
 

American Journal of Agriculture and Forestry 
2018; 6(5): 122-131 

http://www.sciencepublishinggroup.com/j/ajaf 

doi: 10.11648/j.ajaf.20180605.12 

ISSN: 2330-8583 (Print); ISSN: 2330-8591 (Online)  

 

Genotypic Variation for Root Development, Water 
Extraction and Yield Components in Groundnut Under Low 
Phosphorus and Drought Stresses 

Hamidou Falalou
1, 2, *

, Heynikoye Mariama
2
, Falke Bacharou Achirou

1
, Halilou Oumarou

2
,  

Vadez Vincent
3
 

1Crop Physiology Laboratory, International Crops Research Institute for the Semi-Arid Tropics, Niamey, Niger 
2Department of Biology, Faculty of Sciences and Techniques, Abdou Moumouni University, Niamey, Niger 
3Crop Physiology Laboratory, International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India 

Email address: 

 
*Corresponding author 

To cite this article: 
Hamidou Falalou, Heynikoye Mariama, Falke Bacharou Achirou, Halilou Oumarou, Vadez Vincent. Genotypic Variation for Root 

Development, Water Extraction and Yield Components in Groundnut Under Low Phosphorus and Drought Stresses. American Journal of 

Agriculture and Forestry. Vol. 6, No. 5, 2018, pp. 122-131. doi: 10.11648/j.ajaf.20180605.12 

Received: August 7, 2018; Accepted: August 21, 2018; Published: September 11, 2018 

 

Abstract: [Context] Unpredictable water deficit (drought) and low soil phosphorus (LP) are major interacting constraints to 

groundnut growth and grain yield in Sahelian zones of West Africa. Combining breeding efforts for drought tolerance and P 

efficiency could lead to improve tolerance and grains yield in these zones. [Objectives] This study assessed six groundnut 

genotypes under lysimetric system to better understand the relative importance of P deficiency, water stress, and their inter-

action; investigate the water extraction pattern of genotypes under these constraints and identify tolerance related traits to 

accelerate development of more resilient varieties. [Methods] Thus, in experiment 1 (Exp.1) roots traits were investigated at 

50% flowering, pod filling stage (60 days after sowing) and maturity stage (90 days after sowing) under high phosphorus (HP) 

and LP treatments. In experiment 2 (Exp.2), two water regimes (WW=well water, and WS = water stress) were imposed to HP 

and LP plants and parameters like total transpired water (TTW), transpiration efficiency (TE), water extraction (Wex), pods 

and haulm weights were investigated. [Results] Roots traits showed significant decrease due to LP stress, pod and haulm 

weights correlated significantly to roots length density (RLD) and roots dry matter (RDM). Genotypes 12CS-116 and ICGV 

12991 revealed tolerant to LP stress while RLD and RDM revealed LP tolerance related traits in groundnut. Interacting effect 

of LP and drought stress (LPWS) was higher than separate effect of LP and WS. Under LPWS, Wex, TTW, TE, pod and haulm 

yields decreased significantly. This study suggests that RLD and RDM contributed to Wex in 12CS-116 and ICG 12991 under 

LPWS. 55-437 and JL-24 with highest TTW showed drought tolerance strategy while drought avoidance strategy could 

explain 12CS-116, 12CS-79, ICG 12991 and ICGV 97183 response to WS. Pod weight showed tight correlation (R
2
 =0.7) to 

TE only under LPWS suggesting that TE explains a large part of pod yield variation under LPWS conditions. TE revealed WS 

and LPWS tolerance related trait. The genotypic variation observed on Wex and TTW under LPWS suggests different patterns 

of water extraction and use among the groundnut genotypes.  
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1. Introduction  

In Sahelian zones of the semi-arid tropics, groundnut 

(Arachis hypogaea L.) is widely cultivated in rainfed areas. 

