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Abstract: Aflatoxin is considered a “hidden poison” due to its slow and adverse effect on various
biological pathways in humans, particularly among children, in whom itleads to delayed development,
stunted growth, liver damage, and liver cancer. Unfortunately, the unpredictable behavior of the
fungus as well as climatic conditions pose serious challenges in precise phenotyping, genetic prediction
and genetic improvement, leaving the complete onus of preventing aflatoxin contamination in crops
on post-harvest management. Equipping popular crop varieties with genetic resistance to aflatoxin
is key to effective lowering of infection in farmer’s fields. A combination of genetic resistance for
in vitro seed colonization (IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production
together with pre- and post-harvest management may provide a sustainable solution to aflatoxin
contamination. In this context, modern “omics” approaches, including next-generation genomics
technologies, can provide improved and decisive information and genetic solutions. Preventing
contamination will not only drastically boost the consumption and trade of the crops and products
across nations/regions, but more importantly, stave off deleterious health problems among consumers
across the globe.
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Key Contribution: This article provides an overview on the complex molecular regulatory events
associated with the aflatoxin resistance mechanisms in groundnut. Emphasis is placed for more
research on discovery of resistant lines, markers, genes and pathways which together with pre- and
post-harvest management practices can mitigate aflatoxin contamination in groundnuts.

1. Introduction

Aflatoxin contamination is a food safety concern that has adverse financial implications and
health consequences in groundnut growing regions across the globe. Aflatoxins are a group of
mycotoxins and highly toxic secondary metabolites produced by four Aspergillus species such as
Aspergillus flavus, Aspergillus parasiticus, Aspergillus nomius and Aspergillus tamarii [1-3]. Groundnut,
cotton, sunflower, wheat, corn and rice are key hosts for fungus causing aflatoxin outbreaks in the
food chain [4]. Aflatoxins contain alternating groups of carbonyl and methylene called polyketides
that are carcinogenic, immunosuppressive, hepatotoxic and teratogenic to humans and animals [5,6].
Among four prevalent groundnut aflatoxins, Bl and B2 are produced by A. flavus while G1 and G2 are
produced by A. parasiticus. In addition to health issues, aflatoxin levels beyond a threshold hamper the
export quality of groundnuts 20 parts per billion (ppb) in the USA and 4 ppb in Europe [7] resulting in
significant economic loss to farmers and traders. Since aflatoxin decomposes at 237-306 °C, cooking,
drying, pasteurization and sterilization cannot reduce aflatoxin levels in food [8]. Although calcium
chloride, alkaline cooking and steeping, hydroxides and bicarbonates can reduce 84%-95% aflatoxin
content [9-11], these treatments also reduce the nutritional quality of the product. If pre-harvest
infection in crops can be avoided through host resistance, then managing post-harvest contamination
becomes possible using different technologies and practices.

Inconsistent phenotyping results from aflatoxin contamination experiments suggest a large
variation in germplasm due to genotype-by-environment (GxE), but studies have not led to the
identification of stable resistance sources among diverse germplasm. Studies have reported the
existence of three types of host-pathogen resistance mechanisms, namely in vitro seed colonization
(IVSC), pre-harvest aflatoxin contamination (PAC) and aflatoxin production (AP) detected in different
genetic backgrounds [12-16]. However, there are currently no reports on the presence of all three
resistance mechanisms in a single genetic background. This provides an opportunity to combine
the three resistance mechanisms to achieve stable genetic resistance against Aspergillus infection in
the field. Speedy advancements in low-cost sequencing technologies and big data analysis provide
opportunities to dissect this tricky trait by deploying complex multi-parent genetic populations
(such as MAGIC—multi-parent advanced generation intercross, and NAM—nested association
mapping) [17-19]. Further, reliable ELISA-based phenotyping of the three mechanisms on large-scale
segregating breeding lines may facilitate the identification of promising lines with resistance to all
the mechanisms.

Over the last decade, next-generation sequencing (NGS) technologies accelerated the development
of different genomic resources in a given crop that are very affordable even for large genome-polyploid
crops such as groundnut [18,19]. As a result, high quality reference genomes have been successfully
developed for diploid progenitors Arachis duranensis [20,21] and A. ipaensis [21,22] wild tetraploid
A. monticola [23] and also for both the subspecies namely, A. hypogaea spp. hypogaea [24] and
A. hypogaea spp. fastigiata [25,26] of cultivated groundnut. In addition, comprehensive gene expression
atlases are also available [27,28], large-scale genome-wide genetic markers and high density 58K
SNPs “Axiom_Arachis’ Array [29] for use in different structural and functional genomics studies.
In addition, genetic and transcriptome studies on different mechanisms provide a better understanding
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of biochemical pathways involved in aflatoxin biosynthesis [30-32]. Transgenic technology was
deployed to achieve ~90% reduction in aflatoxin content in groundnut by silencing the aflatoxin
producing genes (afIR, aflS, aflep and afIC) using RNAi approach [33]. Transgenic events with reduced
levels of aflatoxin were recently developed in groundnut by silencing the afIM and aflP genes through
host-induced gene silencing (HIGS) and overexpressing of antifungal plant defensins MsDefl and
MtDef4.2 [34].

