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Abstract

Members of the plant Heme Activator Protein (HAP) or NUCLEAR FACTOR Y (NF-Y) are tri-

meric transcription factor complexes composed of the NF-YA, NF-YB and NF-YC subfamilies.

They bind to the CCAAT box in the promoter regions of the target genes and regulate gene

expressions. Plant NF-Ys were reported to be involved in adaptation to several abiotic

stresses as well as in development. In silico analysis of Sorghum bicolor genome resulted in

the identification of a total of 42 NF-Y genes, among which 8 code for the SbNF-YA, 19 for

SbNF-YB and 15 for the SbNF-YC subunits. Analysis was also performed to characterize

gene structures, chromosomal distribution, duplication status, protein subcellular localizations,

conserved motifs, ancestral protein sequences, miRNAs and phylogenetic tree construction.

Phylogenetic relationships and ortholog predictions displayed that sorghum has additional

NF-YB genes with unknown functions in comparison with Arabidopsis. Analysis of promoters

revealed that they harbour many stress-related cis-elements like ABRE and HSE, but surpris-

ingly, DRE and MYB elements were not detected in any of the subfamilies. SbNF-YA1, 2, and

6 were found upregulated under 200 mM salt and 200 mM mannitol stresses. While NF-YA7

appeared associated with high temperature (40˚C) stress, NF-YA8 was triggered by both cold

(4˚C) and high temperature stresses. Among NF-YB genes, 7, 12, 15, and 16 were induced

under multiple stress conditions such as salt, mannitol, ABA, cold and high temperatures.

Likewise, NF-YC 6, 11, 12, 14, and 15 were enhanced significantly in a tissue specific manner

under multiple abiotic stress conditions. Majority of the mannitol (drought)-inducible genes

were also induced by salt, high temperature stresses and ABA. Few of the high temperature

stress-induced genes are also induced by cold stress (NF-YA2, 4, 6, 8, NF-YB2, 7, 10, 11, 12,

14, 16, 17, NF-YC4, 6, 12, and 13) thus suggesting a cross talk among them. This work paves

the way for investigating the roles of diverse sorghum NF-Y proteins during abiotic stress

responses and provides an insight into the evolution of diverse NF-Y members.
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Introduction

Nuclear Factor Y (NF-Y), also known as heme activator protein (HAP) or CCAAT-binding

factor (CBF) is a ubiquitous, complex, heterotrimeric transcription factor. It is evolutionarily

conserved in all plants with three distinct subunits called NF-YA or HAP2, NF-YB or HAP3/

CBF-A and NF-YC or HAP5/CBF-C [1]. The assembly of NF-Y is complex and occurs both in

cytoplasm and nucleus. While NF-YA and NF-YC family members have a nuclear localization

signal (NLS), NF-YB members generally lack the same and hence cannot be transported to the

nucleus [2]. The NF-YA subunits are localised to the nucleus and bind with varying affinities

to the CCAAT cis-elements in the promoter regions of the target genes [3, 4]. On the other

hand, NF-YB and NF-YC subunits contain the conserved Histone Fold Domain (HFD) or His-

tone Fold Motif (HFM) and help in protein-DNA and protein-protein interactions [5, 4]. The

HFD domain of NF-YB/YC is formed by 3 α-helices separated by 2 loops [6]. The α1-helices

of both NF-YB and YC contain putative DNA-binding domains [4]. Via the HFDs, NF-YB

and NF-YC form a heterodimer [5], which is critical for the translocation of NF-YB from the

cytoplasm to the nucleus [7]. Several members of the NF-Y subfamilies play a vital role not

only in a wide array of developmental processes but in tolerance to abiotic stresses as well. For

example, they are involved in embryogenesis [8], ABA response and seed germination [9], abi-

otic stress tolerance [10, 11, 12], flowering time [13], primary root elongation [14], photosyn-

thesis [15], endosperm development [16], and photomorphogenesis [17]. On the other hand,

in leguminous plants, they are the key regulators of symbiotic root nodule development [18].

Ni et al. [19] reported that GmNF-YA3, a target gene of miR169, is a positive regulator of plant

tolerance to drought stress in A. thaliana. Alam et al. [20] demonstrated that overexpression of

OsHAP2E gene confers tolerance to drought and salt stresses with enhanced photosynthesis

and tiller (stems produced in grass plants) number in comparison with wild-type rice plants.

Transgenic rice showed resistance to Magnaporthe oryzae and Xanthomonas oryzae infections.

While overexpression of NF-YA5 conferred drought stress tolerance in Arabidopsis [21],

NF-YA1 in Arabidopsis resulted in post germinative growth arrest under salt stress [11]. Fur-

ther, incorporation of several NF-YB and NF-YC genes improved drought stress tolerance in

diverse plants like Arabidopsis, maize, poplar and rice [10, 22, 23, 24]. Thus, evidence is accu-

mulating that NF-Y subunits act as key regulators of drought stress tolerance. In plants, NF-Y
gene families comprise several paralogs. In Triticum aestivum, 37 paralogs have been described

(10 NF-YA, 11 NF-YB, 14 NF-YC and 2 Dr1) [25]; in rice 28 NF-Ys (10 NF-YA, 11 NF-YB and

7 NF-YC) [26]; but later [27] reported 34 members in the same species. In Arabidopsis thali-
ana, NF-Ymembers exclude AtNF-YC11, B12, B13 (NC2 subfamily) and AtNF-YC10, C13,

and B11 (Dpb3/4 subfamily), but include AtNF-YC12. Accordingly, Petroni et al. [3] pointed

out that Arabidopsis contains 30 members of the NF-Y family, 10 from each family (NF-YA,

NF-YB and NF-YC) though 36 were originally reported Siefers et al [13]. So, in the updated

scheme, 30 members of NF-Y have been considered by Zhao et al. [28] in A. thaliana. In Bra-
chypodium distachyon 36 (7 NF-YA, 17 NF-YB, and 12 NF-YC) [29]; in Brassica napus 33 (14

NF-YA, 14 NF-YB, 5 NF-YC) [30]; in Setaria italica 39 (10 NF-YA, 15 NF-YB and 14 NF-YC)

[31]; in Glycine max 68 (21 NF-YA, 32 NF-YB, 15 NF-YC) [32]; in Prunus mume 29 [33]; in

Ricinus communis 25 (6NF-YA, 12NF-YB and 7 NF-YC) [34]; in Citrus sinensis and C. cleman-
tia 22 (6 NF-YA, 11 NF-YB, 5 NF-YC) [35] were characterised.