Drought stress has adverse influence on water relations, 

photosynthesis, mineral nutrition, metabolism, growth and 

yield of groundnut [1]. Intermittent drought, occurring 

almost each year in most of groundnut production Sahelian 

areas, leads to pods and haulm yields loss up to 55% [2]. 
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When drought is combined with heat stress, the pods yield 

decrease reached up to 72% [3]. Drought stress significantly 

reduced total dry matter (41%), transpiration (33%) and 

chlorophyll content (40%) across genotypes but significantly 

increased transpiration efficiency (20.5%) and Chlorophyll 

density (22%) in peanut [4]. These authors observed 

significant genotypic variation for transpiration efficiency 

and chlorophyll parameters. Mid-season and terminal 

drought are major constraints of peanut production as they 

reduced pod yield, can increase the incidence of aflatoxin 

contamination while an early-season drought stress is not 

detrimental to peanut yield and it sometimes actually 

increases yield of peanut [5, 6, 7]. Drought at pod filling 

reduces growth, yield and seed quality of peanut (Arachis 

hypogaea L.) and great root system can reduce yield loss 

under water stress [8]. [9] reported that rooting depth and 

root branch density are important root architectural traits 

that directly influence the acquisition of water and 

nutrients in the soil strata. Drought stress reduced also the 

uptakes of N, P, K and Ca in peanut [10]. Useful traits, 

including rooting system and water uptake, to improve 

groundnut adaptation and productivity under drought are 

still needed. 

The rainfed areas of Sahel are also characterized by low 

soil fertility which is additional major constraint of 

groundnut productivity. Among soil fertility factors and on 

the mostly acid sandy Sahelian soils, phosphorus (P) is the 

most limiting nutrient for crop production [11]. [12] reported 

that the acid Sahelian soils are low concentrated in plant 

available phosphorus (Bray-P typically 2 – 4 mg kg
-1

) which 

affects growth and yield parameters. An early season 

deficiency of phosphorus leads to early irreversible 

restriction in crop development that can drastically reduce 

crop populations [13]. Phosphorus (P) deficiency is the most 

frequent nutrient stress for growth and development of grain 

legumes [14]. Although legumes can fix their own N, they 

often need other nutrients particularly phosphorus for good 

seed formation [15]. The requirement of P in nodulating 

legumes is higher compared to non-nodulating crops as it 

plays a significant role in nodule formation and fixation of 

atmospheric nitrogen. Other authors reported negative effects 

of P deficiency on the capacity to fix N, roots and leaves 

growth in legumes [16]. In Common bean, P deficient plants 

showed 50% lower net photosynthesis at ambient CO2 

concentration reflecting lower carboxylation efficiency [17]. 

In soybean (Glycine max), it was shown that P nutrient 

improved root traits to enhance tolerance of water deficit 

during reproductive growth, with less yield reduction at high 

applied P [18]. In groundnut, it was observed that under LP 

conditions, tolerant genotypes exhibited increased 

performance in various root traits and accumulated more root 

and shoot biomass and P [19, 20]. It was reported also that 

phosphorus deficiency reduced flower production, size of 

pods and adversely affect the formation of root nodules in 

groundnut [21]. [22] investigated the genotypic variation for 

roots traits in groundnut germplasm under phosphorus stress 

conditions and observed that ICGV 86590, ICVG 14475 and 

ICVG 92188 were found tolerant by producing more lateral 

roots, root volume and root weight. 

 In the West African Sahel, unpredictable rainfall deficit 

and low soil phosphorus (P) are major interacting constraints 

to crops growth and grain yield. Several research works were 

conducted on drought tolerance in groundnut [2, 3, 23-29]. 

Previous works have shown that phosphorus nutrient is an 

important factor improving the tolerance ability to water 

stress [30, 31]. Peanut genotypes that have higher root length 

density in deeper soil layers have enhanced drought 

tolerance, which can result in a higher pod yield and harvest 

index under pre-flowering drought conditions [32]. In 

common bean, [33] reported that shallow-rooted genotypes 

grow relatively better under P stress, deep-rooted genotypes 

grow better under water stress, while genotypes with a 

dimorphic root system permitting vigorous rooting 

throughout the soil profile grow best in the combined stress 

treatment. However, even known that in West African Sahel, 

drought affects groundnut cultivated on low P soil, as far as 

we know, research has not been done on the interaction 

between low P and water stress particularly on roots and 

canopy response, water and phosphorus use. Improvement of 

peanut to extract water from the whole soil profile might 

increases drought tolerance [34]. To do so, investigation on 

the genotypic variation in the pattern of water extraction in 

soil profile is required. We hypothesize that in groundnut, 

combining breeding efforts for drought tolerance and P 

efficiency could lead to improve tolerance and grains yield in 

Sahelian zones. Therefore, this work aims to (i) better 

understand the relative importance of P deficiency, water 

stress, and their interaction, (ii) identify measured traits 

related to better performance of genotypes under these 

constraints to accelerate development of more resilient 

varieties to drought and low phosphorus stress, and (iii) 

investigate water extraction pattern of genotypes under low P 

and drought stress.  