Since none of the above-mentioned efforts have provided heritable resistance in the genetic
background of popular cultivars, serious efforts are warranted in achieving stable genetic resistance.
However, it must be mentioned that post-harvest management practices have been very instrumental
in mitigating contamination in the entire food chain. This paper discusses the importance and
strategy of combining different resistance mechanisms together with well-tested pre- and post-harvest
management and safety practices to deliver aflatoxin-free groundnuts to the food chain (Figure 1).
It also advocates the deployment of modern scientific tools and technologies to minimize contamination
throughout the value chain, thereby ensuring food safety and consumers’ health globally.
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Figure 1. Impact of aflatoxin contamination across the groundnut value chain. Poor storage and

risk

inappropriate transportation procedures are the bottlenecks in the post-harvest stage of harvest aflatoxin
contamination, subsequently causing financial loss to farmers and traders. Once these contaminated
products enter the food-feed chain and travel across it, they can have an adverse impact on human health.

2. Characterization of Aflatoxin Producing Pathogens

Polyketide derived aflatoxins are produced by A. flavus which is a soil saprophytic fungus and
opportunistic pathogen that impacts human and animal health. A. flavus grow well at 28-30 °C
and 25-35 °C and is readily able to colonize in most environments whenever there is a suitable
nutrient rich source of carbon and nitrogen [35] A. flavus mode of replication is majorly by asexual
reproduction, but it also forms sclerotia or conidia in soil and in plant tissue as hardened masses
of desiccated and melanized mycelia that are able to survive adverse nutritional conditions [36].
However, an earlier study reported that sexual reproduction also takes place among compatible groups
of A. flavus strains [37]. Furthermore, colonies which are produced by A. flavus are powdery masses of
yellow-green spores and reddish gold on the upper and lower surface area. Most of the plants which
were invaded and/or colonized by A. flavus do not show any visible symptoms on the foliage except
aflatoxin accumulation in the grains/seeds.

Groundnut pods develop beneath the soil, which is the main source of inoculum for A. flavus
leading to infection in groundnut seeds [38,39]. The toxigenic pathogens produce a high level of
toxins in the infected seeds with high protein and lipid content [40]. Based on phenotyping, toxigenic
strains can be categorized into S and L type. S strains produce high levels of aflatoxins and numerous
sclerotia (average diameter < 400 pm) whereas L strains produce large sclerotia but fewer aflatoxins [41]
Aflatoxins (AFs) are secondary metabolites produced by the fungal plant parasite pathogens i.e.,
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A. flavus and A. parasiticus [42]. Aflatoxins belong to a family of compounds called difuranocoumarins
and are grouped under AFB,, AFBy, AFG; and AFG, based on fluorescence emission and their
relative mobility on silica gel. Of these, AFB; is most toxic and is produced by both A. flavus and
A. parasiticus. AFG; and AFG; are produced exclusively by A. parasiticus. Infections from A. flavus are
more prevalent in Asia and Africa while A. parasiticus is prevalent in Americas. Groundnuts tend to be
colonized and contaminated by Aspergillus sp. at different stages and aflatoxin production occurs at
pre-harvest, during harvest, post-harvest drying, in storage and also during transportation along the
value chain [43,44].

Aflatoxin contamination in groundnuts is aggravated by heat and drought stresses [45,46]. Under
drought conditions, aflatoxin contamination increases due to reduced moisture in the pod, resulting in
cracks in the pod wall that allows the penetration of A. flavus [47]. Damaged pods have more aflatoxin
compared to undamaged shells [48]. Under drought conditions, the production of phytoalexin is
inhibited by decreasing kernel water activity, which increases aflatoxin contamination [49]. Thus,
drought predisposes groundnut to aflatoxin production [50]. Although drought intensity increases
aflatoxin contamination, drought tolerance does not lead to less aflatoxin contamination [51]. It has
been reported that expression of AFs biosynthetic gene cluster [52] and aflatoxin production have been
regulated through various environmental and nutritional factors including carbon sources [53] and
oxygen availability [54-57].

The aflatoxin biosynthetic pathway has been well characterized in A. parasiticus and A. flavus [58].
Extensive research has identified a 70 kb DNA cluster consisting of two specific transcriptional
regulators (afIR and aflS) and 25 co-regulated downstream metabolic genes in the aflatoxin biosynthetic
pathway [59-62]. On average, about 2.8 Kb of the genomic DNA region contains one gene. The genomic
region has three large gene fragments of about 5-7 Kb each for the fatty acid synthase a (FAS a), FAS 8
and the polyketide synthase (PKS). The average size of the other 22 genes is about 2 Kb towards 5’
end with no ORF. The expression of the two transcriptional regulators (afIR and aflS) are controlled by
many regulators, i.e., CreA transcription factor, VelB/VeA/LaeA complex, and a cell surface-localized
G-protein coupled receptor complex [52,63]. Most early studies focused on controlling AFB; production
in crops with a few dwelling on factors responsible for aflatoxin contamination.

