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A B S T R A C T

Climate variability and change will have far reaching consequences for smallholder farmers in sub-Saharan Africa, the
majority of whom depend on agriculture for their livelihoods. Crop modelling can help inform the improvement of
agricultural productivity under future climate. This study applies the Agricultural Production Systems sIMulator
(APSIM) to assessing the impacts of projected climate change on two (early and medium maturing) sorghum varieties
under different management practices. Results show high model accuracy with excellent agreement between simulated
and observed values for crop phenology and leaf number per plant. The prediction of grain yield and total biomass of
an early maturing variety was fair RMSEn (22.9 and 23.1%), while that of the medium maturing was highly accurate
RMSEn (14.9 and 11.9%). Sensitivity analysis performed by changing the calibrated variables of key plant traits in the
model, showed higher significant yield change by+or - 10 % changed in radiation use efficiency, (RUE), coefficient
extinction (Coeff_ext) and Phyllocron (Phyllo) for early maturing variety while +or - 10 % changed in phyllochron
and RUE showed a significant yield change for the medium maturing variety. Under climate change scenerios using
RCP 8.5, the simulated yield for the early–maturing variety revealed high inter-annual variability and potential yield
loss of 3.3% at Bamako and 1% at Kano in the near-future (2010–2039) compared to baseline (1980–2009). The mid-
century (2040–2069) projected yield decline by 4.8% at Bamako and 6.2% at Kano compared to baseline (1980–2009).
On the contrary, the medium maturing variety indicated significantly yield gain with high yielding potential in both
climate regimes compared to the baseline period (1980–2009). The simulated grain yield increased by 7.2% at Bamako
and 4.6% at Kano, in the near-future (2010–2039) while in the mid-century (2040–2069) projected yield increase of
12.3% and 2% at Bamako and Kano compared to baseline (1980–2009). Adaptation strategies under climate change for
varying sowing dates in the near-future (2010–2039, indicated that June sowing had a higher positive yield gained over
July and August sowing for early maturing variety; July sowing simulated positive gained by 5 -11% over June and
August sowing for medium maturing variety in both locations. Similarly, under the mid-century (2040–2069), among
the sowing dates and in both locations, June sowing indicates lowest negative yield change over July and August
sowing for early maturing variety. However, for medium maturing variety, July sowing had the highest yield gain of
16% over June and August sowing at Bamako and June highest positive yield gained of 11.4% over July and August at
Kano. Our study has, therefore, demonstrated the capacity of APSIM model as a tool for testing management, plant
traits practices and adoption of improved variety for enhancing the adaptive capacity of smallholder farmers under
climate change in the Sudanian zone of West Africa. This approach offers a promising option to design more resilient
and productive farming systems for West Africa using the diverse sorghum germplasm available in the region.

1. Introduction

Better defining niches for strategic agricultural productivity

improvements could help further improve the sustainability of food
production in water-limited environments (Akinseye et al., 2017). Al-
though, there is a general understanding of the impact of climate
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change and variability on agricultural crops, the spatial and temporal
variability of these impacts remains uncertain (Gebrekiros et al., 2016).
Modelling the potential impact on productivity of locally important
traits such as crop duration and photoperiod sensitivity could help
develop adaptation and mitigation strategies, as no blanket” approach
is applicable (Adiku et al., 2015a). Simulation models have proven to
be excellent tools to explore the potential of certain crops and cropping
strategies in diverse smallholder farming systems and different en-
vironments (Whitbread et al., 2010). They may be particularly helpful
in highly heterogeneous systems which are difficult to investigate using
classical agronomic experiments alone (Holzworth and Huth, 2009;
Whitbread et al., 2010). Our findings offer one of the most applicable
models to better understand plant growth and development in response
to the environment has been the Agricultural Production Systems sI-
Mulator (APSIM) framework (Keating et al., 2003; Holzworth et al.,
2014). APSIM simulates biophysical—key soil and crop—processes for
a wide range of crops and environmental conditions. Modeling frame-
works may be used to address primary challenges and limitations such
as inter- and intraseasonal rainfall variability as well as the variation in
crop response to diverse soil types and agronomic management
(Whitbread et al., 2010; Akinseye et al., 2017.

