
Vol.:(0123456789)1 3

Theoretical and Applied Genetics 
https://doi.org/10.1007/s00122-020-03658-1

ORIGINAL ARTICLE

Genome‑based trait prediction in multi‑ environment breeding trials 
in groundnut

Manish K. Pandey1   · Sunil Chaudhari1 · Diego Jarquin2 · Pasupuleti Janila1 · Jose Crossa2 · Sudam C. Patil3 · 
Subramaniam Sundravadana4 · Dhirendra Khare5 · Ramesh S. Bhat6 · Thankappan Radhakrishnan7 · 
John M. Hickey8 · Rajeev K. Varshney1 

Received: 9 May 2020 / Accepted: 3 August 2020 
© The Author(s) 2020

Abstract
Key message  Comparative assessment identified naïve interaction model, and naïve and informed interaction GS 
models suitable for achieving higher prediction accuracy in groundnut keeping in mind the high genotype × environ-
ment interaction for complex traits.
Abstract  Genomic selection (GS) can be an efficient and cost-effective breeding approach which captures both small- and 
large-effect genetic factors and therefore promises to achieve higher genetic gains for complex traits such as yield and 
oil content in groundnut. A training population was constituted with 340 elite lines followed by genotyping with 58 K 
‘Axiom_Arachis’ SNP array and phenotyping for key agronomic traits at three locations in India. Four GS models were tested 
using three different random cross-validation schemes (CV0, CV1 and CV2). These models are: (1) model 1 (M1 = E + L) 
which includes the main effects of environment (E) and line (L); (2) model 2 (M2 = E + L + G) which includes the main 
effects of markers (G) in addition to E and L; (3) model 3 (M3 = E + L + G + GE), a naïve interaction model; and (4) model 
4 (E + L + G + LE + GE), a naïve and informed interaction model. Prediction accuracy estimated for four models indicated 
clear advantage of the inclusion of marker information which was reflected in better prediction accuracy achieved with 
models M2, M3 and M4 as compared to M1 model. High prediction accuracies (> 0.600) were observed for days to 50% 
flowering, days to maturity, hundred seed weight, oleic acid, rust@90 days, rust@105 days and late leaf spot@90 days, while 
medium prediction accuracies (0.400–0.600) were obtained for pods/plant, shelling  %, and total yield/plant. Assessment of 
comparative prediction accuracy for different GS models to perform selection for untested genotypes, and unobserved and 
unevaluated environments provided greater insights on potential application of GS breeding in groundnut.
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Introduction

Groundnut (Arachis hypogaea L.) is a self-pollinated crop, 
cultivated in > 100 countries worldwide, and has occupied 
a global area of 28.5 million ha producing 45.95 million 
tons with the productivity of 1.61 tons/ha during 2018 
(http://www.fao.org/faost​at/en/#data/QC). Mostly small-
holder farmers are engaged in groundnut cultivation under 
rainfed conditions with limited resources and inputs in 
Africa and Asia. Considering the strength of genomics-
based robust and precise selection of breeding progenies 
(Pandey et al. 2012a; Varshney et al. 2013), selection of 
parents and individuals in the segregating breeding popu-
lations can be made more precise and efficient.

Last decade witnessed rapid development of genomic 
resources such as large scale molecular markers (Wang 
et  al. 2012), genetic maps (Gautami et  al. 2012) and 
genome sequences (Bertioli et al. 2019; Chen et al. 2019; 
Zhuang et al. 2019) and deployment in genomics-assisted 
breeding (GAB) in groundnut (see Pandey et al. 2016, 
2020; Varshney 2016; Varshney et al. 2019). There are 
three GAB approaches, namely marker-assisted back-
crossing (MABC), marker-assisted recurrent selection 
(MARS) and genomic selection (GS). MABC and MARS 
require trait association, while the GS does not need such 
analysis. Realizing the limitation associated with MABC 
and MARS to capture small-effect genetic factors, GS 
has emerged as the most promising, efficient and cost-
effective breeding approach which capture both small- 
and large-effect genetic factors. GS promises to achieve 
higher genetic gains to improve complex traits (Meuwis-
sen et al. 2001; Heffner et al. 2009; Bernardo 2010; Shi-
kha et al. 2017; Wang et al. 2019) including legumes (Li 
et al. 2018). GS uses uniformly distributed genetic markers 
across the genome to predict genomic estimated breed-
ing values (GEBV) using multiple methods with varying 
degrees of complexity, computational efficiency and pre-
dictive accuracy (see Jannink et al. 2010; Desta and Ortiz 
2014; Wang et al. 2018). Apart from it, GS is the only 
modern genomics-based approach with the potential to 
accumulate thousands of favorable alleles to develop resil-
ient crop lines with high yield potential. This approach has 
been utilized extensively in livestock breeding (Hays and 
Goddard 2010; van der Werf 2013; Hays et al. 2013; Meu-
wissen et al. 2016) and is still evolving in plant breeding. 
If integrated with rapid generation advancement technol-
ogy such as speed breeding, the GS can make remarkable 
achievement and positive impact on breeding programs 
(Watson et al. 2019) including groundnut (Pandey et al. 
2020).