3. Adverse Impacts of Aflatoxin Contamination on Human Health and the Economy

Aflatoxin adversely affects >5 billion people who are chronically exposed to a large amount
(>1000 ppb) of toxin [64]. The exposure to high aflatoxin influences various biological pathways in
humans through the interaction of epoxide with proteins and DNA. Exposure to the toxic effects
of aflatoxin negatively affects nutrition of poor people as well as the economy, accounting for 40%
of prevalent diseases affecting health [65]. Aflatoxin also has implications on the economic, social
and political aspects of society. Aflatoxin is predominantly perceived as leading to aflatoxicosis
and exists in two forms of acute intoxication leading to liver damage and chronic subsymptomatic
exposure [65]. At present, the global burden of aflatoxin-driven hepatocellular carcinoma (HCC)
or liver cancer is around 25%, mostly prevalent in developing countries due to poor post-harvest
management and regular consumption of food contaminated with aflatoxin [66,67]. In the 1960s, the
death of 2219 chicks in poultry farms in Mysore in Karnataka state of India, led to the origin of the
word ‘aflatoxicosis’ [68]. Deaths in poultry due to aflatoxin were also reported in 1961 in turkeys fed
imported (and contaminated) groundnut meal (Turkey “X” disease) [69,70]. A deleterious mutation in
the P53 tumor-suppressor gene and activation of dominant oncogenes leads to hepatomas (64% of
cancers) which are a predominant cancer [71,72]. Due to these implications on health, aflatoxin was
placed on the list of Rapid Alert System for Food and Feed (RASFF) of the European Union in 2008.
Aflatoxin (AFB,) has also been categorized as a class 1 carcinogen by the International Agency for
Research on Cancer (IARC). This has resulted in the regulation of toxins to very low concentrations,
i.e., 20 ppb in grains and 0.5 ppb in milk in the United States and 4 ppb in food for direct consumption
(including groundnut) in some European countries [7].
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In addition to groundnuts, aflatoxin also contaminates linseeds, sunflower seeds, cereals, beans and
poultry due to contaminated feed [73]. Reports suggest that aflatoxin contamination in agricultural crops
may lead to an annual loss of more than US$ 750 million in Africa [74]. In the USA, aflatoxin contamination
leads to an annual income loss of more than US$ 100 million [75]. High levels were detected in children in
South Africa, Durban, Nigeria and Sudan [76-78]. It also leads to the rejection of valuable products in the
international market [79]. Products that do not meet the aflatoxin standards are rejected at the channel of
distribution or sold cheaply and enter the local market [80]. In Eastern Cape area of South Africa, the
most predominant aflatoxin Bl toxin was found at a concentration of 27,163 and 16,505 ppb in groundnut
butter provided to children. However, 10 ppb is the maximum concentration, of which 5 ppb was that of
B1 aflatoxin (http://scienceinafrica.com/health/aflatoxin-peanut-butter-mrc-policy-brief).

Levels of aflatoxin contamination depend on the Aspergillus species, growing and storage conditions
and differ from country to country [81,82]. Factors such as genotype, soil texture, moisture deficit and
insect infestation also have a bearing on severity of contamination [82]. Data on annual consumption
from different countries show that exposure to aflatoxin was 11.7-2027 ng/kg/day in southern Guangxi
province of China, 3.5-14.8 ng/kg/day in Kenya, 38.6-183.7 ng/kg/day in Mozambique, 11.4-158.6
ng/kg/day in Swaziland and 16.5 ng/kg/day in Transkei. In Thailand, it was 6.5-53 ng/kg/day whereas
in the United States it was estimated to be 6.5-53 ng/kg/day [83]. A study in Ghana revealed estimated
aflatoxin exposure in groundnut to be 9.9-99.2 ng/kg/day [84].

Standard food safety parameters set by national regulatory bodies in different countries for the
benefit of human health and permissible limits differ among countries [85]. This may lead to trade
loss due to high cost of meeting the standards and cost of testing, and eventual loss of admissibility
into foreign markets [86]. According to food safety and standard regulations the permissible limit for
aflatoxin in food commodities for sale in the Indian market is 30 pg/kg or ppb, while the tolerance
value for aflatoxin M in milk is 0.5 pg/kg. However, the European Union (EU) has stringent limits for
aflatoxin in dried nuts, cereals and spices, ranging from 2-12 pg/kg for Bl aflatoxin to 4-15 ug/kg for
total aflatoxins, whereas, for infant foods, the range varies from 0.10 to 0.25 ug/kg [87].

