
1 
 

FINE MAPPING OF SHOOT FLY RESISTANCE 

AND STAY-GREEN QTLS ON SORGHUM 

CHROMOSOME 

 SBI-10 

 
THESIS SUBMITTED TO 

OSMANIA UNIVERSITY 
 

 

FOR THE AWARD OF 

DOCTOR OF PHILOSOPHY 
IN 

GENETICS 
BY 

 

K. N. S. USHA KIRANMAYEE 

 

 
 

 

DEPARTMENT OF GENETICS 

OSMANIA UNIVERSITY 

HYDERABAD - 500 007 

2016 



2 
 

    

 

 

 

 

 

                     DECLARATION 

 

I hereby declare that the research work presented in this thesis entitled“Fine 

mapping of shoot fly resistance and stay-green QTLs on sorghum 

chromosome SBI-10”, has been carried out by me at the Department of Genetics, 

Osmania University, Hyderabad under supervision of Proff. P B Kavi Kishor and 

Dr. C.T. Hash at ICRISAT, Patancheru, Andhra Pradesh, India. This work is 

original and no part of the thesis has been submitted earlier for the award of any 

degree or diploma of any university. 

 

Date:                                                                                     

Place: Hyderabad    (K. N. S. USHA KIRANMAYEE) 



3 
 

                                                                         

        AKNOWLEDGEMENTS 

I express my utmost gratitude to Prof. P. B. Kavi Kishor, CSIR Emeritus Scientist, 

Department of Genetics, Osmania University, Hyderabad for giving a shape to this 

thesis and for guiding me throughout the course of this work. His encouraging 

words have helped me in completing my Ph.D. thesis on time. He has motivated me 

and extended all his help and cooperation whenever necessary. His inspiring words 

have taken me closer to my goals and I am highly indebted to him for extending his 

support in many ways. Without his valuable guidance, it would not have been 

possible for me to reach the place where I am standing today in the arena of 

research.   

 

I am sincerely obliged and indebted to my initial research supervisor Dr. C.T. 

Hash, Principal Scientist, Division of Molecular Breeding, ICRISAT, Patancheru, 

Hyderabad who is currently working at ICRISAT, Niamey, Niger, Africa. I was 

lucky to get a research supervisor like Dr. C.T. Hash who has thought of giving 

this research problem to me.  He was not only my research supervisor until his 

relocation, but my mentor who stood always strongly by my side in every vital step 

of my Ph.D. work. He helped me in innumerable ways and guided me through thick 

and thin in every aspect of this research work. I am honoured and humbled to get a 

brilliant guide like him. Extending mere thanks to him from the bottom of my heart 

would not be sufficient. It was a great opportunity to work with him at ICRISAT, 

Patancheru and I am ever grateful to Dr. C.T. Hash in my life. 

 

Fervently and modestly, I acknowledge the genuine cooperation and inspiration 

offered to me by Dr. Santhosh P Deshpande, Scientist, Dry Land Cereals, 

ICRISAT, Patancheru for the unforgettable help that I received during the course of 

my work at ICRISAT and during my field trials. I specially thank him for providing 

excellent research facilities, healthy and conductive environment and lab space to 

me to work throughout the course of this research. 

  

I like to thank Dr. Stefania Grando, Director, RP-dry land cereals, ICRISAT, 

Patancheru for her co-operation and understanding. Her support during my tough 

times of research is appreciable and I extend my heartfelt thanks to her. Heartfelt 

thanks are also due to Dr. HC Sharma, Principle Scientist, Entomology, ICRISAT, 

Patancheru, who has inspired me and showed that passion for research is vital. I 

have learnt a lot from his dedication towards the work and work culture.  

 

Special thanks are due to Mr. Muralidhar Sir and Mr. Sandeep Sakhle for their 

technical support. They have rendered their cooperation and extended their helpful 

hand during the data collection from the field.  

 



4 
 

I wish to express my sincere thanks to Dr. Noel Ellis, Dr. Oscar Riera-lizarazu, Dr. 

Tushar Shah and Dr. Julie Hofer for their sharing their knowledge and extending 

their cooperation. I am thankful to Dr. Vincent Vadez and Dr. Rajeev Gupta for 

their support in my Ph.D tenure at ICRISAT. I like to express my deep sense of 

gratitude and heartfelt thanks to Dr. Rajeev K Varshney, who has morally 

supported me and encouraged me in many ways during my stay at ICRISAT.  

 

I am very grateful to Deepa, Priyanka, Pushpa, Swathi, Rajaram, Dr. Ramu and Dr. 

Riayazuddin, and all the remaining friends and colleagues at ICRISAT, library and 

LSU support on many counts. My PhD is a hefty pile of up's and down's which 

taught me many life lessons. 

 

I wish to extend my sincere thanks to Prof. Roja Rani, the Head, Department of 

Genetics, Osmania University, Prof. Pratibha Nallari, the Chairperson, Board of 

Studies, Department of Genetics, Osmania University and other teaching faculty 

members for their valuable support and for giving valuable suggestions during the 

Pre-Ph.D. course work and during the seminars. Their interaction has enhanced the 

quality component of the thesis.  

 

I wish to take this opportunity to thank all the research scholars in the laboratory of 

Prof. P.B. Kavi Kishor who have supported me in many ways. I also like to extend 

my thanks to all the non-teaching staff members of the Department of Genetics, 

Osmania University for their help and support during the course of this study. 

 

The all out support that I received from members of my family is quite bigger and 

without which it would have been tough for me to carry out this work. My father 

Mr. Bhaskar Rao  has always encouraged me and gave me all the necessary 

freedom and financial support to reach my goal. My mother Ms. Parvathi is 

equally supportive too; never let me down at home and has taken care of me 

always. She managed and took proper care of my child and assisted in completing 

all the tasks. I owe a lot to both my parents. The moral support, help and co-

operation that I received from my husband Mr. Suresh is truly impeccable. His 

guidance and encouragement all through the course of my work cannot be measured 

by any yard stick and I owe him a lot. Mention must be made about my sister Ms. 

Tulasi who has helped me in the field work and my elder sister Ms. Prasanna who 

always extended a helping hand in shaping this thesis. Since two years, Dhrithi, my 

daughter has spent many days without my personal care and attention. I know what 

she has missed all these days and I thank for her understanding nature.  She has 

always controlled her emotions when I was away at work. Simply, without my little 

one's support, it would not have been possible to complete this work.  

 

Finally, I like to thank the Almighty for understanding us, for keeping our spirits 

always high and showering his blessings without which I would not have been able 

to complete the work. 

 

                       K. N. S. Usha Kiranmayee 



5 
 

               OUT LINE OF WORK 

 

Chapter 

No. Title 

  

Page No. 

   
  1 

 
INTRODUCTION 1-11 

 
   

  2 
 

REVIEW OF  LITERATURE 12-41 

 
   

  3 
 

MATERIALS AND METHODS 42- 67 

 
   

  4 
 

RESULTS 68-252 

 
   

  5 
 

DISCUSSION 253-281 

 
   

  6 
 

SUMMARY 282-288 

 
   

  7 
 

REFERENCES 289-329 

 
8 

 
APPENDIX                           330-333 

      9 
 

ANNEXURE 334-335 

 
   

  
10 

 

LIST OF RESEARCH PUBLICATIONS 

AND CONFERENCE PAPERS 336 

 
   

    
 

 



6 
 

                 ABBREVATIONS 

˚C : degree Celsius 

μl : microliter 

AFLP : Amplified Fragment Length Polymorphism 

bp : base pair 

cM : centiMorgan 

CTAB : Cetyl Trimethyl Ammonium Bromide 

CIM : Composite Interval Mapping 

DAF : Days after 50% flowering 

DA : Days after anthesis 

DNA  : Deoxyribonucleic acid 

DArT : Diversity Array Technology 

EST : Expressed Sequence Tag 

FM : Fine Mapping 

F1 : First filial generation 

F4  : Fourth Filial generation 

GAPIT : Genome Association and Prediction integrated Tool 

GWAS : Genome Wide Association Mapping 

GS : Genomic Selection 

GBS : Genotyping by sequencing 

Gls : Glossiness 

GDW : Grain Dry Weight 

GNpP : Grain number per Panicle 

GNP : Grain Number per Plot  

gms : Grams 

HPR : Host Plant Resistance 

HGM : Hundred Grain Mass 

ICRISAT : International Crops Research Institute for the Semi-Arid 

Tropics 

IM : Interval mapping   

ISEP : International Sorghum EST Primer 

JGI : Joint Genome Institute 

JM : JoinMap 

kb : kilo bases 

LSP : Leaf Sheath Pigmentation 

LD : Linkage Disequilibrium 

LG : Linkage Group 

LOD : Logarithm of odds (base10) 

MTA : Marker Trait Association 

MAB : Marker-Assisted Breeing 

MAS : Marker-Assisted Selection 

mM : milliMolar 

Mb : Million bases 

MAGIC : Multi advanced  

ML : Maximum likelihood 

NAM : Nested Association mapping 

NGS : Next Generation Sequencing 

PnDW : Panicle Dry Weight 



7 
 

PHI : Panicle Harvest Index 

%GL : Percentage Green Leafarea 

%SFDH : Percentage Shoot Fly Dead Heart 

PlHt : Plant Height 

PCR : Polymerase Chain Reaction 

PCoA : Principal co-ordinate analysis 

QTL : Quantitative Trait Loci 

RAPD : Random Amplified Polymorphic DNA 

RIL : Recombinant Inbred Line 

RFLP : Restricted Fragment Length Polymorphism 

F2 : Seconf Filial generation 

SV : Seedling vigour 

SFR : Shoot Fly Resistance 

SSR : Simple sequence Polymorphism 

SNP : Single-Nucleotide Polymorphism 

SNPeff : SNP Effect 

SBI-10 : Sorghum Bicolor chromosome-10 

STG : Stay-green 

F3 : Third filial generation 

TASSEL : Trait Analysis by aSSociation, Evolution and Linkage 

TDL : Trichome Density Lower 

TDU : Trichome Density Upper 

 

 



8 
 

                   LIST OF TABLES 

   

S No. Title Page No. 

1 Review of literature for linkage mapping and QTL 

mapping in sorghum 

 

22-27 

2 Parents and grandparents variation and their 

genotype confirmation 

 

116 

3 F1 progeny confirmation 

 

117 

4 Descriptive statistics and correlations of seedling 

leaf blade glossiness score and trichome density 

score in the full F2 population and F3 progenies 

derived from 369 selected informative 

recombinant F2 individuals 

 

118 

5 Mean values of parents, F2:4 progeny, and their 

range for individual seasons and across seasons  

for stay-green traits derived from cross 

RSG04008-6 x J2614-11. 

 

118 

6 Mean values of parents, F4 progeny, and their 

range for individual seasons and across seasons for 

agronomic traits derived from cross RSG04008-6 

× J2614-11 

 

119 

7 Mean values of parents, F4 progeny, and their 

range for individual seasons and across seasons for 

shoot fly component traits derived from cross 

RSG04008-6 × J2614-11 

 

120 

8 Genotype varience,Genotype X environment, 

Standard error, and Heritability estimates (on 

mean basis) for stay-green scores derived from 

cross RSG04008-6 × J2614-11 

 

120 

9 Genotype varience,GenotypeX environment, 

Standard error, and Heritability estimates (on 

mean basis) for agronomic traits derived from 

crodd RSG04008-6 × J2614-11 

 

121 



9 
 

10 Genotype varience,GX E interactions,respective 

standard error, and heritability estimates (on mean 

basis) for component traits of shoot fly resistance 

derived from cross RSG04008-6 × J2614-11 

 

121 

11 Correlation between stay-green weekly scores with 

agronomic traits and yeild for summer 

2013,summer 2014,Across season data 

 

122-124 

12 Shoot fly resistance compnent traits correlation for 

kharif 2013, rabi 2013, across season 

 

125 

13 Linkage map with marker distances and the 

segregation distortion of 262 SNP-SSR markers on 

152 F2 recombinant progeny and their chi- square 

values and significance 

 

126-132 

14 Shoot fly resistance component trait QTLs 

detected on SBI-10 using QTL Cartographer with 

data from a large F2 population of 1,894 

individuals derived from cross RSG4008-6 × 

J2614-11 

 

133 

15 F2 and F3 QTL mapping on selected 369 

individuals 

 

133 

16 GBS SNP map for fine mapping F2,F2:3 population 

of seedling leaf blade glossiness and trichome 

density 

 

133 

17 Stay-green QTL mapping for summer 2013, 

summer 2014 and across season analysis 

 

134-135 

18 Agronomic traits and yeild related traits QTL 

mapping for summer 2013, summer 2014 and 

across season QTL analysis 

 

136-138 

19 QTL mapping results for F4 field trails during 

kharif 2013 and rabi 2013 

 

139-140 

20 Stay-green QTL cluster analysis 

 

141 

21 GWAS for stay-green and marker trait 

associations 

 

 

142-152 



10 
 

22 GWAS for agronomic,yeild related traits and 

marker trait associations 

 

153-173 

23 GWAS for shoot fly resistance and marker trait 

associations 

 

174-193 

24 Stay-green candidate genes in the target region of 

sorghum chromosome SBI-10L 

 

193-198 

25 Candidate genes for agronomic traits and yield 

related traits in the mapped QTL regions of SBI-

10L 

 

199-203 

26 Shoot fly resistance candidate genes in the target 

region of sorghum chromosome SBI-10L 

 

203-204 

27 Selected double recombinants perfoming better 

than parent or near by parental donors were 

selected for furthur generation advancing 

(pyramiding) 

 

205-207 

28 Shoot fly meta QTL analysis 

 

208 

29 Candidate genes in mapped intervals of seedling 

leaf blade glossiness and trichome density QTLs 

on sorghum chromosome SBI-10L 

209 

 

  



11 
 

                    LIST OF FIGURES 

   

S.No

. 

Title Page No 

1 Schematic representation of ILs development and 

derivation of population for fine mapping of shoot fly 

and stay-green traits on SBI-10L  

 

45 

2 Interlard fish meal technique to increase shoot fly 

infestation  and F4 population showing non glossy, 

glossy, Trichome presence and absence profiles 

 

51 

3 F1 hybrid identification (Genemapper profile) 

 

210 

4  Recombinant population sub-set selected based on 

SSR genotyping data 

 

210 

5 RSG04008-6 Parent showing non glossy leaves, J2614-

11 parent showing glossy leaves and F2 population 

sown in pots  

 

211 

6 Trait segregation among 1,894 F2 individuals  for 

glossy score and trichome density score 

 

212 

7 Stay-green mean performance during 2013 and 2014 

post-rainy (rabi) seasons 

 

213 

8 Agronomic data  mean performance during 2013 and 

2014 post-rainy (rabi) seasons 

 

214 

9 Shoot fly resistance morphological traits mean 

performance in parents and progeny  during rainy 

(kharif) and Post-rainy (rabi) 2013 seasons 

 

215 

10 F4 Population showing non glossy, glossy leaves and 

trichomes presence and absence profiles 

 

216 

11 Frequency distribution graphs of F4 progeny for Stay-

green traits during post-rainy 2013 and 2014 seasons 

217 

12 Frequency distribution graphs of F4 progeny for 

agronomic and yeild related traits during post-rainy 

2013 and 2014 seasons 

 

218 



12 
 

13 Frequency distribution graphs of F4 progeny for shoot 

fly morphological traits  during post-rainy 2013 and 

2014 seasons 

 

219 

14 Frequency distribution graphs of F4 progeny for Stay-

green traits for across season 

 

220 

15 Frequency distribution graphs of F4 progeny for 

agronomic and yeild related traits for across season 

 

221 

16 Frequency distribution graphs of F4 progeny for shoot 

fly morphological traits for season 

 

222 

17 Genetic linkage map constructed based on SSR 

markers on SBI-10L vs physical map 

 

223 

18 Graphical genotype representation (GGT) of 182 

selected recombinants  

 

224 

19 SNP effect of the identified SNPs on SBI-10L 

 

224 

20 Proportion of 'B' alleles of SNPs plotted against 

proportion of 'B' alleles of SSRs 

 

225 

21 Distance matrix 1 calcualted from THREaD mapper for 

392 SNPs and 7SSR markers 

 

225 

22  Horseshoe effect of markers in PCA plot 

 

226 

23 Distance matrix plot for 265 markers in Horshoe line 

 

227 

24 High density map of SNPs integrated in SSR map 

 

228 

25 Genetic map distance plotted against physical map 

distances on SBI-10L 

 

229 

26 Map for glossiness score and trichome density score 

QTLs on SBI-10L among 1,894 F2 individuals 

evaluated in rabi season of 2010-2011, and  QTL 

confirmation among 369 selected informative 

recombinant F2 individuals evaluated in rabi season of 

2010-2011 and their derived F2:3 progenies evaluated in 

a late kharif season 2012 sowing 

 

229 

27  F2, F2:3 QTL mapping seedling leaf blade glossiness 

and trichome density on high density map  

230 



13 
 

 

28 F4 QTL mapping of stay-green,shoot fly 

morphological,agronomic and yeild related traits for 

individual seasons 
 

231-232 

29 F4 QTL mapping of stay-green,shoot fly 

morphological,agronomic and yeild related traits for 

across season 

 

233 

30 F4 QTL LOD graphs of stay-green scores for summer 

(post-rainy) 2013, 2014 and across season analysis 

along with candidate genes underlying QTLs. 

 

234-236 

31 F4 QTL LOD graphs of Agronomic and yeild related 

traits for summer (post-rainy) 2013, 2014 and across 

season analysis along with candidate genes underlying 

QTLs. 

 

237-238 

32 F4 QTL LOD graphs of Shoot fly morphological traits 

for rainy and post-rainy 2013 and across season 

analysis along with candidate genes underlying QTLs. 

 

239-240 

33 Fine mapping of stay-green Percent green leafarea 

(%GL)  cluster QTL cQTLstg10.1on SBI-10 

 

241 

34 Fine mapping of stay-green Percent green leafarea 

(%GL)  cluster QTL cQTLstg10.2 on SBI-10 

 

242 

35 Fine mapping of stay-green Percent green leafarea 

(%GL)  cluster QTL cQTLstg10.3 on SBI-10 

 

242 

36 Fine mapping of stay-green Percent green leafarea 

(%GL)  cluster QTL cQTLstg10.4 on SBI-10 after 

flowering (DAF) on SBI-10 

 

243 

37 Fine mapping of stay-green Percent green leafarea 

(%GL)  cluster QTL cQTLstg10.5 on SBI-10 

 

243 

38 Fine mapping of stay-green Percent green leafarea 

(%GL)  cluster QTL cQTLstg10.6 on SBI-10 

 

 

244 

39 Fine mapping of stay-green Percent green leafarea 

(%GL)  cluster QTL cQTLstg10.7 on SBI-10 

 

244 

40 Fine mapping of stay-green QTL clusters and  

candidate genes location 

245 



14 
 

 

41 Fine mapping of Flowering time QTLs on SBI-10 

 

246 

42 Fine mapping of Plant height QTLs on SBI-10 

 

246 

43 Fine mapping of Hundred grain mass QTLs on SBI-10 

 

247 

44 Fine mapping of Grain number per plot and panicle 

QTLs on SBI-10 

 

247 

45 Fine mapping of seedling leaf blade glossiness QTLs 

on SBI-10 

 

248 

46 Fine mapping of seedling leaf blade Trichome density 

lower QTLs on SBI-10 

 

248 

47 Fine mapping of seedling leaf blade Trichome density 

upper QTLs on SBI-10 

 

249 

48 GWAS for Stay-green traits on SBI-10L for Post-rainy 

2013 and 2014 

 

250 

49 GWAS for agronomic and yield related traits on SBI-

10L for Post-rainy 2013 and 2014 

 

251 

50 GWAS for Shoot fly morphological traits on SBI-10L 

for Post-rainy 2013 and 2014 

252 

   

 

 

  



15 
 

 

 

 

  

INTRODUCTION 



16 
 

1. INTRODUCTION 

Sorghum [Sorghum bicolor (L.) Moench] is a cultivated tropical crop plant 

belonging to the family Poaceae, tribe Adropoganeae and genus Sorghum. 

Sorghum is largely a self-pollinated diploid crop (2n=2х = 20) with fully 

sequenced genome length of ~735Mb. It is the fifth most important cereal crop 

globally (Dicko et al., 2006), and chemical/biofuels feed-stocks across a range of 

environments and production systems. Its remarkable ability to produce grains 

under adverse conditions, which are characteristic of arid and semi-arid regions, 

in particular with much less water and at high temperatures than most other grain 

crops, makes sorghum an important 'fail-safe' source of food, feed, fiber, and fuel 

in the global agro-ecosystem.Sorghum grain is the second most important feed-

stock for bio-ethanol production in USA, after maize grain. Sorghum and maize 

are closely related and diverged from the common ancestor ~12 million years ago 

(MYA). Genome sequences for both species have recently been published 

(Paterson et al., 2009; Schnable et al., 2009). 

 

1.1.Distribution of sorghum 

As a model for tropical grasses, sorghum is a logical complement to rice (Oryza 

sativa). Sorghum has similarities with maize and sugar cane which may support 

that they are derived from a similar ancestor (Paterson et al., 2008). USA, India, 

México, Nigeria, Sudan and Ethiopia are the major producers of sorghum. Other 

sorghum producing countries include Australia, Brazil, Argentina, China, Burkina 

Faso, Mali, Egypt, Niger, Tanzania, Chad and Cameroon. Grain is mostly used as 

food (55%), in the form of breads and porridges in Asia and Africa, and as feed 

(33%) in America. Its stover is an increasingly important source of dry season 

fodder for livestock, especially in Asia (http://www.icrisat.org/crop-

sorghum.htm). Total sorghum production from all sorghum producing countries 

was 57 million tonnes in 2012. The world average annual yield for sorghum was 

1.08 tonnes per hectare in the year 2012. FAO reported the United States of 

America as the top sorghum producer with a harvest of 1.22 million tonnes 

http://www.icrisat.org/crop-sorghum.htm
http://www.icrisat.org/crop-sorghum.htm
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followed by India, Nigeria, Mexico and Sudan (FAOSTAT, 2012). In India, with 

its large population and fragile balance in the production and demand equation for 

food grains, sorghum plays a crucial role in national food security. Attempts to 

increase the production of sorghum with the introduction of new high-yielding 

varieties and hybrids since 1966, was largely unsuccessful because of the 

susceptibility of the improved cultivars to various biotic and abiotic stresses 

(Young and Teetes, 1977; Ajayi, 1987; Sharma et al., 1993; Prem Kishore, 2001).  

 

1.2.Adoptability to climate change 

 Sorghum is called "the camel of crops". It has earned this name because of its 

ability to grow in arid soils and withstand prolonged droughts. Sorghum is highly 

efficient in using of water, carbon dioxide, nutrients and solar light (Kundiyana, 

1996). This crop is considered one of the most drought resistant, making it one of 

the most successful in semi-desert regions from Africa and Asia (Serna-Saldívar, 

2010). This resistance is due mainly to its photosynthetic C4 metabolism that 

allows sorghum to accumulate CO2 during the night, to lower the photorespiration 

rate in the presence of light, to reduce the loss of water across the stomata and the 

waste of carbon (Keeley and Rundel, 2003). The leaves of sorghum and maize are 

similar but in the case of sorghum they are covered by a waxy coat that protects 

the plant from prolonged droughts. The sorghum grain is grouped in panicles and 

the plant height ranges from 120 to 400 cm depending on the type of cultivar and 

growing conditions. An advantage of sorghum compared to maize is that it has a 

comparatively lower seed requirement because only 10 to 15 kg/ha are used 

compared with 40 kg/ha required by other cereals (Kundiyana, 1996). In some 

regions it is possible to produce multiple crops per year, either from seed 

(replanting) or from ratoon (Saballos, 2008; Turhollow et al., 2010). The crop 

plays a major role in the food security of millions of people in marginal 

agricultural areas. It occupies 25% or more of arable land in Mauritania, Gambia, 

Mali, Burkina Faso, Ghana, Niger, Somalia and Yemen, and globally it is the fifth 

largest cereal crop after wheat, rice, maize, and barley. 
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1.3.Drought stress and stay-green phenotypes 

Abiotic stresses are the most harmful constraints concerning the growth and 

productivity of crops worldwide. After soil nutrient deficiency, drought stress is 

the most important abiotic constraint for sorghum production globally (Haussman 

et al., 2002b). Sorghum is well adapted to semi-arid environments and regarded 

as model crop for studying drought stress tolerance among grass species. So, 

breeders mostly have been focusing on improving drought stress tolerant varieties 

of sorghum (Kassahun et al., 2010). Drought stress during and after flowering 

typically causes premature leaf senescence which in turn lead to stalk lodging, 

stalk rot disease, reduced grain filling, and significant grain and stover yield 

losses. Drought has been explained in many ways depending on the timing and 

intensity of water stress relative to reproductive stage of the crop. Drought can 

occur in any stage of crop due to, environment factors, management factors, 

genetic factors (Jordan et al., 2012). If plants withstand drought spell occurring at 

post-flowering and grain filling stages, it is defined as terminal drought tolerance. 

Plants exhibit drought tolerance, drought resistance and also drought avoidance 

(Yue, 2006). If plant characters are best associated with post-flowering drought 

tolerance, then it may be due to delayed leaf senescence or non-senescence or 

“stay-green” trait (Borrell et al., 2001; Jordan et al., 2003, 2012; Harris et al., 

2007; Kassahun et al., 2010; Borrell et al., 2014a, Rama Reddy et al., 2014). The 

“stay-green” trait is the ability to maintain functional green leaf area (GL) to 

improve quality of residues (Van Oosterom et al., 1996), support the continuation 

of carbon fixation and supply of starch (McBee et al., 1983), prevent premature 

death and lodging (Rosenow and Clark, 1981), sustain grain-filling under water 

stress (Rosenow et al., 1983; Rajcan and Tollenaar, 1999a,b), and improve grain 

yield under stress (Borrell et al., 1996). Stay-green of sorghum is of three types. 

Type A stay-green phenotypes have a delayed onset and a normal rate of 

senescence following its onset. Type B stay-green phenotypes initiate leaf 

senescence normally but the rate of senescence is comparatively slower. Type C 

stay-green phenotypes retain chlorophyll despite the normal onset and progression 

through senescence. Many crop plants like rice, wheat, maize, barley cotton, 
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tobacco have been reported till date with stay-green character (Thomas and 

Howarth, 2000). Mechanism of regulation and expression of stay-green 

phenotype is still incomplete. Rosenow (1983) observed positive impact on crop 

performance of plants having delayed leaf senescence under water stress during 

grain filling. Presence of stay-green phenotype is a result of balance between 

nitrogen (N) demand by grain and nitrogen captured by vegetative parts of plant 

like increasing the supply of water by modified root architecture which increases 

water extraction from soil or reducing water demand by reducing transpiration 

loss. Nitrogen remobilization from leaves maintain longer photosynthetic activity 

and supply adequate carbohydrates to developing grains (Borell et al., 1999, 

2000a, 2001). Many explanations have been given for delayed leaf senescence 

which may be due to photosynthetic activity regulated by stomata during carbon 

fixation. As sorghum is a C4 plant, phosphoenolpyruvate (PEP) carboxylase is 

used along with RuBisCO enzyme for carbon fixation. Where nitrogen (N) supply 

to plant is mechanized by RuBisCO, carbon nitrogen ratios and ABA levels are 

the most likey to affect senescence. Increased production of cytokinins may also 

lead to delayed leaf senescence (Gan and Amasino, 1995). 

 

1.4. Marker assisted selection for stay-green  

Research advances and studies on stay-green trait helped breeders in developing 

drought resistant cultivars. Stay-green trait has been manipulated by using marker 

assisted backcross. Transferring of target alleles from stay-green to senescent 

cultivars were majorly focused on sorghum breeding activities. Recent advent of 

molecular markers (RFLP, AFLP, SSR, SNP, DArT, CAPS)and marker-assisted 

selection and identifying quantitative trait loci (QTL) of related traits laid the 

steps for transfer of targeted QTLs from donor parent to the recurrent parent. Wild 

type plants expressing stay-green trait, will have linkage drag and QTL 

interactions. Presence of epistatic interactions among stay-green and between 

stay-green loci and genes in other regions of sorghum genome lead to linkage 

drag. Near isogenic lines (NILs) can be used to get rid of complex genetic 

interactions and phenotypes associated with it (Harris et al., 2007). Many stay-

http://en.wikipedia.org/wiki/RuBisCO
http://en.wikipedia.org/wiki/RuBisCO
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green drought resistant sources are available at ICRISAT, Patancheru, Hyderabad, 

India, in the gene bank of the institute and large scale MABC programmes were 

initiated for terminal drought tolerance in sorghum. Overall six sources such as 

E36-1, B35, QL41, SC56, SC283 and SDS1948-3 have so far identified QTLs of 

stay-green trait. Donors with elite susceptible cultivars are being used in 

ICRISAT breeding programmes. Haussmann et al., (2002b) reported stay-green 

QTLs in sorghum. Kassahun and colleagues reported stay-green QTLs from the 

donor B35 (Kassahun et al., 2010). Major problem for utilizing E36-1 as a source 

for breeding was availability of less number of polymorphic markers, as E36-1 

belongs to the same set of zera-zera landrace which contributes mostly for the 

development of agronomically elite caudatum derivatives across sorghum 

breeding programmes. Further, major stay-green QTL mapping to SBI-10 has 

very large confidence interval and is linked with unfavourable alleles at 

neighbouring shoot fly resistant component QTLs associated with seedling leaf 

glossiness score and seedling leaf blade trichome density (Vadez et al., 2013). 

Grand Parents involved in RSG04008-6 х J2614-11 cross are BTx623 which 

belong to kafir race, IS18551, R16 belong to race Durra, E36-1 belongs to 

Guinea-Caudatum hybrid race of sorghum bicolor. With advances in sorghum 

genomics, increase in availability of various marker systems, simple sequence 

repeats (SSR) markers (Ramu et al., 2010), DArT markers (Mace and Jordon, 

2010), and wide range of single nucleotide polymorphisms (SNPs) by 

genotyping-by-sequencing (GBS) have been developed by next generation 

sequencing utilizing Illumina platform (Elshire et al., 2011, Nelson et al., 2011).  

 

1.5.Biotic stresses and shoot fly resistance 

Major biotic constraints of sorghum yield and production are insect pests and 

diseases. More than 150 species of insect pests damage sorghum, of which 

sorghum shoot fly Antherigonia soccata (Rondani), is the major insect pest in 

Africa, Asia and Mediterrian Europe (Sharma, 1993). During early stages of crop 

growth and adaptation, shoot fly causes “dead heart” symptoms in plants. It 

mostly attacks tropical grass species like wheat, barley and sorghum. Shoot fly 
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lays white, elongated, cigar-shaped eggs singly on abaxial (lower) surface of the 

leaves parallel to mid-rib around 7-28 days after seedling emergence. The eggs 

hatch in 1-2 days of incubation and larvae enter the seedling’s whorl of the central 

leaf, where it cuts the growing point, and feeds on the decaying leaf tissue, 

resulting in a typical wilting and drying of the central whorl leaf, a condition 

called ‘dead heart’ (Pont, 1972). As a result of dead heart formation, the young 

seedlings may be killed outright or they may produce axial tillers, which are 

rarely productive. The axial tillers serve as a mechanism of recovery resistance if 

they remain undamaged, but if shoot fly infestation continues, the seedling may 

die or present a rosette appearance and fail to produce any grain (Dhillon et al., 

2005). The pest is especially serious in late-sown crops, but sometimes appears 

with early sowing also, when the preceding dry season is interrupted by frequent 

showers of rain (Nimbalkar and Bapat, 1987). The levels of infestation may go up 

to 90–100% under delayed sowing (Hiremath and Renukarya, 1966, Satish et al., 

2009). Host plant resistance is one of the cheapest and sustainable methods for 

managing the insect pests and diseases. Improvement in stress resistance will 

increase ecological fitness, reduces pesticide use, and facilitates creation of a 

sustainable production system with increased efficiency, profitability and 

enhances grain quality traits. An integrated synergistic system involving plant 

breeding and genomics research using advanced molecular tools could increase 

the efficiency and precision of crop improvement. Earlier studies on the genetics 

of shoot fly resistance suggested that the component traits of resistance are 

complex and quantitatively inherited (Goud et al., 1983; Hallali et al., 1983; 

Agrawal and Abraham 1985), with predominantly additive gene effects 

(Nimbalkar and Bapat, 1992). Shoot fly resistance in sorghum was classified into 

three components, viz., non-preference for oviposition, antibiosis and tolerance 

(Soto, 1974). Under field conditions, resistance to shoot fly is primarily due to 

non-preference for oviposition (also called antixenosis, observed as reduction in 

the number of eggs laid on the seedling) (Jotwani et al., 1971). Many other 

important component traits (Sukhani, 1987) such as leaf glossiness, leaf 

trichomes, seedling vigor, epicuticular wax (Nwanze et al., 1992) and 
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biochemical factors (Singh et al., 2004) are also associated with shoot fly 

resistance in sorghum which are quantitative in nature. 

 

The severity of shoot fly infestation can be reduced by good management 

practices, of which the use of resistant cultivars is the most effective, economical 

and an eco-friendly approach to control the pest. Although many notable 

successes have been achieved through conventional breeding in the improvement 

of plant resistance to insects, the breeding process is often slow and laborious, and 

sufficient levels of resistance have not been achieved due to the quantitative 

nature of resistance (Tao et al., 2003). However, concerted efforts toward 

breeding for shoot fly resistance have resulted in some progress, and a number of 

genotypes with resistance to shoot fly have been identified (Singh and Rana, 

1996; Kumar et al., 2000; Sharma et al., 2003). Unfortunately, all high-yielding 

sorghum cultivars presently under cultivation in India are highly susceptible to 

shoot fly, prompting the national program to fix a threshold level of resistance 

before any cultivar can be officially released for cultivation.  

 

1.5.1. Shoot fly resistance and QTLs 

Agronomic practices (timely sowing), natural and synthetic insecticides, natural 

enemies and host plant resistance (HPR), are all components of integrated pest 

management practices used to minimize sorghum losses due to shoot fly 

infestation (Kumar et al., 2008); but HPR and timely sowing remains the most 

preferred as they are cost-effective, eco-friendly and easily adapted by farmers. 

Host plant resistance to shoot fly is mediated by a number of morphological, 

biochemical and genetic factors. Of the many important morphological 

components of sorghum HPR identified, seedling leaf blade glossiness (Maiti et 

al., 1984), seedling leaf blade trichome density (Maiti and Bidinger, 1979), 

seedling vigor, and leaf sheath pigmentation are all positively associated with 

Shoot Fly Resistance (SFR) (Tarumoto, 2005). Further, these SFR component 

traits have been mapped and the putative QTLs identified for individual traits and 

subsequently validated by marker-assisted backcross (MABC)-introgression into 
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genetic backgrounds highly susceptible to shoot fly. Using the cross BTx623 × 

IS18551, Sajjanar (2002) and Folkertsma et al. (2003) mapped shoot fly 

resistance (SFR) QTLs on SBI-01, SBI-05, SBI-07, and SBI-10. Similarly, using 

cross 296B × IS18551, Satish et al. (2009, 2012) mapped SFR QTLs on SBI-01, 

SBI-03, SBI-04, SBI-05, SBI-06, SBI-09, SBI-07, and SBI-10. Aruna et al. 

(2011) also mapped SFR QTLs on SBI-01, SBI-02, SBI-03, SBI-04, SBI-06, SBI-

07, SBI-09, and SBI-10 using shoot fly resistance source IS2122. In a reciprocal 

cross IS18551 × 296B, Apotikar et al. (2011) found SFR QTLs on SBI-01 and 

SBI-03. Five putative QTLs for SFR component traits from IS18551 were then 

validated by MABC-introgression into the genetic backgrounds of elite shoot fly-

susceptible hybrid seed parent maintainer lines 296B and BTx623 (Jyothi, 2010). 

Molecular marker assisted breeding programmes at ICRISAT, Patancheru, 

involved in transferring shoot fly resistance QTLs from donor parent IS18551 to 

different elite sorghum backgrounds of which 296B and IS18551 were the shoot 

fly susceptible and recurrent parents (Jyothi, 2010). Out of these, a near isogenic 

line (NIL) J2614-11 (parent 2) is having QTLs for shoot fly resistance (leaf blade 

glossiness and leaf blade trichome density) on sorghum chromosome SBI-10. 

Whereas, Kassahun (2006) stated that marker assisted breeding programme has 

transferred stay-green QTLs from E36-1 donor parent into R16 post-rainy rabi 

sorghum variety. Introgression line with stay-green QTL present on LG-G (SBI-

10) was named as RSG04008-6, and used as a recurrent parent (parent 1). 

 

1.6.QTL/gene pyramiding for resistance 

Gene pyramiding is a breeding strategy that serves to combine favourable alleles 

at multiple genetic loci into a single plant genotype. This process of stacking of 

genes/QTL into a single elite cultivar background can now be efficiently 

performed by marker-assisted selection (MAS), using backcrossing or pedigree 

approaches. This approach expedites the varietal development process by 

providing the opportunity to select for all desirable genes/QTLs simultaneously, 

as well as eliminating the time-consuming process of inoculation for different 

races or isolates at different time intervals (Kole, 2006). Pyramiding of multiple 
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genes or common major QTLs for biotic, abiotic stresses are important 

approaches for genetical improvement of any genotype. Fully sequenced genome 

of sorghum (Paterson et al., 2009), location of major QTLs for insect pests such 

as shoot fly (Satish et al., 2009; Aruna et al., 2011; Satish et al., 2012), green bug 

(Agrama et al., 2002; Katsar et al., 2002; Nagaraj et al., 2005; Wu and Huang 

2008) head bug (Deu et al., 2005) and midge (Tao et al., 2003) which infest at 

different stages of plant development from seedling to panicle maturity, have been 

identified previously. Similarly, major stay-green QTLs were mapped 

(Haussmann et al., 2002b) and introgression line developed (Mahalakshmi and 

Bidinger, 2002). Stay-green QTLs on sorghum chromosome SBI-10 are 

overlapping with the shoot fly resistance QTLs. So, this is the place of interest for 

fine mapping. Further, fine mapping of the identified QTLs into small intervals 

(Paterson et al., 1990) provides meaning for QTL identification with increased 

marker density QTL region. Fine mapping studies reveals the smallest region 

contributing for the phenotypic traits and lays the basis for gene identification. 

Fine mapping can be achieved by large scale population with more markers 

showing more recombination events. In early generation populations like F2, F3, 

huge recombination events are available but, heterozygosity, segregation 

distortion, dominance and epistasis need to be overcome to fine map the 

interested regions. A genome-wide association study (GWAS) is a further 

advanced method to understand the marker trait associations based on linkage 

disequilibrium and can identify the SNP associated with the candidate genes  

(Visscheret al., 2012).  

 

Candidate genes underlying the target QTLs like seedling leaf blade glossiness 

and trichome density have been reported by Satish et al., (2009, 2012) and Aruna 

et al., (2011), but newer version of annotation of sorghum (2.1V) and present 

studies on trichome density and glossiness in different crops have more 

interesting results to support the identified QTLs. Identification of genes, 

pathways and mechanism involved in sorghum seedling leaf blade glossy and 

trichome density have not yet been clearly studied nor the candidate genes cloned 
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in sorghum. Majority of the studies were carried out in model crop plants like 

Arabidopsis and maize. Wax deficient mutant loci in Zea mays (maize), Brassica 

napus and sorghum are defined as ‘glossy’ loci whereas in Arabidopsis thaliana 

and Hordeum vulgare (barley) they were named as ‘ceriferum’ (cer) mutant loci 

(Kunst and Samuels, 2003). In Arabidopsis, many studies were reported as shine 

(shn) mutants which were isolated, characterized and found that the shn gene 

encodes for APETALA2 (AP2)/ethylene response element binding protein 

(EREBP) transcriptional factors that act in up- and down-regulation of lipid 

biosynthesis (Aharoni et al., 2004). More than 30 ‘glossy’ loci have been 

identified and a few were cloned (gl1, gl2, gl3, gl4, gl8, gl13 and gl15) in maize 

(Li L et al., 2013) and their functional role in glossiness has been reported. 

Similarly, for trichome density, many studies reported that WRKY, MYB 

transcription factors play important roles (Eulgem et al., 2000; Johnson et al., 

2002; Ishida et al., 2007; Liang G et al., 2014).  

 

Finding out candidate genes responsible for the major QTLs can be located with 

the help of high-throughput genotyping assays like single nucleotide 

polymorphism (SNP) that helps to map and study candidate gene associations 

with a biotic and abiotic stress related traits. Fine characterization or fine mapping 

approach for candidate genes associated with target traits can be evaluated with 

the help of historical recombination events occurring in QTLs and QTL flanking 

regions during transfer of desired traits to recurrent parent background. This will 

improve efficiency of introgression and its components by reducing the number of 

breeding cycles but look huge into genotyping recombinant (F2) data sets (Satish 

et al., 2012). However, Genotyping-By-Sequencing (GBS) approach gave huge 

marker-density and genome-wide coverage which has been possible with GBS-

SNP platform that helps in the identification of SNPs closest to or inside the 

individual genes or regulatory elements associated with it. GBS data helps in 

constructing high resolution map of the target region and map based tagging of 

candidate genes identified (Vadez et al., 2013). It would be desirable to generate 

recombinants having the favorable alleles at all three loci (for a high level of 
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glossiness, good green leaf area retention, and high trichome density), since such 

recombinants could be used as donors of the “cassette” of these three genes in 

applied marker-assisted breeding programmes targeting the Post-rainy (rabi) 

sorghum production environments of Peninsular India, where both shoot fly 

resistance and terminal drought tolerance are essential traits of well-adapted 

sorghum cultivars. In the course of producing such a recombinants from the cross 

of the BTx623-background, shoot fly resistance QTL introgression line (J2614-

11) and the R16-background stay-green QTL introgression line (RSG04008), it 

should be possible to fine-map (and perhaps identify the underlying genes) for all 

three of these components of the cassette. Taking the above background into 

consideration, the following objectives have been framed for the present 

investigation. 

OBJECTIVES 

 1.  To produce F2:3 fine-mapping populations by crossing the (J2614-11) 

BTx623- and (RSG04008-6) R16-background introgression lines, and then 

selfing themto produce the F2recombinant population by one further 

generation of selfing and finally to produce test units for phenotyping. 

 2.  To fine-map the SBI-10 component QTLs for seedling leaf blade glossiness, 

seedling leaf blade trichome density and for post-flowering green leaf area 

retention (stay-green) by combining genotyping and phenotyping data sets 

for selected subset of the fine-mapping populations. 

 3.  To conduct bioinformatics searches for candidate genes underlying the three 

target QTLs, and use SNP haplotypes within these candidate genes for 

selected fine-mapping population segregants to assess which candidate genes 

are best associated with variation in these traits. 

4.  To recombine selected progenies from the fine-mapping population and self 

them to generate the desired genotype homozygous lines for favorable alleles 

at all three target QTLs. 



admin
Textbox
REVIEW OF  LITERATURE



12 
 

2. REVIEW OF LITERATURE 

 

2.1. Sorghum  

 

2.1.1.Importance and crop improvement 

Sorghum belongs to the Poaceae family (tribe Andropogoneae), which includes 

rice, maize, barley, oat, rye, millet, and wheat. Despite the separation of sorghum 

from maize and rice approximately 15-20 and 50 million years ago respectively, 

significant conservation of gene order exists among the genomes of these plants, 

which facilitates comparative genome mapping approaches (Bennetzen, 2000). 

Sorghum has a diverse germplasm, unusual tolerance to hot and dry 

environments, and a relatively small diploid genome of approximately 760-810 

Mb (Arumuganathan and Earle, 1991), well suited for genomic approaches. A 

high-density integrated genetic and physical map of sorghum has been created 

using a combination of AFLP technology, six-dimensional bacterial artificial 

chromosome (BAC) pooling, and BAC DNA fingerprinting (Klein et al., 2000). 

A dense genetic map of sorghum was obtained by scoring 2454 AFLPs, 203 

RFLPs, and 136 SSRs in a recombinant inbred (RI) population, consisting of 137 

lines derived from a cross of two S. bicolor genotypes BTx623 and IS3620C 

(Menz et al., 2002). The physical map was generated using three different BAC 

libraries with BAC contigs anchored every 1.5cM across all ten sorghum 

chromosomes. The integrated genetic and physical map permits map-based 

cloning of important genes (Childs et al., 1997; Klein et al., 2005; Mace et al., 

2009; Mace and Jordan, 2011). Despite of its growing importance and molecular 

studies, improvement of sorghum in terms of production has been affected due to 

insect pest and drought stress. The most destructive insect pest of this crop is 

shoot fly out of 150 insect pests (Sharma et al., 2003) and drought stress causes 

heavy loss to the crop yield. 
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The present study was aimed at utilizing recently developed GBS SNPs and SSR 

molecular markers to map and fine map the genomic regions associated with 

stay-green and shoot fly resistance component traits for utilization in drought 

tolerance and shoot fly resistance breeding programs. The literature pertaining 

with the emphasis on the utility of conventional and molecular approaches for 

breeding cultivars resistant to drought and shoot fly are reviewed here. 

2.1.1.1.Molecular markers and its importance 

Molecular markers are necessary for locating the genomic regions of interest 

based on the marker polymorphism detected due to genomic sequence 

polymorphism which can be possible with co-dominant markers. Co-dominant 

markers differentiate homozygotes with a heterozygote which has key role in 

marker assisted selection as well as in marker assisted breeding. So based on the 

priority of DNA-based markers they were categorized as dominant molecular 

markers (RAPD, AFLP and DArT) and co-dominant molecular markers  

2.1.1.1.1.1.Dominant markers are able to detect presence or absence of alleles 

i.e., allele ‘A’ or allele ‘B’ types can be identified but not 

heterozygotes.  

 

2.1.1.1.1.2.Random amplified polymorphic DNA (RAPD)  

This method amplifies genomic DNA with single random primer. In sorghum, 

many studies were reported (Tuinstra et al., 1996; Subudhi and Nyugen 2000; 

Hausmann et al., 2002a; Agrama et al., 2002) on RAPD marker assisted 

breeding methods. 

 

2.1.1.1.1.3.Amplified fragment length polymorphic DNA (AFLP) 

It is a PCR-based multi-locus finger printing technique without prior sequence 

information. Many studies were carried out in Sorghum using this technique 

(Klein et al., 2001; Haussmann et al., 2002a, 2004; Menz et al., 2002; Mace et 

al., 2008; Ritter et al., 2008; Shegro et al., 2013; Gerrano et al., 2014). 
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2.1.1.1.1.4.Diversity array technology (DArT) 

It is a micro array based technology which detects all types of DNA variation 

(SNP, methylation, indels). A pool of genomes representing the germplasm of 

interest was cloned and individual inserts are arrayed on microarray resulting in 

a “discovery array”. Labeled genomic imprints of germplasm of interest were 

genotyped by hybridizing to the discovery array. As this behaves as a dominant 

marker, the presence of variable DNA fragments will be detected with array-

based technology which only found in few but not all. DArT was extensively 

used by sorghum molecular breeders (Mace et al., 2008, 2009, 2012; Mace and 

Jordan 2010, 2011; Sabadin et al., 2012; Bouchet et al., 2012; Phuong et al., 

2013; Fiedler et al., 2014) as it is a cost-effective high throughput method  and 

independent of sequence information and electrophoresis. 

 

2.1.1.1.2. Co-dominant molecular markers are capable to differentiate 

heterozygotes and homozygotes based on polymorphic genotyping 

data. 

 

2.1.1.1.2.1. Restriction fragment length polymorphism (RFLP)  

RFLP detects differences in individuals with the help of fragmentation sizes 

obtained by a single restriction enzyme activity on a group of individuals. This 

produces varied length fragments (Beckmann and Soller, 1986) and presence or 

absence of restriction site leads to fragment length polymorphism.RFLPs are 

challenging but time-consuming as they are more cost-effective PCR-based 

markers. In sorghum, RFLP studies (Pereira et al., 1994; Xu et al., 1994; Cui et 

al., 1995; Boivin et al., 1999; Peng et al., 1999; Bhattramakki et al., 2000; 

Subudhi and Nguyen, 2000; Schloss et al., 2002, Menz et al., 2002) were used 

to construct linkage maps. 

 

2.1.1.1.2.2.Microsatellite markers/Simple sequence repeat markers (SSR)  

Microsatellites are tandem repeats of one to six nucleotide long DNA motifs 

that occur in all eukaryotic and prokaryotic genomes with frequent variation in a 
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number of repeat unit loci. SSRs are ubiquitous in nature and are used in high 

throughput genotyping, linkage map development, diversity analysis, QTL 

analysis, fine mapping, gene tagging and candidate gene identification. 

Nucleotide sequences of flanking regions of microsatellites are known, specific 

primers (20-25 bp) can be designed to amplify the SSRs using PCR. SSRs are 

cost-effective, PCR based markers and abundant in plant genomic DNA. In 

sorghum, microsatellite markers were exceptionally used (Brown et al., 1996; 

Taramino et al., 1997; Tao et al., 1998a, 2000, 2003; Kong et al., 2000; 

Bhattramakki et al., 2000; Schloss et al., 2002; Hausmann et al., 2002a, 2004; 

Menz et al., 2002; Agrama et al., 2002; Bowers et al., 2003; Wu and Huang, 

2007; Mace et al., 2008, 2009, 2010, 2011; Srinivas et al., 2008, 2009a, b; 

Satish et al., 2009, 2012; Billot et al., 2013; Burow et al., 2009; Yonemaru et 

al., 2009; Aruna et al., 2011; Ramu et al., 2009, 2010, 2013; Nagaraja reddy et 

al., 2012, 2013, 2014; Kiranmayee et al.,2016). 

 

2.1.1.1.2.3. Single nucleotide polymorphism (SNP):  SNPs are most 

abundant forms of genetic variation and distributed throughout the genome in 

various plants and animals. SNPs are more common mutations which occur 

between related genomes which are being used as markers in advanced 

molecular mapping methodologies (Fiedler et al., 2015). Different technologies 

have been adopted for scoring SNPs which varies from low throughput to ultra 

highthroughput methods. Unigenes and EST databases were highly targeted for 

SNP discovery as they are the genomic regions of interest but, the frequency of 

SNPs in conserved regions like mRNA is low. Recently Elshire et al., (2011) 

identified a new approach which digs out a huge number of SNPs using 

genotyping-by-sequencing (GBS) methods with low cost and more advance 

genome wide association studies (GWAS) performed. GBS SNPs are highly 

applicable in genome profiling (Morris et al., 2013a, b; Perez et al., 2014; 

Lasky et al., 2015) and direct re-sequencing utilizes SNPs as genotyping 

markers to detect the polymorphism using high throughput whole genome re-

sequencing (Nelson et al., 2012; Zou et al., 2012; Bekele et al., 2013; Mace et 
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al., 2013b), high density linkage map development (Zou et al., 2012), QTL 

mapping (Zou et al., 2012; Phoung et al., 2013), fine mapping (Caniato et al., 

2014; Han L et al., 2015), diversity analysis and association mapping (Morris et 

al., 2013 a, b; Lasky et al., 2015) in sorghum. 

 

2.1.1.2. Mapping population 

Mapping population development is the major step towards linkage mapping, 

QTL mapping, and fine mapping studies. The population itself decides the 

results as more diverse parents for traits of interest gives more clear results. Both 

the parents should be polymorphic for a trait of interest and cannot be too distant 

which may cause sterility or may lead to high level of segregation distortion 

during linkage analysis (Semagn et al., 2006). A donor parent could be distant 

from an elite parent at least in genomic regions carrying for putative QTLs of 

interest and an elite parent for pedigree or backcross. Elite parent, weak for biotic 

and abiotic stresses mapped QTLs and high yielding economically important 

genotypes were selected for crossing in breeding programs in order to develop 

mapping populations for the traits of interest. Parents were assessed for 

polymorphism for the traits of interest and then crossed to produce F1 

heterozygous hybrid seeds which may be having high plant vigor. These 

mapping populations developed based on the intensity of trait study, a number of 

generations advanced for observing the trait and the time.  For mapping 

population size of the population is also plays major role in the identification of 

variant genomic regions and their association with markers. Vales et al., 2005 

have demonstrated that as the population size increases, the number of QTLs will 

also increase. Sub-populations of 300, 200, 150, 100, 50 lines from a full 

population (409) with high recombination were selected and studied to confirm 

an increase in population resulted in the identification of a minor effect QTLs. 