The learnings from genomic prediction strategies from 
successful animal breeding programs can easily be trans-
lated for deployment of genomic prediction-based breed-
ing in crops (Hickey et al. 2017; Xu et al. 2020). In order 
to fix and evaluate several factors, many studies were con-
ducted to choose appropriate GS models and criteria (Bur-
gueño et al. 2012; Heslot et al. 2012; Jarquín et al. 2014). 
Such efforts could be seen in last few years in several crop 
plants such as maize (Sun et al. 2019; Millet et al. 2019), 
wheat (Song et al. 2017; Norman et al. 2018), rice (Cer-
rudo et al. 2018; Bhandari et al. 2019), barley (Nielsen 
et al. 2016), oats (Asoro et al. 2011, 2013), oil palm (Wong 
and Bernardo 2008) and chickpea (Roorkiwal et al. 2018). 
In order to enhance precision of predicting GEBVs in the 
breeding population, it is important to achieve higher cor-
relation between the GEBVs estimated on training popula-
tion (TP) and in validation sets during cross-validation.

The major problem for the improvement of quantitative 
traits in crop breeding has been the presence of large geno-
type × environment interactions (G × E) effects which more 
often complicate the trait expression by adversely affect-
ing the heritability and response to selection resulting 
in low genetic gain. G × E effects pose serious challenge 
to prediction of GEBVs in the GS breeding. Significant 
variation among different environments is quite obvious 
due to varied climatic conditions, and it becomes very 
difficult for optimizing GS models for such environments 
when complete information across germplasm sets and tar-
get environments is not available for use in modeling. In 
such scenarios, the robust genomic prediction models are 
required which can take care of G × E interactions to facil-
itate implementation of GS breeding across germplasm 
sets and environments. Few GS models were developed 
by incorporating G × E interaction component either by 
using structured covariances to model relationships among 
environments (Burgueño et al. 2012) or by including envi-
ronmental information to model relationships via covari-
ance structures (Jarquín et al. 2014). Therefore, in order to 
initiate GS breeding in groundnut, it is utmost important 
to assess the potential and comparative performance of 
such promising models by using multi-season phenotyping 
and high density genotyping data on a sizeable training 
population. In this context, a training set with 340 diverse 
and elite groundnut genotypes were extensively pheno-
typed for important breeding traits and genotyped with 
high-density ‘Axiom_Arachis’ array containing > 58 K 
highly informative genome-wide single nucleotide poly-
morphism (SNP) markers. Four different GS models were 
tested on this training set with three cross-validation (CV) 
scenarios mimicking prediction problems such as predic-
tion of tested genotypes in tested environments, untested 
genotypes in tested environments and tested genotypes in 
untested environments. The best performing GS models 

http://www.fao.org/faostat/en/#data/QC)


Theoretical and Applied Genetics	

1 3

can be used for initiating GS breeding for improving com-
plex traits to achieve higher genetic gains in groundnut.

Materials and methods

Constitution of training set and phenotyping

A genomic selection training population (GSTP) was con-
stituted with 340 groundnut genotypes that includes elite 
breeding lines from the groundnut breeding programs from 
International Crops Institute for the Semi-Arid Tropics 
(ICRISAT), Hyderabad; University of Agricultural Sci-
ences (UAS), Dharwad; Indian Council of Agricultural 
Research-Directorate of Groundnut Research (ICAR-
DGR), Junagadh, along with some accessions from gene 
bank of ICRISAT (that are used in breeding programs) 
and popular cultivars from India (Supplementary Table 1). 
This training population includes 227 lines from subspe-
cies fastigiata and 113 lines from subspecies hypogaea 
and has variation for key agronomical traits focussed by 
the Indian groundnut breeding programs. From the per-
spective of botanical varieties, 212 lines belong to vulgaris 
(Spanish bunch), 111 lines belong to botanical variety 
hypogaea, 10 to fastigiata (Valencia), four to peruviana 
and single representative line to aequatoriana, hirsuta and 
unknown botanical type (Chaudhari et al. 2019). These 
lines were phenotyped for 11 agronomic, 7 quality and 6 
foliar fungal disease resistance traits at Patancheru, Ali-
yarnagar and Jalgaon locations in India during two envi-
ronments (Rainy 2015 and Post-Rainy 2015–2016). The 
experimental trials were conducted in alpha lattice design 
with two replications. The detail procedure of conduct-
ing trials along with phenotyping of disease resistance at 
three different time intervals each for rust (rust@75 days, 
rust@90 days and rust@105 days) and late leaf spot (Late 
leaf spot@75 days, Late leaf spot@90 days and Late leaf 
spot@105 days) can be found in Chaudhari et al. (2019). 
The data on agronomic traits included days to 50% flower-
ing, days to maturity, primary branches/plant, pods/plant, 
plant height (cm), pod yield/plant (g), shelling  %, hundred 
seed weight (g), seed yield/plant (g), total yield/plot (g) 
and pod yield/ha (kg) recorded from both the replications 
across environments. The oil quality traits including oleic 
acid, linoleic acid, oleic/linoleic acid ratio, palmitic acid, 
stearic acid, oil content and protein content were estimated 
using near-infrared reflectance spectroscopy (NIRS).