2. Material and Methods 

This study was conducted at the International Crop 

Research Institute for the Semi-Arid Tropics (ICRISAT), 

Sahelian Centre (ISC) in Sadoré (45 km south of Niamey, 

Niger, 13
o
N, 2

o
E) from June to November 2014 (rainy and 

off-season). The experiments used six genotypes JL-24, 

ICGV 97183, 55-437, 12CS-116, 12CS-79 and ICG 12991 

selected based on their response to drought stress under field 

conditions. ICG 12991, ICGV 97183 and 55-437 were 

considered as tolerant; 12CS-116 and 12CS-79 were 

intermediate while JL 24 was sensitive [2, 7]. These six 

genotypes were evaluated in two different experiments in 

lysimetric system. The characteristics of the soil were 5.8 pH 

H2O (1:2.5), 3.6 mg Bray-P kg
−1

 soil, 0.1% organic matter 

(C) and 81 mg total N kg
−1

. The 6 entries were evaluated in 

high phosphorus (HP) and low phosphorus (low P) 

treatments trials planted side by side using 3×2 α-lattice 

design with fiver replications in each P treatment. The 

temperature and relative humidity of the air were collected 
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from a temperature and relative humidity recorder (Gemini 

Tinytag Ultra 2 TGU-4500 Data logger Ltd, Chichester, UK) 

located in the crop canopy.  

2.1. Experimental Conditions 

The lysimetric system was well described in our previous 

works [35, 28]. All lysimetre tubes (PVC cylinders) were 

placed upright in 1 m deep trench, over which the weighing 

mechanism could be moved to select individual cylinders 

for weighing. The tops of the cylinders were equipped with 

metal collars and chains to allow the lysimetre tubes to be 

lifted and weighed. The lysimeter tubes weighting 

procedure involved a crane balance (S-type load cell with a 

200 kg load capacity; Mettler-Toledo, Geneva, Switzerland) 

connected to a block chained pulley to lift the tubes. The 

soil used to fill the lysimetre tubes was collected from the 

farm of ICRISAT Sadoré station. Top soil (0-20cm) and 

deep soil (20-100cm) from the farm were collected 

separately. To mimic the field conditions, the lysimetre 

tubes (25 cm diameter, 130cm height) were filled with deep 

soil (100 cm height) followed by top soil (20 cm height). 

The upper 10 cm of the tubes was left empty to allow the 

application of a layer of anti-evaporation beads and for 

watering.  

2.1.1. Experiment 1 (Exp.1) 

Three seeds were sown by hand; seedlings were thinned 

to one plant per tube at 14 days after sowing (DAS). The 

experimental design was a 3×2 α-lattice design with 5 

replications in each P treatment. LP and HP treatments 

were at either side of the trench in which all the tubes were 

placed in order to avoid HP plants shading the LP plants. 

The soil was kept at 90% of field capacity until harvest. 

The 6 genotypes randomized within each of the five 

replications. To investigate roots traits under low varying P 

conditions, 5 plants of each variety and per phosphorus 

treatment were uprooted at 50% flowering time, 60 days 

after sowing (pod filling stage) and at maturity date for 

extracting roots as described by [36]. During the 

experiment (end June to mid-September), mean 

temperatures (Min and Max) were 24 and 33°C respectively 

while the Min and Max mean relative humidity were 

respectively 53.5 and 98.5%.  