4. Current Understanding of Resistance to Aflatoxin Contamination Based on Genetic, Genomic,
Transcriptomic and Proteomic Studies

Deciphering genotype to phenotype association requires an understanding of gene networks and
pathways of biological systems to target complex traits such as aflatoxin contamination in groundnut.
Multiple efforts have been made for phenotyping diverse groundnut genotypes leading to identification
of several promising lines showing resistance/moderate resistance for A. flavus infection and aflatoxin
production (Table 1). Modern approaches such as molecular genetics, genomics, transcriptomics and
proteomics studies in groundnut have become increasingly more effective (Figure 2). A very recent
study on identification of linked markers for aflatoxin resistance reported quantitative trait loci (QTLs)
in a recombinant inbred line (RIL) population (Zhonghua 10 X ICG 12625) [88]. The phenotyping
of this population was performed for percent seed infection index (PSII), and aflatoxin B1 (AFB;)
and aflatoxin B2 (AFB,) content. Two QTLs for PSII and 12 QTLs for aflatoxin accumulation were
detected by unconditional analysis. Interestingly, four QTLs (JAFB1A07 and gAFB1B06.1 for AFB; and
gAFB2A07 and gAFB2B06 for AFB,) showed major and stable effects (9.32%-21.02% PVE) [88]. It was
important to note the discovery of two co-localized genomic regions on A07 (not only gAFB1A07 and
gAFB2A07) and on A06 (JAFB1B06.1 and gAFB2B06). A closer look at the genotyping and phenotyping
data suggested additive effects between two QTLs (JAFB1A07 and gAFB1B06.1) leading to low AFB;
and AFB; accumulation [88]. These are encouraging results in addition to several comprehensive
trait mapping studies underway using association mapping panel and bi-parental and multi-parental
genetic populations and transcriptomics at leading research organizations such as ICRISAT-India,
University of Georgia-USA, USDA-USA, and Oil Crops Research Institute of the CAAS-China.
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A summary of the screening and characterization of groundnut germplasm using different phenotyping methods leading to identification of

Resistance . . . . . C g Resistant Varieties
Mechanism Sample Size and Material Type  Toxigenic Species Screening Method Significant Outcome Identified Reference
The compact arrangement of
. . Myecelial growth on the palisade-like layers of the Igola, Serenut 1, Serenut 2
13 elite varieties and landraces A flavus surface of kernels seed testa is resistant to and entry 99527 [14]
1. PHAC PHAC
Seed infection coverage All groundnut genotypes
10 elite varieties A. flavus and intensity analyzer support PHAC, but AP ICG 1471, NC3033, ICGV [15]
. 88145, GT-C20
(SICIA) varies among genotypes
Green conidial heads of Low levels of linoleic acid do
7 elite varieties A. flavus A. flavus group and black  not affect aflatoxin F1334 and F1344 [89]
2. PAC conidial heads of A. niger ~ production during PAC
11 eermplasm lines A. flavus Aflatoxin estimated using  PAC increases when exposed ICGV 98305, ICGV 98348, [47]
germp : ELISA to terminal drought ICGV 98353, Tifton 8
. .. Seeds with A. flavus IVSC increases with 55-437, P1 337409, P1
40 elite varieties A. flavus colonies were counted increased drought stress 337394F, 73-30 [°0]
A. pusilla, A. chiquitana, A.
35 wild accessions A. flavus IVSC and AP triseminata species resistant to ICG 13212, ICG 11560, [13]
ICG 8131, ICG 14875
IVSC and AP
Different varieties produce
37 cultivars A. flavus A. flavus inoculated aflatoxin B1 and B2 at PI 337394F, P1 337409, J-11  [91]
different levels during IVSC
3. IVSC
Lower moisture has higher
>100 accessions, bre.ed.mg lines A. flaous Vlsga} development of level of 1Te51stance to PI 337394, PI 337409 [92]
and commercial varieties conidial spores penetration by A. flavus
during IVSC
. . Fungal sporulation Higher moisture reduces
14 varieties A. parasiticus recorded infection rate during IVSC J-11, Lampang [93]
Immunoaffinity column Highly significant (E), (G)
12 breeding and germplasm lines  A. flavus, A. parasiticus Y and (G X E) interactions AR-2, GFA-1 [94]

fluorometer method

identified
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Resistance . . L . . s e Resistant Varieties
Mechanism Sample Size and Material Type  Toxigenic Species Screening Method Significant Outcome Identified Reference
25 breeding lines and cultivars of  A. flavus and A. ELISA for toxin VAR27 variety p roduced ICGV 87084, ICGV 87094,
. L . . least aflatoxin but showed [12]
Africa parasiticus estimation . ICGV 87110
higher IVSC
67 CSL lines and varieties A. flavus Seed colonization test Varieties with compact and 12CS-104, 73-33 [16]
’ thicker testa resistant to IVSC !
IVSC and AP
an 850 cultivars and elite lines A. flavus Seed colonies and Some varieties are susceptible  PI 337394F, PI1337409 and [95]
' aflatoxin estimated to IVSC but, resistant to AP UF71513
Seed infection percentage  ICRISAT core collection has ICG 12625 (resistant to
. . . . AP) and ICG 4750
561 germplasm lines A. flavus and aflatoxin production ~ more resistance to IVSC than . [96]
. . (resistant to seed
recorded the China core collection ) .
invasion)