Genotyping with Axiom_Arachis SNP array and SNP 
allele calling

High-quality genomic DNA was isolated from the plant 
leaves collected from 15 days old seedlings using high-
throughput mini-DNA extraction method (Pandey et al. 
2012b). Quality and quantity of DNA were assessed using 
spectrophotometer (Shimadzu UV160A, Japan). High-
density genotyping data have been generated for 318 lines 
using high-quality DNA samples with Axiom_Arachis 
SNP array (Pandey et al. 2017; Clevenger et al. 2017) 
containing 58 K highly informative genome- wide SNPs 
(Supplementary Table 2). The SNP genotyping on Affym-
etrix GeneTitan®platform and SNP calling has been per-
formed following the methods explained in Pandey et al. 
(2017). In brief, the target probes were prepared for all 
the 318 lines followed by amplification, fragmentation, 
hybridization on the chip, extension through DNA ligation 
and signal amplification. Staining and scanning the sam-
ples were performed on The GeneTitan® Multi- Channel 
Instrument. The software Axiom™ Analysis Suite version 
1.0 was used for allele calling for all the 318 lines of the 
GSTP. The quality control (QC) analysis of samples was 
performed using ‘Best Practices’ workflow to select sam-
ples which passed the QC test. The genotype calls were 
produced using the ‘Sample QC’ workflow followed by 
using ‘Genotyping’ workflow to perform genotyping on 
the imported CEL files. Finally, the ‘Summary Only’ work-
flow was used to produce a summary and allows to retrieve 
SNP data for further analysis at the DQC > 0.75 and call 
rates > 90. The above criteria helped in removing the SNPs 
with low call rates, thus, keeping only the high-quality 
SNPs for the further analysis.

Statistical genomic‑enabled prediction models

Total four genomic selection models were tested using 
the genotyping and phenotyping data on training set as 
explained in Jarquín et  al. (2014) and Roorkiwal et  al. 
(2018). Of these four models, two are main-effect models, 
and two include genomic × environment interactions. These 
models are: (1) model 1 (M1 = E + L) which includes the 
main effects of environments (E) and lines (L); (2) model 2 
(M2 = E + L + G) which includes the main effects of markers 
(G) in addition to environments (E) and lines (L); (3) model 
3 (M3 = E + L + G + GE), a naïve interaction model; and (4) 
model 4 (E + L + G + LE + GE), a naïve and informed inter-
action model.

The Bayesian Generalized Linear Regression (BGLR) 
R-package (de los Campos et al. 2013; Pérez-Rodríguez et al. 
2015) was used for performing entire analysis with these four 
GS models. The scripts for these four GS models have already 
been made available in public domain by Pérez-Rodríguez 
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et al. (2015), and technical details for these GS models are 
provided in Roorkiwal et al. (2018). A brief statistical descrip-
tion of the four models (M1–M4) is given below in addition 
to the conventional base line model. In the base line model, 
the response of the jth (j = 1,…,J) genotype evaluated in the 
ith (i = 1,…,I) environment {yij} is the sum of an overall mean 
μ plus random deviations around zero due to environmental 
Ei ∼ N(0, �2

E
) that is assumed to have a normal distribution 

with mean 0 and variance �2
E
 assuming an independent and 

identically distributed response (IID), and line effects are 
assumed idd Lj ∼ N(0, �2

L
) where �2

L
 is the variance of the 

lines, and the interaction between the ith genotype and the 
jth environment is also iid LEji ∼ N(0, �2

LE
) where �2

LE
 is the 

interaction variance and the random error term is assumed iid 
eji ∼ N(0, �2

e
)

Evidently, this model does not allow borrowing of informa-
tion among lines because they were treated as independ-
ent outcomes. The following models were derived from the 
baseline model by either subtracting terms or modifying the 
underlying assumptions.

Model 1 (M1): environment + line main effects (E + L)

This model is obtained from the baseline model by retaining 
the first three components, while their underlying assumptions 
remain unchanged.

Model 2 (M2): environment + line + genomic main effects 
(E + L + G)

Adding to model M1 as a linear combination between mark-
ers and their correspondent marker effects, gj =

∑p

m=1
xjmbm , 

genomic information can be introduced using the following 
linear predictor

where bm
iid
∼ N(0, �2

b
) represents the random effect of the mth 

(m = 1,…,p) marker and �2
b
 its correspondent variance com-

ponent. Using the results from the multivariate normal dis-
tribution, � = (g1,… , gJ)

� , the vector of genetic effects, fol-
lows a normal density with zero mean vector and covariance 
matrix Cov(�) = ��

2
g
 with � =

XX�

p
 as the genomic relation-

ship matrix. It describes genetic similarities among pairs of 
individuals. Here, X represents the centered and standard-
ized (by columns) genomic matrix and �2

g
= p × �

2
b
 acts as 

the correspondent variance component such that 
� = {gj} ∼ N(0,��

2
�
) . In this model, the line effect Lj is 

yij = � + Ei + Lj + ELij + eij

(1)yij = � + Ei + Lj + eij

(2)yij = � + Ei + Lj + gj + eij

retained in the model to account for imperfect information 
and model mis-specification due to imperfect linkage 
disequilibrium.

Model 3 (M3): environ‑
ment + line + genomic + genomic × environment interaction 
[E + L + G + (G × E)]

This model extends model M3 by adding the genomic × envi-
ronment interaction as follows:

The main disadvantage of the previous models is that they 
only consider the main effect of the lines/genotypes across 
environments, avoiding specific responses of each genotype 
in each environment. To overcome this issue, the G × E inter-
action is introduced via covariance structures, as shown by 
Jarquín et al. (2014). Here, interaction component ELij is 
replaced by Egij , where Eg = {Egij} ∼ N(0, (ZgGZ

�

g
)◦

(ZEZ
�

E
)�2

Eg
) and Zg and ZE are the correspondent incidence 

matrices for genotypes and environments, �2
Eg

 is the associ-
ated variance component for this interaction, and ‘ ◦ ’ repre-
sents the Hadamard or Schur product (element-to-element 
product) between two matrices.