All the mapping populations derived confirmed true by F1 heterozygote’s selfing. 

Lin et al., (2004) stated heritability values also depend on the number of 

individuals included in the analysis.  Different types of mapping populations 

were used based on the type of study, duration and cost of the experiment. 
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Commonly used mapping populations are second filial generation (F2), back 

cross (BC), double haploids (DHs), recombinant inbred line (RIL) population, 

Near-isogenic lines (NILs), Nested association mapping population (NAM) and 

Multi-parent advanced generation intercross population (MAGIC). 

 

2.1.1.2.1. F2 Population 

F2 populations are derived from F1 true hybrids by selfing or inter mating among 

F1s. All possible types of recombinants are derived from the F2 population due to 

meiotic crossovers or recombination or Chiasma occurrence. F2 population has 

been extensively used in sorghum for construction of linkage maps and QTL 

analysis (Paterson et al., 1995b; Pereira and lee, 1995; Pereira et al., 1995; Due 

et al., 2005; Cuevas et al., 2014; Guo et al., 2015; Kiranmayee et al., 2016; 

Pfeiffer and Rooney, 2016). As each individual F2 has different recombination 

with other individuals, we cannot replicate nor do we restrict to any experimental 

design except augmented design with parents as the checks (Kiranmayee et al., 

2016). In order to reduce F2 experimental errors, F3 phenotyping data means 

were assigned to F2 genotype families. This design is called F2:3 (F2 derived F3) 

design in plant genetics (Zhang and Xu, 2004; Kao, 2006). F2 individual’s 

genotyping data was utilized to map the QTL from the F3 phenotyping data of 

their corresponding F2 individuals to increase accuracy. 

 

2.1.1.2.2. Back cross (BC) population 

When F1 hybrids were crossed with any one of the parent and the resulted 

population is named as backcross population. It is a segregating population 

derived by backcrossing of F1 hybrid to one of its parents (recurrent or recipient). 

If backcross selection is repeated up to six generations, 99% genome of recurrent 

parent is retrieved. This population is near to F2 population but, recombination 

was conserved only in one gamete. This population further advanced to near-

isogenic lines (NILs) in sorghum (Harris et al., 2007; Kassahun et al., 2010; 

Jyothi, 2010; Yohannes et al., 2015). 
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2.1.1.2.3. Near iso-genic lines (NILs) 

Repeated backcross of genetically distinct parent lines with extensive genotyping 

lead to near isogenic lines (NILs) are also a type of immortal populations 

consisting of introgression lines (ILs). Such populations consist of a single 

fragment or small number of genomic introgression fragments from a donor 

parent into a homogenous genetic background. NIL population resolution can be 

improved by minimizing the introgression size of each NIL and requires large 

population size for genome wide coverage as NILs have single introgression line 

which increases the power to detect small effect QTLs (Keurentjes et al., 2007). 

The backcrossed population up to six generations (BC6) and more derived from 

the recurrent parent are used by Babu et al., (2004), and Semagn et al., (2006). 

Tuinstra et al., (1998) identified post-flowering drought and pre-flowering 

drought QTLs using NILs. Sorghum and maize NILs were utilized for studying 

the overall effect of glycine betaine synthesis and its accumulation under 

conditions of osmotic stress (Peel et al., 2010) and Harris et al., (2007) fine 

mapped B35 stay-green QTLs using NILs in sorghum. Borrell et al., (2014a,b) 

utilized sorghum stay-green NILs and identified the stay-green role in leaf plant 

drought tolerance by enhancing the canopy development, leaf anatomy, root 

growth and water uptake and their individual QTLs role in crop water usage 

patterns and grain yield under terminal drought. 

 

2.1.1.2.4. Multi-parent advanced generation inter-cross (MAGIC) 

population  

Conventional QTL mapping studies are used for identification of QTLs from bi-

parental crosses developed from F2, BC or RILs. Recently, a multi-parent 

advanced generation intercross (MAGIC) strategy came into light to dissect 

multiple alleles and to provide increased recombination and mapping resolution 

(Cavanagh et al., 2008). The main objective of developing MAGIC populations 

is to promote intercrossing and shuffling of the genome. The advantages of using 

multi-parent populations are that: (1) more targeted traits from each of the 
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parents can be analyzed based on the selection of parents used to make the multi-

parent crosses; and (2) increased precision and resolution with which QTLs can 

be detected due to the increased level of recombination (Cavanagh et al., 2008). 

Multi-parent populations are now attractive for researchers due to the 

development of high-throughput SNP genotyping platforms and advances in 

statistical methods to analyze data from such populations (Bandillo et al., 2013). 

MAGIC populations have been first studied in Arabidopsis (Cavanagh et al., 

2008) and then rice (Bandillo et al., 2013), wheat (Huang et al., 2012; Cavanagh 

et al., 2013; Rebetzke et al., 2014), chickpea (Gaur et al., 2012), maize (Pea et 

al., 2013), pigeon pea, groundnut and sorghum from ICRISAT. 

 

2.1.1.2.5. Recombinant inbred lines (RILs) 

 RIL population developed from F2 individuals from a bi-parental cross is based 

the genotyping and phenotyping for the trait of interest. It is a fixed population 

for traits of interest selected for at least six to eight generations. For genetic 

mapping studies like QTL identification, RIL populations are widely used and 

the mapping resolution highly depends on population size. Each RIL contains 

several introgression segments and on average, each genomic region is 

represented by an equal number of both parental genotypes of a population 

(Keurentjes et al., 2007). RILs have increased power to detect QTLs when 

compared to F2:3 populations (Moreno Gonzalez, 1993) but less when compared 

to NILs. In sorghum, many studies based on RIL population have been carried 

out (Tuinstra et al., 1996, 1997; Tao et al., 1998a, b; Boivin et al., 1999; Peng et 

al., 1999; Kong et al., 2000; Tao et al., 2000; Xu et al., 2000; Bhattaramakki et 

al., 2000; Klein et al., 2001a, b; Haussmann et al., 2002b; Agrama et al., 2002; 

Tao et al., 2003; Mace et al., 2008, 2009, 2010, 2011; Srinivasa Reddy et al., 

2008; Srinivas et al., 2008, 2009a, b; Satish et al., 2009, 2012, Aruna et al., 

2011; Naga Raja Reddy et al., 2013, 2014; Hayes et al., 2016; Gelli et al., 2016). 

These studies have identified a huge number of QTLs with the large effect on 

molecular breeding. Complete homozygous RILs are difficult to obtain and is 

time consuming and costs more space and money. 
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2.1.1.3. Selective genotypingand phenotyping 

Selective genotyping is the term used when the term linkage between marker loci 

and QTL affecting some particular trait is carried out by genotyping only 

individuals from high and low phenotypic tails of entire experimental population 

(Darvasi and Soller, 1992). Large population sizes are advantageous for linkage 

mapping, QTL mapping, fine mapping and association studies. Selective 

genotyping and phenotyping approaches could be effective strategies for cost 

reduction associated with conducting QTL analysis in large population 

experiments and is superior to random sampling (Vales et al., 2005). Selective 

recombinant genotyping can be utilized for high-resolution QTL mapping (Ronin 

et al., 2003). Selective genotyping is also known as distribution extreme analysis 

or trait-based marker analysis (Collard, 2005). Xu and Hu (2009) demonstrated a 

combined approach for QTL mapping and segregation distorted loci resulted 

from selective genotyping. Recently, in watermelon for identification of 

Fusarium wilt, QTL mapping studies associated with GBS utilized selective 

genotyping approach was adapted (Lambel et al., 2014). 

 

 

2.2. Linkage maps and high density linkage maps 

Genetic mapping involved ascertainment of phenotype in a genetically 

segregating population followed by association analysis between phenotype and 

genotype at marker loci spanning entire genome (Jin et al., 2004). Mapping is a 

process of identifying genomic variant regions with the particular phenotype. 

Molecular data of crop genome is usually presented in the framework of genetic 

linkage maps useful to tag or locate genes of interest and facilitate marker 

assisted selection (MAS) and map- based cloning. Linkage mapping is keeping 

the markers in order, indicating the relative distance between them and assigning 

them to their linkage groups based on recombination values from all their 

pairwise combinations between marker loci in the segregating families like F2 

population, BC population, DH or RIL population of the experimental cross. 
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Markers or genomic tags or loci are assigned to linkage groups using different 

computer programs like MAPMAKER/EXP (Lander et al., 1987), JoinMap (Van 

Oojen and Voorrips, 2001), ICIM mapping (Li H et al., 2007, THREAD Mapper 

Studio (Cheema et al., 2010), MAP DISTO (Lorieux, 2012) and computational 

programming developments including R/qtl package (Bromanet al., 2003) were 

used to develop linkage and QTL maps. Many methods and software’s have been 

developed to map the trait of interest. Inorder to calculate the important genomic 

regions, the order of the markers need to be determined in the derived 

population. Recent studies and NGS technologies have increased the marker data 

points in many crop plants. Re-sequencing technologies like GBS SNPs and 

RAD sequencing technologies have increased the marker density and ultra high 

density maps were generated in sorghum along with SSR and DArT markers. 

Recent advances in sorghum genomics and the availability of sorghum genome 

sequence (Paterson et al., 2009) and the high throughput tools for whole genome 

sequencing at reduced prices year after year for data point generation for single 

nucleotide polymorphisms (SNPs), using Skim sequencing technologies like 

genotyping by sequencing (GBS) (Elshire et al., 2011; Morris et al., 2013a, b; 

Lasky et al., 2015) have laid the path for genomic selection. Such technologies 

have increased the selection gain and improved the effectiveness of molecular 

breeding. In sorghum, various molecular markers (RFLP, RAPD, AFLP, SSR, 

DArT and SNPs) have been utilized for constructing linkage maps (Taramino et 

al., 1997; Tao et al., 1998, 2000, 2003; Kong et al., 2000; Bhattramakki et al., 

2000; Hausmann et al., 2002a, 2004; Menz et al., 2002; Agrama et al., 2002; 

Bowers et al.,2003; Wu and Huang 2007; Mace et al., 2008, 2009, 2010, 2011; 

Srinivas et al., 2008, 2009a, b; Satish et al., 2009, 2012; Billot et al., 2013; 

Burrow et al., 2009; Aruna et al., 2011; Ramu et al., 2009, 2010; Perez et al., 

2014; Nelson et al., 2012; Zou et al., 2012; Bekele et al., 2013; Nagaraja reddy 

et al., 2012, 2013, 2014; Kiranmayee et al., 2016; Gelli et al., 2016). The 

summary of different linkage maps studied are represented in Table 1. 
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Table 1 Review of literature for linkage mapping and QTL mapping in sorghum 

S 

No Reference 

Mappin

g 

populati

on Type 

Mappin

g 

populati

on Size Parental lines 

Molecular 

marker type 

(SSR/SNP) 

LG 

(chromoso

me) 

QTLs 

mappe

d 

PURPOSE-comparitive 

mapping/LG/QTL 

map/Fine map/diversity 

1 Lin et al.,  1995 F2 370 

S. bicolor / S. 

propinquum RFLP 

SBI-

01,02,03,06,

07,09 9 plant height and maturity 

2 Paterson et al.,  1995a F3 3488 

S. bicolor / S. 

propinquum RFLP 

SBI-

01,02,03,08,

10 5 kernal weight 

3 Paterson et al.,  1995b  F2 

 

S. bicolor / S. 

propinquum RFLP 

SBI-

01,02,04,06,

07,08,09,10 22 stem morphology 

4 Pereira and Lee1995 F2 152 CK60/PI229828 RFLP 

SBI-

06,07,09,10 4 Plant height 

5 Pereira et al., 1995 F2 152 CK60/PI229828 RFLP 

SBI-

01,02,03,06,

07,08,09,10 25 

Plant height,panicle 

architecture,Seed weight 

6 Tuinstra et al., 1997 

RI  F5-

7(HIF) 98 Tx7078/B35 RAPD, RFLP SBI-01 1 seed weight 

7 Rami et al., 1998 RI  F5-7 

 

IS2807/379,IS280

7/249 RFLP 

SBI-

01,02,03,04,

06,07,10 53 

Days to 50% 

flowering,plant 

height,grain yeild trits 

8 Tao et al., 1998b RILs 160 QL39/QL41 RFLP,SSR 

SBI-01, 

02,03,08 4 Rust resistance  

9 Crasta et al., 1999 RI  F6-7 96 B35/Tx430 RFLP 

SBI-01, 

03,05,09, 10 7 DAF  and stay-green 

10 Peng et al., 1999 RILs 137 BTx623/IS3620C RFLP 

  

High density map 

11 Bhattramakki et al., 2000 RILs 137 BTx623/IS3620C SSR,RFLP 

  

High density map 

12 Subudhi and Nyugen 2000 RILs 98 B35/Tx7000 

RFLP,SSR,RA

PD 

SBI-02, 

03,05,07 4 Stay-green 

13 Tao et al., 2000 RILs 160 QL39/QL41 SSR,RFLP 

SBI-01, 

02,03,09,10 5 Stay-green 
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S 

No Reference 

Mappin

g 

populati

on Type 

Mappin

g 

populati

on Size Parental lines 

Molecular 

marker type 

(SSR/SNP) 

LG 

(chromoso

me) 

QTLs 

mappe

d 

PURPOSE-comparitive 

mapping/LG/QTL 

map/Fine map/diversity 

14 Xu et al., 2000 RILs F7 98 B35/Tx7000 RFLP 

SBI-02, 

03,05 7 Stay-green 

15 Chantereau et al.,  2001 RILs F7 85 IS2807/IS7680 RFLP 

SBI-01, 

02,10 10 Maturity 

16 Hart et al., 2001 RI  F6-8 136 BTx623/IS3620C SSR,RFLP 

SBI-01, 

02,03,04, 

05,06,07,08,

09,10 29 

leaf,stem,grain 

maturity,panicle QTL 

map 

18 Klein et al., 2001 F5 125 RTx430/Sureno SSR,AFLP 

SBI-01, 

02,04,06,07,

09,10 14 

Grain mould,plant 

height,Zonate leaf spot, 

Bacterial leaf spot, 

resistance to anthracnose 

19 Agrama et al., 2002 RILs 93 GBIK/Redlan SSR,RAPD 

SBI-02, 

04,07,09,10 5 

Green bug resistance QTL 

mapping 

20 Hausmann et al., 2002b F3:5 225/226 

N13/E36-

,IS9830/E36-1 

SSR,AFLP, 

RFLP,RAPD 

SBI-01, 

02,03,04,07,

08,10 36 Stay-green QTL mapping 

21 Katsar et al., 2002 

  

BTx623/S. 

propinquum, 

RTx430/PI550607 

 

SBI-01, 

04,05,06,07,

09,10 6 

Green bug resistance 

(Biotypes I & K) 

22 Menz et al., 2002 RILs 137 BTx623/IS3620C 

SSR,AFLP,RF

LP 

  

High density map 

23 Tao et al., 2003 RILs 120 

B890562/ICSV74

5 SSR,RFLP 

SBI-

03,07,09 3 Midge resistance 

24 Hausmann et al., 2004 F3:5 225/226 

N13/E36-

,IS9830/E36-1 

SSR,AFLP,RF

LP,RAPD 

SBI-

01,02,03,04,

05,06,07,08,

09,10 29 striga resistance 

25 Deu et al.,2005 F2 217 Malisor 84-7/S34 RFLP 

SBI-

01,02,03,04,

08,09 9 Head bug resistance 

Table 1 (Contd...) 
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S 

No Reference 

Mappin

g 

populati

on Type 

Mappin

g 

populati

on Size Parental lines 

Molecular 

marker type 

(SSR/SNP) 

LG 

(chromoso

me) 

QTLs 

mappe

d 

PURPOSE-comparitive 

mapping/LG/QTL 

map/Fine map/diversity 

26 Brown et al., 2006 RILs 119 BTx623/IS3620C 

SSR,AFLP,,R

FLP 

SBI-

01,03,04,06,

07,08,09 19 

Agronomic traits QTL 

mapping 

27 Feltus et al., 2006 RILs/F2 137/370 BTx623/IS3620C SSR,RFLP 

SBI-

01,02,03,04,

05,06,07,08,

09,10 76 

Leaf,stem,grain 

maturity,panicle QTL 

map 

28 Wu et al.,2007 F2:3 

277 

families 

Westland/PI55061

0 SSR SBI-09 1 Green bug resistance  

29 Knoll et al., 2008 RILs 146 

Shan Qui 

Red/SRN39 

SSR,RAPD, 

RFLP 

SBI-

01,02,03,04,

07 10 cold tolerance 

30 Mace et al., 2008 F5 RILs 92 

R931945-2-

2/IS8525 

DArT,SSR,AF

LP 

SBI-

01,02,03,04,

05,06,07,08,

09,10 

 

High density map 

31 Murray et al., 2008 RILs 176 BTx623/Rio 

 

SBI-

01,02,03,04,

05,06,07,08,

10 34 

Brix,sugr related traits, 

stem morphology,grain 

composition,leaf,tillering,

1000kernal weight 

32 Parh et al., 2008 RILs 146 

IS8525/R931945-

2-2 

SSR,AFLP,D

ArT 

SBI-

01,02,04,06,

07,08,09,10 17 Ergot resistance 

33 Ritter et al., 2008  F6 RILs 184 

R9188/R9403463-

2-1 AFLP,SSR 

SBI-

01,02,03,04,

05,06,07,08,

10 29 

Brix,sugr related traits, 

stem morphology,grain 

yeild,days to flowering 

34 Srinivas et al., 2008 F7 RILs 168 296B/IS18551 EST-SSRs 

  

High density map 

35 Srinivasa reddy et al., 2008 F9 RILs 93 IS22380/E36-1 SSR,RAPD 

SBI-

01,02,04,06 9 charcoal rot resistnce 

36 Wu & Huang,  2008 F2:3 277 Westland/PI55061 SSR SBI- 4 Green bug resistance  

Table 1 (Contd...) 
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S 

No Reference 

Mappin

g 

populati

on Type 

Mappin

g 

populati

on Size Parental lines 

Molecular 

marker type 

(SSR/SNP) 

LG 

(chromoso

me) 

QTLs 

mappe

d 

PURPOSE-comparitive 

mapping/LG/QTL 

map/Fine map/diversity 

families 0 01,03,09 

37 Burow et al., 2009 F2/F3 100/200 KFS2021/BTx623 SSR SBI-10 1 Bloom cuticle (BLMC) 

38 Mace et al., 2009 

  

SSM249/SARIAS

O 10 

DArT,SSR,AF

LP 

SBI-

01,02,03,04,

05,06,07,08,

09,10 

 

High density consensus 

map 

39 Perumal et al., 2009 F2:3 

71 

families SC748-5/BTx623 AFLP SBI-05 1 Anthracnose resistance  

40 Satish et al., 2009 F7 RILs 168 296B/IS18551 SSR 

SBI-

01,03,04,05,

06,07,09,10 29 Shoot fly resistance  

41 Srinivas et al., 2009a F7 RILs 168 296B/IS18551 EST-SSRs 

  

High density map 

42 Srinivas et al., 2009b F7 RILs 168 296B/IS18551 

Genomic and 

genic SSRs 

SBI-

01,02,03,04,

05,06,07,08,

09 47 

Stay-green, plant 

height,maturity,plant 

height, panicle 

architecture 

43 Winn et al., 2009 F4 RILS 277 P850029/Sureno SSR SBI-01 2 Protein digestibility 

44 Mohan et al., 2010 F7 RILs 168 296B/IS18551 SSR SBI-06 3 

Target leaf spot 

resistance,Zonate leaf 

spot resistance, 

Drechstera leaf blight 

resistance 

45 Shiringani et al., 2010 RILs 188 M71/SS79 

EST-

SSRs,AFLP 

SBI-

01,02,03,04,

05,06,07,08,

09,10 86 

Brix,sugar related 

traits,Plant 

height,maturity,Grain and 

panicle yeild 

46 Aruna et al., 2011 RILs 210 27B/ IS2122  

Genomic and 

genic SSR 

SBI-

01,02,03,04,

06,07,09,10 

 

Shoot fly resistance  

47 Nagaraja reddy et al., 2012 RILs (F9) 245 M35-1/B35 Genic SSRs 

  

High density map 

Table 1 (Contd...) 
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S 

No Reference 

Mappin

g 

populati

on Type 

Mappin

g 

populati

on Size Parental lines 

Molecular 

marker type 

(SSR/SNP) 

LG 

(chromoso

me) 

QTLs 

mappe

d 

PURPOSE-comparitive 

mapping/LG/QTL 

map/Fine map/diversity 

48 Nelson et al., 2011 

diverse 

accession

s 8 

BTx623,BTx430; 

P898012; 

Segaolane; SC35; 

SC265; 

PI653737,12- 26 

(Sorghum) 

RAD 

sequencing 

  

diversity and SNP 

identification 

49 Sabadin et al., 2012 RILs 90 BR007/SC283 

DArT,RFLP,S

SR and STS 

SBI-

02,03,04,06,

08,10 17 

Stay-green, flowering 

time nd plant height 

50 Satish et al.,  2012 F7 RILs 168 296B/IS18551 SSR 

SBI-01, 03, 

04, 05, 06, 

07, 09, 10 49 Shoot fly resistance  

51 Bekele et al.,  2013 diversity 564 

 

Re-sequencing 

  

Diversity and SNP 

identification 

52 Fakruddin et al.,  2013 RILs 184 E36-1/SPV570 SSR,SNPs 

 

28 Root traits and yeild traits 

53 Kong et al.,  2013 F5 161 

S. bicolor / S. 

propinquum SSR 

SBI-04, 08, 

09 3 

Plant archtecture, growth, 

reproduction 

54 Morris et al.,  2013a diversity 142/336 

 

GBS SNP 

  

Sorghum flavonoid 

pigmentation GWAS 

55 Nagaraja reddy et al.,  2013 RILs (F9) 245 M35-1/B35 

Genomic and 

genic SSRs 

SBI-01, 02, 

03, 04, 05, 

06, 07, 08, 

09, 10 91 

Agronomic traits and 

yeild related traits 

56 Alam et al., .2014 RILs 214 

R931945-2-

2/S.verticillifloru

m 

 

SBI-

01,02,03,04,

05,06,07,08,

09,10 61 Tillering  

57 Caniato et al.,  2014 diversity 254 

 

Sequencing 

  

Diversity and SNP 

identification 

58 Naga raja reddy et al.,  2014 RILs (F9) 245 M35-1/B35 Genic SSRs 

SBI-01, 02, 

03, 04, 05, 61 Stay-green and grain yeild 

Table 1 (Contd...) 
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S 

No Reference 

Mappin

g 

populati

on Type 

Mappin

g 

populati

on Size Parental lines 

Molecular 

marker type 

(SSR/SNP) 

LG 

(chromoso

me) 

QTLs 

mappe

d 

PURPOSE-comparitive 

mapping/LG/QTL 

map/Fine map/diversity 

06, 07, 09, 

10 

59 Guo et al.,  2015 F2 

 

B140/CK60B,MS

138B/B140 SSR SBI-04, 07 6 

Seed dormancy QTL 

mapping and expression 

analysis 

60 Kong et al.,  2015 F5 161 

S. bicolor / S. 

propinquum SSR 

SBI-01, 03, 

07, 08, 09 7 

Number of Rhizomes and 

vegetative branching 

61 Lasky et al.,  2015 diversity 1943 

 

GBS SNP 

  

diversity and SNP 

identification 

62 Gelli et al.,  2016 RILs 131 CK60/China17 GBS SNP 

 

38 Agronomic traits 
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2.2.1. QTL mapping and fine mapping 

A QTL is a region of interest of any genome that is responsible for variation in 

the quantitative trait of interest. Identification of QTL is a complicated process 

due to QTL interactions or epistasis because of many additional sources of 

variation (Doerge, 2002). QTL analysis is based on the association between 

phenotype and genotype of the markers. For initial QTL mapping, we need 

population segregation for the trait of interest and markers for identification of 

the trait. Traditional and simple statistical approach is to assess the differences 

in the phenotypic means for single -marker genotypic classes (Doerge, 2002). 

QTL mapping provides a means to dissect complex phenotypic characters into 

their component traits (QTLs) and allow the identification of molecular markers 

linked to desirable QTLs, so that these can be directly used in marker-assisted 

selection. Identified QTLs need to be tested for the significant level based on 

the logarithm of odds (LOD) values. High LOD values signified the existence of 

the QTL with more confidence level and minimum LOD will be 2. The 

probability of occurrence of a QTL is achieved by using permutation testing. 

Phenotypes are shuffled among the individuals and genome scans are performed 

on thousands of such data sets (Georges, 2007). The percentage of phenotypic 

variance obtained for the identified QTL makes the level of importance of a 

QTL; the more the phenotypic variance, the more the probability of the presence 

of genes related to the trait of interest. 

2.2.1.2. Interval mapping 

Interval mapping methods are widely used for mapping of QTLs in segregating 

generations derived from crosses between inbred lines. Interval mapping (Lander 

and Botstein, 1989) uses an estimated genetic map as framework for 

identification of QTLs. Interval mapping searches through the ordered genetic 

markers in a systematic, linear fashion, testing the likelihood of occurrence of 

QTL. As the likelihood is a mixture of normal distribution, it may fail standard 

statistical distributions and it is difficult to declare a QTL with confidence 
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(Deorge, 2002). The efficiency of detecting and the accuracy of mapping 

multiple QTLs by using genetic markers are much increased by employing 

multiple QTL models instead of single QTL models used in interval mapping 

(Jansen, 1993). QTL interval mapping can be calculated using maximum 

likelihood method or regression approach. Incase of maximum likelihood 

method, the goodness of fit can be tested using the method of maximum 

likelihood (ML). The flanking markers will have four genotypes (AABB, AAbb, 

aaBB, aabb), each having a mixture of QTL genotypes. LOD threshold values 

are determined separately for each experiment and it ranges from 2-4 (Churchill 

and Doerge, 1994; Doerge and Churchill, 1996). Incase of QTL interval 

mapping, using regression approach, linear regression can be used for interval 

mapping. Regression method is based on the estimation of the proportion of 

variance (AABB-0.99, AAbb-0.75, aaBB-0.25, aabb-0.01) explained by QTL. 

The regression method is faster in computation, especially when the number of 

QTLs considered in the model is large. Knowledge of the factors affecting the 

differences between regression and ML interval mapping can help in developing 

an efficient strategy, using both methods in QTL mapping (Kao, 2000). 

Maximum likelihood approach is more preferred than regression method. 

 

2.2.1.3. Composite interval mapping 

Composite interval mapping (CIM) (Jansen and Stam, 1994; Jansen 1994; Zeng, 

1994) and multiple QTL mapping (MQM) (Jansen, 1993) have similar results by 

reducing the number of similar models. Both the methods extend the idea of 

interval mapping to include additional markers as cofactors-outside a defined 

window of analysis for the purpose of removing the variation associated with 

other QTLs in the genomes. CIM combines the maximum likelihood approach 

with multiple regressions, using marker co-factors to reduce the bias in estimates 

of QTL map positions and to increase the power to detect QTL by decreasing 

within marker class phenotypic variation (Mackay, 2001). The background 

genetic variation in a population can be controlled in this analysis combining 

interval mapping with multiple regression approaches and it is more 
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advantageous than previous methods. Linkage map also referred to as 

Quantitative trait mapping (Guo et al.,2010). Different softwares are available 

for QTL mapping PlabQTL version 1.2 (Utz and Melchinger, 1996), QTL 

cartographer V2.5 (Wang et al., 2010), Inclusive Composite Interval Mapping 

1.2V (ICIM) (Li H et al., 2007), Map QTL and R/qtl (Bromanet al., 2003).  

 

2.2.2. QTL mapping in sorghum 

QTL mapping is an important approach that received increased attention in plant 

breeding for identifying polygenic traits which are important agronomically. 

QTL studies in sorghum identified many genomic regions associated with 

agronomically important traits like flowering time (Brown et al.,2006; Thurber et 

al.,2013; Higgins et al.,2014), plant height (Brown et al.,2008; Srinivas et 

al.,2009b; Thurber et al.,2013; Higgins et al.,2014), grain yield (Shehzad etal., 

2014; Zhang et al.,2015), drought tolerance (Pre-flowering, Post-flowering 

drought tolerance) (Tuinstra et al., 1996, 1997; Crasta et al., 1999; Subudhi et 

al., 2000; Tao et al., 2000; Kebede et al., 2001; Haussmann et al.,2002b; Harris 

et al.,2007; Kassahun et al., 2010; Naga raja reddy et al.,2014), heat tolerance 

(Johnson et al.,2014), cold tolerance (Knoll et al., 2008); ergot resistance (Parh 

et al.,2008) shoot-fly resistance (Jyothi, 2010, Deshpande, 2005, Satish et 

al.,2009, 2012; Aruna et al.,2011; Kiranmayee et al.,2016), stem borer resistance 

(Vinayan, 2010), midge resistance (Tao et al.,2003), rust resistance (Tao et al., 

1998b),Striga resistance (Haussmann et al.,2004; Yohannes et al., 2014), bloom 

cuticle (BLMC) (Burow et al., 2009), brassinosteroids QTLs (Perez et al.,2014), 

nodal root angle QTL (Mace et al., 2012; Singh et al.,2012), aluminum tolerance 

(Magalhaes et al.,2007; Caniato et al., 2007, 2011, 2014) , male sterility  (Klein 

et al., 2005; Jordan et al.,2010) and seed dormancy QTL (Guo et al., 2015). 

Many traits were well studied in sorghum and their quantitative loci were 

identified and summarized in Table 1. 

  



 

32 
 

 

2.2.2.1.Fine mapping in sorghum  

In sorghum, fine mapping studies are advancing recently due to increased 

availability of NGS technologies and available sorghum genome sequencing 

data. Most important and well-studied traits are agronomic traits like flowering 

time which has been studied and fine mapped using NAM population (Mace et 

al., 2013a), plant height DW1 region confined to GA2 oxidase on chromosome 9 

(Higgins et al.,2014). Another QTL for plant height (qHT7.1) was identified near 

genomic region harboring the known auxin transporter DW3 gene (Li et al., 

2015). Altsb fine genetic mapping reveals SbMATE, aluminum activated citrate 

transporter at Altsb locus on chromosome 3 and is responsible for the aluminium 

tolerance (Caniato et al. 2011, 2014). Grain weight QTL fine mapped in 

sorghum delimited qGW1 region to 101kb on chromosome 1 short arm and has 

13 putative genes (Han L et al.,2015), stem water controlling locus qSW6 was 

fine mapped using QTL analysis and bulk sergeant analysis and deep sequencing 

technologies which reduced 339 kb on chromosome 6 (Han Y et al., 2015). 

 

2.2.2.2.Physical map and bin mapping in sorghum 

Availability of sorghum genome sequence (Peterson et al.,2009) has led to the 

construction of physical sorghum maps based on sequencing data and re-

sequencing data. Based on sequencing data available in public databases of 

sorghum like Phytozyme, Gramene, Pfam, Uniprot, new primers were blasted 

against the sorghum genome database for the location of physical 

positions/Insilco mapping (Li et al., 2009; Ramu et al., 2010). Mace and Jordan, 

(2010, 2011) have also utilized the sorghum genome database for locating the 

marker physical positions. GBS SNP physical positions were also determined by 

the availability of reference genome data. Whereas re-sequencing, RAD 

sequencing, and Array technology completely depend on physical positions and 

genome sequences (Mace et al.,2013b). 

Over the past three decades, QTL mapping studies have become major tools for 

plant breeders identifying genomic regions controlling traits of economic interest 
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– largely because the molecular marker revolution rapidly reduced costs per 

marker data point dramatically improving both genome coverage and marker 

density that can be achieved with a given operational budget. Initially, single 

markers, and then intervals between adjacent markers were used to identify 

QTLs, but theory and recent studies demonstrate increased marker density and 

increased population size further improve QTL mapping resolution. Many QTL 

mapping approaches e.g. composite interval mapping (CIM) and multiple 

interval mapping (MIM) exhibit defects when used with high marker densities. 

In case of GBS-SNPs, huge (and highly incomplete) marker data sets are 

generated. They need considerable curation before their effective use for 

mapping is possible for example, one always needs to remove duplicate and 

ambiguous markers and to identify recombinant regions. Bin mapping strategies 

have spread widely across plant and animal genetics communities as they 

facilitate clear recombination break-point identification for genetic mapping and 

genomic selection. Genetic mapping using binned data points is a new genetic 

analysis method that can assist in fine-mapping QTLs. In order to overcome 

huge SNP data errors, a method which is recently emerging is the highly 

computational approach known as “bin mapping” (Huang et al.,2009). The bin-

mapping approach has been widely used in recent studies on maize, rice, 

sorghum, barley, wheat and chickpea to improve their genetic maps. Refined 

linkage maps with recombinant bins address many queries and have advantages 

over traditional linkage maps for QTL mapping. 

 

2.2.2.3.NAM (Nested association mapping) 

An approach that combines the strength of linkage mapping and association 

mapping referred as Nested association mapping (NAM) has been proposed to 

identify functional markers (Guo et al., 2010). NAM was first demonstrated by 

Yu et al., (2008) and maize flowering QTL was dissected using NAM population 

(Buckler et al., 2009) and maize leaf architecture by Tian et al.,(2011). In 

sorghum, very few studies have been reported on NAM population. 

Initially,Jordan et al.,(2011) developed NAM population and Mace et al., 
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(2013a) developed back cross NAM population for dissecting flowering time in 

sorghum. 

 

2.3.NGS technologies 

Molecular marker technology in recent generations has led to the development of 

high-throughput technologies which can produce huge data points with low cost. 

Illumina Miseq and Hiseq 2500 (Bentley et al.,2008), Ion torrent PGM 

(Rothberg et al., 2011), Roche 454 FLX Titanium (Thudi et al.,2012) are few 

sequencing platforms which were used recently in many sequencing programs 

(Laidlaw et al.,2010). 

 

2.3.2. Genotyping-by-sequencing (GBS) 

Low cost and multiplexed genotyping by GBS is beneficial to breed superior 

cultivars in many crop species (Kim et al.,2016). Lasky et al., (2015) has proved 

that GBS can be even a very high efficient approach which can be applied to any 

species with local adaptation. GBS is the new methodology developed with the 

advancement of next generation DNA sequencing technology development leads 

to genome-wide SNPs detection and application in various plants (Deschamps et 

al., 2012) in recent years by Elshire et al.,2011. GBS technology involves the 

digestion of genomic DNA with restriction enzymes followed by ligation of 

barcode adaptors, PCR amplification and sequencing of the PCR amplified 

product. GBS data are interpreted and analyzed with the help of bioinformatics 

pipelines (He et al.,2014). Reduced cost of GBS was helpful in skim-sequencing 

of not only parents but also their progeny/RILs. GBS was also used in 

implementing GWAS, genomic diversity study, genetic linkage analysis, new 

SNP discovery, and genomic selection during massive plant breeding programs. 

One advantage of GBS is, knowledge og genome sequence is not necessary, but 

SNPs are identified at the same time. Plants like maize, wheat, barley, rice, 

potato, and cassava have also been optimized by the GBS (Poland and Rife, 

2012; Narum et al.,2013; He et al.,2014). Initially, GBS was developed for high-

resolution association studies in maize but the low cost and the powerful NGS 



 

35 
 

approach on discovering SNPs in plants and their population made it a robust 

technology available for the researchers. Nearly, 5000 RILs were subjected to re-

sequencing using a restriction endonuclease-based approach and Illumina 

technology, which resulted in 1.4 million SNPs and 200,000 indels in maize 

(Gore et al.,2009). A total of 2815 maize inbreed accessions were genotyped and 

681,257 SNPs were detected across the whole genome. Few detected SNPs were 

found associated with candidate genes for kernel color, sweetness and flowering 

time also (Romay et al., 2013). A major QTL for Fusariumoxysporium resistance 

was identified with the help of GBS technology in water melons (Lambel et 

al.,2014). Brix, sucrose, glucose, fructose are agronomically important traits for 

water melon which were discovered with the help of GBS technology (Ren et 

al.,2014). Nearly, 2,65,000 SNPs were identified in 971 worldwide accessions in 

agro-climatic diversity studies which lead to the identification of candidate genes 

for plant height and inflorescence in sorghum (Morris et al.,2013a) and for 

genome environment interactions of 1943 diversity accessions (Lasky et 

al.,2015). Kim et al., 2016 has stated that GBS typically shows good results 

when it is applied to an inbred diploid species with well-established reference 

genome like sorghum. GBS provides a rapid and robust tool for genotyping 

largely-homozygous sorghum populations. 

 

2.3.3. Genome wide association studies (GWAS) 

The development of next generation sequencing technologies has enabled 

genome wide association studies (GWAS) of many complex traits in plants. The 

main research objective of genetics and genomics include identification of the 

causal relationship between genetic polymorphism within a species and the 

phenotypic differences observed between individuals. Any phenotypic 

differences identified are connected back to the underlying causative loci using 

various mapping approaches including QTL mapping. In this aspect, GWAS is 

considered as a powerful tool for connecting the genotype-phenotype 

associations (Korte and Farlow, 2013). GWAS was first reported in Arabidopsis 

for flowering time and pathogen resistance (Aranzana et al., 2005) and then for 
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wheat, barley, rice, maize and few other crops (Soto-Cerda and Clutier, 2012). 

GWAS is based on linkage disequilibrium (LD) and is also named as association 

mapping (Guo et al.,2010). Association mapping methods were performed on 

genome-wide scale in plants (George and Cavanagh, 2015). LD is the non-

random association between alleles at different loci which may be due to genetic 

drift, natural selection or some evolutionarily forced mutations which lead to 

recombination breaks. Larger the population size, weaker the LD for a given 

genetic distance at which LD decay determines the number of markers needed to 

tag a haplotype (Visscher et al.,2012). GWAS is complementary to QTL 

mapping but when they both performed together, they may reduce each other’s 

limitations (Zhao et al., 2007, Brachi et al., 2010). GWAS require large number 

of markers for locating marker-trait associations. Many types of softwares like 

Gappit and Tassel are widely used for GWAS studies. In sorghum, using GWAS 

plant height components and inflorescence architecture were analyzed in 

diversity landraces (Morris et al., 2013a; Thurber et al.,2013; Higgins et 

al.,2014), and flavonoid pigmentation traits and seed tannins were interlinked 

and dissected with high resolution by GBS SNP (Morris et al.,2013b). 

Aluminum tolerance in sorghum was determined using GBS SNP and GWAS 

methodology (Caniato et al.,2014). Rhodes et al.,(2014) have utilized GWAS for 

improving sorghum crop nutritional values by identifying proanthocyanidins and 

3-deoxyanthocyanidins, polyphenols with antioxidants for crop biofortification. 

In sorghum, using GWAS, Perez et al., (2014) have shown that brassinosteroid 

candidate genes have more impact on plant architecture. Genomic signatures of 

environment adaptation may be useful for crop improvement, enhancing 

germplasm identification and marker assisted selection. Genome-environment 

associations and phenotypic analyses may reveal environmental adaptation 

(Lasky et al.,2015). During the next few years, GWAS and next generation based 

genotyping technologies will be used for generating SNP data especially in 

unsequenced genomes. GWAS in plants will be challenging to analyze, and the 

results that will be of great use (George and Cavanagh, 2015). 
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2.4.Stay-green phenotype an integrated drought adaptation trait 

Drought is a serious agronomic problem and the single greatest factor 

contributing to crop yield loss in the world today. Early senescent genotypes 

(less chlorophyll and low photosynthetic activity) have fewer yields when 

compared to lines with delayed senescence. Stay-green/delay in senescence is 

one of the drought tolerance mechanisms adapted by plants. Stay-green 

phenotype is due to loss of functional chlorophyll and photosynthetic activity 

exhibited by plants like sorghum, maize, wheat, rice, barley etc. Stay-green is 

the delay in senescence and this phenotype has the ability to sustain drought 

conditions and prevent lodging and charcoal rot in order to maintain normal 

grain filling (Rosenow and Clark, 1981; Rosenow et al., 1983; Sanchez,et 

al.,2002; Borrell et al.,2014a, b). Stay-green is the best characterized 

component for drought tolerance (Borrell et al., 2001; Jordan et al., 2003, 2012; 

Harris et al., 2007; Kassahun et al., 2010; Borrell et al., 2014a, Naga raja reddy 

et al.,2014) and retention of green leaf area (stay-green) positively correlates 

with higher grain yield and gains more importance and need to study more 

extensively. Under terminal drought conditions with limited water levels, grain 

yield has increased stay-green phenotypes when compared to senescent and 

intermediately senescent lines (Borrell et al.,1999, 2000b, 2014a, 2014b,Harris 

et al., 2007, Haussmann et al., 2002b; Jordon et al., 2003, 2012). Many 

morphological (Sabadin et al.,2012), pre-flowering (Tuinstra et al.,1996, 

Phuong et al., 2013), phenological factors, environmental factors (Vadezet al., 

2011, 2013; Kholova et al., 2013; Borrell etal 2014a, 2014b) also influence stay 

green trait. Tuinstra et al.,(1997) reported stay-green QTLs under drought stress 

conditions in sorghum. They also reported yield related QTLs under fully 

irrigated conditions which are associated with stay-green QTLs indicating the 

pleiotropic nature of the detected stay-green QTLs. Several yield-related traits 

associated with stay-green were studied and mapped in sorghum (Crasta et al., 

1999; Kebede et al., 2001; Rami et al., 1998; Klein et al., 2001; Feltus et al., 

2006; Srinivas et al., 2009b). Many numbers of epistatic interactions were 

observed between stay-green loci and genes (Subudhi et al.,2000; Harris et 
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al.,2007). Inheritance of stay-green is complex as it is influenced by 

environment and shows both dominant and recessive pattern of inheritance. 

Onset of senescence was additive and rate of delay in senescence is dominant 

(Van Oosterom et al., 1996, Tuinstra et al.,1997, Harris et al., 2007, Kasahun et 

al.,2010). Drought stress may be alleviated by developing crops that are well 

adapted to dry-land environments with marker assisted breeding programs. In 

order to be successful in marker assisted breeding, increasing marker density 

and identifying QTLs are necessary which would narrow down the QTLs to 

smaller regions.QTL mapping studies for stay-green trait has been identified 

long ago. Genomic regions responsible for stay-green trait were detected with 

the help of molecular markers and the phenotypic data of the stay-green lines 

locate the variations in the genomic regions which are important for breeding 

programs aimed at developing drought tolerance. QTLs for stay-green have 

much importance in improving the productivity under drought stress conditions 

(Borrell et al., 2000a). Several QTL mapping studies contributing to stay-green 

expression under drought stress conditions have been evaluated and studied in 

mapping populations (Tuinstra et al., 1996, 1997, 1998; Crasta et al.,1999; 

Subudhi et al., 2000; Tao et al., 2000; Xu et al., 2000; Kebede et al., 2001; 

Sanchez et al., 2002; Haussmann et al., 2002b; Hash et al., 2003; Harris et al., 

2007),introgressed lines (Blummel et al., 2015; Kiranmayee et al., 2016) and 

near-isogenic lines (Tuinstra et al., 1998, Subudhi et al., 2000; Harris et al., 

2007). Several stay-green sources have been field evaluated that were developed 

through crosses (Mahalakshmi and Bidinger, 2002; Reddy et al., 2007). 

Reduced canopy development, crop water usage, alterations in leaf anatomy, 

and grain filling have been observed under terminal drought stress conditions 

(Vadez et al.,2011; Borell et al., 2014a; 2014b). Stay-green QTLs have also 

been reported to be co-localized with nodal root angle (Mace et al.,2012) and 

also affect the spread of lateral roots after maturation under drought stress 

(Singh et al.,2012). In addition to sorghum, stay-green has been extensively 

studied in maize (Wang Aet al., 2012), wheat (Chen et al., 2010), barley (Gous 

et al., 2013), rice (Huang et al., 2015), Arabidopsis (Sakuraba et al., 2014) etc. 



 

39 
 

The ex-ante economic impact of developing and disseminating a drought 

tolerant sorghum cultivar in target countries of Africa and Asia has been 

ascertained (Nedumaran et al., 2014). 

 

2.5.Shoot fly resistance 

Shoot fly,Atherigona soccata (Rondani) is one of the major insect pests of 

sorghum grown in Africa, Asia, and Mediterranean Europe. In peninsular India, 

sorghum is cultivated during rainy and post-rainy seasons where shoot fly 

attacks the crop and damages early stages of crop growth, adversely affecting 

establishment and productivity (Sharma et al., 2003). Shoot fly infests sorghum 

seedlings from 7 days after emergence (DAE) to 30 DAE. The female shoot fly 

has just 30-days’ life span and lays white, elongated cigar-shaped eggs singly on 

the abaxial (lower) surface of leaf blades parallel to the midrib (Dhillon et al., 

2006). Eggs hatch into maggots following 1-2 days of incubation, and each 

larva/maggot enters the central leaf whorl of the seedling on which it hatched. 

The larva reaches and cuts the seedling growing point, and feeds on the 

decaying tissue, resulting in drying of the central whorl causing a typical ‘dead 

heart’ symptom. Among several components of integrated pest management 

practices used to minimize losses due to shoot fly infestation of sorghum, host 

plant resistance (HPR) and timely sowing remain the most preferred options as 

they are cost-effective, eco-friendly and easily adopted by farmers (Kumar et 

al., 2008). HPR to shoot fly is mediated by a number of morphological, 

biochemical and genetic factors. Shoot fly morphological component traits 

include seedling leaf blade glossiness (Maiti et al., 1984), seedling leaf blade 

trichome density (Maiti and Bidinger, 1979), seedling vigor and leaf sheath 

pigmentation which are positively associated with shoot fly resistance (SFR) 

(Tarumoto, 2005). Further, these SFR component traits have been mapped, 

putative QTLs identified for individual traits, and subsequently validated by 

marker-assisted backcrossing (MABC)-based introgression into genetic 

backgrounds highly susceptible to shoot fly (Kiranmayee et al., 2015). Using a 

sorghum recombinant inbred line (RIL) population derived from the cross 
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(BTx623 × IS18551), Sajjanar (2002) and Folkertsma et al., (2003) mapped 

SFR QTLs on SBI-01, SBI-03, SBI-05, SBI-07, SBI-09 and SBI-10. Similarly, 

using (296B × IS18551)-based RIL population, Deshpande(2005), Mehtre 

(2006) and Satish et al., (2009, 2012) mapped SFR QTLs on SBI-01, SBI-03, 

SBI-04, SBI-05, SBI-06, SBI-09, SBI-07, and SBI-10. Aruna et al., (2011) 

mapped SFR QTLs on SBI-01, SBI-02, SBI-03, SBI-04, SBI-06, SBI-07, SBI-

09, and SBI-10 using shoot fly resistance source IS2122. In a RIL population 

based on a reciprocal cross IS18551 × 296B, Apotikar et al., (2011) found SFR 

QTLs on SBI-01 and SBI-03. Similarly, five putative QTLs for SFR component 

traits from IS18551 were validated by MABC into the genetic backgrounds of 

elite shoot fly-susceptible hybrid seed parent maintainer lines 296B and BTx623 

(Jyothi, 2010). Probable candidate genes underlying the target QTLs for 

seedling leaf blade glossiness and trichome density have been reported by Satish 

et al., (2009, 2012) and Aruna et al., (2011). In the present study we attempted 

to refine QTL intervals for trichome density and glossiness on SBI-10 by 

comparing whole sorghum genome sequence (Paterson et al., 2009) annotation 

and a sequence-based physical map integrated with sorghum linkage maps 

(Ramu et al., 2010), with genetic and physical maps available from different 

QTL mapping studies and whole genome sequence information (Mace and 

Jordan, 2011). We also tried to compare earlier shoot fly resistance QTL 

mapping studies on sorghum chromosome SBI-10 with the present study based 

on genetic and physical maps. Identification of genes, pathways, and 

mechanisms involved in sorghum phenotypes for seedling leaf blade glossiness 

and trichome density have not yet been completed in sorghum. Many such 

studies have been carried out in model plants like Oryza sativa (rice), 

Arabidopsis and Zea mays (maize) but not in sorghum. Wax deficient mutant 

loci in maize,Brassica napus and sorghum are defined as ‘glossy’ loci, whereas 

in Arabidopsis thalina and Hordeum vulgare (barley), they were named as 

ceriferum (cer) mutant loci (Kunst and Samuels, 2003). In Arabidopsis, many 

studies have reported shine (shn) mutants, which were isolated and 

characterized, determining that the shn gene encodes AP2/EREBP (ethylene 
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responsive element binding protein) transcriptional factors that act in up- and 

down-regulation of lipid biosynthesis (Aharoni et al., 2004). More than 30 

‘glossy’ loci have been identified and a few were cloned (gl1, 

gl2,gl3,gl4,gl8,gl13 and gl15) in maize (Li et al., 2013) and their functional 

roles in glossiness have been reported. Similarly, for trichome density, many 

studies have reported that WRKY and MYB transcription factors play important 

roles (Eulgem et al., 2000; Johnson et al., 2002; Ishida et al., 2007; Liang et al., 

2014). 

2.6.Advantages of MAS 

Marker assisted selection (MAS) refers to the use of molecular markers to assist 

phenotypic selection in crop improvement. Various types of molecular markers 

have major roles in plant breeding (He et al., 2014). Molecular genetic maps are 

the basics for marker assisted plant breeding and crop improvement. In most 

sorghum breeding programs, the implementation of MAS is limited (Hash et al., 

2003). Sorghum breeders are aiming to increase the crop productivity under 

biotic and abiotic stress conditions by understanding the genetic and molecular 

basis with the help of both conventional trait-based approaches, a newly 

developed molecular marker approach. Inorder to achieve success in detecting 

QTLs, a population is needed which is segregating for the desired traits and the 

accurate phenotyping with efficient DNA markers distributed uniformly in the 

sorghum genome. 

 

2.6.1. Gene pyramiding 

Gene pyramiding is a breeding strategy that serves to combine favorable alleles 

at multiple genetic loci into a single plant genotype. This process of stacking of 

genes/QTL into a single elite cultivar background can know be efficiently 

performed by marker-assisted selection (MAS), using backcrossing or pedigree 

approaches. It expedites the varietal development process by providing the 

opportunity to select for all desirable genes/QTLs simultaneously as well as 

eliminating the time-consuming process of inoculation for different races or 
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isolates at different time intervals (Kole, 2006). If we know the location of series 

of genes of interest then gene pyramiding method will assist in many ways 

(Servin et al., 2004). Recent advances in genomics are helpful in marker assisted 

selection to produce NILs and for gene pyramiding in several cereals including 

sorghum (Witcombe and Hash, 2000). A number of reports have demonstrated 

successful pyramiding of blast or bacterial leaf blight resistance genes in rice 

(Huang et al., 1997; Hittalmani et al., 2000; Singh et al., 2001). Huang et al., 

(1997) pyramided four bacterial blight resistance genes,Xa4,xa5,xa13 and Xa21, 

in different combinations. Breeding lines with two, three, and four resistance 

genes were developed, and these pyramid lines showed a wider spectrum and a 

higher level of resistance than lines with only single genes. Another marker-

aided pyramiding experiment involving the above three BB genes into PR106, a 

widely grown cultivar in India, was conducted by Singh et al., (2001). Hittalmani 

et al., (2000) pyramided three major genes,Pi1,Piz5 and Pita, for blast resistance 

located on chromosomes 11, 6 and 12, respectively, using DNA markers. For 

Piz5, the PCR-based sequence amplified polymorphic (SAP) marker was used, 

whereas flanking markers were used for the other two. Field testing of the 

pyramided lines in the Philippines and India showed enhanced resistance against 

leaf blast in comparison with the lines with a single gene. In pearl millet, Hash et 

al., (2006) demonstrated pyramiding of favorable alleles at two major QTLs for 

host plant resistance to pearl millet downy mildew, from donor parent ICMP 

451-P6 in the genetic background of elite pollinator H 77/833-2 (Breese et al., 

2002). This has substantially improved resistance reactions across 9 diverse 

pathogen isolates in the product lines (ICMR 01004 and ICMR 01007) compared 

to their donor and recurrent parents. In maize, very recent reports have shown 

that they have pyramided eight QTLs/genes for four grain quality traits and three 

for rust resistance traits, which need to be further evaluated in multi-year/multi-

location trials for commercial cultivation (Tyagi et al., 2014). Thus, the 

knowledge and genetic markers developed herein provide tools to initiate the 

pyramiding of multiple biotic and abiotic resistance loci through marker-assisted 

selection (Kiranmayee et al., 2015). 
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3. MATERIALS AND METHODS 

 

3.1. Development of fine mapping population 

3.1.1. Plant materials 

BTx623 is an elite, high yielding, homozygous advanced breeding line released 

by Texas A&M University, USA. It belongs to the Kafir race of Sorghum 

bicolor, and is susceptible to senescence and shoot fly. Plants are short/dwarf at 

maturity. Leaves of seedlings are dark (non-tan), dull, broad, drooping without 

trichomes. Panicle is having semi-loose stiff branches. Grains are white (thick 

white mesocarp and reddish-purple spotted white pericarp) and glumes are 

reddish brown in colour. Its genome has been sequenced (Paterson et al., 2009) 

and is used as the reference genome in the present study. IS18551 is a shoot fly 

resistant (SFR) line belonging to race Durra. Leaves of seedlings are light green, 

narrow, and erect, with high trichome density on abaxial (lower) and adaxial 

(upper) surfaces, tall at maturity. It originates from Ethiopia, and has straw-

colored grains with large black glumes. Panicle has semi-compact branches.  