Sorghum bicolor is a semi-arid and the second most important staple food grain crop. It

provides feed, fodder and fuel and shows genetic diversity [36]. Being a C4 photosynthetic

plant, it is adapted to moderate drought and high temperature. But, salinity and drought cou-

pled with high temperature limit the production and yield stability in sorghum. Enhancing the

final yields and productivity of crop plants is especially challenging to the researchers due to
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the unpredictable nature of drought stress conditions during the growing season and complex

drought stress biology [37]. Identification and expression of various transcription factors for

abiotic stress tolerance using qRT-PCR and their validation by overexpression or knockouts is

therefore critical for developing improved crop varieties with tolerance to water limited condi-

tions. Members of NF-Y subfamilies impart tolerance to a very wide spectrum of both biotic

and abiotic stresses as mentioned above. The number of NF-Y genes that exist in sorghum and

their detailed biological roles for multiple stress tolerance and ABA-responsiveness remains

unexplored. In this study, we identified 42 NF-Y genes using in silico approaches and exam-

ined their expression patterns under salt, drought, ABA, cold and high temperature stresses.

Our gene expression studies reveal that majority of NF-Y genes (39) exhibited response to high

temperature stress. A large number of them (24) were also expressed under multiple stresses

like cold, salt (22) and drought (20). Further, 20 SbNF-Ys showed upregulation under ABA

stress which indicates their role in ABA-related pathway. Keeping in view of the aforemen-

tioned reasons, we aimed to understand how the SbNF-Ymembers regulate abiotic stresses in

an ABA-dependent or independent manner which would further delve into investigating their

detailed roles during stress.

Materials and methods

Plant material and abiotic stress treatments

Sorghum bicolor variety BTx623 is an agronomically important inbred line. It is a model vari-

ety with known genome sequencing information and moderately tolerant to drought stress.

The gene space of the sorghum genome sequence has also been updated by resequencing [38].

Keeping these criteria in mind, seeds of S. bicolor variety BTx623 were obtained from ICRI-

SAT, Patancheru, Hyderabad, and sown in pots filled with 5 kg of black soil and seedlings

were grown in glass house conditions at 28/20˚C day/night temperatures. Sixty-day-old seed-

lings were subjected to 200 mM NaCl solution, 200 mM mannitol solution, and 100 μM ABA

for 4 h separately. Cold stress was imposed by keeping the plants at 4˚C and high temperature

stress by exposing the plants to 40˚C for 4 h. Corresponding controls (without any treatment)

were maintained under identical conditions. After 4 h of exposure, roots, stems and leaves

were collected from treated and control plants and snap frozen in liquid nitrogen and stored at

-80˚C for subsequent use. Three biological and three technical replicates were used for

qRT-PCR analysis.

Identification and characterization of NF-Y transcription factors

NFY gene sequences of Oryza, Zea, Setaria were retrieved from plantTFDB (http://planttfdb.

cbi.pku.edu.cn/) (S1 Table) database and searched against Sorghum bicolor genome in Gra-

mene database (http://www.gramene.org/) to find out their homologs. Genscan (http://genes.

mit.edu/GENSCAN.html) program was used to retrieve the gene and their respective protein

sequences. The identified putative Sorghum nuclear factors were scanned using HMMER

(https://www.ebi.ac.uk/Tools/hmmer/search/hmmsearch) corresponding to the Pfam data-

base and queried against the Oryza, Setaria and Zea. The identified Sorghum NF-Ys were con-

firmed by searching against Oryza, Setaria and Zea genomes in Gramene database (http://

www.gramene.org/). Based on homology, the identified putative protein sequences were sub-

jected to Motif Search (http://www.genome.jp/tools/motif/) analysis to check the reliability

and to identify their conserved domains [39]. The identified NF-Y genes were mapped to their

respective chromosomes based on the information provided in the Gramene Genome Data-

base by employing MapInspect software (https://mapinspect.software.informer.com/). Gene

Structure Display Server (http://gsds.cbi.pku.edu.cn) software was used for obtaining the NF-Y
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gene structures—exons, introns, and untranslated sequence regions (UTRs) based on the

alignments of their coding sequences [40]. MEME software was employed to analyze new

sequence patterns and their significance [41]. The software helps to identify the nature of

motifs by setting different default parameters, number of motifs from 1–10 with a motif width

of 5–50, and the number of motif sites from 5–10.

NF-Y protein analysis, prediction of potential cis-regulatory elements,

identification of miRNA target sites and phylogenetic analysis of NF-Ys

Molecular weight (MW), isoelectric point (pI), and GRAVY (grand average of hydropathy) of

NF-Ys were identified for all NF-Y proteins by using ProtParam of Expasy tools (http://web.

expasy.org/protparam) [42]. Phosphorylation sites of proteins were predicted using Net-

Phos3.1 software of Expasy tools [43]. Subcellular localization of NF-Y proteins was carried

out by WOLFPSORT program (http://wolfpsort.org/) [44]. To predict the putative cis-acting

elements of NF-Y promoter regions, 2000 bp genomic sequences upstream of start codons

were analysed using PLANTCARE software [45]. The pSRNATarget software [46] was

employed to identify the potential miRNA target sites in identified SbNF-Ys. Finally, the neigh-

bor-joining (NJ) phylogenetic tree was constructed with the NF-Y protein sequences of Sor-
ghum bicolor with the plants as shown in S1 Table using MEGA 6.2 software [47]. The NJ is a

recursive algorithm, a fast method which is suited for large datasets and does not require ultra

metric data and permits correction for multiple substitutions. The Poisson correction, pairwise

deletion, and bootstrap value (1,000 replicates) parameters were used to draw the NJ phyloge-

netic tree.

Phylogenetic divergence and co-expression analysis

Gene duplication events were found [48, 49] using phylogenetic tree based on 70% similarity

and 80% coverage of sequences aligned. PAL2NAL program [50] was followed for finding out

synonymous and non-synonymous substitutions rates. Protein-protein interaction (PPI) map

of NF-Y proteins was generated from the STRING database [51].

RNA isolation and quantitative real-time PCR analysis

From the stress exposed and control (without any stress) samples, total RNA was isolated

using Macherey-Nagel NucleoSpin RNA plant kit by following the instructions given in the

manual. To eliminate any genomic DNA contamination in the RNA samples, the purity of

RNA was checked using Eppendorf BioPhotometer. Two micrograms of RNA sample was

used as template for first strand cDNA synthesis using RevertAid First Strand cDNA Synthesis

Kit (#K1622, Thermo Scientific EU, Reinach, Switzerland). To find out the relative gene

expression levels of SbNF-Ys, 2X Applied Biosystems (ABI) Master Mix with gene specific

primers was used (S2 Table). For qRT-PCR analysis, thermal cycling conditions of 95˚C for 5

min followed by 40 cycles of 95˚C for 30 s, 57˚C for 30 s and 72˚C f or 30 s were applied to the

ABI 7500 real-time PCR system (Applied Biosystems, Foster City, CA, USA). Expression of

SbNF-Y genes in control and treated samples was normalized with EIF4a (Eukaryotic Initia-

tion Factor 4A) and PP2A (protein phosphatase2A subunit A3) reference genes [52]. qRT-PCR

was carried out with three biological and three technical replicates for each sample. The PCR

reaction specificity was confirmed by melting curve analysis of the amplicons. Comparative

2-DDCT method [53] was used to calculate the relative quantities of each transcript.
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Results