Model 4 (M4): environ‑
ment + line + genomic + genomic × envi‑
ronment + line × environment interaction 
[E + L + G + (G × E) + L × E)]

This model extends model M2 by adding the line × environ-
ment interaction as follows:

where all the terms have been previously defined.

Assessing different prediction problems using vari‑
ous cross‑validation strategies

The above-mentioned four GS models (E + L, E + L + G, 
E + L + G + GE and E + L + G + LE + GE) were deployed 
in training set using three different random cross-validation 
(CV) schemes, namely CV0, CV1 and CV2. Random CV2 
represents incomplete field trials where some lines are 
observed in some environments but not in others; the goal 
here is to predict the crop performance of these lines in envi-
ronments where these lines have not yet been phenotyped. 
Random CV1 predicts newly developed lines to measure 
the predictive ability of new lines that have not yet been 
phenotyped in any field, predictive ability between observed 
and unobserved genotypes is based on genetic similarities 
as main source of information, and CV0 is the prediction of 

(3)yij = � + Ei + Lj + gj + Egij + eij

yij = � + LJ + Ei + LEij + gj + Egij + eij
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already observed lines in unobserved environments (CV0). 
In CV0, the main interest is to predict the crop performance 
of lines in potentially new environments.

For random cross-validation CV1 and CV2, the prediction 
accuracies of the four models were computed by performing 
random fivefold cross-validation where the performance of 
20% of the lines (testing set) was predicted considering the 
remaining 80% observed lines as training set. For CV1, none 
of the 20% of the lines in the testing set were observed in 
any of the environments (combination), whereas for CV2, 
the 20% of the lines in the testing set were observed in some 
environments but not in the others. The prediction accuracy 
is obtained as the average Pearson’s correlations between the 
observed breeding values and predicted GEBVs.

Results

Identification of genetic polymorphism 
and phenotypic variation in training population

Genotyping data with SNP array have been generated on 318 
lines, while phenotyping data were generated for 340 lines. 
Genotyping on 318 lines with Axiom_Arachis SNP array 
identified 13,355 polymorphic SNPs. The phenotypic data 
generated on 340 lines showed wide genetic variation for 
different agronomical, quality and foliar disease resistance 
traits. All the 11 agronomic traits have shown high (75–90%) 
to very high (> 90%) heritability, namely days to maturity 
(96.6%), hundred seed weight (93.4%), plant height (92.3%), 
yield/ha (89.7%), total yield/plant (89.3%), pod yield/plant 
(85.8), pods/plant (85.0%), and days to 50% flowering 
(84.8%), seed yield/plant (84.6%), shelling  % (82.9%) and 
primary branches/plant (78.7%) (Supplementary Table 3). In 
case of 7 quality traits, the highest heritability was observed 
for oleic/linoleic acid ratio (96.7%) followed by palmitic 
acids (84.0%), oleic acid (82.1%), linoleic acid (81.7%), oil 
content (78.6%), stearic acid (77.5%) and protein content 
(57.4%) recorded medium heritability. The foliar disease 
resistance traits recorded high heritability at different days of 
sowing (80.4% for rust@75 days, 84.2% for rust@90 days, 
82.7% for rust@105 days, 83.9% for LLS@90 days, 79.7% 
for LLS@105 days and 74.5% for LLS@75 days).

Comparative performance of four GS models 
under three cross‑validation schemes

Prediction accuracy estimated by four models indicated clear 
advantage of the inclusion of marker information which was 
reflected in better prediction accuracy achieved from models 
E + L + G, informed interaction (E + L + G + GE) and naïve 
and informed interaction as compared to E + L model. The 

detailed results for scheme CV0 (Table 1; Fig. 1a), CV1 
(Table 2; Fig. 1b) and CV2 (Table 3; Fig. 1c) are summa-
rized in Table 4 and Fig. 2.

Performance of four GS models for unobserved environ‑
ment (CV0 scheme)

In general, the prediction values across four environments 
with four GS models were found consistent for CV0 scheme 
(Table 1). The exceptions in consistent prediction with all 
the four models were observed for days to 50% flowering 
for Env2 (Jalgaon, Rainy 2015), and days to maturity, hun-
dred seed weight, total yield/plant, yield/ha, oil content, pro-
tein content for Env4 (Patancheru, Post-Rainy 2015–2016) 
(Table 1).