E36-1, a stay-green (stg) source, belongs to the Guinea-Caudatum hybrid race, 

and originated from Ethiopia. It is well adapted to tropics and also resistant to 

charcoal rot and lodging (Haussmann et al., 2004). Grains are pinkish white, 

glumes are brown (straw) in colour. Panicle shape is semi-compact, elliptical. 

R16 is highly senescent and belongs to race Durra. It is an agronomically elite, 

post-rainy seasonj (rabi)-adapted sorghum released restorer line. Grains are 

creamy/lustrous, bold in nature with thin mesocarp. Panicle shape is semi-

compact and elliptical. 
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3.1.2. Parents 

RSG04008-6 (non-glossy, less trichomed) is a single-plant selection from a high 

yielding, drought tolerant but shoot fly susceptible introgression line (IL) with 

E36-1 alleles for stay-green-associated drought tolerance in highly senescent 

R16 background (R16 х E36-1 ) (C.T. Hash and colleagues) (Kassahun, 2006). 

Parent J2614-11(glossy, highly trichomed) is a single plant selection from a 

shoot fly resistant introgression line derived from IS18551 alleles introduced by 

MABC into BTx623 background (BTx623 × IS18551) having validated donor 

alleles for seedling leaf blade glossiness and trichome density on SBI-10 (Jyothi, 

2010). 

 

3.1.2.1 Confirmation of parental intogression lines for their donor alleles 

As both of the parents derived from different MABC projects, there is a need to 

confirm the seed material before crossing. SSR markers present in the long-arm 

of sorghum chromosome-10 (SBI-10L) were selected and screened on parents 

(RSG04008-6, J2614-11) and grandparents (R16, E36-1, IS18551, and BTx623) 

to confirm parents with alleles of donor grandparents selected for crossing. 

Parents and markers were chosen carefully. Markers must be polymorphic 

between parents but not for grandparents. Grandparent’s donor allele should be 

similar with parental alleles which indicate presence of donor allele in 

introgressed lines. Polymorphism between parents is necessary. Selected parents 

are crossed to generate F1 heterozygous hybrid seed, that is then advanced by 

selfing to generate the segregating mapping population. 

 

3.1.3. Development of F2population, recombinant F2:3 and F2:4 progenies 

At ICRISAT,Patancheru, a manually emasculated and pollinated plant × plant 

cross was made between RSG04008-6 and J2614-11 (U1000019) during rabi 

2010 to produce F1 seeds. The F1 seeds were harvested from female parent 

RSG04008-6 and then sown for generation advance. Morphologically and 

genotypically confirmed F1 plants were self-pollinated using selfing bags to 

produce F2 seed lots. A moderately-large, high-resolution mapping population of 
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1,894 F2 individuals, derived from a single selfed F1 plant (U110055), was 

grown in three batches in plastic pots during rabi 2011-2012 (Feb - Jun 2012) 

with triply-repeated parents for each F2 sowing thinned to 3 plants per plot per 

sowing. Plants were labelled individually (with plant number starting from 

U120001 to U121941) for F2 progenies, while parents were tagged with their 

names. In total, DNA samples of 1,894 F2 plants, and parents (9 repeats in total 

for each parent), were isolated and genotyped initially with 5 simple sequence 

repeat (SSR) markers namely Xgap001,Xnhsbm1044,Xiabt340,Xisep630 and 

Xtxp141 distributed across the 37cM (4Mbp) SBI-10 interval where QTLs for 

seedling leaf blade glossiness and trichome density from donor parent IS18551 

had previously been mapped, and then introgressed into BTx623 background to 

produce parent J2614-11. Some 369 individual homozygous and nearly 

homozygous recombinant F2 plants were identified. All of these 369 selected 

recombinant F2 individuals were advanced by selfing to the F3 generation (Fig 

.1). Based on F2genotyping data of 7 co-dominant SSR markers and F2:3 

phenotyping data, we have selected a further reduced subset of 152 most 

informative recombinants and selfed their corresponding F3 progenies to produce 

F4 seed which were sent to field trials in three replications for fine mapping. 

 

3.1.3.1. Phenotyping in F2 and F2:3 

At ICRISAT, Patancheru, Hyderabad, F2 plants were tagged and scored 

individually for the traits, whereas in F2:3 generation, the plants were segregating 

for the traits within the family; so maximum group of plants with similar 

phenotype were scored for each genotype. Seedling leaf blade glossiness was 

scored visually at 12-15 days after emergence (DAE) as described in Sharma et 

al.,  (1992) where 1 = shiny, pale green, pointed, narrow and erect leaves 

(glossy) and 5 = dull, dark green, broad and droopy leaves (non-glossy). Leaf 

blade trichome density was scored by visual appearance of trichomes on leaves 

as described in Bourland et al., (2003), but based on the trait variation, in the 

present population, scores were defined as follows. As trichomes are hairy leaf 

structures, leaf surface roughness indicated degree of trichome density and 
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smooth leaf surfaces indicated the absence of trichomes. Scores were given as 0 

= absent, 1= very low density, 2 = low density, 3 = medium density, 4 = high 

density, 5 = very high density. All observations were recorded only by first 

author.  

 

  

Fig .1 Schematic of parental introgression line (IL) development and 
derivation of population for fine mapping of shoot fly resistance and stay-
green traits on SBI-10L 
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3.2. Evaluation of F2:4 stay-green progenies in the field 

3.2.1. Location- and season-wise-experiment andfield experimental design 

Field experiments were conducted during post-rainy season (rabi) of 2012-2013 

and 2013-2014 at ICRISAT, Patancheru (17° 30’ N, 78° 16’ E, altitude 545 m). 

The post-rainy season is ideal for terminal drought stress tolerance assessment as 

the plants utilize stored soil moisture for maturation and grain filling under 

progressively severe drought stress and moderate evaporative conditions. Onset 

of stress was manipulated by controlling supply of water before flowering. One 

irrigation was given to the experimental field after sowing in order to facilitate 

uniform seed germination. The experiments reported here were sown on a 

shallow (40 to 60 cm) vertic inceptisol (very fine montmorillontic 

isohyperthermic) overlying a loose, decomposing granite-base material that is 

permeable to roots but contains limited plant-available water (Haussmann etal., 

2002b). During the 2012-2013 and 2013-2014 experiments, 152 genotypes + 

RSG04008-6-6 (twice) + J2614-11-11 (twice),  a total of 156 entries were 

arranged in an alpha lattice design with 39 blocks per replication × 12 entries per 

block (Patterson and Williams, 1976) with three replications. The experimental 

units were 2-row plots (length 2 m) with 45 cmand 15 cminter- and intra-row 

spacing, respectively. A basal application of 20 kg ha
-1

 N and 20 kg ha
-1

 P2O5 as 

di-ammonium phosphate was given before sowing. In the 2012-2013 experiment, 

sowing was carried on 31
st
 December 2012 and in 2013-2014 experiment, the 

day of sowing was done on 20
th 

November 2013. The seeds were machine sown 

and the field was irrigated with overhead sprinklers to ensure germination.  The 

crop was thinned 10 days after emergence to about 60,000 plants ha
-1

. The 

temperature regime was not very similar in the two seasons due to dates of 

sowing and exposure of stress variations. Climatic difference between the 2 test 

years was that the 2012-2013 season received 57 mm rain in April and the crop 

was harvested during June 2013. The season 2013-2014 did not receive any rains 

and the crop was harvested during May 2014.Traits assessed in the two trials 

included the number of sorghum plants, the time from emergence to 50% 
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flowering (DF), plant height (PlHt), plant count/plot (PtNP),panicle count/plot 

(PnNP), productive tillers/plant (ETNP), panicle dry weight in grams/plot 

(PnDW/plot), grain dry weight grams/plot (GDW/plot), panicle harvest index 

(PHI), mean 100-grain mass (g) (HGM), grain number per plot (GNP/plot), grain 

number per panicle (GNPP) and for senescence, weekly percent of senescence 

was observed on plot basis after days to 50% flowering. 

3.2.2. Percent green leaf area 7, 14, 21, 28, 35, 42, 49 days after flowering (% 

GL 7 DAF, % GL 14 DAF, % GL 21 DAF, % GL 28 DAF, % GL 35 DAF, 

% GL 42 and % GL 49 DAF) observations 

Visual score rating was given plot wise, 7 days after 50% flowering and the 

values were recorded as % GL 7 DAF. Visual score ratings were recorded 14 

DAF by comparing the plots and score was given as % GL 14 DAF. Visual score 

ratings were recorded 21 days after 50% flowering and recorded as % GL 21 

DAF. Weekly visual score ratings were given 28 DAF and observations were 

recorded as % GL 28 DAF. Visual score ratings were recorded as 35 DAF and 

recorded as % GL 35 DAF. Visual score ratings were recorded after 42 DAF 

recorded as % GL 42 DAF. Visual score ratings recorded after 49 DAF recorded 

as% GL 49 DAF. 

3.2.2.1. Estimation of senescence 

Leaf senescence pattern was assessed plot-wise under partially-irrigated 

conditions. The percent green leaf area (% GL) of each leaf of the tagged plants 

was estimated visually on a weekly basis from anthesis to harvest. The visual 

senescence readings were deducted from 100 to get the percent green leaf area 

(% GL). For example, leaf 1 % GL = 100-leaf senescence and % GL was 

converted to GL as: leaf 1 GL = Leaf 1 % GL/100 × Leaf 1 area. Weekly 

weighted (by leaf size) average GL per plant was calculated and averaged first on 

a plot and then on a genotype basis. Logistic curves were fit to the genotype × 

date means using the logistic curve fitting routine of GENSTAT, and the fitted 

curves were used to compare genotype senescence patterns and to predict % GL 

at key times during the grain-filling period (Mahalakshmi and Bidinger, 2002). 
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3.3. Evaluation of Agronomic traits in the feild 

 

3.3.1. Time to 50% flowering (days): This is calculated based on duration 

from the date of sowing to anthesis of 50% plants in a single plot. 

 

3.3.2. Plant height (cm) [PlHt]: Plant height was measured from two weeks 

after flowering and  measured from ground to the panicle top (PlHt, cm)  with 

the help of a large scale indicated in centimeters by selecting three different 

plants from the 2m × 2 row plot of three different heights. Mean values were 

calculated for each plot and used. 

 

3.3.3. Plant count/number (PtNP): Total plants in each 2m × 2row plot were 

counted and measured as PtNP. 

 

3.3.4. Panicle count/plot (PnNP): This is a post-harvest observation. Total 

number of panicles per plot after harvesting were counted and measured as 

PnNP. 

 

3.3.5. Productive/Effective tillers/plot (ETNP): This is a derived trait. Total 

number of panicles per plot out of the number of plants per plot was counted. 

(PnNP/PtNP = ETNP). 

 

3.3.6. Panicle dry weight in grams (PnDW): Total weight of mature panicles 

per plot (2m × 2 row) was measured in grams with the help of balance. 

 

3.3.7. Panicle dry weight in grams/plot (PnDW/plot): It is a derived trait. In 

2m × 2 row ideal plant count per plot (26) was divided by total panicle count 

multiplied by panicle dry weight in grams. Total weight of mature panicles per 

plot (2m × 2 row) is measured in grams with the help of balance. 
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3.3.8. Grain weight in grams/plot (GDW/plot):  It is a derived trait. It is 

calculated as ratio of GDW with PnDw multiplied by PnDw/total plot. Total 

thrashed grain per plot is weighed using balance and measured as GDW. 

 

3.3.9. Panicle harvest index (PHI): This is a derived trait. It is calculated as 

ratio of grain weight (g) (GDW) to panicle weight in grams (PnDW) multiplied 

with hundred. 

 

3.3.10. Mean 100-grain mass (g)(HGM): Hundred seeds were counted per 

sample in three replicates and weighed on balance,  all the three readings were 

noted and mean of three was calculated. 

 

3.3.11. Grain number per plot (GNP/plot): This is calculated as grain weight 

grams/plot (GDW/plot) divided by mean 100-grain mass (g)(HGM), multiplied 

with hundred. 

 

3.3.12. Grain number per panicle (GNPP): This is calculated as grain 

number/plot (GNP/plot) divided by panicle count number per plot (PnNP). Pre-

harvest and post-harvest observations data were collected and arranged in an 

Excel spreadsheet in GenStat 14
th

 edition for analysis. 

 

3.4. Field experimental designs for shoot fly screening 

Field experiments were conducted at ICRISAT-Patancheru, research fields 

during kharif (rainy) 2013 and rabi(post-rainy) 2013/14 seasons. On 8
th

 July 

2013, plant material was sown for shoot fly screening in an alpha lattice design 

with three replications, 32 blocks, and 5 entries per block for a total of 160 

entries per replication. Entries included 152 F4 individuals, along with their 

parents (RSG04008-6 and J2614-11), a susceptible control (Swarna), and 

resistant control (IS18551), that were repeated twice (total 160 entries), and were 

replicated thrice. They were arranged in 2m × 2row plots. The rows were 60cm 

apart and plants were spaced 15 cm apart within each row. All standard cultural 
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practices were followed to raise a successful crop, except no insecticide was 

applied. The rabi trial was sown on 29
th

 of October 2013, under conditions 

otherwise similar to the kharif trial. 

 

3.4.1. Shoot fly resistance screening technique 

To attain uniform shoot fly pressure under field conditions, interlard fish meal 

technique (Nwanze, 1997) was followed for resistance screening (Fig .2). Four 

rows of susceptible cultivar (Swarna) were sown 20 days before sowing the test 

material and referred to as interlards. This was carried out to allow multiplication 

of shoot fly for one generation. Ten days after seedling emergence of test 

material, polythene bags containing moistened fish meal were kept in the field of 

test material at uniform intervals covering the entire area to attract the emerging 

shoot flies from interlard rows. Plant protection measures were avoided until the 

shoot fly infestation period was complete. 

 

3.4.1.1. Phenotypic observations- leaf blade glossiness 

Observations of leaf glossiness score (glossy=1 and non-glossy=5), trichome 

density on abaxial and adaxial counts (number per microscopic field), seedling 

vigour (1-5 scale), deadhearts (%) were recorded across two seasons: Rainy 

(kharif) 2013 and Post-rainy (rabi) seasons in 2013. Leaf glossiness was visually 

scored on a scale of 1-5 at 7-12 days after emergence (DAE), where, 1= highly 

glossy, 2= glossy, 3= moderatly glossy, 4= non-glossy, 5= highly non-glossy. 

Leaf glossiness was recorded during early morning hours where light reflection 

is maximal, before sunlight intensity is too high. Leaves are pale green, narrow, 

shiny, and erect in nature for glossy, and dark green, broad, dull,droopy in nature 

for non-glossy. 
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Fig .2 Interlard fish meal technique in field for shoot fly infestation 

 

3.4.1.2. Leaf blade trichome density (numbers/microscopic field) 

Trichome density on adaxial leaf surface (upper), trichome density on abaxial 

leaf surface (lower) was recorded on 14-17 DAE on the central portion of fifth 

leaf from the base,in three randomly selected plants from the plot of both 

screening environments. For measuring need visual scoring observations scale 

from1-5 scale or for microscopic observations need to collect (approximately 2 

cm
2
) leaf and cleared in Acetic acid:alcohol (2:1) for 12-24 h to clear the 

chlorophyll of leaves. Then cleared samples were transferred into 90% lactic acid 

in small vails and stored for later observations. For microscopic observations the 

leaf samples were mounted on a slide with a drop of water and observed under 

stereomicroscopeat 10X magnification. Each entry has three leaf samples with 

both abaxial and adaxial observations (3 leafs х 2 observations=6 total 

observations) recorded as trichomes per microscopic field for both the kharif 

2013 and rabi 2013 seasons. 
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3.4.1.3. Seedling vigour 

Seedling vigour (a combination of height, leaf growth and robustness) was 

evaluated for each plot at 9 DAE (seedling vigour I) and 16 DAE(seedling 

vigour II) on a scale from 1 to 3 where 1 represents plants with highvigour 

(plants showing maximum height, leaf expansion and robustness), and 3 

represents plants with low vigour (plants showing minimum growth, less leaf 

expansion and poor adaptation). The scores are as follows: 

1 = 90-60% of the maximum seedling growth, 

2 = 60-30% of the maximum seedling growth, 

3 = < 30% of the maximum seedling growth. 

 

3.4.1.4. Leaf sheath pigmentation 

Plumule and leaf sheath purple pigmentation scores of  sorghum genotypes at 7 

days after seedling emergence are as follows. 1 = plumule or leaf sheath with 

dark pink/purple pigment, 2 = plumule or leaf sheath with light pink pigment, 3 = 

plumule or leaf sheath with green color. 

 

3.4.1.5. Shoot fly dead heart percentage (% SFDH) 

This is a direct measure of shoot fly infestation. The number of dead hearts per 

plot was counted and percent shoot fly dead hearts was calculated based on total 

plant count with the ratio of deadhearts count. 100% SFDH = Highly susceptible 

to shoot fly,> 80% SFDH = Suceptible to shoot fly,> 60% SFDH = Moderatly 

susceptible to shoot fly,< 40% SFDH = Resistant to shoot fly,< 20% SFDH = 

Highly resistant to shoot fly. 

 

3.5. Statistical analysis of F2 and F2:3 seedling leaf blade glossiness and 

trichome density 

In F2 and F3 generations, observed phenotyping data were analyzed using SAS 

software package (SAS Institute, Cary, NYC, USA). Augmented design using 

PROC–MIXED with entries random was used to estimate covariance parameter 

estimates and Best Linear Unpredicted means (BLUPS) were derived with 
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‘Z’values calculated. The huge F2 population sown in 3 blocks, and each block 

with 600-650 individual F2 along with 3 times replicated parental checks were 

included. Block effect was estimated from repeated checks means and removed 

from the corresponding F2 population values in each block in order to minimize 

the rate of error. 

3.6. Statistical analysis of F4 phenotyping data 

F3-derived F4 progenies were screened for delay in senescence observations, 

agronomic traits and shoot fly resistance morphological traits. 

 

3.6.1. Analysis of variance (ANOVA) 

The analyses of variance for F4 progeny phenotypic data sets were performed 

using the residual maximum likelihood algorithm (ReML), which provides best 

linear unbiased predictions (BLUP) of the performance of the genotypes 

(Patterson and Thompson, 1971). ReML estimates the components of variance 

by maximizing the likelihood of all contrasts with zero expectation. For each 

trait and for each entry, the predicted means were calculated with replication as 

fixed effects for both individual environments (seasons); and blocks within 

replications and genotypes (Rep/Block+Geno) as random effects. Alpha-lattice 

design data were analysed by unbalanced analysis of variance. For a single 

season data replications + genotypes (Rep+Geno) were used as the treatment 

structure and for block structure number of blocks within replications 

(Rep/Block). Data across both the seasons were pooled in single excel file with 

Env1 and Env2 in the single column (environment) for all the replicated data 

including block structure for unbalance design Anova. Similarly, BLUPs 

calculated across season utilized for Genotype × Environment effect estimation. 

The data were analyzed using the GenStat (14
th

 edition) package. 
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3.6.2. Heritability  

It was estimated in RILs for all resistance components as well as the ratio of 

total genotypic variance to the phenotypic variance (Falconer, 1989). 

 

H
2
 =              × 100 

 

where, H
2
 - % Heritability coefficient,g- Genotypic variance,p- Phenotypic 

variance. The heritability percentage categorized as low, moderate and high as 

given by Robinson et al.,(1949): 

0-30% - low, 30-60% - moderate, 60% and above high. 

 

3.6.3. Standard error (SE) 

  

S.E =  

 

Where, 

 N = Number of Individuals 

 Error MS = Error mean sum of square 

 

 

3.6.4. Coefficient of Variation (CV): 

 

 CV =   100 

Where, 

Error MS = Error mean sum of square 

 GM = Grand mean. 

 

 

 

g
2 

p
2 

√(N - 1)   (Error MS) 

    N                  r 

√Error MS 

GM 
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3.6.5. Phenotypic correlation 

Correlation coefficient (r) among the agronomic traits to % green leaf area and 

shoot fly morphological traits to shoot fly dead heart percentage was estimated 

by using software Statistica. The observed value of correlation coefficient was 

compared with the tabulated value for (n-2) degrees of freedom to test for 

significance. 

 

 

3.7. High-throughput DNA extraction 

The steps involved in the DNA extraction protocol are explained below: 

Around 1894 germinated selfed seeds from F1 and their parents were grown in 

pots in a green house. Three seeds (F2) per pot were planted. Staggered sowing 

was done in three stages for isolating DNA at regular intervals. In first sowing, 

a total of 465 samples (5*93 +2 parent’s bulk; separate pots+1 blank check 

(plates), second sowing, 465 samples fit in 5 plates with parents in each plate 

with 1 blank check per plate and in third sowing, a total of 558 (6*96) seeds 

were sown along with parents. One week gap was maintained between every 

sowing for ideal DNA extraction without mixing of samples. F2 plants were 

tagged with a serial no.U120001 – U121894 (U-Usha, 12-2012, 0001-plant 

serial number). Totally, 1,894 plant materialswere sown as mentioned in (plate 

records, serial number and isolated DNA images). Single plant DNA was 

extracted from each seedling of F2 and parents and grandparents, using CTAB 

method (Mace et al.,2003) with slight modifications. DNA was further purified 

by RNase digestion followed by extraction with phenol:chloroform:isoamyl 

alcohol (25:24:1) and ethanol precipitation as described by Mace et al.,(2003). 

The reagents required for DNA extraction are listed in Appendix and the 

adopted procedure for 96-well plate mini-DNA extraction is described here. 

 

Steel balls (4 mm in diameter and 2 numbers per extraction tube), pre-chilled at 

–20°C for about 30 minutes, were added to the 12×8 well strip extraction tubes 

with strip caps (Marsh Biomarket, USA) that were kept on ice. Before starting 
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DNA extraction, 3% CTAB buffer was preheated at 65°C in a water bath 

(Precision Scientific model: shaking water bath 50). Leaf blades of six inches 

size were collected from 2-3-week-old seedlings. The leaves were cut into small 

pieces and these pieces (approximately 30 mg) were then transferred to 

extraction tubes that were fitted in a box. 450 μl of preheated, 3% CTAB buffer 

was added to each extraction tube containing leaf sample. Grinding was carried 

out using a Sigma Geno-Grinder (Spex Certiprep, USA) at 500 strokes/minute 

for 2 minutes. Grinding was repeated until the color of the solution became pale 

green and leaf strip pieces were sufficiently macerated. After the first round of 

grinding, the boxes were checked for leakage by taking them out from the 

Geno-Grinder and were shaken for proper mixing of leaf tissue with buffer. 

After grinding, the box with the tubes was fixed in a locking device and 

incubated at 65°C in a water bath for 30 minutes with shaking at every 10 min. 

450 μl of chloroform:isoamyl alcohol (24:1) mixture was added to each tube, 

tubes were inverted twice and the samples were centrifuged at 5500 rpm for 15 

min (Sigma Laboratory Centrifuge 4K15C with QIAGEN rotor model 

NR09100:2×120 g ) at 23°C (room temp). After centrifugation, the aqueous 

layer (approximately 300 μl) was transferred to a fresh tube (Marsh Biomarket). 

To each tube containing aqueous layer, 0.7 volume (approximately 210 μl) of 

cold (kept at –20°C) isopropanol was added. The solution was carefully mixed 

and the tubes were kept at –20°C for 30 min. The samples were centrifuged in a 

centrifuge (same as earlier) at 5500 rpm for 15 min at 4°C. The supernatant was 

decanted carefully without dropping the pellet under the fume hood and pellets 

were kept for drying. In order to remove co-isolated RNA; pellets were 

dissolved into 200 μl of low salt T1E0.1 buffer and 3 μl of RNase A (10 

mg/ml). The solution was incubated at 37°C for 30 min or overnight at room 

temperature. After incubation, samples were brought to room temperature, then 

equal volumes of 200 μl of phenol: chloroform: isoamyl alcohol (25:24:1) were 

added to each tube, mixed and centrifuged (same as earlier) at 5000 rpm for 5 

minutes. The aqueous in each tube was transferred to a fresh tube (Marsh 

Biomarket) and 200 μl of chloroform: isoamyl alcohol (24:1) was added to each 
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tube, mixed and centrifuged at 5000 rpm for 10 min (same as earlier). The 

aqueous layer was transferred to fresh tube. 15 μl (approximately 1/10th 

volume) of 3 M sodium acetate (pH 5.2) and 300 μl (2 volumes) of absolute 

ethanol (kept at –20°C) were added to each of the tubes and the mixtures were 

subsequently incubated in a freezer (–20°C) for 20 min. Following the 

incubation at –20°C, the tubes were centrifuged (same as earlier) at 5500 rpm 

for 15 min at 4°C. After centrifugation, the supernatant was carefully decanted 

from each tube in order to ensure that the pellet remains inside the tube. 

Subsequently, 200 μl of 70% ethanol was added to each of the tubes and this 

was followed by centrifugation (same as earlier) at 5000 rpm for 5 min. The 

supernatant was carefully decanted and pellet was allowed to dry in a speed 

vacuum evaporator (SPD Speed vac, Thermo scientific product, SPD111V). 

Dried pellets were re-suspended in 100 μl of T1E0.1 buffer and kept overnight at 

room temperature to dissolve completely. The re-suspended DNA samples were 

stored at 4°C. 

 

3.8. Quantification and normalization of DNA 

The quality of DNA in each sample was checked using 0.8% agarose gels 

stained with 0.5 l/10 ml ethidium bromide (10 mg/ml). For checking the 

quality of the extracted DNA, each well of the agarose gel was loaded with 5 μl 

of sample (3 μl distilled water + 1 μl orange dye + 1 μl DNA sample) with the 

standard λ DNA molecular weight markers (2.5 ng/μl, 5 ng/μl, 10 ng/μl) on 

0.8% agarose gel and gel was allowed to run at 80 V for 15 min. After 

completing the electrophoresis, DNA banding patterns on the gel were 

visualized under UV light using Gel Documentation and the image was saved. 

A smear of DNA indicated poor quality whereas a clear band indicated good 

quality DNA. Samples of poor quality DNA were re-extracted. The quantity of 

DNA in each experimental sample was assessed using a fluorescence 

spectrophotometer (Spectrafluor plus, Tecan, Switzerland) by staining DNA 

with PicoGreen™ (1/200 dilution) (Juro, Supply Gmbh, Switzerland). Based on 

the relative fluorescence unit (RFU) values and using a calibration graph, DNA 
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concentration of each experimental sample was calculated (DNA concentration 

= -2.782763 + 0.002019 × RFU). The DNA was normalized to 5 ng/μl 

concentration with visual comparison by loading DNA samples.The DNA 

concentration of each experimental sample was then normalized to 2.5 ng/μl to 

produce working samples for use in PCR reactions.  

 

3.9. Polymerase chain reaction (PCR) amplification 

PCR reactions were conducted in 96 and 384-well plates in a GeneAmp PCR 

system 9700 Perkin Elmer (Applied Biosystem, USA) DNA thermo cycler. For 

separation of amplicons using capillary electrophoresis m-13 tailed and direct 

flourophore labeled primers were used. The m-13 

(5’CACGACGTTGTAAAACGAC3’) tailed forward primer from each primer 

pair was labeled with different flourophores - 6-FAM™ (Blue), VIC
®
 (Green), 

PET
®
 (RED) and NED™ (Yellow) (Applied Biosystems) before amplification. 

The reactions were performed in volumes of 5 μl using three different protocols. 

A touchdown (61-51) PCR program was used to amplify the DNA fragments. 

Reaction conditions for the PCR program were as follows: denaturation at 94°C 

for 15 min, denaturation at 94°C for 15 sec, annealing at 61°C for 20 sec, 

(temperature reduced by 1°C for each cycle), extension at 72°C for 30 sec, 

denaturation at 94
0
C for 10 times, denaturation at 94°C for 10 sec, annealing at 

54°C for 20 sec, extension at 72°C for 30 sec, denaturation at 94
0
C for 40 times, 

extension of 20 min at 72°C, store at 4°C (Smith et al.,1995). PCR reaction 

mixtures used in DNA amplification was as follows. 
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Component 

Working 

concentrati

on 

Final 

conccentr

ation 

Volume 

DNA 2.5 ng/μl 2.5 ng 1.0 μl 

PRIMER 

M13-label 2.0 pm/μl 0.08 pm/μl 0.4 μl 

M13-tailed forward 2.0 pm/μl 0.16 pm/μl 0.2 μl 

Reverse primer 2.0 pm/μl 0.16 pm/μl 0.4 μl 

MgCl2 25mM 2mM 0.4μl 

dNTPs 2 mM 0.12 mM 0.25μl 

Buffer 10 X 1 X 0.5 μl 

Enzyme(Sib 

enzyme®) 
5 U/μl 0.1 U 0.02 μl 

water 
  

1.83 μl 

Total 
  

5 

 

3.9.1. Fragment analysis 

The amplified PCR products were separated by capillary electrophoresis using 

ABI prism 3730 automatic DNA sequencer (Applied Biosystems Inc.). The 

capillary electrophoresis technique has a resolution of less than 2 bp and hence 

can be used to clearly distinguish polymorphisms of less than 2 bp. Moreover, 

as this technique is a fluorescence based detection system, it dispenses with the 

need for radioactive or laborious manual polyacrylamide gel screening 

techniques. Prior to electrophoresis multiplexing was carried out i.e. the 

amplified products of primers labeled with different dyes or same flourophores-

labeled primers with non-overlapping amplicons (in terms of size range) were 

pooled. Multiplexing of numerous fragments and pool-plexing of numerous 

samples increased the throughput of this technique. For multiplexing, 1.0 μl of 

each of the amplified products were pooled and each of the pooled PCR product 
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were then mixed with 0.25 μl of GeneScan™ -500 LIZ
®

 internal size standard 

(Applied Biosystems) and 7.0 μl of Hi-Di formamide (Applied Biosystems). 

The final volume was made up to 10 μl with sterile distilled water. This final 

product was then denatured for 5 min at 95°C (Perkin Elmer 9700, Applied 

Biosystems) and cooled immediately on ice for ABI runs. 

 

3.9.2. Fragment size fractionation 

The denatured DNA amplicons were separated using capillary electrophoresis 

with the help of automatic DNA sequencer ABI 3730. In this technique, as the 

DNA migrates through the detection cell, the capillaries are simultaneously 

illuminated from both sides of the array by an argon-ion laser. To accomplish 

this, a beam from a single laser source is split using a series of mirror to form a 

dual pathway. The fluorescent emissions are then spectrally separated by a 

spectrograph and focused onto a charged couple device, which are then 

converted to digital information that is processed by the “collection software”. 

The fluorescent internal size standard in each capillary eliminates variability. 

The capillary runs on ABI 3730 were performed using “Microsatellite Default” 

analysis method and “Genemapper-POP7” run module. The fragments were 

separated on a 36 cm capillary array using POP7 as a separation matrix. 

 

3.9.4. Data processing 

For PCR products electrophoresed on ABI 3730 DNA sequencer, the 

Genemapper
®

 v4.0 software (Applied Biosystems) provides a series of 

automatic fragment sizing, allele scoring, bin-building and auto panelize 

algorithms. GeneMapper
®
 combines the precision sizing capabilities of allele 

calling power and helping in accurate genotyping of the samples. Sizing of the 

PCR products of 35-500 base pairs was performed using the GeneScan Liz 500 

internal lane size standard with fragment sizes of 50, 75, 100, 139, 150, 160, 

200, 250, 300, 340, 350, 400, 450, 490 and 500 base pairs. Data analysis was 

carried out using GeneMapper
®
 software version 4.0 where the allele(s) of each 

genotype in the form of peaks were size corrected. 
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3.9.5. Scoring of amplified products 

The amplified PCR products of the SSR markers screened on the RILs were 

scored as follows: A = Homozygote carrying allele from female parent 

(RSG04008-6), B = Homozygote carrying allele from male parent (J2614-11), 

H = Heterozygote carrying alleles from both parents, - = Missing data for 

individual at a locus. Initially, F2 mapping was carried out with five SSR 

markers equally distributed across the chromosome-10, long arm target region. 

All the five SSR markers were genotyped on 1894 isolated DNA samples with 

the above-mentioned touchdown PCR protocol. After scoring, the dataset was 

assembled in Microsoft Excel spreadsheet. Final data set was then arranged on 

an Excel sheet in a format suitable for linkage mapping. 

 

3.10. Genotyping by sequencing (GBS) 

Genomic DNAs were digested individually with ApeKI (recognition site: 

G|CWCG). The resulting fragments were ligated with sample-specific 

“barcodes” called “restriction site associated DNA tags” (RAD tags), and 

restricted, barcoded DNA samples were then multiplexed at 96- or 384-plex. 

GBS libraries were constructed and subjected to skim sequencing to a depth of 

0.1X. The resulting 66-base pair sequence reads were sorted by barcodes. DNA 

sequencing was performed either on the Illumina Genome Analyzer IIx or 

HiSeq2000. Sequences were mapped to the BTx623 sorghum reference genome 

by using BWA (43), and SNPs were called with the TASSEL v4.4.10 GBS 

pipeline (Glaubitz et al., 2014) (www.maizegenetics.net/tassel/). Sequence tags, 

64-bp sequences that included a leading 4-bp C[T/A]GC signature from the cut 

site, were identified, and tags with at least 10X total coverage were retained 

(Elshire et al., 2011).Functional annotation of SNPs was performed with 

reference gene feature information using snpEff v3.6 (Cingolani et al., 2012) 
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3.11. Selection of fine-mapping population recombinants by genotyping  

The fine-mapping populations (F4 lines derived from corresponding F2 

individuals) were genotyped (using DNA samples collected from 2000 F2) with 

the available genomic (Brown et al., 1996; Bhattramakki et al.,2000; Schloss et 

al.,2002) and genic (Srinivas et al., 2008, 2009b; Ramu et al., 2009) SSRs 

distributed across the long arm of SBI-10, to identify the small fraction (369 F3 

and selected 152 F4 progenies) homozygous or nearly homozygous for 

recombination events in the target region between Xgap001 and Xtxp141. 

 

3.12. Linkage map construction   

For the selected five markers, genotypic data were generated and used as an 

input for JoinMap V3.0 (Van Ooijen and Voorips, 2001) for constructing a 

linkage map using Kosambi function to convert recombination fractions into 

centiMorgans (cM) (Kosambi, 1943). Marker order was assigned at minimum 

LOD 3 and segregation distortion and chi square values were calculated using 

JoinMap V3.0 (Van Ooijen and Voorips, 2001).QTL mapping for F2 lines was 

performed with genotyping data and phenotypic mean values data by composite 

interval mapping (CIM) in QTL cartographer Windows V2.5 (Wang et 

al.,2010). Default window size 10 cM, walking speed 1 cM, control marker 5 

and backward regression method was used for this purpose. LOD 2 was used as 

criteria for QTL analysis and significance of each QTL interval with the 

threshold level performed at 1000 permutations, was determined, and the 

significance level was observed. F3 phenotyping data with F2 genotyping data 

were used and QTLs were positioned, and their effects were estimated by 

composite interval mapping (CIM) (Zeng, 1994; Jansen, 1994) by PLAB QTL 

version 1.2 (Utz and Melchinger, 1996) on both individual traits. 

 

3.12.1. GBS-SNP integration into the SSR genetic linkage map 

Huge GBS dataset with 60% missing data points was obtained from the selected 

recombinants. Only SNP data from target region was utilized for genetic map 

construction with GBS-SNP markers. RSG04008-6-6 was coded as ‘A’, J2614-

11-11 as ‘B’ and heterozygote was coded as ‘H’. In few genotypes, the parents 
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and grandparents data that mismatched with the controversial SNPs were also 

discarded. SNP markers were arranged with the help of their physical map 

positions and the genotypic data were observed clearly for data duplication. 

50% duplicated data were found and such SNPs were discarded. Remaining 

markers were used for development of linkage map. 

 

3.12.1.1. Distance matrix and principal coordinate analysis (PCA) 

Distance matrix between all selected pairs of markers was calculated using 

THREaD Mapper Studio: a novel, visual web server for the estimation of 

genetic linkage maps (Cheema et al., 2010). Due to huge data set, only distance 

matrix was calculated in the THREaD Mapper Studio and the data were utilized 

for principal coordinate analysis. Principle coordinate analysis of distance 

matrix data results in a horseshoe arch are also known as ‘horseshoe effect’ 

(Podani and Miklos, 2002) and this is the basics of the THREaD Mapper 

method (Cheema et al., 2010). The linear arrangement of markers along the 

‘horseshoe curve’ of the PCA plot corresponds to the marker order and can be 

used for constructing a dense linkage map. SNPs placed centrally and not along 

the horseshoe have more missing data points need to be eliminated as they 

confuse the map order. 

 

3.12.1.2. SSR-SNP linkage map 

The markers in linear order of horshoe arch were used for linkage map 

construction with the help of JoinMap V3.0 (Van Ooijen and Voorips 2001). 

The Kosambi map function was used to convert recombination fractions into 

centi-Morgans (cM) (Kosambi, 1943). Marker order was assigned at minimum 

LOD 3 and segregation distortion and chi-square values were estimated using 

JoinMap V3.0 (Van Ooijen and Voorips, 2001). 

 

3.13. QTL mapping 

Single marker analysis (SMA) and composite interval mapping (CIM) were 

conducted using QTL Cartographer for Windows v2.5 (Wang et al., 2010) on 

the observed traits in F2, F2:3, and F2:4 populations with, 1894, 369, and 154 
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entries (genotypes), respectively. Linkage between individual markers and each 

trait was initially evaluated using SMA, prior to analysis using CIM. 

Background markers for inclusion in the CIM model were selected by forward 

stepwise regression for each trait. The five most significant background markers 

were then used for analysis (default). The ‘walking speed’ was set at 2 cM and 

the ‘window size’ at10 cM for CIM. A conservative permutation threshold at 

the 0.01 significance threshold was obtained for each trait using 1,000 

permutations. 2-LOD and 3-LOD support intervals were determined, as 

described by Lander and Botstein (1989). The additive effects and percentage of 

variation explained (R
2
) for all significant QTL were determined at their peak 

LOD values. QTL mapping with SSR markers for mapping QTLs and to fine 

map the QTL and which SNPs are associated with which QTLs were analyzed. 

Candidate genes for leaf blade glossiness, leaf blade trichomes, stay green QTLs 

and agronomic trait QTLs were identified with the help of SNPs flanking to the 

QTLs. SNPs linked to generic regions and functional role of the genes reveal 

the target genes using bioinformatics search. 

 

3.13.1. QTL cluster analysis and fine mapping 

 QTLs sharing common marker interval with common peak position were 

grouped into QTL clusters. For fine mapping F2, 152 selected recombinants 

were aligned with their phenotypic data and sorted with phenotypic values. Both 

the phenotypic extreme haplotypes were aligned to clearly visualize the 

recombination break point which helped in clear identification of genomic 

regions responsible for the stay-green traits by avoiding environment and 

genetic background effect and other unknown factors. The haplotype of the 

target region was compared for identification of informative recombinant break 

points with the help of phenotyping data. Use of phenotypic extremes will 

always be helpful and avoid the effect of problems associated with environment 

variation and genetic background effect in early generations (Li et al., 2004). 
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3.13.2. Fine mapping and genome wide association studies (GWAS)  

Skim-sequence GBS SNP genotyping data and phenotyping data sets (BLUPs) 

for the selected recombinants were analysed to determine the most likely 

positions for one or more glossy gene(s), trichome gene(s), and the stay-green 

gene(s) underlying the target QTLs on the long-arm of SBI-10, and identify 

closely-linked marker loci for each QTL. This information was used to identify 

desirable individual homozygous lines for favourable alleles at all three target 

QTLs. QTLs were fine mapped by comparing the phenotypic means of 

recombinant genotype classes (Paterson et al., 1990). Genome wide association 

mapping can be used to identify the significant association between molecular 

markers (SSR, SNP) and phenotype trait using R package GAPIT (Lipka et al., 

2012). The genotyped individuals with GBS data were used for GWAS studies 

to identify marker trait associations (MTAs) and possible candidate genes for 

the shoot fly morphological trait and stay green QTLs on sorghum chromosome 

SBI-10 QTLs identified.  

 

3.13.3. Comparison of QTL mapping with GWAS studiesfor confirmation 

of fine map region 

Selected recombinant SNP data were used for construction of linkage map and 

for QTL mapping with F4 two seasons phenotyping data for seedling leaf blade 

glossiness, trichome density and percent green leaf area for all the weeks. QTL 

mapping results were compared with GWAS studies and fine mapping data for 

confirmation and exact locations. 

 

3.14. Candidate gene identification 

Information on map positions of GBS-SNP markers most closely flanking each 

target QTL (assumed to be under the control of a single gene per QTL) can be 

combined with the annotated aligned sorghum genome sequence to identify 

candidate genes that might be associated with each of the trait. Candidate genes 

responsible for stay-green according to earlier studies in other plants like maize, 

Arabidopsisand rice were selected based on their functional role. GWAS MTAs 
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associated with candidate genes as well as fine mapped regions having 

candidate genes were searched (http://phytozome.jgi.doe.gov/pz/portal.html) for 

their function and reported as probable candidate genes based on their physical 

and genetic position. 

 

3.14.1. Assessment of candidate genes underlying each target QTL 

SNP analysis of the candidate genes in the parental lines and selected 

recombinants were used to further reduce the number of candidate genes, 

resulting in identification of a single functional gene controlling observed 

variation in each of the three target traits: seedling leaf blade glossiness, 

seedling leaf blade trichome density, and green leaf area retention under 

conditions of terminal drought stress. Candidate genes responsible for stay-

green, glossy and trichome density according to earlier studies in other crops 

like maize, Arabidopsis, rice were selected based on functional role. 

 

3.15. Recombinants of 3-gene/QTL selection 

Selection of plants with desired combinations were identified and selected for 

further analysis. It would be desirable to generate recombinants having the 

favorable alleles at all three loci (for a high level of glossiness, good green leaf 

area retention, and high trichome density), as such recombinants could be used 

as donors of the “cassette” of these three genes in applied marker-assisted 

breeding programmes targeting the rabi sorghum production environments of 

peninsular India, where both shoot fly resistance and terminal drought tolerance 

are essential traits of well-adapted sorghum cultivars. In the course of producing 

such a recombinant from the cross of the BTx623-background, shoot fly 

resistance QTL introgression line and the R16-background stay-green QTL 

introgression line, it should be possible to fine-map (and perhaps identify the 

underlying genes) for all three of these components of the cassette. 

  



 

69 
 

 

3.15.1.Marker-assisted breeding for pyramiding of shoot fly morphological 

traits and stay-green traits on SBI-10L 

From the results of objective 2, the map order of the three target QTLs was 

determined, and marker genotypes of the recombinants generated. Fine-

mapping population progenies (F4) with allelic compositions required to 

generate segregants homozygous for favorable alleles at all three target QTLs 

(that is, stay-green plants with trichomed glossy seedlings) were identified and 

advanced (by selfing and/or crossing followed by a further generation of 

selfing) to produce the required segregating population(s). Individuals of the 

population(s) were then genotyped to identify the desired triple-homozygotes 

(pyramided), which were selfed. 

  



 

70 
 

4. RESULTS 

The present experimental study was carried out with main focus on fine genetic 

mapping of  stay-green and  shoot fly resistance QTLs on sorghum chromosome 

SBI-10 using an introgression line cross of  RSG04008-6 (stay-green donor) and 

J2614-11 (shoot fly resistant donor) parents. F2 genotyping, F2, F3 and F4 

phenotyping evaluations for fine mapping using GBS and GWAS were 

performed and the results are presented here. 

 

4.1. Confirmation of parents and F1s 

J2614-11 is a donor parent for seedling leaf blade glossiness and trichome 

density in the cross RSG04008-6 × J2614-11. Parents were clearly differentiated 

visually as glossy vs non-glossy and trichomed vs non trichomed. In order to 

confirm the genetic composition, all the 21 polymorphic markers out of 41 co-

dominant SSR markers (Annexure 1) were assessed and compared between 

genomic regions of parent (RSG04008-6 and J2614-11) and grandparents (R16, 

E36-1, BTx623 and  IS18551) for target 37cM interval (Table 2). Marker alleles 

for each of parent-grandparent pair of E36-1, RSG04008-6 and J2614-11, 

IS18551 were monomorphic across the SBI-10 target region but these marker 

alleles are polymorphic between the two different parents and the two different 

grandparent’s pairs, which confirm that the introgressed parental target regions 

under study were derived from their respective grandparents. A total of seven 

plant × plant crosses were executed and seed from a single cross was planted 

with one seed per hill. All the crosses along with parents (and grandparents) were 

screened with 9 polymorphic SSRs but one cross RSG04008-6 × J2614-11 

(U100019) was successful and confirmed to be a true heterozygous for parental 

alleles. From the cross RSG04008-6 × J2614-11 twelve F1 seeds were produced. 

All the 12 F1 plants were screened for heterozygosity in the initial interval 

markers. A total of 9 polymorphic co-dominant SSR markers were screened on 

all 12 F1s and 11 F1s having heterozygous alleles but one plant was homozygous 
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which was discarded (Table 3). High quality grade 1 marker allele profiles were 

obtained for all markers (Fig .3). 

 

4.2. Developing F2s and selection of informative F2:3 progenies 

The confirmed true F1s were selfed to produce F2 seed. Out of selfed eleven F1s, 

a single F1 plant (U110055) with 1958 seeds was selected for advancement 

during late rabi season 2011/12 and used as a high-resolution recombinant 

mapping population. 

A total of 1,894 F2 individuals (survived after sowing) from the high resolution 

cross (HRC) along with its parents RSG04008-6 and J2614-11, were genotyped 

with 5 SSR markers covering the target SFR QTL target region on the long arm 

of sorghum chromosome SBI-10. The five markers were selected in particular for 

genotyping the population because the introgressed line parent J2614-11 was 

bred using Xgap001 and Xtxp141 as flanking markers for transferring of a two-

component shoot fly resistance QTLs by MABC from donor IS18551 into 

recurrent parent BTx623 background. Though 9 polymorphic SSR markers 

detect loci between the two flanking markers Xgap001 and Xtxp141, the markers 

Xnhsbm1044 and Xisep0630 were reported to be associated with the trait 

trichome density that conferred shoot fly resistance in sorghum population 296B 

× IS18551. Marker Xiabt340 is a middle third marker, which is not associated 

with either of the two shoot fly resistance component target QTLs. We have 

selected 369 F2 homozygous and nearly homozygous recombinant F2 plants 

based on these 5 SSR markers and genotypes with complete homozygosity for i) 

RSG04008-6 alleles ii) J2614-11 alleles across this target region, or complete 

heterozygosity across this region were discarded. The selected F2 progenies were 

genotyped with 3 additional markers to increase the flanking regions for safer 

detection of exact location of the target QTL regions and sub-subset selection for 

fine mapping (Fig .4). All the 369 selected recombinant F2 individuals were 

selfed to produce F3 seed during late rabi season 2011/12. Phenotypic data for 

the F3 progenies was collected similarly to F2 phenotyping data, except that the 
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F3 data were collected on a progeny-basis, whereas the F2 data were collected 

from individual plants phenotyping. 

 

4.3. F3derived highly informative F4 recombinantprogenies  

Out of 369 F3 progenies, 182 highly informative double recombinants for the 

favourable alleles were selected based on 7 markers genotyping data along with 

phenotyping data (Fig .4). F3 self-seed of 182 recombinants were not sufficient. 

Only 152 recombinants have sufficient seed sets for multiplicated field trials for 

two seasons, and two traits (stay-green and shoot fly morphological traits) 

evaluation. 

 

4.4. Trait variation of shoot fly resistance component traits, stay-green and 

agronomic traits 

Parental introgression lines which have different genetic backgrounds and 

different introgressed segments differ significantly with each other for both 

glossiness and trichome density (Fig .5). Parent RSG04008-6 is a pedigree-

derived introgression line in R16 background with E36-1 stay-green alleles at a 

QTL on SBI-10 and J2614-11 is a backcross-derived introgression line in 

BTx623 background with IS18551 shoot fly resistance alleles at QTLs on SBI-

10. Trait variation was observed for all the shoot fly resistance component traits, 

stay-green, and agronomics traits in F4 progeny for both seasons (rabi2013 and 

2014). 

 

4.4.1. Mean performances of parents , F2 and F4 populations  

The mean performances of the parental introgression lines RSG04008-6 and 

J2614-11 differed phenotypically for all the observed traits. The parental lines 

differed for shoot fly morphological traits in kharif 2013,rabi(post-rainy) 2013 

and agronomic traits but for stay-green scores, low variation was noticed across 

two environments rabi 2012-2013 and rabi 2013-2014. As predicted, the 

RSG04008-6 has low mean values for all shoot fly resistance component trait 

values and increased agronomic and stay-green performance across both the 
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environments indicating it is a shoot fly susceptible stay-green elite cultivar. 

J2614-11 is a shoot fly resistant male parent with moderately stay-green or less 

green leaf area mean values when compared to RSG04008-6 parent (Tables 4 

and 7,Fig .6). 

4.4.1.1. F2 mean performances 

1894 F2 individual plants were observed for shoot fly morphological traits like 

seedling leaf blade glossiness and trichome density to confirm the QTL genomic 

regions segregation in F2 population. 

 

4.4.1.1.1. Seedling leaf blade glossiness 

The trait glossiness was also scored visually and the results were divided into two 

categories- (i) glossy and (ii) non-glossy. The complex glossiness trait was 

characterized by narrow, erect, pale, shiny green leaves and 1457 individuals 

(76.92%) exhibited glossy leaves. A total of 437 F2 individuals (23.08%) with 

non-glossy leaves were characterized by broad, dull, droopy leaves. For this trait, 

the individuals followed the Mendelian genetics and segregated in 3:1 ratio (Fig 

.6a) having χ
2
 = 0.99 not significant, with the glossy phenotype of shoot fly 

resistant introgression line parent J2614-11 being dominant (Table 4). 

 

4.4.1.1.2. Seedling leaf blade trichome density 

In the present study, 1,894 individual F2 plants were scored for the morphological 

component traits of shoot fly resistance. It is observed that there are substantial 

variations in trichome density score in the F2 population (Fig .6b) and this 

information was combined with the SSR genotype data to locate the QTLs for the 

trait. By doing so, we understand that significant variations exist for these traits. 

Very low trichome density scores ranging from 0.0 to 1.0 were observed in 285 

F2 individuals (13.72%). Likewise, for 124 individuals (6.54%) medium trichome 

density score, for 863 individuals (45.56%) high trichome density score and for 

362 individuals (19.11%) very high trichome density score were noted, of which 

the highest number of individuals (863) showed high trichome density scores 

(Fig .6b). The parental introgression lines differed significantly with each other 
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for glossiness and trichome density scores, and among the F2 population and 

derived F3 progenies, glossiness scores ranged from 0.09 to 4.95 and trichome 

density scores ranged from 0.00 to 5.00. For both the seedling leaf blade 

glossiness and trichome density scores, CV values were low due to the 

qualitative nature of these traits. In both the F2 population and its derived F3 

progenies, glossy score and trichome density score were highly correlated with 

each other (Table 4), indicating that a high trichome density score was associated 

with a low glossiness score and therefore that high trichome density is associated 

with a high degree of glossiness. The statistical Z test results showed (significant 

P<0.05) genetic variation for glossiness score (Gls) and trichome density (Td) 

indicating that the data are suitable for QTL mapping. 