Sorghum (Sorghum bicolor L. moench) is regarded as a major cereal
for food grain and fodder, grown predominantly rainfed conditions in
both semi-arid and sub-humid West Africa (Abdel-Ghani et al., 2015)
where it has a comparative advantage over other rainfed crops like
maize and rice (Ajeigbe Hakeem et al., 2018a, 2018b). The growth and
yield of sorghum can be limited by both abiotic and biotic factors, in-
cluding weather (rainfall and temperature), soil conditions (water, and
nutrients), parasitic weeds (Striga), disease incidence and management
practices (cultivar, fertilization) (Ajeigbe et al., 2010b). Sorghum pro-
duction in commercial situations requires maximizing grain yield on
limited available water resources, which results in maximizing the ratio
of yield to evapotranspiration. Climate change is expected to increase
temperature and alter rainfall patterns, putting pressure and increasing
uncertainty in crop production across West Africa (IPCC, 2001; Adiku
et al., 2015a; Akinseye, 2015). Crop production in such regions is, ex-
pected to become increasingly risky (Slingo et al., 2005). As 89% of

cereal production in sub-Saharan Africa are rainfed (IPCC, 2007;
Cooper et al., 2008), climate will remain a key driver of food security in
the region (Verdin et al., 2005). Although several studies project a
negative net effect of climate change on cereal yields, the actual di-
rection of change in any given area may depend on the concerned crop
physiology and the current climatic condition under which it is grown,
as different species have different base and optimum temperatures for
development (Porter and Semenov, 2005; Lobell et al., 2008; Challinor
et al., 2007).

Furthermore, rainfall projections for West Africa are highly inconsistent,
involving a projected drying trend in the western Sahel (e.g. Senegal), a
wetter eastern Sahel (e.g. Niger) and no change or slight increases in annual
rainfall towards the subhumid zones (Adiku et al.,2015a). Under a mitiga-
tion target of 1.5 ◦C, recent studies suggest substantial effects on the agri-
cultural sector (Ruane Alex et al., 2018a), the implications of which need to
be analyzed for crop yield and yield stability in regions currently challenged
by food insecurity. Because of the uncertainties in processes underpinning
the changing climate, more research is needed to understand the influence
of the projections on crop production at a local scale. Detailed crop simu-
lation studies at various scales are required due to the spatial variability of
climate, especially rainfall, in order to provide relevant knowledge on im-
pacts and for evaluating possible adaptation options at farm levels and the
supporting policies that may support farm level adaptation (White et al.,
2011; Diiro et al., 2016). The objectives of this study are thus to (i) evaluate
the reliability of APSIM model in simulating sorghum yield under different
management practices and environments, and;(ii) simulate, using con-
trasting GCMs, the impacts of future climate change on sorghum pro-
ductivity with variable sowing dates as an adaptation strategy.

2. Material and methods

2.1. Sites and cultivars

Data from field experiments used in model calibration were con-
ducted during the 2013 growing season at the International Crops
Research Institute for the Semi-Arid Tropics (ICRISAT), Samanko
station,Bamako, Mali (12.52 0N: -8.07 0W at 328m above sea level).

Fig. 1. Mean Rainfall gradient (1951–2000) in West Africa (Adapted from Adam et al., 2015).
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The climate is typical of the Sudan savanna, with three seasons
(Dingkuhn et al., 2008), a hot and humid season from June to October
during which crops are cultivated, a dry and cool season from No-
vember to February, and a dry and hot season from March to May.
Depending on the onset of major rain events, local farmers plant sor-
ghum between early June and late July (approximately 50–60 days
sowing window). Detailed experimental protocol and model para-
meterisation of two sorghum varieties were earlier reported by
Akinseye et al. (2017).