2.1.2. Experiment 2 (Exp. 2) 

The experimental conditions (soil, seeds sowing, design, 

genotypes, etc.) were the same as in experiment 1 except that 

(i) two plants were left per tube after thinning and (ii) in 

addition to P treatments, 2 water treatments (WW or full 

irrigation until harvest and WS or drought stress imposed 

from flowering to maturity times) were applied. This aimed 

to investigate the separate and combined effects of low P and 

WS on the 6 genotypes. The Min and Max mean 

temperatures were 24.7 and 33°C, and the Min and Max 

mean relative humidity were 24 and 90% during the cropping 

period (end August to November).  

 

2.2. Phosphorus and Water Treatments 

Two phosphorus treatments (HP and LP) were imposed in 

Exp.1 and Exp.2. The HP treatment consisted of applying 7.5 

g DAP tube
−1

 (equivalent to 100 kg ha
-1

) in a circle 2–3 cm 

around the seedling area after emergence. The LP lysimetre 

tubes (LP treatment) did not receive any P application but 

were supplied with urea (3.45 g applied in two doses) to 

compensate for DAP nitrogen input into HP tubes. DAP 

(18% N, 46% P2O5 and 0% K2O) and urea (46% N, 0% 

P2O5, % K2O) were used in these experiments because they 

are the common fertilizers used by Sahelian farmers. Water 

treatment WW was a full irrigation (90% of field capacity) 

until harvest for both Exp.1 and Exp.2. WS treatment 

imposed in Exp.2 was an intermittent drought consisting of 

cycles of drying (irrigation interruption) and re-watering 

(1000mL of water per tube) when the majority of WS plants 

showed clear wilting symptoms [2]. Given the diameter of 

the lysimetre tubes, this was equivalent to 16mm of water 

when extrapolated to a field conditions. Prior to impose WS, 

the lysimetre tubes were water saturated, drained during 2 

days to reach field capacity and the soil surface was covered 

with a 2cm thick layer of polyethylene beads to minimize 

soil evaporation [37].  

2.3. Measurements  

Phenology (flowering and maturity times), yield and its 

components were measured in both Exp.1 and Exp.2. The 

leaf area and roots traits (volume, length, length density, dry 

matter) were specially investigated in Exp.1 while water 

extraction and transpiration efficiency (TE) were measured 

only in Exp.2. 

2.3.1. Roots Traits Measurement: Volume, Length Density 

and Dry Matter 

To explore roots traits and assess genotypic variation 

among the 6 varieties under HP and LP treatments, for each 

genotype, roots of 5 plants of each P treatment were 

extracted at 50% flowering time (21 – 24 DAS), 60 DAS and 

at maturity date (84 - 90 DAS). Before extracting the roots, 

shoot and pods were harvested and separated. The roots 

extraction consisted of gently washing the soil from both 

ends of the cylinders after removing the end cap. Total root 

depth was measured by stretching the entire root system. 

Then, the root system was divided into 15cm portions which 

were digitized with a scanner and analyzed using WinRhizo 

software (Regent Instruments INC, Quebec, Canada) to 

determine the roots volume (RV), roots length (RL) and roots 

length density (RLD). After RV, RL and RLD measurement, 

samples were bagged, dried and weighed for roots dry matter 

determination (RDM). Pod and haulm yield were determined 

after harvest. 

2.3.2. Transpiration Measurement, Water extraction (Wex) 

and Transpiration Efficiency (TE) Determination 

In Exp.2, two plants were left per tube after thinning. 

The day before water stress imposition, one of 2 plants of 

each tube was harvested, dried at 70
o
C for 2 days and 
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initial biomass (IDM) was determined. During water 

stress period, transpiration was measured via a gravimetric 

procedure by weighing cylinders regularly (twice per 

week). As there was no evaporation nor draining, the 

difference of consecutive lysimetre weights, plus water 

added after the previous weighing, was equivalent to the 

transpiration [38]. The total transpired water (TTW) of 

WW and WS plants was determined as cumulative 

transpiration from water stress imposition (25 DAS) to 85 

DAS. At maturity, plant of each cylinder was harvested, 

dried at 70
o
C for 2 days for determining the final dry 

matter (FDM). The transpiration efficiency (TE) was 

calculated as: TE = (FDM - mean IDM) /TTW. Initial 

tubes weight (beginning of weighing) and final tubes 

weight (end of experiment) were used to determine the 

water extracted of HP and LP plants under WW and WS 

conditions. Water extraction (Wex) was then calculated as: 

Wex = initial tube weight - final tube weight. Pod and 

haulm yield were determined after harvest. 