Identification and characterization of SbNF-Y transcription factors, motif

analysis and subcellular localization

A total of 42 homologous genes comprising 8 NF-YA, 19 NF-YB and 15 NF-YC from the whole

genome of sorghum were identified and confirmed. Later, they were crosschecked by using

the HMM profile and searching SbNF-Ys against Oryza, Setaria and Zea for further confirm to

check their reliability (S3 Table). The predicted 8 NF-YA, 19 NF-YB and 15 NF-YC genes were

named as SbNF-YA1 to SbNF-YA8, SbNF-YB1 to SbNF-YB19 and SbNF-YC1 to SbNF-YC15
respectively. Based on the presence of conserved NF-YA, NF-YB and NF-YC domains, the pre-

dicted SbNF-Y family of proteins was considered for identification as a member. The exon-

intron structures of all the 42 annotated NF-Y genes were analysed (Fig 1). While 17 exons and

16 introns (highest) were detected in SbNF-YA2, 3 exons (least) and 2 introns were found in

SbNF-YA4 gene. Among the SbNF-YB family members, SbNF-YB11 showed a maximum of 16

exon and 15 intron regions, and 5 of the members displayed 1 intron. A maximum of 18 exons

and 17 introns were noticed on SbNF-YC8. Also, six of the members were intronless and no

member exhibited one intron (Fig 1). The sub-cellular localization of SbNF-Y proteins based

on consensus sequence showed a majority of them to be localized to nucleolus and chloroplast

although a few of them localized to cytoplasm, mitochondria and plastids (Table 1). All the

NF-Ys showed nuclear localization signals (NLS); NF-YA holding LRRR sequence (motif 2 in

Fig 2A), KRK motif in NF-YB (motif 1 in Fig 2B) and KRR in NF-YC (motif 1 in Fig 2C).

Though they contain nuclear localization signals, their subcellular localizations were different.

Majority of the SbNF-YAs showed chloroplast as the important target site. Few of them have

been found localized in chloroplasts (NF-YA1, NF-YA7 and NF-YA8), mitochondria

(NF-YA4) and plastid (NF-YA6). The number of phosphorylation sites in each NF-Y protein

is represented in the S3 Table. All the NFYs exhibited higher number of PKC than CK1, CK2,

and PKA types. The PKC number is higher in NF-YA subfamily members than in NF-YB (S4

Table). No transmembrane helices were observed except in NF-YA3 protein.

The identified SbNF-Y genes encoded polypeptides with amino acids ranging from 130 to

1430 and pI values varied from 4.26 to 10.83. Characteristically, they showed DNA binding

domains. Molecular weights of the proteins ranged from 10.21 to 83.52 kDa (Table 1). Among

the SbNF-YA subfamily members, RKPYLHESRHLHAMKRARGSGGRFLNTKQ and

EEPIYVNAKQYNAILRRRQARAKLEAZNK large contiguous motifs were found ubiquitous,

while rest of the 8 large contiguous motifs showed variability in their distribution (see Figs 2A

and S1). Similarly, SbNF-YB proteins revealed the uniform presence of one, highly conserved

large contiguous motif, i.e. AKETVQECVSEFISFVTGEASDKCQREKRKTINGDDLLWA-

LATLGFEDYY (Figs 2B and S2). On the other hand, analysis of NF-YC proteins revealed a

highly conserved large contiguous motif APVVFAKACEFIQELTLRAWHEENKRRTLQKSS-

DIAAAIARTEVYDFL (see Figs 2C and S3). Motif analysis of complete SbNF-Y family repre-

senting conserved motifs (S4 and S5 Figs) reflect typical diagnostic features for different

subunits of NF-Y family proteins in general and hence provide confirmatory identification of

SbNF-Y proteins from the sorghum genome.

Phylogeny, divergence, and physical genome mapping of SbNF-Ys

The phylogenetic tree of SbNF-Y proteins was constructed using MEGA 6.2 software. It

showed 2 clades, which are subdivided into 4. The phylogenetic analysis displayed a total of 11

paralogous duplication events of which 3 tandem/segmental (SbNF-YB4/SbNF-YB6;

SbNF-YB18/SbNF-YB19; SbNF-YB12/SbNF-YC11) and remaining regional duplication events.
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Interestingly, NF-YBs exhibited paralogous events with SbNF-YCs (SbNF-YB13/SbNF-YC1;

SbNF-YB12/SbNF-YC11), indicating their evolutionary relatedness (Figs 3 and S6 and

Table 2). To find out the orthologous and the evolutionary relationships of SbNF-Ys, NF-YA,

NF-YB and NF-YCs have been compared with other plant genomes (see Fig 4A, 4B and 4C

respectively). Not surprisingly, a majority of the identified SbNF-Ys showed orthologous rela-

tionship with Zea, few with Setaria and one withHordeum (Sorbi009G166200 (SbNF-YB15)/

MLOC_36879.2). Of the 8 SbNF-YAs, 5 showed orthologous events with Zea and 1 with

Setaria (Fig 4 and S5 Table). The major subfamily SbNF-YBs exhibited 11 orthologous events,

Fig 1. Gene structure analysis of SbNFYs (A. SbNF-YA; B. SbNF-YB and C. SbNF-YC).

https://doi.org/10.1371/journal.pone.0222203.g001
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Table 1. List of identified SbNF-Ys exhibiting chromosomal location, sub group, length, DNA binding domains (DBD), molecular weight (MW), iso-electric point

(pI), GRAVY, number of exons, protein localization, and instability index.

S.

No.

Accession Accession No. Common

name

Chr.

No.

Chromosome

location

No. of

AA

DBD Sub

Cellular

Loc.