For long-term simulations,both locations used [Bamako, Mali
(12.52 °N, 8.07 °W; elevation: 328m) and Kano, Nigeria (12.0 °N;
8.59 °E; 488m)] fall within West Africa’s Sudanian agro-ecological
zone, with mono-modal rainfall distribution, annually totaling 900mm
for Bamako, and 700mm for Kano (Fig. 1). Mean monthly temperature
during the growing season varied between 26.5 and 31.5 °C in Bamako
and also 26.5 and 33 °C in Kano.

The two sorghum varieties used in this study were CSM63E, an early
maturing variety (85–105 days) with low photoperiod sensitivity and
Fadda, an improved dual-purpose, medium maturing variety (100–135
days) with intermediate plant height and photoperiod sensitivity. These
varieties are widely cultivated by smallholder farmers in the Sudanian
regions of Mali and Burkina Faso since their release.

2.2. Model description and parameterization

The APSIM cropping systems model was developed to simulate
biophysical process in farming systems, in particular where there is
interest in the economic and ecological outcomes of management
practices in the face of climatic risk. APSIM’s sorghum module is based
on the fusion of earlier models and concepts (Rosenthal et al., 1989;
Sinclair and Amir, 1992; Chapman et al., 1993; Hammer and Muchow,
1994). It simulates complex adaptive traits and genotype-to-phenotype
prediction (Hammer, 2010). Crop development follows a thermal time
approach (Muchow and Carberry, 1990; Hammer and Muchow, 1994),
with reported base (Tb), optimal (Topt) and maximum (Tm) tempera-
tures of 11, 32, and 42 0C, respectively (Carberry et al., 1993a, b). The
thermal time target for the phase between emergence and panicle in-
itiation is also a function of day length (Hammer et al., 1989; Kumar
Ravi et al., 2009) and its duration, when divided by the plastochron (0C
degrees per leaf), determines total leaf number. Total leaf number
multiplied by the phyllochron (0Cd per leaf) determines the thermal
time to reach flag leaf stage, which is thus an emergent property of the
model. Akinseye et al. (2017) provides detailed parameterization of the
two simulated sorghum (early and medium maturing) genotypes were
based on the observed data obtained from field experiment.

2.3. Model evaluation

For the sorghum cultivars used in this study, an independent model
validation was undertaken using field experiments carried out in
Bamako and Cinzana (Mali), between 2007 and 2008 growing seasons
as summarized in Table 1. Further details on agronomic practices and
soil characteristics are available in Clerget et al. (2007, 2008). Ob-
served parameters such as days to 50% flowering, physiological ma-
turity, total leaf number (TLN) per plant, grain yield and above ground
biomass were used for model evaluation, using:

1.Root mean square error (RMSE):

RMSE = [n−1Σ (simulated – observed) 2]0.5 (1)

2.The normalized root mean square error (RMSEn), expressed in
percent, calculated following Loague and Green (1991) as

RMSEn = [n−1Σ (simulated – observed) 2]0.5X
M

100 (2)

where M is the mean of the observed variable. RMSEn gives a % of
mean observed. Simulation output is considered excellent if Ta
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RMSEn < 10%, good when RMSEn is≥ 10% and≤20%, fair when
RMSEn is≥ 20% and≤30% and poor if RMSEn is≥ 30% (Jamieson
et al., 1991).

3.Additionally, for comparison, the traditional R2 regression sta-
tistic (least-squares coefficient of determination) was determined.

2.4. Climate change impact assessment

A complete set of daily weather data (1980–2009) was obtained
from the global bias-shifted Modern Era Retrospective analysis for
Research and Applications dataset (MERRA; Rosenzweig et al., 2013). R
scripts were used to generate delta-based, downscaled future climate
scenarios for the near-future (2010–2039) and mid-century
(2040–2069) periods in APSIM format, used within AgMIP project for
climate change projections from the Fifth Coupled Model Inter-
comparison Project (CMIP5; Taylor et al., 2012; Rosenzweig et al.,
2012).These scenarios are based on historical daily weather time series
perturbed for future time periods using the high representative con-
centration pathways (RCP8.5; Knutti, 2014). The identified five GCMs
(CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, and MPI-ESM-MR) out
of twenty (20) GCMs outputs captured a profile of the full ensemble of
temperature and precipitation changes within the growing season for
West Africa region (Rosenzweig et al., 2012; Adiku et al., 2015a; Ruane
Alex et al., 2017).