4.5. F4 stay-green traits mean performances 

The stay-green values were estimated for two environments (stgENV). StgENV1 

is post-rainy season of 2012-2013 (Summer/rabi 2013) and StgENV2 is post-

rainy season of 2013-2014 (Summer/rabi 2014) grown under water limited 

conditions (Table 5 and Fig.7). 

 

4.5.1. Percent green leaf area 7 days after flowering (% GL 7 DAF) 

Stay-green scores were recorded on weekly basis and % GL 7 DAF mean values 

for parent RSG04008-6 (88-99) which has high scores in comparison with J2614-

11(84-95). Mean F4 progeny values were 88% GL and 96 % GL during summer 

2013 and 2014 respectively. For both the parents % GL 7 DAF did not show 

much variation but the female parent showed higher values when compared to 

the male parent. Across season mean values are intermittent to both the seasons. 

Skewing RSG04008-6 (93), J2614-11(89) and F4 progeny (92), it is observed that 

the values leaned more towards female parent (Fig .7a). 

 

4.5.2. Percent green leaf area 14 days after flowering (% GL 14 DAF) 

RSG04008-6 female parental introgression line showed 79% GL 14 DAF during 

rabi 2012-2013 and 84% green leaf area during rabi2013-2014 and the male 
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parent J2614-11 showed 83% GL 2012-2013 rabi and 85% GL during 2013-

2014. For both the parents, the rate of senescence did not vary much and in case 

of progeny 79-84, for both the rabi 2012-2013 and 2013-2014 and the exhibited 

progeny mean values were slightly towards the female parent. Across season 

mean values, much variation was not observed between female parent (82) and 

F4 progeny (82) but have slight higher values than J2614-11 (78) male parent 

(Fig .7b). 

 

4.5.3.Percent green leaf area 21 days after flowering (% GL 21 DAF) 

Stay-green introgression line female parent derived from E36-1, RSG04008-6 

has 62-74% GL 21 DAF  and  shoot fly introgression line J2614-11has 61-75% 

GL 21 DAF during both the rabi 2012-2013 and 2013-2014. Mean F4 progeny 

values showed 65-73% GL 21 DAF during both the seasons. The male parent 

J2614-11 showed slight higher values than the RSG04008-6 due to reduced plant 

height of J2614-11. The mean value for across season did not vary for parents 

and progeny (Fig .7c). 

 

4.5.4.Percent green leaf area 28 days after flowering (% GL 28 DAF) 

Female stay-green parent RSG04008-6 showed 47-66% GL 28 DAF and 47-64% 

GL 28 DAF during both the seasons rabi2012-2013 and 2013-2014. The mean F4 

readings ranging from 50-65% GL 28 DAF showed higher values than parents. 

As the days to flowering increased, the percent green leaf area decreased 

gradually (Fig .7d). 

 

4.5.5.Percent green leaf area 35 days after flowering (% GL 35 DAF) 

Mean values of RSG04008-6 have 23 and 25% GL 35 DAF and mean values of 

J2614-11 have 37-50% GL 35 DAF for both the seasons of rabi 2012-2013 and 

rabi 2013-2014. F4 mean values ranged 39-51% GL 35 DAF for both the 

seasons. The across season mean values for parents (44) and progeny (45) did not 

significantly differ (Fig .7e). 
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4.5.6.Percent green leaf area 42 days after flowering (% GL42 DAF) 

RSG04008-6 parent recorded 23-25% GL42 DAF and 30-40% GL42 DAF 

during rabi 2012-2013 and 2013-2014. In F4, recombinant mean values ranged 

from 29-39% GL exhibiting higher % GL after 42 DAF. Retaining green leaf 

area after seed set formation may reduce the yield also. % GL correlation with 

yield totally gives the meaningful output for stay-green. The male parent J2614-

11 (35) and F4 progeny exhibited higher mean values than female parent 

RSG04008-6 (2) surprisingly (Fig .7f). 

 

4.5.7.Percent green leaf area 49 days after flowering (% GL 49 DAF) 

RSG04008-6 mean values ranged from 17-11% GL49 DAF, while J2614-11 

mean values ranged from 30 - 40 during both the screens. F4 recombinant 

progeny displayed higher stay-green values of 29-39% GL49 DAF for both rabi 

2012-2013 and 2013-2014 than RSG04008-6 and showed similar values as 

J2614-11. As both the parents are introgression lines, their trait expression 

pattern was influenced by the background genome as well as environment. But, 

the progeny mean values are interesting. The across season mean value 

distribution was similar to previous week scores and the male parent J2614-11 

(24), F4 progeny (24) recorded higher values than the RSG04008-6 (14) (Fig 

.7g). 

4.6. Mean performances of agronomic and yield related traits 

During rabi 2012-2013 (stgENV1), plants were exposed to severe stress as the 

sowing was done on 31
st
 December 2012 and at the time of flowering plants were 

exposed to severe heat stress when compared to the plants grown in rabi 2013-

2014 (stgENV2) which were sown during 20
th

 November 2013. In rabi 2012-

2013 plants were exposed to high temperature stress, but not in 2013/stgENV1 

and 2013-2014 summer 2014/stgENV2 (Table 6 and Fig.8). 

 

 4.6.1. Time to 50% flowering (days): The lineRSG04008-6 flowered in 61 

days, i.e., earlier than usual in 2013 summer season when compared to 87 days in 

2014 summer. On the other hand, J2614-11 has taken 77-82 days to flower 
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i.e.,earlier in 2014 summer season when compared to RSG04008-6. The entries 

significantly differed for this trait across the two environments, the flowering of 

F2-derived F4 progenies ranged from 68 to 82 days during 2013 and 2014 

summer season respectively. During across season mean values, the parent 

RSG04008-6 (75) and F4 progeny (74) flowered 4 days earlier to J2614-11 (79) 

(Fig .8a). 

 

4.6.2. Plant height (cm) (PlHt): RSG04008-6 was significantly taller (132-194 

cm) than J2614-11 (89-120 cm) across the 2013 and 2014 summer seasons, 

respectively. The recombinant F4 lines recorded population means of 117 cm and 

175 cm for this trait during the 2013 and 2014 summer seasons, respectively. The 

mean values for plant height were higher among the F4 plants and parents during 

the 2014 summer season when compared to the 2013 summer season, indicating 

a large influence of environment on this trait. Across season mean values for 

RSG04008-6, it is higher (164 cm) than J2614-11 (103 cm) and the F4 progeny 

(146 cm) also showed higher mean values than J2614-11 (Fig .8b). 

 

4.6.3. Panicle dry weight in grams/plot (PnDW/plot): Panicle dry weight in 

the parent RSG04008-6 was 598 g during summer 2013 but 945 g during 

summer 2014 and thus the variation was significant across two seasons due to 

two different sowing dates and their exposure to the severity of stress. For J2614-

11, the panicle dry weight ranged from 361-1103 g during summer 2013 and 

summer 2014 respectively. The mean values of F4 progeny ranging from 598-

1109 g showed high yield when compared to the parents during summer 2014. 

Significant variation between parents and progeny was not observed for across 

season means (Fig .8c). 

 

4.6.4. Panicle harvest index (PHI): The mean value of RSG04008-6 (66-68) did 

not show significant difference with J2614-11 (62-71) during summer 2013 and 

2014. The F4 progeny (68-70) mean values were similar to the parent RSG04008-

6. For across season mean values, significant variation was not noticed (Fig .8d). 
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4.6.5. Grain dry weight grams/plot (GDW/plot):  The mean value of grain 

weight per plot of RSG04008-6 parent was 392 g during summer 2013 and 632 g 

during summer 2014. Mean value of J2614-11 dry weight was 233 g during 

summer 2013 but 795 g during summer 2014. Mean values for F4 progeny were 

412 g during summer 2013 and 773 g during summer 2014. No significant 

variation was recorded between parents and progeny for across season mean 

values (Fig .8e). 

 

4.6.6. Mean 100-grain mass (g) (HGM): Mean 100 grain mass values of 

RSG04008-6 were 2.14 g and 3.28 g during summer 2013, 2014 respectively. 

The male parent J2614-11 recorded 2.06 and 2.71 g during summer 2013, 2014 

respectively. But, RSG04008 values were higher when compared to J2614-11 

during both the seasons. The progeny mean values ranging from 1.94 (summer 

2013) to 2.95 (summer 2014) indicated that these values are similar to 

RSG04008-6 female parent. RSG04008-6 showed higher mean values when 

compared to male parent J2614-11 and F4 progeny (Fig .8f). 

 

 4.6.7. Grain number per plot (GNP/plot): The parent RSG04008-6 mean 

values (20456 during summer 2013 and 2012 during summer 2014) were higher 

when compared to J2614-11 (17807 during summer 2013 and 2689 during 

summer 2014). The mean values of F4 progeny were 21232 during summer 2013 

and 22191 during summer 2014. These results indicate that the values are 

intermittent to parents. For the parent J2614-11, the magnitude of difference, 

during both the seasons was high when compared to RSG04008-6 and F4 

progeny mean values. For across season, F4 lines recorded higher mean values 

than the parents (Fig .8g). 

 

4.6.8. Grain number per panicle (GNPP): The mean grain number values of 

RSG04008-6 ranging from 786-777 during summer 2013 and 2014 respectively 

did not exhibit significant variation. The mean value of J2614-11 (684) was 

lower during summer 2013 than the value recorded during summer 2014 (1034). 
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For F4 progeny, mean values ranging from 816-853 did not record significant 

variation between two seasons. But, across season mean values of F4 progeny 

displayed higher values than the parents (Fig.8h). 

 

 4.7. F4 mean performances of shoot fly resistance component traits: During 

kharif 2013 and rabi 2013, plants were exposed to severe shoot fly stress in the 

field with fish meal distributed in the random locations of the field and data were 

recorded for F4 progenies for both the environments (Table 7 and Fig .9). F4 

Phenotyping for glossy, non glossy and trichome density presence and absence 

images are depicted in Fig 10. 

 

4.7.1 Seedling leaf blade glossiness (1-5 score): Mean parental values differed 

significantly from each other as female parent RSG04008-6 is a non-glossy 

parent. The values for glossiness were 3.5 and 4.6 during kharif 2013 and rabi 

2013 respectively. The mean values of parent J2614-11 showed 2.6 during both 

the seasons. The F4 progeny mean value recorded was 3 during both the rainy 

and post-rainy seasons of 2013. Across season means varied for the parent 

RSG04008-6 (4), J2614-11 (2.5), but F4 progeny recorded 3.1 mean values. So, 

the values thus represent non-glossy, glossy and intermittent respectively (Fig 

.9a). 

 

4.7.2. Percent shoot fly dead heart (% SFDH): The percent shoot fly dead 

heart was high during rainy season when compared to the postrainy season across 

parents and population. when compared between parents, % SFDH was high for 

female parent RSG04008-6 as it is susceptible to shoot fly (Fig .9b). 

 

4.7.3. Leaf blade trichome density upper (adaxial) (numbers/microscopic 

field): The RSG04008-6 parent trichome density mean values were 28 

no/microscopic field, on upper leaf surface during rainy season 2013 and 5 

no/microscopic field during post-rainy 2013. The mean values of trichome count 

on upper leaf surface of parent J2614-11 are 93 and 46 no/microscopic field, on 

upper leaf surface during rainy and post-rainy 2013 respectively. F4 progeny 

exhibited 64 and 28 mean values respectively across rainy and post-rainy 2013. 
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The progeny leaned towards male parent J2614-11. For across season means, 

J2614-11 exhibited higher trichome count than F4 progeny and RSG04008-6 (Fig 

.9c).  

 

4.7.4 Leaf blade trichome density lower (abaxial) (numbers/microscopic 

field): RSG04008-6 mean values were2 and 10 no/microscopic field on lower 

leaf surface field during rainy, post-rainy seasons of 2013 respectively. Mean 

values of J2614-11 were 57 and 91 no/microscopic field during both the seasons. 

The F4 progeny mean values were 14 and 58 no/microscopic fields on lower leaf 

surface during both the seasons. This shows an increased trichome density than 

the female parent RSG04008-6. For across season means, J2614-11 displayed 

higher trichome counts on lower leaf surface than F4 progeny and RSG04008-6 

(Fig .9d). 

 

4.7.5. Leaf sheath pigmentation (1-3 score) and seedling vigour (1-3 score): 

The leaf sheath pigmentation was higher in the parent RSG04008-6 (1-1.5) than 

J2614-11 (2.9) and F4 progeny (2) exhibitted intermittent values in both the 

seasons (Fig .9e). Mean values of the parent RSG04008-6 are 2.56 and 1.1 during 

rainy and post-rainyseasons respectively during 2013. Mean values of J2614-11 

for leaf sheath pigmentation were 2.65 and 1.88 and F4 progeny mean values 

were 2.44, and 1.3 respectivley for kharif 2013 and rabi 2013. Significant 

variation was noticed between two seasons and during post-rainy season, but 

high seedling vigour was observed in rabi compared to rainy season (Fig .9f). 

 

4.8. Analysis of variance (ANOVA): Analysis of variance for stay-green scores 

was highly significant for individual environments as well as across season 

environments (Table 8).In case of agronomicdata scores, the effective tiller per 

plot and panicle harvest index for both the seasons was not significant. As these 

traits did not have much economic importance, they were not studied extensively 

and both the traits appeared to be independent of environment. For across season 

data, both ETNP and PHI showed significantly different values. All other 

agronomic traits showed highly significant values. Interestingly, in summer 
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2013, grain dry weight/plot (GDW/plot) and grain number per panicle (GNPP) 

values were not significant. In summer 2014, GDW/plot and GNPP values were 

significant but for across season values, they were not significant. This may be 

due to diverse sowing dates of summer 2013 (31
st
 Dec 2012) and summer 2014 

(20
th

 Nov 2013) and their stress exposure levels. In summer 2014, G×E values 

for both the traits GDW/plot and GNPP were higher than the estimated genotypic 

variance. Except for the FT, PlHt, all others recorded high genotypic variance 

values than G×E values. From ANOVA table mean sum of square values for 

genotype and G×E from ANOVA table were compared (Table 9). In case of 

shoot fly component traits, much genetic variance was observed for all the traits 

and genotypic values were highly significant for all the traits (Table 10). G×E 

were significant for all the agronomic except GNP/plot and GNPP. For stay-

green weekly scores and shoot fly resistance component traits, G×E values were 

highly significant except seedling leaf blade glossiness (in case of shoot fly 

resistance). 

 

4.9. Frequency distribution for F4 progeny: Various traits distribution among 

the F4 progeny and their frequency disribution for stay-green and agronomic 

traits for summer 2013 (rabi 2013-2013) and 2014 (rabi 2013-2014) are 

represented in Figures 11, 12 and 13 (Tables 5, 6 and 7). 

4.9.1. Stay-green frequency distribution: Percent green leaf area in 7, 14, 21, 

28, 35, 42 and 49 days after flowering: The frequency distribution for % GL 7 

DAF ranged from 72-97 in summer 2013 and 79-99  for summer 2014. The F4 

progeny was highly skewed towards RSG04008-6 female parent and variations 

in the seasonal data were less. During summer 2013, the F4 progenydata showed 

senecence and % GL was reduced upto 72 due to delayed rabi sowing (Fig .11a). 

The frequency distribution of % GL 14 DAF in summer 2013 data showed 

maximum number of individuals skewed towards female parent RSG04008-6 

with delayed senescence. The mean values ranged from 58-96, 68-96 for summer 

2013, 2014 respectively (Fig .11b). The frequency distribution of summer 2013 

was uniform and for summer 2014 it is near to normal distribution. The data 
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ranged from 43-93, and 63-84 during summer 2013, 2014 respectively (Fig .11c). 

The frequency distribution graphs recorded discontinuous distribution for 

summer 2013 and 2014, and the graph skewed towards left (Fig .11d). The 

frequency graph for summer 2013 showed near to a binomial graph and for 

summer 2014, the graph resembled near to normal distribution. The means 

ranged from 22-62, 19-66 for summer 2013, 2014 respectively (Fig .11e). The 

frequency distribution graphs for both the seasons exhibited two different 

pictures near to normal distribution graphs due to environmental influence (Fig 

.11f). Normal distribution was observed for summer 2013 and F4 progeny 

skewed towards male parent J2614-11 during summer 2014 (Fig .11g). 

 

4.9.2. Frequency distribution for agronomic traits:  

 

4.9.2.1. Days to 50% flowering time (FT): The frequency distribution of 

flowering time for both the seasons vary significantly. The mean range values of 

flowering for summer 2013 and 2014 varied from 57-80 and 75-90. This clearly 

shows the influence of environment on flowering time. Thus, the frequency 

distribution graphs were clearly dipected for the flowering time disribution for 

both the environments (Fig .12a). 

 

4.9.2.2. Plant height(PlHt): The frequency distribution of plant height was 

clearly different from summer 2013 to that of plants grown in summer 2014. For 

summer 2014 a near normal distribution was observed. The range varied from  

84-147  and 105-225 for summer 2013 and 2014 respectiveely showing clear 

differentiation for both the environments (Fig .12b). 

 

4.9.2.3. Panicle dry weight per plot (PnDW/pot): The frequency distribution 

for PnDW/plot was greatly influenced by the environment. The PnDW/plot 

ranged from 416-779 and 763-1102 of summer 2013 and 2014 respectively 

showing clear variation for both the seasons (Fig .12c). 
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4.9.2.4. Grain dry weight per plot (GDW/plot): The grain dry weight per plot 

frequency distribution clearly showed the influence of environment on the grain 

yeild for summer 2013 and the grain yeild varied from267-539  and 531-777  for 

summer 2014 respectively. The clear variation observed for both the seasons and 

exposed stress levels reduced the grain yeild per plot (Fig .12d). The reduction in 

yield is mainly because of late sowing in rabi. 

 

4.9.2.5. Grain number per plot (GNP/plot): Thefrequency distribution graph 

showing less variation across both the seasons which ranged from 18453-

43294,17204-27250 for summer 2013, 2014 respectively. Maximum number of 

F4 genotypes skewed towards the male parent (Fig .12e). 

 

4.9.2.6. Grain number per panicle (GNPP): The frequency distribution graph 

of GNPP exhibited overlaying of both the seasons data. The frequency ranged 

from 709-1665 , 661-1048 during summer 2013, 2014 respectively. F4 progeny 

mostly skewed towards the J2614-11 male parent (Fig .12f). 

 

4.9.2.7. Hundred grain mass (HGM): The frequency distribution of hundred 

grain mass dipicted differently for two different environments. The frequency 

ranged from 1.22-2.24 and 2.27-3.73 for summer 2013 and 2014. The data 

clearly showed huge environmental influence on grain filling, grain mass quality 

and grain weight too. The frequency distribution showing two different near to 

normal distribution graphs for the hundred grain mass. Maximum F4 progeny in 

summer 2013 displayed 1.8 g HGM and maximum F4 progeny for summer  2014 

was 3 g HGM (Fig .12g). 

 

4.9.2.8. Panicle harvest index (PHI): The frequency distribution graph of 

panicle harvest index (PHI) was near to normal distribution for both the seasons. 

The frequency ranged from  63-78, 66-74 for summer 2013 and 2014 

respectively (Fig .12h). 
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4.10. Frequency distribution for shoot fly resistance component traits 

The data recorded for two different seasons i.e.,kharif2013 and rabi 2013 and 

their frequency distributions are shown in Fig 13 and Table 7. 

 

4.10.1. Seedling leaf blade glossiness (1-5 score): Normal frequency 

distribution was observed for kharif2013 while binomial distribution for rabi 

2013. The mean values ranged from 1.8-4.4, 1.8-4.7 for kharif 2013, and rabi 

2013 respectively and much varition across seasons was not observed (Fig .13a). 

 

4.10.2. Leaf blade trichome density lower (abaxial) (numbers/microscopic 

field): The frequency graphs indicated a clear environmental influence on 

trichome density. During rabi 2013, trichome density increased when compared 

to kharif season 2013. Discontinous distribution observed for both the seasons. 

Mean values ranges from 0-58  and 2-68  for kharif2013,rabi 2014 respectively 

(Fig .13b). 

 

4.10.3. Leaf blade trichome density on the upper (adaxial) side 

(numbers/microscopic field): The frequency distribution for trichome density 

on the upper side of the leaves displayed binomial distribution and trichomes 

were more in rabi than kharif 2013. The means ranged from 9-127, 9-122 for 

both the seasons. The frequency graphs showed the environmental influence on 

the F4 progeny (Fig .13c). 

 

4.10.4. Leaf sheath pigmentation (1-3 score):  The frequency distribution was 

discontinous for both the seasons and the influence of environment appeared less. 

The distribution for both the years was mostly identical (Fig .13d). 

 

4.10.5. Seedling vigour (1-3 score): Seedling vigour was high during rabi when 

compared to kharif2013. The seedling vigour ranged from 1.6-2.7, 1.1-1.7 for 

kharif2013 and rabi 2013 respectively. These results and graphs clearly indicated 

the environmental influence (Fig .13e). 
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4.10.6. Percent shoot fly dead heart (% SFDH): The frequency distribution 

graph displayed that maximum dead hearts were observed during kharif2013 and 

rabi2013. The graphs displayed the environmental influence of SFDH percentage 

and the means ranged from 85-97, 15-60 during kharif 2013 and rabi 2013 

respectively (Fig .13f). 

 

4.11. Frequency distribution for across season analysis: The BLUPs 

calculated across seasons were used for across season frequency distribution 

graphs and showed in Figures 15, 16, 17 and Table 5, 6 and 7. 

 

4.11.1. Across season frequency distribution of % GL: %GL 7 DAF showed a 

left skewed graph and % GL 21 DAF exhibited right skewed distribution. 

Binomial distribution was observed for% GL14 DAF and % GL 28 DAF. The 

frequency distribution graphs for across season percent green leaf area showed 

normal distribution curves for % GL 35 DAF, % GL 42 DAF and % GL 49 DAF 

(Fig .14 and Table 5). 

 

4.11.2. Across season frequency distribution of agronomic traits : Frequency 

distribution graph for across season flowering time, panicle dry weight per plot, 

grain number per plot, grain dry weight, grain number per panicle and panicle 

harvest index recorded normal and near to normal distribution. The value means 

varied according to season and trait. Hundred grain mass and plant height 

showed binominal distribution irrespective of season (Fig .15 and Table 6). 

 

4.11.3. Across season frequency distribution of shoot fly component traits: 

seedling leaf blade glossiness recorded normal distribution for across season 

data. Bimodal/double peaked distribution was observed for trichome density on 

the upper and right skewed distribution graph for trichome density on the lower 

leaves. Binomial distribution was noticed for seedling vigour and discontinous 
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distribution was recorded for leaf sheath pigmentation for across season data (Fig 

.16 and Table 7). 

 

4.12. Heritabilities 

Operative heritability  was observed for all the agronomic and stay green traits of 

selected F4 recombiant population for both summer 2013 and 2014 environments. 

Similarly for shoot fly component traits also heritability values were estimated 

for rainy 2013 and post-rainy 2013. Based on heritability estimates the genotypes 

were selected for breeding programs. Heritability values were calculated from 

anova table and percentage heritability below 20 were noted as less heritable,>30 

– 50  % heritable are moderatly heritable,>60 % heritable are noted as highly 

heritable values. Heritability estimates are represented in tables 8, 9 and 10. 

 

4.12.1. Percent green leaf area (% GL) heritabilities (Table 8) 

 

4.12.1.1. Percent green leaf area 7, 14, 21, 28, 35, 42, and 49 days after 

flowering: The heritability values for F4 progeny are high for % GL 7 DAF and 

ranged from 69-81%. For summer 2013 and 2014 heritabilities were 75 and 69 

respectively. On the other hand, across season heritability was 81%. The 

heritability values for % GL 14 DAF was similar with % GL 7 DAF. The F4 

progeny recorded high heritability for both the seasons i.e., summer 2013 (74) 

and 2014 (68). For across environment analysis also (81), high heritability was 

noticed. The F4 progeny for % GL 21 DAF recorded high and moderate 

heritability for summer 2013 (75) and 2014 (54). For across season analysis (80), 

high heritability was recorded. High heritability was observed for % GL 28 DAF 

for summer 2013 (74) and 2014 (62). High heritability (80) was recorded for 

across season analysis. The F4 progeny exhibited high heritability values for % 

GL 35 DAF during summer 2013 (71) and 2014 (67). Across season analysis, 

high heritability (77) was recorded. % GL 42 DAF of F4 progeny exhibited 

moderate heritability values (57) for summer 2013 but high heritability values 

(80) for summer 2014. In case of across season analysis, high heritability (78) 
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was noticed. The F4 progeny for % GL 49 DAF exhibited moderate heritability 

(52) during summer 2013 and high heritability (75) for summer 2014. Across 

seasons also, high heritability (72) values were noticed. 

 

4.12.2. Agronomic data heritabilities (Table 9) 

 

4.12.2.1. Flowering time (FT): The F4 progeny heritabilities for flowering time 

showed high values (92) for summer 2013 (81) and 2014. Across season values 

also showed high heritability (91). 

 

4.12.2.2. Plant height(PlHt): F4 progeny values for plant height exhibited high 

heritability values  (66) for summer 2013 (88) and 2014. Across envirnment 

analysis also showed high hertability (89). 

 

4.12.2.3. Panicle dry weight per plot (PnDW/pot): The F4 progeny values for 

panicle dry weight per plot heritability were moderate (57) for summer 2013 but 

low for 2014 (35). Across environment analysis, the heritability was moderate 

(46). 

 

4.12.2.4. Grain dry weight per plot (GDW/plot): The F4 progeny heritability 

values for grain dry weight per plot were almost similar to panicle dry weight per 

plot values. For across seasons, heritability was moderate (45) and for individual 

seasons moderate (56) and low (37) heritabilities were noticed for summer 2013 

and 2014 respectively. 

 

4.12.2.5. Grain number per plot (GNP/plot): The F4 progeny heritability for 

grain number per plot showed low heritability (18) for summer 2013 and 

moderate (40) for summer 2014. The across season heritability displayed 

moderatly low (27) values inferring the influence of environment on GNP/plot. 
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4.12.2.5. Grain number per panicle (GNPP): The F4 progeny heritability 

values for GNPP were identical to GNP/plot. Heritability values ranged from 

moderate to low however. 

 

4.12.2.6. Hundred grain mass (HGM): The F4 progeny values for hundred 

grain mass showed conistantly high heritability values. For summer 2013, 87% 

was observed and for summer 2014, 75% heritability was recorded. In case of 

across season analysis also, high heritability (86%)  was noticed. 

 

4.12.2.7. Panicle harvest index (PHI): For F4 progeny, the heritability values 

for panicle harvest index ranged form low to moderate (7-32). For across season, 

heritability was moderate (30). 

 

4.12.3. Heritabilities for shoot fly component traits (Table 10) 

 

4.12.3.1. Seedling leaf blade glossiness: The F4 progeny heritability for seedling 

leaf blade glossiness recoreded high values (66) for kharif(84) and rabi seasons 

in 2013. For across season analysis also, high heritability (83) was recored 

inferring less influence of environment. 

 

4.12.3.2. Leaf blade trichome density on the upper (adaxial) surface 

(numbers/microscopic field): The F4 progeny recorded high estimates of 

heritability  for kharif (74) and rabi (83) seasons. For across environment 

anaysis, high heritability (79) was observed for trichome density. 

 

4.12.3.3. Leaf blade trichome density lower (abaxial) (numbers/microscopic 

field): High heritability (>80) was recorded for both the seasons and across 

season observations. The heritability values ranged from 87-80. 

 

4.12.3.4. Seedling vigour: The F4 progeny seedling vigour heritability values 

were moderate (50) to high (88) for kharif2013 and rabi 2013. Across 
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environment analysis, moderate heritability values (48) were observed indicating 

the environmental influence on trait. 

 

4.12.3.5. Leaf sheath pigmentation (1-3 score): Consistantly very high 

heritability (>85) was recorded for both the season of F4 progeny and across 

season indicating very less influence of environment. 

 

4.12.3.5. Percent shoot fly dead heart (% SFDH):  High heritabilty values ( 

>75) were recorded for % SFDH for F4 progeny in both the seasons. For across 

seasons, moderate heritability was observed and the values ranged from 38-76. 

 

4.13. Correlation coefficient: Correlation is a statistical component which 

showed association or relation between two components. Based on phenotypic 

values, the correlation coefficients were estimated for both the seasons for all the 

stay-green and agronomic data (Table 11) and shoot fly component traits (Table 

12). 

 

4.13.1. % GL correlations :% GL, 7 (week1) days after flowering was 

positively correlated with all the observed weekly % GL scores for both the 

seasons and across seasons (Table 11). 

 

4.13.1.1. % GL correlations with agronomic data and yeild related traits: % 

GL for all the data were negatively correlated with flowering time, plant height 

and HGM for both the summer 2013 and 2014 and across seasons. PnDW/plot 

was positively correlated with % GL7 DAF for both the seasons and positive 

correlation was noticed with % GL 14, 35, 42, 49 DAF for summer 2014 as well 

as for % GL 7 DAF and % GL 49 DAF across seasons. GDW/plot for summer 

2013 was negativley correlated for all the weekly stay-green scores but positively 

correlated for all the weeks during summer 2014. For across season data, 

GDW/plot was negatively correlated for % GL 7, 14, 21, 28, 35 DAF but 

negatively correlated to % GL for 42, 49 DAF. GNP/plot also negatively 
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correlated to % GL 7, 14, 21, 28, 35, 42, 49 DAF for summer 2013 and 

positively correlated to summer 2014 for all weekly stay-green scores. For across 

season, corelation ceofficient analysis was negatively correlated for all the stay-

green weekly scores except % GL 49 DAF. The correlation coefficient analysis 

for GNPP was most similar to GNP/plot. All the stay-green weekly scores were 

negatively correlated for summer 2013 and positively correlated for summer 

2014 as well as for across season except % GL 49 DAF with GNPP  (Table 11). 

 

4.13.2. Agronomic traits correlations 

Days to 50% flowering (FT) was positively correlated (r = 0.03 and r = 0.1) with 

plant height for both the seasons and significantly and positively correlated (r = 

0.16*) with across season data. But, FT was negatively correlated with 

PnDW/plot, GDW/plot, GNP/plot, GNPP for summer 2013. Also, for summer 

2014, it was negatively correlated with GDW/plot, GNP/plot, GNPP and PHI. On 

the other hand, FT was positively correlated with PHI and HGM during summer 

2013 as well as PnDW/plot and HGM for summer 2014. During across season 

data, FT was positively correlated with PnDW/plot, GDW/plot and HGM. FT 

was negatively correlated with GNP/plot, GNPP and PHI for across season. Plant 

height was positively correlated to PnDW/plot, GDW/plot, HGM and PHI for 

both the seasons and significantly and positively correlated to across seasons data 

for PnDW/plot, GDW/plot, HGM and PHI. Plant height was positively correlated 

to GNP/plot and GNPP for summer 2013 and negatively correlated for summer 

2014. Across season data for GNP/plot and GNPP was positively correlated to 

plant height. PnDW/plot was significantly and positvely correlated with 

GDW/plot, HGM, GNP/plot and GNPP for both the summer 2013 and 2014 as 

well as across seasons except for PHI summer 2014. GDW/plot also showed 

significant positive correlation with GNP/plot, GNPP and PHI for both the 

seasons and across seasons except HGM. HGM was negatively correlated with 

GNP/plot and GNPP but, for across seasons, they were negatively correlated. 

GNP/plot displayed significant positive correlation with GNPP for both the 

seasons and across seasons. PHI was negatively correlated for both the seasons 
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and positive correlation for across seasons. PHI showed significant positive 

correlation with GNP/plot and GNPP for both the seasons and across seasons 

(Table 11). 

 

4.13.3. Shoot fly component traits correlation: (Table 12)  

 

4.13.1. Glossiness vs other traits: Seedling leaf blade glossiness was positively 

correlated with leaf sheath pigmentation (r= 0.16* and 0.12) and percent shoot 

fly dead heart (r= 0.03 and 0.16) for kharif 2013 and rabi 2013. For kharif 2013, 

seedling vigour was negatively correlated with glossiness (r= 0.07). For across 

seasons, glossiness was correlated positively with leaf sheath pigmentation (r= 

0.77), seedling vigour (r= 0.01) and percent shoot fly dead heart (r= 0.16). 

Glossiness is negatively correlated to trichome density on the upper surface (r= -

0.08 and-0.25*), trichome density on the lower (r= -0.02 and -0.17*)  for both the 

seasons as well for across seasons (r= -0.16 and -0.11). Seedling vigour was also 

negatively correlated (r= -0.1) with glossiness for rabi 2013.  

 

4.13.2. Leaf sheath pigmentation (LSP) vs other traits : Leaf sheath 

pigmentation was highly positively correlated (r = 0.11, r = 0) to seedling vigour 

for both the seasons. A positive correlation (r = 0.01) was observed for trichome 

density on the upper for kharif 2013 and % SFDH (r = 0.09) for rabiseasons in 

the year 2013. For across seasons, it was positively correlated with seedling 

vigour (r = 0.08) and % SFDH (r = 0.05). LSP was negatively correlated with (r 

= -0, r = -0.01) trichome density upper for both the seasons, as well as for 

trichome density upper (r = -0.06) for rabi2013 and for % SFDH (r = -0.1) 

during kharifin 2013. For across season data, LSP was negatively correlated to 

TDU (r = -0.03) and TDL (r = -0.02) and positively correlated to seedling vigour 

(r = 0.08) and % SFDH (r = 0.05). 

 

4.13.3. Seedling vigour vs other traits: Seedling vigour was negatively 

correlated to trichome density upper (r = -0.01), trichome density lower (r = -
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0.04) and % SFDH (r = -0.33) for kharif 2013 and also % SFDH negatively 

correlated with seedling vigour for rabi in 2013. But, seedling vigour was 

positively correlated with trichome density upper (r = 0.18) and trichome density 

lower (r = 0.11). For across seasons also SV was positively correlated to TDU (r 

= 0.1), TDL (r = 0.04) and % SFDH (r = 0.01). 

 

4.13.4. Trichome density upper vs other traits: TDU was significantly 

positively correlated (r = 0.67* and r = 0.88*) with TDL, but negatively with (r = 

-0.07 and r = 0.66*) % SFDH for both the seasons kharif 2013 and rabi2013. For 

across seasons, significant positive correlation (r = 0.85) was noticed for TDL 

and negative correlation (r = -0.06) for % SFDH. 

 

4.13.5. Trichome density lower vs % SFDH: TDL was negatively correlated 

with % SFDH (r = -0.09 and r =  -0.7) for both the seasons as well as significant 

negative correlation (r = -0.77) to % SFDH across seasons (Table 12). 

 

4.14. Genetic linkage map on total F2 and selected F2 population with SSR 

markers 

The entire F2 population of 1,894 individuals were genotyped with 5 linked SSR 

markers spanning the introgression target region for SBI-10 shoot fly resistance 

component trait QTL alleles from IS18551 present in parent J2614-11, resulting 

in a map distance of 37 cM (Fig .17a). Based on marker arrangement, genotyping 

data were categorized into different classes having homozygotes of RSG04008-6, 

homozygotes of J2614-11, heterozygotes and nearly homozygotes with different 

recombinations. All the possible genotypic recombinations revealed the QTL 

effect on phenotype expression. Based on genotyping data across this target 

region 369, informative recombinants F2 individuals were selected for advancing 

to the F3 generation. The selected recombinant F2s were genotyped at three 

additional markers (Xisep0621, Xisp10262 above Xgap001 and Xisep1011 below 

Xtxp141 on the long-arm of SBI-10). These markers were added to fully 

encompass the ‘Gls’ and ‘Td’ genomic regions and the  linkage map constructed 
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for these selected recombinant F2 individuals had an artifactully expanded total 

length of 71 cM. Marker Xiabt340 was then excluded from the linkage map as it 

showed a large portion of missing data (Fig .17b). When the marker arrangement 

on the genetic map was compared with the physical map, marker order was the 

same (Fig .17b). Based on F2 genotyping data of 7 co-dominant SSR marker and 

F2:3 phenotyping data, 182 highly informative recombinants were selected and 

their genotyping data are represented in GGT (graphical genotype representation) 

(Fig .18) and F3. These werefurther selfed to produce F4 seed which were sent to 

field trials and can be skim-sequenced by GBS for fine mapping the glossy and 

trichome density regions as well as stay-green and agronomic regions on SBI-

10L (Kiranmayee et al., 2016). 

 

4.14.1. Genetic linkage map of highly informative F2 selected recombinants 

 

4.14.1.1. Genotyping by sequencing approach for increasing marker density 

in the target region: 

Selected 182 F2 recombinant genomic DNA samples were sent for Skim- 

sequencing by GBS method for increasing the marker density of the targeted 

genomic region in order to fine map with the help of replicated two season 

environment data. A total of 32,836 SNPs were identified from 182 selected 

recombinants of F2 genotypes from the total genome (Annexure 2). Our aim was 

to focus on SBI-10L and the cross as well as the population developed based on 

the recombination events of SBI-10L region of 45-60Mb where 1515 SNPs were 

identified in the target 15Mb region (~1SNP/kb). SNPeff was utilized for 

annotation of each SNP based on their location to predict their coding effect. 

Nearly 24.16% of SNPs were located in exonic regions (18.5% synonymous 

coding regions + 5.6% non-synonymous coding regions), 47.72% in intergenic 

and 11.32% SNPs in intronic regions (Fig .19). A linkage map was constructed 

from 1894 F2 fine mapping populations derived from an introgression line cross 

RSG04008-6×J2614-11 using 7 SSR markers and obtained a 72 cM map of SBI-

10L of target region. Out of 1894 F2 populations, 369 F2:3 were selected and 152 
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were selfed and F2:4 were utilized for fine mapping in the present study. Out of 

1515 SNP markers and their allelic proportion A, B and H was cross checked 

with the proportion of SSR marker data. Proportion of SNP ‘B’ score was almost 

similar to the proportion of ‘B’ score of SSRs which indicate the SSR and SNP 

genotyping data could be accepted and utilized (Fig .20). A, B and H classes of 

SSR marker data were compared with SNP A, B and H proportion and the 

mismatched markers were excluded from the SNP data set as these markers may 

report alleles from other than those intended. Accordingly, a total of 624 markers 

were left and were used as input for THReaD Mapper studio. THReaD mapper 

studio has excluded 232 markers and constructed a distance matrix with the left 

out 393 SSR and SNP markers (Fig .21). 

 

4.14.1.2. Principle co-ordinate analysis (PCA): Principle co-ordinate analysis 

was carried out for the calculated distance matrix from THReaD mapper studio 

in order to measure the linkage between the markers. PCA produces an arch 

effect named as Horseshoe Effect. PCA of distance matrix results in a horseshoe 

shaped curve and the SSR and SNP data points lying on horseshoe line are 

assumed to be the order of markers of linkage group. Many data points were 

placed centrally and the markers appeared to have huge missing data that need to 

be eliminated from the distance matrix. Markers ordered left to right along the 

blue line traces the order of the markers. Blue data points were threaded through 

green points in order to create map order by projecting the points of curve 

threaded an ellipse through the green points (Fig .22). The markers in the 

horseshoe line were used to project the distance matrix and the graph showed 

high linkage and tightly packed markers. Finally, 265 highly linked SSR and 

SNP markers were left after eliminating 127 marker data points from 392 marker 

data points. The closely linked or less inter-marker distance markers (265) were 

used for linkage map construction (Fig .23). 
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4.14.1.3. Linkage map construction of F2 selected recombinant fine mapping 

population on SBI-10L 

The segregated 265 markers for 152 F4 double recombinants were used for 

linkage map construction derived from cross RSG04008-6 × J2614-11. Join map 

was used for construction of linkage map and inter-marker distance in cM was 

calculated using Kosambi mapping function. All the 265 SSRs and SNPs were 

grouped at LOD 3 into a single group with a total distance of 139.7 cM with 

average inter marker distance of 0.5 cM by using Kosambi mapping function. 

For all the sets of SSRs and SNPs, probability and chi square values were 

calculated and represented in Table 13 and Figure 24. All the markers 

significantly deviated from 1:2:1 Mendilian segregation ratio of F2 population 

due to selected double recombinants. Out of 265 markers, 5 are SSRs and 

remaining 260 are SNPs. The SSR linkage maps constructed are integrated with 

260 SNPs. No large gaps were observed between markers. The genetic map 

distance/the proportion of recombination distances was compared with physical 

positions of the markers on chromosome SBI-10L (Fig .25). Table 13 represents 

linkage map with marker distances and the segregation distortion of 262 SNP-

SSR markers on 152 F2 recombinant progeny and their chi square values and 

significance. 

4.15. QTL mapping of seedling leaf blade glossiness and trichome density in 

total F2 and F2:3 population with initial SSR linkage map 

Moderately large F2 populations (1,894) were screened for seedling leaf blade 

glossiness and trichome density scores, and genotyped at 5 SSR markers across 

the SBI-10L target region. The genotyping and phenotyping data sets were used 

for QTL analysis. The presence of two QTLs, one each for trichome density and 

glossiness were confirmed in this target region. The glossy QTL was mapped 

near Xgap001, but clear flanking markers were not demarcated; the trichome 

density QTL was found in marker interval Xisep630-Xtxp141 with an overhang. 

QTL analysis can also be affected by the size of the early-generation large 
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population, and large populations can result in detection of large numbers of 

QTLs including minor effect QTLs. Based on phenotyping methods used, the 

effect of QTLs can also be impacted, determining which are the major QTLs and 

minor QTLs. At LOD 3, QTLs were detected for seedling leaf blade glossiness 

and trichome density (Table 14) with the large F2 population and trait scoring 

methods used. 

 

4.15.1. SFR component trait QTLs detected in 1,894-individual F2 

population with SSR linkage map 

Composite interval mapping (CIM) analysis identified three QTLs for shoot fly 

resistance, one for leaf glossiness and two for trichome density in the F2 

population of 1,894 individuals. The QTL for seedling glossiness score (QGls10) 

was mapped at LOD 24 (Fig .26a) between markers Xgap001 and Xnhsbm1004 

with an R
2
 value of 6.23% (indicating it is relatively a minor QTL). Two seedling 

leaf blade trichome density score QTLs (QTd10a and QTd10b) were mapped 

between Xisep630 and Xtxp141 at LOD 8.01 with an R
2
 value of 2.88% 

(indicating that they too are minor QTLs). The glossy QTL and trichome density 

QTLs were found with an interval of 0-10 cM, 25-37 cM, respectively, on the 

map of Xgap001 to Xtxp141 interval on SBI-10L in the F2 high resolution 

mapping population (Table 14). F2 QTL mapping resulted in an incomplete 

confidence interval for both ‘Gls’ and ‘Td’ with Xgap001 and Xtxp141 marker 

interval based on F2 genotyping data.  In order to locate exact genomic region of 

variations few more markers were screened for polymorphism between parents 

and 3 polymorphic markers (Xisep0621, Xisp10263 and Xisep1011) were added 

to the linkage map. 

 

4.15.2. SFR component traitQTLs detected among 369 selected F2 

individuals and their derived F3 progenieswith SSR linkage map 

At LOD 5.95, the leaf blade glossiness score QTL (QGls10) was mapped 

between Xisp10263 and Xgap001 with R
2
 of 6.60% in the subset of F3 progenies 

and in the full F2 population it was between same flanking markers with R
2
 

file:///F:/usha_phd/QTL%20MAPPING/QTLmap_9markers_400geno/F2GENO_F3PHENO/f2_f3_gh_rp14-c-eqtl_information1.CSV
file:///F:/usha_phd/QTL%20MAPPING/QTLmap_9markers_400geno/F2GENO_F3PHENO/f2_f3_gh_rp14-c-eqtl_information1.CSV
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of11.37% and LOD of 9.67. The selected recombinant F2 population consisted of 

369 individuals, and its derived F3 progenies were analyzed for trichome density 

QTLs (QTd10) and found co-localized for both the F2 population and its F3 

progenies in the interval between Xisep630 and Xtxp141. The phenotypic 

variation accounted for the trichome density QTL for the selected informative F2-

derived F3 progenies was just 2.03% and for the selected recombinant subset of 

the F2 population, it was 3.70% with LOD values of 2.32 and 4.40 respectively 

(Fig .26b and Table 15). 

 

4.15.3. F2 and F2:3 QTL mapping on selected 369 individuals 

Consistent QTLs were detected in two different seasons with two different 

generations, confirming the presence of conserved QTL regions that need to be 

finely mapped with a larger number of polymorphic molecular markers. Further 

fine mapping by increasing marker density of these QTLs will improve our 

understanding of the molecular basis of both seedling glossiness and seedling 

leaf blade trichome density (morphological component traits contributing to 

sorghum shoot fly resistance). 

 

4.15.4. F2 and F2:3 generation QTL mapping confirmation for SFR 

morphological traits 

For the selected 369 recombinant F2 individuals, QTL mapping analysis was 

conducted and compared with the results obtained using phenotypic data 

collected from their F3 progenies. In both the generations, recombinant F2s and 

their derived F3s, QTL mapping results showed similarity with those obtained 

from the full F2 population. These results reconfirm that a glossiness QTL tagged 

with Xgap001 and at least one trichome density QTL tagged with Xtxp141 were 

localized on sorghum chromosome SBI-10L (Fig .27b and Table 14). This 

confirms that the glossy and trichome density QTLs are located in the target 

marker interval. 
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4.16. GBS SNP-SSR markers integrated into early generation QTL map for 

shoot fly component traits 

 

4.16.1. Fine mapping of seedling leaf blade glossiness and trichome density 

with total 1894 F2 and selected 369 F2:3 population 

The high density linkage map of GBS-SNP integrated SSR map was used against 

the total 1894 F2 seedling leaf blade glossiness and trichome density phenotyping 

data. Two QTLs were mapped for F2 Gls QTL with increased marker density at 

LOD 3 on 34 cM and 70 cM regions of SBI-10L with phenotypic variance of 11 

and 3% respectively. In F3 population, 369 selected recombinants and two QTLs 

were mapped but little shift was noticed at the locations of LOD 3.8 and 4 near 

38 and 42 cM regions respectively explaining 11 and 18% phenotypic variance 

(Fig .27). Nearly 15 cM region was reduced to 1 cM for the selected QTLs with 

increased marker density. In case of trichome density, total F2 QTL was mapped 

at 103.11 cM at LOD 2.7 explaining 8% phenotypic variance. F3 phenotyping 

data of selected individuals was mapped on the high density map and 2 QTLs 

were identified at 66.01 cM and 99.11 cM at LOD 2.5 indicating combined 

phenotypic variance of 8% (Table 16 and Fig .27). 

 

4.16.2. F2 selectedrecombinants and further fine QTL mapping with F4 

replicated field trials 

Composite interval mapping (CIM) was performed using QTL cartographer 2.5V 

software. Thousand permutations test was performed and minimum LOD 2.5 was 

used for QTL detection. The BLUP mean values of each environment and across 

environments were used for QTL detection. QTLs were detected for four 

different seasons. Stay-green QTLs and agronomic QTLs were detected for 

summer 2013 (rabi 2012-2013), summer 2014 (rabi 2013-2014) as well as for 

across environments (Table 17 and 18). Fourteen QTLs were detected for stay-

green during summer 2013 (5) and summer 2014 (9) and 6 QTLs were detected 

for across seasons. For agronomic data, in summer 2013 and 2014, 17 and 16 

QTLs were recorded. For across environment analysis, 21 putative QTLs were 
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detected. For shoot fly resistance, in both kharif 2013 and rabi 2013, QTLs were 

detected alongside across season QTLs. QTLs for shoot fly component traits of 

kharif 2013 andrabi 2013, 9 and14 QTLs respectively were noticed. For across 

environment analysis, 19 putative QTLs were detected for shoot fly component 

traits on sorghum chromosome long arm (SBI-10L). The positions of the QTLs 

detected are illustrated in Table 19 and Fig .28. 

 

4.16.2.1. Stay-green QTL mapping  

The QTLs for stay-green detected for single environment and across environment 

are listed in Table 17 and Figures 28 and 29. Percent GL7 DAF was mapped 

between S10-54877607 and S10-54081973 with 1.8 cM inter marker distance. 

The closest marker was S10_54081973 SNP at a location of 41.41 cM in the 

SBI-10L arm. Recombinant F4 progeny map with phenotypic variance of 8.86% 

was noticed indicating a minor QTL location on SBI-10. Same QTL (41.41 cM) 

was mapped at LOD 2 during summer 2014, but no phenotypic variation was 

observed. During summer 2014, two QTLs were observed with combined 

phenotypic variance that ranged from 16.41%. Q10GL 7a_14 was mapped at 

S10-58311699 (104.81 cM) near to initial flanking SSR marker Xtxp141 and the 

other QGL7b_14 was mapped at SNP marker S10-59020363 (112.11 cM). For 

across season data, the QTL (Q10GL7a_across) was mapped in the SNP 

S10_54585199 at 44.41 cM with 6.7% phenotypic variance. LOD graph is 

represented in the Fig.30a. % GL 14 DAF was also mapped in the same QTL 

region of % GL 7 DAF during summer 2013 at SNP S10_54081973 (41.41 cM) 

and across season SNP S10_545199 (44.41 cM). Q10GL14a_r13 QTL was 

mapped between 40-43 cM interval at the position 41.41 (SNP S10_54081973) 

with LOD at 2.86 and Q10GL14a_r13 was mapped at SNP S10_56433597 

(82.71 cM) at LOD 2.18 with 9%, 4% and 24% of phenotypic variance 

respectively during summer 2013. For summer 2014, five QTLs were mapped. 

Q10GL14a_r14 was mapped at 36.91 cM (SNP S10_54269620), Q10GL14b_14 

at 45.01 cM (SNP S10_54535306), Q10GL14c_14 at 129.51 (SNP 

S10_60287963), Q10GL14d_14 at 29.01 cM (S10_52036901), Q10GL14e_14 at 
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123.61 (SNP S10_60024056) and the combined phenotypic variance was 53.68% 

for summer 2014. For across season data, the % GL 7 DAF and % GL 14 DAF 

were mapped at the same region 44.41 cM (SNP S10_54585199) of SBI-10L at 

LOD 3.7 with phenotypic variance (10.20%), and this appeared as a major QTL 

(stay-green QTLs mapped between Xgap001 and Xtxp141). LOD graphs are 

represented in Figure 30b. % GL 21 DAF was mapped at S10_59342820 SNP 

(115.31 cM) for summer 2013, 2014 and across seasons with phenotypic 

variance of 9%, 9% and 10.14% respectively indicating that it as a major QTL. 

Two different minor QTLs were identified for each season at different locations, 

i.e., Q10GL21b_r13 at 41.41 cM overlapping with % GL 7 and % GL 14 QTLs 

with 6.91% phenotypic variance. Q10GL21c_13 was mapped at 125.01 cM (SNP 

S10_60194381). In case of summer 2014, Q10GL21b_r14 was mapped at 79.41 

cM (S10_56381721) and Q10GL21c_r14 at 99 cM (S10_57248800). LOD 

graphs are shown in the Fig.30c. Q10GL28a_r13 was mapped at LOD 2.5 with 

1.2% phenotypic variance at 125.01 cM (SNP S10_60194381) region 

overlapping with Q10GL21c_13. Q10GL28a_r14 QTL was mapped at 41.41 cM 

(SNP S10_54081973) and is co-localized with the Q10GL7a_13, Q10GL14a_13 

and Q10GL21b_13 of summer 2013. Q10GL28a_14 was mapped at 36.41 cM 

(SNP S10_54269620) at LOD 3.67 with 4.96% phenotypic variance overlapping 

with % GL 14 QTL (Q10GL14a_r14). For across season QTL analysis, 

Q10GL28a_across was mapped at 124.91 cM at LOD 2.7 overlapping with % 

GL 21 QTL (Q10GL21c_r13) and the combined phenotypic variance was found 

15.62%. LOD graphs are shown in the Fig.30d. A single QTL (Q10GL35_r13) 

was detected for this trait for the season rabi2013 with 2% phenotypic variance 

at LOD 2.36 at 121.91 cM (SNP S10_59850910). LOD graphs are represented in 

the Fig.30e. During summer 2013, Q10GL42a_13 QTL was located at 121.91 

cM (S10_59850910) at LOD 2.5 explaining 4.5% of phenotypic variance similar 

to % GL 35 QTL and Q10GL42b_r13 mapped at 131.91 cM (SNP 

S10_60701880) at LOD 2. For summer 2014, Q10GL42a_r14 was observed at 

102.31 cM (SNP S10_57522978) at LOD 2.6, Q10GL42b_r14 at 38.41 cM 

(S10_52812930) Q10GL42c_r14 at 107.81 cM (S10_58460662) and 
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Q10GL42d_r14 at 32.31cM (SNP S10_52781712), identified with a combined 

phenotypic variance of 22.18%. For across season analysis, no QTL was 

detected. LOD graphs were plotted and shown in the Fig.30f. During summer 

2013, a QTL (Q10GL49a_13) was mapped at 34.7 cM (SNP S10_50890593) and 

during 2014, QTLs were not detected but for across season analysis, 2 QTLs 

were identified, Q10GL49a_across at 36.41 cM (SNP S10_ 54269620) 

overlapping with % GL 14, % GL 28 with 2.5 LOD with 2.4% phenotypic 

variance and Q10GL49b_across at 45.01 cM (SNP S10_54535306) overlapping 

with % GL 14 QTL with LOD 3 explaining 4% phenotypic variance. LOD 

graphs are represented in the Fig.30g. 

