 12.7S (336,000) and 12.8S (378,000) for NPV from three different insect species and 

11.8S (300,000) for GV (Bergold, 1959; Summers and Egawa, 1973). The presence of multiple 

protein species also indicated by immunological and amino acid sequence analysis showed that 

the homogeneous protein in the crystalline structures of a NPV and GV contain at least two 

different antigenic structures (Longworth et al., 1972; Scott and Young, 1973). Summers and 

Smith (1975b) compared the physical and chemical properties of five polyhedrins and granulins 

using PAGE and two-dimensional high voltage electrophoresis of tryptic peptides and reported 

that each of the polyhedrins and granulins has a unique protein for a given virus with similar 

molecular weights of 28,000 + 2000 Daltons. It is likely that lower molecular weight 

polypeptides detected in polyhedrin protein preparation after alkaline dissolution (Summers and 

Egava, 1973; Padhi et al., 1975; McCarthy and Liu, 1976) are attributable to the activity of 

alkaline proteolytic enzymes (Eppstein and Thoma, 1975; Eppstein et al., 1975). Which, in the 

NPVs of Spodoptera species may cleave the protein at a specific point to generate a polypeptide 

in the range 22,000-25,000 Daltons. This protease was activated by the alkaline conditions used 

to solubilize the matrix and degraded matrix components to a mixture of lower-molecular-weight 

polypeptides. Several additional baculoviruses have been investigated, and similar protease 

activities have been detected (Crawford and Kalmakoff, 1977; Eppstein et al., 1975; Kozlov et 

al., 1975; Mc Carthy and Liu, 1976; Tweeten et al., 1978). These studies have indicated that the 

12S molecule consists of eight subunits of granulin or polyhedrin and revealed that polyhedrins 

and granulins have close similarities in molecular weights. All of the baculovirus matrix proteins 

examined to date have molecular weights in the range from 25,000 to 30,000 Daltons. The 

solubilizing effects of various solvents on the proteinic crystalline structure of a granulosis virus 

of a T. ni was determined and further kinetic and morphological studies were conducted in an 

attempt to evaluate the nature of intermolecular binding forces which contribute to the 

construction and stability of the structure (Egawa and Summers, 1972; Kawanishi et al., 1972). 



5.4 Production of Polyhedrin Polyclonal Antibodies: 

 Polyhedrin, the major component of NPV polyhedra, is coded for by the virus, and its 

presence in larvae indicates the presence of NPV or an NPV infection. Hence, in the present study 

polyhedrin was used as antigen in production of polyclonal antibodies. Antibodies were raised in 

New Zealand White inbreed rabbits and were used for the development of diagnostic and quality 

control tools. It has been well documented that repeated inoculations of a virus antigen into an 

animal will elicit a different antibody response than that obtained with a single or few injections 

of the same antigen (Casals, 1967). In the present study the polyhedrin used for immunization 

was electro-eluted from a preparative 10% SDS-PAGE gel to avoid the unwanted minor protein 

contaminants in polyhedrin preparations such as some low molecular weight degraded peptides 

and some high molecular weight dimers (Fig 24). The rabbit is most frequently used animal for 

the preparation of polyclonal antibodies against baculoviruses and can be injected with whole 

OBs (Shamim et al., 1994) or purified virions (Kelly et al., 1978b and Smith and Summers, 

1981), although the OBs are usually solubilized before injection especially if guinea pigs are 

used, (Crawford et al., 1978). Factors such as antigen purity, variability of antisera, and reaction 

of antisera with contaminating non viral antigens have led to several problems during 

standardization of serological assays. To overcome this, individual viral structural proteins, most 

commonly polyhedrin or granulin, purified protein preparations are electrophoresed through 

PAGE gels and the required bands are eluted individually in to PBS (Barta and Issel, 1978; 

Summers and Smith, 1975 and Sridhar kumar et al., 2007). In the present study 500µg of electro-

eluted polyhedrin was used as antigen to immunize the animals, which gave an antibody titer of 

1:5000 dilution (Fig 25) 18 weeks after initiation of immunization. Similarly, Crawford et al., 

(1978) produced the polyclonal antibodies against T. ni SNPV, T. ni MNPV, Euxoa messora 

(EM) NPV, Pieris rapae (Pr) granulovirus and Laspyresia pomonella granulovirus and Wiseana 

spp. SNPV in New Zealand white rabbits as well as in Swiss white mice by injecting the purified 



polyhedra (3ml) at concentration of 500µg/ml after dissolving in 0.1 volume of 1 M Na2CO3 and 

then neutralized with 1M HCl. At the same time purified polyhedrin preparations (80µg) were 

used for production of monoclonal antibodies as well as rabbit polyclonal antibodies to diagnose 

the NPV infection in infected larvae of T. ni (Volkman and Falcon, 1982; Volkman, 1982) and in 

Lymantria dispar (Yu et al., 1992). Similarly, Quant et al., (1984) produced the monoclonal 

antibodies against purified polyhedrin preparations of two Orgyia pseudotsugata Baculoviruses 

(OpSNPV and OpMNPV). To identify the conserved epitopes on the polyhedrin protein of 

Heliothis zea nucleopolyhedrovirus, 12 anti-HzSNPV polyhedrin monoclonal antibodies were 

produced (Huang et al., 1985). To study the immunological relatedness of polyhedrin purified 

from nucleopolyhedroviruses of H. armigera, S. litura and S. exigua, polyclonal antibodies were 

produced against isolectric precipitates of polyhedrin and their cross- reactivity was evaluated 

(Tuan et al., 1999). Harrap et al. (1977) has produced the polyclonal antibodies to purified 

polyhedra (5mg/ml), isolectric precipitated polyhedrin (5mg/ml), and purified virus particles 

(500µg /ml) of nucleopolyhedroviruses isolated from three closely related hosts such as S. 

littoralis, S. exempta and S. frugiperda. To develop the diagnostic tools for detection and 

quantification of baculoviruses from infected larvae at field and laboratory level, to study the 

biosafety and environmental fate of recombinant and wild type baculoviruses, as well as quality 

control during mass production of baculovirus based bio pesticides, polyclonal antibodies were 

produced against isolectric precipitates of polyhedrin or granulin purified from Epinota aporema 

granulovirus (EpapGV) (Parola et al., 2003), recombinant and wild type A. californica 

nucleopolyhedrovirus (AcAaIT and AcMNPV) (Ashour et al., 2007), and Ha NPV (Sridhar 

Kumar et al., 2007).  

5.5 Characterization of Polyhedrin-Polyclonal Antibodies: 

Polyclonal antibodies produced against the polyhedrin of HaNPV, SlNPV and AmalNPV 

were characterized by determining the specificity of antisera to detect their respective polyhedrins 



and investigated their ability to cross-react with other two heterologous polyhedrins. The 

specificity was determined by western immunoblotting analysis and the cross-reactivity of the 

antibodies was determined by DAC-ELISA as well as western immunoblotting analysis. In 

western immunoblotting all three antibodies were specifically reacted with polyhedrin (31 kDa) 

and did not cross-reacted with HLP indicated that the antibodies are highly specific to polyhedrin 

(Fig 26). In addition to the major polyhedrin (31 kDa), the polyclonal antibodies recognized some 

minor low molecular weight polypeptides of about 11-27 kDa and a high molecular weight 

peptides of about 43.6-99.14 kDa proteins (Fig 26). Some of these proteins could not be aligned 

with those polypeptides in silver stained gels of isoelectric precipitated polyhedrin preparations 

examined previously. Thus, there is general agreement that the molecular weight of the major 

polypeptide of polyhedra (variously referred to as polyhedrin, polyhedral protein, inclusion body 

protein, polyhedrin or granulin) is in the range of 28-33 kDa (Kozlov et al., 1975; Summers and 

Smith, 1975; Padhi et al., 1975; Mc Carthy and Liu, 1976). It is likely that lower molecular 

weight polypeptides detected in polyhedrin protein preparation after alkaline dissolution 

(Summers and Egava, 1973; Padhi et al., 1975; Mc Carthy and Liu, 1976) are attributable to the 

activity of alkaline proteolytic enzymes (Eppstein and Thoma, 1975; Eppstein et al., 1975). 

Which, in the NPVs of Spodoptera species may cleave the protein at a specific point to generate a 

polypeptide in the range 22-25 kDa. The presence of a protease raises some doubts concerning 

the effects of the enzyme on the polypeptides and antigenic properties of virus particles as well as 

polyhedrin. However, other studies have suggested that the proteolytic activity does not 

significantly affect the antigenicity of polyhedrin (Crawford and Kalmakoff, personal 

communication). In another proposal the occurrence and distribution of minor polypeptides of 

polyhedrin have been considered as a means of identifying field collected baculoviruses (Maskos 

and Milenburger, 1981). Their, presence in OB derived from larvae was attributed to proteolytic 

cleavage by an insect-host alkaline protease but their detection in OB harvested in vitro cannot be 

due to the same mechanism since tissue-culture derived OB lack the enzyme (Zummer and 



Faulkner, 1979). Using hybridoma antibodies AcP1 and AcP2, it was apparent that many of the 

minor polypeptides possessed the same epitopes as 31 kDa protein and the reaction of AcP1 with 

polypeptides not detected by AcP2 confirmed that the two monoclonal antibodies recognized 

different polyhedrin epitopes (Hohmann and Faulkner, 1982). The monoclonal antibodies 

produced against nuclear polyhedra of BmNPV reacted with antigens of high molecular weight 

proteins (80-125 kDa); also react with a low-molecular weight protein of about 14 kDa (Shamim 

et al., 1994). However it was not clear about the nature of 67 kDa protein, but most likely it may 

be aggregate polyhedrin protein and the low molecular weight protein (14 kDa) may be virion 

protein as described previously by using monoclonal antibodies against MNPV of Orgyia 

pseudotsugata (Quant et al., 1984).  