3. Statistical Analyses 

GENSTAT 14th edition (VSN International Ltd, Hemel 

Hempstead, UK) was used to perform statistical analyses. A 

one-way and two-way analysis of variance (ANOVA) were 

performed to assess the effect of genotype (G), phosphorus 

treatment (Trt), water regime (RH) and the GxTrt, GxRH 

and/or GxTrtxRH interactions for the different traits 

measured. Microsoft office Excel 2016 Software (Microsoft 

Corp., Redmond, WA, USA) was used for linear regression 

by plotting different traits to determine the R
2
 and 

regression equation. A t-test was performed, differences 

between the mean values of treatments were evaluated at P 

= 0.05 

4. Results  

4.1. Low Phosphorus Stress Effect on Agromorphological 

Traits Under Lysimetre Conditions 

Roots traits investigated in Exp.1 revealed any significant 

LP effect or genotypic variation on roots diameter. However, a 

significant genotypic variation was observed at 60 DAS for 

roots volume (RV) and indicated that ICGV 97183 and ICG 

12991 showed the highest RV. LP stress also decreased 

significantly the roots length (RL) (Table 1) and roots length 

density (RLD) (Table 2). At flowering, pod filling and 

maturity times, the roots length decrease was 18, 20 and 24% 

respectively while RLD decreased respectively up to 17, 21 

and 25%. Under LP conditions, ICG 12991 revealed the 

highest RLD at 60DAS. Significant genotypic variation was 

observed at flowering, pod filling and maturity times for root 

dry matter (RDM) and revealed the highest values on 12CS-116 

and ICG 12991 (Table 3). Phosphorus treatment effect on RDM 

was significant only at maturity time and showed 27% decrease 

due to LP. At harvest, ANOVA revealed that LP stress decreased 

significantly haulm weight (33%) and pods weight (27%). 

12CS-116 and 12CS-79 showed higher pods weight than ICGV 

97183, ICG 12991, 55-437 and JL-24 under LP stress. The 

highest haulm weight was observed on 12CS-79, 55-437, 12CS-

116 and ICG 12991. As LP decreased the RL, RLD, RDM, pod 

and haulm weight, linear regressions were performed to 

determine any relationship between productivity and roots traits. 

Thus, at flowering time, pod filling stage and maturity date, the 

regression between decrease in pod and haulm weights and 

decrease, in RL, RLD and RDM showed significant relationship 

between RLD and pod, and haulm weight only at pod filling (60 

DAS) stage (Figure 1). 

Table 1. Roots length (cm) under high (HP) and low phosphorus (LP) treatments at flowering, pod filling (60 DAS) and maturity times in 6 groundnut 

genotypes. DAS = days after sowing, G = genotype, Trt = phosphorus treatment. 

 

Flowering (50%) 60DAS Maturity 

HP LP HP LP HP LP 

55-437 2478a 2204a 12560a 8966b 12468a 9147a 

ICGV 97183 2244a 1727a 14217a 12204ab 10882a 10749a 

JL-24 2282a 2218a 13645a 11193ab 12780a 8051a 

12CS-116 3310a 2892a 14333a 8054b 17493a 12766a 

12CS-79 2993a 2069a 12589a 12282ab 13700a 10968a 

ICG 12991 2950a 2292a 16917a 14419a 16956a 11878a 

Mean 2710 2234 14044 11186 14047 10593 

G (F prob) 0.314ns 0.388ns 0.816ns 0.04* 0.497ns 0.353ns 

Trt (F prob) 0.041* 0.029* 0.020* 

GxTrt (F prob) 0.943ns 0.836ns 0.915ns 

* = significant at 5% level. ns = no significant at 5% level. Means with the same letter are not significantly different within the same treatment 

Table 2. Roots length density (RLD) under high (HP) and low phosphorus (LP) treatments at flowering, pod filling (60 DAS) and maturity times in 6 

groundnut genotypes. DAS = days after sowing, G = genotype, Trt = phosphorus treatment. 