 

4.16.2.2. Agronomic data and QTL mapping (Table 18) 

 

4.16.2.2.1. QTLs for days to 50% flowering time (QFT): A single QTL 

(Q10FT.a_r13) was obtained for flowering time during summer 2013 at LOD 2.5 

explaining 4.4% phenotypic variance at S10_51065106 (12.41 cM). In summer 

2014, four QTLs (Q10FT.a_14, Q10FT.b_14, Q10FT.c_14, Q10FT.d_14) were 

detected at 25.91 cM (S10_51071502), 36.91 cM (S10_45646835), 44.41 cM 

(S10_54585199), 101.31 cM (S10_57522978) at LOD 3, 5, 5, 2.4 and 3, 12, 12, 

0.0003 % phenotypic variance respectively. For across season analysis, two 

QTLs were detected at LOD 3.4 and 2.8 explaining 17% phenotypic variance. 

Q10FT.c_14 QTL was also detected in across seasons also. LOD graphs were 

plotted and shown in the Fig.31 a. 

 

4.16.2.2.2. QTLs for plant height (PlHt): Four different QTLs were detected 

during summer 2013, Q10PlHt.a_13 was mapped at LOD 3 but without PVE and 

other 4 QTLs were mapped at 40.41 cM (S10_52940776), 49.21 cM 

(S10_54535502), 70.11 cM (S10_55747741), and 108.61 cM (S10_58683017 at 

LOD 2, 3, 2.2, 2.1 respectively explaining 8% combined phenotypic variance and 

Q10PlHt.a_14 at 97.91 cM (S10_58436230) with LOD 3 explaining 7.2% 

phenotypic variance. For across seasons, two QTLs were detected at 70.61 cM 
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(S10_55747741) and 97.91 cM (S10_58436230) with LOD 2.5 and 2.7 

respectively explaining 6.3% combined across season phenotypic variance. LOD 

graphs were plotted and are shown in the Fig.31b. 

 

4.16.2.2.3. QTLs for panicle dry weight per plot (PnDW/plot): In summer 

2013, two QTLs (Q10PnDw/plot.a&b_13) mapped at 105.61 cM (Xtxp141) and 

124.71 cM (S10_60938250) with 4.1% and 9.5% of phenotypic variance 

respectively were detected. During summer 2014, Q10PnDW/plot.a_14, 

Q10PnDw/plot.b_14 and Q10PnDW/plot.c_14 QTLs were detected at 20.91 cM 

(S10_50452521), 109.01 cM (S10_59833299), 117.31 cM (S10_59418734) with 

LOD 3, 3.3 and 2.1 respectively explaining 10.2, 2.7, 7.3% phenotypic variance. 

For across environment analysis, QTLs were not found. LOD graphs are shown 

in the Fig.31c. 

 

4.16.2.2.4. QTLs for grain dry weight per plot (GDW/plot): Data analysis in 

summer 2013, revealed two QTLs at 105.61 cM (Xtxp141) and 120.11 cM 

(S10_60240796) at 2.4 and 2.1 LOD with 10.8% of combined phenotypic 

variance. During summer 2014, three QTLs were mapped at 82.21 cM 

(S10_56205739), 107.41 cM (S10_58831404), 117.31 cM (S10_59418734) at 

LOD 2.7, 3.7 and 2.1 explaining total phenotypic variance of 11%. Across season 

analysis, detected two QTLs Q10GDW/Plot_across (19.41cM) and 

Q10GDW/plot.b_across (107.21cM) at S10_47939440 and S10_58991881 with 

LOD 3.6, 2.8 having 18 and 2.4% phenotypic variance respectively. LOD graphs 

are shown in the Fig.31c. 

 

4.16.2.2.5. QTLs for hundred grain mass (HGM): Four QTL for summer 2013 

and three QTLs for summer 2014 were identified. Q10HGM.a_13 QTL was 

mapped at 0.01 cM (S10_48719070), Q10HGM.b_13 at 99.61 cM 

(S10_57432493), Q10HGM.c_13 at 108.61 cM (S10_58683017), 

Q10HGM.d_13 at 117 cM (S10_59418734) with LOD 3.1, 2.5, 2.2, 2.3 

explaining 12.8% phenotypic variation and QTLs 
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Q10HGM.a_14,Q10HGM.b_14 and Q10HGM.c_14 were mapped at 20.11 (SNP 

S10_50235747), 95.01 cM (S10_57331300) and 126.31 cM (S10_60650722) 

with 3.3, 2 and 2.5 LOD explaining 11.74% combined phenotypic variance. For 

across season analysis also, two QTLs at 20.11 cM that overlaps with summer 

2013 QTL (Q10HGM.d_13), and 117 cM that overlaps with summer 2014 QTL 

(Q10HGM.a_14) were identified at LOD 2.7 and 2.9 explaining 7.2% total 

phenotypic variance. LOD graphs are shown in the Fig.31d. 

 

4.16.2.2.5. QTLs for grain number per plot (GNP/plot) and grain number 

per panicle (GNPP): Six QTLs (Q10GNP/plot.a_13, Q10GNP/plot.b_13, 

Q10GNP/plot.c_13, Q10GNP/plot.d_13, Q10GNP/plot.e_13, 

Q10GNP/plot.f_13) were mapped during summer 2013 for GNP/plot and GNPP 

at 31.01 cM (S10_51919897), 98.41 cM (S10_57552719), 106.7 cM 

(S10_58490384), 113.7 cM (S10_59419567), 129.8 cM (S10_60349808), 133.7 

cM (S10_60354221) with LOD 2.5, 3.8, 32.7, 36.1, 34.1, 35 respectively 

explaining a total of 12% phenotypic variance. During summer 2014, 

Q10GNP/plot.a_14 QTL was detected at 77.61 cM (S10_56249651) with LOD 

2.5 with 1.27% phenotypic variance. Across season analysis also, six QTLs were 

detected for GNP/plot of which 3 QTLs were common from summer 2013. 

Q10GNP/plot a, b, c, d, e, f were located at 103.1 (S10_58356424), 107.4 

(S10_58831404), 113.7 (S10_59419567), 122.8 (S10_59419567), 129.8 cM 

(S10_60349808), 133.7 cM  (S10_60354221) at LOD 4, 7, 17, 5, 17, 19 

respectively, explaining 27% combined phenotypic variance. LOD graphs are 

shown in the Fig.31e. 

 

4.16.2.2.6. QTLs for panicle harvest index (PHI):  During summer 2013, three 

QTLs were identified at 113.71 cM (S10_59419567), 122.51 cM 

(S10_60324251), 125.71 cM (S10_60308140) with 3, 3.6, 2 LOD having 2, 12, 

4.5% of phenotypic variance respectively. During summer 2014, two QTLs were 

identified with a major QTL (Q10PHI.a_14) explaining 15% PVE at 35.31 cM 

(S10_50140543) and the other QTL (Q10PHI.b_14) explaining 9% phenotypic 
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variance at LOD 3.4. A single QTL was observed for across season analysis at 

18.51 cM (S10_51263932) with LOD 2.8 having 10.9% PVE (Fig .31f). 

 

4.16.2.3. QTLs for shoot fly morphological traits (Table 19): 

Integrated GBS SNP genotyping data along with SSR map were utilized for QTL 

mapping of shoot resistance (morphological traits) in both kharif and rabi 

seasons of 2013. 

 

4.16.2.3.1. QTLsfor seedling leaf blade glossiness: During kharif 2013, two 

QTLs were detected at 36.41 cM (S10_54269620) and 42.41 cM (54507175; 

Xgap001) with LOD 4 and 4.5 respectively explaining 7.8% combined 

phenotypic variance. Single QTLs were detected during rabi 2013 for seedling 

leaf blade glossiness on SBI-10L at 36.41 with 4.6 LOD explaining 3.5% 

phenotypic variance. In case of across season analysis, a single consistent glossy 

QTL was observed at 36.41 cM at 3.7 LOD. LOD graphs are shown in the 

Fig.32a. 

 

4.16.2.3.2. QTLs for trichome density upper (TDU): Duringkharif 2013, single 

QTL was detected  at 107.81 cM (S10_58460662) at LOD 7.4 with 13% 

phenotypic variance indicating it as a major QTL. During rabi 2013, two QTLs 

were mapped at 97.31 cM (S10_57400347) and 106.71 cM (S10_58490384) with 

LOD 4.5 and 3.6 explaining 7% phenotypic variance for each QTL. For across 

seasons, four trichome upper density QTLs were detected at 34.71 

(S10_50890593), 97.31 (S10_57400347), 99.61 (S10_57432493) and 109.51 cM 

(S10_58839857) at LOD 2.8, 7.5, 8.3, 6.1 having 5, 14, 14 and 12% phenotypic 

variance. LOD graphs are shown in the Fig.32b. 

 

4.16.2.3.3. QTLs for trichome density lower (TDL): During kharif 2013, three 

different QTLs were detected at 90.51 (S10_57403166), 99.61 (S10_57432493) 

and 108.01 cM (S10_58357039) at LOD 5.6, 23.6, 16 explaining 6.5, 48.5 and 

38.3% phenotypic variance respectively. During rabi 2013, one QTL was 
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observed at 99.61 cM (S10_57432493) at LOD 7 with 8.2% phenotypic variance. 

In case of across seasons, 4 different QTLs were identified at 96.11 cM 

(S10_57088032), 99.61 cM (S10_57432493), 103.61 cM (S10_58022779) and 

108 cM (S10_58357039) at LOD 12, 15, 12, 10 explaining 19, 19, 22, 19 % R
2
 

values respectively. LOD graphs are shown in the Fig.32c. 

 

4.16.2.3.4. QTLs for percent shoot fly dead heart (% SFDH): Single QTL was 

detected during kharif at 25.91 (S10_51071502) with LOD 3 having 7% 

phenotypic variance. Five different QTLs were detected during rabi 2013 at 

82.71 cM (S10_56433597) 90.51 cM (S10_57403166), 99.61 cM 

(S10_57432493), 103.11 cM (S10_58356424) and 108.61 cM (S10_58683017) 

having LOD 3, 9, 12, 11, 9 explaining 0 (no value), 10, 12, 11, 12% phenotypic 

variance. Across season analysis, five QTLs were detected, of which 3 QTLs 

were common between rabi 2013 and two are new at 90.51 (S10_57403166), 

99.61 (S10_57432493), 103.11 (S10_58356424), 105.61 (Xtxp141), and 109.51 

cM (S10_58839857) at LOD 8, 8, 11, 10 and 8 explaining 6, 3, 10, 10 and 9.8 % 

phenotypic variance respectively (Fig .32d). 

 

4.16.2.3.5. QTLs for seedling vigour (SV): During kharif 2013, SV QTL was 

not detected but in case of rabi 2013, two different QTLs were mapped at 56.5 

(S10_55071264) and 60.6 cM (S10_55370553) at LOD 3 with combined 

phenotypic variance of 14%. During across season, for single seedling vigour, 

one QTL was detected on SBI-10L at 62.11 cM (S10_55387439) with LOD 2.5 

explaining 7% phenotypic variance (Fig .32e). 

 

4.16.2.3.6. QTLs for leaf sheath pigmentation (LSP): Two LSP QTLs were 

detected during kharif2013 at 63.61 (S10_55747507) and 108 cM 

(S10_58357039) with LOD 3.8 and 2.5 respectively. The total phenotypic 

variance explained was 9.8%. In case of rabi 2013, single QTL was detected at 

40.41 cM (S10_52940776) at LOD 3 explaining 8% phenotypic variance. Across 

season analysis, three different QTLs were detected at 32.61 cM 
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(S10_52784725), 39.41 cM (S10_53544398) and 42.41 cM (Xgap001) at LOD 

2.7, 3.2, 2.8 explaining 12, 11 and 14% phenotypic variance respectively (Fig 

.32f). 

 

4.17. Fine mapping based on physical map positions of the mapped SSR and 

SNP markers 

Fine mapping was carried out using GBS-SNPs and SSR marker genotyping 

data. F2 Initial map distance was 37.71 cM interval for the target region 

(Xgap001 – Xtxp141), later increasing the marker interval (Xisep0621–

Xisep1011) enhanced the map distance to 72 cM and after integrating the GBS 

markers, the distance has been found at 132 cM interval. The map distance 

increased due to selective recombinants heterozygosity and recombination 

frequency. Small variations were observed between SSR SNP genetic map and 

physical map position of SNPs but, they are nearly similar. In order to locate the 

variant SNPs associated with the trait of interest, the BLUP means for the 

individual environment and across environments were aligned along with the 

GBS - SNP data and SSR data, observed for marker genotype variations. 

 

4.17.1. Fine mapping of stay-green traits: QTL cluster analysis and fine 

mapping  

Many QTL were co-localised for stay-green QTL mapping studies. Out of 33 

detected stay-green QTLs, maximum QTLs were co-localised and clustered also. 

Different % GL stay-green QTLs were identified for different scores but QTLs 

with common positions sharing common confidence intervals were integrated as 

QTL clusters. After looking at the QTL mapping results, most of the QTLs were 

co-localized and cluster of QTLs were observed. So, it was further analyzed and 

19 stg QTLs were identified. These were co-localized into 7 QTL clusters based 

on the present results (Table 20). Cluster QTL cQstg10.1 having 3stg QTLs were 

mapped at the same position 54.26 (36.41cM) where AP2 transcription factor 

was associated with the identified location (Q10GL14a_14, Q10GL28a_14, 

Q1049a_across) (Fig .33). 
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The region cQstg10.2 contained 4 QTLs (Q10GL7a_13,Q10GL14a_13, 

Q10GL21b_13, Q10GL28b_14) of combined PVE and 31% located at 54.08 Mb 

(41.41 cM) position and uncharacterized protein was also associated (Fig .34). 

cQstg10.3 (Q10GL14b_14, Q10GL49b_across) contained 2 QTLs and were 

mapped at the position 54.58 Mb (44.41 cM) with a combined phenotypic 

variance of 10.12%. When the physical map positions were observed, the region 

was of (54585199 - 54593246Mb) 8 kb region encoding two ankyrin repeat 

protein (Sb10g025310) and WD40 repeat family protein (Sb10g025320) (Fig 

.35). cQstg10.4 (Q10GL7a_across, Q10GL14a_across) contained 2 QTLs located 

at the position 54.53 Mb (45.01 cM) with 16.95% of combined phenotypic 

variance encoding NBS-LRR protein (Fig .36). Region cQstg10.5 contained 3 

QTLs (Q10GL21a_13, Q10GL21a_14,and Q10GL21a_across) at 59.34 Mb 

(115.31 cM) position with 28% of combined phenotypic variance and an 

uncharacterized protein was found associated in this region which was identified 

to be a late embryogenesis abundant (LEA 2) encoding protein homolog 

(Sb10g029570) of rice involved in drought stress tolerance (Fig .37). In 

cQstg10.6, 2 QTLs (Q10GL35a_13,Q10GL42a_13) were mapped at 121.91 cM 

in SNP 59.85 Mb, but, at SNP 59.77 Mb position, an intergenic region showed 

variation with phenotypic values and found to be associated with 

calcium/calmodulin protein kinase (Sb10g030040) (Fig .38). In cQstg10.7, 3 

QTLs (Q10GL21c_13,Q10GL28a_13,Q10GL28a_across) were mapped at 60.19 

Mb (125.01 cM) position and fell in the senescence associated protein encoding 

region (SAP) of 5.5% of combined phenotypic variance (Fig .39). 

4.17.1.1. Fine mapping-haplotype analysis of QTL clusters with GBS SNPs 

and candidate gene identification 

All the identified QTL clusters were arranged for haplotype analysis. GBS SNPs 

present around the peak position were examined for their variation and delimited 

with single gene for each QTL clusters (Fig.40). It was narrowed down to single 

SNPs for all the QTL clusters except cQstg10.4 which was reduced to 8 kb 

interval having two candidate genes (Sb0g025310-ankyrin repeat protein and 
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Sb10g025320-Transducin family protein/WD40, a synonymous coding region) 

showed variation when compared to their phenotypic values. In case of 

cQstg10.6, SNP variation was observed at S10_59775456 (120.6 cM) which 

encodes for calcium/calmodulin protein kinase (Sb10g030040) in other than the 

QTL mapped region. Altogether stay-green fine mapping is a complex process 

and from our data sets, we can interpret that transcriptional factors play major 

roles in drought stress as QTL clusters are near AP2 (Sb10g025053), WRKY 

(Sb10g025600) and NAC (Sb10g030770) transcriptional factors.  

4.17.2. Agronomic traits fine mapping: Few of the important agronomic traits 

mapped in the target region were also fine mapped with the help of SSR SNP 

map and the two season’s phenotyping data. 

 

4.17.2.1. Fine mapping of flowering time: Nearly, 3 SNPs showed similar 

genotypic variation with the variation in phenotype. S10_58050693, 

S10_58069749, and S10_58079690 are the three SNPs which showed association 

with flowering time. ‘A’ allele showed early flowering when compared to ‘B’ 

and ‘H’ alleles (Fig .41). 

 

4.17.2.2. Fine mapping of plant height: S10_59020363 SNP showed genotypic 

variation along with the phenotypic data and the J2614-11 parental allele ‘B’ 

showed dwarf phenotype when compared to ‘A’ RSG04008-6 allele and ‘H’ (Fig 

.42). 

 

4.17.2.3. Fine mapping of hundred grains mass: SNP S10_59525199 showed 

variation with the phenotype 100 grain mass. Increased ‘A’ allele showed 

increased grain weight (Fig .43).  

 

4.17.2.4. Fine mapping of grain number per plot: The grain number also 

increased with increased ‘A’ allele from RSG04008-6 parent.S10_59419567 

SNP showed genotypic variation with variation in phenotype (Fig .44). 
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4.18. Shoot fly component traits fine mapping: Seedling leaf blade glossiness 

fine mapping: The QTL mapping itself is a clear fine mapping as single SNP 

was clearly identified in the QTL region. In case of manual observation, a region 

from 54223864 to 54507426 of 283 kb showed variation for glossiness trait. The 

SNP S10_54269620 showed variation for glossy and non-glossy phenotypes in 

maximum of the individuals but due to missing data points, we confined to 283 

kb region. Allele ‘B’ of the SNP S10_54269620 showed glossy phenotype and 

vice versa as B alleles were from J2614-11, a shoot fly donor parent. 

Unfortunately, less number of polymorphic SNPs was detected in this region and 

the nearest SSR marker Xgap001 was previously used as flaking marker for 

glossiness (Fig .45). 

 

4.18.1. Trichome density lower fine mapping: Most important phenotype for 

antixenosis is the trichome density lower. Alignment of genotype and phenotype 

BLUPs showed variation in window between 57331385-57552719 of 221 kb 

region. A single SNP S10_57432493 was clearly identified for trichome density 

lower phenotypic variation showed much variation along with the genotype allele 

cals. Maximum individuals with ‘B’ allele showed higher number of lower 

trichome density but vice versa for ‘A’ allele cal (Fig .46). 

 

4.18.2. Trichome density upper fine mapping: SNPs S10_57400347 and 

S10_57403166 recorded 2819 base pair difference, presence of ‘B’ alleles in 

both the SNPs with more trichome density. These SNPs are also fell in the 

trichome density lower window of 221 kb region and the nearest SSR marker is 

Xtxp141 used as flanking marker for the trichome density for QTL identification 

(Fig .47). 

 

4.19. GWAS for the mapped traits 

In order to identify the marker trait associations (MTAs) between the detected 

SNPs and the trait of interest, BLUPs were calculated for each phenotype of 3 

replicated field data of 152 genotypes. The R package GAPITwas used to 

perform association mapping and to find out significant MTAs of the stay-green 
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weekly scores, agronomic and yield related traits and shoot fly component traits 

represented in tables 20, 21 and 22 respectively. 

 

4.19.1. GWAS for stay-green weekly scores 

The MTAs in the target region on sorghum chromosome SBI-10 for the stay-

green weekly observations with P value less than 10-3 were preferred and shown 

in Table 21 and Figure 48. During summer 2013, nearly 11 loci were found 

associated with % GL 7 with P value ranging from 2.1×10
-3

 - 8.7 × 10
-3

 and with 

r
2
 value of 25-27% in the target region of SBI-10. In case of summer 2014, 

fourteen SNPs were discovered with % GL 7 and P values ranging from 1.1×10
-4

 

to 8.3×10
-3

 and the r
2
 value ranging from 14-17%. In case of across season data, 

12 SNP were observed with % GL 7, and P-value ranging from 3.8×10-3 to 9.6 

×10-3 having r
2
 values ranging from 14-15% (Fig .48a). During summer 2013, 

nearly 14 SNPs were found associated with % GL 14 with P values ranging from 

9.6×10-4 to 6.3×10-3 having r
2
 values ranging from 28-30%. In case of summer 

2014, 10 SNPs were noticed having P values recorded in the range from 1.1×10-

3 to 4.7×10-3 with r
2
 value range from 21-23%. For across season, 11 SNP were 

found associated with P values ranging from 4×10-4 to 9.5×10-3 having 23-26% 

r
2
 values (Fig .48b). During summer 2013, 4 SNPs were observed and the P 

values ranged from 4.8×10-3 to 3.4×10-3 and r
2
 values ranged from 31-33%. In 

case of summer 2014, 12 loci were associated with % GL 21 with P values 

1.1×10-3 to 6.6×10-3 and r
2
 values ranging from 21-23%. In across season data, 

5 SNPs were observed with % GL 21 and P values ranging from 5.6×10-3 to 

7.7×10-3 with r
2
 value of 26% (Fig .48c). During summer 2013, 4 SNPs were 

found associated with % GL 28 with P value ranging 4×10-3 to 8.8×10-3 and r
2
 

value of 30%. During summer 2014, 6 SNPs were recorded with % GL 28 

having P values that ranged from 2.3×10-3 to 5.4×10-3 with r
2
 value of 15-16%. 

For across season analysis, P values ranged from 3.6×10-3 to 9.9×10-3 with r
2
 

value of 22-23% (Fig .48d). During summer 2013, 7 loci were found associated 

with % GL 35 with P values having 2.4×10-3 to 8.3×10-3 and r
2
 values that 

exhibited 23-24%. During summer 2014, 2 SNPs were noticed with P values 
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ranging from 3.1×10-3 to 9.9×10-3 with r
2
 value of 20-22%. For across season 

analysis, 6 MTAs were found with P values ranging from 1.1×10-3 to 8.3×10-3 

and r
2
 values from 17-19% (Fig .48e). During summer 2013, 5 loci were found 

associated with the trait % GL 42 having P values 2×10-3 to 6×10-3 bearing r
2
 

19% values. In case of summer 2014, 2.9×10-4 to 9.5×10-3 with r
2
 values 

ranging from 11-16%. For across season data, 9 MTAs were observed with P 

values ranging from 6.6×10-4 to 9.8×10-3 with r
2
 values of 9-13% (Fig .48f). 

During summer 2013, 8 MTAs were recorded with P values ranging from 

3.7×10-4 to 7.9×10-3 and with 27-30% r
2
 values.  In case of summer 2014, 10 

MTAs were observed with P values 3.1×10-3 to 9.5×10-3 and r
2
 values ranging 

11-13%. For across season analysis, 12 MTAs were noticed having P values 

ranging from 3.3×10-3 to 9.8×10-3 and r
2
 values 11-13% (Fig .48g). 

 

4.19.2. GWAS for agronomic data 

The MTAs in the target region on sorghum chromosome SBI-10 for the observed 

agronomic traits with P value less than 10-3 was preferred and shown in Table 22 

(Fig .49). 

 

4.19.2.1. GWAS for FT: During summer 2013, 4 MTA s were observed with P 

value 5×10-3 to 8.9×10-3 and with 37% r
2
 value. In case of summer 2014, nearly 

5 MTAs were noticed with values ranging from 2.8×10-3 to 7.2×10-3 and with 

22% r
2
 value. Across season analysis resulted in the identification of 16 MTAs 

having P value of 1×10
-3

 to 9.9×10
-3

 and with r
2 

values 25-27% (Fig .49a). 

 

4.19.2.2. GWAS for PlHt: During summer 2013, 12 MTAs were found 

associated having P values ranging from 1.6×10-3 to 7.4×10-3 with an average of 

18% r
2
 values. In summer 2014, GWAS analysis showed 5 MTAs having P value 

1.9×10-3 to 8.4×10-3 with r
2
 value ranging 28-30%. For across season analysis, 

24 MTAs were observed having 1.6×10-4 to 9.7×10-3 P value range and with r
2
 

values of 19-23% (Fig .49b). 
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4.19.2.3. GWAS for PnDW/plot: During summer 2013, 2 SNPs having P values 

ranging from 5.9×10-4 to 1.1×10-3 with average r
2
 value of 18% were found 

associated with PnDW/plot. Eight MTAs were found during summer 2014, with 

P values ranging from 3.1×10-3 to 7.4×10-3 and average r
2
 value of 9%. Across 

season analysis identified 13 SNPs falling in the range of 4.1×10-3 to 9.7×10-3 

with an average r
2
 value of 10% (Fig .49c). 

 

4.19.2.4. GWAS for GDW/plot: During summer 2013, 5 SNP were found 

associated with GDW/plot with P value ranging from 2.1×10-3 to 4.6×10-3 with 

average 9% r
2
 values. In summer 2014, GWAS analysis identified 11 SNPs 

associated with GDW/plot having P value ranging from 4.9×10-3 to 7.4×10-3 

with an average r
2
 value of 7%. For across season analysis, 13 MTAs were 

observed having P value ranging from 4. ×10-3 to 9.7×10-3 with an average of 

10% phenotypic variance (Fig .49d). 

 

4.19.2.5. GWAS for HGM: During summer 2013, 34 MTAs were found 

associated with HGM having P values ranging from 2.6×10-5 to 9.9×10-3 with r
2
 

value ranging from 16-24%. GWAS analysis in summer 2014 resulted in the 

identification of 12 MTAs having 1.6×10-3 to 9.2×10-3 with r
2
 values ranging 

from 8-10%. Across season analysis resulted in the identification of 82 SNPs 

associated with HGM having P value 4×10-4 to 9.4×10-3 and with r
2
 value of 4-

8% (Fig .49e). 

 

4.19.2.6. GWAS for GNP/plot and GNPP: During summer 2013, 7 SNPs were 

found with P values ranging from 9.9×10-4 to 9.2×10-3 and with average r
2
 

value of 19%. In case of summer 2014, 2 SNPs were seen associated with similar 

P value of 8.3×10-3 having similar r
2
 value of 5%. Across season analysis 

showed 5 MTAs with P value of 1×10-3 to 7.2×10-3 with an average r
2
 value of 

12% for both the traits as both the traits are interrelated (Fig .49f). 
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4.19.3. GWAS for shoot fly component traits 

The MTAs identified in the target region of sorghum chromosome SBI-10 with P 

value above 10-3 were considered as significant marker associations with the 

trait. The results of important fine mapped component traits analysed for genome 

wide association studies are represented in Table 23 and Figure 50. 

 

4.19.3.1. GWAS for seedling leaf blade glossiness: During kharif2013, 6 SNP 

were found associated with seedling leaf blade glossiness with P values ranging 

from 6×10-4 to 9.9×10-3 and with average r
2
 value of 20%. In case of rabi 2013, 

17 SNPs were found having P values that ranged from 6.3×10-4 to 9.2×10-3 with 

r
2
 values of 22-25%. For across season analysis, 35 SNPs were found associated 

with P values ranging from 6.7×10-5 to 8.9×10-3 bearing r
2
 values 19-25% (Fig 

.50a). 

 

4.19.3.2. GWAS for seedling leaf blade trichome density lower: During kharif 

2013, 73 significant SNPs were observed with P values ranging from 5.3×10-8 to 

9.3×10-4 having r
2
 values 34-45%. In case of rabi, 70 SNPs were noticed with 

TDL having P values that ranged from 9.7×10-7 to 9.7×10-4 bearing r
2
 values 

44-50%. Across season analysis, identified 8 highly significant SNPs with P 

values ranging from 3.6×10-10 to 9.4×10-5 and with r
2
 value 42-54% (Fig .50b). 

 

4.19.3.3. GWAS for seedling leaf blade trichome density upper: During kharif 

2013, 55 SNPs were found associated with 1.3×10-4 to 9.7×10-3 P value range 

bearing r
2
 values 23-28%. In case of rabi 2013, 75 MTAs were seen with P 

values ranging from 2.5×10-6 to 9.7×10-3 and with r
2
 values 43-50%. Across 

season analysis resulted in the identification of 45 MTAs with P values having 

2.6×10-7 to 9.3×10-5 and with r
2
 values ranging from 38-42%. Several 

agronomic traits and stay-green traits did not show significant associations. 

Several stay-green traits and agronomic traits did not show significant 

associations, may be due to less variant genotypes evaluated for GWAS which 

affect the levels of significance (Fig .50c). 
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4.20. Candidate genes present in the target region: Nearly 200 unique putative 

candidate genes are present in the target region of 15 Mb which encodes different 

functions in different metabolic pathways. Due to increased SNP number, 

synonymous and non-synonymous SNPs were identified in the total SNPs. 

Putative candidate genes are present in the target region of which the 

polymorphic SNPs located within the candidate gene and SSRs close to 

candidate genes were selected. All the possible candidate genes in the target 

region are tabulated in Tables 24, 25 and 26. 

 

4.20.1. Candidate genes for stay-green trait 

Based on the QTL map intervals, stay green related probable candidate genes are 

listed in the Table 24. Nearly 20 genes were found in the % GL7 mapped region, 

out of which eight genes are putative uncharacterized proteins and others are 

SPB proteins (Sb10g029190), hAT  dimerization proteins (Sb10g029230), 

MADS box transcriptional factors (Sb10g029810), mitogen activated protein 

kinases (Sb10g028270), translation initiation factors (Sb10g029245), meiotic 

serine threonine protein kinases (Sb10g028870), UDP glycosyl transferases 

(Sb10g028810), peroxidases (Sb10g028500), pentatricopeptide repeat proteins 

(Sb10g029530), putative receptor protein kinases (Sb10g030270) and aspartic 

proteinase nepnthesin 2 (Sb10g030330) which have been reported earlier in 

different drought stress tolerance studies. Mapped QTL intervals of QGL14 

possessed 19 candidate genes of which (Sb10g024110) helix-loop-helix DNA-

binding, (Sb10g030520, Sb10g030260) similar to senescence-associated protein, 

AGO1 (argounate1-Sb10g031030) and no apical meristem (NAM) proteins 

(Sb10g030770) were reported in different plants and during different studies 

under drought stress conditions. % GL21 DAF mapped QTL region contained 10 

genes which are mostly the putative uncharacterized proteins, and others include 

mitogen activated proteins (MAP) (Sb10g028780), mate efflux family proteins 

(Sb10g029392), anthocyanin1 (Sb10g029660) and Zf-FLZ type plant specific 

zinc finger domains (Sb10g030090). In the % GL28 DAF QTL region, 16 genes 
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were identified; two of them being senescence associated proteins 

(Sb10g030260, Sb10g030520). APETALA2 (AP2-Sb10g025053) type and 

ankyrin repeat protein (Sb10g030330) was strongly up-regulated during 

senescence. In % GL35 DAF QTL region, 11 genes were senescence associated 

(Sb10g030260) and Argonaute proteins (Sb10g031030). QGL42 mapped region 

contained 25 genes of which mostly the putative uncharacterized proteins, 

senescence associated proteins (Sb10g030260,Sb10g030520), APETALA2 

(Sb10g025053), Squamosa binding promoter domains (Sb10g026200) and NAM 

(Sb10g030770) which is a NAC transcription factor protein were noticed. 

QGL49 mapped region contained 10 genes; out of which 3 are putative 

uncharacterized proteins, helix-loop-helix (Sb10g024110), ankyrin repeat protein 

(Sb10g025310) and  a NAM protein (Sb10g030770). These genes could be 

probable candidate genes involved in delaying the senescence. 

 

4.20.2. Candidate genes for agronomic traits 

Probable candidate genes for agronomic traits are listed in the Table 25. 

 

4.20.2.1. Candidate genes for flowering time: On the basics of available 

annotated sorghum genome sequence version 2.4V, probable candidate genes for 

the mapped traits were predicted based on GBS-SNPs. Nearly 25 genes were 

located in the target region that included AP2 transcription factors 

(Sb10g025053), leucine zipper family proteins (Sb10g024190) and squamosa-

promoter binding protein (SBP-Sb10g029190). These genes are supposed to be 

involved in flower development. 

 

4.20.2.2. Candidate genes for plant height: QPlHt mapped region contained 18 

candidate genes of which 6 are putative uncharacterized proteins. O-methyl 

transferase (Sb10g027340, Sb10g027640), meiotic serine proteinase 

(Sb10g028870), pentatricopeptide (PPR) repeat-containing protein 

(Sb10g029530) and Squamosa promoter-binding-like protein 12 (Sb10g029190) 

are perhaps the probable candidate genes.  
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4.20.2.3. PnDW/plot and GDW/plot: Panicle dry weight and grain dry weight 

QTLs were mapped in the same region having 6 candidate genes. Out of them, 3 

are putative uncharacterized proteins, one is meiotic serine proteinase 

(Sb10g028870), and the third is a glycosyl family transferase protein 

(Sb10g028810). 

 

4.20.2.4. HGM: Nearly 16 candidate genes are present of which 9 are putative 

uncharacterized proteins, one MATE efflux family protein (Sb10g029392), and 

two calcium dependant protein kinase proteins (Sb10g030040, Sb10g030150). 

S10_59525199 SNP near to MADS box transcription factor was closely linked to 

hundred grain mass. 

 

4.20.2.5. GNP/plot and GNPP: Nearly 11 genes wereidentified of which 4 are 

putative uncharacterized proteins, 2 are predicted proteins, one is a mitogen 

activated protein kinase (Sb10g028780), and 3 senescence associated proteins 

(Sb10g030260) like aspartic protein nepenthesin-II and similar to chloroplast 

precursor (Sb10g030720). 

 

 

4.20.3. Candidate genes for shoot fly resistance 

The QTL mapped and fine mapped glossiness and trichome density QTL regions 

were searched for the candidate gene and the probable candidate genes are shown 

in the Table 26. 

 

4.20.3.1. Candidate genes for glossiness: Glossines QTL (QGls) region has 15 

candidate genes of which 4 are putative uncharacterized proteins, and others 

include signal transduction receptor-regulator domain (Sb10g024170), cal lipid 

binding domain (Sb10g025040) near to glossy QTL region, glossy15/AP2 

transcription family protein (Sb10g025053), Myb type of transcription factor 

family protein (Sb10g024180), NBS-LRR disease resistance protein 

(Sb10g025283) and ankyrin repeat-containing protein (Sb10g025310). 
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4.20.3.2. Candidate genes for trichome density (upper and lower): Nearly 20 

candidate genes have been identified in the QTDL,QTDU  mapped region where 

4 are putative uncharacterized proteins, and others include WRKY type of 

transcription factor (Sb10g025600), Specikle type POZ protein (Sb10g026730),  

MYB transcription factor (Sb10g027280), ethylene zinc finger protein 

(Sb10g027550), two F-box protein domains (Sb10g027730, Sb10g027760), O-

methyl transferase (Sb10g027340, Sb10g027640), putative thaumatin-protein 

(Sb10g028130), meiotic serine protein (Sb10g028870) and Armidillo repeat 

protein (Sb10g027680). 

 

4.21. Selection of final double recombinant plants: Based on the phenotyping 

data obtained in the present study, nearly 20 sorghum double recombinants with 

a delay in senescence response as well as shoot fly resistance traits with high 

agronomic performance are listed in the Table 27. These selected recombinants 

were further selfed until homozygosity for the desired traits and an introgression 

line with high yield having both stay-green trait and shoot fly resistance was 

obtained. Therefore, the pyramided traits can be utilized in breeding programs 

that are aimed at improving sorghum lines with better resistance characters.  
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Table 2: Parents and grand parents variation and their genotype confirmation 
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Comment for SFR Poly poly poly poly mono poly poly poly poly poly poly poly poly poly 

Is18551_B10PL1 176.08 254.03 138.47 132.62 233.04 167.01 224.03 196.49 140.37 210.01 201.6 188.79 175.9 273.31 

BTX623_D12 175.06 196.05 140.75 140.82 233.39 163.38 235.99 197.47 147.08 214.3 203.75 163.71 175.15 271.46 

E36_1_F12pl3 176.19 224.77 138.64 132.4 235.28 159.15 234.35 198.46 142.5 239.5 203.62 163.57 170.03 260.91 

R16 175.96 276.25 132.51 132.65 232.87 169.26 219.43 196.22 140.56 205.78 203.76 192.27 154.7 282.72 

Comment for STN Poly poly poly mono poly poly poly poly poly poly mono poly poly poly 

Comment for fine-mapping Mono Poly Mono Mono Poly Poly Poly Poly poly poly poly poly poly Poly 

J2614_1 176.2 253.97 138.63 132.51 233.24 166.59 224.43 196.32 140.34 209.21 201.64 190.62 176.14 273.62 

J2614_10 176.54 254.95 138.63 132.51 233.12 167.46 224.32 196.27 140.53 210.61 201.47 190.62 176.09 273.27 

J2614_11 176.03 254.62 138.62 132.53 233.17 167.26 224.36 196.37 140.34 210.39 201.48 190.73 176.09 273.52 

J2614_12 176.55 255.47 138.62 132.56 233 167.26 224.41 196.23 140.34 210.29 201.29 190.66 176.24 273.7 

J2614_2 176.32 254.94 138.63 132.56 233.35 166.72 224.42 196.45 140.53 209.9 201.65 191.13 176.2 273.62 

J2614_3 177.01 254.44 138.63 132.56 233.16 166.87 224.31 196.27 140.34 209.86 201.66 192.87 176.14 273.62 

J2614_5 176.77 254.2 138.62 132.45 233.41 165.97 224.22 196.43 140.34 208.2 201.47 191.13 176.2 273.88 

J2614_6 176.54 254.82 138.62 132.66 233.36 166.66 224.33 196.41 140.5 209.38 201.47 190.48 176.14 273.71 

J2614_7 176.72 253.85 138.63 132.49 233.6 166.26 224.32 196.49 140.53 209.02 201.83 190.37 176.93 273.73 

J2614_8 176.6 254.74 138.63 132.41 233.6 165.49 224.52 196.49 140.31 207.18 201.64 189.91 176.31 273.92 

J2614_9 175.73 254.32 138.63 132.52 233.17 167.32 224.42 196.47 140.34 210.66 201.63 190.38 176.2 273.59 

Rsg04008 175.61 225.13 138.64 132.41 235.04 159.3 234.47 198.28 142.49 239.63 203.77 163.56 170.17 260.83 

Rsg04008 175.44 224.68 138.46 132.38 235.02 159.48 234.59 198.28 142.49 239.59 203.61 163.39 170.31 260.81 

Rsg04008_1 176.08 223.81 138.63 132.56 235.3 159.31 234.43 198.39 142.7 240.35 203.7 164.55 170.4 261.11 

Rsg04008_10 176.73 224.43 138.44 132.5 235.33 159.12 234.49 198.4 142.57 239.49 203.65 163.78 170.08 260.97 

Rsg04008_2 175.85 223.72 138.63 132.59 235.36 159.31 234.29 199.29 142.63 240.03 203.67 164.35 170.43 261.21 

Rsg04008_3 176.03 223.64 138.63 132.39 235.54 159.32 234.37 198.41 142.62 240.2 203.84 163.61 170.35 261.33 

Rsg04008_4 176.83 223.91 138.63 132.55 235.62 158.99 234.37 198.59 142.56 240.14 203.84 163.46 170.09 261.33 

Rsg04008_5 175.73 223.91 138.63 132.48 235.22 158.99 235.81 198.42 142.49 240.16 203.64 163.6 170.32 261 

Rsg04008_6 175.78 224.88 138.63 132.49 235.33 159.83 235.57 198.42 142.5 239.75 203.84 164.33 170.17 261.01 

Rsg04008_7 176.03 224.6 138.63 132.68 235.26 159.65 235.57 198.41 142.7 239.52 203.66 164.47 170.13 260.95 

Rsg04008_8 175.49 225.4 138.63 132.44 235.26 159.83 235.58 198.57 142.5 239.85 203.67 164.16 170.41 261.01 

Rsg04008_9 175.85 224.62 138.63 132.65 235.33 159.49 234.37 198.4 142.5 239.72 203.64 164.13 170.09 260.96 

TABLES 
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Table 3:  F1 Progeny confirmation 
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X
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b
tp

4
6
6
 

p
er

ce
n

ta
g
e 

h
et

er
o
zy

g
o
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ty
 

BTx623 BTx623 260 260 212 212 163 163 222 222 193 193 195 195 146 146 182 182 234 234 0.00 

E36-1 E36-1 A A A A A A A A A A A A A A A A A A 0.00 

IS18551 IS18551 B B B B B B B B B B B B B B B B B B 0.00 

U110049 J2614_11 B B B B B B B B B B B B B B B B B B 0.00 

U110054 
RSG04008-6 

_5 
A A A B A B A B A B A B A B A B A B 0.00 

U110055 
RSG04008-6 

x J 2614-11 
A B A B A B A B A B A B A B A B A B 100.00 

U110056 
RSG04008-6 
x J 2614-11 

NA NA A B A B A B A B A B A B A B A B 88.00 

U110057 
RSG04008-6 

x J 2614-11 
A B A B A B A B A B A B A B A B A B 100.00 

U110058 
RSG04008-6 

x J 2614-11 
A B A B A B A B A B A B A B A B A B 100.00 

U110059 
RSG04008-6 
x J 2614-11 

A B A B A B A B A B A B A B A B A B 100.00 

U110060 
RSG04008-6 

x J 2614-11 
A B A B A B A B A B A B A B A B A B 88.00 

U110061 
RSG04008-6 

x J 2614-11 
A B A B A B A B A B A B A B A B A B 100.00 

U110062 
RSG04008-6 
x J 2614-11 

A B A B A B A B A B A B A B A B A B 100.00 

U110063 
RSG04008-6 

x J 2614-11 
A A A A A A A A A A A A A A A A A A 0.00 

U110064 
RSG04008-6 

x J 2614-11 
A B A B A B A B A B A B A B A B A B 100.00 

U110065 
RSG04008-6 
x J 2614-11 

A B A B A B A B A B A B A B A B A B 100.00 

U110066 
RSG04008-6 

x J 2614-11 
A B A B A B A B A B A B A B A B A B 100.00 
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Table 4: Descriptive statistics and correlations of seedling leaf blade glossiness score and trichome density 

score in the full F2 population and F3 progenies derived from 369 selected informative recombinant F2 

individuals 

    P1 P2 

Min Max Mean ± SE 

CV Correlations 

S .NO. Trait (RSG) (J2614) (%) Gls Td 

1 F2Gls 5 1 0.99 4.96 1.94 ± 0.09 13.66 1 

 2 F2Td 2 4 0 5.08 2.66 ± 0.11 11.89 -0.0097* 1 

3 F3Gls 5 1 1.02 4.94 2.10 ± 0.24 11.91 1 

 4 F3Td 2 5 0.27 4.9 3.63 ± 0.25 11.68 -0.0065* 1 

 

         * Correlation significant at P<0.05, F2 =1,894 individuals, F3=selfed progeny of 369 selected informative recombinant F2 individuals. CV= coefficient 

of varience,  Gls Glossiness,Td Trichome density 

Table 5 : Mean values of parents, F2:4 progeny, and their range for individual seasons and across seasons  for stay-

green traits derived from cross RSG04008-6 × J2614-11. 

    

 

Post rainy 2012-2013   Post rainy 2013 - 2014   Across season   

  

Mean Range  Mean Range  Mean Range  

S. No. Trait 

RSG04

008-6 

F4 

progeny 

J2614-

11 F4 progeny 

RSG040

08-6 

F4 

progeny 

J2614

-11 F4 progeny 

RSG0

4008-6 

F4 

progen

y 

J2614

-11 F4 progeny 

1 %GLA 7 DAF 88.38 88.67 83.68 72.33 - 97.78 99.03 96.05 95.24 79.14 - 99.26 93.86 92.36 89.56 76.31 - 98.65 

2 %GLA 14 DAF 79.18 79.58 72.06 58.73 - 96.64 84.22 84.29 85.26 68.60 - 96.93 81.71 81.94 78.65 63.34 - 96.69 

3 %GLA 21 DAF 62.52 65.96 61.88 43.29 - 93.77 74.39 73.73 75.05 63.34 - 84.91 68.43 69.85 68.48 54.12 - 90.37 

4 %GLA 28 DAF 47.00 50.72 47.68 29.92 - 78.11 66.49 65.03 64.04 51.36 - 77.49 56.83 57.88 55.78 42.44 - 77.36 

5 %GLA 35 DAF 34.46 39.49 37.72 22.90 - 62.25  54.17 51.57 50.54 19.89 - 66.05 44.39 45.53 44.19 19.74 - 61.07 

6 %GLA 42 DAF 23.44 29.41 30.73 17.19 - 45.88 25.96 39.73 40.1 6.09 - 53.89 25.28 34.71 35.25 13.73 - 48.77 

7 %GLA 49 DAF 17.12 18.56 20.33 9.90 - 31.90 11.68 29.07 28.4 4.73 - 44.61 14.67 24.01 24.94 8.72 - 38.12 
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Table 6: Mean values of parents, F4 progeny, and their range for individual seasons and across seasons for 

Agronomic traits derived from cross RSG04008-6 × J2614-11. 

    Post rainy 2012-2013   Post rainy 2013 - 2014     

Acros

s 

season     

 

  Mean Range  Mean Range  Mean Range  

S. 

No. Trait 

RSG040

08-6 

F4 

progeny 

J2614-

11 F4 progeny 

RSG040

08-6 

F4 

progeny J2614-11 F4 progeny 

RSG04

008-6 

F4 

proge

ny 

J2614

-11 F4 progeny 

1 FT 61.33 68.14 76.83 57.97 - 79.94 86.95 82.91 82.30 75.33 - 90.29 75.00 75.52 79.21 67.11 - 83.95 

2 PlHt 131.89 116.67 89.07 84.78 - 147.09 193.96 175.14 120.60 

105.19 - 

225.34 163.99 145.93 

103.2

0 92.65 - 181.09 

3 ETNP 0.97 0.96 0.92 0.90 - 1.00 1.55 1.47 1.40 1.34 - 1.79 1.27 1.22 1.14 1.14 - 1.38 

4 PnDW/plot 598.1 577.49 372.53 416.17 - 779.52 945.95 935.88 1016.03 

763.31 - 

1102.78 768.65 756.15 

738.2

3 668.70 - 887.70 

5 GDW/plot 392.72 397.96 233.42 267.61 - 539.88 632.53 650.60 732.21 

531.50 - 

777.47 513.47 523.70 

518.1

9 461.19 - 599.05 

6 PHI 66.9 68.4 62.88 63.08 - 78.21 68.63 70.14 71.69 66.35 - 74.21 67.48 69.27 67.72 65.00 - 73.43 

7 HGM 2.14 1.94 2.06 1.28 - 2.44 3.28 2.95 2.71 2.27 - 3.73 2.70 2.45 2.38 1.79 - 3.07 

8 GNP/plot 20456.12 21232.45 

17807.

9 

18453.82-

43294.30 

20212.2

5 22191.42 26891.54 

17204.13 - 

27250.23 

20746.0

4 

21720.

92 

21254

.12 

19611.06 - 

33652.47 

9 GNPP 786.78 816.64 684.92 709.77-1665.17 777.40 853.52 1034.29 
661.7 - 
1048.09 797.92 835.42 

817.4
7 754.27 - 1294.33 
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Table 7: Mean values of parents, F4 progeny, and their range for individual seasons and across seasons  for shoot 

fly component traits derived from cross RSG04008-6 × J2614-11. 

    

  

Rainy 2013 

    

Post-rainy 2013 

  

Across season 

  

  

Mean Range  Mean Range  Mean Range  

S. 

No. Trait 

RSG04

008-6 

F4 

progeny 

J2614

-11 F4 progeny 

RSG0

4008-6 

F4 

progeny 

J2614-

11 F4 progeny 

RSG04

008-6 

F4 

progeny 

J2614-

11 F4 progeny 

1 Gls 3.48 3.04 2.66 1.82 - 4.41 4.62 3.18 2.61 1.87 - 4.78 4.09 3.11 2.59 1.87 - 4.77 

2 Tdu 28.04 64.13 93.3 9.69 - 127.57 9.97 58.1 91.83 8.59 - 122.00 17.64 61.11 93.17 8.13 - 120.29 

3 Tdl 2 14.37 57.95 0.11 -58.93 5.32 28.5 46.9 1.80 - 68.45 2.56 21.45 53.62 1.43 - 61.77 

4 SV 2.56 2.44 2.65 1.65 - 2.77 1.1 1.3 1.88 1.10 - 1.77 1.29 1.87 2.29 1.30 - 2.30 

5 LSP 1.09 1.86 2.58 1.08 - 2.89 1.54 2.05 2.91 1.06 - 2.97 1.84 1.96 2.79 1.04 - 2.95 

6 
%SFD
H 97.17 94.21 91.69 85.13 - 97.89 62.29 38.79 22.53 15.33 - 60.62 78.32 66.49 58.16 52.42 - 76.24 

 

 

Table 8: Genotype variance, genotype X environment, standard error, and heritability estimates (on mean 

basis) for stay-green scores derived from cross RSG04008-6 × J2614-11 

    

STG ANOVA tables 

    

 

    Post-rainy 2012-2013 Post-rainy 2013 – 2014 Across season   

 
S. No. Trait σ2g SE± h2 σ2g SE± h2 σ2g Gх E SE± h2 

 

1 %GLA 7 DAF 64.34 7.941 75.38 26.42 5.916 69.37 73.44 100.99 ** 7.00 81.80 

 

2 %GLA 14 DAF 183.30 13.8 74.27 42.63 7.644 68.64 181.90 256.5 ** 11.16 81.42 

 

3 %GLA 21 DAF 198.33 13.85 75.63 17.13 6.538 54.59 160.13 283.3 ** 10.83 80.39 

 

4 %GLA 28 DAF 121.70 11.13 74.65 30.21 7.308 62.93 120.54 182.82 ** 9.42 80.31 

 

5 %GLA 35 DAF 63.26 8.775 71.14 62.33 9.484 67.52 98.61 164.42 ** 9.14 77.99 

 

6 %GLA 42 DAF 29.74 8.04 57.98 97.99 8.385 80.70 80.03 210.67 ** 8.21 78.08 

 

7 %GLA 49 DAF 28.20 8.719 52.67 104.33 10.13 75.31 79.26 249.26 ** 9.44 72.73 
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Table 9 : Genotype variance, genotype × environment, standard error, and heritability estimates (on mean basis) 

for agronomic traits derived from the cross RSG04008-6 × J2614-11 

            
    Post-rainy 2012-2013   Post-rainy 2013 – 2014   Across season   

S. 