In the present investigation the cross-reactivity of homologous polyhedrin antisera with 

heterologous polyhedrins was determined by DAC-ELISA and western blotting analysis of 

electro-eluted polyhedrin (EP). The antiserum with maximum antibody titer (i.e. after booster 

dose) was used for this study. In DAC-ELISA at variable heterologous polyhedrin concentrations 

(1000 to 7.8 ng/ml) vs., fixed homologous antiserum dilution (1:5000), the polyhedrin polyclonal 

antiserum of each NPV was showed strong cross reactivity with other two heterologous 

polyhedrins (Fig 27). The antibodies at 1:5000 dilutions were able to detect minimum 10-15 

ng/ml and maximum 1000 ng/ml of their homologous polyhedrin and minimum 25-30 ng/ml and 

maximum 1500-2000 ng/ml of heterologous polyhedrins. At fixed heterologous polyhedrin 

concentration (1000 ng/ml) and variable dilutions of homologous polyhedrin polyclonal antisera 

(1:1000 to 1: 40,000), the polyclonal antiserum of each NPV showed strong cross-reactivity with 

other two heterologous polyhedrins (Fig 28). The HaNPV polyhedrin antiserum detected the 

homologous polyhedrin at 1: 25000 times of antiserum dilution and at the same the heterologous 

polyhedrins were detected at 1:15000 dilution. The SlNPV polyhedrin antiserum detected the 

homologous polyhedrin at 1:40000 dilution of antiserum and heterologous polyhedrins were 

detected at 1:25000 dilution. Similarly, the AmalNPV polyhedrin antiserum detected the 



homologous polyhedrins at 1:30000 dilution of antiserum and heterologous polyhedrins were 

detected at 1:15000 dilution. ELISA analysis rapidly generated useful information about the 

cross-reactivity of polyhedrins from several baculoviruses. Experiences with cross-reactivity 

studies by Mazzone and Tignor (1976); Crawford et al. (1978); Harrap and Payne (1979); 

Hohmann and Faulkner (1983) shown that conventionally prepared antisera discriminate only 

slightly between the polyhedrins and granulins. Even monoclonal antibodies prepared against a 

single NPV polyhedrin of BmNPV have shown cross-reactivity to a variable extent with four 

different strains of NPVs, i.e. BmNPV, AmalNPV, HaNPV and SlNPV, indicates that they 

recognize a common epitope shared with polyhedrin proteins in these organisms (Shamim et al., 

1994). Similarly, Tuan et al. (1999) assayed the polyhedrins of HaNPV, SlNPV and SeNPV by 

ELISA with polyclonal antiserum specific to each polyhedrin and demonstrated that there is a 

close relationship among polyhedrins of these viruses. Hohmann and Faulkner (1983) found that 

each monoclonal antibody that reacted with polyhedrin was either slightly or markedly different 

in its specificity. In the present study of western immunoblotting analysis, the polyclonal 

antibodies were recognized both homologous and heterologous polyhedrins to a great extent 

indicates that the antibodies have strong cross-reactivity with heterologous polyhedrins (Fig 29). 

Western blotting is a variation of immunoelectrophoresis that combines SDS-PAGE and RIA or 

ELISA can be used to determine which viral structural proteins are involved in serologic cross-

reactions and it is a powerful tool for understanding the basis of serologic groupings of complex 

insect viruses (Towbin et al., 1979). Smith and Summers (1981) demonstrated the power of 

western blotting by comparing the antigenic relatedness of 17 different species of baculoviruses 

from lepidopteran hosts. Knell et al., (1983) expanded these studies to find additional common 

antigenic determinants among different baculovirus sub groups. Volkman (1983) explored this 

further by doing reciprocal western blots of the two phenotypes. Roberts and Naser (1982) and 

Hohman and Faulkner (1983) used the western blotting as a method of determining which of the 

AcMNPV structural proteins were reactive with monoclonal antibodies elicited to that virus. 



Similarly, western blotting was used to screen the monoclonal antibodies produced against the 

polyhedra of nuclear polyhedrosis virus infecting Bombyx mori larvae (Shamim et al., 1994) and 

polyclonal antibodies produced against polyhedrin of HaNPV (Sridhar Kumar et al., 2007). 

Hohman and Faulkner (1983) studied the western blot analysis of AcNPV polyhedrin and of 

fragments produced by proteolysis and highlighted the specificity of monoclonal antibodies. In 

his study the AcP1 and AcP2 reacted with major polypeptide (p31), but only AcP2 reacted with 

fragments produced by digestion with Staphylococcal V8 protease. This demonstrated the 

presence of atlast two epitopes on polyhedrin subunit. The more universal reaction of AcP2 

antibody with polyhedrins from other viruses indicated that there is a common antigen present in 

AcNPV, TnNPV, EmNPV and CfNPV polyhedrins resided on some of the V8-produced 

fragments of AcNPV. Smith and Summers (1981) proved that the differential cross-reactivity of 

AcMNPV and HzMNPV polyhedrin antisera to heterologous proteolytic peptides suggest that 

interspecies antigenic determinants are not identical on polyhedrins and granulins but are 

composed of a spectrum of related determinants. 

5.6 Development and Evaluation of Diagnostic Tools for NPVs: 

The objective of this study was to develop and evaluate the pathogen (NPV) detection 

methods for the IPM program of the H. armigera, S. litura and A. albistriga. Polyhedrin specific 

polyclonal antibodies were used to monitor the various stages of NPV infection in larvae and to 

quantify the POBs in commercial NPV preparations. For this different immunochemical tools 

were standardized and evaluated their validation in routine application of diagnosis and quality 

control of NPVs. Our results indicate that the immunochemical methods developed in the present 

study are appropriate for identifying HaNPV, SlNPV and AmalNPV infection in the larvae and 

for the quantification of NPVs in commercial preparations.  

 

 



5.6.1 Development of Diagnostic Tools: 

For qualitative detection of NPVs in larval homogenates, western immunoblotting and 

indirect immunofluorescence assay, and for quantitative detection DAC and IC-ELISA were 

developed and evaluated. Since, polyhedrin is the major component of NPV polyhedra, is coded 

for by the virus, and its presence in larvae indicates the presence of NPV or an NPV infection. 

Separation of larval proteins in 12% SDS-PAGE clearly differentiated the healthy and infected 

larvae. In NPV infected larval extracts a highly expressed protein (polyhedrin) with molecular 

weight of approximately 31 kDa was observed. At the same time in healthy larval extracts, a 

protein with size similar to polyhedrin was observed with less intensity than polyhedrin. The 

molecular weights of polyhedrins are as follows: 31.0 kDa in H. armigera and 31.3 kDa in S. 

litura and A. albistriga infected larval extracts. The same sized protein observed in healthy larval 

extracts with molecular weight of 31.72 kDa in H. armigera, 31.3 kDa in S. litura and 31.23 kDa 

in A. albistriga healthy larval extracts. In addition, there are some common proteins observed 

among healthy and infected larval extracts of these insect species. Some of them are present in 

both healthy and infected extracts but some are specific to healthy and infected larval extracts. 

Similar studies were conducted by Tuan et al. (1999), for the detection of NPV polyhedrin in the 

larvae of H. armigera, S. litura and S. exigua and found that the molecular weight of polyhedrins 

were all approximately 31 kDa. Quant et al. (1984), separated the extracts of OpSNPV- and 

OpMNPV infected and healthy tussock moth (Orgyia pseudotsugata) in SDS-PAGE with a 3% 

stacking gel and a 10% separating gel and the separated proteins were silver stained and 

differentiated the healthy and infected larval extracts based on the hyper expressed polyhedrin 

protein in infected larval extracts. Even though both healthy and infected larval extracts showed 

the similar size protein corresponding to polyhedrin in silver stained gels, western blot analysis of 

healthy and infected larval homogenates showed that the polyclonal antibodies specifically 

detected a single protein of polyhedrin with size of 31 kDa but not reacted with any other viral 



proteins in infected homogenates (Fig 30). In healthy larval homogenates, the antibodies did not 

cross-reacted with any protein indicates that the antibodies are highly pure and specific to 

polyhedrin. Some times the antibodies recognized the minor fragments of sizes about 27 kDa and 

below in infected larval homogenates which could be degraded peptides of polyhedrin but not 

other viral proteins because they are found only in few cases (Fig 30C). Similarly, western 

blotting was used to diagnose the NPV infection in the larvae of Bombyx mori (Shamim et al., 

1994) and in the larvae of Orgyia pseudotsugata (Quant et al., 1984). Similarly, the efficacy of 

antibodies to react with POBs in infected larval homogenates was tested by indirect immuno-

fluorescence. The POBs were probed with polyhedrin polyclonal antibodies (1: 5000 dilution) 

and then the antigen-antibody complex was visualized by staining the slides with anti-rabbit Ig-

FITC conjugate (Sigma) at 1: 80 dilution. The specific fluorescence of POBs and some times both 

POBs and dissolved polyhedrin were uniformly stained and no detectable staining was observed 

in the controls (Fig 31). The indirect immuno fluorescence technique has long been used for viral 

identification and for determining the location of viral antigens in infected cells during the course 

of replication (Casals, 1967; Schmidt and Lennette, 1973). Krywienczyk (1963) and Shamim et 

al. (1994) used immunofluorescence to detect an NPV in Bombyx mori. Kurstak and Kurstak 

(1974) reported the use of immunoperoxidase to detect infections of Tipula iridescent virus and 

densonucleosis virus in Galleria mellonella and by Summers et al. (1978) in the time course 

studies of AcMNPV in cell culture. Recently, the indirect immunofluorescence technique was 

developed for evaluation of antigen-antibody reactivity on the surface of proteinaceous occlusion 

body towards the application in development of reusable protein chip (Yoshikawa et al., 2006). 

The ELISA has been shown to be a specific and sensitive method to detect NPVs. In the present 

study two methods of ELISA (DAC and IC-ELISA) were developed, compared and evaluated for 

diagnosis and quality control of NPVs. In DAC-ELISA total protein concentration of 5µg/ml of 

larval extracts gave the maximum sensitivity to detect the NPV infection. The samples tested in 

DAC-ELISA were healthy, infected larvae at live, dead and putrefied conditions of 4th, 5th instar 



and pupal stages. The samples showed the variation in total protein concentration and ELISA 

absorbance values irrespective of the larval condition (either live or dead or putrefied or pupal 

stages) which indicates that there is no relationship between the total protein concentration and 

age and condition (healthy, infected-live, infected- dead, putrefied and pupal conditions) of the 

larvae (Table 9). In qualitative analysis by DAC-ELISA there is no much variation in absorbance 

values between infected-live and dead larvae but in quantitative estimation by DAC and IC-

ELISA, we found that there is a considerable level of difference in virus titer between live and 

dead larvae. Overall we found that the dead larvae have more virus titer than live larvae except in 

few cases where live larvae have more virus titer. The reason for this variation in virus titer with 

in the same age group larvae is due to variation in the size of the larvae inoculated with the virus. 