Exons pI/Mw Instability

index

Gravy

1 SORBI_001G154500 XM_021451284 SbNF-YA1 1 12361535–

12401644

451 277–338 Cp 6 9.96/

47716.26

64.18 -0.397

2 SORBI_001G340200 XM_021450885 SbNF-YA2 1 55567388–

55607555

1193 1030–1091 N 17 9.17/

128227.55

51.38 -0.496

3 SORBI_001G486000 XM_021451588. SbNF-YA3 1 68468423–

68508558

328 215–276 Nr 7 8.63/

35632.63

57.35 -0.804

4 SORBI_002G038500 XM_002461436.2 SbNF-YA4 2 3757416–

3797476

211 68–126 M 3 9.96/

22831.65

61.43 -0.601

5 SORBI_002G370800 XM_021453812.1 SbNF-YA5 2 72920433–

72960535

320 128–189 N 6 7.70/

35053.98

57.87 -0.749

6 SORBI_004G316500 XM_021458677.1 SbNF-YA6 4 64535410–

64575508

420 64–75 P 8 9.73/

46774.51

55.73 -0.290

7 SORBI_008G168300 XM_002443504.2 SbNF-YA7 8 52864314–

52904375

413 306–367 Cp 9 9.37/

45256.77

69.37 -0.651

8 SORBI_008G174600 XM_021445781.1 SbNF-YA8 8 53546204–

53586336

964 110–171 Cp 14 6.32/

105695.33

50.78 -0.385

9 SORBI_001G338700 XM_002467650.2 SbNF-YB1 1 55430499–

55470820

334 26–91 N 3 9.17/

35602.50

54.35 -0.806

10 SORBI_002G135100 XM_021454561. SbNF-YB2 2 20095150–

20135252

174 40–112 N 3 5.03/

19169.40

64.54 -0.902

11 SORBI_002G369800 XM_002463118.2 SbNF-YB3 2 72839156–

72879413

291 24–89 N 2 6.97/

31189.68

58.08 -0.750

12 SORBI_003G057000 XM_002455085.2 SbNF-YB4 3 5048009–

5088028

188 114–176 Cp 2 11.35/

20827.56

49.55 -0.399

13 SORBI_003G346500 XM_021456401.1 SbNF-YB5 3 66741363–

66781566

559 202–267 N 12 9.26/

60688.71

48.11 -0.479

14 SORBI_003G347600 XM_002456551 SbNF-YB6 3 66829905–

66870081

103 56–91 N 1 11.48/

11409.38

45.35 -0.524

15 SORBI_003G417700 XM_002459011 SbNF-YB7 3 72352365–

72392627

182 37–102 M 1 6.15/

19094.22

38.54# -0.598

16 SORBI_004G254400 XM_002452581.2 SbNF-YB8 4 59362750–

59403321

197 44–109 N 1 8.93/

21087.66

48.67 -0.729

17 SORBI_004G254500 XM_002452582.2 SbNF-YB9 4 59389510–

59429805

276 39–104 N 1 6.37/

29163.20

43.89 -0.601

18 SORBI_007G059500 XM_002445097.2 SbNF-YB10 7 6167326–

6207663

275 62–127 Cp/N, 1 6.00/

27666.53

30.35# -0.365

19 SORBI_007G117100 - SbNF-YB11 7 49511493–

49551626

792 551–612 Cp 15 6.21/

87581.38

57.79 -0.255

20 SORBI_007G070200 - SbNF-YB12 7 7554666–

7594741

235 90–155 N 1 4.72/

26256.09

60.01 -0.697

21 SORBI_009G152900 - SbNF-YB13 9 50928726–

50968746

136 65–128 N 1 11.29/

15267.90

43.01 -0.551

22 SORBI_009G164000 XM_002439878.2 SbNF-YB14 9 52047607–

52087876

197 115–170 N 2 10.29/

21673.26

45.05 -0.719

23 SORBI_009G166200 XM_021446873.1 SbNF-YB15 9 52266773–

52306916

496 36–101 N 9 9.73/

55777.04

57.67 -0.313

24 SORBI_009G239600 XM_021446907.1 SbNF-YB16 9 57726747–

57766909

613 236–301 Cp 11 9.62/

68143.71

55.72 -0.587

25 SORBI_010G119200 XM_002436840.2 SbNF-YB17 10 13365025–

13405651

268 44–109 C 2 6.25/

28239.54

58.70 -0.353

(Continued)
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of which 6 showed with Zea, 4 with Setaria and 1 with Hordeum (Fig 5 and S6 Table). On the

other hand, SbNF-YCs showed 10 orthologous events, of which 8 with Zea and 2 with Setaria
(Fig 6 and S7 Table).

The identified SbNF-Ys were distributed across all the 10 chromosomes. A maximum num-

ber of 7 genes each were located on chromosome 1, and 7, 5 genes each on 2, 3, and 9, 4 each

on 8 and 10, 3 genes on 4, and 1 each on 5 and 6 chromosomes (Fig 7 and Table 1). Among the

NF-YA subfamily, SbNF-YA1, SbNF-YA2 and SbNF-YA3 genes were located on chromosome

1. Chromosomes 2 and 8 have two genes each located on them, i.e. SbNF-YA4, SbNF-YA5 and

SbNF-YA7, SbNF-YA8 respectively. Chromosome 4 is having only SbNF-YA6 localized on it.

Among the SbNF-YB genes, a maximum of 4 genes each were located on chromosomes 3 and

9. While SbNF-YB4, SbNF-YB5, SbNF-YB6 and SbNF-YB7 were observed on chromosome 3,

SbNF-YB13, SbNF-YB14, SbNF-YB15 and SbNF-YB16 were noticed on chromosome 9. Three

Table 1. (Continued)

S.

No.

Accession Accession No. Common

name

Chr.

No.

Chromosome

location

No. of

AA

DBD Sub

Cellular

Loc.

Exons pI/Mw Instability

index

Gravy

26 SORBI_010G029500 XM_002437749.1 SbNF-YB18 10 2373338–

2413887

196 22–87 M 2 4.34/

21156.69

66.56 -0.464

27 SORBI_010G029700 XM_002437749.1 SbNF-YB19 10 2381943–

2421964

309 22–83 Cp 5 4.94/

33884.66

57.17 -0.223

28 SORBI_001G009200 XM_021451803 SbNF-YC1 1 838611–879724 523 340–370 N 5 10.74/

55002.37

68.32 -1.128

29 SORBI_001G094500 XM_021450704 SbNF-YC2 1 7233252–

7273270

421 154–218 M 9 6.23/

45665.93

49.04 -0.329

30 SORBI_001G435500 XM_021450884. SbNF-YC3 1 64180902–

64221327

247 69–133 N 1 5.31/

26178.44

64.40 -0.349

31 SORBI_002G241500 XM_002460379 SbNF-YC4 2 63046266–

63086603

188 68–131 N/C 1 5.36/

20002.74

53.09 -0.078

32 SORBI_003G040500 XM_002457181 SbNF-YC5 3 3740425–

3780678

217 97–158 N 1 4.61/

22949.36

60.31 -0.636

33 SORBI_005G143400 XM_002449602.2 SbNF-YC6 5 51132033–

51172245

426 182–242 P 8 9.08/

46629.63

62.72 -0.627

34 SORBI_006G272400 XM_002448754 SbNF-YC7 6 61309584–

61349970

936 24–92 Cp 9 8.85/

103880.62

43.92 -0.137

35 SORBI_007G054700 XM_002445073 SbNF-YC8 7 5489299–

5530378

1437 1020–1083 N/C 18 5.44/

162636.39

44.04 -0.416

36 SORBI_007G219500 XM_002445904. SbNF-YC9 7 63491753–

63532358

188 72–135 N 1 5.51/

20247.09

57.58 -0.273

37 SORBI_007G063200 XM_002443915. SbNF-YC10 7 6585177–

6625938

782 628–691 N 11 6.69/

88215.13

65.53 -0.282

38 SORBI_007G070100 XM_021465359 SbNF-YC11 7 6585177–

6625938

235 91–155 N 1 4.72/

26256.09

60.01 -0.697

39 SORBI_008G043000 XM_002445073 SbNF-YC12 8 4187858–

4229252

902 44–105 N 6 6.82/

100376.83

49.77 -0.240

40 SORBI_008G071900 XM_021445970 SbNF-YC13 8 9604002–

9644041

405 45–107 N 1 5.14/

45580.38

52.43 -0.478

41 SORBI_009G181900 XM_021447763 SbNF-YC14 9 53568558–

53608631

294 8–71 N 6 5.19/

32113.74

38.91# -0.719

42 SORBI_010G221400 XM_002437375 SbNF-YC15 10 56171840–

56212135

605 452–515 C 9 9.26/

67661.50

53.85 -0.348

(# stable; N: Nuclear; M: Mitochondrial; Cp: Chloroplast; P: Plastid; C: Cytoplasm).