No. Trait σ2g SE± h2 σ2g SE± h2 σ2g Gх E SE± h2 

1 ETNP 0.00 0.18 

-

3.6072144 0.01 0.35 23.72 0.01 0.09068 * 0.28 22.12444 

2 FT 26.86 2.55 92.536662 10.85 2.73 81.31 26.77 26.653 ** 2.65 91.94385 

3 PlHt 170.87 15.08 69.260911 550.07 14.38 88.86 634.07 431.5 ** 14.79 89.69257 

4 PHI 9.48 7.61 32.954809 1.73 8.02 7.45 8.75 69.66 ** 7.65 30.98808 

5 PnDW/plot 4307.00 4562.00 57.941704 8033.33 208.50 35.66 7717.67 40344 ** 162.40 46.73597 

6 HGM 0.04 0.12 87.951618 0.07 0.26 75.91 0.08 0.10271 ** 0.19 86.91109 

7 GNP/plot 12233333 12822 18.2496 67,100,00 5443.00 40.45 12,460,000 11,640,0000 ns 9850 27.81 

8 GDW/plot 3341.67 88.51 56.131019 3906.67 139.50 37.59 3610.33 21672 ** 113.40 45.69849 

9 GNPP 18072.00 493.20 18.2284 9924.00 209.40 40.45 18417.00 172259 ns 378.80 27.79617 

 

 

Table 10: Genotype varience,GX E interactions,respective  Standard Error, and Heritability estimates (on mean 

basis) for component traits of shoot fly resistance derived from cross RSG04008-6 × J2614-11 

 

    Rainy 2013 Post-rainy 2013  Across season MSS     

S. No. Trait σ2g Genotype MSS SE± h2 σ2g Genotype SE± h2 σ2g Genotype Gх E SE± h2 

1 %SFDH 24.13 95.14 ** 4.771 76.08 174.73 692.5 ** 12.97 75.70 61.67 486.32 ** 95.53 ** 9.77 38.04 

2 GS 0.50 2.24 ** 0.8668 66.46 0.50 1.7797 ** 0.52 84.96 0.96 3.4569 ** 0.5095 ns 0.71 83.72 

3 LSP 0.54 1.8835 ** 0.4994 86.76 0.49 1.6666 ** 0.43 88.85 0.96 3.2202 ** 0.2176 ** 0.47 89.76 

4 SV 0.11 0.659 ** 0.5735 50.09 0.49 1.6666 ** 0.43 88.85 0.10 0.651 ** 0.2336 * 0.48 48.03 

5 TDL 203.46 699.7 ** 9.451 87.24 278.00 1031.8 ** 14.06 80.83 397.83 1462.5 ** 143.6 ** 11.98 81.61 

6 TDU 985.33 3977 ** 31.96 74.33 725.00 2601.6 ** 20.65 83.60 1433.60 5439.9 ** 724 ** 26.91 79.06 

* significant at 0.05 ** significant at 0.001 ns  non significant non significant      Rainy-kharif               Post-rainy-rabi 
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Table 11: Correlation between stay-green weekly scores with agronomic traits and yield related traits for summer 

2013, summer 2014, across season data. 

   

Summer 2013 

           

  FT_13 
PlHt_

13 
ETNP

_13 

PnDW
/plot_1

3 

GDW/
plot_1

3 

PHI_
13 

HGM
_13 

GNP/
plot_1

3 

GNPP
_13 

%GL7
_13 

%GL1
4_13 

%GL21
_13 

%GL28
_13 

%GL35
_13 

%GL42
_13 

%GL49
_13 

FT_13 1 0.03 -0.36* -0.05 0 0.11 0.19* -0.02 -0.02 -0.83* -0.87* -0.87* -0.81* -0.71* -0.56* -0.73* 

PlHt_13 0.03 1 0.1 0.3* 0.32* 0.19* 0.35* 0.1 0.1 -0.07 -0.07 -0.1 -0.09 -0.1 -0.07 -0.05 

ETNP_13 -0.36* 0.1 1 0 -0.03 -0.06 -0.1 -0.02 -0.02 0.24* 0.28* 0.26* 0.23* 0.18* 0.06 0.13 

PnDW/plot_1

3 

-0.05 0.3* 0 1 0.94* 0.27* 0.25* 0.38* 0.38* 0.01 -0.01 -0.05 -0.06 -0.07 -0.07 -0.04 

GDW/plot_1
3 

0 0.32* -0.03 0.94* 1 0.58* 0.18* 0.45* 0.45* -0.02 -0.04 -0.09 -0.09 -0.1 -0.1 -0.05 

PHI_13 0.11 0.19* -0.06 0.27* 0.58* 1 -0.12 0.37* 0.37* -0.08 -0.09 -0.14 -0.14 -0.14 -0.14 -0.06 

HGM_13 0.19* 0.35* -0.1 0.25* 0.18* -0.12 1 -
0.26* 

-0.26* -0.15 -0.17* -0.16* -0.1 -0.06 0.06 0 

GNP/plot_13 -0.02 0.1 -0.02 0.38* 0.45* 0.37* -0.26* 1 1* -0.1 -0.07 -0.1 -0.13 -0.14 -0.21* -0.1 

GNPP_13 -0.02 0.1 -0.02 0.38* 0.45* 0.37* -0.26* 1 1 -0.1 -0.07 -0.1 -0.13 -0.14 -0.21* -0.1 

%GL7_13 -0.83* -0.07 0.24* 0.01 -0.02 -0.08 -0.15 -0.1 -0.1 1 0.98* 0.92* 0.89* 0.82* 0.69* 0.81* 

%GL14_13 -0.87* -0.07 0.28* -0.01 -0.04 -0.09 -0.17* -0.07 -0.07 0.98* 1 0.93* 0.9* 0.81* 0.67* 0.83* 

%GL21_13 -0.87* -0.1 0.26* -0.05 -0.09 -0.14 -0.16* -0.1 -0.1 0.92* 0.93* 1 0.98* 0.93* 0.8* 0.85* 

%GL28_13 -0.81* -0.09 0.23* -0.06 -0.09 -0.14 -0.1 -0.13 -0.13 0.89* 0.9* 0.98* 1 0.97* 0.87* 0.87* 

%GL35_13 -0.71* -0.1 0.18* -0.07 -0.1 -0.14 -0.06 -0.14 -0.14 0.82* 0.81* 0.93* 0.97* 1 0.94* 0.87* 

%GL42_13 -0.56* -0.07 0.06 -0.07 -0.1 -0.14 0.06 -

0.21* 

-0.21* 0.69* 0.67* 0.8* 0.87* 0.94* 1 0.85* 

%GL49_13 -0.73* -0.05 0.13 -0.04 -0.05 -0.06 0 -0.1 -0.1 0.81* 0.83* 0.85* 0.87* 0.87* 0.85* 1 
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Summer 2014 

  FT_14 
PlHt_

14 

ETNP_

14 

PnDW
/plot_1

4 

GDW/
plot_1

4 

PHI_

14 

HGM

_14 

GNP/p

lot_14 

GNP

P_14 

%GL7

_14 

%GL14

_14 

%GL21

_14 

%GL28

_14 

%GL35

_14 

%GL4

2_14 

%GL49

_14 

FT_14 1* 0.1 0.06 0.02 0 -0.1* 0.05 0 0 -0.6* -0.9* -0.7* -0.6* -0.7* -0.5* -0.6* 

PlHt_14 0.1* 1 -0.2 0.15 0.2 0.06* 0.39 -0.1 -0.1 -0.2* -0.2* -0.3* -0.3* -0.1* -0* 0* 

ETNP_14 0.06* -0.2 1 -0.2 -0.2 0.05* -0.1 -0.1 -0.1 0.08* 0.1* 0.27* 0.29* 0* 0.03* -0* 

PnDW/plot_1
4 

0.02* 0.15 -0.2 1 0.87 -0.3* 0.18 0.6 0.6 0.07* 0.02* -0* -0* 0.03* 0.06* 0.04* 

GDW/plot_1

4 

-0* 0.2 -0.2 0.87 1 0.18* 0.09 0.77 0.77 0.09* 0.04* 0* 0* 0.05* 0.09* 0.08* 

PHI_14 -0.1* 0.06 0.05 -0.3 0.18 1* -0.2 0.3 0.3 0* 0.05* 0.02* 0.04* 0.05* 0.05* 0.06* 

HGM_14 0.05* 0.39 -0.1 0.18 0.09 -0.2* 1 -0.5 -0.5 -0.1* -0* -0.1* -0.1* 0* 0.02* -0.1* 

GNP/plot_14 -0* -0.1 -0.1 0.6 0.77 0.3* -0.5 1 1 0.1* 0.02* 0.03* 0.06* 0.03* 0.05* 0.05* 

GNPP_14 -0* -0.1 -0.1 0.6 0.77 0.3* -0.5 1 1 0.1* 0.02* 0.03* 0.06* 0.03* 0.05* 0.05* 

%GL7_14 -0.6* -0.2 0.08 0.07 0.09 0* -0.1 0.1 0.1 1* 0.68* 0.64* 0.71* 0.66* 0.52* 0.66* 

%GL14_14 -0.9* -0.2 0.1 0.02 0.04 0.05* 0 0.02 0.02 0.68* 1* 0.87* 0.82* 0.81* 0.61* 0.62* 

%GL21_14 -0.7* -0.3 0.27 0 0 0.02* -0.1 0.03 0.03 0.64* 0.87* 1* 0.88* 0.76* 0.58* 0.55* 

%GL28_14 -0.6* -0.3 0.29 0 0 0.04* -0.1 0.06 0.06 0.71* 0.82* 0.88* 1* 0.74* 0.55* 0.6* 

%GL35_14 -0.7* -0.1 0 0.03 0.05 0.05* 0 0.03 0.03 0.66* 0.81* 0.76* 0.74* 1* 0.79* 0.71* 

%GL42_14 -0.5* 0 0.03 0.06 0.09 0.05* 0.02 0.05 0.05 0.52* 0.61* 0.58* 0.55* 0.79* 1* 0.82* 

%GL49_14 -0.6* 0 0 0.04 0.08 0.06* -0.1 0.05 0.05 0.66* 0.62* 0.55* 0.6* 0.71* 0.82* 1* 

 

 

 

 

 

 

 

Table 11 (Contd..) 
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Across season data 

 

  FT PlHt ETNP 

PnDW/

plot 

GDW/

plot PHI HGM 

GNP

/plot 

GNP

P 

GLA1

3_W1 

GLA13_

W2 

GLA13

_W3 

GLA1

3_W4 

GLA13

_W5 

GLA1

3_W6 

GLA13

_W7 

FT 1 0.16* -0.19* 0.01 0.04 -0.08 0.01 -0.01 -0.01 -0.85* -0.91* -0.87* -0.83* -0.77* -0.6* -0.72** 

PlHt 0.16* 1 -0.13 0.31* 0.16* 0.18* 0.24* 0.04 0.04 -0.25* -0.25* -0.32* -0.29* -0.2* -0.11 -0.06 

ETNP -0.19* -0.13 1 -0.22* -0.08 -0.14 
-

0.18* 0.08 0.08 0.16 0.18* 0.25* 0.27* 0.14 0.09 0.06 

PnDW/plot 0.01 0.31* -0.22* 1 0.29* 0.54* 0.88* 0.5* 0.5* 0 -0.07 -0.12 -0.11 -0.11 -0.07 0.03 

GDW/plot 0.04 0.16* -0.08 0.29* 1 0.04 

-

0.17* 0.35* 0.35* -0.01 -0.05 -0.08 -0.06 -0.02 0.02 0.07 

PHI -0.08 0.18 -0.14 0.54* 0.04 1 0.53* 0.29* 0.29* 0.03 -0.02 -0.12 -0.14 -0.1 -0.11 0.04 

HGM 0.01 0.24* -0.18* 0.88* -0.17* 0.53* 1 0.35* 0.35* 0 -0.06 -0.1 -0.1 -0.11 -0.09 -0.02 

GNP/plot -0.01 0.04 0.08 0.5* 0.35* 0.29* 0.35* 1 1* -0.02 -0.08 -0.1 -0.09 -0.1 -0.1 0.02 

GNPP -0.01 0.04 0.08 0.5* 0.35* 0.29* 0.35* 1* 1 -0.02 -0.08 -0.1 -0.09 -0.1 -0.1 0.02 

GLA13_W1 -0.85* 

-

0.25* 0.16 0 -0.01 0.03 0 -0.02 -0.02 1 0.93* 0.87* 0.86* 0.79* 0.63* 0.77* 

GLA13_W2 -0.91* 
-

0.25* 0.18* -0.07 -0.05 -0.02 -0.06 -0.08 -0.08 0.93* 1 0.94* 0.91* 0.85* 0.67* 0.75* 

GLA13_W3 -0.87* 
-

0.32* 0.25* -0.12 -0.08 -0.12 -0.1 -0.1 -0.1 0.87* 0.94* 1 0.98* 0.9* 0.72* 0.73* 

GLA13_W4 -0.83* 

-

0.29* 0.27* -0.11 -0.06 -0.14 -0.1 -0.09 -0.09 0.86* 0.91* 0.98* 1 0.91* 0.75* 0.76* 

GLA13_W5 -0.77* -0.2* 0.14 -0.11 -0.02 -0.1 -0.11 -0.1 -0.1 0.79* 0.8*5 0.9* 0.91* 1 0.86* 0.8* 

GLA13_W6 -0.6* -0.11 0.09 -0.07 0.02 -0.11 -0.09 -0.1 -0.1 0.63* 0.67* 0.72* 0.75* 0.86* 1 0.84* 

GLA13_W7 -0.72* -0.06 0.06 0.03 0.07 0.04 -0.02 0.02 0.02 0.77* 0.75* 0.73* 0.76* 0.8* 0.84* 1 

Table 11 (Contd..) 
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Table12: Shoot fly resistance component traits correlation forkharif (rainy) 

2013,rabi(Post-rainy) 2013, across seasons. 

  

 

 

SFR_K13 

   

 
Gls_K13 LSP_K13 SV_K13 Tdu_K13 Tdl_K13 % SFDH_K13 

Glossy_K13 1 0.16* 0.07 -0.08 -0.02 0.03 

Leaf sheath pigmen 

tation_K13 0.16* 1 0.11 0.01 -0.01 -0.06 

PLANT VIGOUR_K13 0.07 0.11 1 -0.01 -0.04 -0.33* 

TRICHOME UP_K13 -0.08 0.01 -0.01 1 0.67* -0.07 

TRICHOME 

LOW_K13 -0.02 -0.01 -0.04 0.67* 1 -0.09 

%SFDH_K13 0.03 -0.06 -0.33* -0.07 -0.09 1 

  

 

 

SFR_R13 

   

 
Gls_R13 LSP_R13 SV_R13 Tdu_R13 Tdl_R13 % SFDH_R13 

Glossy_R13 1 0.12 -0.06 -0.25* -0.17* 0.16 

Leaf sheath pigmen 

tation_R13 0.12 1 0 -0.06 -0.01 0.09 

Seedling Vigour_R13 -0.06 0 1 0.18 0.11 -0.04 

TRICHOME UP_R13 -0.25* -0.06 0.18* 1 0.88* -0.66* 

TRICHOME LOW_R13 -0.17* -0.01 0.11 0.88* 1 -0.72* 

%SFDH_R13 0.16 0.09 -0.04 -0.66* -0.72* 1 

  

 

 

Across season data 
  

 
Gls LSP SV Tdu Tdl %SFDH 

Glossy score (Gls) 1 0.17* 0.01 -0.16* -0.11 0.16 

Leaf sheath pigmen 

tation (LSP) 0.17* 1 0.08 -0.03 -0.02 0.05 

Seedling vigor (SV) 0.01 0.08 1 0.1 0.04 0.01 

Trichome density up 

(Tdu) -0.16* -0.03 0.1 1 0.85* -0.66* 

Trichome density low 

(Tdl) -0.11 -0.02 0.04 0.85* 1 -0.77* 

Percent shoot fly dead 

heart (% SFDH) 0.16 0.05 0.01 -0.66* -0.77* 1 
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Table 13:Linkage map with marker distances and the segregation 

distortion of 262 SNP-SSR markers on 152 F2 recombinant 

 progeny and their chi-square values and significance 

 

 

  Alleles %     

S.No. Locus 

Position  

(cM) 

RSG0 

4008-6 

Hetero 

zygote 

J2614

-11 χ2 Significance 

1 S10_48719070 0 19 24 75 94.7 ******* 

2 S10_45832539 0.575 31 19 81 104.2 ******* 

3 S10_48255426 1.374 28 17 59 65.6 ******* 

4 S10_45924600 2.047 32 14 46 48.8 ******* 

5 S10_49764198 2.691 24 7 37 47.9 ******* 

6 S10_48780999 4.118 40 30 41 23.4 ******* 

7 S10_48781003 4.815 40 30 39 22.1 ******* 

8 S10_48098678 5.77 23 6 43 61.1 ******* 

9 S10_45991208 6.247 27 8 59 86.5 ******* 

10 S10_48098791 7.457 32 18 76 95 ******* 

11 S10_50809263 8.036 15 5 52 91.4 ******* 

12 S10_48087353 8.206 22 23 61 62.7 ******* 

13 S10_51699119 9.373 24 13 57 72.4 ******* 

14 S10_48098807 10.331 32 24 69 69.3 ******* 

15 S10_48098802 10.366 32 23 70 73 ******* 

16 S10_49085931 11.638 27 19 72 88.6 ******* 

17 S10_51065106 12.358 31 29 73 68.8 ******* 

18 S10_49095753 12.877 26 22 61 61.2 ******* 

19 S10_50809289 13.419 17 13 79 133.7 ******* 

20 S10_45235333 13.877 17 5 47 76.5 ******* 

21 S10_46553315 14.172 18 6 50 79.6 ******* 

22 S10_45695389 14.434 21 8 48 67.3 ******* 

23 S10_51934952 15.06 15 18 75 114.7 ******* 

24 S10_48076362 15.53 20 40 86 89.5 ******* 

25 S10_47137453 16.084 23 22 77 97.7 ******* 

26 S10_50809328 16.653 10 2 58 128.1 ******* 

27 S10_48076342 16.881 22 16 85 131.9 ******* 

28 S10_48014895 17.657 18 57 76 53.6 ******* 

29 S10_51263932 18.488 23 24 65 68.1 ******* 

30 S10_47939440 19.403 28 35 76 67.4 ******* 

31 S10_50235747 20.076 27 23 66 68.5 ******* 

32 S10_50452521 20.887 23 18 75 101.8 ******* 

33 S10_50093128 21.352 25 13 72 104.3 ******* 
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  Alleles %     

S.No. Locus 

Position  

(cM) 

RSG0 

4008-6 

Hetero 

zygote 

J2614

-11 χ2 Significance 

34 S10_50093129 21.44 25 14 71 99.6 ******* 

35 S10_49632608 22.034 27 19 70 84.3 ******* 

36 S10_50734011 22.76 21 19 64 77.4 ******* 

37 IS10263_49672890 23.029 21 51 79 60.5 ******* 

38 S10_48938062 23.962 24 26 76 86.4 ******* 

39 S10_49288320 24.664 23 9 51 69.8 ******* 

40 S10_48069066 24.963 28 14 64 81.8 ******* 

41 S10_51071502 25.88 30 33 65 49.2 ******* 

42 S10_51228412 26.918 28 17 62 71.4 ******* 

43 S10_52042465 27.524 24 18 62 72.2 ******* 

44 S10_52676228 27.785 32 19 69 78.8 ******* 

45 S10_51224387 28.41 26 20 83 111.8 ******* 

46 S10_52036901 29.023 24 8 78 133.3 ******* 

47 S10_52677221 29.365 15 3 51 95.1 ******* 

48 S10_52676281 29.715 23 4 48 76.5 ******* 

49 S10_53262363 30.175 33 9 61 85.4 ******* 

50 S10_50972176 30.462 36 12 67 88.7 ******* 

51 S10_51919897 30.959 30 10 57 76.2 ******* 

52 S10_52853071 31.827 37 20 75 86 ******* 

53 S10_52781712 32.291 23 20 84 118.2 ******* 

54 S10_52784725 32.558 22 43 84 78.2 ******* 

55 S10_46230564 33.08 23 16 63 79.4 ******* 

56 S10_50121434 33.837 26 19 70 85.2 ******* 

57 S10_54859431 33.902 7 1 74 187.5 ******* 

58 S10_54859409 33.948 7 1 75 190.5 ******* 

59 S10_50890593 34.686 21 2 45 77.2 ******* 

60 S10_53682073 34.972 29 19 65 72.7 ******* 

61 S10_50140543 35.288 9 6 56 111.3 ******* 

62 S10_53160198 35.678 16 17 102 185.1 ******* 

63 S10_53834366 35.758 20 3 43 70.6 ******* 

64 S10_52675727 35.997 18 3 48 83.6 ******* 

65 S10_53058516 36.145 26 5 42 61.4 ******* 

66 S10_54269620 36.401 15 11 90 173.2 ******* 

67 S10_45646835 36.843 21 4 44 69.3 ******* 

68 S10_52673863 37.229 32 22 66 67.4 ******* 

69 S10_49366136 37.73 15 6 53 91 ******* 

70 S10_53714284 38.079 22 5 48 74.4 ******* 

71 S10_54185069 38.342 20 7 49 72.7 ******* 

72 S10_52812930 38.346 14 2 49 94.9 ******* 

73 S10_53855394 38.66 28 33 84 86.3 ******* 

Table 13: (Contd..) 
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  Alleles %     

S.No. Locus 

Position  

(cM) 

RSG0 

4008-6 

Hetero 

zygote 

J2614

-11 χ2 Significance 

74 S10_50232568 39.38 18 7 50 76.9 ******* 

75 S10_50232566 39.38 18 7 50 76.9 ******* 

76 S10_53544398 39.394 14 4 63 125.1 ******* 

77 S10_52700141 39.782 24 9 60 88.3 ******* 

78 S10_52940776 40.377 24 5 44 65.3 ******* 

79 S10_54877607 40.677 20 2 43 73.5 ******* 

80 S10_53576112 40.76 24 7 55 82.6 ******* 

81 S10_54081973 41.371 28 13 59 74 ******* 

82 xgap001_54507175 42.833 32 44 74 49.1 ******* 

83 S10_54532995 43.958 41 16 70 84.3 ******* 

84 S10_54585199 44.416 30 10 59 80 ******* 

85 S10_54535306 44.945 30 14 65 82.7 ******* 

86 S10_54185546 45.857 30 30 81 83.4 ******* 

87 S10_54185539 45.985 30 30 80 81.4 ******* 

88 S10_54185186 46.461 23 3 53 90.2 ******* 

89 S10_54966382 47.424 32 19 76 92.9 ******* 

90 S10_54974701 48.021 17 7 52 82.8 ******* 

91 S10_54247479 48.532 29 5 52 79.5 ******* 

92 S10_54535502 49.165 28 7 46 63.4 ******* 

93 S10_53681243 49.555 15 5 62 117.1 ******* 

94 S10_54527903 49.678 27 5 58 92.5 ******* 

95 S10_54535745 50.491 45 18 58 62.5 ******* 

96 S10_54535807 51.036 34 24 71 72.1 ******* 

97 S10_55051409 51.386 31 14 66 84.1 ******* 

98 S10_54584527 52.221 33 14 64 79.4 ******* 

99 S10_54877733 53.005 19 5 47 74.5 ******* 

100 S10_55016723 53.54 34 27 72 68.6 ******* 

101 S10_54223864 54.416 29 9 60 84.9 ******* 

102 S10_54185408 55.076 14 6 53 92.6 ******* 

103 S10_54184947 55.529 24 4 41 62.3 ******* 

104 S10_54185417 55.779 16 6 56 96.9 ******* 

105 S10_55071264 56.465 33 9 60 83.5 ******* 

106 S10_54632304 57.098 30 3 39 62.8 ******* 

107 S10_54187184 57.606 27 10 55 73.4 ******* 

108 S10_54187185 57.743 27 9 53 71.8 ******* 

109 S10_55283533 58.521 34 9 66 94.8 ******* 

110 S10_55370553 60.56 36 24 78 84.3 ******* 

111 S10_55387439 62.051 28 3 41 65.2 ******* 

112 S10_55177860 62.658 30 0 42 76 ******* 

113 S10_55747507 63.545 35 4 52 82 ******* 

Table  13: (Contd..) 
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  Alleles %     

S.No. Locus 

Position  

(cM) 

RSG0 

4008-6 

Hetero 

zygote 

J2614

-11 χ2 Significance 

114 S10_55599913 64.305 43 15 59 69.1 ******* 

115 S10_55600708 65.957 44 25 73 71.5 ******* 

116 S10_55376713 66.472 40 8 32 52.8 ******* 

117 S10_56158623 67.237 24 8 40 50.7 ******* 

118 S10_55669377 68.043 38 8 48 66.8 ******* 

119 S10_55649047 69.328 45 8 38 62.9 ******* 

120 S10_56155818 70.055 37 8 44 61 ******* 

121 S10_55747741 70.634 30 3 40 64.2 ******* 

122 S10_55473978 71.482 42 9 44 62.5 ******* 

123 S10_56050653 72.248 40 15 62 73 ******* 

124 S10_56252649 73.641 38 8 56 78.9 ******* 

125 S10_56350371 74.202 32 19 62 65.7 ******* 

126 S10_56093654 75.152 51 13 55 73 ******* 

127 S10_56393810 76.646 55 20 67 75.3 ******* 

128 S10_56381792 77.204 41 8 42 61.8 ******* 

129 S10_56249651 77.614 35 1 45 79.5 ******* 

130 S10_56207658 78.719 40 7 45 66.7 ******* 

131 S10_56207637 78.725 41 7 45 67.5 ******* 

132 S10_56381721 79.367 35 6 37 56 ******* 

133 S10_56490707 80.008 39 11 55 70.5 ******* 

134 S10_56217191 80.752 26 8 52 72.7 ******* 

135 S10_56216248 81.702 45 15 52 60.9 ******* 

136 S10_56205739 82.18 52 12 58 79.3 ******* 

137 S10_56433597 82.729 35 4 39 63.2 ******* 

138 S10_56730378 83.885 53 33 58 42.6 ******* 

139 S10_56730380 84.793 49 17 51 59 ******* 

140 S10_56730384 84.947 51 17 51 60.7 ******* 

141 S10_56659463 86.428 55 14 59 78.4 ******* 

142 S10_56834308 86.987 31 2 44 73.6 ******* 

143 S10_56249757 87.779 37 4 29 56.7 ******* 

144 S10_56047792 88.617 39 7 32 53.8 ******* 

145 S10_56595416 89.482 43 5 34 65.2 ******* 

146 S10_57403166 90.684 18 4 77 154 ******* 

147 S10_57341007 91.295 45 7 51 77.6 ******* 

148 S10_57331278 92.115 64 17 64 85 ******* 

149 S10_57145296 93.122 59 31 62 53.4 ******* 

150 S10_57552456 94.409 42 2 37 73.8 ******* 

151 S10_57331300 94.987 61 4 48 100.6 ******* 

152 S10_57331385 95.618 59 5 49 95.7 ******* 

153 S10_57122482 95.877 37 1 39 73.2 ******* 

Table 13: (Contd..) 
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  Alleles %     

S.No. Locus 

Position  

(cM) 

RSG0 

4008-6 

Hetero 

zygote 

J2614

-11 χ2 Significance 

154 S10_57088032 96.055 37 3 35 63.6 ******* 

155 S10_57547037 96.424 42 6 32 60.3 ******* 

156 S10_57547066 96.622 43 6 31 61.4 ******* 

157 S10_57400347 97.265 70 17 62 89.6 ******* 

158 S10_58436230 97.876 15 2 63 129.8 ******* 

159 S10_57552719 98.396 35 2 33 62.3 ******* 

160 S10_57549720 98.701 58 6 51 93.1 ******* 

161 S10_57248800 99.044 50 2 46 90.5 ******* 

162 S10_57432493 99.608 65 21 56 71.6 ******* 

163 S10_57453669 100.398 71 15 55 91 ******* 

164 S10_57522978 101.244 62 8 57 97.4 ******* 

165 S10_58640688 102.44 39 2 21 64.7 ******* 

166 S10_58356424 103.078 55 8 49 82.9 ******* 

167 S10_58022779 103.623 47 5 36 71.9 ******* 

168 S10_58342553 104.412 46 3 35 75.3 ******* 

169 S10_58311699 104.802 42 3 42 75.4 ******* 

170 Xtxp141_58245122 105.596 71 19 62 86.6 ******* 

171 xiabt466_58310536 105.94 69 17 49 81.5 ******* 

172 S10_58490384 106.676 55 2 28 94.3 ******* 

173 S10_58991881 107.172 63 6 30 98.5 ******* 

174 S10_58831404 107.396 35 0 41 77 ******* 

175 S10_58460662 107.796 63 11 39 83.5 ******* 

176 S10_58357039 108.032 28 2 31 53.6 ******* 

177 S10_58489833 108.357 57 0 38 102.6 ******* 

178 S10_58683017 108.615 62 7 33 92.4 ******* 

179 S10_59833299 109.008 50 4 32 78.3 ******* 

180 S10_59148610 109.224 40 4 42 70.8 ******* 

181 S10_58839857 109.466 58 6 41 87.9 ******* 

182 S10_58425747 109.749 40 2 27 66.1 ******* 

183 S10_58652548 109.901 49 2 20 86.9 ******* 

184 S10_59316155 110.125 42 6 38 64 ******* 

185 S10_59024190 110.337 50 10 46 70.1 ******* 

186 S10_59069052 110.528 41 3 30 65.8 ******* 

187 S10_58380486 110.886 46 3 30 73.9 ******* 

188 S10_59833250 111.191 46 1 33 80.3 ******* 

189 S10_58839711 111.359 72 13 49 94.9 ******* 

190 S10_59020155 111.735 49 3 35 79.9 ******* 

191 S10_59020363 112.082 75 19 54 87.7 ******* 

192 S10_59062420 112.3 69 14 49 88 ******* 

193 S10_59554262 112.633 32 5 43 64.3 ******* 

Table 13: (Contd..) 
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  Alleles %     

S.No. Locus 

Position  

(cM) 

RSG0 

4008-6 

Hetero 

zygote 

J2614

-11 χ2 Significance 

194 S10_59223134 113.022 57 9 45 80.5 ******* 

195 S10_59223139 113.057 57 10 44 77.7 ******* 

196 S10_58665801 113.284 57 6 41 86.3 ******* 

197 S10_58634237 113.523 50 6 37 74.2 ******* 

198 S10_59419567 113.698 72 2 35 126.3 ******* 

199 S10_59547620 113.992 66 8 43 96.2 ******* 

200 S10_59206763 114.325 69 11 46 94.2 ******* 

201 S10_59342804 114.593 39 5 36 61.5 ******* 

202 S10_59564696 114.809 69 13 48 90 ******* 

203 S10_59215385 115.101 38 8 29 48.6 ******* 

204 S10_59342820 115.321 69 11 46 94.2 ******* 

205 S10_59566700 115.589 70 7 46 106 ******* 

206 S10_59566699 115.632 69 7 47 104.5 ******* 

207 S10_59565625 116.207 59 8 37 83.8 ******* 

208 S10_59565627 116.207 59 8 37 83.8 ******* 

209 S10_59808039 116.518 68 7 43 102.3 ******* 

210 S10_59418734 116.702 46 6 33 66.7 ******* 

211 S10_59525199 116.941 61 4 43 98.6 ******* 

212 S10_59691336 117.319 58 4 19 103.3 ******* 

213 S10_59476045 117.456 77 17 44 94.2 ******* 

214 S10_59608554 117.745 61 10 34 82.7 ******* 

215 S10_59413371 117.994 39 0 23 70.3 ******* 

216 S10_59821802 118.156 51 7 42 75.6 ******* 

217 S10_59571506 118.271 63 6 40 96 ******* 

218 S10_59835807 118.575 52 6 34 76.6 ******* 

219 S10_59775260 118.728 49 4 29 76.5 ******* 

220 S10_59808110 119.005 71 15 36 89.5 ******* 

221 S10_59866581 119.287 38 5 22 54.4 ******* 

222 S10_59609220 119.541 64 18 40 70.1 ******* 

223 S10_59826585 119.868 42 5 33 63.3 ******* 

224 S10_60240796 120.044 51 9 30 67.4 ******* 

225 S10_59560739 120.325 70 11 39 96 ******* 

226 S10_59775456 120.618 36 3 29 58 ******* 

227 S10_60900987 120.867 62 13 41 77.4 ******* 

228 S10_60900986 121.02 63 12 41 81.3 ******* 

229 S10_60900982 121.034 63 13 41 79 ******* 

230 S10_60344348 121.363 33 3 20 50.7 ******* 

231 S10_59889374 121.68 68 15 40 83.1 ******* 

232 S10_59850910 121.911 38 3 32 62.5 ******* 

233 S10_60282257 122.169 38 4 31 59.2 ******* 

Table 13: (Contd..) 
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  Alleles %     

S.No. Locus 

Position  

(cM) 

RSG0 

4008-6 

Hetero 

zygote 

J2614

-11 χ2 Significance 

234 S10_60324251 122.46 73 23 40 75.6 ******* 

235 S10_59946988 122.798 80 3 9 190 ******* 

236 S10_60324214 122.951 62 14 32 75.9 ******* 

237 S10_60024056 123.601 78 30 41 71.5 ******* 

238 S10_60333532 124.099 42 7 27 56.5 ******* 

239 S10_60423900 124.349 77 31 38 69.2 ******* 

240 S10_60938250 124.648 73 29 46 64.6 ******* 

241 S10_60194381 124.892 48 6 29 69.4 ******* 

242 S10_60194379 124.978 47 6 29 67.7 ******* 

243 S10_60631094 125.224 36 6 35 54.9 ******* 

244 S10_60240729 125.463 41 8 36 56.6 ******* 

245 S10_60308140 125.703 60 13 46 76 ******* 

246 S10_60650722 126.247 36 4 30 55.9 ******* 

247 S10_60302611 126.61 71 7 35 109.7 ******* 

248 S10_60324265 127.043 63 10 33 86.8 ******* 

249 S10_60756251 127.635 69 16 43 82.6 ******* 

250 S10_60297335 128.102 73 13 42 96.3 ******* 

251 S10_60380079 128.373 65 11 43 87.2 ******* 

252 S10_60342880 128.942 77 12 46 105.5 ******* 

253 S10_60287963 129.512 49 7 46 76.1 ******* 

254 S10_60349808 129.798 51 3 34 83 ******* 

255 S10_60048878 130.063 39 3 35 65.9 ******* 

256 S10_60499001 130.34 58 9 38 79.7 ******* 

257 S10_59946860 130.887 56 13 47 71.2 ******* 

258 S10_59946877 131.167 62 7 39 91.6 ******* 

259 S10_60701880 131.9 16 0 16 32 ******* 

260 Xisep1011_60746656 132.224 71 34 42 53.9 ******* 

261 S10_59930523 132.579 45 6 24 64.7 ******* 

262 S10_60245187 133.343 38 5 25 54.4 ******* 

263 S10_60354221 133.711 75 0 3 210.9 ******* 

264 S10_60601449 133.934 41 4 37 67.2 ******* 

265 S10_60384475 135.692 5 0 42 105.3 ******* 

        
*** highly significantly deviated from 1:2:1 F2 segregation ratio. 
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Table 14: Shoot fly resistance component trait QTLs detected on SBI-10 using QTL 

Cartographer with data from a large F2 population of 1,894 individuals derived from cross 

RSG04008-6 × J2614-11 

QTL Pos (cM) Marker interval Supp.IV (cM) LOD R^2% Add Dom 

QGls10 1 

Xgap001-

Xnhsbm1044 0-10 24.13 6.23 -0.69 0.01 

QTd10 31.6 Xisep0630-Xtxp141 25-37 8.11 2.88 0.31 -0.09 

        
QTL- Quantitative Trait Loci, Pos- Position of QTL in cM, LOD- logarithm of odds, R^2%- Percentage of Phenotypic 

variance, Add- Additive, Dom- Dominant 

 

 

Table 15: F2 and F3 QTL mapping on selected 369 individuals 

QTL Pos (cM) Marker interval Supp.IV (cM) LOD R^2% Add Dom 

F2QGls10 14 Xisp10263-Xgap001 20-Jun 9.67 11.37 0.69 

-

0.01 

F3QGls10 12 Xisp10263-Xgap001 20-Jun 5.95 6.6 0.7 0.36 

F2QTd10 58 Xtxp141-Xisep1011 48-70 4.4 3.7 -0.32` 0.56 

F3QTd10 48 Xisep0630-Xtxp141 46-54 2.32 2.29 0.031 0.01 

        
QTL- Quantitative Trait Loci, Pos- Position of QTL in cM, LOD- logarithm of odds, R^2%- Percentage of Phenotypic 

variance, Add- Additive, Dom- Dominant 

 

 

Table 16: GBS SNP map for fine mapping F2,F2:3 population of seedling leaf blade 

glossiness and trichome density  

Trait 

pos 

cM Marker pos LOD Additive 

Dominan

t R^2% 

left 

marker 

pos 

Right 

marker 

Pos Marker interval 

F2_

Gls 34.71 S10_53682073 3.35 0.6495 -0.6036 11.16 34.00 35.00 

S10_54859409 - 

S10_53682073 

F2_

Gls 70.61 S10_55747741 3.44 -0.1555 1.7831 3.63 70.10 71.10 

S10_56155818 - 

S10_55473978 

F3_

Gls 38.41 S10_54185069 3.79 0.7721 -0.3206 11.78 37.80 38.70 

S10_49366136 - 

S10_53855394 

F3_

Gls 42.41 Xgap001 4.08 0.9051 -0.6975 18.68 41.50 43.20 

S10_54081973 - 

S10_54532995 

F2_

Td 

103.1

1 S10_58356242 2.74 -0.4069 0.6389 8.39 102.50 103.60 

S10_58640688 - 

S10_58346424 

F3_

Td 66.01 S10_55600708 2.51 -0.3112 0.8769 7.17 63.80 69.30 

S10_55747507 - 

S10_55649047 

F3_

Td 92.11 S10_57331278 3.04 0.5359 0.8627 1.72 91.00 94.10 

S10_57341007 - 

S10_57552456 
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Table 17: Stay-green QTL mapping during summer 2013, summer 2014 and across season analysis 

S No. QTLs on SBI-10L 

Pos 

cM 

Closest 

marker Marker  Interval 

Support 

Interval LOD %R^2 Additive Dominant 

1 Q10GL7a_across 44.41 S10_54585199 Xgap001_54507175 – S10_54535306 42.8 – 44.9 2.76 6.75 2.2331 0.7273 

2 Q10GL7a_r13 41.41 S10_54081973 S10_54877607 –  S10_54081973 40.6 – 42.4 2.93 8.86 2.8201 -2.6178 

3 Q10GL7a_r14 104.81 S10_58311699 S10_58022779 – S10_58311699 103.7 – 105.9 3.40 6.98 -1.5675 -3.095 

4 Q10GL7b_r14 112.11 S10_59020363 S10_58380486 – S10_59223134 110.9 – 113.1 3.11 9.43 -1.5537 1.6478 

 

Q10GL7combined 

r2 

     
32.02 

  5 Q10GL14d_r14 29.01 S10_52036901 S10_51224387 ‒ S10_52677221 28.4 ‒ 29.4 2.21 0.09 0.5767 5.886 

6 Q10GL14a_r14 36.41 S10_54269620 S10_54269620 – S10_52673863 36.3 – 37.2 2.59 5.03 2.0097 2.8007 

7 Q10GL14b_r14 45.01 S10_54535306 Xgap001_54507175 – S10_54966382 42.8 – 47.4 2.55 6.49 2.7621 0.5624 

8 Q10GL14e_r14 123.61 S10_60024056 S10_59946988 ‒ S10_60333532 122.9 ‒ 124.1 2.37 9.70 -2.3214 3.225 

9 Q10GL14c_r14 129.51 S10_60287963 S10_60342880 – S10_60048878 129 – 130.0 3.38 8.94 -2.7106 6.1702 

10 Q10GL14a_r13 41.41 S10_54081973 S10_54877607 – Xgap001_54507175 40.7 – 42.8 2.86 9.00 4.9036 -4.2892 

11 Q10GL14a_across 44.41 S10_54585199 Xgap001_54507175 – S10_54185546 42.8 – 45.6 3.73 10.20 4.5978 0.0381 

12 Q10GL14b_r13 82.71 S10_56433597 S10_56217191 ‒ S10_56730384 82.6 ‒ 85 2.18 4.24 -5.2408 -4.2484 

 

Q10GL14combined 

r2 

     

53.68 

  13 Q10GL21a_across 115.31 S10_59342820 S10_59342804 – S10_59566700 114.5 – 115.6 2.91 10.14 -5.0744 2.4482 

14 Q10GL21b_r13 41.41 S10_54081973 S10_54877607 ‒ Xgap001_54507175 40.5 ‒ 42.8 2.18 6.91 4.9353 -3.5171 

15 Q10GL21a_r13 115.31 S10_59342820 S10_59342804 – S10_59565625 114.5 – 116.2 2.76 9.07 -6.0311 6.0466 

16 Q10GL21c_r13 125.01 S10_60194381 S10_60024056 – S10_60240729 123.6 – 125.5 2.33 1.41 -0.3211 13.2821 

17 Q10GL21b_r14 79.41 S10_56381721 S10_56350371 ‒ S10_56433597 74.3 ‒ 82.7 2.12 7.04 -1.4956 2.3253 

18 Q10GL21c_r14 99.01 S10_57248800 S10_58436230 ‒ S10_57453669 97.9 ‒ 100.4 2.16 5.31 1.055 -4.1377 

19 Q10GL21a_r14 115.31 S10_59342820 S10_59342804 – S10_59566700 114.5 – 115.6 2.74 9.20 -2.2148 1.2957 

 

Q10GL21combined 

r2 

     

49.08 

  20 Q10GL28a_r14 36.41 S10_54269620 S10_54269620 – S10_52673863 36.3 – 37.2 3.67 4.96 2.044 3.4449 

21 Q10GL28b_r14 41.41 S10_54081973 S10_52700141 – Xgap001_54507175 39.8 – 42.8 2.77 6.62 2.1001 0.7883 
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S No. QTLs on SBI-10L 

Pos 

cM 

Closest 

marker Marker  Interval 

Support 

Interval LOD %R^2 Additive Dominant 

22 Q10GL28a_across 124.91 S10_60194381 S10_60024056 – S10_60240729 123.6 – 125.5 2.74 2.85 -0.6203 7.2213 

23 Q10GL28a_r13 125.01 S10_60194381 S10_60024056 – S10_60240729 123.6 – 125.5 2.52 1.20 -0.1975 11.1276 

 

Q10GL28combined 

r2 

     

15.62 

  24 Q10GL35a_r13 121.91 S10_59850910 S10_60344348 ‒ S10_60324251 121.4 ‒ 122.5 2.36 2.06 -0.6135 8.0863 

25 Q10GL42a_r13 121.91 S10_59850910 S10_59889374 – S10_60324251 121.7 – 122.5 2.59 4.54 -0.5686 5.187 

26 Q10GL42b_r13 131.91 S10_60701880 

S10_59946877 ‒ 

Xisep1011_60746656 131.2 ‒ 132 2.01 0.52 2.4162 3.149 

27 Q10GL42d_r14 32.31 S10_52781712 S10_51919897 ‒ S10_54859431 30.8 ‒ 33.9 2.47 6.66 2.0509 -6.9547 

28 Q10GL42b_r14 38.41 S10_52812930 S10_52673863 ‒ S10_53544398 37.7 ‒ 39.6 2.33 2.28 3.5114 4.965 

29 Q10GL42a_r14 102.31 S10_57522978 S10_57453669 – S10_58356424 100.4 – 103.6 2.60 2.43 1.7652 -29.678 

30 Q10GL42c_r14 107.81 S10_58460662 S10_58490384 ‒ S10_58489833 106.7 ‒ 108.5 2.44 5.75 2.0457 -7.1224 

 

Q10GL42combined 

r2 

     

22.18 

  31 Q10GL49a_r13 34.71 S10_50890593 S10_50121434 ‒ S10_53834366 33.9 ‒ 35.8 2.37 2.17 1.4224 3.2659 

32 Q10GL49a_across 36.41 S10_54269620 S10_54269620 – S10_52673868 36.4 – 37.2 2.54 2.45 2.1417 3.2671 

33 Q10GL49b_across 45.01 S10_54535306 xgap001_54507175 – S10_54185546 42.8 – 45.9 3.04 4.08 2.6273 2.1788 

  
Q10GL49combined 

r2           8.71     

 

  

Table 17: (Contd..) 
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Table 18: Agronomic traits and yield related traits QTL mapping for summer 2013, summer 2014 and across season QTL 

analysis 

S No. QTLs on SBI-10L 
Position 

cM 
Closest marker Marker interval 

Support 

interval 
LOD %R^2 Additive Dominant 

1 Q10FT.a_13 12.41 S10_51065106 S10_51699119 – S10_49095753 9.4 – 12.9 2.55 4.4443 -1.8558 -1.0923 

2 Q10FT.a_14 25.91 S10_51071502 S10_51071502 – S10_52676228 25.8 – 27.8 2.9 3.2923 -1.1211 -1.0466 

3 Q10FT.b_14 36.91 S10_45646835 S10_54269620 – S10_52673863 36.4 – 37.2 4.88 12.5 -1.6449 -0.6713 

4 Q10FT.c_14 44.41 S10_54585199 Xgap001_54507175 – S10_54185546 42.8 – 45.9 4.937 12.012 -1.6713 -0.1611 

5 Q10FT.d_14 101.31 S10_57522978 S10_57453669‒S10_58640688 100.4‒102.4 2.376 0.0003 0.4642 3.5948 

6 Q10FT.a_across 44.41 S10_54585199 S10_54532995 – S10_54535306 43.1 – 45 3.422 8.7257 -1.7486 0.2071 

7 Q10FT.b_across 67.31 S10_56158623 S10_55600708 – S10_55669377 65.7 – 68 2.848 8.4726 1.4153 -2.1831 

 

Combined r2 FT 

     

49.447 

  8 Q10PlHt.a_13 40.41 S10_52940776 S10_52812930‒S10_53576112 38.4‒40.7 2.026 2.454 1.7923 -16.1104 

9 Q10PlHt.b_13 49.21 S10_54535502 S10_54247479 – S10_53681243 48.7 – 49.6 3.028 0.0003 -2.3595 -14.3612 

10 Q10PlHt.c_13 70.11 S10_55747741 S10_56158623‒S10_55473978 67.4‒71.5 2.259 0.1064 -1.0644 -12.5499 

11 Q10PlHt.d_13 108.61 S10_58683017 S10_58460662‒S10_59316155 107.8‒110.1 2.12 5.144 4.838 3.0909 

12 Q10PlHt.a_14 97.91 S10_58436230 S10_57400347 – S10_57549720 97.3 – 98.6 2.959 7.263 9.3318 8.72 

13 Q10meanPlHt.a_across 70.61 S10_55747741 S10_55649047 – S10_55473978 69.3 – 71.5 2.563 0.7411 -4.5037 -16.9514 

14 Q10meanPlHt.b_across 97.91 S10_58436230 S10_57400347 – S10_57549720 97.6 – 98.7 2.704 5.5711 6.2766 9.2171 

 

Combined r2PlHt 

     

21.28 

  15 Q10PnDW/plot.a_13 105.61 Xtxp141_58245122 S10_58342553‒Xiabt466_58310536 104.4‒106 2.059 4.1155 -27.9697 -10.89 

16 Q10PnDW/plot.b_13 124.71 S10_60938250 S10_60423900‒S10_60240729 124.4‒125.5 2.028 9.537 29.9879 -22.2823 

17 Q10PnDW/plot.a_14 20.91 S10_50452521 S10_50235747 – S10_50093128 20.1 – 21.3 3.033 10.572 -28.3753 15.6606 

18 Q10PnDW/plot.b_14 109.01 S10_59833299 S10_58683017 – S10_59833299 108.6 – 109.9 3.326 2.7359 14.527 64.5807 

19 Q10PnDW/plot.c_14 117.31 S10_59418734 S10_59525199‒S10_59476045 117‒117.5 2.109 7.3994 24.9129 -18.1471 

 

Combined r2 

PnDW/Plot 

     

34.359 

  20 Q10GDW/plot.a_13 105.61 Xtxp141_58245122 S10_58342553‒Xiabt466_58310536 104.4‒106 2.413 3.3423 -23.3356 -15.5574 

21 Q10GDW/plot.b_13 120.11 S10_60240796 S10_59609220‒S10_60900987 119.6‒120.8 2.185 7.4706 19.5374 -17.9613 

22 Q10GDW/plot.a_14 82.21 S10_56205739 S10_56216248 – S10_56433597 81.7 – 82.6 2.798 1.1532 -0.2253 41.091 

23 Q10GDW/plot.b_14 107.41 S10_58831404 S10_58490384 – S10_58460662 106.8 – 107.8 3.691 3.0014 9.6131 62.5842 

24 Q10GDW/plot.c_14 117.31 S10_59418734 S10_59525199‒S10_59476045 117‒117.5 2.189 6.4672 18.2301 1.414 

25 Q10GDW/plot.a_across 19.41 S10_47939440 S10_51263932 – S10_50235747 18.2 – 20.1 3.628 18.34 -15.4436 10.2061 
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S No. QTLs on SBI-10L 
Position 

cM 
Closest marker Marker interval 

Support 

interval 
LOD %R^2 Additive Dominant 

26 Q10GDW/plot.b_across 107.21 S10_58991881 S10_58490384 – S10_58460662 106.5 – 107.8 2.8 2.4018 5.9777 23.7169 

 

Combined r2 GDW/Plot 

     

42.177 

  27 Q10HGM.a_13 0.01 S10_48719070 S10_48719070 – S10_45832539 0 – 0.4 3.183 9.619 -0.0723 0.1238 

28 Q10HGM.b_13 99.61 S10_57432493 S10_57549720‒S10_57522978 99.5‒101.3 2.485 0.0333 0.041 0.1471 

29 Q10HGM.c_13 108.61 S10_58683017 S10_58683017‒S10_59833299 108‒109 2.257 1.6035 0.0916 0.1445 

30 Q10HGM.d_13 117.01 S10_59418734 S10_59565625‒S10_59476045 116.2‒117.5 2.326 1.6187 0.0705 0.1834 

32 Q10HGM.a_14 20.11 S10_50235747 S10_50093128 – S10_50093129 19.4 – 21.6 3.365 6.8156 -0.0579 0.2301 

31 Q10HGM.b_14 95.01 S10_57331300 S10_57145296‒S10_57547037 93.1‒96.1 2.05 4.4703 0.0744 -0.2653 

33 Q10HGM.c_14 126.31 S10_60650722 S10_60308140 – S10_60302611 125.7 – 126.8 2.552 0.4563 0.0136 0.3525 

34 Q10HGM.a_across 20.11 S10_50235747 S10_47939440 – S10_50093128 19.4 – 21.4 2.689 3.1292 -0.0299 0.1549 

35 Q10HGM.b_across 117.01 S10_59525199 S10_59566700 – S10_59691336 115.6 – 117.3 2.883 4.197 0.0586 0.1583 

 

Combined r2 HGM 

     

31.943 

  36 Q10GNP/plot.a_13/ 31.01 S10_51919897 S10_50972176 – S10_52784725 30.5 – 32.6 2.53 0.6387 -74.7478 0 

37 Q10GNP/plot.b_13 98.41 S10_57552719 S10_57552719 – S10_57549720 98.1 – 98.8 3.83 0.3558 -70.5453 0 

38 Q10GNP/plot.c_13 106.71 S10_58490384 Xiabt466_58310536 – S10_58490384 106 – 106.7 32.74 3.9514 

-

282.9358 0 

39 Q10GNP/plot.d_13 113.71 S10_59419567 S10_58665801 – S10_59547620 113.5 – 113.8 36.34 1.7422 

-

155.5585 0 

40 Q10GNP/plot.e_13 129.81 S10_60349808 S10_60287963 – S10_60499001 129.5 – 130.2 34.11 0.5811 107.9076 0 

41 Q10GNP/plot.f_13 133.71 S10_60354221 S10_60245187 – S10_60354221 133.3 – 133.7 35.08 5.8143 -83.3681 0 

42 Q10GNP/plot.a_14 77.61 S10_56249651 S10_56393810 – S10_56207658 76.9 – 78.5 2.504 1.2737 

-

212.3514 0 

43 Q10GNP/plot.a_across 103.11 S10_58356424 S10_57522978 – S10_58022779 101.7 – 103.5 3.978 9.7799 

-

392.4407 0 

44 Q10GNP/plot.b_across 107.41 S10_58831404 S10_58831404 – S10_58460662 107.2 – 107.6 7.624 9.7598 

-

308.0604 0 

45 Q10GNP/plot.c_across 113.71 S10_59419567 S10_58665801 – S10_59547620 113.5 – 113.8 17.45 3.4349 

-

117.9362 0 

46 Q10GNP/plot.d_across 122.81 S10_59946988 S10_60324251 – S10_60324214 122.5 – 123 5.104 1.1814 397.637 0 

47 Q10GNP/plot.e_across 129.81 S10_60349808 S10_60349808 – S10_60048878 129.8 – 129.9 17.18 0.1468 65.0339 0 

48 Q10GNP/plot.f_across 133.71 S10_60354221 S10_60245187 – S10_60354221 133.3 – 133.8 19.35 3.0574 55.471 0 

 