Another subject to be considered here is the variation in the virus titer in different age group 

larvae and this subject was discussed in detail in later section. In case, H. armigera the virus titer 

was higher in 4th instar stage than in 5th instar stage. This could be due to the less gestation period 

from 5th to 6th instar stage where the insects might have developed resistance to virus. But, in case 

of S. litura and A. albistriga the virus titer was higher in 5th instar stage than 4th instar stage 

larvae. This is due to somewhat prolonged time during molting of larvae from 5th to 6th instar 

stages during that period the insect immune system might have compromised to virus 

multiplication. The polyhedrin content of larval extracts was estimated in DAC-ELISA, by 

assaying the pure polyhedrin standards (1000 to 7.8ng/ml), healthy larval extracts (5µg/ml) 

spiked with pure polyhedrin standards and healthy larval extracts were assayed. Hence, all 

homogenates (healthy and infected extracts) were adjusted to 5µg/ml with coating buffer before 

being assayed. We determined empirically, however, that the assay was sensitive enough to be 

useful in detecting polyhedrin in larvae exposed to realistic field dosages of polyhedra. The 

interference observed by host tissue extract may have been at least partially due to the highly 

restricted binding of polyhedrin to the polyclonal antibody. The antigenic determinants on the 

polyhedrin molecule, recognizable by the polyclonal antibody, could have been vulnerable to 



proteases in the host extract or coated or masked in some way either by extract components or by 

aggregation of the polyhedrin molecules due to higher dilutions of coating antigen. In DAC-

ELISA antibodies detected the polyhedrin concentration as low as 15ng/ml of purified form and 

up to 30ng/ml in 5µg/ml of larval extracts and there was no cross-reaction between antibodies and 

healthy larval extracts (Fig 32). The results from DAC-ELISA were compared with a standard 

curve (R2 = 0.9934) determined by serial dilution of polyhedrin spiked in to healthy larval 

proteins (Fig 32). The ELISA has proved to be a simple and sensitive method suitable for 

screening large numbers of samples for virus infection (Kelly et al. I978a; Zhang and Kaupp, 

1988; Lu et al., 1995) and for discriminating between related viruses (Kelly et al. 1978 b; Koenig, 

1978). These workers have used the double antibody sandwich method for their assays but other 

methods which have potential advantages are possible. The direct method simplifies the 

procedure by coating the plate directly with virus and then adding antibody enzyme conjugate. 

The indirect method in which unlabelled antibody is added to virus coated plates uses a 

commercially available anti-IgG-enzyme conjugate which avoids the need for a different 

conjugate for each virus or virus component being assayed. Similarly, the relationship between 

three nucleopolyhedroviruses isolated from the larvae of H. armigera, S. exigua and S. litura in 

Taiwan was determined by assaying the polyhedrin in DAC-ELISA with polyhedrin polyclonal 

antisera specific to each polyhedrin (Tuan et al., 1999) and similarly a monoclonal antibody 

based DAC-ELISA was developed for the identification and differentiation of OpMNPV and 

OpSNPV and also for detection of their homologous polyhedrin in larval extracts with sensitivity 

of 100ng/ml in the presence of host tissue extract,  rather than 5ng /ml  in its absence (Quant, et 

al., 1984). Recently, a polyclonal antibody based DAC-ELISA was developed for detection of 

HaNPV polyhedrin with a sensitivity of 30ng/ml in the presence of host tissue extract rather than 

15ng/ml in its absence (Sridhar Kumar et al., 2007). However, due to competition between insect 

and viral proteins for binding to ELISA plate surface has reduced the detection sensitivity of the 

DAC-ELISA, particularly when crude insect extracts were used. Since it was found that host 



tissue extract interfered with the assay, still we were able to determine its absolute sensitivity in 

the presence of unknown quantities of host tissue extract. To eliminate the competition between 

insect and viral proteins for binding sites in the ELISA plate surface in DAC-ELISA, We 

attempted to avoid the interference phenomenon by standardizing an IC-ELISA to estimate the 

polyhedrin content in insect extracts. Using a chequerboard system the combination of coating 

antigen concentration of 1µg/ml and the antibody dilution of 1:4000 were optimized to assay 

homologous antigens and the antigen concentration of 2µg/ml and the antibody dilution of 1:2000 

were optimized to assay heterologous antigens (Fig 33). To estimate the amount of polyhedrin in 

larval extracts polyhedrin standards of 20 to 0.078µg/ml were spiked in to 25 or 50µg/ml of 

healthy larval extracts resulted in the regression (R2) value of 0.9972 (Fig 35). The sensitivity of 

IC-ELISA was 0.156µg/ml of homologous polyhedrins and 0.35 to 0.31µg/ml of heterologous 

polyhedrins in 25 or 50µg/ml of insect total protein extract. Similarly, an IC-ELISA was 

standardized to evaluate the biosaftey of recombinant and wild type NPV of A. californica 

(Ashour et al., 2007) with 2.5µg/ml of coating antigen concentration and antibody dilution was 

1:4000. Based on the close IC50 values between homologus and heterologus polyhedrins (Fig 34, 

Table 10) each antiseum showed the high percent of cross-reactivity with heterologous 

polyhedrins (Table 11). Similar results were obtained by Ashour et al. (2007) with his optimized 

IC-ELISA system was low for heterologous polyhedrins from wild type AcMNV, AcAaIT-field, 

and wild type SlNPV. In order to study the effect of insect body proteins on IC-ELISA and to test 

the % of recovery of artificially spiked polyhedrin in to 25 and 50µg/ml of un-infected insect 

body proteins. The results obtained with these mixtures were compared with pure virus at the 

same concentrations. The % of amount of polyhedrin (20 - 0.078µg/ml) recovered from 25 or 

50µg/ml of larval protein extract was 82.1 to 116.8% (Table 12). Based on the recovery 

experiment the diagnosis of NPV infection by IC-ELISA was optimized for assaying the larval 

extracts by adjusting their total protein concentration to 25 or 50µg/ml. Among both ELISA 

methods, only IC-ELISA method was capable of detecting polyhedrin with the highest ratio of 



host material through which no increase in colour intensity compared with pure virus (A 405nm 

values are indirectly proportionally to the polyhedrin concentration). Similarly, Crook and Payne 

(1980) examined the direct, indirect and double antibody sandwich methods of ELISA for their 

ability to detect and discriminate between granulosis viruses from Pieris brassicae, Agrotis 

segetum and Cydia pomonella and for their specificity in the presence of host material and they 

concluded that the indirect method was the most sensitive and capable of detecting down to about 

1ng of dissolved capsules/ml compared with 10ng/ml for the double antibody sandwich method 

and 25ng/ml for the direct method and the double antibody sandwich method was more specific, 

showed greatest discrimination between different granulosis viruses.  

5.6.2 Development of Quality Control Tools: 

 The effectiveness of the viral insecticide is critically dependent on concentration of POB, 

which is expressed as LE (Larval Equivalent). Generally, a standard stock preparation consists of 

1LE, i.e. 6 × 109 POBs/ml. While NPV insecticide production methods have been well 

established in many developing countries, the microscopic counting procedure used to screen the 

larvae for NPV infection and quality control of the viral insecticide lots has low-detection 

efficiency, unknown specificity and is laborious and requires considerable skill (Wigley, 1976).  

Because of this many NPV products produced have poor efficacy and found to be ineffective 

under field conditions (Kern and Vaagt, 1996; Harris, 1997). Therefore it is necessary to have an 

effective diagnostic and quality control system for the development of a successful microbial 

control product (Shieh, 1989). Hence, in the present study as part of the quality control during 

mass production of NPVs used for commercial viral insecticide preparations at ICRISAT, 

Patancheru, India, we developed some sensitive and reliable immunochemical methods such as 

DAC and IC-ELISA and evaluated their performance in quantification of POBs in commercial 

NPV preparations. The number of POBs present in sample bottle was determined by extracting 

the total polyhedrin and compared with the standard regression graph of polyhedrin extracted 



from known number (estimated by microscopic counting) of POB standards such as 6 × 109 to 

2.34 ×107 POBs /ml (1 LE to 0.0078 LE) (Fig 37). A simple purification protocol was 

standardized for extraction of total polyhedrin from 1 ml of standard and sample POB 

preparations and checked their purity in 12% SDS-PAGE (Fig 36). The extracts of standards and 

samples were evaluated in both DAC and IC-ELISA at 1:1000 dilution. These ELISA methods 

are sensitive to a minimum of approximately 4.6875 ×107 POBs /ml (0.015 LE/ml), which is little 

bit higher to the range (100 to 2,000) of previous reports (Crook and Payne, 1980; Kelly et al., 

1978b; Longworth and Carey; 1980; Shamim et al., 1994; Stark et al., 1999). The ELISA 

methods can be used to quantify infection, unlike other methods and this feature may be applied 

to predict the potential inoculum required for future populations. Previously, it has been shown 

that the ELISA method can be used to quantify baculoviruses (Clark and Barbara, 1987). Tuan et 

al., 1998 compared the visual counting of POBs by microscope, bioassay, SDS-PAGE, and 

ELISA for quality control of SlNPV products, and ELISA has proved to be better than SDS-

PAGE. We found that there was a significant linear relationship between semi-purified 

baculovirus POBs and absorbnce at 405 nm with a maximum regression (R2) value of 0.9953 for 

DAC-ELISA and 0.9977 for IC-ELISA (Fig 37). The ELISA results were comparable to light 

microscope counting of POBs (Table 13). The absorbance values suggesting that the ELISA 

method can be used to accurately quantify bit virus POBs and virus infections from tissue 

homogenates. Recently, Thorne et al. (2007) reported that the alkali treated POB lysates were 

assayed in IC-ELISA for estimation of total POBs in semi-purified commercial NPV samples or 

in insect tissue extracts with a sensitivity of minimum of approximately 850 POBs. Similarly, 

Parola et al. (2003) reported that the estimation of granulin in commercial GV suspensions of 

Epinotia aporema GV by DAS-ELISA with a sensitivity of 0.53ng/ml of purified OB 

suspensions, this represented 2.0 ×104 OBs/ml.     