We used a planting density of 6.7 plants m−2 and a total application
of 41 kg N ha-1 in two doses, deemed to be recommended application
rate for smallholder farmers in Bamako, Mali. The first fertilizer dose
was 18 kg of nitrogen di-ammonium phosphate (DAP) applied at sowing
while the second dose was urea (46%N) at 40 days after sowing (DAS).
In Kano, Nigeria, recommended practices for both plant population and
fertilizer application (NPK 60:30:30) were used with plant population
set at 4.5 plants m−2, first NPK fertilization(NPK 30:30:30) at sowing
and urea top-dressing (30 kg N) also at 40 DAS. Following high emis-
sion scenerios of RCP 8.5, the simulations for current (future) climate
assumed a CO2 concentration of 360 (571) ppm (Rosenzweig et al.,
2013). Relative yield deviations from baseline were calculated to assess
impacts of climate change.

2.5. Sensitivity analysis

Sensitivity analysis was carried out on the key model parameters for
the calibrated varieties by assessing changes in grain yield and total
above ground biomass (AGB). Five (5) model parameters: radiation use
efficiency (RUE), light extinction coefficients of crop, phyllochron
(phyllo) and photoperiod sensitivity (ppsen) were changed by adding or
subtracting 10% to the calibrated values. Similar to Zuidema et al.
(2005), such analysis will identify parameters that have a strong in-
fluence on modelled output and potentially related to traits that can be
selected for in crop improvement programs.

Additionally, as a measure of adaptation strategy to climate change,
simulation was carried out to test the sensitivity of both varieties (early
and medium maturing) to varying sowing dates in the two locations.
Three (3) sowing dates were simulated covering the typical range of
sorghum sowing windows, including June 14th, July 9th and August
5th.The simulation was run for each sowing date over the baseline and
(for all GCMs) near-future and mid-century 30-year periods. Percentage
yield change for each planting date, location, and variety were calcu-
lated.

3. Results

3.1. Model evaluation

The detailed cultivar-specific coefficients reported earlier by
Akinseye et al. (2017). However, model evaluation for 50% flowering
and physiological maturity using the calibrated cultivar-specific

parameters for early maturing variety and medium maturing variety are
presented in Table 2. The statistical indices for evaluation of simulated
and observed values showed high accuracy for crop phenology
(Table 2) and total leaf number per plant (Fig.2c). The estimated RMSE
values indicate equal or less than 5 days for days to 50% flowering,< 7
days for days to physiological maturity (Table 2). The accuracy of the

Table 2
Model evaluation performance for days to 50 % flowering and physiological
maturity.

Variety / Parameters Early maturing Medium maturing

Flowering Maturity Flowering Maturity

Days Days
RMSE 4.7 5.8 4.1 6.8

RMSEn(%) 7.7 5.1 5.1 8.5
R2 0.58 0.66 0.81 0.73

SDobs (CV%) 5.7 (9.2) 4.5 (5.2) 7.1 (8.6) 8.8 (8.1)
SDsim (CV%) 1.5 (2.6) 1.5 (1.7) 9.3 (10.9) 9.3 (8.0)

N 24 24 8 8

SD- Standard deviation from mean; obs-observed value, sim-simulated value;
CV- coefficient of variation; N-number of observations.

Fig. 2. Model comparison between the observed and simulated values (a) grain
yield; (b) total biomass and (c) Total leaf number per plant for early maturing
variety.
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model in predicting grain yield and total biomass for the early maturing
variety was relatively good with RMSEn values of 22.9% and 23.1%
respectively (Fig. 2a & b) while RMSE of 1.1 and RMSEn of 6.1% was
estimated for total leaf number (TLN) (Fig.2c). Also, the model per-
formance was excellent for medium maturing variety represented by
very low RMSEn values of 14.9 and 11.7% for grain yield and total
biomass respectively (Fig.3).