Combined r2 GNP/Plot 

     

41.717 

   

 

 

49 Q10GNPP.a_14 77.61 S10_56249651 S10_56393810 – S10_56207658 76.9 – 78.5 2.504 1.2737 -8.1674 112.1652 

Table 18 : (Contd..) 
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S No. QTLs on SBI-10L 
Position 

cM 
Closest marker Marker interval 

Support 

interval 
LOD %R^2 Additive Dominant 

50 Q10GNPP.a_13 31.01 S10_51919897 S10_50972176 – S10_52784725 30.5 – 32.6 2.53 0.6387 -2.8749 74.0566 

51 Q10GNPP.b_13 98.41 S10_57552719 S10_57552719 – S10_57549720 98.1 – 98.8 3.83 0.3558 -2.7133 169.5069 

52 Q10GNPP.c_13 106.71 S10_58490384 Xiabt466_58310536 – S10_58490384 106 – 106.7 32.74 3.9514 -10.8821 0 

53 Q10GNPP.d_13 113.71 S10_59419567 S10_58665801 – S10_59547620 113.5 – 113.8 36.34 1.7422 -5.983 0 

54 Q10GNPP.e_13 129.81 S10_60349808 S10_60287963 – S10_60499001 129.5 – 130.2 34.11 0.5811 4.1503 0 

55 Q10GNPP.f_13 133.71 S10_60354221 S10_60245187 – S10_60354221 133.3 – 133.7 35.08 5.8143 -3.2065 0 

56 Q10GNPP.a_across 103.11 S10_58356424 S10_57522978 – S10_58022779 101.7 – 103.5 3.978 9.7799 -15.0939 46.779 

57 Q10GNPP.b_across 107.41 S10_58831404 S10_58831404 – S10_58460662 107.2 – 107.6 7.624 9.7598 -11.8485 128.7525 

58 Q10GNPP.c_across 113.71 S10_59419567 S10_58665801 – S10_59547620 113.5 – 113.8 17.45 3.4349 -4.536 468.4428 

59 Q10GNPP.d_across 122.81 S10_59946988 S10_60324251 – S10_60324214 122.5 – 123 5.104 1.1814 15.2937 78.6598 

60 Q10GNPP.e_across 129.81 S10_60349808 S10_60349808 – S10_60048878 129.8 – 129.9 17.18 0.1468 2.5013 461.7645 

61 Q10GNPP.f_across 133.71 S10_60354221 S10_60245187 – S10_60354221 133.3 – 133.8 19.35 3.0574 2.1335 459.1267 

 
Combined r2 GNPP 

     

41.717 

  63 Q10PHI.a_13 113.71 S10_59419567 S10_58634237 – S10_59547620 113.5 – 113.9 3.03 2.0491 -0.169 3.4057 

64 Q10PHI.b_13 122.51 S10_60324251 S10_60282257 – S10_59946988 122.3 – 122.8 3.685 12.033 1.3147 -0.2071 

62 Q10PHI.c_13 125.71 S10_60308140 S10_60194379 ‒ S10_60650722 125‒126.3 2.093 4.5826 0.8854 0.2308 

65 Q10PHI.a_14 35.31 S10_50140543 S10_53682073 – S10_53160198 35 – 35.6 3.817 15.053 0.6369 -0.702 

66 Q10PHI.b_14 70.61 S10_56252649 S10_56155818 – S10_56252649 70.1 – 73.4 3.402 9.132 -0.438 1.2338 

67 Q10PHI.a_across 18.51 S10_51263932 S10_48014895 – S10_47939440 17.7 – 19.4 2.837 10.976 -0.5388 0.5337 

 
Combined r2 PHI 

     

53.826 

   

 

  

Table 18: (Contd..) 
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Table 19: QTL mapping results for F4 field trails during kharif (rainy) 2013 and rabi (post-rainy) 2013 

 

   

S No. QTLs on SBI-10L 
Position 

cM 
Closest marker Marker interval 

Support 

interval 
LOD R^2% Additive Dominant 

1 Q10Gls1_K13 36.41 S10_54269620 S10_53058516 – S10_52673863 36.2 – 37 3.92 1.61 0.21 0.50 

2 Q10Gls2_K13 42.41 Xgap001_54507175 S10_54877607 – S10_54532995 40.7 – 44 4.51 6.26 0.30 0.24 

3 Q10Gls1_R13 36.41 S10_54269620 S10_53058516 – S10_52673863 36.2 – 37 4.66 3.51 0.27 0.55 

4 Q10Gls.1 36.41 S10_54269620 S10_53058516 – S10_52673863 36.2 – 36.9 3.7152 0.3502 0.1683 0.6016 

 
Combined r2 Gls 

     
11.73 

  
5 Q10Tdl1_K13 90.51 S10_57403166 S10_56595416 – S10_57331278 89.3 – 92.1 5.66 6.54 -6.58 -8.51 

6 Q10Tdl2_K13 99.61 S10_57432493 S10_57248800 – S10_57453669 99 – 100.7 23.60 48.50 -11.19 -1.60 

7 Q10Tdl3_K13 108.01 S10_58357039 S10_58831404 – S10_58683017 107.5 – 108.6 16.26 38.34 -9.52 -2.84 

8 Q10Tdl1_R13 99.61 S10_57432493 S10_57248800 – S10_57453669 99.3 – 100.3 7.00 8.24 -10.28 -3.18 

9 Q10TLow.1_across 96.11 S10_57088032 S10_57122482 – S10_57547066 95.9 – 96.6 12.602 19.2989 -9.8169 -1.5194 

10 Q10TLow.2_across 99.61 S10_57432493 S10_57432493 – S10_57432493 99.4 – 100 15.809 19.5457 -12.7806 -2.463 

11 Q10TLlow.3_across 103.61 S10_58022779 S10_58356424 – S10_58342553 103.3 – 104.5 12.548 22.3855 -10.5308 0.1028 

12 Q10TLlow.4_across 108.01 S10_58357039 S10_58460662 – S10_58489833 107.6 – 108.5 10.293 19.1029 -9.9778 -1.081 

          
13 Q10Tdu1_K13 107.81 S10_58460662 

Xiabt 466_58310536 – 

S10_58357039 
106 – 108.4 7.45 13.05 -12.95 -16.95 

14 Q10 Tdu1_R13 97.31 S10_57400347 S10_57547037 – S10_58436230 96.6 – 97.7 4.59 7.21 -12.78 -0.05 

15 Q10 Tdu2_R13 106.71 S10_58490384 
Xiabt 466_58310536 – 

S10_58991881 
106 – 107.2 3.65 7.79 -11.13 11.29 

16 Q10Tdu.1_across 34.71 S10_50890593 S10_54859409 – S10_53682073 34.3 – 35 2.8696 5.9005 -7.8912 9.2437 

17 Q10Tdu.2_across 97.31 S10_57400347 S10_57547066 – S10_58436230 96.9 – 97.6 7.5935 14.7595 -15.9794 0.8227 

18 Q10Tdu.3_across 99.61 S10_57432493 S10_57248800 – S10_57453669 99 – 100.1 8.3109 14.3854 -17.6112 -2.4786 

19 Q10Tdu.4_across 109.51 S10_58839857 S10_58839857 – S10_58425747 109.4 – 109.7 6.1457 12.2731 -15.9039 -9.2442 

 
Combined r2 TDU  

     
75.36 

  
20 Q10%SFDH1_K13 25.91 S10_51071502 S10_48069066 – S10_51228412 25.2 – 26.9 2.92 7.34 1.38 0.14 

21 Q10 %SFDH1_R13  82.71 S10_56433597 S10_56205739 – S10_56730384 82 – 85.2 2.96 0.00 1.55 8.32 

22 Q10 %SFDH2_R13  90.51 S10_57403166 S10_56595416 – S10_57403166 89.5 – 90.7 9.17 10.58 6.63 9.36 

23 Q10 %SFDH3_R13 99.61 S10_57432493 S10_57248800 – S10_57453669 99 – 100.1 12.73 12.13 8.14 4.96 

24 Q10 %SFDH4_R13 103.11 S10_58356424 S10_58022779 – S10_58342553 102.6 – 104.4 11.60 11.09 6.22 9.70 

25 Q10 %SFDH5_R13 108.61 S10_58683017 S10_58489833 – S10_59833299 108.3 – 109 9.08 12.50 5.69 5.99 

26 Q10%SFDH.1_across 90.51 S10_57403166 S10_56595416 – S10_57403166 89.2 – 90.7 8.2087 6.7381 3.0393 4.2489 
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S No. QTLs on SBI-10L 
Position 

cM 
Closest marker Marker interval 

Support 

interval 
LOD R^2% Additive Dominant 

27 Q10%SFDH.2_across 99.61 S10_57432493 S10_57248800 – S10_57453669 99 – 100.1 8.4304 3.9912 3.6096 2.7641 

28 Q10%SFDH.3_across 103.11 S10_58356424 S10_58640688 – S10_58022779 102.5 – 103.6 11.159 10.0968 2.8139 4.8031 

29 Q10%SFDH.4_across 105.61 Xtxp141_58245122 
S10_58311699 – 

Xiabt466_58310536 
105.1 – 106 10.948 10.7927 3.0203 2.7246 

30 Q10%SFDH.5_across 109.51 S10_58839857 S10_58839857 – S10_58425747 109.5 – 109.6 8.2935 9.8083 2.4822 4.3372 

31 Q10SV1_R13 56.51 S10_55071264 S10_54185417 – S10_54632304 55.8 – 57.1 2.95 9.51 -0.11 0.03 

32 Q10 SV2_R13 60.61 S10_55370553 S10_55283533 – S10_55177860 59.3 – 62.6 2.99 4.37 -0.09 -0.08 

33 Q10SV.1_across 62.11 S10_55387439 S10_55370553 – S10_55177860 60 – 62.7 2.5087 7.2981 -0.08 0.1659 

 
Combined r2 SV 

     
21.18 

  
34 Q10LSP1_K13 63.61 S10_55747507 S10_55747507 – S10_55600708 63 – 65.3 3.88 4.41 0.28 0.81 

35 Q10LSP2_K13 108.01 S10_58357039 S10_58490384 – S10_59148610 106.7 – 109.2 2.58 5.48 -0.34 -0.30 

36 Q10LSP1_R13 6.31 S10_45991208 S10_48098678 – S10_48098791 5.2 – 7.8 2.73 0.94 -0.01 -0.79 

37 Q10LSP2_R13 40.41 S10_52940776 S10_52700141 – S10_54877607 39.8 – 40.7 2.99 8.01 0.25 -0.80 

38 Q10LSP.1_across 32.61 S10_52784725 S10_52853071 – S10_50121434 31.9 – 33.9 2.7326 12.2315 0.3171 -0.3218 

39 Q10LSP.2_across 39.41 S10_53544398 S10_53855394 – S10_52700141 38.7 – 39.8 3.2 11.1242 0.3823 -0.4763 

40 Q10LSP.3_across 42.41 Xgap001_54507175 S10_53576112 – S10_54585199 40.8 – 44.2 2.8109 14.278 0.406 -0.2513 

  Combined r2 LSP           56.47     

          
  

Gls- Glossiness; Tdl- trichome density lower; Tdu-Teichome density upper; Sv-seedling vigour; LSP-Leaf sheath pigmentation;  

K13-kharif (rainy) 2013; R13- rabi (Post-rainy) 2013; Across-Across K13 and R13; Q- QTL 

         

      

  

  

Table 19: (Contd..) 
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Table 20:  Stay-green QTL cluster analysis 

cQTL 
Nearest 

marker 

positi

on 

(cM) 

marker 

Intervals 

No.of 

QTLs 
Integrated QTLs 

Gene 

ID/MTAs 

Combin

ed % 

R^2 

Previous 

studies of 

stg QTL 

maping in 

sorghum 

Candidate genes SNP effect 

cQstg10.1 S10_54269620 36.41 36.41 3 

Q10GLA14a_14,Q10

GLA28a_14.Q1049a

_across 
Sb10g025053 12.4 

Haussmann 

et al. 2002b 

AP2/ERF 

transcryptional factor 
Intergenic 

cQstg10.2 S10_54081973 41.41 39.8 – 42.8 4 

Q10GLA7a_13,Q10

GLA14a_13,Q10GL

21b_13,Q10GLA28b

_14 

Sb10g024920 31.3 
Haussmann 

et al. 2002b 

weakly similar to 

Putative 

uncharacterized 

protein 

non 

synonymous 

cQstg10.3 S10_54535306 45.01 42.8 – 47.4 2 
Q10GLA7a_across,Q

10GLA14a_across 
Sb10g025283 16.95 

Haussmann 

et al. 2002b 

NBS-LRR disease 

resistance protein 

synonimous&

non 

synonimous 

(Exonic 

region) 

cQstg10.4 S10_54585199 44.41 54.58- 54.59 2 
Q10GLA14b_14,Q10

GLA49b_across 
Sb10g025310, 

Sb10g025320 
10.57 

Haussmann 

et al. 2002b 

Ankyrin repeat 

protein and WD40 

repeat family protein 

(trasducin protein) 

Intronic 

region 

cQstg10.5 S10_59342820 115.31 
114.5 – 

115.6 
3 

Q10GLA21a_13,Q10

GLA21a_14,Q10GL

A21a_across 
Sb10g029570 28 

Haussmann 

et al. 2002b 

similar to Putative 

uncharacterized 

protein 

P0655A07.24/LEA 

synonimous&

non 

synonimous 

(Exonic 

region) 

cQstg10.6 S10_59775456 120.6 
121.4 ‒ 

122.5 
2 

Q10GL35a_13,Q10G

LA42a_13 
Sb10g030040 6.58 

Haussmann 

et al. 2002b 

 Ca/calmodulin 

dependant  protein 

kinase 

Intron 

cQstg10.7 S10_60194379 125.01 
124.7 – 

125.5 
3 

Q10GL21c_13,Q10G

LA28a_13,Q10GLA

28a_across 
Sb10g030520 5.5 

Haussmann 

et al. 2002b 

similar to 

Senescence-

associated protein 

3'UTR+Exon 
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Table 21: GWAS for Stay-green and marker trait associations 

S No. Trait SNP Gene Id Functional annotation P.value maf %R2 

1 %GL7_R13 S10_56170098 - - 8.38E-03 0.50 25.87 

2 %GL7_R13 S10_57403166 - - 2.16E-03 0.31 27.35 

3 %GL7_R13 S10_57453732 - - 7.30E-03 0.47 26.02 

4 %GL7_R13 S10_58489833 - - 8.75E-03 0.44 25.83 

5 %GL7_R13 S10_49288320 Sb10g022060 

leucine-rich repeat family protein / protein 

kinase family protein 7.25E-03 0.41 26.03 

6 %GL7_R13 S10_53022276 Sb10g024130 cytochrome P450, putative, expressed 5.29E-03 0.34 26.37 

7 %GL7_R13 S10_56216953 Sb10g026790 Zinc finger POZ domain protein 6.46E-03 0.48 26.15 

8 %GL7_R13 S10_56655795 Sb10g027070 putative unchracterised protein 7.69E-03 0.42 25.97 

9 %GL7_R13 S10_57145296 Sb10g027370 PBP1_GABAb_receptor 8.14E-03 0.49 25.91 

10 %GL7_R13 S10_57251912 Sb10g027450  40S ribosomal protein S14-1 3.00E-03 0.49 26.99 

11 %GL7_R14 S10_56249651 - - 5.51E-03 0.47 15.09 

12 %GL7_R14 S10_56249699 - - 5.51E-03 0.47 15.09 

13 %GL7_R14 S10_56525509 - - 2.23E-03 0.48 16.23 

14 %GL7_R14 S10_57770653 - - 1.90E-03 0.47 16.43 

15 %GL7_R14 S10_58345765 - - 5.94E-03 0.44 15.00 

16 %GL7_R14 S10_54632210 Sb10g025350 isoleucyl-tRNA synthetase 7.58E-03 0.47 14.69 
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S No. Trait SNP Gene Id Functional annotation P.value maf %R2 

17 %GL7_R14 S10_54632243 Sb10g025350 isoleucyl-tRNA synthetase 7.58E-03 0.47 14.69 

18 %GL7_R14 S10_54632244 Sb10g025350 isoleucyl-tRNA synthetase 7.58E-03 0.47 14.69 

19 %GL7_R14 S10_54632245 Sb10g025350 isoleucyl-tRNA synthetase 7.58E-03 0.47 14.69 

20 %GL7_R14 S10_55201667 Sb10g025880  Putative GDP-L-fucose synthase 2 1.12E-03 0.48 17.12 

21 %GL7_R14 S10_58022779 Sb10g028130  Putative thaumatin-protein 2.27E-03 0.46 16.21 

22 %GL7_R14 S10_58035226 Sb10g028140 AA-amino acid hydrolase 5.19E-03 0.46 15.17 

23 %GL7_R14 S10_59018127 Sb10g029180  Catalytic domain of Protein Kinases 8.30E-03 0.47 14.58 

24 %GL7_R14 S10_59018128 Sb10g029180  Catalytic domain of Protein Kinases 8.30E-03 0.47 14.58 

25 %GL7_Across  S10_56170095 - - 6.74E-03 0.50 15.06 

26 %GL7_Across  S10_56170098 - - 6.74E-03 0.50 15.06 

27 %GL7_Across  S10_57403166 - - 3.85E-03 0.31 15.69 

28 %GL7_Across  S10_54591109 Sb10g025320 

Transducin family protein / WD-40 repeat 

family protein 4.36E-03 0.48 15.55 

29 %GL7_Across  S10_54613971 Sb10g025340 40S ribosomal protein S14 (RPS14C) 7.83E-03 0.35 14.89 

30 %GL7_Across  S10_54632210 Sb10g025350 isoleucyl-tRNA synthetase 9.45E-03 0.47 14.68 

31 %GL7_Across  S10_54632243 Sb10g025350 isoleucyl-tRNA synthetase 9.45E-03 0.47 14.68 

32 %GL7_Across  S10_54632244 Sb10g025350 isoleucyl-tRNA synthetase 9.45E-03 0.47 14.68 

33 %GL7_Across  S10_54632245 Sb10g025350 isoleucyl-tRNA synthetase 9.45E-03 0.47 14.68 

34 %GL7_Across  S10_58035226 Sb10g028140 AA-amino acid hydrolase 9.63E-03 0.46 14.66 

Table 21: (Contd..) 
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S No. Trait SNP Gene Id Functional annotation P.value maf %R2 

35 %GL7_Across  S10_59946860 Sb10g030260  Putative senescence-associated protein 7.03E-03 0.47 15.01 

36 %GL7_Across  S10_59946900 Sb10g030260  Putative senescence-associated protein 7.03E-03 0.47 15.01 

37 %GL7_R13 S10_56170095 - - 8.38E-03 0.50 25.87 

38 %GL14_R13 S10_56170095 - - 3.35E-03 0.50 29.36 

39 %GL14_R13 S10_56170098 - - 3.35E-03 0.50 29.36 

40 %GL14_R13 S10_57403166 - - 9.64E-04 0.31 30.70 

41 %GL14_R13 S10_57770653 - - 6.25E-03 0.47 28.71 

42 %GL14_R13 S10_49288320 Sb10g022060 

leucine-rich repeat family protein / protein 

kinase family protein 3.74E-03 0.41 29.24 

43 %GL14_R13 S10_53022276 Sb10g024130 cytochrome P450, putative, expressed 3.64E-03 0.34 29.27 

44 %GL14_R13 S10_56216953 Sb10g026790 Zinc finger POZ domain protein 3.29E-03 0.48 29.38 

45 %GL14_R13 S10_57251912 Sb10g027450  40S ribosomal protein S14-1 3.01E-03 0.49 29.47 

46 %GL14_R13 S10_58312792 Sb10g028500  Peroxidase 16 protein 5.45E-03 0.45 28.85 

47 %GL14_R13 S10_58839857 Sb10g029010 DUF617; Protein of unknown function 6.38E-03 0.44 28.69 

48 %GL14_R13 S10_58839862 Sb10g029010 DUF617; Protein of unknown function 6.38E-03 0.44 28.69 

49 %GL14_R13 S10_58839865 Sb10g029010 DUF617; Protein of unknown function 6.38E-03 0.44 28.69 

50 %GL14_R13 S10_58839867 Sb10g029010 DUF617; Protein of unknown function 6.38E-03 0.44 28.69 

51 %GL14_R13 S10_58839905 Sb10g029010 DUF617; Protein of unknown function 6.38E-03 0.44 28.69 

52 %GL14_R14 S10_50132488 - - 1.14E-03 0.20 23.38 

Table 21: (Contd..) 
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S No. Trait SNP Gene Id Functional annotation P.value maf %R2 

53 %GL14_R14 S10_50452521 Sb10g022520 

GA3 (GA REQUIRING 3); ent-kaurene 

oxidase/ oxygen binding 3.26E-03 0.33 22.16 

54 %GL14_R14 S10_50592399 Sb10g022580 

CGA1 (CYTOKININ-RESPONSIVE GATA 

FACTOR 1); transcription factor 2.69E-03 0.26 22.38 

55 %GL14_R14 S10_50672209 Sb10g022650 unknown protein 4.74E-03 0.43 21.73 

56 %GL14_R14 S10_52675727 Sb10g023920 

pentatricopeptide (PPR) repeat-containing 

protein 3.70E-03 0.40 22.01 

57 %GL14_R14 S10_52675753 Sb10g023920 

pentatricopeptide (PPR) repeat-containing 

protein 3.70E-03 0.40 22.01 

58 %GL14_R14 S10_52675759 Sb10g023920 

pentatricopeptide (PPR) repeat-containing 

protein 3.70E-03 0.40 22.01 

59 %GL14_R14 S10_54535306 Sb10g025283 NBS-LRR disease resistance protein 3.27E-03 0.38 22.15 

60 %GL14_R14 S10_54535322 Sb10g025283 NBS-LRR disease resistance protein 3.27E-03 0.38 22.15 

61 %GL14_R14 S10_54535339 Sb10g025283 NBS-LRR disease resistance protein 3.27E-03 0.38 22.15 

62 %GL14_Across S10_45646835 - - 7.66E-03 0.42 23.86 

63 %GL14_Across S10_48719070 - - 5.10E-03 0.32 24.27 

64 %GL14_Across S10_56525509 - - 3.48E-03 0.48 24.66 

65 %GL14_Across S10_57403166 - - 8.46E-03 0.31 23.76 

66 %GL14_Across S10_49288320 Sb10g022060 

leucine-rich repeat family protein / protein 

kinase family protein 4.08E-04 0.41 26.92 

67 %GL14_Across S10_53038680 Sb10g024150 Putative uncharacterized protein 8.94E-03 0.38 23.71 

Table 21: (Contd..) 
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S No. Trait SNP Gene Id Functional annotation P.value maf %R2 

68 %GL14_Across S10_53038681 Sb10g024150 Putative uncharacterized protein 8.94E-03 0.38 23.71 

69 %GL14_Across S10_53038682 Sb10g024150 Putative uncharacterized protein 8.94E-03 0.38 23.71 

70 %GL14_Across S10_53038691 Sb10g024150 Putative uncharacterized protein 8.94E-03 0.38 23.71 

71 %GL14_Across S10_54081973 Sb10g024920 zinc-binding family protein 9.50E-03 0.40 23.65 

72 %GL14_Across S10_54613971 Sb10g025340 40S ribosomal protein S14 (RPS14C) 1.70E-03 0.35 25.41 

73 %GL21_R13 S10_56170095 - - 3.83E-03 0.50 32.89 

74 %GL21_R13 S10_56170098 - - 3.83E-03 0.50 32.89 

75 %GL21_R13 S10_56216953 Sb10g026790 Zinc finger POZ domain protein 3.43E-03 0.48 33.00 

76 %GL21_R13 S10_58839857 Sb10g029010 DUF617; Protein of unknown function 1.15E-02 0.44 31.81 

77 %GL21_R13 S10_58839862 Sb10g029010 DUF617; Protein of unknown function 1.15E-02 0.44 31.81 

78 %GL21_R13 S10_58839865 Sb10g029010 DUF617; Protein of unknown function 1.15E-02 0.44 31.81 

79 %GL21_R13 S10_58839867 Sb10g029010 DUF617; Protein of unknown function 1.15E-02 0.44 31.81 

80 %GL21_R13 S10_58839905 Sb10g029010 DUF617; Protein of unknown function 1.15E-02 0.44 31.81 

81 %GL21_R13 S10_60701880 Sb10g031030  Putative AGO1 homologous protein 4.83E-03 0.50 32.66 

82 %GL21_R14 S10_48756049 - - 1.33E-03 0.37 23.20 

83 %GL21_R14 S10_50132488 - - 1.14E-03 0.20 23.38 

84 %GL21_R14 S10_50452521 Sb10g022520 

GA3 (GA REQUIRING 3); ent-kaurene 

oxidase/ oxygen binding 3.26E-03 0.33 22.16 

Table 21: (Contd..) 
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S No. Trait SNP Gene Id Functional annotation P.value maf %R2 

85 %GL21_R14 S10_50592399 Sb10g022580 

CGA1 (CYTOKININ-RESPONSIVE GATA 

FACTOR 1); transcription factor 2.69E-03 0.26 22.38 

86 %GL21_R14 S10_50672209 Sb10g022650 unknown protein 4.74E-03 0.43 21.73 

87 %GL21_R14 S10_52675727 Sb10g023920 

pentatricopeptide (PPR) repeat-containing 

protein 3.70E-03 0.40 22.01 

88 %GL21_R14 S10_52675753 Sb10g023920 

pentatricopeptide (PPR) repeat-containing 

protein 3.70E-03 0.40 22.01 

89 %GL21_R14 S10_52675759 Sb10g023920 

pentatricopeptide (PPR) repeat-containing 

protein 3.70E-03 0.40 22.01 

90 %GL21_R14 S10_54535306 Sb10g025283 NBS-LRR disease resistance protein 3.27E-03 0.38 22.15 

91 %GL21_R14 S10_54535322 Sb10g025283 NBS-LRR disease resistance protein 3.27E-03 0.38 22.15 

92 %GL21_R14 S10_54535339 Sb10g025283 NBS-LRR disease resistance protein 3.27E-03 0.38 22.15 

93 %GL21_R14 S10_59024190 Sb10g029190  Squamosa promoter-binding-like protein 12 6.67E-03 0.49 21.34 

94 %GL21_Across S10_56170095 - - 7.16E-03 0.50 26.53 

95 %GL21_Across S10_56170098 - - 7.16E-03 0.50 26.53 

96 %GL21_Across S10_49288320 Sb10g022060 

leucine-rich repeat family protein / protein 

kinase family protein 5.61E-03 0.41 26.77 

97 %GL21_Across S10_54591109 Sb10g025320 

transducin family protein / WD-40 repeat 

family protein 6.13E-03 0.48 26.68 

98 %GL21_Across S10_60701880 Sb10g031030  Putative AGO1 homologous protein 7.78E-03 0.50 26.45 

99 %GL28_R13 S10_56170095 - - 4.46E-03 0.50 30.58 

 

 Table 21: (Contd..) 

 Table 21: (Contd..) 
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S No. Trait SNP Gene Id Functional annotation P.value maf %R2 

100 %GL28_R13 S10_56170098 - - 4.46E-03 0.50 30.58 

101 %GL28_R13 S10_56216953 Sb10g026790 Zinc finger POZ domain protein 8.90E-03 0.48 29.89 

102 %GL28_R13 S10_60701880 Sb10g031030  Putative AGO1 homologous protein 4.03E-03 0.50 30.69 

103 %GL28_R14 S10_50132488 - - 4.35E-03 0.20 15.78 

104 %GL28_R14 S10_54609172 - - 2.35E-03 0.33 16.54 

105 %GL28_R14 S10_54609179 - - 2.35E-03 0.33 16.54 

106 %GL28_R14 S10_54609181 - - 2.35E-03 0.33 16.54 

107 %GL28_R14 S10_46444139 Sb10g021077 

zinc finger a RING-type-/ E3 ubiquitin ligase 

involved in grain weight/grain number 5.23E-03 0.41 15.55 

108 %GL28_R14 S10_50672209 Sb10g022650 unknown protein 5.42E-03 0.43 15.51 

109 %GL28_Across S10_49288320 Sb10g022060 

leucine-rich repeat family protein / protein 

kinase family protein 3.68E-03 0.41 23.80 

110 %GL28_Across S10_54591109 Sb10g025320 

transducin family protein / WD-40 repeat 

family protein 9.38E-03 0.48 22.85 

111 %GL28_Across S10_54613971 Sb10g025340 40S ribosomal protein S14 (RPS14C) 9.49E-03 0.35 22.84 

112 %GL28_Across S10_60701880 Sb10g031030  Putative AGO1 homologous protein 1.00E-02 0.50 22.79 

113 %GL35_R13 S10_53395971 - - 7.16E-03 0.41 23.45 

114 %GL35_R13 S10_56170095 - - 7.79E-03 0.50 23.36 

115 %GL35_R13 S10_56170098 - - 7.79E-03 0.50 23.36 

 
 Table 21: (Contd..) 
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S No. Trait SNP Gene Id Functional annotation P.value maf %R2 

116 %GL35_R13 S10_49288320 Sb10g022060 

leucine-rich repeat family protein / protein 

kinase family protein 6.85E-03 0.41 23.50 

117 %GL35_R13 S10_53681243 Sb10g024575 zinc-binding family protein 8.05E-03 0.35 23.32 

118 %GL35_R13 S10_56216953 Sb10g026790 Zinc finger POZ domain protein 8.36E-03 0.48 23.28 

119 %GL35_R13 S10_60701880 Sb10g031030  Putative AGO1 homologous protein 2.48E-03 0.50 24.62 

120 %GL35_R14 S10_48756049 - - 3.20E-03 0.37 21.98 

121 %GL35_R14 S10_54591109 Sb10g025320 

transducin family protein / WD-40 repeat 

family protein 9.99E-03 0.48 20.65 

122 %GL35_Across S10_45646835 - - 8.35E-03 0.42 17.14 

123 %GL35_Across S10_54591109 Sb10g025320 

transducin family protein / WD-40 repeat 

family protein 1.11E-03 0.48 19.39 

124 %GL42_R13 S10_53395971 - - 2.70E-03 0.41 19.59 

125 %GL42_R13 S10_53681243 Sb10g024575 zinc-binding family protein 2.66E-03 0.35 19.61 

126 %GL42_R13 S10_56216953 Sb10g026790 Zinc finger POZ domain protein 6.06E-03 0.48 18.64 

127 %GL42_R13 S10_60384475 Sb10g030760 

PLN03210; Resistant to P. syringae 6; 

Provisional 6.00E-03 0.38 18.65 

128 %GL42_R13 S10_60701880 Sb10g031030  Putative AGO1 homologous protein 2.06E-03 0.50 19.92 

129 %GL42_R14 S10_48365209 - - 3.00E-04 0.35 16.38 

130 %GL42_R14 S10_48365258 - - 8.12E-04 0.34 15.01 

131 %GL42_R14 S10_57253897 Sb10g027460 OsENODL1_like; Early nodulin-like protein  7.24E-03 0.49 12.12 

Table 21: (Contd..) 
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S No. Trait SNP Gene Id Functional annotation P.value maf %R2 

132 %GL42_R14 S10_59775260 Sb10g030040 Calcium/calmodulin-dependent protein kinase 9.53E-03 0.43 11.77 

133 %GL42_R14 S10_59775288 Sb10g030040 Calcium/calmodulin-dependent protein kinase 9.53E-03 0.43 11.77 

134 %GL42_R14 S10_59775290 Sb10g030040 Calcium/calmodulin-dependent protein kinase 9.53E-03 0.43 11.77 

135 %GL42_Across S10_53106278 - - 7.16E-03 0.41 10.28 

136 %GL42_Across S10_53106289 - - 7.16E-03 0.41 10.28 

137 %GL42_Across S10_56728368 - - 8.78E-03 0.50 10.04 

138 %GL42_Across S10_54591109 Sb10g025320 

transducin family protein / WD-40 repeat 

family protein 5.10E-03 0.48 10.68 

139 %GL42_Across S10_57253897 Sb10g027460 OsENODL1_like; Early nodulin-like protein  7.38E-03 0.49 10.24 

140 %GL49_R13 S10_49639848 - - 7.98E-03 0.28 27.24 

141 %GL49_R13 S10_49639849 - - 7.98E-03 0.28 27.24 

142 %GL49_R13 S10_49288320 Sb10g022060 

leucine-rich repeat family protein / protein 

kinase family protein 3.78E-04 0.41 30.52 

143 %GL49_R13 S10_54535502 Sb10g025283 NBS-LRR disease resistance protein 5.95E-03 0.44 27.54 

144 %GL49_R13 S10_54535507 Sb10g025283 NBS-LRR disease resistance protein 5.95E-03 0.44 27.54 

145 %GL49_R13 S10_55649047 Sb10g026250 Glutaredoxin-C8 precursor 3.22E-03 0.48 28.19 

146 %GL49_R13 S10_55649083 Sb10g026250 Glutaredoxin-C8 precursor 3.22E-03 0.48 28.19 

147 %GL49_R13 S10_56216953 Sb10g026790 Zinc finger POZ domain protein 7.80E-03 0.48 27.26 
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148 %GL49_R14 S10_59808039 - - 8.28E-03 0.42 11.97 

149 %GL49_R14 S10_59808040 - - 8.28E-03 0.42 11.97 

150 %GL49_R14 S10_59808044 - - 8.28E-03 0.42 11.97 

151 %GL49_R14 S10_59808049 - - 8.28E-03 0.42 11.97 

152 %GL49_R14 S10_46477352 Sb10g021077 

zinc finger a RING-type-/ E3 ubiquitin ligase 

involved in grain weight/grain number 3.13E-03 0.47 13.22 

153 %GL49_R14 S10_48059523 Sb10g021730  GTP-binding protein (endocytosis) 9.54E-03 0.47 11.79 

154 %GL49_R14 S10_55201667 Sb10g025880  Putative GDP-L-fucose synthase 2 4.73E-03 0.48 12.68 

155 %GL49_R14 S10_59775260 Sb10g030040  Calcium/calmodulin-dependent protein kinase 4.25E-03 0.43 12.82 

156 %GL49_R14 S10_59775288 Sb10g030040  Calcium/calmodulin-dependent protein kinase 4.25E-03 0.43 12.82 

157 %GL49_R14 S10_59775290 Sb10g030040  Calcium/calmodulin-dependent protein kinase 4.25E-03 0.43 12.82 

158 %GL49_Across S10_51466711 - - 9.14E-03 0.32 11.99 

159 %GL49_Across S10_49288320 Sb10g022060 

leucine-rich repeat family protein / protein 

kinase family protein 4.28E-03 0.41 12.87 

160 %GL49_Across S10_50232566 Sb10g022450 Putative uncharacterized protein 8.70E-03 0.39 12.05 

161 %GL49_Across S10_50232568 Sb10g022450 Putative uncharacterized protein 8.70E-03 0.39 12.05 

162 %GL49_Across S10_50232569 Sb10g022450 Putative uncharacterized protein 8.70E-03 0.39 12.05 

163 %GL49_Across S10_54535502 Sb10g025283 NBS-LRR disease resistance protein 3.39E-03 0.44 13.14 
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164 %GL49_Across S10_54535507 Sb10g025283 NBS-LRR disease resistance protein 3.39E-03 0.44 13.14 

165 %GL49_Across S10_54613971 Sb10g025340 40S ribosomal protein S14 (RPS14C) 8.20E-03 0.35 12.11 

166 %GL49_Across S10_56216953 Sb10g026790 Zinc finger POZ domain protein 9.86E-03 0.48 11.90 

167 %GL49_Across S10_59775260 Sb10g030040 Calcium/calmodulin-dependent protein kinase 6.17E-03 0.43 12.44 

168 %GL49_Across S10_59775288 Sb10g030040 Calcium/calmodulin-dependent protein kinase 6.17E-03 0.43 12.44 

169 %GL49_Across S10_59775290 Sb10g030040 Calcium/calmodulin-dependent protein kinase 6.17E-03 0.43 12.44 

 

maf -minor allele frequency   R13-rabi/summer 2013      R14-rabi/summer 2014 
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Table 22: GWAS for agronomic, yield related traits and their marker trait associations 

S No. Trait SNP Gene Id Functional annotation P.value maf %R
2
 

        1 FT_R 2013 S10_57275026 - - 8.13E-03 47.70% 36.65% 

2 FT_R 2013 S10_57275060 - - 8.13E-03 47.70% 36.65% 

3 FT_R 2013 S10_55457420 Sb10g026110 Putative (R)-(+)-mandelonitrile lyase isoform MDL3 5.10E-03 42.76% 37.07% 

4 FT_R 2013 S10_59346842 - - 8.90E-03 38.16% 36.57% 

5 FT_R14 S10_56487055 - - 2.83E-03 0.470395 22.32% 

6 FT_R14 S10_56487022 - - 4.45E-03 0.473684 21.80% 

7 FT_R14 S10_56525509 - - 5.26E-03 0.476974 21.61% 

8 FT_R14 S10_58357041 Sb10g028550 Xyloglucan endotransglycosylase, member of glycosyl 

hydrolase family 16 

6.84E-03 0.483553 21.31% 

9 FT_R14 S10_56386714 - - 7.29E-03 0.453947 21.24% 

10 FT _across S10_45926714 - - 1.01E-03 0.391447 27.83% 

11 FT _across S10_45926740 - - 1.01E-03 0.391447 27.83% 

12 FT _across S10_45926741 - - 1.01E-03 0.391447 27.83% 

13 FT _across S10_49288320 Sb10g022060 leucine-rich repeat family protein / protein kinase 

family protein 

1.27E-03 0.407895 27.59% 

14 FT _across S10_51466711 - - 4.11E-03 0.322368 26.40% 
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15 FT _across S10_52675727 Sb10g023920 - 9.99E-03 0.401316 25.53% 

16 FT _across S10_52675753 Sb10g023920 - 9.99E-03 0.401316 25.53% 

17 FT _across S10_52675759 Sb10g023920 - 9.99E-03 0.401316 25.53% 

18 FT _across S10_54535502 Sb10g025283 NBS-LRR disease resistance protein 1.85E-03 0.440789 27.20% 

19 FT _across S10_54535507 Sb10g025283 NBS-LRR disease resistance protein 1.85E-03 0.440789 27.20% 

20 FT _across S10_54585199 Sb10g025310 Ankyrin repeat protein  (plant fertility)/protein-

cysteine S-palmitoleyltransferase activity 

6.42E-03 0.404605 25.96% 

21 FT _across S10_54585201 Sb10g025310 Ankyrin repeat protein  (plant fertility)/protein-

cysteine S-palmitoleyltransferase activity 

6.42E-03 0.404605 25.96% 

22 FT _across S10_54585202 Sb10g025310 Ankyrin repeat protein  (plant fertility)/protein-

cysteine S-palmitoleyltransferase activity 

6.42E-03 0.404605 25.96% 

23 FT _across S10_54613971 Sb10g025340 - 4.04E-03 0.345395 26.42% 

24 FT _across S10_56216953 Sb10g026790 Zinc finger POZ domain protein 9.19E-03 0.480263 25.61% 

25 FT _across S10_56525509 - - 1.71E-03 0.476974 27.28% 

26 PlHt_R13 S10_58663475 - - 1.96E-03 43.75% 19.05% 

27 PlHt_R13 S10_58663474 - - 3.87E-03 40.13% 18.22% 
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28 PlHt_R13 S10_57936622 - - 4.70E-03 49.01% 17.98% 

29 PlHt_R13 S10_53544398 Sb10g024460 Development and cell death domain=-N-rich protein, 

putative, expressed 

1.62E-03 33.88% 19.28% 

30 PlHt_R13 S10_53544426 Sb10g024460 Development and cell death domain=-N-rich protein, 

putative, expressed 

1.62E-03 33.88% 19.28% 

31 PlHt_R13 S10_59565625 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

6.36E-03 42.76% 17.62% 

32 PlHt_R13 S10_59565627 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

6.36E-03 42.76% 17.62% 

33 PlHt_R13 S10_59565629 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

6.36E-03 42.76% 17.62% 

34 PlHt_R13 S10_59565631 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

6.36E-03 42.76% 17.62% 

35 PlHt_R13 S10_59958913 Sb10g030270 " Putative receptor protein kinase" 6.56E-03 40.79% 17.59% 

36 PlHt_R13 S10_58991881 - - 7.29E-03 39.14% 17.46% 

37 PlHt_R13 S10_59419148 Sb10g029670 transcription termination factor Rho; Provisional 7.44E-03 46.38% 17.44% 
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38 PlHt_R14 S10_55299333 Sb10g025960 hypothetical protein; K03355 anaphase-promoting 

complex subunit 8 

8.44E-03 0.371711 28.65% 

39 PlHt_R14 S10_58663475 - - 1.91E-03 0.4375 30.18% 

40 PlHt_R14 S10_57276745 - - 2.01E-03 0.5 30.13% 

41 PlHt_R14 S10_60037942 - - 6.87E-03 0.453947 28.86% 

42 PlHt_R14 S10_57963498 - - 7.77E-03 0.480263 28.73% 

43 PlHt_R14 S10_59565625 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

1.90E-02 0.427632 27.85% 

44 PlHt_R14 S10_59565627 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

1.90E-02 0.427632 27.85% 

45 PlHt_R14 S10_59565629 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

1.90E-02 0.427632 27.85% 

46 PlHt_R14 S10_59565631 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

1.90E-02 0.427632 27.85% 

47 PlHt_across S10_58663475 - - 1.60E-04 0.4375 23.99% 
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48 PlHt_across S10_58817328 - - 1.32E-03 0.450658 21.60% 

49 PlHt_across S10_58683017 Sb10g028870 " Putative meiotic serine proteinase" 1.38E-03 0.404605 21.55% 

50 PlHt_across S10_58991881 - - 1.38E-03 0.391447 21.55% 

51 PlHt_across S10_58663474 - - 2.31E-03 0.401316 20.98% 

52 PlHt_across S10_57936622 - - 2.89E-03 0.490132 20.74% 

53 PlHt_across S10_59476435 Sb10g029740 AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid 

Transfer (LT) and Seed Storage (SS) Protein family; 

3.70E-03 0.447368 20.48% 

54 PlHt_across S10_60037942 - - 3.78E-03 0.453947 20.45% 

55 PlHt_across S10_58652432 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family 

protein 

5.19E-03 0.424342 20.11% 

56 PlHt_across S10_58954853 - - 5.97E-03 0.421053 19.96% 

57 PlHt_across S10_59770217 - - 6.66E-03 0.447368 19.85% 

58 PlHt_across S10_59596116 Sb10g029850 " Putative uncharacterized protein P0712G01.1.5 6.77E-03 0.447368 19.83% 

59 PlHt_across S10_59476388 Sb10g029740 AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid 

Transfer (LT) and Seed Storage (SS) Protein family; 

6.95E-03 0.444079 19.80% 

60 PlHt_across S10_59476389 Sb10g029740 AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid 

Transfer (LT) and Seed Storage (SS) Protein family; 

6.95E-03 0.444079 19.80% 
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61 PlHt_across S10_58436224 - - 8.04E-03 0.345395 19.65% 

62 PlHt_across S10_58079690 Sb10g028200 Catalytic domain of Protein Kinases 8.17E-03 0.447368 19.63% 

63 PlHt_across S10_59018127 Sb10g029180 Catalytic domain of Protein Kinases 8.32E-03 0.470395 19.61% 

64 PlHt_across S10_59018128 Sb10g029180 Catalytic domain of Protein Kinases 8.32E-03 0.470395 19.61% 

65 PlHt_across S10_59202679 - - 8.37E-03 0.427632 19.60% 

66 PlHt_across S10_59862187 Sb10g030140 " Endoglucanase 18" 8.49E-03 0.421053 19.59% 

67 PlHt_across S10_59558136 Sb10g029810 " MADS box transcription factor" 9.21E-03 0.490132 19.50% 

68 PlHt_across S10_58035226 Sb10g028140 AA-amino acid hydrolase 9.30E-03 0.463816 19.49% 

69 PlHt_across S10_58954854 - - 9.75E-03 0.417763 19.44% 

70 PlHt_across S10_58954867 - - 9.75E-03 0.417763 19.44% 

71 PnDw/plot_R13 S10_48555177 Sb10g021860 ADP binding 5.93E-04 33.88% 18.40% 

72 PnDw/plot_R13 S10_50085077 - - 1.17E-03 30.26% 17.50% 

73 PnDw/plot_R14 S10_51183880 - - 3.18E-03 0.483553 9.63% 

74 PnDw/plot_R14 S10_54608741 - - 3.99E-03 0.391447 9.33% 

75 PnDw/plot_R14 S10_60324265 - - 4.56E-03 0.401316 9.15% 

76 PnDw/plot_R14 S10_60324270 - - 4.56E-03 0.401316 9.15% 
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77 PnDw/plot_R14 S10_60324273 - - 4.56E-03 0.401316 9.15% 

78 PnDw/plot_R14 S10_60282257 Sb10g030610 " Putative uncharacterized protein P0548E04.1.9 7.48E-03 0.476974 8.50% 

79 PnDw/plot_R14 S10_60282260 Sb10g030610 " Putative uncharacterized protein P0548E04.1.9 7.48E-03 0.476974 8.50% 

80 PnDw/plot_R14 S10_60282261 Sb10g030610 " Putative uncharacterized protein P0548E04.1.9 7.48E-03 0.476974 8.50% 

81 PnDw/plot_R14 S10_51753271 - - 1.12E-02 0.476974 7.98% 

82 PnDw/plot_R14 S10_51753276 - - 1.12E-02 0.476974 7.98% 

83 PnDw/plot_R14 S10_51753278 - - 1.12E-02 0.476974 7.98% 

84 PnDw/plot_R14 S10_51753298 - - 1.12E-02 0.476974 7.98% 

85 PnDw/plot_R14 S10_51753261 - - 1.12E-02 0.476974 7.98% 

86 PnDw/plot_R14 S10_51753262 - - 1.12E-02 0.476974 7.98% 

87 PnDw/plot_R14 S10_51753275 - - 1.12E-02 0.476974 7.98% 

88 PnDw/plot_R14 S10_60037971 - - 1.17E-02 0.430921 7.92% 

89 PnDw/plot_R14 S10_60037973 - - 1.17E-02 0.430921 7.92% 

90 PnDw/plot_R14 S10_60037972 - - 1.17E-02 0.430921 7.92% 

91 PnDw/plot_across S10_60324265 - - 4.18E-03 0.401316 10.15% 

92 PnDw/plot_across S10_60324270 - - 4.18E-03 0.401316 10.15% 

93 PnDw/plot_across S10_60324273 - - 4.18E-03 0.401316 10.15% 
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94 PnDw/plot_across S10_60308229 Sb10g030660 Exo70 exocyst complex subunit 5.98E-03 0.421053 9.72% 

95 PnDw/plot_across S10_60344724 Sb10g030710 Exo70 exocyst complex subunit 6.14E-03 0.407895 9.69% 

96 PnDw/plot_across S10_60344774 Sb10g030710 Exo70 exocyst complex subunit 6.14E-03 0.407895 9.69% 

97 PnDw/plot_across S10_59419148 Sb10g029670 transcription termination factor Rho; Provisional 7.14E-03 0.463816 9.51% 

98 PnDw/plot_across S10_48726890 - - 7.79E-03 0.302632 9.40% 

99 PnDw/plot_across S10_60363633 Sb10g030730 Leucine rich repaeat domain like 7.82E-03 0.444079 9.40% 

100 PnDw/plot_across S10_60363642 Sb10g030730 Leucine rich repaeat domain like 7.82E-03 0.444079 9.40% 

101 PnDw/plot_across S10_60302803 - - 8.65E-03 0.398026 9.28% 

102 PnDw/plot_across S10_60342789 - - 9.27E-03 0.351974 9.20% 

103 PnDw/plot_across S10_54877733 Sb10g025540 Putative prolylcarboxypeptidase isoform 1 9.80E-03 0.407895 9.13% 

104 GDW/Plot_R13 S10_54535439 Sb10g025283 NBS-LRR disease resistance protein 2.10E-03 42.11% 9.68% 

105 GDW/Plot_R13 S10_54535492 Sb10g025283 NBS-LRR disease resistance protein 2.10E-03 42.11% 9.68% 

106 GDW/Plot_R13 S10_48555177 Sb10g021860 ADP binding protein 4.18E-03 33.88% 8.75% 

107 GDW/Plot_R13 S10_59866581 Sb10g030150 " Calcium-dependent protein kinase CPK1 adapter 

protein 2 

4.34E-03 44.74% 8.70% 

108 GDW/Plot_R13 S10_48726890 - - 4.64E-03 30.26% 8.61% 

109 GDW/Plot_R14 S10_51228412 Sb10g022900 Putative uncharacterized protein 4.99E-03 0.388158 7.99% 
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110 GDW/Plot_R14 S10_51458244 - - 5.70E-03 0.493421 7.82% 

111 GDW/Plot_R14 S10_51753261 - - 6.19E-03 0.476974 7.71% 

112 GDW/Plot_R14 S10_51753262 - - 6.19E-03 0.476974 7.71% 

113 GDW/Plot_R14 S10_51753271 - - 6.19E-03 0.476974 7.71% 

114 GDW/Plot_R14 S10_51753275 - - 6.19E-03 0.476974 7.71% 

115 GDW/Plot_R14 S10_51753276 - - 6.19E-03 0.476974 7.71% 

116 GDW/Plot_R14 S10_51753278 - - 6.19E-03 0.476974 7.71% 

117 GDW/Plot_R14 S10_51753298 - - 6.19E-03 0.476974 7.71% 

118 GDW/Plot_R14 S10_56381721 - - 7.42E-03 0.493421 7.47% 

119 GDW/Plot_R14 S10_56381725 - - 7.42E-03 0.493421 7.47% 

120 GDW/plot_across S10_60324265 - - 4.18E-03 0.401316 10.15% 

121 GDW/plot_across S10_60324270 - - 4.18E-03 0.401316 10.15% 

122 GDW/plot_across S10_60324273 - - 4.18E-03 0.401316 10.15% 

123 GDW/plot_across S10_60308229 Sb10g030660 Exo70 exocyst complex subunit 5.98E-03 0.421053 9.72% 

124 GDW/plot_across S10_60344724 Sb10g030710 Exo70 exocyst complex subunit 6.14E-03 0.407895 9.69% 

125 GDW/plot_across S10_60344774 Sb10g030710 Exo70 exocyst complex subunit 6.14E-03 0.407895 9.69% 

126 GDW/plot_across S10_59419148 Sb10g029670 transcription termination factor Rho; Provisional 7.14E-03 0.463816 9.51% 
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127 GDW/plot_across S10_48726890 - - 7.79E-03 0.302632 9.40% 