 



5.7 Application of Immunochemical Tools in Optimization of 

Conditions for Productivity and Quality of NPVs: 

The immunochemical tools developed in the present study were applied in optimization 

of conditions for the productivity and quality of NPVs during commercial production by applying 

them in bioassay experiments. The conditions optimized were as follows: 

1. Age of the larvae for virus inoculation to obtain maximum virus yield  and 

2. Time of virus harvest to obtain maximum virus yield with low levels of bacterial 

contaminants. 

5.7.1 Identification of optimum age of larvae for virus inoculation: 

The effect of age of larvae on POB yield or optimum age of the larvae for inoculation 

of virus played critical role in determining the productivity of virus with good yields. Hence, in 

the present study the optimum age of larvae for inoculation of virus was determined by mass 

multiplying the NPVs on 2nd, 3rd, 4th, and 5th instar larvae and the total yield of NPV obtained in 

each age group larvae was determined by ELISA. The ELISA results showed that the yield of 

NPV during mass multiplication was increased with increasing in age of larvae (Fig 38, Table 

15). In case, H. armigera the yield of NPV was increased gradually from 2nd instar to 4th instar 

stage and decreased in 5th instar stage. This could be the less gestation period from 5th instar to 6th 

instar stages where the insects might have developed resistance to virus. But, in case of S. litura 

and A. albistriga the yield was increased up to 5th instar stage due to somewhat prolonged 

gestation period than H. armigera during 5th instar stage for these insects. Subsequently, due to 

heavy body weight of these insects the yield (2.47 ± 0.097 LE/ml for SlNPV and 3.11 ± 0.05 for 

AmalNPV) of NPV was also recorded as higher than HaNPV (1.97 ± 0.035 LE/ml). By 

multiplying the HaNPV on third instar H. armigera larvae Pawar and Thombre (1992) recorded 

0.95 × 109 to 3.5 × 109 POBs/larva.  Gopali and Lingappa (2001a) inoculated fourth instar H. 

armigera larvae @108 POBs/ml and recorded higher larval mortality and higher quantity of viral 

yield per larva (2.81 × 108 POBs). In the present study the POB yield obtained per larva was 



slightly higher than the earlier studies conducted by Gopali and Lingappa (2001a) and Pawar and 

Thombre (1992) which may be due to variation in the size of the larvae inoculated with the virus 

and the diet provided to the larvae.  However, Shieh (1978) recovered 5 × 109 POBs/larva by 

inoculating grown up larvae of H. armigera, which is very close to the present value. Similarly, 

the fourth instar larvae for NPV production was selected by Biji et al. (2006a) for HpNPV and 

Rabindra and Subramanian (1974) for HaNPV. In the present investigation the POB yield of 

SlNPV obtained per larva (5.73 ± 0.17 ×109) was higher than the earlier studies (1.4 ×109) 

reported by Tuan et al. (1998) and lower than the earlier studies (9.7 ×109) reported by Jun et al. 

(2007) and close to earlier study (5.572 ×109) reported by Senthil kumar et al. (2005). The yield 

of AmalNPV multiplied on 5th instar larvae was greater than 6th instar larvae due to its heavy 

weight and prolonged guestation period to enter in to 6th instar stage at which could be develop 

resistance, it enhance the multiplication of virus in the body tissues. This is supported by 

Narayanan et al. (1978); Moscardi (1999); Carter (1984) by stating that the yield of virus is 

known to be directly proportional to host larval weight, insect diet, insect age and virus dosage, 

incubation, environment and preservation of virus infectivity are some of the major factors, which 

optimize the production of NPV. 

5.7.2 Identification of optimum time for harvesting of virus: 

Selection of harvesting time is crucial in maximizing the yield, both to achieve peak NPV 

production in individual larvae and to avoid losses. Attempts made to identify the appropriate 

time of harvest after inoculation of the larvae with the virus by conducting the bioassay (time 

course) experiment. The productivity of virus in larvae at different intervals (post inoculation 

days) of the experiment was monitored through ELISA (DAC and IC-ELISA) and western 

immunoassay. This revealed that the POB yield was higher in cadavers (dead larvae) than live 

larvae. In ELISA the virus load was detected in infected larvae from 3 days after inoculation (dpi) 

but, in western immunoblotting the virus load was detected from 4 dpi. The ELISA results 

showed that the concentration of polyhedrin in sampled larvae was increased gradually from 3 to 



10 dpi and subsequently no further increase was observed up to 12 dpi (Fig 39, Table 16). 

However, in western immunoassay (Fig 40) the intensity of polyhedrin band was increased only 

from 4 to 9 dpi and subsequently no further increase was observed up to 12 dpi indicating that the 

virus harvested on 9 dpi was not greatly affect the total yield of NPV. Quant et al. (1984) reported 

that the polyhedrin of OpNPVs was not detected in larvae by DAC-ELISA during 1 to 4 dpi of 

time course experiment but, he noticed that the polyhedrin from insects infected with OpMNPV 

could be detected by a visible color reaction as well as spectrophotometrically on 5 dpi, and the 

amount of polyhedrin was peaked by 8 dpi and subsequently no further increase up to 11 dpi. 

Similarly, Volkman and Falcon (1982) and Shamim et al. (1994) reported that the polyhedrin of 

T. ni NPV and B. mori NPV were detected on 4dpi during the time course experiment by using 

DAS-ELISA. Recently, Parola et al. (2003) reported that the granulin of Epnotia aporema GV 

(EpapGV) was detected as early as 1 dpi using DAS-ELISA. Curiously, in the present study the 

high-dose-exposed larvae showed no such evidence of polyhedrin production by day 1, but rather 

the polyhedrin from the ingested (or external) polyhedra apparently was degraded, or 

antigenically altered, because no polyhedrin could be detected in any of the larvae tested. It is 

possible that the delay in polyhedrin production observed in the larvae was due to secondary 

disease caused by microorganisms either ingested or already in the gut, the host being made more 

susceptible by the primary virus infection. The occurrence of secondary disease in virus infected 

larvae is not uncommon (Vago, 1963), and it is highly likely that secondary disease would 

interfere with the ‘normal’ timing of viral replication and production of polyhedra. The 

concentration of virus harvested from exclusively dead larvae on 10, 11 and 12 dpi were slightly 

higher than virus harvested on 9 dpi. Therefore, it may be best to harvest POBs after larval death. 

However, this involves the practical difficulty of harvesting ruptured and disintegrating larvae. 

Frequent observation and collection of larvae just after death over a period of several days should 

maximize the number of POBs to be harvested, but is quite laborious. Hence, the 

immunochemical tools developed in the present study were successfully applied to monitor the 



POB production in NPV exposed larvae with less pain to technician to screen the large number of 

larvae in the production batches. Okada (1977) developed an apparatus that could be used to 

aspirate the collect ruptured and disintegrating larvae. Collection of larvae using this apparatus 

diminished the labor and loss of POBs associated with difficulties in harvesting liquefying larvae. 

Smitt and Vlak (1988) suggested a premature harvest of S. exigua larvae between four and seven 

days of post inoculation. It was also observed that production of polyhedra did not increase after 

the seventh day of inoculation. However, in the present study harvesting of virus exclusively from 

dead insects recorded maximum yield, as harvesting is delayed there was decrease in yield due to 

wastage of liquefied tissues. However, there was increase in number of bacterial and fungal 

contaminants in NPV-infected larvae during the incubation period, reaching high numbers after 

larval death (Ignoffo and Shapiro, 1978; Grzywacz et al., 1998).  

5.7.3 Screening of bacterial activity in larvae days post exposure to NPV: 

 This study is related to address the bacterial contamination levels in the NPV infected 

larvae and it showed significantly the highest bacterial population was recorded exclusively from 

the dead larvae. The highest number of bacterial colonies and colony forming units per ml 

(CFU/ml) were recorded in the larvae of A. albistriga and the lowest number of bacterial colonies 

and CFU/ml were recorded in the larvae of H. armigera and at the same time in each insect 

species, the lowest number of bacterial colonies and CFU/ml were recorded on 5th day sampled 

larvae and the highest number of bacterial colonies and CFU/ml were recorded exclusively in 

dead larval homogenates after 9th dpi onwards (10 to 12 dpi) (Table 17). This is due to secondary 

disease caused by microorganisms either ingested or already in the gut, the host being made more 

susceptible by the primary virus infection. The occurrence of secondary disease in virus infected 

larvae is not uncommon (Vago, 1963). In this experiment bacterial contamination levels on 5th dpi 

the number of bacterial colonies and CFU/ml of raw insect homognetes were recorded as 23 and 

1.15 × 106 for H. armigera, 28 and 1.4 × 106 for S. litura and 31 and 1.55 × 106 for A. albistriga 

larval homogenate. On 12th day the bacterial population was recorded as 159 and 7.95 × 106 for 



H. armigera, 176 and 8.8 × 106 for S.  litura and 187 and 9.35 × 106 in A. albistriga larval 

homogenate. Martignoni et al. (1968) recorded 9.26 ×108 CFU per 109 POB/ml of a raw NPV 

sample and they reported that the bacterial species associated in the viral production systems are 

generally harmless which belong to normal gut flora of the larvae, and arresting of their further 

growth is preferable as the presence of any human and vertebrate pathogen is not permissible 

(Podgwaite et al., 1983, Cherry et al., 1997). Recently, Podgwaite et al. (2006) reported that the 

gypsy moth nucleopolyhedrosis virus product, Gypchek®, during a 100-day production run 

consists of bacterial population of 5.97±1.51×108 CFU/ml. They did not detect obligate anaerobic 

or fecal coliform bacteria in any of the sample. Bacillus cereus, Staphylococcus epidermidis, B. 

licheniformis, Streptococcus faecalis, Serratia liquefaciens, and Aspergillus niger but the 

presence of opportunistic pathogens indicated that assiduous monitoring of the virus production 

facility and rigorous quality control of production batches are necessary. Purification methods 

based on centrifugation were found to be ineffective in removing bacteria hence improved 

methods of hygiene and harvesting appeared to be more valued in reducing contamination 

(Grzywacz et al., 1997).  McKinley et al. (1989) also suggested harvesting of live infected larvae 

to reduce the bacterial contamination. By harvesting the NPV infected larvae prior to death, it is 

possible to remove bacterial contaminants but the process involved is costly (Podgwaite, 1981) 

and often cause heavy losses which make the option uneconomic (Kelly and Entwistle, 1988; 

Kelly et al., 1989). Recently, Rao and Meher (2004) suggested 6th day after post inoculation as 

ideal period of harvest when the mortality and NPV yield were in accord for optimal viral 

recovery to minimize the constraint of malodor associated with the H. armigera NPV production. 