IVSC: In vitro seed colonization; PAC: Pre-harvest aflatoxin contamination; AP: Aflatoxin production; PHAC: Post-harvest aflatoxin contamination; CSL: Chromosome Substitution Lines;
E: Environment; G: Genotype; and G x E: Genotype X Environment.
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Figure 2. Deployment of a combination of genetic and omics approaches will develop better
understanding of the pathways and genomic tools which will help in tackling aflatoxin contamination
in crops through genetic improvement using genomics-assisted breeding.

Genome sequencing of hosts and pathogens have provided insights into complex genetic
architecture and novel genes. Further, transcriptomic and proteomic studies have supplemented
information on gene expression and the pathways enrichment that govern phenotype. Previously,
efforts were made in large-scale sequencing of cDNA to discover the gene expression pattern
between susceptible and resistant genotypes and identified defense-related genes upon A. flavus seed
colonization [97-99]. However, these studies were based on EST or microarray-based approaches which
are less sensitive and provide low coverage for differentially expressed genes. Now, new tools such as
sequencing-based RNA-seq have greatly accelerated insights into the molecular understanding of toxin
production by pathogens and resistance mechanisms in different crops including groundnut [100-102].
This highly sensitive approach allows efficient discovery of differentially expressed genes on a larger
scale. For instance, a recent RNA-seq-based approach enabled the detection of around 129,000 unigenes
in groundnut seed upon Aspergillus infection [30-32]. Similarly, an RNA-seq-based transcriptomic
study discovered 14,592 genes, of which 13,875 were previously annotated and 717 were novel to the
Aspergillus spp. [101]. These studies have profound gene annotation [101] and identified key pathways
responsible for mycotoxin production by Aspergillus sp. [102].

Proteomic studies have greatly enhanced the understanding of gene regulation and regulatory
networks to explain the molecular mechanism involved in host-pathogen interaction and aflatoxin
contamination [103-105] (Table 2). The two-dimensional difference gel electrophoresis (2-D DIGE)
based proteomic approach identified a number of proteins corresponding to aflatoxin production in
groundnut upon infection by toxigenic strains of A. flavus [99]. Though the study reported only 400
protein spots, it provided evidence of host-pathogen interaction by capturing proteins involved in DNA
and RNA stabilization, biosynthesis of phytoalexins, immune response, detoxification and metabolic
regulation [106]. Recently, a study deployed proteomic approach to gain insights into the pathogen
regulatory mechanism involved during oxidative stress, similar to drought stress in groundnut. To
reproduce oxidative stress, three isolates—AF13, NRRL3357 and K54A—with high, moderate, and no
aflatoxin production, were exposed to H,O, and their global proteome variations were studied. As a
result, 1173 proteins were identified, and among them 220 were differentially expressed, controlling
toxigenic abilities of strains AF13, NRRL3357 and K54A. This suggests that the toxin production
abilities of toxigenic strains involve a group of genes that together regulate production of lytic
enzymes, oxidative stress tolerance, production of secondary metabolites, pathogenicity, mycelial
development, carbohydrate metabolism, etc. [102,106]. Together, these studies have advanced our
current understanding of genetic regulations and the molecular networks involved in host-pathogen
interactions to come up with new strategies in alleviating aflatoxin contamination in groundnut and
other crops. For instance, this knowledge has helped researchers and breeders develop aflatoxin
contamination-free transgenic maize [107] and groundnut [34] through host-induced gene silencing.
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Table 2. A summary of the transcriptome and proteome based discovery of key genes and pathways involved in aflatoxin contamination in groundnut.

Resistance Mechanism

Key Genes/TFs and Pathways Identified

Functional Description References

Aflatoxin Production (AP)

WRKY

Toll/Interleukinl receptor-nucleotide binding site
leucine-rich repeat (TIR-NBS-LRR)

Ethylene responsive factors
Heat shock proteins

Stress regulative transcription factor
Highly conserved disease resistant genes in plants [32]

Transcriptionally regulates jasmonate signaling pathway
Regulates heat shock factors which play vital role in plant defense

Pathogenesis-related (PR) 1,2,5

Defense-related genes

NBS-LRR genes Disease resistance gene (301
WRKY Stress regulative transcription factor ICRISAT
Ethylene responsive factors Plays intermediary role in salicylic acid pathway Unpublisihe d
Linoleate 9S-lipoxygenase Plays role in Jasmonic acid signal transduction pathway
ABRI Ethylene responsive transcription factor and repressor of ABA
signaling
Pathogenesis related-2 Stress and defense responsive gene [108]
BIG Auxin transport gene
WRINKLED1 Controls fatty acid biosynthesis pathway
Defensin Defense response
TIR Defense response [109]
Pre-Harvest Aflatoxin Chalcone isomerase 3 Flavonoids biosynthesis
Contamination (PAC) EM protein Stress response