The high prediction accuracy (> 0.600) across the 
four models was observed for days to 50% flower-
ing (0.659–0.673), days to maturity (0.709–0.732), 
primary branches/plant (0.679–0.690), plant height 
(0.643–0.647), hundred seed weight (0.673–0.678), oleic 
acid (0.788–0.792), linoleic acid (0.764–0.769), OLR 
(0.759–0.763), palmitic acid (0.821–0.823), stearic acid 
(0.717–0.720), oil content (0.672–0.677), rust@90 days 
(0.730–0.752), rust@105  days (0.721–0.739) and late 
leaf spot@90 days (0.708–0.728) (Tables 1, 4). The traits, 
namely pods/plant (0.442–0.484), shelling  % (0.475–0.485), 
total yield/plant (0.507–0.534), yield/ha (0.507–0.534), pro-
tein content (0.415–0.423), rust@75 days (0.459–0.538), 
late leaf spot@75  days (0.499–0.538) and late leaf 
spot@105  days (0.507–0.534), have obtained medium 
(0.400–0.600) prediction accuracy. The two important traits 
in breeding program, pod yield/plant (0.334–0.381) and seed 
yield/plant (0.348–0.389), obtained low (< 0.400) prediction 
accuracy (Tables 1, 4). In the current study, all the traits 
showed high heritability (> 75%) except protein content 
(57.4%). It is noted that despite achieving high heritability 
(> 75%) for pods/plant, shelling  %, total yield/plant, yield/
ha, protein content, rust@75 days, late leaf spot@75 days, 
late leaf spot@105 days, pod yield/plant and seed yield/
plant, these traits have achieved low prediction accuracy 
(Table 4).

Performance of different GS models for untested genotypes 
environment (CV1 scheme)

In CV1, the model E + L yielded negative prediction val-
ues for all the traits studied. Among other three GS models, 
the prediction values across four environments were found 
less consistent for CV1 scheme (Table 1) as compared to 
CV0. The exceptions in consistent prediction with all the 
four models were observed for pods/plant, pod yield/plant, 
shelling  %, and hundred seed weight for Env1; days to 
50% flowering and plant height, rust@90 days and late leaf 
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Theoretical and Applied Genetics	

1 3

spot@75 days for Env2 (Jalgaon, Rainy 2015); and pods/
plant and palmitic acid for Env3 while days to maturity, 
plant height, pod yield/plant, hundred seed weight, seed 
yield/plant, total yield/plant, yield/ha, oil content and pro-
tein content for Env4 (Patancheru, Post-Rainy 2015–2016) 
(Table 2).

The high prediction accuracy (> 0.600) across the three 
models was observed for only for disease scores, i.e., 
rust@90 days (0.623–0.624), rust@105 days (0.638–0.646) 
and late leaf spot@90 days (0.624–0.629) (Tables 2, 4). 
A majority of the traits, namely days to 50% flowering 
(0.501–0.503), days to maturity (0.466–0.489), primary 

Fig. 1   Cross-validation 
between the predicted and the 
observed values for a unob-
served environment (CV0); b 
untested genotypes (CV1); and 
unevaluated environment (CV2) 
for different agronomic, quality 
and disease resistance traits of 
groundnut
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branches/plant (0.531–0.540), pods/plant (0.453–0.471), 
pod yield/plant (0.374–0.423), hundred seed weight 
(0.430–0.469), seed yield/plant (0.375–0.422), total 
yield/plant (0.486–0.533), yield/ha (0.486–0.533), oleic 
acid (0.493–0.496), linoleic acid (0.466–0.468), OLR 
(0.469–0.473), palmitic acid (0.465–0.468), rust@75 days 
(0.445–0.488), late leaf spot@75 days (0.465–0.495) and 
late leaf spot@105  days (0.558–0.579), have obtained 
medium (0.400–0.600) prediction accuracy. The low 
(< 0.400) prediction has been observed for plant height 
(0.367–0.373), shelling   % (0.326–0.335), stearic acid 
(0.254–0.273), oil content (0.344–0.362) and protein content 
(0.146–0.222) (Tables 1, 4). Among the high heritable traits 
(h > 75%), only rust@90 days, rust@105 days and late leaf 
spot@90 days achieved high prediction accuracy (Table 4).

Performance of different GS models for unevaluated envi‑
ronment (CV2 scheme)

In general, the prediction values across four environ-
ments with four GS models were found consistent for CV2 
scheme (Table 3). The exceptions to consistent prediction 
with all the four models were observed for pod yield/plant, 
and seed yield/plant in Env1; days to 50% flowering, plant 

height, hundred seed weight, rust@75 days, rust@90 days, 
late leaf spot@75 days and late leaf spot@90 days for 
Env2 (Jalgaon, Rainy 2015); and days to maturity, plant 
height, shelling  %, hundred seed weight, seed yield/plant, 
total yield/plant, yield/ha, stearic acid and oil content for 
Env4 (Patancheru, Post-Rainy 2015–2016) (Table 3).

The high prediction accuracy (> 0.600) across the 
four models was observed for days to 50% flower-
ing (0.657–0.672), days to maturity (0.731–0.769), 
primary branches/plant (0.675–0.695), plant height 
(0.640–0.659), shelling   % (0.468–0.505), hundred 
seed weight (0.670–0.721), oleic acid (0.787–0.791), 
linoleic acid (0.762–0.769), OLR (0.757–0.765), pal-
mitic acid (0.820–0.826), stearic acid (0.717–0.738), 
oil content (0.672–0.699), rust@90 days (0.744–0.756), 
rust@105 days (0.718–0.751) and late leaf spot@90 days 
(0.710–0.735) (Tables  1, 4). The traits, namely pods/
plant (0.434–0.511), total yield/plant (0.499–0.603), 
yield/ha (0.499–0.603), protein content (0.411–0.461), 
rust@75  days (0.489–0.541), late leaf spot@75  days 
(0.499–0.538) and late leaf spot@105 days (0.572–0.654), 
have obtained medium (0.400–0.600) prediction accu-
racy. The low (< 0.400) prediction has been observed 
for pod yield/plant (0.321–0.454) and seed yield/plant 

Fig. 2   Comparative performance of four genomic prediction models in three different cross-validation scenarios in groundnut training popula-
tion
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(0.336–0.462) (Tables 3, 4). Among the high heritable 
traits (> 75%), pod yield/plant and seed yield/plant showed 
low prediction accuracy (Table 4).