Grzywacz et al. (1998) described that the virus product from live larvae was only contained with 

acceptable level of microbes. In this sense, harvesting virus from live larvae is probably 

advantageous over doing from NPV-killed larvae. But, in our study, mortality was not 

synchronized, instead occurred from 7 to 12 dpi, during which both infected but yet to be vital 

and live larvae were present together. However, our western immunoassay studies (Fig 40) 



showed that the intensity of polyhedrin band was increased only from 4 to 9 dpi and subsequently 

no further increase up to 12 dpi and the ELISA results showed that the concentration of virus 

estimated in the larvae sampled on 9 dpi was slightly lower than virus estimated in exclusively 

dead larvae sampled on 10, 11 and 12 dpi. Even though there is a considerable difference in 

bacterial contamination levels between 7 and 9 dpi sampled larvae, but their difference in yield of 

virus is not ignorable. This indicates that there is no much difference between the yield of virus in 

the larvae screened on 9 and 12 dpi and at the same time the bacterial contamination is also low in 

9 dpi larvae compared to 10, 11 and 12 dpi. Hence, the virus harvest from both live and dead 

larvae on 9 dpi is feasible and not greatly affects the total yield and quality. 

5.8 Evaluation of ELISA Tools at Field Level Efficacy Study of NPV: 

To integrate the ELISA tools into IPM program, we examined the ability of the 

antibodies to detect the NPV at various stages of infection in insect population at field level. For 

this field experiment was conducted during 2007 kharif season at ICRISAT forms with respect to 

H. armigera on pigeonpea crop by spraying the field with 250 LE/h after the pest population was 

reached above ETL (Economic Threshold Level).  The larvae were sampled on 0 to 10 dpa and 

assayed for NPV in DAC-ELISA. After 4 days of treatment, the H. armigera larvae picked up the 

infection and crawled listlessly about the field. They climbed to near by top portions of the plants 

and dead larvae were seen hanging from the plants and subsequently dropped to the ground at the 

base of the plant. Apart from this observation, the ELISA results also showed that the 

concentration of NPV used for field spray was successfully infected the field population. The 

infection was initiated in field population on 3 dpa and the disease was peaked up to 8 and 9 dpa 

and then declined on 10 dpa (Fig 41). The DAC-ELISA results (Table 18) showed that 10 ± 1.7% 

of the field collected larvae were NPV + ve on 3 dpa, 15 ± 2.2% on 4 dpa, 32 ± 2.6% on 5 dpa, 50 

± 3.2% on  6 dpa , 65 ± 2.5% on 7 dpa, 71 ± 2.5%, on 8 dpa and 70 ± 5.9 on 9 dpa. But, on 10 

dpa the % of infection was suddenly decreased to 27 ± 5.7%. On 10 dpa almost field larvae were 



died only few larvae (live and dead) were recorded on plants. The very low % of infection in the 

larvae sampled on 10 dpa was due to the reasons we can predict are either lack of sufficient virus 

concentration to cause the infection or may be the virus lost its viability after certain period of 

field application or the larvae may not exposed to virus or they may be migrated from neighbor 

fields. If less number of larvae are infected, supplementary virus is inoculated to initiate the 

epizootics to prevent the insect damage (Stelzer et al., 1977, 1979). Moore et al. (2004) 

conducted the field evaluation of HaNPV on Citrus in South Africa, he reported that, a 

concentration of 1.15×107 POBs/ml of HaNPV spray resulted in a 100% reduction in H. armigera 

larval infestation within 7 days on tomato plants in a hot house environment and a 10-fold lower 

concentration, 1.15×106 POBs/ml, resulted in a 100% reduction within 16 days. In two field trials 

on navel oranges, the lower concentration and an additional even lower concentration of 7.26×105 

POBs/ml, resulted in a 100% reduction in H. armigera infestation within 14 days. Recently, 

Thorne et al.(2007) started the evaluation of OpNPVs in larvae that have emerged from field–

collected egg masses by indirect ELSA method. The DAC-ELISA results of individual larvae 

screened from control (un-treated) plot showed that most of the larvae were NPV –ve and very 

few larvae were found to be NPV +ve (1 ± 1.9% on to  6 ± 1.9%). This is due to the migration of 

larvae from treatment plot to control plot or may be natural NPV infection occurred in field 

population which is frequently observe at ICRISAT forms. The virus strain [HaNPV-P 

(Patancheru strain)] used for this field study was isolated during such an out break of natural 

epizootic condition. The gross virus concentration (POBs) in infected larvae per dpa estimated by 

ELISA method during 0-4 dpa was negligible and the virus tier was gradually increased between 

5 to 10 dpa (Table 18). The virus concentration in infected larvae was 0.07 ± 0.01 LE /ml on 5 

dpa, 0.10 ± 0.02 LE/ml on 6 dpa, 0.29 ± 0.067 LE/ml on 7 dpa, 0.33 ± 0.07 LE/ml on 8 dpa, 0.74 

± 0.07 LE/ml on 9 dpa and 0.41 ± 0.07 LE/ml on 10 dpa. Even though the % of infection in 

larvae sampled on 10 dpa was very low, considerable level of virus titer was estimated from the 

infected larvae sampled on 10 dpa (Table 18). Because, laboratory bioassay study proved that the 



rate of conversion of insect to virus increased from 5 to 10 dpa. Based on the ELISA results the 

pest management decisions may be guided by pathogen incidence, because increases are 

correlated with host declines (Otvos et al., 1999; Stelzer 1979). The described ELISA methods in 

the present study may be effective and applicable to IPM programs. 

5.9 Isolation and Characterization of Polyhedrin Gene of NPVs: 

In order to establish the purity of seed stock or master stock of NPV used for commercial 

viral insecticide preparations at ICRISAT, an attempt was made at molecular level identification 

and evaluation of phylogenetic status of NPVs done by isolation, cloning, sequencing of 

polyhedrin gene and evaluation their phylogenetic status.  

5.9.1 Isolation of Polyhedrin Gene: 

For this a double round PCR protocol was standardized using degenerate primer set 

(Table 19) to isolate the full length polyhedrin gene of NPVs isolated from H. armigera, S. litura 

and A. albistriga. Due to variation in the annealing temperatures of the primer combinations the 

PCR protocol was standardized with dual rounds of annealing temperatures (Fig 44). 

Unfortunately, the degenerate primers were not successfully amplified the polyhedrin genes of 

SlNPV and AmalNPV. The primer combination with SlNPV DNA did not resulted in any 

amplification and the AmalNPV DNA template resulted in non specific amplifications. We could 

explain this fact either because of the use of degenerated primers with variation in the annealing 

temperatures or the nucleotides of N-terminal and C-terminal ends of the polyhedrin genes of 

these two viruses may be different from the previously published sequences from which the 

primers were designed or the influence of contaminants in the DNA extracted directly from POB 

samples, which are common inhibitors of the PCR (Wilson, 1997). Considering that the DNA 

extraction procedure from POBs could be cause of inconsistent results, we used a reliable 

protocol for extraction of DNA directly from POBs (infected larval extracts) and the quality of 

DNA was more than sufficient to carryout the PCR (Fig 43). In this way the same primer 



combination with HaNPV DNA template was successfully amplified the full-length polyhedrin 

gene (~750 bps) (Fig 46). Similarly, PCR assays using degenerate / specific primers were 

described by several authors for detection and differentiation of NPVs by amplifying the 

polyhedrin gene (Seufi, 2008, unpublished, Lee et al., 2007, Woo et al., 2006, Jakubowska et al., 

2005, Wu and Wang, 2005, Woo et al., 2005, Ikuno et al., 2004, Christian et al., 2001, De 

Moraes and Maruniak, 1997; Burand et al., 1986). In the present investigation, lack of proper 

PCR products of SlNPV and AmalNPV polyhedrin genes, we confined only to the HaNPV-P 

(Patancheru strain) polyhedrin gene for its cloning, sequencing and phylogenetic analysis.  

5.9.2 Cloning and sequencing of HaNPV-P polyhedrin gene: 

Although the isolation of NPV from H. armigera was previously reported, the 

characterization of their polyhedrin gene was not reported yet from Indian subcontinent. Cloning 

of HaNPV-P polyhedrin gene in to pJET1 cloning vector was worked well, in the colony PCR, 

amplification of the clone using universal pJET1 forward and reverse sequencing primers gave 

the amplification of the expected size of about ~ 800 bp, that were taken into account for the 

plasmid sequence of 60 bp (Fig 46). Considering the sizes of previously published polyhedrin 

sequences, most amplification products were between 730-750 bp long. Gene sequencing analysis 

of selected clones resulted in 744 nucleotide long ORF with a predicted coding capacity for a 

polypeptide of 247 amino acids (Fig 47) as in the AmalNPV (AF118850). Rivkin et al. (1998) 

reported that 246 amino acid polypeptide in a local strain of Israeli HaNPV polyhedrin. Similarly, 

Bansal et al. (1997) reported that 246 amino acid polypeptide in SlNPV polyhedrin. This is the 8th 

report world wide and 1st report from Indian sub continent to be described the full length 

polyhedrin gene sequence of a NPV isolated from H. armigera. In BLASTX search the three 

sequences showed homology with baculovirus OB protein domain of known polyhedrin and 

granulin proteins from the GenBank data base.  



5.9.3 Phylogenetic Analysis at Nucleotide and Amino acid Levels of 

HaNPV-P Polyhedrin with Known Polyhedrins / Granulins:  

The polyhedrin is the major protein of the virus occlusion body and is the most conserved 

protein of NPVs (Rohrmann, 1992). After the first report about localization of the polyhedrin gene 

in AcNPV (Vlak and Smith, 1982; Hooft van Iddekimge et al, 1983) determined its nucleotide 

sequences. Polyhedrin/granulin is a protein of about 245 to 250 amino acids, and appears to be the 

most highly conserved baculovirus protein. These characteristics lead to the use of polyhedrin or 

granulin sequences as the base of baculovirus phylogenetic studies, since this is the gene from 

which the larger number of different examples is available for comparison (Zanotto et al., 1993). 

To investigate the relatedness of HaNPV-P to other baculoviruses, the study compared the 

polyhedrin gene of HaNPV-P with fully-sequenced polyhedrin genes of lepidopteran NPVs and 

GVs available in GenBank.  