Cupin/Oxalate oxidase
Fatty acid desaturase 1
Lipoxygenase

Iso-Ara h3

LEA 4

Cu/Zn superoxide dismutase II
Heat shock protein

Seed storage protein
Regulates fatty acid-biosynthesis pathway [97]
Plays role in Jasmonic acid signal transduction pathway

Seed Storage protein

Stress related protein

Antioxidant defensive protein

Regulates heat shock factors which play vital role in plant defense

[98]

In Vitro Seed Colonization
(IVSQ)

Linoleate 9S-lipoxygenase
Resveratrol synthase
Chalcone synthase
Defensins

Chitinases

Plays role in Jasmonic acid signaling transduction

Biosynthesize stilbene type-phytoalexins

Flavonoids biosynthesis [31]
Defense response

Modulates immune response
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Table 2. Cont.

10 of 21

Resistance Mechanism Key Genes/TFs and Pathways Identified Functional Description References
Heat shock protein 70 Maintains internal cell stability like folding-unfolding of proteins
. . . . . [106]
Heat shock protein 90 Cellular immunity, signal transduction
NB-LRR PAMPs perception
Hypersensitive induced response protein Hypersensitive response
Post-Harvest Aflatoxin S-locus glycoprotein Induction of defense [99]
Contamination (PHAC) Cytochrome P450 Degradation of toxins
Alcohol dehydrogenase-1F Detoxification
SAM dependent isoflavone 7-O-methyltransferase Biosynthesis of phytoalexins
Seed linoleate L%pld metaboh.sm ‘ ICRISAT,
Resveratrol synthase Biosynthesis stilbene type-phytoalexins Unpublished

ABA responsive genes

Regulates stress responsive genes
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5. Pathways Impacting Host-Pathogen Interaction and Toxin Production

The genome of A. flavus translates 12,000 functional genes and comprises duplication of some
lineage-specific genes which give rise to the larger genome i.e., 37 Mb [110]. The complex genome
of A. flavus is anticipated to contain ~56 secondary metabolite gene clusters [111,112]. Among them,
the aflatoxin cluster consists of aflatoxin biosynthetic genes as well as pathway-specific regulatory
genes, which include 25 genes that span approximately 70 Kb of DNA [61]. Further, the aflatoxin gene
cluster is positioned adjacent to the telomeric region of the third chromosome and is surrounded by
four sugar-utilization genes at the distal end [113].

In A. flavus, the production of secondary metabolites is a highly coordinated molecular process
involving a dynamic network of transcription factors that orchestrate the coordinated expression of the
target biosynthetic genes of the pathogen and suppression of the host immune responses. The aflatoxin
biosynthesis pathway-specific regulatory gene afIR encodes a DNA-binding zinc-cluster protein that
binds to the promoter region of the aflatoxin pathway genes to trigger their expression [114]. Therefore,
overexpression of afIR increases the transcript abundance of aflatoxin pathway genes [115]. Aflatoxin
production is also regulated by a pathway-specific regulatory gene aflS, located divergently next
to aflR, separated by a small intergenic region and having an independent promoter. Unlike AfIR,
the role of AfIS is still not well defined because the deletion of afIS does not influence expression of
aflatoxin biosynthetic genes. However, surprisingly, the deletion of gene afIS can abolish aflatoxin
production in A. flavus [116]. Therefore, it is presumed that AfIS can plausibly play a crucial role
in aflatoxin biosynthesis through transcriptional regulation of expression of AfIR [117], because a
synergistic relationship has been observed between AfIR and AflS in A. parasiticus [118]. More recently,
a study revealed that AfIS is essential for appropriate transportation of AfIR to or from the nucleus
and that it assists in AfIR localization [119]. Further, DNA methylation plays an important role in
mycelial development and secondary metabolism of A. flavus. The knock-out of DmtA (a putative
cytosine methyltransferase) in A. flavus could result in reduced conidiation and sclerotial production,
and attenuate strain virulence due to suppression of afIC, afIK, aflO, aflS and afIR [120]. Recently,
a polyamine biosynthetic gene, spermidine synthase (spds), has been characterized as a key gene
required by Aspergillus toxigenic strain controlling fungus seed colonization, aflatoxin production and
pathogenesis [102].