https://doi.org/10.1371/journal.pone.0222203.t001
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genes each SbNF-YB10, SbNF-YB11, SbNF-YB12 and SbNF-YB17, SbNF-YB18, SbNF-YB19
were seen on chromosomes 7 and 10 respectively. Chromosomes 2 and 4 have 2 genes each,

i.e., SbNF-YB2 and SbNF-YB3 on 2, SbNF-YB8 and SbNF-YB9 on 4. Chromosome 1 has only

SbNF-YB1 located on it. Majority of the SbNF-YC genes were located on chromosome 7, and it

accommodates 4 genes (SbNF-YC8, SbNF-YC9, SbNF-YC10, and SbNF-YC11). While chromo-

some 1 accommodates three genes (SbNF-YC1, SbNF-YC2, and SbNF-YC3), chromosome 8

contains SbNF-YC12 and SbNF-YC13. One gene each SbNF-YC4, SbNF-YC5, SbNF-YC6,

SbNF-YC7, SbNF-YC14, and SbNF-YC15 was noticed on chromosomes 2, 3, 5, 6, 9, 10 respec-

tively (Fig 7 and Table 1).

Estimation of non-synonymous and synonymous substitution rates

The non-synonymous (dN) and synonymous (dS) substitution (dN/dS) rates were calculated

for genes which showed duplication events within Sorghum as paralogs and between other

genomes as orthologs. The 11 paralogs (S6 Fig) exhibited the dN/dS between 0.0010

(SbNF-YB18/SbNF-YB19)-93.9760 (SbNF-YC8/SbNF-YC12). Of the 11 paralogs, only 5

showed the purifying/stabilizing selection (<1), while the remaining exhibited positive/Dar-

winian selection (>1) (Table 2). The SbNF-YA orthologs exhibited dN/dS rates ranging from

0.4000 (Sorbi001G340200/Seita.9G367200) and 28.6781 (Sorbi001G486000/Zm2G000686).

This indicates that 2 were following purifying selection and the remaining 4 positive selection

Fig 2. Distribution of 1–10 conserved motifs in A) SbNF-YA, B) SbNF-YB and C) SbNF-YC groups. Gene clusters and p values are shown on the

left side and motif sizes at the bottom of the figure.

https://doi.org/10.1371/journal.pone.0222203.g002

Fig 3. Phylogenetic tree of SbNF-Y gene family.

https://doi.org/10.1371/journal.pone.0222203.g003
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(S5 Table). The dN/dS rates of SbNF-YB orthologs varied from 0.0031 (Sorbi001G338700/Seita.

9G365700) and 10.2227 (Sorbi010G119200/ZM2G167576). While majority of them (7)

evolved through purifying selection, the remaining evolved by positive selection mechanism

(S6 Table). The orthologs of SbNF-YCs showed dN/dS rates between 0.0797 (Sor-

bi002G241500/Seita. 2G247700) and 1.9761 (Sorbi007G063200/ZM2G311316) (S7 Table).

Promoter analysis

Analysis of promoter sequences revealed cis-acting elements such as ABA-responsive (ABRE),

drought-responsive (DRE, DPBF, MYB and MYC), heat shock-responsive (HSE), and low

temperature-responsive (LTR) elements. Aside, methyl jasmonic acid- (MeJA-RE), salicylic

acid- (SARE), and defence-responsive elements (TC-rich repeats), associated with biotic stress

were detected. Majority of the genes in SbNF-YA family have G-BOX (CACGTG) cis-acting

elements (S8 Table). In the SbNF-YB family, G-BOX and Sp1 were observed as major cis-acting

elements except in SbNF-YB18 (S9 Table). On the other hand, Skn-1 motif is the most com-

mon cis-acting element in SbNF-YC family. The least expressed cis-acting elements in

SbNF-YC are AUXRR-CORE and GCN4 motif I (S10 Table).

Protein-protein interaction (PPI) prediction analysis

The PPI mapping of SbNF-Ys showed that a cohort of proteins involved in various cellular,

metabolic and molecular pathways are associated with miRNA surveillance pathway, DNA

replication, base excision, nucleotide excision repair pathway, purine and pyramidine metabo-

lism. They interacted with core histones, calcineurins, kelch motifs, serine-threonine phospha-

tases, histone lysine N-methyl transferase, and metal-dependant phosphatase (S7 and S8 Figs).

In silico prediction of miRNA target sites

The SbNF-YAs exhibited different miRNA target sites such as sbi-miR169, sbi-miR5389, sbi-

miR6225, sbi-miR5568, sbi-miR6220, sbi-miR5567 and sbi-miR6232, SbNF-YBs showed sbi-

miR5565, sbi-miR5568, sbi-miR6232, sbi-miR6220, sbi-miR821, sbi-miR437, sbi-miR528, sbi-

miR395, sbi-miR169, sbi-miR171 and sbi-miR172. Likewise, SbNF-YCs showed sbi-miR6232,

sbi-miR6235, sbi-miR395, sbi-miR437, sbi-miR395, sbi-miR6220, sbi-miR6225, sbi-miR6227,

sbi-miR5569, sbi-miR5568, sbi-miR164, sbi-miR156, sbi-miR160, sbi-miR6218, sbi-miR6230,

Table 2. Calculation of non-synonymous to synonymous substitution ratios in paralogs of SbNFYs.

Sorghum Chr. Paralog Chr. No. of non-synonymous

sites (N)

No. of synonymous

sites (S)

Non-synonymous substitution

rate (dN)

Synonymous substitution

rate (dS)

dN/dS

SbNF-YA1 1 SbNF-YA4 2 494.0 139.0 8.3861 29.9357 0.2853

SbNF-YA2 1 SbNF-YA5 2 671.3 288.7 16.3841 5.1317 3.1927

SbNF-YB1 1 SbNF-YB3 2 711.0 162.0 10.1591 1.1361 8.9424

SbNF-YB4 3 SbNF-YB6 3 257.0 52.0 14.1077 7.5273 1.8742

SbNF-YB9 4 SbNF-YB17 10 665.9 138.1 3.0355 2.4629 1.2325

SbNF-YB18 10 SbNF-YB19 10 364.5 223.5 0.0000 0.0045 0.0010

SbNF-YB13 9 SbNF-YC1 1 343.6 64.4 2.5270 27.0498 0.0934

SbNF-YB12 7 SbNF-YC11 7 567.0 138.0 0.0000 0.0000 0.4439

SbNF-YC4 2 SbNF-YC9 7 461.7 102.3 1.5957 3.5070 0.4550

SbNF-YC6 5 SbNF-YC14 9 610.2 271.8 17.0741 3.8549 4.4292

SbNF-YC8 7 SbNF-YC12 8 2181.7 524.3 16.0833 0.1711 93.9760

(dN/dS >1 = Positive or Darwinian Selection (Driving Change); dN/dS <1 = Purifying or Stabilizing Selection (Acting against change); dN /dS = 1 Neutral Selection.

https://doi.org/10.1371/journal.pone.0222203.t002
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and sbi-miR821. Interestingly, all of them are known to be associated with translation and

cleavage events (S11, S12 and S13 Tables).