Comparison of the nucleotide sequence of the coding region of the polyhedrin with DNA 

sequences of 40 NPV polyhedrins and 14 GV granulins by using MgAlin tool of Lasergene 

software (DNASTAR, USA) and onstruction of phylogenetic tree revealed two major branches that 

were considered as separate clusters of baculovirus occlusion body protein (polyhedrin or granulin), 

they are NPVs and GVs. NPVs were again divided into two major branches, they are group-I and 

group-II NPVs. There are 16 NPVs in group-I, 25 NPVS in group-II (including HaNPV-P) were 

observed in separate clusters (Fig 48).   

The data was also analyzed by bootstrapping at 1000 replicates using CLC 

workbench 3 software (CLC Bio) and the obtained topology of the later phylogenetic tree 

agree with that of clastalW analysis (Fig 49). In both trees the HaNPV-P falls within the group-

II of NPVs and is closely related to the NPVs isolated from M. configurata (98% homology), M. 

brassicae (96.1% homology), L. separata (90.6% homology) and Panolis flammea (90.6%) (Table 

22).  At the same time, minimum homology (72.4%) with NPV isolated from Wiseana signata. But, 



at the same time the HaMNPV-P polyhedrin gene showed the 77.2 % homology with HaNPV. 

Similarly, in group-I NPVs, 99.9% homology was noticed between AfNPV and RoMNPV (Table 

21). The high degree of homology between viruses isolated from different hosts represents that 

those viruses are isolates of the same virus.  

Although, polyhedrin gene is still considered a reasonable marker for identification of a 

NPV and its neighbors, Herniou et al. (2003) and Lange et al. (2004) argued that it might not be the 

best baculovirus gene for phylogenetic studies because polyhedrin phylogenies often disagree with 

other gene phylogenies. While other phylogenetic analyses consistently group AcMNPV and 

BmNPV together, but phylogenies based on polyhedrin have AcMNPV as a sister group to the rest 

of the group-I NPVs (Herniou et al., 2003). Phylogenies based on combined sequences of shared 

genes have been found to be more robust than those based on the sequences of individual genes 

(Herniou et al., 2001, 2003). The present investigation is strongly supporting the earlier studies by 

Harrison and Bonning (1999), they reported that the NPVs of Rachiplusia ou and Anagrapha 

falcifera are isolates of the same virus  and studies by Smith and Summers (1982); Figueiredo et al. 

(1999); Rovesti et al. (2000), they stated that among the NPVs with potential as pest control agents, 

the MNPVs isolated from M. brassicae (Lepidoptera: Noctuidae) and H. armigera (Lepidoptera: 

Noctuidae) were shown to be similar in terms of both biological activity and genomic homology. 

Other studies have also shown that another virus, Panolis flammea MNPV (PfMNPV), is closely 

related to MbMNPV. These viruses shared a high degree of homology and both replicated in either 

M. brassicae or P. flammea causing similar mortality rates (Possee and Kelly, 1988). Thus, 

MbMNPV, HaMNPV and PfMNPV are all closely related and should probably considered variants 

of a single virus species because of their biological activity (Rovesti et al., 2000). Due to the high 

degree of homology between the polyhedrin sequences of HaMNPV-P, McMNPV, and MbMNPV 

would be classified in the group-II NPVs as established by Zanotto et al. (1993). The HaNPV-P, 

McMNPV and MbMNPV sequences are also identical for 5’ sequences between the TAAG 

consensus sequence and the ATG start site of polyhedrin and are typical of group-II as opposed to 



Group-I polyhedrin untranslated sequences (Zanotto et al., 1993). It is likely that the predominant 

genotype selected from viral isolate such as HaMNPV is dependent on prevalence of a particular 

host, e.g., H. armigera or M. brassicae, as well as other factors, such as geographical location. 

Clearly, there are problems in naming a baculovirus simply on the basis of the host from which it 

was originally isolated and therefore greater vigilance should be taken in naming new (and old) 

viruses.  For example, studies on viruses from members of the same or different host species show 

similarity or variability in morphology, virulence and biological characteristics (Shim et al., 2003). 

Many of the known baculoviruses could be grouped together depending on their degree of genetic 

relatedness, which does not reflect the taxonomic grouping of their host/hosts (Zanotto et al., 1993). 

Based on the above reports one can comment like “variants of baculoviruses with heritable 

similarities in virulence and variations in host range arise spontaneously in nature”.  

In spite of the fact that the HaNPV-P position in the tree was consistent, the position of 

the same lineages changed depending on the method used. Several reasons, such as the significant 

variation in DNA composition of some lineages and the small size of the polyhedrin gene, may help 

in explaining the lack of resolution of some taxa. As the number of distinct polyhedrin sequences 

available increases, its shortcomings as a phylogenetic marker become worth considering. This 

small gene has both, considerable conservation at the amino acid level and variation at the DNA 

composition level due to unique codon usage preferences observed in the different viruses. This 

entails two problems. First, the small size of the dataset reduces the amount of available 

information to reconstruct the phylogeny. Second, the informative sites had significant variations in 

the DNA composition. For example, the polyhedrins of the LdMNPV, BusuNPV, OpMNPV, 

AmalNPV, and LoobMNPV were found to have biases nucleotide composition. In the presnt study, 

bootstrap analysis using 1000 replicates of phylogenetic tree with CLC work bench revealed that 

LdMNPV and WsNPV were separated as major branches and supported with 100% bootstrap 

values. The remaining branches are supported by high bootstrap values. Composition biases make it 

difficult to estimate the proper values for nucleotide transition matrices, which can induce 



systematic errors in maximum likelihood inferences. This causes likelihood models to provide 

unstable position for several taxa and their association to Group-II NPV. Of course, the 

concatenation of more genes in common between the genomes of interest may provide more 

reliable information for the phylogenesis after the genome of HaNPV-P is fully sequenced.  

Similarly, the phylogenetic analysis based on predicted amino acid of HaNPV-P polyhedrin 

with previously published amino acid sequences of polyhedrins and granulins by ClustalW method 

(Thompson et al., 1994) using MgAlin tool of Lasergene software (DNASTAR, USA) revealed that 

the phylogenetic tree (Fig 50) showed two major branches that were considered as separate clusters 

of baculovirus occlusion body protein (polyhedrin or granulin), they are NPVs and GVs. NPVs 

were again divided into three major branches, they are group-I, group-II NPVs and LdMNPV alone 

formed a separate branch. Due to less homology with other group-II NPVs, WsNPV and SliNPV 

were formed as separate cluster within group-II NPVs. But, after bootstrapping WsNPV was 

completely separated from group-II NPVs and formed as a seperte branch of NPV.  

When the predicted amino acid sequence deduced from the putative HaNPV-P polyhedrin 

gene was compared with the amino acid sequence of McMNPV, MbMNV, PfNPV and LsMNPV 

polyhedrins, it was shown to be nearly identical, being 95.5% with MbNPV and McNPV, 93.9% 

with PfNPV and 93.5% with LsNPV polyheddrins respectively (Table 24). The deduced amino acid 

sequence of HaNPV-P polyhedrin differs by only 11 amino acids with McMNPV and MbMNPV. 

Similalry, it differes by 15 amino acids with LsMNPV and PfMNPV polyherins (Fig 53). Although 

these amino acid changes do not occur in highly variable regions of polyhedrin (Zanotto et al., 

1993). The high degree of homology between the polyhedrin sequences of HaNPV-P, McMNPV, 

MbMNPV, PfMNPV and LsMNPV indicats that HaMNPV-P would be classified in the group-II 

NPV as established by Zanotto et al. (1993). Similarly, Li et al. (1997) proved that the polyhedrin 

amino acid sequence of McMNPV was close (97.6%) to MbMNPV and PfNPV polyhedrins and 

classified that McMNPV was a group-II NPV. Generally group-II NPVs have polyhedrins with 246 

amino acids instead of 245 found in group-I. But, Wolff et al. (2002) observed a unique 



characteristic feature in McMNPV with respect to polyhedrin is the size of predicted protein is 249 

amino acids as in the SliNPV and the aminoacid sequence also more close to AmalNPV polyhedrin, 

which is having 247 amino acids. Most of the size differences among polyhedrins take place in 

clusters in the N-terminus of the proteins that are tyrosine-rich and where short motifs appear to be 

duplicated in the longer sequences or lost in the shorter ones. For example, the HaNPV-P has a 

duplication of P-L/A-Y tripeptides (Fig 47); LobMNPV has a duplication of a P-D-Y tripeptide and 

the SliNPV of a Y-S-R/A tripeptide (Wolff et al., 2002). 

5.10. Development of PCR Based RFLP Marker for Identification and 

Differentiation of HaNPV-P (Patancheru) Strain: 

Phylogenetic analysis based on polyhedrin gene showed that, the HaNPV-P strain was 

more close to McMNPV, MbMNPV and LsMNPV than HaNPV. In the present study an attempt 

has been made to distinguish HaNPV-P strain from other NPVs through PCR-RFLP marker 

analysis based on its unique restriction sites present in the amplified portion of the polyhedrin 

gene. To identify the unique restriction sites, restriction mapping analysis of HaNPV-P 

polyhedrin gene along with other known published polyhedrin sequences was performed using 

BioEdit version 5.0.9. The unique restriction sites present at particular nucleotide positions in 

polyhedrin gene of HaNPV-P were identified and short listed the other NPVs which have same 

restriction sites at same positions. This has showed that one unique restriction site, Xho-I at 

nucleotide position 131 was found in NPV from M. brassicae and M. configurata, and at position 

671 in NPV of L. seperata. Whereas in HaNPV-P, the Xho-I site was found at both 131 and 671 

base pairs (Fig 54). Further verification PCR-RFLP analysis of HaNPV-P polyhedrin gene 

showed that, in 12% native PAGE the digested product was separated as three different sized 

fragments which are corresponding to the restriction map. The sizes of the restriction fragments 

were estimated to be 540, 131 and 73 bps (Fig 55). But, the Xho-I site was not found in any of the 

HaNPV polyhedrin gene sequences deposited in the GenBank. This indicated that the HaNPV-P 

strain was shown to be a mixture of closely related genotypes. The PCR, when combined the use 



of REN analysis, can provide considerable resolution for use in diagnostic screens, it is relatively 

simple to use and can yield results very quickly. Not surprisingly, this approach is now starting 

for detection and identification of a range of insect viruses (Kool et al., 1991; Williams, 1993, De 