Despite years of research, geneticists and molecular biologists have yet to find a stable and effective
genetic solution to aflatoxin contamination. To date, breeders have identified groundnut germplasm
resistant to pre-harvest and post-harvest aflatoxin contamination. Groundnut resistance to Aspergillus
spp. involves the production of resveratrol (a natural phytoalexin) by developing seed. Resistant
varieties with increased production of resveratrol upon infection exhibit enhanced resistance to in vitro
seed colonization [31]. The host defense mechanism involves oxidative homeostasis in response to
reactive oxygen species (ROS) formed upon Aspergillus infection. This is achieved by the expression of
a wide range of genes involved in ROS detoxification, such as resveratrol synthase, phenylalanine
ammonia lyase, chalcone synthase, catalases, superoxide dismutase, glutathione-S-transferase,
senescence-associated protein, etc, [31]. Expression of these genes is important to block Aspergillus
growth and aflatoxin production [57]. These resistance-conferring genes are involved in producing
compounds such as phenylpropanoids, coumarins, stilbenes, cinnamic acid, flavonoids, and ascorbate,
etc., which are the primary constituents of the groundnut seed coat [30,121]. Furthermore, transcription
factors such as WRKY, ERF and NAC are important transcriptional regulators of antioxidant- and
pathogenesis-related genes [31,32]. These genes also play an important role in the biosynthesis of
volatile compounds such as jasmonate and salicylate [32], and control innate immunity [122]. The genes
encoding 3-1,3-glucanases, chitinases, pathogenesis-related proteins and ribosome inactivating proteins
(RIPs) are key controllers of A. flavus resistance [57]. It is anticipated that future research will be more
focused on dissecting this trait to allow researchers to develop aflatoxin-free groundnuts.
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6. Integrated Approach for Discovering Genomic Regions and Candidate Genes

Resistance to A. flavus infection and aflatoxin production is one of the most complex traits
influenced by several non-genetic factors such as water stress, population diversity and density of
microorganisms in the soil. Nevertheless, extensive phenotyping of large scale germplasm during
multiple seasons has identified several lines with minimum infection and aflatoxin production (Table 1).
These resistant genotypes are currently being deployed for breeding aflatoxin-resistant lines and
to develop different types of genetic populations such as association mapping panels, bi-parental
and multi-parent populations [18]. Efforts are also on to deploy transcriptomics, proteomics and
metabolomics approaches for a better understanding of the genes, pathways and networks involved
in controlling all the three resistance mechanisms, namely IVSC, PAC and AP (see Section 5 and
Table 2). ICRISAT, together with its partners, is working on such an integrated approach wherein a
MAGIC population and bi-parental populations are planned to be used for genetic mapping and QTL
discovery while a mini core collection will be used for association analysis to discover marker-trait
associations (MTAs). These studies are likely to facilitate the identification of genomic regions
controlling aflatoxin resistance. At the same time, a transcriptomic approach has been deployed to
study the functional genomics of resistance mechanisms IVSC, PAC and AP by conducting separate
RNAseq experiments. These integrated approaches comprising of genetics, structural genomics
and functional genomics together with next-generation sequencing and comprehensive analysis will
provide precise information on candidate genes to facilitate the development and validation of genetic
markers for use in molecular breeding.

7. Moving Towards Genomics-Assisted and Transgenic-Based Genetic Improvement to Confer
Aflatoxin Resistance

Developing groundnut cultivars with pre-harvest aflatoxin contamination has been one of the
most challenging goals of breeding programs across the globe [123]. Conventional breeding efforts have
met with very limited success in breeding aflatoxin-resistant varieties. Majority of the popularly grown
varieties across the globe are susceptible to Aspergillus infection and aflatoxin contamination. Given
the genetic complexity of this trait, GAB has the potential to enable swifter development of improved
varieties with resistance to Aspergillus infection and aflatoxin contamination. However, discovering
linked and validated markers is a pre-requisite for deploying GAB. Additionally, a low-density SNP
panel (10-50 SNPs) can be developed to perform early generation selection to identify the best lines
with resistance to Aspergillus infection and aflatoxin contamination. Limited efforts have been made
so far in identifying genomic regions for PAC resistance [88,124], and, therefore, diagnostic markers
are not available for use in deploying GAB. Nevertheless, several genetic mapping and association
mapping studies on diverse genetic populations are underway and in coming years, multi-parent
populations and cost-effective sequencing technologies together with precise phenotyping will facilitate
high resolution mapping for aflatoxin resistance to develop a panel of diagnostic markers.

Several studies have reported the use of RNAIi to suppress A. flavus growth and aflatoxin
production in groundnut. For example, an hpRNA construct was successfully deployed in suppressing
the expression of five genes (afIR, aflatoxin gene cluster transcriptional activator; aflS, aflatoxin gene
cluster transcriptional co-activator; afIC, aflatoxin polyketide synthase; aflep, a putative aflatoxin efflux
pump; and pes1, a NRPS responsible for tolerance to oxidative stress) involved either directly or
indirectly in aflatoxin biosynthesis [33]. The transgenic groundnut lines showed up to 100% reduction
in AFB; and AFB; compared to the control. Another study achieved high level of aflatoxin resistance
by overexpressing antifungal defensins genes (MsDefl and MtDef4.2) through host-induced gene
silencing (HIGS) of afIM and aflP genes from the aflatoxin biosynthetic pathway [34]. Aflatoxin By
levels fell from an average of 2000 ppb in controls to less than 20 ppb (the maximum level allowed by
the US FDA) in the RNAI lines as determined by highly sensitive HPLC detection methods. A strong
positive correlation was observed between reduction in aflatoxin levels and aflatoxin biosynthetic gene
expression using qRT-PCR. These transgenic events will be subjected to further trait verification and
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testing to identify the most promising events with high level of resistance to Aspergillus infection and
aflatoxin contamination.