Comparative prediction accuracy across models 
and cross‑validation schemes

Among four GS models tested for 24 traits, the model 
(E + L) (0.613) performed marginally better in general for 
all the traits as compared to models (E + L + G) (0.571), 
(E + L + G + GE) (0.577) and (E + L + G + LE + GE) (0.581) 
(Table 5). The model (E + L) completely failed in cross-val-
idation scheme CV1, and it yielded negative predictions. 
In general, the predictions were consistent across different 
models and cross-validation schemes (except model M1 for 
CV1) for different traits. However, there have been large 
variations in predictions obtained for different traits. For 
example, the palmitic acid (0.704), rust@90 days (0.705), 
rust@105 days (0.708) followed by days to 50% flowering 
(0.614), days to maturity (0.653), primary branches/plant 
(0.639), hundred seed weight (0.613), oleic acid (0.692), 
linoleic acid (0.668), OLR (0.666), late leaf spot@90 days 

(0.694) and late leaf spot@105 days (0.602) showed high 
(> 0.600) genomic prediction (Table 5). The traits, namely 
pod yield/plant (0.402), seed yield/plant (0.408) and protein 
content (0.354), showed lowest predictions among the stud-
ies traits. The remaining traits showed medium prediction 
accuracies. The results also indicated absence of relationship 
between trait heritability and its prediction accuracy.

Discussion

Breeding methodologies have been evolving over the time 
to develop superior crop varieties for achieving higher 
productivity to feed the global population. Majority of the 
breeding programs have been relying on phenotype-based 
selection approaches with some efforts dedicated toward 
using marker-assisted selection (MAS) or marker-assisted 
backcrossing (MABC) including groundnut (Pandey et al. 
2016;  Varshney 2016; Varshney et al. 2019). The MAS and 
MABC efforts are now routine in few groundnut breeding 
programs; however, these breeding methods are mostly suc-
cessful for simple traits for which diagnostic markers are 

Table 5   Comparative prediction accuracy for different traits by four models under three cross-validation schemes in groundnut

Traits Cross-validation schemes GS models

CV0 CV1 CV2 Mean E + L E + L + G E + L + G + GE E + L + G + GE + LE Mean

Days to 50% flowering (FLOW50) 0.666 0.502 0.668 0.612 0.658 0.616 0.611 0.613 0.614
Days to maturity (DM) 0.724 0.481 0.750 0.652 0.731 0.635 0.663 0.660 0.653
Primary branches/plant (NPB) 0.686 0.536 0.688 0.637 0.677 0.637 0.641 0.640 0.639
Pods/plant (NPP) 0.469 0.465 0.486 0.473 0.438 0.475 0.484 0.487 0.482
Plant height (PH) 0.646 0.371 0.652 0.556 0.643 0.556 0.558 0.560 0.558
Pod yield/plant (PYPP) 0.357 0.407 0.405 0.390 0.328 0.383 0.405 0.416 0.402
Shelling  % (SHP) 0.483 0.332 0.492 0.436 0.471 0.435 0.441 0.441 0.439
Hundred seed weight (HSW) 0.675 0.456 0.698 0.610 0.672 0.595 0.622 0.623 0.613
Seed yield/plant (SYPP) 0.370 0.406 0.416 0.397 0.342 0.389 0.413 0.423 0.408
Total yield/plant (TYPLT) 0.520 0.517 0.562 0.533 0.503 0.521 0.547 0.556 0.542
Yield/ha (YPH) 0.520 0.517 0.562 0.533 0.503 0.521 0.547 0.556 0.542
Oleic acid (OA) 0.790 0.495 0.790 0.692 0.787 0.692 0.693 0.693 0.692
Linoleic acid (LA) 0.767 0.468 0.767 0.667 0.763 0.666 0.668 0.669 0.668
Oleic/linoleic acid ratio (OLR) 0.762 0.471 0.762 0.665 0.758 0.665 0.666 0.666 0.666
Palmitic acid (PA) 0.822 0.466 0.823 0.704 0.821 0.703 0.705 0.705 0.704
Stearic acid (SA) 0.719 0.266 0.728 0.571 0.718 0.564 0.576 0.577 0.572
Oil content (OC) 0.675 0.356 0.686 0.572 0.673 0.566 0.577 0.579 0.574
Protein content (PC) 0.419 0.196 0.438 0.351 0.415 0.327 0.367 0.367 0.354
Rust@75 days (RUST75) 0.502 0.457 0.508 0.489 0.516 0.518 0.464 0.477 0.487
Rust@90 days (RUST90) 0.743 0.624 0.749 0.705 0.745 0.711 0.700 0.705 0.705
Rust@105 days (RUST105) 0.730 0.643 0.740 0.704 0.719 0.707 0.707 0.710 0.708
Late leaf spot@75 days (LLS75) 0.534 0.477 0.525 0.512 0.532 0.538 0.491 0.505 0.511
Late leaf spot@90 days (LLS90) 0.719 0.627 0.728 0.691 0.712 0.695 0.689 0.697 0.694
Late leaf spot@105 days (LLS105) 0.589 0.571 0.625 0.595 0.576 0.597 0.601 0.608 0.602
Average 0.620 0.463 0.635 0.573 0.613 0.571 0.577 0.581 0.576
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being developed through trait mapping approaches (Pandey 
et al. 2020). The major problem lies with complex traits 
for which generating precise and repeatable phenotyping 
data for complex traits is challenging as a consequence of 
high G × E interaction. Under such scenario, a new breeding 
approach called genomic selection is gaining momentum 
across crops which promises to improve complex as well as 
simultaneous improvement of multiple traits (Meuwissen 
et al. 2001; Jannink et al. 2010; Crossa et al. 2017). This 
approach uses genome-wide marker and multi-environment 
phenotyping data on target complex traits on a training 
population possessing diversity for target traits and close 
resemblance with the candidates under selection.