Gene expression analysis of SbNF-Ys in different tissues treated with

diverse abiotic stresses

Expression of all the 42 NF-Y family of genes was studied at the transcriptional level in differ-

ent tissues and abiotic stress conditions besides ABA, and the heat map is presented in Fig 6A

and 6B. Over all, the gene expressions were higher in leaf tissues in comparison with stem and

root (Fig 8A and S8 Table). Among the 8 SbNF-YA genes, NF-YA6 appeared to be associated

with salt, drought (imposed by mannitol), cold and high temperature stresses. It was also

strongly triggered by ABA. On the other hand, NF-YA1 was induced by multiple stresses like

salt, mannitol and high temperature stresses, but NF-YA3 and NF-YA5 were expressed only

under high temperature. While salt and high temperature influenced the expression of

NF-YA7, NF-YA8 was upregulated by cold and high temperature stresses. Among the 19

Fig 4. Phylogenetic tree showing the relationship between Sorghum, Oryza, Setaria, Zea, Medicago, Glycine max, Daucus,
Solanum, Brachypodium, Cajanus, Populus and Arabidopsis NF-YAs.

https://doi.org/10.1371/journal.pone.0222203.g004
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SbNF-YBmembers, SbNF-YB7, B12, B15 and B16 were strongly induced by different stresses

like salt, mannitol, ABA, cold and high temperature. In contrast, seven out of fifteen SbNF-YC
members, YC1, YC3, YC4, YC7, YC8, YC9, and YC13 were expressed only under high

Fig 5. N-j phylogenetic tree representing NF-YB family genes of Sorghum, Oryza, Setaria, Zea, Medicago, Glycine max, Dacus, Solanum, Brachypodium, Cajanus,
Populus and Arabidopsis.

https://doi.org/10.1371/journal.pone.0222203.g005
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temperature stress. Further, five members (YC6, YC11, YC12, YC14 and YC15) were upregu-

lated by multiple stresses including ABA (Fig 8B and S14 Table).

Fig 6. Evolutionary relationship of the NF-YC family genes of Sorghum, Oryza, Setaria, Zea, Medicago, Glycine max, Dacus, Solanum, Brachypodium, Cajanus,
Populus and Arabidopsis.

https://doi.org/10.1371/journal.pone.0222203.g006
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Discussion

Identification and structural analysis of SbNF-Y genes

It is observed from this study that the number of genes are variable in each of the three distinct

subfamilies of NF-Y (NF-YA, NF-YB and NF-YC) across different taxa. NF-Ys are evolution-

arily conserved in eukaryotes and each subunit is encoded by a single gene in yeast and ani-

mals [4]. But, the same is encoded by a family of genes varying from 8 to 39 in plants. A total

of 33 NF-Ys were reported in Brassica napus (14 NF-YA, 14 NF-YB, 5 NF-YC) [30]; while 39 in

Setaria italica (10 NF-YA, 15 NF-YB and 14 NF-YC) [31]; whereas 68 in Glycine max (21

NF-YA, 32 NF-YB, 15 NF-YC) [32]. Multiple members of NF-Y subunits in plants reflect the

redundancy and differentiated functions of these genes which need to be explored by expres-

sion profiling. Pereira et al. [35] identified 22 NF-Y genes in Citrus sinensis and C. clementina
(6 NF-YA, 11 NF-YB and 5 NF-YC). Xu et al. [54] pointed out that such a low number of NF-Y
genes found in Citrus genome could be due to the whole genome duplication events occurred

Fig 7. Chromosomal location of NF-Y genes in Sorghum.

https://doi.org/10.1371/journal.pone.0222203.g007
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in A. thaliana when compared to Citrus. It appears that subunit YB has more number of genes

in comparison with YA and YCmembers in most of the species including the present report.

Single genes, but with multiple splicing isoforms (that encode NF-Y subunits) is generally

noticed in the yeast and mammals. Contrary to this, in higher plants, multigene families are

noticed which can encode each subunit. Such multiple genes are vital for plant systems for tis-

sue specific expressions at various stages of growth and development. Further, such a subunit

combination can assist the plant systems in performing diverse roles during stress/develop-

ment. Malaviya et al. [55] searched the plant transcription factor database (Plant TFDB,

(http://plantfdb.cbi.pku.edu.cn/) version 3.0 Jin et al. [56]), for identifying NF-Y genes in sor-

ghum. They identified a total of 33 NF-Y transcription factors comprising 8 NF-YA, 11 NF-YB,

and 14 NF-YC subunits in sorghum using Plant TFDB. In contrast, in the present study, a total

of 42 NF-Y genes, among which 8 code for SbNF-YA, 19 for SbNF-YB and 15 for SbNF-YC sub-

units were identified. This discrepancy is because, in the present study, sorghum genome

sequence available in the public domain has been searched.

Koralewski and Krutovsky [57] pointed that finding out exon-intron organization is crucial

since it provides an insight into evolutionary relationships among genes and organisms.

Fig 8. Expression analysis of SbNF-Ys A), in root, stem and leaf tissues B) across diverse tissues under different abiotic stresses. (R; Root, S; Stem, L; Leaf, MR;

Mannitol Root, SR; Salt root, HR; High temperature root, CR; Cold root, ABAR; Abscisic acid root, MS; Mannitol stem, SS; Salt stem, HS; High temperature stem, CS;

Cold stem, ABAS; Abscisic acid stem, ML; Mannitol leaf, SL; Salt leaf, HL; High temperature leaf, CL; Cold leaf, ABAL; Abscisic acid leaf).

https://doi.org/10.1371/journal.pone.0222203.g008
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Malviya et al. [55] reported no introns in 18 of the genes (out of 33), and 5 of them have only

one intron. They reported 2 in NF-YA3, 5 in NF-YA5, 4 in NF-YA6, 3 in NF-YA8, 4 in

NF-YB1, 5 in NF-YC4 and 3 in YC7. Interestingly, in the present study, introns were absent in

12 out of 42 NF-Y TFs. While NF-YC18 contained 17 (highest number), YA2 16, YB11 15, YA8
13, YB16 11, YC10 10, YA7, YB15, YC2, YC7 and YC15 8 introns each. Only YB4, YB8, YB14,

YB17, and YB18 (in all 5) contained one intron. Like in S. bicolor, single intron genes were also

noted in Medicago truncatula which lead to alternative spliced variants of NF-YA1 [58]. Simi-

larly, one intron in the 50-UTRs of the NF-YAmembers was observed in A. thaliana, O. sativa,