3.2. Historical and future climatic trend in the study sites

Fig.4 shows the analyses of seasonal rainfall in Bamako, Mali and
Kano, Nigeria both at near future (2010–2039) and mid-century
(2040–2069) in comparison with baseline period (1980–2009). The
results indicated no significant changes in seasonal rainfall among the 5
GCM scenarios at Bamako, Mali in the near future (2010–2039) but
significant changes occurred at Kano, Nigeria. 3 out of 5 GCMs
(CCSM4,GFDL-ESM2M and MPI-ESM-MR) projected decline in rainfall
varying from 3 to 12.5% while HadGEM2-ES and MICRO5 predicted
increased rainfall compared to the baseline climate (1980-2009)
(1980–2009). Also, in the mid-century (2040–2069), at Bamako, Mali
(Fig.4a), seasonal rainfall had projected significant changes with 4 out
of 5 GCMs predicted decline rainfall from baseline climate which varied
from 2 to 28%. In contrast, at Kano, Nigeria (Fig.4b) the result shows
projected increase in rainfall from 3 out of 5 GCMs by 4.8–31.2%. The
highest projected annual rainfall decline is shown in GFDL-ESM2M
(14%) followed by MPI-ESM-MR (2%).

Analyses of monthly minimum and maximum temperature at
Bamako, Mali and Kano, Nigeria by near future (2010–2039) and mid-
century (2040–2069) as compared to baseline period are shown in Figs.
.5 & 6 . All the 5GCMs both in the near-future (2010–2039) and mid-
century (2040–2069) projected warming for both minimum and max-
imum temperatures and uniformly increase throughout the growing
season in both locations. Table 3 however shows the magnitude of in-
crease was larger in the mid-century (2040–2069) than near-future
(2010–2039) while the increase in minimum temperature was higher
by 0.20C over the change of maximum temperature. The change in
temperatures in the near-future over baseline period was almost the

same (mean change varied from 0.90C -1.20C) at both locations. On the
contrary, in the mid-century (2014–2069), the maximum and minimum
temperatures increase by 2.20C and 2.10C over Bamako and 2.30C and
2.20C over Kano respectively across 5GCMs.

3.3. Simulated yield variability between the baseline and future climate
across GCMs

The result shows comparison of yield variability between the
baseline (1980–2009) and two (2) climate regimes [near-future
(2010–2039) and mid-century (2040–2069)] using five(5) contrasting
GCMs (Figs. 7 & 8 ). In accordance with simulation results from both
baseline and two (2) climate regimes (near-future and mid-century),
both varieties displayed high inter-annual variability across GCMs. For
early maturing variety (Fig. 7), simulated grain yields were low, rela-
tively stable (< 1000 kgha−1) with less inter-annual variability be-
tween baseline (1980–2009) and climate change in the near-future
(2010–2039) and mid-century (2040–2069). At Bamako, GCMs pro-
jected grain yield decline between 2.5% and 4.4% in the near future
(2010–2039) while mid-century (2040–2069) projected grain yield
decline from 3.3 to 5.7%. In contrast at Kano, two (GFDL-ESM2M and
MPI-ESM-MR) out of five(5) GCMs projected increase in grain yield by
2% while other 3 GCMs indicated yield declines between 1.6 and 4.7%
in the near future (2010–2039). Similary, in the mid-century
(2040–2069), GFDL-ESM2M and MPI-ESM-MR predicted yield increase
between 11.3% and 14.5% while other 3GCMs showed yield decline
between 1.5 and 4.7%.

Furthermore, Fig. 8 shows that medium maturing variety exhibited
significant high yielding potential, high inter-annual variability at Kano
but low inter-annual variability at Bamako across the GCMs. The mean
simulated yield ranged from 1340 - 2310 kg ha−1 at Bamako, Mali and
960 - 3870 kgha−1 at Kano, Nigeria between baseline and GCMs. At

Fig. 3. Model comparison between the observed and simulated values (a) Grain
yield and (b) Total biomass for medium maturing variety.