 
Flowering (50%) 60DAS Maturity 

HP LP HP LP HP LP 

55-437 0.049a 0.044a 0.25a 0.17b 0.25a 0.18a 

ICGV 97183 0.045a 0.034a 0.28a 0.24ab 0.21a 0.21a 

JL-24 0.046a 0.044a 0.27a 0.22ab 0.25a 0.16a 

12CS-116 0.066a 0.058a 0.28a 0.26b 0.35a 0.25a 

12CS-79 0.06a 0.041a 0.25a 0.24ab 0.27a 0.22a 
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Flowering (50%) 60DAS Maturity 

HP LP HP LP HP LP 

ICG 12991 0.059a 0.045a 0.33a 0.28a 0.34a 0.23a 

Mean 0.054 0.045 0.28 0.22 0.28 0.21 

G (F prob) 0.324ns 0.454ns 0.716ns 0.03* 0.487ns 0.233ns 

Trt (F prob) 0.041* 0.016* 0.011* 

GxTrt (Fprob) 0.909ns 0.799ns 0.772ns 

* = significant at 5% level. ns = no significant at 5% level. Means with the same letter are not significantly different within the same treatment 

Table 3. Roots dried matter (RDM) under high (HP) and low phosphorus (LP) treatments at flowering, pod filling and maturity times in 6 groundnut 

genotypes. DAS = days after sowing, G = genotype, Trt = phosphorus treatment. 

 
Flowering (50%) 60DAS Maturity 

HP LP HP LP HP LP 

55-437 0.34ab 0.43a 4.22ab 3.5b 4.92b 3.06a 

ICGV 97183 0.33b 0.31a 3.49b 3.89ab 4.17b 4.07a 

JL-24 0.34b 0.40a 3.19b 3.54b 4.24b 3.39a 

12CS-116 0.54a 0.50a 4.82ab 4.63ab 7.20a 4.75a 

12CS-79 0.44ab 0.39a 4.13ab 3.94ab 5.55ab 3.71a 

ICG 12991 0.46ab 0.41a 6.01a 5.72a 6.56ab 4.90a 

Mean 0.4 0.4 4.31 4.21 5.44 3.98 

G (F prob) 0.034* 0.025* 0.044 * 

Trt (F prob) 0.594 0.767 0.004* 

GxTrt (Fprob) 0.943 0.454 0.742 

* = significant at 5% level. ns = no significant at 5% level. Means with the same letter are not significantly different within the same treatment 

 

Figure 1. Relationship between decrease (%) in pod and haulm weights, and in root length density (RLD) due to LP at pod filling stage. 

4.2. Genotypic Variation in Response to Combined Low 

Phosphorus and Water Stress (LPWS) Under Lysimetre 

Conditions 

4.2.1. Water Extraction  

Water extraction (Wex) measurement during Exp. 2 

showed that LP plants extracted less water (4.4 kg plant 
-1

) 

than HP plants (5.2 kg plant
-1

). Wex decrease was 6% due to 

LP and 46% due to WS. Under LPWW conditions, 12CS-116 

and ICG 12991 showed high Wex. When LP stress was 

combined to WS, significant (P = 0.001) genotype (G), P 

treatment (Trt) and water regime (Wr) interaction 

(GxTrtxWr) was observed. Thus, under HP treatment, 12CS-

79, 55-437 and ICG 12991 showed the highest Wex while 

under LP treatment the highest Wex was observed on 12CS-

116, 12CS-79 and ICG 12991. LPWS plants extracted 51% 

less water than HPWW plants. Under LPWS 12CS-79, 

12CS-116 and ICG 12991 extracted more water than 55-437, 

ICGV 97183 and JL-24. The TTW (sum of transpiration 

during WS period) data showed significant decrease under 

WS (67%) and LP (8%) conditions. The significant (P = 

0.004) genotype and water treatment interaction (GxTrt) 

observed indicated that under WW conditions, 12CS-79, 

12CS-116, 55-437 and ICG 12991 transpired much water 

than ICGV 97183 and JL-24 whereas under WS conditions, 

55-437 and JL-24 showed the highest TTW. Under both HP 

and LP treatments, 12CS-116, 12CS-79, 55-437 and ICG 

12991 revealed higher transpired water than JL-24 and ICGV 

97183. When LP plants were subjected to WS (LPWS), 

TTW decrease was up to 69%, the highest TTW was 

observed on 55-437 and JL-24.  