C. sinensis [28, 27, 35]. This suggests that such a post-transcriptional regulatory mechanism is

retained among NF-YA genes. Single intron NF-Ys were not observed in SbNF-YC subtype in

the present analysis. Chen et al. [59] reported that most of the NF-YB contained only one

exon, and the genes from the same clade displayed a similar motif pattern in Gossypium hir-
suyum. Chu et al. [60] reported 5 exons and 4 introns (6 genes) or 6 exons and 5 introns (2

genes) in CaNF-YA gene family members in Cicer arietinum. Further, they noticed 1 to 6

exons in CaNF-YB family, and 7 intronless out of 11 members in the CaNF-YC family. They

reported 1 intron in NF-YC1, and 3 in NF-YC9. This suggests that a post-transcriptional regu-

latory mechanism is retained among NF-YA genes. Thus, the presence of multiple exon/intron

gene organizations have been found in all the NF-Y family members in other species like B.

napus [30], and S. lycopersicum [61] also. This infers that the presence of exon/intron is an

attribute and typical of NF-Ys in higher plants. Loss or gain of spliceosomal introns led to the

progress in our understanding of the molecular mechanisms associated with intron evolution

and variation in gene function [62]. Fusion of exons and intron loss, might play a key role in

the evolution of larger families like NF-Ys. Further, several members of the NF-YB and NF-YC
have been found without any introns like in S. bicolor [55], Ricinus cummunis [34] and chick-

pea [60]. Introns are essential parts of all eukaryotic genes. In eukaryotic systems, introns are

known to execute several functions like exon shuffling [63], gene expression alterations [64]

and also tune the evolutionary rate of genes [62].

Motif identification and chromosomal localization of SbNF-Ys

NF-Y proteins display both conserved and non-conserved regions in Arabidopsis and others.

Such conserved sequences may be vital for DNA interactions at CCAAT sites as pointed out

by Siefers et al. [13], Romier et al. [2], and Testa et al. [65]. Hahn et al. [66] demonstrated that

the yeast CCAAT box factor is a heteromer that contains HAP2 and HAP3 proteins. Xing et al.

[67] showed that HAP2 is a 21 residue region with 3 histidines and arginines. Both SbNF-YB

and SbNF-YC proteins have histone domains, but not SbNF-YAs. Besides, they also contain

centromere kinetochore components and chromatin reorganizing domains. These residues

are conserved in all the 8 SbNF-YA proteins (present study) as well as in Oryza sativa, and Tri-
ticum aestivum [23, 25]. Romier et al. [2] demonstrated that NF-YC/NF-YB sub-complex

interacts through histone fold motifs. The role of the alpha C-helix of NF-YC appears to be

vital for trimerization as well as a target for regulatory proteins like that of MYC and p53. It

looks that heterotrimeric NF-Y proteins recognize the CCAAT regulatory elements repre-

sented in promoter and enhancer regions and modulate the genes. Steidl et al. [68], Liu and

Howell [69] pointed out that NF-YB and NF-YC form a dimer in the cytoplasm and then

translocated to the nucleus to interact with that of NF-YA to form a heterotrimer complex.

Further, it has been demonstrated that bZIP28 and NF-Y transcription factors are activated by

endoplasmic reticulum stress and assemble into a transcriptional complex to regulate down-

stream stress response genes in A. thaliana [69]. Alpha helix transmembrane spans with aver-

age hydrophobicity were predicted in 12 of the NF-Y proteins in S. bicolor. Anchoring of
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protein to glycosylphosphatidyl inositol (GPI) via the C-terminal attachment was predicted in

three of the NF-YB proteins namely SbNF-YB1, YB3 and YB6. This appears rational since ear-

lier gene fusion experiments conducted by Caras et al. [70] demonstrated that the C-terminal

signal sequence has GPI-anchoring residues. The distribution of NF-Y genes appears to be

widespread among different chromosomes. While OsHAP genes were dispersed on 11 out of

the 12 rice chromosomes [26], in S. bicolor, they are distributed on 10 chromosomes.

Phylogenetic assessment, divergence and promoter analysis

Among the NF-YA family members, A2 and A5 appeared on the same clade indicating that

they are closer to each other compared to others. While Malviya et al. [55] found that

SbNF-YB8 was closer to SbNF-YA and SbNF-YC proteins, we could not observe such a corre-

lation. On the contrary, B12 was observed closer to C11 and B13 to C1 in the present study

than YA family members. It appears therefore YB and YC members might have close correla-

tions in comparison with other members. Malviya et al. [55] noticed several ortholog and para-

log groups through the phylogenetic analysis of SbNF-Y proteins along with 36 Arabidopsis
and 28 rice NF-Y proteins. Malviya et al. [55] reported that Sorghum NF-Y family gene expan-

sion is due to segmental duplication events. It appears that SbNF-Y genes retained their func-

tion even after duplication. Generally, gene family expansion occurs through segmental,

tandem duplications, and transposition events [71]. In the present investigation, 11 paralogs

were observed due to 3 regional duplications, and 8 segmental duplications, inferring that seg-

mental duplications are responsible for SbNF-Y gene family expansion. Six duplication events

were observed in SbNF-YB family, and this is a large number when compared to other subfam-

ilies. SbNF-YB4, B5, B13 and B14 were phylogenetically distinct from other SbNF-YBs, and

might have formed by recent duplications. SbNF-Ys exhibited 20 orthologous events with Zea,

7 with Setaria and 1 with Hordeum, which indicates their monocot ancestors. The synony-

mous (dS) and nonsynonymous (dN) substitutions reveal the selective pressure on duplicated

genes. In the present study, phylogenetic relationships and ortholog predictions displayed that

sorghum has additional NF-YB genes with unknown functions in comparison with Arabidop-
sis. The synonymous (dS) and nonsynonymous (dN) substitutions reveal the selective pressure

on duplicated genes. Nekrutenko et al. [72] pointed out that greater than 1 dN/dS value repre-

sents positive selection, less than 1 functional constraint, and equal to 1 neutral selection. In

the present study, it appears that majority of the duplicated genes evolved through purifying

selection. The phytohormone-responsive cis-acting elements make the plants to tolerate vari-

ous environmental changes. The ABRE play an important role in ABA signalling and abiotic

stress tolerance. In the present investigation, large number of ABA-responsive elements were

observed in majority of NF-Ys besides Skn elements that participate in endosperm expression

[73]. Further, the presence of light-responsive elements like SP1, I-Box, and G-BOX indicate

their roles in the regulation of gene responses to light. Interestingly, all the elements are rich

with heat shock elements (HSE), which indicates their diverse roles in various stress response

mechanisms.