The availability of cost-effective high- to mid-density 
genotyping assays is very important for deploying genomic 
selection in any crop species. The groundnut, one of the 
most important food and oilseed crops of the world, has 
recently attained optimum genomic resources such as the 
reference genomes for diploid progenitors (Bertioli et al. 
2016; Chen et al. 2016) and both the subspecies of cultivated 
tetraploid (Bertioli et al. 2019; Chen et al. 2019; Zhuang 
et al. 2019) in addition to a high-density genotyping assay 
(Axiom_Arachis array with 58 K SNPs) (Pandey et al. 2017; 
Clevenger et al. 2017). These optimum genomic resources 
have accelerated the process and precision in several genom-
ics and breeding applications including initiating genomic 
selection in groundnut. In this context, a training popula-
tion in groundnut was constituted successfully with 340 elite 
lines containing several desired agronomic features required 
for Indian and other global breeding programs. The results 
clearly showed high variability for traits targeted in this 
effort, and the high-density genotyping assay played impor-
tant role in performing genomic prediction for these target 
traits. Therefore, this panel has potential to serve as ideal 
training population for different Indian groundnut breeding 
programs.

Conventional breeding relies on phenotype-based selec-
tions for complex traits performing replicated yield trials 
in advanced (F6 onward) generations which require huge 
resources to grow large number of plants in each generation 
and conduct replicated yield trials. GS provides an advan-
tage by facilitating selection of promising individuals at 
very early generations (F2), thereby reducing the number of 
lines to be generation advanced and phenotyped in replicated 
yield trials. If rapid generation advancement technology is 
integrated with this approach, GS also will save time by 
shortening breeding cycle in addition to offering more pre-
cise selection and reduced use of resources in the breeding 
process (Heffner et al. 2009, 2011; Isidro et al. 2015). There 
have been several studies on this approach which clearly 
indicated that GS is affected by several factors such as 
marker types and density (Chen and Sullivan 2003; Poland 
and Rife 2012; Zhang et al. 2017; Norman et al. 2018; 

Roorkiwal et al. 2018), population size (Daetwyler et al. 
2010; Zhang et al. 2017; Norman et al. 2018), marker types 
and statistical models (Heslot et al. 2012; Roorkiwal et al. 
2018). Besides above important considerations, the main 
question which has been lingering on was that GS breed-
ing can be made more effective to tackle G × E interactions 
while performing genomic-based predictions for complex 
traits. In this context, this study reports constituting a train-
ing population in groundnut, genotyping with high-density 
SNP array and testing four GS models under three different 
cross-validation schemes in groundnut. This study provides 
information on prediction accuracy for four important GS 
models which can take care of G × E interactions for per-
forming more precise selection in GS breeding in groundnut. 
The identified best prediction models from this study are 
now ready for deployment in routine GS breeding as the 
impact of G × E interactions in the precision of selecting 
best performing plants has been accounted for the models.

It is very difficult for any breeding program to generate 
phenotyping data on training population at all the possible 
evaluation sites. Under such circumstances, the crop breeder 
may face multiple situations on their datasets for training 
population such as (a) lines have never been evaluated/
phenotyped in any of the target environment, (b) lines of 
the training population may have been phenotyped in some 
environments but not all the environments, and (c) no pheno-
typing data have been generated for some environments. To 
address the situation (a), we used a cross-validation scheme 
(CV1) to assess the prediction accuracy for the situation 
where a set of lines have never been evaluated/phenotyped in 
any of the target environment to see whether these GS mod-
els can give high prediction accuracy for the unevaluated 
genotypes in different environments by taking clues from 
only genotyping data. The results from this study clearly 
showed total reliance on genomic information for achieving 
high prediction accuracy under such situation, and one of the 
models (M1) fell flat with very poor prediction accuracy as it 
does not use genomic information, while model 2 (M2) may 
not be good to use for achieving higher prediction for the 
location with high G × E. The results showed that remaining 
two GS models were competitive in achieving high predic-
tion accuracies, indicating their potential deployment in GS 
breeding under such situations with high G × E.