4.2.2. Transpiration Efficiency 

The transpiration efficiency (TE) significantly increased 

(11%) under WS while it decreased due to LP stress (8%). 

ICGV 12991 revealed the highest TE (2.29 mg g
-1

) under WS 

conditions whereas under LP conditions, ICGV 12991, ICGV 

97183 and JL24 had the highest TE (2.03 mg g
-1

, 2.08 mg g
-1 

and 2.083 mg g
-1

 respectively). Correlation between TE under 

HP and TE under LP revealed significant (r
2
 = 0.81) only 

under WS (Figure 2a, b). Relationship between TTW under 

HP and LP showed high correlations under both WW and WS 

conditions (Figure 2c, d). TE was also significantly correlated 

(R
2
 =0.7) to pod weight only under WS conditions (Figure 3e, 
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f, g, h). The regression between TTW and pod weight revealed 

also high correlations under HPWW, LPWW, LPWS and 

HPWS treatments (Figure 3a, b, c, d).  

 

 
Figure 2. Relationship between transpiration efficiency (a) and (b), total transpired water (c) and (d), under low P (LP) and high P (HP); well watered (WW) 

and water stressed (WS) conditions. 
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Figure 3. Total transpired water (a, b,c, d) and transpiration efficiency (e, f, g, h) relationship to pod weight under HP, LP and well watered (WW), water 

stressed (WS) conditions. 

5. Discussions 

5.1. Genotypic Performance Under Low Phosphorus Stress 

Selection of varieties with desirable root morphological 

traits can be an effective way to expand their ability to 

acquire water and nutrients. It was reported that the ability 

of crops to absorb nutrients and water is closely associated 

with root morphological traits [39, 40]. In Exp.1, 

investigations on roots traits at 50% flowering, pod filling 

(60 DAS) and maturity (90 DAS) stages under LP 

conditions showed that LP stress decreased significantly the 

RL, RLD and RDM. However, a genotypic variation was 

observed which indicated that genotypes 12CS-116 and 

ICG 12991 revealed the highest RLD and RDM under LP 

conditions. In addition, correlation between productivity 

(pod and haulm) and roots traits under LP conditions 

showed that at pod filling stage (60 DAS), high pod and 

haulm weights were associated with high RLD. These 

findings showed that RLD and RDM contributed to the 

performance of 12CS-116 and ICGV 12991 under LP 

conditions. [20] Shen et al. (2001) found that under LP 

conditions, tolerant groundnut genotypes can extract 

phosphorus thanks to phosphorus solubilizing active 

substances from the root cell wall. This study findings 

suggest that 12CS-116 and ICGV 12991 revealed tolerant 

to LP stress and, RLD and RDM revealed LP tolerance 

related traits in groundnut. 

5.2. Low Phosphorus and Drought Stresses Interaction: 

Genotypic Performance for Water Extraction and Use 

Results on water extraction (Wex) during Exp.2 showed 

that LP plants extracted 800g plant
-1

 less water than HP 

plants. LP effects on plant growth resulting in biomass 

decrease could explain the water uptake reduction of LP 

plants compared to HP plants. WS decreased Wex up to 

46% and 51% when WS associated to LP stress (LPWS). 

This indicates that when LP and drought stress interacted, 

their effect on Wex was higher than individual one. The 

significant GxTrtxWr interaction observed indicates that 

Wex varies according to P and water treatments. It also 

indicates difference in water requirement and use among 

the genotypes within water and P treatments. Under 

LPWW conditions, highest Wex was observed on 12CS-

116 and ICG 12991 which showed high roots development 

(RLD, RDM). Previous works in groundnut reported that 

under LP conditions, tolerant genotypes exhibited 

increased performance in various root traits and 

accumulated more root and shoot biomass and P [19]. 