8. A Mix of Genetic Resistance, Effective Post-Harvest Management Practices and Safe Storage

Aspergillus infection in groundnuts is usually influenced by the aggressiveness of the fungus,
genotype susceptibility, as well as soil moisture and temperature parameters [125]. Moisture
stress, especially terminal drought, predisposes groundnut to A. flavus infection and aflatoxin
contamination [50,51]. Hence aflatoxin control and prevention strategies mainly include blocking
the infection process of A. flavus by host-plant resistance/tolerance, biological control, managing
environmental factors, pre-harvest crop management and finally post-harvest crop management such
as drying and storage technologies [126,127]. Under the present scenario, genetic resistance alone
cannot eliminate the problem of aflatoxin contamination unless it is used in combination with other
pre- and post-harvest management practices [128].

Pre-harvest management includes following in situ (in field) water management techniques
which enable the crop to avoid moisture stress at critical stages. Research on the efficacy of water
management techniques such as tied ridges and mulching in Zambia have proved that they were
effective in significantly reducing pre-harvest aflatoxin contamination in groundnuts [129]. Other
cultural practices such as the application of gypsum, a calcium amendment, proved effective in
reducing aflatoxin contamination [44,130]. Application of manure has also been shown to reduce
aflatoxin contamination [44,131]. Further research has confirmed that biocontrol using non-aflatoxigenic
A. flavus and A. parasiticus strains significantly reduce aflatoxin contamination in groundnuts and
maize [132,133].

In the case of groundnut, post-harvest handling of pods from harvest to storage is critical in
managing aflatoxin build-up. High pod/seed moisture increases post-harvest molding and aflatoxin
contamination. Hence proper drying of pods after harvest to 7% moisture levels is ideal to prevent
the growth of fungi, including aflatoxigenic strains [134]. Earlier research confirmed that inverted
windrowing after harvest avoid soil contact of pods, exposes pods to sunlight and reduces groundnut
aflatoxin contamination [135]. Research on post-harvest handling showed that dried pods have lower
levels of aflatoxins than pods that were not dried. The windrowing, immediate stripping and mat drying
of pods are cost effective in controlling damage/molding and subsequent aflatoxin contamination [136].
Storage is another important aspect that care needs to be taken in, in the case of groundnut. Current
farmer practice is to use jute and woven polypropylene bags to store groundnut [137]. Storing pods
in jute bags provides conditions conducive to mold growth, especially with A. flavus. Jute bags are
highly porous and can easily absorb moisture, and therefore foster the rapid growth and multiplication
of these aflatoxigenic molds. Alternatively, hermetic storage offers a new alternative to traditional
storage of grains and pods, and is a sustainable practice. Hermetic storage works on the principle of
creating airtight conditions in which oxygen levels are lowered for insect, fungal and seed respiration.
In a recent study conducted at ICRISAT, Purdue Improved Crop Storage (PICS) bags that rely on the
principle of hermetic storage were used to safeguard groundnuts against A. flavus infestation, and
subsequently lowered aflatoxin contamination levels in storage [138].

9. Challenges and Opportunities

The age-old problem of aflatoxin contamination has yet to find a sustainable and stable solution.
Given its adverse impact on health, the west has set up very stringent criteria for import that prohibits
many countries in Africa and Asia from selling their produce to these countries. It is also important to
note that the population in the Asian and African countries has shown great tolerance to aflatoxin. Some
studies have shown aflatoxin contamination in abundance in the entire food chain, with deleterious
effects on the health of consumers. Since A. flavus infection causes no yield loss to the producer and no
immediate health impact on consumers, farmers in Asia and Africa have not shown great keenness in
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adopting modern pre-harvest and post-harvest management practices in the processing, packaging,
transportation and storage stages. Many farmers are not even aware of the adverse health impact.

Given that health and commerce are equally important, it is essential to minimize aflatoxin
contamination in the entire food chain. This would entail deploying more precise phenotyping and
diverse genetic populations together with different “omics” approaches to identify genomic regions
and candidate genes for accelerated breeding through GAB. Genetic resistance will provide the much
needed defense from infection in the field and post-harvest management will ensure less aflatoxin
in the produce. A combination of recent advancements in modern genetics, genomics, phenomics
resources, tools and technologies along with pre-post-harvest management practices could potentially
provide a stable and long term solution for this complex problem.
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