Fig. 4. Projected change (%) in the seasonal (May to October) rainfall across
GCMs for both near-future(2010–2039) and mid-century (2040–2069) sce-
narios (a) Bamako, Mali; (b) Kano, Nigeria.
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Bamako, across the GCMs, the simulated grain yield projected increase
between 4.5 % and 12.2 % in the near future (2010–2039) and 11.6 and
18 % in the mid-century (2040–2069) respectively. Meanwhile, at
Kano, 4 out of 5 GCMs projected an increase in yield varied from 2 to
26.6 % while only HadGEM2-ES indicated yield loss by 1.7 % in the
near future (2010–2039). In the mid-century(2040–2069), GFDL-
ESM2M and MPI-ESM-MR predicted greater mean yield increase of
11.3% and 14.5% while other 3GCMs showed slightly mean yield de-
crease varied from 1.5 and 4.7%.

3.4. Model sensitivity to change in the cultivar selected parameters and
sowing dates effects on sorghum yields

Changes in radiation use efficiency (RUE), light extinction coeffient
(Coeff_ext) and phyllochron (phyllo) indicated a strong effect on grain
yield change for early maturing variety while RUE and phyllo traits
driven the yield changes for medium maturing variety (Fig.9). RUE
accounted for+ or - 10% yield deviation followed by light extinction
coeffient (Coeff_ext) with yield deviation of 7% for (Fig.9a). Similarly,
for medium maturing 10% increase in phyllochron trait (Phyllo), ac-
counted for 19% increase in grain yield while 10% decrease resulted to
13% decrease in grain yield. Also, 10% increase in RUEaccounted for
positive grain yield change by 4% and vice- versa. while changes in
photoperiod sensitivity factor (PPsens) had a minor effect on yield
deviation for both varieties tested.

The simulated grain yield change (%) for 30-year period seasonal
analysis between baseline and climate change scenerios at the different
sowing dates is shown in Fig. 10. The simulated grain yield revealed
significant changes (both positive and negative) at varying sowing in
both locations between baseline (1980–2009) and two climate periods
[near-future (2010–2039) and mid-century (20140-2069)]. At Bamako,

Mali across the sowing dates, the early maturing variety showed yield
decrease of 2–5 % between baseline (1980–2009) and near-future
(2010–2039), and also yield decrease of 1.2–7% between baseline and
mid-century (2040–2069). Medium maturing variety showed sig-
nificant increase in yield of 5–8.2 % between baseline(1980–2009) and
near-future (2010–2039) and 5.3–15.6 % yield increase between
baseline (1980–2009) and mid-century (2040–2069). At Kano, the early
maturing variety showed yield increase in June and August sowing
dates by 1.2–15.9 % while July sowing date indicates yield decrease by
3.2% between baseline(1980–2009) and near-future(2010–2039), and
also yield decrease between 0.6 and 12% across sowing dates by mid-
century (2040–2069). For the medium maturing variety, June sowing
date indicates imulated yield decrease by 12.7% while July and August
sowing dates simulated increase in yield by 0.2-5.3% in the near-future
(2010–2039). For mid-century(2040–2069), June sowing date indicates
predicted yield increase by 11.4% while July and August sowing dates
predicted yield decrease ranged from 3.2 to 9.7%

4. Discussion

Using the calibrated cultivar-specific parameters in APSIM, we
evaluated the genetic traits of sorghum for yield changes and also
adaptation strategies to climate change at two locations within the West
Africa semi-arid region.The study revealed important differences in
growth, development and resource use of sorghum varieties, empha-
sizing the suitability of specific characteristics and traits for different
applications within the smallholder farming systems. The high model
accuracy simulated for crop phenology and morphological traits com-
pared to grain yield and total biomass for both varieties, possibly re-
flecting the additive effects of errors in simulating the different level of
plant populations, and quality of the observed data. However, the