miRNA analysis and protein-protein interactions

It is known that stress-responsive miRNAs target the transcription factors, which regulate the

plant growth and development. The rationale behind finding out miRNA target sites is to

know if any miRNAs associated in the regulation of SbNF-Ys exist in the genome. Identifying

the target sites would subsequently help us in elucidating the regulation of SbNF-Ys during

salt, drought and high temperature stress conditions. The miRNAs may also involve in gene

networks regulated by transcription factors like NF-Ys. Identifying the interactions between
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miRNAs and transcription factors like NF-Ys will serve to screen their roles in stress tolerance,

signal transduction, different developmental stages and synthesis of secondary metabolites,

which will help to develop desired phenotypes with stress tolerance. While Fang et al. [74]

reported targeting of the NAC mRNA by miRNA for abiotic stress responses, Stief et al. [75]

noticed down regulation of heat stress memory by another miRNA. In the present investiga-

tion, miR169 identified was known to participate in post transcriptional regulation [76, 77, 19,

78]. Furthermore, miR169 and NF-YA5 knockout plants showed hypersensitivity to drought

indicating their importance in drought tolerance [21]. Overexpression of miR169c in tomato

enhanced the drought tolerance by reducing stomatal opening [79]. Therefore, in silico screen-

ing for miRNAs and their validation for abiotic stress response is highly important especially

in the context of non-coding RNAs playing a gamut of regulatory roles. In addition, the PPI

analysis revealed that they interact with calcineurins, the calcium sensors that usually confer

spatial specificity in Ca2+ signalling, and play important roles in abiotic stress tolerance [80].

NF-Ys also participate in circadian clock and flowering time regulation, serine/threonine

phosphatases and metal-dependant phosphatases and control the dephosphorylation of phos-

phoprotein substrates [81].

Gene expression analysis in different sorghum tissues under abiotic stress

conditions

Analysis of NF-Y gene expressions by qRT-PCR indicated tissue-specific and stress-inducible

expression profile. NF-YA5, A6, B7, B12, B15, B16, C6, C11, C12, C14 and C15 revealed signifi-

cant differential expression patterns in response to the abiotic stresses in S. bicolor. Such a tis-

sue-specific expression pattern was earlier noticed in several plants [30, 82]. This may indicate

a sub-functionalization of different members in specific tissues under different abiotic stress

conditions. Pereira et al. [35] pointed out that CsNF-YA2, CsNF-YB5/11 and CsNF-YC2/3
could form potential complexes in the citrus fruit. Many NF-Y genes were reported to be asso-

ciated with both biotic and abiotic stresses. Xu et al. [83] reported high expression of

BnNF-YA10 and BnNF-YB3, BnNF-YB7, BnNF-YB10 and BnNF-YB14 under NaCl stress.

Under polyethylene glycol treatment, expression of BnNF-YA9, 10, 11 and 12 genes increased

in B. napus. Malviya et al. [55] performed in silico gene expression analysis under abiotic stress

conditions using rice transcriptome data. This revealed several of the sorghum NF-Y genes are

associated with salt, drought, cold and temperature stresses. Since such an analysis is based on

rice transcriptome database, this cannot give accurate results. But, in the present study,

detailed gene expression studies were carried out and the results indicate that SbNF-YA1, 2,

and 6 are upregulated under 200 mM salt and 200 mM mannitol stresses. NF-YA7 has been

found associated with high temperature (40˚C) stress, but NF-YA8 is triggered by both cold

(4˚C) and high temperature stresses. Among NF-YB genes, 7, 12, 15, and 16 are induced under

multiple stress conditions such as salt, mannitol, ABA, cold and high temperatures. Likewise,

NF-YC 6, 11, 12, 14, and 15 have been found enhanced significantly in a tissue specific manner

under multiple abiotic stress conditions. Thus, the present analysis revealed that several of the

NF-Ys are implicated in abiotic stresses and also modulated by ABA. Such a modulation of the

NF-Ys by ABA was not shown by Malviya et al. [55]. Zhang et al. [84] found that many Physco-
mitrella patens NF-Y genes were responsive to abiotic stresses through ABA-dependent or

independent pathways. In the present study, several genes were upregulated when treated with

ABA, indicating that they are ABA-dependent. It has been observed from the present study

that majority of the mannitol (drought)-inducible genes were also induced by salt, high tem-

perature stresses and ABA. Few of the high temperature stress-induced genes are also induced

by cold stress (NF-YA2, 4, 6, 8, NF-YB2, 7, 10, 11, 12, 14, 16, 17, NF-YC4, 6, 12, and 13). Seki
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et al. [85] noticed that drought-inducible genes are also inducible by salt stress and ABA treat-

ments in A. thaliana. Ha et al. [86] observed that diverse transcription factor families modulate

plant responses to abiotic stresses independent of ABA or dependent of ABA [87, 88]. Several

members of the TFs also function in both ABA-dependent and independent ways [89–91].

Interestingly, such a crosstalk can be achieved via indirect interactions between TFs and cis-
elements present in the same promoter regions of the target genes [92].

Quach et al. [32] reported involvement of soybean NF-Y genes in specific developmental

stages and also stress responses. In Prunus mume, Yang et al. [33] observed high expression of

PmNF-YA1/2/4/5/6, PmNF-YB3/4/8/10/11/13, and PmNF-YC1/2/4/5/6/8 under osmotic stress

and ABA. In citrus, CsNF-YA5 and CsNF-YB1/2/4/5/11 were found upregulated by drought

stress [35]. Such a finding was proved later by overexpression of AtNF-YB1 in Arabidopsis and

its ortholog ZmNF-YB2 in maize which showed enhanced drought tolerance [93]. Similarly,

overexpression of osmotic and ABA-inducible NF-YB genes PwNF-YB3 from Picea and

PdNF-YB7 from poplar in Arabidopsis exhibited improved drought tolerance activity [94, 95].

Transgenic rice plants harbouring bermudagrass NF-YC gene showed tolerance under drought

[95]. NF-Y genes participate in stress tolerance mechanism by interacting with other stress

inducible genes like antioxidants. The connection between NF-Ys and antioxidants was

observed in previous reports; CsNF-YA5 [35], AtNF-YA5 interacts with glutathione S-transfer-

ase, peroxidases and an oxidoreductase [94] and SiNF-YA1 enhance the activity of superoxide

dismutase, peroxidase and catalase [94]. Expression profiles exhibited by paralogous SbNF-Y
genes in different tissues of sorghum under stress treatments suggest a clear functional redun-

dancy among this gene family members. It is interesting to study how these NF-Ys regulate the

expression of downstream genes that perform a wide spectrum of functions. Siefers et al. [13]

pointed out that some transcription factors control gene expression by binding to cis-regula-

tory elements as individual subunits. But, it also appears that others are deployed in a combi-

natorial fashion both spatially and temporally.

Conclusions

Genome-wide screening revealed the existence of a total of 42 NF-Y genes (8 SbNF-YA, 19

SbNF-YB and 15 SbNF-YC subunit members) in Sorghum bicolor. In silico analysis of promot-

ers revealed that they comprise many stress-related cis-elements such as ABRE and HSE indi-

cating their role in salt, drought and high temperature stress responsiveness. The tissue

specific expression of NF-Y transcription factors under salt, drought, ABA, cold and high tem-

perature indicated their role in multiple stress tolerance. In view of this, we firmly believe that

our studies have allowed identifying the candidate genes for further validation under an array

of abiotic stress conditions in a crop species.
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