Analyzed data of Wex under WS revealed that genotypes 

12CS-116, ICG 12991 and 12CS-79 extracted more water 

than 55-437, ICGV 97183 and JL-24. These findings 

suggest that RLD and RDM contributed to Wex in 12CS-

116 and ICG 12991 under LP and WS (LPWS) although 

there is a lot of controversy around roots traits 
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contribution to Wex [41]. Indeed, authors [42, 43] 

demonstrated that drought tolerant genotypes had higher 

water extraction than sensitive genotypes under drought 

conditions. Water extraction under drought stress 

contributes to dehydration avoidance strategy although 

high water extraction ability leads to quick soil water 

depletion when the drought stress endured [44]. It was 

found that total water extracted from the soil profile did 

not relate directly to the pod yield [45]. In this study, 

transpiration was measured to investigate canopy 

contribution in LP and WS response. It was observed that 

TTW decreased up to 8% under LP, 67% under WS and 

69% under LPWS conditions. Reduction of leaf area 

observed in LP plants (data not shown) could explain their 

TTW decrease. In chickpea, [21] found a positive 

correlation between leaf P concentration and transpiration 

rate of the young fully expanded leaves. Low transpiration 

under WS revealed stomatal closure to conserve water 

while high transpiration led to quick depletion of water in 

the reservoir [46]. Under LPWS, high TTW observed on 

55-437 and JL-24 compared to 12CS-116, ICG 12991, 

ICGV 97183 and 12CS-79 suggests that 55-437 and JL-24 

used drought tolerance strategy while the other genotypes 

used drought avoidance strategy. The significant and high 

correlation observed between TTW and pod weight in this 

study indicates that high TTW was an attribute of pod 

yield under both P and water treatments. This study 

findings support this idea as 55-437 and JL-24 with 

highest TTW showed high pod weight under LPWS 

conditions. Investigations on TE revealed a significant 

increase under WS, a decrease under LP stress while the 

combined effect of WS and LP stresses led to TE 

decrease. In peanut, [4] observed increased TE as well as 

increasing chlorophyll density due to ticker leaves under 

drought stress. The contrary effect of WS and LP stress on 

TE when they were imposed separately indicates that 

factors driving TE could be different. Authors reported 

that reducing stomatal conductance would lead to TE 

increase [47]. A TTW decrease was observed in this study, 

consequently, a stomatal conductance decrease to reduce 

transpiration under WS could explain the TE increase. 

[45] demonstrated also that TE difference among 

genotypes could have been driven mostly by the stomatal 

conductance regulation under high VPD. As for TE 

decrease under LP stress, photosynthetic activity could be 

the predominant factor influencing TE. Indeed, authors 

reported that phosphorus deficiency affecting the 

concentration of photosynthetic pigments or the leaves 

thickness could have reduced photosynthetic activities 

resulting in TE decrease [21, 45]. The TE decrease 

resulted from LPWS suggest that negative effect on 

photosynthetic activities predominated when LP and WS 

interacted. The findings of this study showed also that TE 

correlated tightly (R
2
 =0.7) to pod weight only under 

LPWS suggesting that TE explains a large part of pod 

yield variation under water and P stress conditions. Thus, 

LPWS tolerant genotype should show high TE. 

6. Conclusion 

Drought and low P stress affected growth and yield 

components in groundnut. This study showed that RLD and 

RDM were associated to high pod and haulm yield under 

LP and revealed tolerance related traits. Although LP stress 

led to less water extraction, the highest yielding genotypes 

extracted more water and showed the highest RLD and 

RDM 60 DAS. The decrease of Wex, TTW, pod and haulm 

yields was high when LP and WS (LPWS) were combined 

indicating that their negative effects increased when they 

interacted. TE increased under WS while it decreased under 

LP and LPWS conditions. These findings suggest different 

factors driving TE in groundnut response to LP and drought 

stress. The high correlation of TE and pod yield under 

LPWS suggests that TE was associated to LP and drought 

tolerance. Under LPWS conditions, different pattern of 

water extraction and use was observed among investigated 

genotypes. 12CS-116, 12CS-79 and ICGV 12991 revealed 

water savers or dehydration avoidant as they extracted 

much water and transpired less while 55-437 and JL 24 

which showed high transpiration revealed wasteful water or 

drought tolerant. 
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