Moraes and Maruniak, 1997; Bulach et al., 1999). Similarly, Christian et al. (2001) developed a 

rapid method based on PCR-RFLP analysis for identification and differentiation of HaSNPV and 

AcMNPV groups by using a set of redundant primers to highly conserved region of polyhedrin 

gene. Based on REN analysis, Rovesti et al. (2000) reported that the HaNPV isolate was shown 

to be a mixture of many closely related genotypes but individual genotypes remained unchanged 

on passage in either H. armigera or M. brassicae. Doyle et al. (1990) noted that when 

MbMNPVD was passed in Othosia cruda there were minor changes in the restriction enzyme 

profile, which was attributed to the selection of a different variant. However, bioassay studies of 

Rovesti et al. (2000) showed that the two viruses HaMNPV and MbMNPV were successfully 

replicated in H. armigera, M. brassicae and H. zea, resulting in each case, in progeny virus which 

was essentially similar to the inoculum. Therefore, a viral insecticide based on these NPVS from 

H. armigera and M. brassicae would be more appropriately targeted against both insects. 

Similarly, Murillo et al. (2001) has reported that REN profiles of two SeNPV isolates (SeUZB 

and SeSP3) in Uzbekistan and Spain and MbNPV (Mb-PL) in Poland were closely related to 

previously described Spanish isolates of SeNPVs. At the same time the Pst-I and Bgl-II profiles 

of SeUZB and Mb-L were identical and very similar to the REN profiles of MbMNPV strain 

which is the active component of MamestrinR, a commercial bioinsecticide in France (NPP, 

Nagueres, France). In addition to SeMNPV, S.exigua is susceptible to other NPVS such as A. 

californica MNPV (Smits and Vlak, 1987), S. liitoralis MNPV (Munoz and Caballero, 1999) and 

MbMNPV (Wiegers and Vlak, 1984). In another case AcMNPV and BmNPV also show a high 

degree of genomic homology and different REN fragment profiles but do not share an 

overlapping host range and can be regarded as two different species. It is interesting to note that 

only minor changes in the virus genome, namely one or two amino acid substitutions in the 



AcMNPV helicase P143, are sufficient to expand the host range of AcMNPV to B. mori larvae 

(Arguad et al., 1998; Kamita and Maeda, 1997). 

In the earlier days of baculovirology, it was believed that baculoviruses could only infect 

a single host species, and that no cross- infection occurred. This generalized the use of binomial 

Latin names of the insect species hosts to describe the new viral isolates. However, this practice 

can affect our understanding of baculovirus biology, and can also lead to confusion upon studying 

the classification and taxonomy of baculoviruses (Federici and Hice, 1997), and should be 

changed by more reliable methods based, for instance, in the genotypic characteristics of the 

viruses. A useful means for identification or description of baculoviruses is REN analysis of viral 

DNA, as firstly demonstrated by Lee and Miller (1978). This method has proved to be very useful 

not only for distinguishing distinct NPV species, but also different strains of one virus or even 

different genotypes within the same virus isolate (Smith and Crook, 1988; Munoz et al, 1998, 

1999).  

In general, baculovirus wild-type populations, from both different geographical isolates 

of the same virus and within a single isolate, where several genotypic variants of frequently 

coexist, show a considerable genetic heterogeneity. This heterogeneity is due to the enormous 

plasticity displayed by baculoviruses genomes which can undergo deletions (Munoz et al., 1998), 

insertions (Jehle et al., 1995), point mutations, recombinations (Croizier and Ribeiro, 1992), etc. 

This plasticity suggests that field isolates may be adapting to host and environmental conditions 

and that those isolates containing heterogeneous populations may be more valid for viral survival 

in the field (Possee and Rohrmann, 1997).  

Investigations of geographic variability and the role of genotypic differences in the 

biology of baculoviruses are an important area of current research. Such studies may provide 

insight into the evolution of baculoviruses and their hosts and may also aid in the development 

more effective virus strains for biological control of insects. The improvement of HaNPV-P strain 

for a successful introduction into biological control for legume pod borer still requires detailed 



knowledge of the molecular biology of this virus. This study sets the foundation for this and will 

serve in genetic engineering of the virus to enhance its potential as biological control agent. 
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CHAPTER – VI 

CONCLUSIONS 

The important conclusions drawn from the present investigation are 

• Nucleopolyhedroviruses (NPVs) isolated from H. armigera, S. litura and A. albistriga are 

belongs to multiple nucleocapsid NPVs (MNPVs). This is the 1st report from Indian sub-

continent to be described the multiple nucleocapsid nature of NPVs isolated from these insect 

species. 

 

• There was a significant difference in parameters like POBs/ml and POBs/larvae which showed 

that HaNPV multiplied on field collected larvae recorded significantly higher yield compared to 

laboratory reared larvae and the yield of SlNPV and AmalNPV was higher than HaNPV. 

 

• Isoelectric precipitation method is simple and rapid protocol than sucrose gradient 

centrifugation method for purification polyhedrin from complex POB suspensions. 

 

• Molecular weight of polyhedrins estimated in 12% SDS-PAGE are 31.65 kDa (± 0.00), 31.29 

kDa (± 0.00) and 31.67 kDa (± 0.295) of HaNPV, SlNPV and AmalNPV respectively. 

  

• The polyhedrin purified in both the methods (iso-electric and sucrose gradient) were 

contaminated with some minor molecular weight peptides of about 7-27 kDa and a high 

molecular weight peptide of about 60-70 kDa fragment. This has revealed that three NPVs have 

6-8 minor polypeptide contaminants.  

 

• In sucrose gradient purified polyhedrin preparations the minor peptide contaminants were 

relatively lower than isoelectric precipitated polyhedrin preparations but the yield of polyhedrin 

obtained was very less. 

 

• Electro-elution of polyhedrin from PAGE gels is a best option to avoid the minor peptide 

contaminants in polyhedrin preparations during polyclonal antibody production against 

polyhedrin of NPVs.  

 



• Polyclonal antibodies against polyhedrin of HaNPV, SlNPV and AmalNPV were produced by 

using 500µg of polyhedrin for immunization with an antibody titer of 1:5000 dilution, 18 weeks 

after immunization. 

 
• The antibodies are highly specific to the polyhedrin and have no cross-reaction with insect body 

proteins. In addition to the major polyhedrin (31 kDa), the polyclonal antibodies recognized 

some minor low molecular weight polypeptides which could be degraded peptides of major 

polyhedrin. However, each antiserum has different degrees of cross-reactivity with 

heterologous polyhedrins in DAC-ELISA and western immunoblotting. 

 

• Among various immunochemical tools developed using the polyhedrin polyclonal antibodies, 

indirect immunofluorescence assay, western immunoblot assay and DAC-ELISA were more 

convenient for detection of POBs in homogenates of NPV-infected larvae and viral insecticide 

preparations. 

 

• Both DAC-ELISA and IC-ELISA were more conveninet for detection and quantification of 

polyhedrin protein in insect extracts and viral insecticide preparations but IC-ELISA is an 

appropriate test and allows quantification directly from alkali treated crude insect extracts / 

viral insecticide preparations.  

 

• These tests are equally effective in detecting heterologous polyhedrins of closely related NPVs.  

 

• These diagnostic tools are convenient, rapid and inexpensive for routine detection and 

quantification of NPVs and this technology will also be transferred to the bioproducts 

agribusiness units for commercialization of NPV production. 

 

• Application of ELISA and western immunoblot assay in bioassay experiments during 

optimization of conditions for the productivity and quality of NPVs suggested that 4th instar 

larvae is suitable for H. armigera and 5th instar larvae are suitable for S. litura and A. albistriga 

for virus inoculation, and virus harvesting 9 days after inoculation from both live and dead 

larvae was better to get the maximum virus yield as well as to reduce the development of 

bacterial contamination. 

 



• Application of ELISA tools at field level evaluation of efficacy of NPV against H. armigera on 

pigeon pea crop have proved that the useful ness of these tools in ecological and 

epidemiological studies of NPVs during IPM programs and also during the surveys of their 

persistence and out breaks of natural epizootics in the environment.  

 

• Dual round PCR protocol using degenerate primers was a convenient method for isolation of 

full length polyhedrin gene of HaNPV-P strain.  

 

• Gene sequencing analysis of HaNPV-P polyhedrin gene resulted in 744 nucleotide long ORF 

with a predicted coding capacity for a polypeptide of 247 amino acids. This is the 1st report 

from Indian sub continent  and 8th report world wide to be described the full length polyhedrin 

gene sequence of a NPV isolated from H. armigera. 

 

• Phylogenetic analysis at nucleotide as well as amino acid levels of polyhedrin gene showed that 

the virus belongs to group-II NPVs and is more closely related to the polyhedrins of NPVs 

isolated from M. brassicae, M. configurata and L. seperata. The virus was named as 

Helicoverpa armigera nucleopolyhedrovirus, Patancheru strain (HaNPV-P). 

 

• PCR-RFLP analysis clearly differentiated the HaNPV-P polyhedrin with other published 

HaNPV polyhedrins by having one unique (Xho-I) restriction site at nucleotide positions 131 

and 671 as in M. brassicae and M. configurata (131) and L. seperata (671) indicates that the 

HaNPV-P is a unique  strain with in HaNPV species. 

 

• The present investigation provides the insight into the evolution of baculoviruses and their 

hosts and may also aid in the development more effective virus strains for biological control of 

insects. The improvement of HaNPV-P strain for a successful introduction into biological 

control for legume pod borer still requires detailed knowledge of the molecular biology of this 

virus. This study sets the foundation for this and will serve in genetic engineering of the virus to 

enhance its potential as bio-control agent. 
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APPENDIX -I 

        Helicoverpa armigera (Hubner) larval diet: 

 

         Diet ingredients: 

 

S. No. Ingredients Quantity
* 

1. Chickpea flour 300.0 g 

2. Ascorbic acid 4.7 g 

3. Methyl-p-hydroxybenzoat 5.0 g 

4. Sorbic acid 3.0 g 

5. Aureomycin powder 11.5 g 

6. Vitamin stock solution 10.0 g 

7.  Water 450.0 g 

8. Yeast 48.0 g 

9. Agar 17.3 g 

10. Water (for yeast/agar) 800.0 ml 

 

* 
Diet sufficient for about 2000 larvae. 

