The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication

Zhuang, W and Chen, H and Yang, M and Wang, J and Pandey, M K and Zhang, C and Chang, W C and Zhang, L and Zhang, X and Tang, R and Garg, V and Wang, X and Tang, H and Chow, G N and Wang, J and Deng, Y and Wang, D and Khan, A W and Yang, Q and Cai, T and Bajaj, P and Wu, K and Guo, B and Zhang, X and Li, J and Liang, F and Hu, J and Liao, B and Liu, S and Chitikineni, A and Yan, H and Zheng, Y and Shan, S and Liu, Q and Xie, D and Wang, Z and Khan, S A and Ali, N and Zhao, C and Li, X and Luo, Z and Zhang, S and Zhuang, R and Peng, Z and Wang, S and Mamadou, G and Zhuang, Y and Zhao, Z and Yu, W and Xiong, F and Quan, W and Yuan, M and Li, Y and Zou, H and Xia, H and Zha, Li and Fan, J and Yu, J and Xie, W and Yuan, J and Chen, K and Zhao, S and Chu, W and Chen, Y and Sun, P and Meng, F and Zhuo, T and Zhao, Y and Li, C and He, G and Zhao, Y and Wang, C and Kavi Kishor, P B and Pan, R L and Paterson, A H and Wang, X and Ming, R and Varshney, R K (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nature Genetics (TSI), 51 (5). pp. 865-876. ISSN 1061-4036

[img] PDF (It is an Open Access article) - Published Version
Download (5MB)


High oil and protein content make tetraploid peanut a leading oil and food legume. Here we report a high-quality peanut genome sequence, comprising 2.54 Gb with 20 pseudomolecules and 83,709 protein-coding gene models. We characterize gene functional groups implicated in seed size evolution, seed oil content, disease resistance and symbiotic nitrogen fixation. The peanut B subgenome has more genes and general expression dominance, temporally associated with long-terminal-repeat expansion in the A subgenome that also raises questions about the A-genome progenitor. The polyploid genome provided insights into the evolution of Arachis hypogaea and other legume chromosomes. Resequencing of 52 accessions suggests that independent domestications formed peanut ecotypes. Whereas 0.42–0.47 million years ago (Ma) polyploidy constrained genetic variation, the peanut genome sequence aids mapping and candidate-gene discovery for traits such as seed size and color, foliar disease resistance and others, also providing a cornerstone for functional genomics and peanut improvement.

Item Type: Article
Divisions: Research Program : Genetic Gains
CRP: CGIAR Research Program on Grain Legumes and Dryland Cereals (GLDC)
Uncontrolled Keywords: tetraploid peanut, peanut, groundnut, peanut genome, genomics, legume karyotype evolution, peanut improvement, crop improvement, genetics, polyploid genome evolution, oil and protein content
Subjects: Others > Crop Improvement
Others > Genetic Engineering
Mandate crops > Groundnut
Others > Oilseeds
Others > Genetics and Genomics
Others > Legume Crops
Depositing User: Mr Ramesh K
Date Deposited: 30 Jul 2019 04:00
Last Modified: 28 Aug 2019 06:24
Official URL:
Acknowledgement: The work reported in this publication was supported by the State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, and grants from the NSFs of China (U1705233, 31601337, 31701463 to W.Z., H.C. and C.Zhang, respectively), grants from the Ministry of Science and Technology of China (2008DFA31450 and 2013AA102602-5) and a grant from the Department of Science and Technology of Fujian (2008J1003 to W.Z.). The high-density SNP linkage map construction and QTL mapping were performed with the help of BaiMaiKe Inc. in Beijing. The Hi-C sequencing and primary assembly were performed with the help of Annoroad in Beijing. We thank the Indian council of Agriculture Research, National Agricultural Science Funds, Government of India and the CGIAR Research Program on Grain Legumes and Dryland Cereals for grants to R.K.V. and M.K.P.
View Statistics

Actions (login required)

View Item View Item