Fig. 5. Comparison of mean monthly minimum temperature variability between baseline (1980–2009) and GCMs in the near-future (2010–2039) and mid-century
(2040–2069) in Bamako and Kano under RCP8.5.
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results show high model accuracy with lower RMSEn estimated for total
biomass and grain yield for medium maturing variety while low model
accuracy with fair RMSEn for total biomass and grain yield estimated
for early maturing variety. The variations in biomass and yield as ob-
served in the present study could be associated model inability to si-
mulate tillering response to changes in plant density as reported by
Suchit et al., 2004

The yielding ability of any crops are determined by genotype,time
of sowing, environmental factors and management practices where it is
used to grow (Ajeigbe et al., 2018a,b). As earlier reported by Akinseye
(2015), the difference in yield potential of the two sorghum varieties
tested was attributed to genetic make-up of the varieties. For instance,
early maturing variety is an improved local landrace, targeted to more
drier areas with potential yield< 2000 kg/ha under good production
management while medium maturing variety is an improved hybrid,

targeted dual purpose for grain (approx.3500 kg/ha) and fodder for
livestock feed. However, our results have also confirmed that rainfall
and temperature could be a limiting environmental factors for sorghum
productivity in semi-arid areas. On the sensitivity of current agri-
cultural system to climate change, the increase in rainfall amounts
projected by some GCMs (e.g. HadGEM2-ES, MIROC5) did not result to
projected increase in mean simulated yield. Thus, the relative role of
rainfall and temperatures in projections of crop yields create a plausible
divergence such that the two variables are closely linked and interact
and depend on scale and geographical location. For instance, over
Kano, Nigeria, the significant increase in rainfall (22% and 31%) for
HadGEM2-ES both in the near-future (2010–2039) and mid-century
(2040–2069) climate regimes, indicated that simulated yield decline by
5% in the near-future (2010–2039) and approximately 11% in the mid-
century (2040 - 2069)(2040–2069) for both varieties. The yield loss was
found to be largely associated to projected increase in both minimum
temperature (1.7 °C and 3.7 °C);maximum temperature (1.3 °C and
3.0 °C) in the near-future (2010–2039) and mid-century (2040–2069)
during growing season.This result corroborates previous studies re-
ported by on sorghum crop by Grossi et al. (2015), Faye, et al. (2018),
Msongaleli et al. (2014) and for maize and pearl millet, Lizaso et al.
(2018), Singh et al. (2017) respectively. Furthermore, simulated base-
line yield< 1000 kgha−1 in both locations for early maturing variety,
the result revealed high inter-annual variability and potential yield loss
which varied from 1% to 3.4% in the near-future (2010–2039) and
4.8%–6.2% in the mid-century (2040–2069) across GCMs. In contrast,
the medium maturing variety remained the high yielding under climate
change regimes resulting in significant yield gains of 8.5 % in the near-

Fig. 6. Comparison of mean monthly maximum temperature variability between baseline(1980–2009) and GCMs in the near-future (2010–2039) and mid-century
(2040–2069) in Bamako and Kano under RCP8.5.

Table 3
Ensemble of future changes of rainfall, minimum temperature (Tmin) and
maximum temperature (Tmax) across GCMs scenarios.

Location Parameter Baseline Near-Future
(2010–2039)

Mid-Century
(2040-2069

Bamako Rainfall(mm) 812 +1.5% −10.2%
Tmin (oC) 21.5 +1.2 °C +2.2 °C
Tmax (oC) 33.0 +1.2 °C +2.1 °C

Kano Rainfall(mm) 732 −1.1% +7.4 %
Tmin (oC) 21.2 +1.1 °C +2.3 °C
Tmax (oC) 33.8 +0.9 °C +2.2 °C
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future (2010–2039) in both locations while the mid-century
(2040–2069) projected 14.2% yield increase over Bamako and 2% over
Kano respectively. The results imply that rainfall pattern will be more
favorable to the variety that are of medium to late maturity due to
ability to recover from any moisture stress and also adjust to higher
temperatures during growing season. The current climate will generally
be more suitable as the warmer climate typically shortens the life cycle
and more longer vegetative variety will be compensated for these
conditions and produce higher yields than the early maturing variety
that has short vegetative growth (Msongaleli et al., 2014; Gebrekiros
et al., 2016). The projected increase in temperatures by GCMs (e.g
HadGEM2-ES and MPI-ESM-MR) during growing season suggests in-
crease in growing degree days (GDD) thereby accelerate crop devel-
opment andfloral initiation processes resulting to poor grain filling and
grain yield loss particularly for early maturing variety. Similar results
were reported by Sennhenn et al., 2017 for short season grain legumes
over semi-arid Eastern Kenya. Therefore, Identifying a proper variety
according to length of growing period could be best ways to tackle
climate change impacts on genetic diversity that exists in sorghum
maturity groups (Singh et al., 2017). This would minimize drought and
heat stress during the crop life cycle and the available seasonal re-
sources would be fully utilized.