 

 Method of diet preparation: 

 

• Weigh all dry ingredients and have all wet ingredients in appropriate measuring 
cylinders. 

• Add ingredients (S.No. 1-6) in a large bowl. Add water (S.No.7) and mix thoroughly 
using a blender 

• Mean while heat water in a saucepan. When the water starts boiling add agar and mix 
thoroughly by stirring. 

• Sprinkle yeast and mix thoroughly until an even consistency is obtained 

• Add agar mixture to the ingredients (S.No.1-6) in the blender and mix thoroughly. 

• Pour diet into trays and cell wells 

• Leave to cool and transfer insects on to the diet. 

 



APPENDIX -II 

         Spodoptera litura (Fabricious) larval diet: 

 

         Diet ingredients: 

 

S.No Ingredient Quantity
1 

Fraction-A: 

1 Water 2000.0 ml 

2 Kabuli gram2 flour 438.4 g 

3 Brewer’s yeast 32.0 g 

4 Sorbic acid 4.0 g 

5 Vitamin E (Viteolin capsules) 4.6 g 

6 Methyl parahydroxy benzoate 6.4 g 

7 Ascorbic acid 10.4 g 

8 Sorghum leaf powder 160.0 g 

Fraction-B: 

9 Agar-Agar 40.8 g 

10 Water 1600.0 ml 

11 Formaldehyde (40%) 3.2 g 

 

      1: Amount used to prepare 15 jars of 300 g diet each 

     2: A cultivar of Chickpea (Cicer aiertnum) 

              Method of diet preparation: 

• All the ingredients of fraction-A except the Sorghum leaf powder are blended for 
1 min.  

• Sorghum leaf powder is soaked in 2 liters of warm water (700C) and blended with 
fraction-A ingredients for 3 min.  

• Agar-Agar is boiled in 1.6 liters of water (fraction-B) and cooled to 400C before 
adding to the blender containing fraction-A ingredients.  

• Formaldehyde is finally added and all the constituents are blended for 3 min. Then 
the diet poured in to plastic jars and cooled.  

• Each jar contains about 300g diet, which is sufficient for 100 larvae to develop 
successfully to IV instar. 



APPENDIX -III 

Polyacrylamide Gel Electrophoresis Reagents and Buffers: 

Stack gel buffer (1 M Tris-HCl, pH 6.8) 

Tris base 12.1 g 

Dissolve in 70 ml distilled water, adjust pH to 6.8 with 1 N HCl and make up to 100 ml with 
distilled water.  

Resolving gel buffer (1 M Tris-HCl, pH 8.8) 

Tris base 12.1 g 

Dissolve in 70 ml distilled water, adjust pH to 8.8 with 1 N HCl and make up to 100 ml with 
distilled water.  

Acrylamide/Bis (30:0.8 w/w) mixture 

Acrylamide  30 g 

Bis acrylamide 0.8 g 

Distilled water to 100 ml 

Store this solution at 4ºC in amber coloured bottle or wrap the bottle with aluminium foil to 
avoid exposure to light. 

Precaution: Acrylamide is a neurotoxin. Direct contact with skin or inhalation of acrylamide 
should be avoided. Prepare this solution in fume hood and always wear gloves.    

10% ammonium persulphate (APS) 

APS 100 mg 

Distilled water 1 ml 

Note: Always prepare fresh solution before use. 

Electrode (running or tank or TG) buffer, pH 8.3 

Tris base (25mM)  3 g 

Glycine (250mM) 14.4 g 

SDS  1 g 

Distilled water 1 litre. No need to adjust pH. Store at room temperature. 

Plug gel composition (Optional)   Stacking gel composition (4%) 

Acrylamide: Bis mixture 1.75 ml    Acrylamide:Bis mixture  1.75 ml 

Resolving gel buffer 1.0 ml   Stack gel buffer      1.25 ml 

Distilled water  1.0 ml   Distilled water   7 ml 

TEMED   20 µl   TEMED        15 µl 

10% APS   40 µl   10% APS      200 µl  

       10% SDS      100 µl  

 



Resolving gel composition 

 

Note: Mix acrylamide: bis solution, gel buffer, distilled water and TEMED mix well, then add 
APS, swirl the flask and immediately pour into the gel mould 

Precaution: Unpolymerised acrylamide is a neurotoxin. Gloves should be worn when handling 
this solution. 

*For denaturing gel only  

Laemmli buffer 

0.5 M Tris-HCl, pH 6.8 

10% SDS 

5% 2-amino-thioglycerpl 

10% glycerol 

0.05% bromophenol blue 

 

Silver Staining Reagents and Buffers 

 

Fixing solution :( Prepare freshly before use) 

Glacial acetic acid: 3 ml 

Methanol:  50 ml 

dH2O     : 147 ml 

 

DTT wash solution {0.05% Dithiothreitol (DTT)} 

DTT: 5 mg 

DH2O: 10 ml 

This can be stored in aliquots at –20oC dilute this to 1:100 freshly before use. 

 

 

Component 10% 12% 14% 16% 

Acrylamide: Bis mixture 10 ml 12 ml 14 ml 16 ml 

Resolving gel buffer 11.25 ml 11.25 ml 11.25 ml 11.25 ml 

Distilled water 9 ml 7 ml 5 ml 3 ml 

TEMED 20 µl 20 µl 20 µl 20 µl 

10% APS 100 µl 100 µl 100 µl 100 µl 

10% SDS 300 µl 300 µl 300 µl 300 µl 



Silver nitrate solution (Prepare freshly before use) 

Silver nitrate: 400 mg 

DH2O: 200 ml 

 

Developer solution (Prepare freshly before use) 

Na2Co3: 6 g 

Formaldehyde: 100 µl 

dH2O: 200 ml 

 

Stop solution: 

Glacial acetic acid: 1 ml 

dH2O: 99 ml 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX-IV 

 

ELISA- Reagents and Buffers: 
 

Carbonate buffer or coating buffer, pH 9.6 
Na2CO3 1.59 g 
NaHCO3 2.93 g 
Distilled water to 1 l [No need to adjust pH] 
 

Phosphate buffer saline (PBS), pH 7.4 
Na2HPO4 2.38 g 
KH2 PO4 0.4 g 
KCl 0.4 g 
NaCl 16.0 g 
Distilled water to 2 l 
No need to adjust the pH 
 

Phosphate buffered saline Tween (PBS-T) 
PBS 1 l 
Tween-20 0.5 ml 
 

Antibody buffer (PBS-TPO) 

PBS-T 100 ml 
Polyvinyl Pyrrolidone (PVP) 40,000 MW 2.0 gm 
Ovalbumin (Sigma Cat. No. A5253) 0.2 gm 
 

Distilled water - Tween (dH2O-T) 

Distilled water 2 l 
Tween 20 (0.05% v/v) 1 ml 
 

Substrate buffer (diethanolamine buffer) for ALP system 
Prepare 10% diethanolamine in distilled water and store at 4 0C. Adjust pH to 9.8 with con.HCl. 
Prepare 0.5 mg/ml p-nitro phenyl phosphate (PNPP) in 10% diethanolamine, pH 9.8 (for each 15 
mg table 30 ml substrate buffer is required). This solution should be prepared fresh. Don’t store 
left over buffer. 
Note: Diethanolamine is toxic and harmful to eyes. Take necessary care to avoid contact with 
skin. PNPP convert to p-nitrophenol after reacting with APL. Plates after adding substrate must 
be handled extremely carefully. 

 

 

 

 

 

 

 

 



APPENDIX-V 

 
 

Western Immunoblotting Reagents and Buffers: 
 

Transfer buffer 
Tris (0.025 M) 9.1 g 
Glycine 43.2 g (0.192 M) 
Methanol 600 ml 
dH2O to 3 l 
 

Tris-buffered saline (TBS) 
Tris 4.84 g (0.02 M) 
NaCl 58.48 g (0.5 M) 
Adjust pH to 7.5 with 1N HCl, then makeup to 2 l in dH2O 
Note: TBS can be replaced with PBS. 
 

TBS-Tween (TBS-T) 
Add 500 ml of Tween – 20 to TBS-T [Final concentration of Tween 0.05% (v/v)] 
 

Blocking solution (antibody buffer) 
TBS-T with 5% (w/v) non-fat mild powder (eg. Nestle or Everyday) 
 

Enzyme conjugate 
Goat anti-rabbit IgG conjugated to ALP or HRP to detect rabbit antibodies 
Prepare appropriate dilution of the conjugate in antibody buffer. [Note: Usually 1:5000 for 
conjugate purchased from Sigma] 
 

Substrate: 
 

Fast Red Substrate 
 

Solution A: 

Napthol AS-BI phosphate 50 mg 
Dimethyl formamide 20 ml 
Distilled water 20 ml 
Adjust pH to 8.0 with 0.1 M Na2CO3 
 

Solution B: 
Fast red/Fast blue RR salt 50 mg 
0.2 M Tris-HCl buffer pH8.3 18 ml 
Add 2 ml of solution A to solution B mix well, filter through glass wool or Whatman filter paper 
and use. 
 

2X Protein sample buffer (Lamelli buffer)  

(Please see section Appendex III) 
 

 Electrode (running or tank or TG) buffer, pH 8.3 

 (Please see section Appendex III) 

 



APPENDIX-VI 

 

Agarose Gel Electrophoresis Reagents and Buffers 

 

10 X electrophoresis buffer (TBE buffer, P
H
 8.3) 

Tris base (0.45 M) - 54 g 

Boric acid (0.45 M)-27.5 g 

0.5 M EDTA PH 8 (0.01 M)-20 ml 

dH2O -1.0 liter 

Sterilize by autoclaving and store at room temperature 

 

Working solution (0.5x) TBE 

5 ml of 10x TBE + 95 ml dH2O-0.5x TBE 

Final concentration of Tris base, Boric acid and EDTA in working solution is 0.045 M, 
0.045 M and 0.001 M, respectively 

 

5 X sample buffer (gel loading buffer) 

Bromophenol blue 0.25%-5 mg 

Xylenecyanol FF   0.25%-5 mg  

Glycerol                30%-3 ml 

Sterile dH2O                -10 ml 

 

1% Ethidium bromide solution 

Ethidium bromide- 100 mg 

dH2O -10 ml 

Store in dark colour bottle at 40C 

 
 
 
 
 
 
 
 
 
 
 