To address situation (b), the cross-validation scheme CV2 
was used to assess the prediction accuracy for the situation 
where some lines of a larger set have been evaluated in only 
few environments (i.e., not in all the target environments). 
The idea was to see performance of these GS models to 
assess prediction accuracy for untested lines and unobserved 
environments using the information from evaluated lines 
in different environments. The results from current study 
clearly showed comparative performance of all the four can-
didate GS models which indicated that such scenario can 
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be handled with ease using any of these prediction models. 
It also indicates that breeder can introduce new germplasm 
with partial datasets into the extended training population 
and there would not be any adverse impact on prediction 
accuracies, and thus, selection efficiency will not be affected. 
Although the models showed good prediction accuracies in 
predicting the performance of genotypes in untested environ-
ments, it will not completely eliminate the need of testing 
especially in advanced generations; therefore, the real-time 
testing of promising lines would be needed prior to product 
advancement. However, in such scenario GS would be use-
ful in reducing the resources for real-time testing of low 
performing genotypes in respective target environments and 
facilitate to identify the best suitable genotypes for testing 
in different target production environments. Similarly, to 
address the situation (c), the cross-validation scheme CV0 
was used to assess the prediction accuracy for unobserved 
environment using the phenotyping information on train-
ing set from related or remaining environments. In this 
case, prediction was made for each environment using the 
information from remaining environments. Similar to CV2 
scenario, the results from current study for CV0 also dem-
onstrated comparative performance of all the four candidate 
GS models which indicated that breeder can introduce new 
environment into the ongoing breeding program without 
any adverse impact on prediction accuracies and selection 
efficiency. Similar results have also been obtained in other 
studies in different crops (de los Campos et al. 2009; Hays 
and Goddard 2010; Heffner et al. 2009; Gorjanc et al. 2016) 
including chickpea (Roorkiwal et al. 2018) for these three 
scenarios, and the results obtained in this study, therefore, 
provide more confidence while deploying this scheme in 
case of groundnut.

Among the agronomic traits, days to maturity, pods/
plant, shelling  %, hundred seed weight and yield/ha along 
with nutritional quality traits such as oil content and protein 
content are the key priority traits in groundnut governed by 
polygenes and are complex in nature. However, the resist-
ance to LLS and rust in groundnut are governed by major 
quantitative trait loci (Sujay et al. 2012; Kolekar et al. 2016; 
Shirasawa et al. 2018) and used for introgression of LLS 
and rust resistance into elite varieties (Varshney et al. 2014; 
Janila et al. 2016; Shasidhar et al. 2020). The quantitative 
inheritance with additive effect of minor genes has been 
reported for LLS and rust resistance in groundnut (Janila 
et al. 2013). Furthermore, the high G × E interactions and 
environment effect make these traits more complex in nature. 
Hence, for achieving higher genetic gains for resistance 
to LLS and rust, both major and minor QTL/gene effects 
need to be captured that can be very well taken care in GS. 
The models considering G × E interactions in prediction of 
GEBVs would be of great use to develop product with wider 
adaptability.

Identification of best performing GS prediction model 
is the critical question to be answered before initiating GS 
breeding. The current study tested four GS models, i.e., 
E + L, E + L + G, E + L + G + GE (naïve interaction model), 
and E + L + G + LE + GE (naïve and informed interaction 
model) (de los Campos et al. 2013; Pérez-Rodríguez et al. 
2015). The results showed that high prediction accuracies 
can be achieved for CV0 and CV2 scenarios with best per-
formance from the naïve and informed interaction model 
performed followed by informed interaction model and 
main-effect model E + L + G. One of the main-effect mod-
els (E + L) which does not use genotyping information has 
completely failed in prediction for cross-validation scheme 
(CV1) to assess the prediction accuracy, while the remain-
ing three GS models, although performed much better than 
model E + L, performed poorly in providing good prediction 
for untested genotypes. Therefore, achieving high prediction 
accuracy for this scenario is still a distant dream and more 
suitable models need to be developed and tested to predict 
the performance of genotypes in untested environments. 
Besides selection of parents, the prediction of GEBVs of 
newly developed lines which are not tested in any environ-
ment is one of the major applications of GS in the breed-
ing programs. The low prediction accuracies for CV1 could 
be attributed to low resemblance between the training set 
and candidate population. The prediction accuracies can 
be substantially increased by adding more lines in training 
population that shows genetic resemblance with candidate 
population. These models have shown very good perfor-
mance for simple and complex traits tested in this research 
and therefore can also be extended to other complex traits 
in groundnut such as heat tolerance and aflatoxin contami-
nation (Pandey et al. 2019). It is worth mentioning that the 
models which consider G × E effects hold high potential in 
improving further the prediction accuracies (Jonas and de 
Koning 2013; Oakey et al. 2016; Roorkiwal et al. 2018); 
therefore, such models may be more appropriate to deploy 
in GS breeding.

In summary, this study reports the development and 
testing of four GS models and provides comparative per-
formance under three important cross-validation which 
occur more frequently before breeders due to several rea-
sons such as lack of resources, time, facility or inclusion 
of new potential parents/traits/environments in breeding 
program. The current study tested four GS models, i.e., 
E + L, E + L + G, E + L + G + GE (naïve interaction model), 
and E + L + G + LE + GE (naïve and informed interaction 
model), and suggests use of latter two models for achiev-
ing higher prediction accuracies for even traits with large 
G × E effects in groundnut. The identified GS models could 
be deployed in breeding program upon validation of predic-
tion accuracies on candidate population.
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