The sensitivity of some calibrated cultivar-specific parameters to
10% increase or decrease changes, showed the yield driver of both
sorghum test in APSIM. RUE and light exintiction coeffiecient (coef-
f_ext) accounted for significant yield change varying from 7 to 10% for
early maturing variety Medium maturing variety indicated Phyllo and

RUE have stronger effects to yield changes compared to light exintiction
coeffiecient. However, the little or no effect of PPsen confirmed less
sensitivity to photoperiod of both varieties. Yield variations by both
varieties could be associated to the differences in sources and sink size
as reported by Rai et al. (1999) for pearl millet. Based on this study it
was clearly evident that the medium maturing variety driven by Phllo
and RUE (source), dm_per_seed and Maximum grain filling rate (sink)
will produce higher yields under climate change. Though, the simulated
grain yield shows decrease between baseline and future climate periods
for early maturing variety, June sowing date had a significant yield
advantage over July and August sowing dates in both locations while
implies less risk to production. Also, for medium maturing variety, July
sowing window revealed the highest yield gain over June and August
sowing month except for Kano that indicated June sowing in the mid-
century (2040–2069). According to the studies reported by Singh et al.,
2017, drought and heat stress will be on the increase due to expected
warming even during growing season. This implies that there may be
little opportunity to adopt longer season varieties along with target
sowing date to gain back the portion of the season (and radiation
capture) lost due to accelerated development. This will be highly
needed as adaptable strategy under climate change to avoid huge yield
losses.

5. Conclusion

Understanding crop response towards projected changes in climate
is required for formulating and disseminating adaptation strategies for

Fig. 7. Simulated grain yield variability between baseline (1980–2009) and climate change for the near-future (2010–2039) and mid-century (2040–2069) for Early
maturing variety in Bamako, Mali and Kano, Nigeria.
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yield improvement in a water-limited environments for smallholder
farming system. This study has shown the capacity of crop simulation
model to test crop dynamism using sowing dates strategies under
changing climatic conditions towards modifying management prac-
tices. The long-term simulation for two climate periods had given more
insight into the influence of variability in temperature and rainfall

regimes on the sorghum varieties tested. However, the simulated yield
under climate change showed increase in yields for medium maturing
variety and decrease in yield for early maturing variety at both sites.

Additionally, the June sowing date was found favourable compared
to July and August sowing dates for the early maturing variety under
climate change in both locations. Meanwhile, July sowing could be

Fig. 8. Simulated grain yield variability between baseline (1980–2009) and climate scenarios in the near-future (2010–2039) and mid-century (2040–2069) for
Medium maturing variety in Bamako, Mali and Kano, Nigeria.

Fig. 9. Results of sensitivity analysis to change in key model plants traits for potential grain yield (a) Early maturing variety; (b) Medium maturing variety. The
percentage change in potential yield after increasing or decreasing the value of the parameter along the y-axis with 10% is shown.
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more appropriate for medium maturing variety resulted to higher yield
gains under climate change. Our study, therefore conclude that mod-
ifying management practices through the deliberate choice between
improved sorghum hybrid variety and local landraces accompanied by
an appropriate time of sowing can be feasible options for enhancing the
adaptive capacity of many smallholder sorghum farmers in Sudanian
zone of West Africa. The approach will enable increasing production of
sorghum crop for enhanced food security and livelihoods.
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