128 GDW/plot_across S10_60363633 Sb10g030730 Leucine rich repaeat domain like 7.82E-03 0.444079 9.40% 

129 GDW/plot_across S10_60363642 Sb10g030730 Leucine rich repaeat domain like 7.82E-03 0.444079 9.40% 

130 GDW/plot_across S10_60302803 - - 8.65E-03 0.398026 9.28% 

131 GDW/plot_across S10_60342789 - - 9.27E-03 0.351974 9.20% 

132 GDW/plot_across S10_54877733 Sb10g025540 Putative prolylcarboxypeptidase isoform 1 9.80E-03 0.407895 9.13% 

133 HGM_R13 S10_55315031 Sb10g025990 Transducin/WD40 repeat-like superfamily protein 2.63E-05 42.76% 24.38% 

134 HGM_R13 S10_55315036 Sb10g025990 Transducin/WD40 repeat-like superfamily protein 2.63E-05 42.76% 24.38% 

135 HGM_R13 S10_51183880 - - 1.73E-03 48.36% 18.91% 

136 HGM_R13 S10_58311699 Sb10g028500 " Peroxidase 16 protein" 2.38E-03 50.00% 18.51% 

137 HGM_R13 S10_58311702 Sb10g028500 " Peroxidase 16 protein" 2.38E-03 50.00% 18.51% 

138 HGM_R13 S10_58311712 Sb10g028500 " Peroxidase 16 protein" 2.38E-03 50.00% 18.51% 

139 HGM_R13 S10_58311714 Sb10g028500 " Peroxidase 16 protein" 2.38E-03 50.00% 18.51% 

140 HGM_R13 S10_58311715 Sb10g028500 " Peroxidase 16 protein" 2.38E-03 50.00% 18.51% 

141 HGM_R13 S10_58311716 Sb10g028500 " Peroxidase 16 protein" 2.38E-03 50.00% 18.51% 

142 HGM_R13 S10_58311717 Sb10g028500 " Peroxidase 16 protein" 2.38E-03 50.00% 18.51% 

143 HGM_R13 S10_58311719 Sb10g028500 " Peroxidase 16 protein" 2.38E-03 50.00% 18.51% 
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144 HGM_R13 S10_58311720 Sb10g028500 " Peroxidase 16 protein" 2.38E-03 50.00% 18.51% 

145 HGM_R13 S10_49085931 - - 2.54E-03 35.20% 18.43% 

146 HGM_R13 S10_14567893 - - 3.35E-03 35.86% 18.09% 

147 HGM_R13 S10_59866581 Sb10g030150 " Calcium-dependent protein kinase CPK1 adapter 

protein 2 

3.67E-03 44.74% 17.98% 

148 HGM_R13 S10_58683017 Sb10g028870 " Putative meiotic serine proteinase" 4.32E-03 40.46% 17.78% 

149 HGM_R13 S10_48938045 - - 4.47E-03 36.18% 17.74% 

150 HGM_R13 S10_58039451 - - 5.17E-03 47.70% 17.57% 

151 HGM_R13 S10_58039503 - - 5.17E-03 47.70% 17.57% 

152 HGM_R13 S10_58039504 - - 5.17E-03 47.70% 17.57% 

153 HGM_R13 S10_58039505 - - 5.17E-03 47.70% 17.57% 

154 HGM_R13 S10_58039507 - - 5.17E-03 47.70% 17.57% 

155 HGM_R13 S10_58039508 - - 5.17E-03 47.70% 17.57% 

156 HGM_R13 S10_57331300 - - 6.12E-03 45.72% 17.36% 

157 HGM_R13 S10_54138397 - - 6.49E-03 36.18% 17.29% 

158 HGM_R13 S10_59419148 Sb10g029670 transcription termination factor Rho; Provisional 6.55E-03 46.38% 17.28% 

159 HGM_R13 S10_59476435 Sb10g029740 AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid 

Transfer (LT) and Seed Storage (SS) Protein family; 

6.58E-03 44.74% 17.28% 
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160 HGM_R13 S10_54138396 - - 7.34E-03 35.53% 17.15% 

161 HGM_R13 S10_59476388 Sb10g029740 AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid 

Transfer (LT) and Seed Storage (SS) Protein family; 

7.54E-03 44.41% 17.11% 

162 HGM_R13 S10_59476389 Sb10g029740 AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid 

Transfer (LT) and Seed Storage (SS) Protein family; 

7.54E-03 44.41% 17.11% 

163 HGM_R13 S10_5641743 - - 8.35E-03 33.55% 16.99% 

164 HGM_R13 S10_53670803 Sb10g024570 - 8.66E-03 33.88% 16.95% 

165 HGM_R13 S10_17496821 - - 9.43E-03 35.86% 16.85% 

166 HGM_R13 S10_16803414 - - 9.91E-03 40.13% 16.79% 

167 HGM_R14 S10_51183880 - - 1.69E-03 0.483553 10.14% 

168 HGM_R14 S10_49314656 - - 5.03E-03 0.407895 8.67% 

169 HGM_R14 S10_49314673 - - 5.03E-03 0.407895 8.67% 

170 HGM_R14 S10_52902918 - - 5.38E-03 0.365132 8.59% 

171 HGM_R14 S10_52902920 - - 5.38E-03 0.365132 8.59% 

172 HGM_R14 S10_52902923 - - 5.38E-03 0.365132 8.59% 

173 HGM_R14 S10_52902925 - - 5.38E-03 0.365132 8.59% 

174 HGM_R14 S10_52902921 - - 5.38E-03 0.365132 8.59% 
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175 HGM_R14 S10_52902924 - - 5.38E-03 0.365132 8.59% 

176 HGM_R14 S10_52902926 - - 5.38E-03 0.365132 8.59% 

177 HGM_R14 S10_50890593 - - 7.56E-03 0.421053 8.14% 

178 HGM_R14 S10_52241685 Sb10g023600 - 9.22E-03 0.322368 7.88% 

179 HGM_across S10_51183880 - - 4.04E-04 0.483553 8.26% 

180 HGM_across S10_59476435 Sb10g029740 AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid 

Transfer (LT) and Seed Storage (SS) Protein family; 

7.21E-04 0.447368 7.48% 

181 HGM_across S10_59866581 Sb10g030150 " Calcium-dependent protein kinase CPK1 adapter 

protein 2 

9.68E-04 0.447368 7.09% 

182 HGM_across S10_59476388 Sb10g029740 AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid 

Transfer (LT) and Seed Storage (SS) Protein family; 

1.01E-03 0.444079 7.03% 

183 HGM_across S10_59476389 Sb10g029740 AAI_LTSS: Alpha-Amylase Inhibitors (AAI), Lipid 

Transfer (LT) and Seed Storage (SS) Protein family; 

1.01E-03 0.444079 7.03% 

184 HGM_across S10_58050683 Sb10g028160 N-terminal domain (domain I) of transcription 

elongation factor S-II (TFIIS) 

1.10E-03 0.476974 6.91% 

185 HGM_across S10_58039451 - - 1.49E-03 0.476974 6.51% 

186 HGM_across S10_58039503 - - 1.49E-03 0.476974 6.51% 

187 HGM_across S10_58039504 - - 1.49E-03 0.476974 6.51% 

188 HGM_across S10_58039505 - - 1.49E-03 0.476974 6.51% 
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189 HGM_across S10_58039507 - - 1.49E-03 0.476974 6.51% 

190 HGM_across S10_58039508 - - 1.49E-03 0.476974 6.51% 

191 HGM_across S10_55315031 Sb10g025990 PubMed=19936069 1.63E-03 0.427632 6.40% 

192 HGM_across S10_55315036 Sb10g025990 Transducin/WD40 repeat-like superfamily protein 1.63E-03 0.427632 6.40% 

193 HGM_across S10_58683017 Sb10g028870 " Putative meiotic serine proteinase" 1.97E-03 0.404605 6.15% 

194 HGM_across S10_57254019 Sb10g027460 OsENODL1_like; Early nodulin-like protein 2.29E-03 0.493421 5.95% 

195 HGM_across S10_59609220 - - 2.42E-03 0.421053 5.88% 

196 HGM_across S10_59419148 Sb10g029670 transcription termination factor Rho; Provisional 2.48E-03 0.463816 5.85% 

197 HGM_across S10_58309478 - - 2.56E-03 0.381579 5.81% 

198 HGM_across S10_58309481 - - 2.56E-03 0.381579 5.81% 

199 HGM_across S10_58309482 - - 2.56E-03 0.381579 5.81% 

200 HGM_across S10_58309484 - - 2.56E-03 0.381579 5.81% 

201 HGM_across S10_58309486 - - 2.56E-03 0.381579 5.81% 

202 HGM_across S10_58309487 - - 2.56E-03 0.381579 5.81% 

203 HGM_across S10_49314656 - - 2.77E-03 0.407895 5.70% 

204 HGM_across S10_49314673 - - 2.77E-03 0.407895 5.70% 

205 HGM_across S10_58954853 - - 2.95E-03 0.421053 5.62% 
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206 HGM_across S10_60363633 Sb10g030730 - 3.00E-03 0.444079 5.61% 

207 HGM_across S10_60363642 Sb10g030730 - 3.00E-03 0.444079 5.61% 

208 HGM_across S10_59020325 Sb10g029190 " Squamosa promoter-binding-like protein 12" 3.55E-03 0.4375 5.39% 

209 HGM_across S10_57808411 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 3.70E-03 0.486842 5.33% 

210 HGM_across S10_57808412 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 3.70E-03 0.486842 5.33% 

211 HGM_across S10_58764141 - - 4.17E-03 0.486842 5.18% 

212 HGM_across S10_58764156 - - 4.17E-03 0.486842 5.18% 

213 HGM_across S10_58764158 - - 4.17E-03 0.486842 5.18% 

214 HGM_across S10_58532130 Sb10g028670 Protein of unknown function (DUF1336) 4.55E-03 0.421053 5.07% 

215 HGM_across S10_53670803 Sb10g024570 - 4.65E-03 0.338816 5.04% 

216 HGM_across S10_58652516 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family 

protein 

4.70E-03 0.296053 5.03% 

217 HGM_across S10_58954854 - - 4.71E-03 0.417763 5.02% 

218 HGM_across S10_58954867 - - 4.71E-03 0.417763 5.02% 

219 HGM_across S10_57248800 Sb10g027440 Putative uncharacterized protein 4.77E-03 0.486842 5.01% 

220 HGM_across S10_58311699 Sb10g028500 " Peroxidase 16 protein" 5.15E-03 0.5 4.91% 

221 HGM_across S10_58311702 Sb10g028500 " Peroxidase 16 protein" 5.15E-03 0.5 4.91% 
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222 HGM_across S10_58311712 Sb10g028500 " Peroxidase 16 protein" 5.15E-03 0.5 4.91% 

223 HGM_across S10_58311714 Sb10g028500 " Peroxidase 16 protein" 5.15E-03 0.5 4.91% 

224 HGM_across S10_58311715 Sb10g028500 " Peroxidase 16 protein" 5.15E-03 0.5 4.91% 

225 HGM_across S10_58311716 Sb10g028500 " Peroxidase 16 protein" 5.15E-03 0.5 4.91% 

226 HGM_across S10_58311717 Sb10g028500 " Peroxidase 16 protein" 5.15E-03 0.5 4.91% 

227 HGM_across S10_58311719 Sb10g028500 " Peroxidase 16 protein" 5.15E-03 0.5 4.91% 

228 HGM_across S10_58311720 Sb10g028500 " Peroxidase 16 protein" 5.15E-03 0.5 4.91% 

229 HGM_across S10_59554262 Sb10g029810 " MADS box transcription factor" 5.72E-03 0.463816 4.78% 

230 HGM_across S10_59565625 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

5.76E-03 0.427632 4.77% 

231 HGM_across S10_59565627 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

5.76E-03 0.427632 4.77% 

232 HGM_across S10_59565629 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

5.76E-03 0.427632 4.77% 

233 HGM_across S10_59565631 Sb10g029820 AdoMet_Mtases( involves the direct methylation of 

oleic acid esterified as a component of phospholipids/it 

directly interacts with DNA,RNA also) 

5.76E-03 0.427632 4.77% 
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234 HGM_across S10_58425791 - - 5.86E-03 0.444079 4.75% 

235 HGM_across S10_58426868 - - 5.98E-03 0.368421 4.72% 

236 HGM_across S10_59018127 Sb10g029180 Catalytic domain of Protein Kinases 6.06E-03 0.470395 4.70% 

237 HGM_across S10_59018128 Sb10g029180 Catalytic domain of Protein Kinases 6.06E-03 0.470395 4.70% 

238 HGM_across S10_56923319 - - 6.35E-03 0.460526 4.65% 

239 HGM_across S10_58365099 - - 6.40E-03 0.440789 4.63% 

240 HGM_across S10_58764081 - - 7.00E-03 0.361842 4.52% 

241 HGM_across S10_58764085 - - 7.00E-03 0.361842 4.52% 

242 HGM_across S10_58764097 - - 7.00E-03 0.361842 4.52% 

243 HGM_across S10_57331300 - - 7.11E-03 0.457237 4.50% 

244 HGM_across S10_58652539 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family 

protein 

7.13E-03 0.404605 4.50% 

245 HGM_across S10_58652548 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family 

protein 

7.13E-03 0.404605 4.50% 

246 HGM_across S10_58652554 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family 

protein 

7.13E-03 0.404605 4.50% 
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247 HGM_across S10_58652555 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family 

protein 

7.13E-03 0.404605 4.50% 

248 HGM_across S10_58652556 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family 

protein 

7.13E-03 0.404605 4.50% 

249 HGM_across S10_56899442 Sb10g027180 Protein prenyltransferase alpha subunit repeat 7.24E-03 0.490132 4.48% 

250 HGM_across S10_59596203 Sb10g029850 " Putative uncharacterized protein P0712G01.1.5 7.26E-03 0.417763 4.48% 

251 HGM_across S10_60333765 Sb10g030700 Exo70 exocyst complex subunit 7.65E-03 0.460526 4.41% 

252 HGM_across S10_59215385 Sb10g029392 Multidrug and toxic compound extrusion family and 

similar proteins 

8.45E-03 0.470395 4.29% 

253 HGM_across S10_60631094 - - 8.76E-03 0.496711 4.24% 

254 HGM_across S10_58436224 - - 8.94E-03 0.345395 4.21% 

255 HGM_across S10_60037942 - - 9.12E-03 0.453947 4.19% 

256 HGM_across S10_56595404 - - 9.38E-03 0.463816 4.16% 

257 HGM_across S10_59946956 Sb10g030260 " Putative senescence-associated protein" 9.38E-03 0.4375 4.16% 

258 HGM_across S10_59946962 Sb10g030260 " Putative senescence-associated protein" 9.38E-03 0.4375 4.16% 

259 HGM_across S10_59946968 Sb10g030260 " Putative senescence-associated protein" 9.38E-03 0.4375 4.16% 

260 HGM_across S10_56595416 - - 9.49E-03 0.470395 4.14% 

261 GNP/plot_R13 S10_50809289 Sb10g022730 protein serine/threonine kinase activity 9.91E-04 29.61% 20.93% 

Table 22: (Contd..) 



 

171 
 

S No. Trait SNP Gene Id Functional annotation P.value maf %R
2
 

262 GNP/plot_R13 S10_53160761 Sb10g024190 Basic-leucine zipper (bZIP) transcription factor 2.82E-03 38.49% 19.77% 

263 GNP/plot_R13 S10_53681243 Sb10g024575 zinc-binding family protein 5.47E-03 34.54% 19.04% 

264 GNP/plot_R13 S10_54877559 Sb10g025540 Putative prolylcarboxypeptidase isoform 1 5.75E-03 28.95% 18.99% 

265 GNP/plot_R13 S10_53191736 Sb10g024220 polyphenol oxidase, putative, expressed 6.57E-03 34.54% 18.85% 

266 GNP/plot_R13 S10_53092316 Sb10g024180 ARABIDOPSIS RESPONSE REGULATOR 10-Myb-

like DNA-binding domain,(gl3_maize2012) 

6.77E-03 22.70% 18.81% 

267 GNP/plot_R13 S10_54101884 - - 9.30E-03 39.47% 18.48% 

268 GNP/plot_R14 S10_56381721 - - 8.36E-03 0.493421 5.73% 

269 GNP/plot_R14 S10_56381725 - - 8.36E-03 0.493421 5.73% 

270 GNP/plot_across S10_56381721 - - 1.09E-03 0.493421 12.95% 

271 GNP/plot_across S10_56381725 - - 1.09E-03 0.493421 12.95% 

272 GNP/plot_across S10_48726890 - - 6.64E-03 0.302632 10.76% 

273 GNP/plot_across S10_54877559 Sb10g025540 Putative prolylcarboxypeptidase isoform 1 7.27E-03 0.289474 10.65% 

274 GNPP_R13 S10_50809289 Sb10g022730 protein serine/threonine kinase activity 9.91E-04 29.61% 20.93% 

275 GNPP_R13 S10_53160761 Sb10g024190 Basic-leucine zipper (bZIP) transcription factor 2.82E-03 38.49% 19.77% 

276 GNPP_R13 S10_53681243 Sb10g024575 zinc-binding family protein 5.47E-03 34.54% 19.04% 

277 GNPP_R13 S10_54877559 Sb10g025540 Putative prolylcarboxypeptidase isoform 1 5.75E-03 28.95% 18.99% 

Table 22: (Contd..) 



 

172 
 

S No. Trait SNP Gene Id Functional annotation P.value maf %R
2
 

278 GNPP_R13 S10_53191736 Sb10g024220 polyphenol oxidase, putative, expressed 6.57E-03 34.54% 18.85% 

279 GNPP_R13 S10_53092316 Sb10g024180 ARABIDOPSIS RESPONSE REGULATOR 10-Myb-

like DNA-binding domain,(gl3_maize2012) 

6.77E-03 22.70% 18.81% 

280 GNPP_R13 S10_54101884 - - 9.30E-03 39.47% 18.48% 

281 GNPP_R14 S10_56381721 - - 8.36E-03 0.493421 5.73% 

282 GNPP_R14 S10_56381725 - - 8.36E-03 0.493421 5.73% 

283 GNPP_across S10_56381721 - - 1.09E-03 0.493421 12.95% 

284 GNPP_across S10_56381725 - - 1.09E-03 0.493421 12.95% 

285 GNPP_across S10_48726890 - - 6.64E-03 0.302632 10.76% 

286 GNPP_across S10_54877559 Sb10g025540 Putative prolylcarboxypeptidase isoform 1 7.27E-03 0.289474 10.65% 

287 PHI_R13 S10_56206662 Sb10g026760 Zinc finger POZ domain protein 4.56E-04 0.388158 17.97% 

288 PHI_R13 S10_57552456 Sb10g027760 F-box domain 2.78E-03 0.483553 15.64% 

289 PHI_R13 S10_59930523 Sb10g030230 TLP-PA; allergenic/antifungal thaumatin-like proteins 9.57E-03 0.430921 14.12% 

290 PHI_R14 S10_53160761 Sb10g024190 Basic-leucine zipper (bZIP) transcription factor 5.14E-03 0.384868 14.88% 

291 PHI_R14 S10_56206662 Sb10g026760 Zinc finger POZ domain protein 4.56E-04 0.388158 17.97% 

292 PHI_R14 S10_57552456 Sb10g027760 F-box domain 2.78E-03 0.483553 15.64% 

293 PHI_R14 S10_59930523 Sb10g030230 TLP-PA; allergenic/antifungal thaumatin-like proteins 9.57E-03 0.430921 14.12% 
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294 PHI_across S10_50469983   4.43E-03 0.411184 14.38% 

295 PHI_across S10_53746012   6.05E-03 0.375 14.02% 

296 PHI_across S10_53746011   6.62E-03 0.378289 13.92% 

297 PHI_across S10_54877559 Sb10g025540 Putative prolylcarboxypeptidase isoform 1 7.21E-03 0.289474 13.82% 

298 PHI_across S10_53746018   9.76E-03 0.365132 13.48% 

299 PHI_across S10_53746019   9.76E-03 0.365132 13.48% 
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1 Gls _K13 Xgap001 SSR - 6.05E-04 0.3618 22.22% 

2 Gls _K13 S10_56730378 Sb10g027090 serine/arginine repetitive matrix protein 2-like 1.75E-03 0.4836 20.93% 

3 Gls _K13 S10_56216953 Sb10g026790 Zinc finger POZ domain protein 7.61E-03 0.4803 19.21% 

4 Gls _K13 S10_55526794 Sb10g026170 hypothetical protein 8.75E-03 0.4309 19.05% 

5 Gls _K13 S10_59889374 Sb10g030175 rod shape-determining protein MreC 9.06E-03 0.4079 19.01% 

6 Gls _K13 S10_54185546 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

9.91E-03 0.3322 18.91% 

7 Gls _R13 S10_56734981 - - 6.31E-04 0.4737 25.48% 

8 Gls _R13 S10_54593246 Sb10g025320 transducin family protein / WD-40 repeat family protein 6.34E-04 0.3586 25.48% 

9 Gls _R13 S10_54138396 - - 1.46E-03 0.3553 24.51% 

10 Gls _R13 S10_54646082 Sb10g025360 SAM (Sterile Alpha Motif) 2.04E-03 0.375 24.12% 

11 Gls _R13 S10_54185546 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

2.45E-03 0.3322 23.92% 

12 Gls _R13 S10_54138397 - - 2.73E-03 0.3618 23.79% 

13 Gls _R13 Xgap001 SSR - 2.78E-03 0.3618 23.78% 

14 Gls _R13 S10_56158409 Sb10g026690 OsMADS30 - MADS-box family gene with MIKCc type-box, expressed 3.35E-03 0.4211 23.56% 

15 Gls _R13 S10_56158458 Sb10g026690 OsMADS30 - MADS-box family gene with MIKCc type-box, expressed 3.35E-03 0.4211 23.56% 

16 Gls _R13 S10_54185539 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

4.09E-03 0.3355 23.34% 

17 Gls _R13 S10_54138399 - - 5.05E-03 0.3717 23.11% 

18 Gls _R13 S10_54527903 Sb10g025280 Vacuolar H+-pyrophosphatase 5.52E-03 0.398 23.01% 

19 Gls _R13 S10_55200530 Sb10g025880  Putative GDP-L-fucose synthase 2 5.70E-03 0.4934 22.97% 
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20 Gls _R13 S10_54532800 Sb10g025283 NBS-LRR disease resistance protein 6.70E-03 0.3421 22.79% 

21 Gls _R13 S10_54907720 - - 7.45E-03 0.4375 22.68% 

22 Gls _R13 S10_55617097 - - 7.76E-03 0.4375 22.63% 

23 Gls _R13 S10_54138395 - - 9.28E-03 0.3947 22.44% 

24 Gls Across Xgap001 SSR - 6.78E-05 0.3618 25.05% 

25 Gls Across S10_56730378 Sb10g027090 serine/arginine repetitive matrix protein 2-like 3.77E-04 0.4836 23.07% 

26 Gls Across S10_54593246 Sb10g025320 Transducin family protein / WD-40 repeat family protein 5.33E-04 0.3586 22.67% 

27 Gls Across S10_54185546 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

6.13E-04 0.3322 22.51% 

28 Gls Across S10_56158409 Sb10g026690 OsMADS30 - MADS-box family gene with MIKCc type-box, expressed 9.04E-04 0.4211 22.08% 

29 Gls Across S10_56158458 Sb10g026690 OsMADS30 - MADS-box family gene with MIKCc type-box, expressed 9.04E-04 0.4211 22.08% 

30 Gls Across S10_54185539 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

9.50E-04 0.3355 22.02% 

31 Gls Across S10_54646082 Sb10g025360 SAM (Sterile Alpha Motif) 1.03E-03 0.375 21.93% 

32 Gls Across S10_54138396 - - 1.19E-03 0.3553 21.77% 

33 Gls Across S10_54907720 - - 1.27E-03 0.4375 21.70% 

34 Gls Across S10_54527903 Sb10g025280 Vacuolar H+-pyrophosphatase 1.55E-03 0.398 21.48% 

35 Gls Across S10_56216953 Sb10g026790 Zinc finger POZ domain protein 1.59E-03 0.4803 21.45% 

36 Gls Across S10_54101884 - - 2.32E-03 0.3947 21.03% 

37 Gls Across S10_54138397 - - 3.37E-03 0.3618 20.63% 

38 Gls Across S10_60245187 Sb10g030580 DUF241; Arabidopsis protein of unknown function 4.22E-03 0.4572 20.39% 

39 Gls Across S10_54655292 Sb10g025370 Putative uncharacterized protein 4.26E-03 0.3355 20.38% 

40 Gls Across S10_55200530 Sb10g025880  Putative GDP-L-fucose synthase 2 4.43E-03 0.4934 20.33% 

41 Gls Across S10_54184991 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

4.48E-03 0.3618 20.32% 

42 Gls Across S10_56350371 Sb10g026940 Peptidyl-prolyl cis-trans isomerase 4.62E-03 0.4013 20.29% 
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43 Gls Across S10_54584167 Sb10g025310 Ankyrin repeat protein  (plant fertility)/protein-cysteine S-

palmitoleyltransferase activity 

4.76E-03 0.3618 20.26% 

44 Gls Across S10_56773166 Sb10g027100  NAC domain protein NAC1 4.89E-03 0.4934 20.23% 

45 Gls Across S10_56485883 - - 5.00E-03 0.4539 20.21% 

46 Gls Across S10_54186806 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

5.20E-03 0.3454 20.16% 

47 Gls Across S10_56738165 - - 6.12E-03 0.4836 19.99% 

48 Gls Across S10_56738166 - - 6.12E-03 0.4836 19.99% 

49 Gls Across S10_56738167 - - 6.12E-03 0.4836 19.99% 

50 Gls Across S10_56728353 - - 6.56E-03 0.4803 19.92% 

51 Gls Across S10_54532800 Sb10g025283 NBS-LRR disease resistance protein 6.59E-03 0.3421 19.91% 

52 Gls Across S10_54186799 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

6.74E-03 0.3487 19.89% 

53 Gls Across S10_54186809 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

6.74E-03 0.3487 19.89% 

54 Gls Across S10_54186811 Sb10g025010 leucine-rich repeat transmembrane protein kinase(GO:0005575: The part 

of a cell or its extracellular environment in which a gene product is 

located) 

6.74E-03 0.3487 19.89% 

55 Gls Across S10_54532995 Sb10g025283 NBS-LRR disease resistance protein 7.94E-03 0.4046 19.72% 

56 Gls Across S10_55600708 Sb10g026200 SBP domain protein 4 8.19E-03 0.4046 19.68% 

57 Gls Across S10_55748444 Sb10g026300 auxin efflux carrier component 2 8.22E-03 0.4145 19.68% 

58 Gls Across S10_56376491 Sb10g026970  Auxin responsive protein 8.95E-03 0.4704 19.59% 

59 TDL_K13 S10_57432493 Sb10g027640 Omethyl transferase 5.37E-08 0.4704 45.29% 

60 TDL_K13 S10_57453669 - - 3.73E-07 0.4474 42.96% 

61 TDL_K13 S10_57427894 - - 6.99E-07 0.4967 42.22% 

62 TDL_K13 S10_57548453 - - 9.20E-07 0.4901 41.90% 

63 TDL_K13 S10_57484592 - - 1.73E-06 0.5 41.17% 
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64 TDL_K13 S10_57484595 - - 1.73E-06 0.5 41.17% 

65 TDL_K13 S10_57484598 - - 1.73E-06 0.5 41.17% 

66 TDL_K13 S10_57484597 - - 1.73E-06 0.5 41.17% 

67 TDL_K13 S10_57963498 - - 1.85E-06 0.4803 41.10% 

68 TDL_K13 S10_58035226 Sb10g028140 AA-amino acid hydrolase 2.75E-06 0.4638 40.64% 

69 TDL_K13 S10_57773700 - - 3.59E-06 0.4737 40.34% 

70 TDL_K13 S10_57453732 - - 4.68E-06 0.4704 40.03% 

71 TDL_K13 S10_58356653 - - 5.46E-06 0.4507 39.86% 

72 TDL_K13 S10_57145296 Sb10g027370 PBP1_GABAb_receptor 5.65E-06 0.4901 39.82% 

73 TDL_K13 S10_56958200 Sb10g027240 Trans_IPPS_HT; Trans-Isoprenyl Diphosphate Synthases, head-to-tail 7.25E-06 0.5 39.54% 

74 TDL_K13 S10_58069749 - - 8.66E-06 0.4704 39.34% 

75 TDL_K13 S10_57623967 Sb10g027790 " Auxin response factor 18" 1.02E-05 0.4638 39.16% 

76 TDL_K13 S10_57400347 Sb10g027610 " EF-hand Ca2+-binding protein CCD1" 1.19E-05 0.4737 38.99% 

77 TDL_K13 S10_58532130 Sb10g028670  Protein of unknown function (DUF1336) 1.93E-05 0.4211 38.45% 

78 TDL_K13 S10_56869829 - - 1.97E-05 0.5 38.43% 

79 TDL_K13 S10_56869835 - - 1.97E-05 0.5 38.43% 

80 TDL_K13 S10_57936436 - - 2.00E-05 0.4671 38.41% 

81 TDL_K13 S10_58022908 Sb10g028130 " Putative thaumatin-protein" 2.02E-05 0.4408 38.40% 

82 TDL_K13 S10_57253966 Sb10g027460 OsENODL1_like; Early nodulin-like protein  2.12E-05 0.4967 38.34% 

83 TDL_K13 S10_57253967 Sb10g027460 OsENODL1_like; Early nodulin-like protein  2.12E-05 0.4967 38.34% 

84 TDL_K13 S10_58048950 Sb10g028160 N-terminal domain (domain I) of transcription elongation factor S-II 

(TFIIS) 

2.29E-05 0.4638 38.26% 

85 TDL_K13 S10_58079690 Sb10g028200 Catalytic domain of Protein Kinases 2.36E-05 0.4474 38.23% 

86 TDL_K13 S10_57490614 Sb10g027680 " Armadillo/beta-catenin repeat protein-like" 2.38E-05 0.4803 38.22% 

87 TDL_K13 S10_57403166 - - 2.39E-05 0.3059 38.21% 

88 TDL_K13 S10_56930141 - - 2.62E-05 0.4868 38.11% 

89 TDL_K13 S10_58022907 Sb10g028130 " Putative thaumatin-protein" 2.71E-05 0.4441 38.07% 
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90 TDL_K13 S10_59020325 Sb10g029190 " Squamosa promoter-binding-like protein 12" 3.07E-05 0.4375 37.94% 

91 TDL_K13 Xtxp141 - - 4.14E-05 0.4704 37.61% 

92 TDL_K13 S10_57423429 - - 4.32E-05 0.4737 37.57% 

93 TDL_K13 S10_57022696 - - 4.60E-05 0.4474 37.50% 

94 TDL_K13 S10_57331278 - - 5.95E-05 0.5 37.22% 

95 TDL_K13 S10_57403220 - - 8.29E-05 0.4342 36.86% 

96 TDL_K13 S10_57830472 - - 8.67E-05 0.4704 36.81% 

97 TDL_K13 S10_57830492 - - 8.67E-05 0.4704 36.81% 

98 TDL_K13 S10_57830499 - - 8.67E-05 0.4704 36.81% 

99 TDL_K13 S10_57785077 - - 9.97E-05 0.4243 36.66% 

100 TDL_K13 S10_56932767 - - 1.20E-04 0.5 36.47% 

101 TDL_K13 S10_57936524 - - 1.28E-04 0.4474 36.40% 

102 TDL_K13 S10_59082143 Sb10g029270 " Delta-aminolevulinic acid dehydratase" 1.28E-04 0.4178 36.39% 

103 TDL_K13 S10_59082132 Sb10g029270 " Delta-aminolevulinic acid dehydratase" 1.28E-04 0.4178 36.39% 

104 TDL_K13 S10_56945933 - - 1.41E-04 0.4934 36.30% 

105 TDL_K13 S10_57449076 - - 1.46E-04 0.4868 36.26% 

106 TDL_K13 S10_57251912 Sb10g027450 " 40S ribosomal protein S14-1" 1.56E-04 0.4934 36.19% 

107 TDL_K13 S10_58663474 - - 2.10E-04 0.4013 35.87% 

108 TDL_K13 S10_56730378 Sb10g027090 serine/arginine repetitive matrix protein 2-like 2.27E-04 0.4836 35.79% 

109 TDL_K13 S10_58954853 - - 2.35E-04 0.4211 35.75% 

110 TDL_K13 S10_57808411 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 2.66E-04 0.4868 35.62% 

111 TDL_K13 S10_57808412 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 2.66E-04 0.4868 35.62% 

112 TDL_K13 S10_59434640 Sb10g029690 " GCIP-interacting family protein-like" 3.08E-04 0.4046 35.47% 

113 TDL_K13 S10_57303312 - - 3.40E-04 0.3618 35.37% 

114 TDL_K13 S10_57831107 Sb10g027980 Cysteine protease Mir1 3.41E-04 0.4901 35.36% 

115 TDL_K13 S10_58299415 - - 3.47E-04 0.4474 35.35% 

116 TDL_K13 S10_59571447 - - 3.63E-04 0.4309 35.30% 
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117 TDL_K13 S10_58663475 - - 3.95E-04 0.4375 35.21% 

118 TDL_K13 S10_56937708 - - 4.03E-04 0.4704 35.19% 

119 TDL_K13 S10_58954854 - - 4.07E-04 0.4178 35.18% 

120 TDL_K13 S10_58954867 - - 4.07E-04 0.4178 35.18% 

121 TDL_K13 S10_57031008 Sb10g027280 similar to Putative transcription factor GAMyb 4.17E-04 0.4507 35.15% 

122 TDL_K13 S10_58310186 Sb10g028500 " Peroxidase 16 protein" 4.64E-04 0.4441 35.04% 

123 TDL_K13 S10_56922022 - - 4.66E-04 0.477 35.04% 

124 TDL_K13 S10_57103838 Sb10g027350 p450; Cytochrome P450 5.14E-04 0.4934 34.94% 

125 TDL_K13 S10_58345765 - - 6.07E-04 0.4441 34.77% 

126 TDL_K13 S10_58460662 - - 6.60E-04 0.4211 34.68% 

127 TDL_K13 S10_56943507 - - 8.02E-04 0.4934 34.48% 

128 TDL_K13 S10_56773166 Sb10g027100  NAC domain protein NAC1 8.24E-04 0.4934 34.45% 

129 TDL_K13 S10_59770217 - - 8.28E-04 0.4474 34.45% 

130 TDL_K13 S10_58652432 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family protein 9.03E-04 0.4243 34.36% 

131 TDL_K13 S10_57331385 - - 9.39E-04 0.4671 34.32% 

132 TDL_R13 S10_57484597 - - 9.76E-07 0.5 50.76% 

133 TDL_R13 S10_57484592 - - 9.76E-07 0.5 50.76% 

134 TDL_R13 S10_57484595 - - 9.76E-07 0.5 50.76% 

135 TDL_R13 S10_57484598 - - 9.76E-07 0.5 50.76% 

136 TDL_R13 S10_57253966 Sb10g027460 OsENODL1_like; Early nodulin-like protein  1.81E-06 0.4967 50.15% 

137 TDL_R13 S10_57253967 Sb10g027460 OsENODL1_like; Early nodulin-like protein  1.81E-06 0.4967 50.15% 

138 TDL_R13 S10_57432493 Sb10g027640 Omethyl transferase/WRKY 3.21E-06 0.4704 49.60% 

139 TDL_R13 S10_56958200 Sb10g027240 Trans_IPPS_HT; Trans-Isoprenyl Diphosphate Synthases, head-to-tail 3.44E-06 0.5 49.53% 

140 TDL_R13 S10_57427894 - - 5.26E-06 0.4967 49.12% 

141 TDL_R13 S10_57453669 - - 8.17E-06 0.4474 48.70% 

142 TDL_R13 S10_57400347 Sb10g027610 " EF-hand Ca2+-binding protein CCD1" 1.30E-05 0.4737 48.27% 

143 TDL_R13 S10_57773700 - - 1.40E-05 0.4737 48.20% 
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144 TDL_R13 S10_57963498 - - 1.47E-05 0.4803 48.15% 

145 TDL_R13 S10_57103838 Sb10g027350 p450; Cytochrome P450 2.21E-05 0.4934 47.77% 

146 TDL_R13 S10_57145296 Sb10g027370 PBP1_GABAb_receptor 2.36E-05 0.4901 47.71% 

147 TDL_R13 S10_56730378 Sb10g027090 serine/arginine repetitive matrix protein 2-like 2.49E-05 0.4836 47.66% 

148 TDL_R13 S10_58069749 - - 2.50E-05 0.4704 47.65% 

149 TDL_R13 S10_57548453 - - 2.87E-05 0.4901 47.53% 

150 TDL_R13 S10_57403166 - - 3.05E-05 0.3059 47.47% 

151 TDL_R13 S10_57449076 - - 3.09E-05 0.4868 47.46% 

152 TDL_R13 S10_57936436 - - 4.63E-05 0.4671 47.08% 

153 TDL_R13 S10_57490614 Sb10g027680 " Armadillo/beta-catenin repeat protein-like" 4.76E-05 0.4803 47.06% 

154 TDL_R13 S10_57760921 Sb10g027920 COG0724; RNA-binding proteins 5.04E-05 0.4934 47.00% 

155 TDL_R13 S10_57482523 - - 6.84E-05 0.4539 46.72% 

156 TDL_R13 S10_58035226 Sb10g028140 AA-amino acid hydrolase 7.11E-05 0.4638 46.69% 

157 TDL_R13 S10_56930141 - - 9.23E-05 0.4868 46.45% 

158 TDL_R13 S10_56773166 Sb10g027100  NAC domain protein NAC1 9.38E-05 0.4934 46.44% 

159 TDL_R13 S10_59571447 - - 1.01E-04 0.4309 46.37% 

160 TDL_R13 S10_57623967 Sb10g027790 " Auxin response factor 18" 1.35E-04 0.4638 46.11% 

161 TDL_R13 S10_57936524 - - 1.40E-04 0.4474 46.07% 

162 TDL_R13 S10_56922022 - - 1.91E-04 0.477 45.80% 

163 TDL_R13 S10_57831107 Sb10g027980 Cysteine protease Mir1 1.97E-04 0.4901 45.77% 

164 TDL_R13 S10_57251912 Sb10g027450 " 40S ribosomal protein S14-1" 2.10E-04 0.4934 45.71% 

165 TDL_R13 S10_57423429 - - 2.21E-04 0.4737 45.67% 

166 TDL_R13 S10_57549720 - - 2.31E-04 0.477 45.63% 

167 TDL_R13 S10_56728443 - - 2.37E-04 0.4704 45.61% 

168 TDL_R13 S10_56932767 - - 2.42E-04 0.5 45.59% 

169 TDL_R13 S10_57024276 Sb10g027275 pyrrolidone-carboxylate peptidase; K01304 pyroglutamyl-peptidase 3.18E-04 0.4967 45.34% 
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170 TDL_R13 S10_58039503 - - 3.41E-04 0.477 45.28% 

171 TDL_R13 S10_58039505 - - 3.41E-04 0.477 45.28% 

172 TDL_R13 S10_58039451 - - 3.41E-04 0.477 45.28% 

173 TDL_R13 S10_58039504 - - 3.41E-04 0.477 45.28% 

174 TDL_R13 S10_58039507 - - 3.41E-04 0.477 45.28% 

175 TDL_R13 S10_58039508 - - 3.41E-04 0.477 45.28% 

176 TDL_R13 S10_57331278 - - 3.54E-04 0.5 45.25% 

177 TDL_R13 S10_57303312 - - 3.83E-04 0.3618 45.18% 

178 TDL_R13 S10_60213638 Sb10g030550 GDSL-lipase-like 4.45E-04 0.4145 45.05% 

179 TDL_R13 S10_58079690 Sb10g028200 Catalytic domain of Protein Kinases 4.75E-04 0.4474 44.99% 

180 TDL_R13 S10_58022908 Sb10g028130 " Putative thaumatin-protein" 4.83E-04 0.4408 44.98% 

181 TDL_R13 S10_57547037 - - 4.95E-04 0.4671 44.95% 

182 TDL_R13 S10_58299415 - - 5.23E-04 0.4474 44.91% 

183 TDL_R13 S10_57022696 - - 5.51E-04 0.4474 44.86% 

184 TDL_R13 S10_58022907 Sb10g028130 " Putative thaumatin-protein" 5.90E-04 0.4441 44.80% 

185 TDL_R13 S10_57252006 Sb10g027450 " 40S ribosomal protein S14-1" 6.37E-04 0.4803 44.73% 

186 TDL_R13 S10_57252004 Sb10g027450 " 40S ribosomal protein S14-1" 6.37E-04 0.4803 44.73% 

187 TDL_R13 S10_57252007 Sb10g027450 " 40S ribosomal protein S14-1" 6.37E-04 0.4803 44.73% 

188 TDL_R13 S10_57808411 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 7.04E-04 0.4868 44.65% 

189 TDL_R13 S10_57808412 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 7.04E-04 0.4868 44.65% 

190 TDL_R13 S10_57785077 - - 7.10E-04 0.4243 44.64% 

191 TDL_R13 S10_57830499 - - 7.62E-04 0.4704 44.58% 

192 TDL_R13 S10_57830472 - - 7.62E-04 0.4704 44.58% 

193 TDL_R13 S10_57830492 - - 7.62E-04 0.4704 44.58% 

194 TDL_R13 S10_57453732 - - 8.03E-04 0.4704 44.53% 

195 TDL_R13 S10_56728353 - - 8.39E-04 0.4803 44.49% 
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196 TDL_R13 S10_57522978 Sb10g027730 F-box domain 9.14E-04 0.4836 44.42% 

197 TDL_R13 S10_56199661 Sb10g026750 Zinc finger POZ domain protein 9.14E-04 0.4375 44.42% 

198 TDL_R13 S10_56199672 Sb10g026750 Zinc finger POZ domain protein 9.14E-04 0.4375 44.42% 

199 TDL_R13 S10_57006286 - - 9.52E-04 0.4803 44.39% 

200 TDL_R13 S10_57547066 - - 9.69E-04 0.4605 44.37% 

201 TDL_R13 S10_57032564 Sb10g027280 similar to Putative transcription factor GAMyb 9.78E-04 0.4934 44.36% 

202 Tdl across  S10_57432493 Sb10g027640 O methyl transferase 3.67E-10 0.4704 54.53% 

203 Tdl across  S10_57427894 - - 2.82E-09 0.4967 52.33% 

204 Tdl across  S10_56958200 Sb10g027240 Trans_IPPS_HT; Trans-Isoprenyl Diphosphate Synthases, head-to-tail 3.88E-09 0.5 51.99% 

205 Tdl across  S10_57484592 - - 4.75E-09 0.5 51.78% 

206 Tdl across  S10_57484595 - - 4.75E-09 0.5 51.78% 

207 Tdl across  S10_57484597 - - 4.75E-09 0.5 51.78% 

208 Tdl across  S10_57484598 - - 4.75E-09 0.5 51.78% 

209 Tdl across  S10_57453669 - - 5.13E-09 0.4474 51.70% 

210 Tdl across  S10_57548453 - - 6.69E-09 0.4901 51.42% 

211 Tdl across  S10_57253966 Sb10g027460 OsENODL1_like; Early nodulin-like protein  7.00E-09 0.4967 51.37% 

212 Tdl across  S10_57253967 Sb10g027460 OsENODL1_like; Early nodulin-like protein  7.00E-09 0.4967 51.37% 

213 Tdl across  S10_57773700 - - 9.14E-09 0.4737 51.09% 

214 Tdl across  S10_57145296 Sb10g027370 PBP1_GABAb_receptor 1.23E-08 0.4901 50.78% 

215 Tdl across  S10_57963498 - - 1.27E-08 0.4803 50.75% 

216 Tdl across  S10_57400347 Sb10g027610 " EF-hand Ca2+-binding protein CCD1" 1.59E-08 0.4737 50.52% 

217 Tdl across  S10_58069749 - - 3.23E-08 0.4704 49.78% 

218 Tdl across  S10_57490614 Sb10g027680 " Armadillo/beta-catenin repeat protein-like" 6.86E-08 0.4803 49.02% 

219 Tdl across  S10_58035226 Sb10g028140 AA-amino acid hydrolase 8.18E-08 0.4638 48.84% 

220 Tdl across  S10_56730378 Sb10g027090 serine/arginine repetitive matrix protein 2-like 1.10E-07 0.4836 48.54% 

221 Tdl across  S10_57936436 - - 1.21E-07 0.4671 48.44% 

222 Tdl across  S10_57403166 - - 1.41E-07 0.3059 48.29% 
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223 Tdl across  S10_57623967 Sb10g027790 " Auxin response factor 18" 1.47E-07 0.4638 48.25% 

224 Tdl across  S10_56930141 - - 1.81E-07 0.4868 48.04% 

225 Tdl across  S10_57449076 - - 2.10E-07 0.4868 47.89% 

226 Tdl across  S10_58079690 Sb10g028200 Catalytic domain of Protein Kinases 3.83E-07 0.4474 47.30% 

227 Tdl across  S10_57453732 - - 3.95E-07 0.4704 47.26% 

228 Tdl across  S10_57103838 Sb10g027350 p450; Cytochrome P450 4.34E-07 0.4934 47.17% 

229 Tdl across  S10_57022696 - - 5.28E-07 0.4474 46.98% 

230 Tdl across  S10_56932767 - - 5.42E-07 0.5 46.95% 

231 Tdl across  S10_57423429 - - 6.38E-07 0.4737 46.79% 

232 Tdl across  S10_57331278 - - 7.08E-07 0.5 46.69% 

233 Tdl across  S10_57936524 - - 9.54E-07 0.4474 46.40% 

234 Tdl across  S10_57251912 Sb10g027450 " 40S ribosomal protein S14-1" 9.76E-07 0.4934 46.38% 

235 Tdl across  S10_56773166 Sb10g027100  NAC domain protein NAC1 9.83E-07 0.4934 46.37% 

236 Tdl across  S10_58022908 Sb10g028130 " Putative thaumatin-protein" 1.15E-06 0.4408 46.22% 

237 Tdl across  S10_58022907 Sb10g028130 " Putative thaumatin-protein" 1.67E-06 0.4441 45.85% 

238 Tdl across  S10_56922022 - - 1.75E-06 0.477 45.81% 

239 Tdl across  S10_57785077 - - 2.04E-06 0.4243 45.66% 

240 Tdl across  Xtxp141 - - 2.06E-06 0.4704 45.65% 

241 Tdl across  S10_59571447 - - 2.17E-06 0.4309 45.60% 

242 Tdl across  S10_57303312 - - 2.67E-06 0.3618 45.41% 

243 Tdl across  S10_56945933 - - 2.88E-06 0.4934 45.33% 

244 Tdl across  S10_59020325 Sb10g029190 " Squamosa promoter-binding-like protein 12" 2.92E-06 0.4375 45.32% 

245 Tdl across  S10_58299415 - - 2.99E-06 0.4474 45.30% 

246 Tdl across  S10_57482523 - - 3.05E-06 0.4539 45.28% 

247 Tdl across  S10_56869829 - - 3.14E-06 0.5 45.25% 

248 Tdl across  S10_56869835 - - 3.14E-06 0.5 45.25% 
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249 Tdl across  S10_58532130 Sb10g028670  Protein of unknown function (DUF1336) 3.82E-06 0.4211 45.06% 

250 Tdl across  S10_57808411 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 4.69E-06 0.4868 44.87% 

251 Tdl across  S10_57808412 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 4.69E-06 0.4868 44.87% 

252 Tdl across  S10_58954853 - - 5.84E-06 0.4211 44.66% 

253 Tdl across  S10_58356653 - - 5.86E-06 0.4507 44.66% 

254 Tdl across  S10_57403220 - - 5.97E-06 0.4342 44.64% 

255 Tdl across  S10_56728443 - - 6.04E-06 0.4704 44.63% 

256 Tdl across  S10_57760921 Sb10g027920 COG0724; RNA-binding proteins 6.41E-06 0.4934 44.57% 

257 Tdl across  S10_58048950 Sb10g028160 N-terminal domain (domain I) of transcription elongation factor S-II 

(TFIIS) 

6.79E-06 0.4638 44.52% 

258 Tdl across  S10_56728353 - - 6.87E-06 0.4803 44.51% 

259 Tdl across  S10_57831107 Sb10g027980 Cysteine protease Mir1 7.01E-06 0.4901 44.49% 

260 Tdl across  S10_57549720 - - 7.45E-06 0.477 44.43% 

261 Tdl across  S10_59082132 Sb10g029270 " Delta-aminolevulinic acid dehydratase" 8.12E-06 0.4178 44.35% 

262 Tdl across  S10_59082143 Sb10g029270 " Delta-aminolevulinic acid dehydratase" 8.12E-06 0.4178 44.35% 

263 Tdl across  S10_57830472 - - 8.34E-06 0.4704 44.32% 

264 Tdl across  S10_57830492 - - 8.34E-06 0.4704 44.32% 

265 Tdl across  S10_57830499 - - 8.34E-06 0.4704 44.32% 

266 Tdl across  S10_57522978 Sb10g027730 F-box domain 9.87E-06 0.4836 44.17% 

267 Tdl across  S10_58954854 - - 1.18E-05 0.4178 44.00% 

268 Tdl across  S10_58954867 - - 1.18E-05 0.4178 44.00% 

269 Tdl across  S10_56943507 - - 1.30E-05 0.4934 43.91% 

270 Tdl across  S10_58310186 Sb10g028500 " Peroxidase 16 protein" 1.31E-05 0.4441 43.90% 

271 Tdl across  S10_56937708 - - 1.38E-05 0.4704 43.86% 

272 Tdl across  S10_58652432 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family protein 1.41E-05 0.4243 43.83% 
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273 Tdl across  S10_56626709 - - 1.46E-05 0.4605 43.80% 

274 Tdl across  S10_57024276 Sb10g027275 pyrrolidone-carboxylate peptidase; K01304 pyroglutamyl-peptidase 1.99E-05 0.4967 43.51% 

275 Tdl across  S10_56655783 Sb10g027070 Putative uncharacterized protein 2.12E-05 0.4572 43.46% 

276 Tdl across  S10_58050683 Sb10g028160 N-terminal domain (domain I) of transcription elongation factor S-II 

(TFIIS) 

2.25E-05 0.477 43.40% 

277 Tdl across  S10_56078885 - - 2.40E-05 0.4309 43.34% 

278 Tdl across  S10_58365099 - - 2.52E-05 0.4408 43.29% 

279 Tdl across  S10_58345765 - - 2.60E-05 0.4441 43.27% 

280 Tdl across  S10_58039451 - - 2.68E-05 0.477 43.24% 

281 Tdl across  S10_58039503 - - 2.68E-05 0.477 43.24% 

282 Tdl across  S10_58039504 - - 2.68E-05 0.477 43.24% 

283 Tdl across  S10_58039505 - - 2.68E-05 0.477 43.24% 

284 Tdl across  S10_58039507 - - 2.68E-05 0.477 43.24% 

285 Tdl across  S10_58039508 - - 2.68E-05 0.477 43.24% 

286 Tdl across  S10_56199661 Sb10g026750 Zinc finger POZ domain protein 2.75E-05 0.4375 43.21% 

287 Tdl across  S10_56199672 Sb10g026750 Zinc finger POZ domain protein 2.75E-05 0.4375 43.21% 

288 Tdl across  S10_57006286 - - 2.78E-05 0.4803 43.21% 

289 Tdl across  S10_59434640 Sb10g029690 " GCIP-interacting family protein-like" 3.31E-05 0.4046 43.04% 

290 Tdl across  S10_57252004 Sb10g027450 " 40S ribosomal protein S14-1" 3.34E-05 0.4803 43.03% 

291 Tdl across  S10_57252006 Sb10g027450 " 40S ribosomal protein S14-1" 3.34E-05 0.4803 43.03% 

292 Tdl across  S10_57252007 Sb10g027450 " 40S ribosomal protein S14-1" 3.34E-05 0.4803 43.03% 

293 Tdl across  S10_58460662 - - 4.74E-05 0.4211 42.71% 

294 Tdl across  S10_56393810 - - 6.11E-05 0.4605 42.48% 

295 Tdl across  S10_56393811 - - 6.11E-05 0.4605 42.48% 

296 Tdl across  S10_59030462 - - 7.04E-05 0.4309 42.36% 

297 Tdl across  S10_57036097 Sb10g027290 Galactosyl_T; Galactosyltransferase 7.08E-05 0.4803 42.35% 

298 Tdl across  S10_59770217 - - 7.25E-05 0.4474 42.33% 
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299 Tdl across  S10_57024290 Sb10g027275 pyrrolidone-carboxylate peptidase; K01304 pyroglutamyl-peptidase 7.53E-05 0.4901 42.29% 

300 Tdl across  S10_56596575 - - 7.56E-05 0.4507 42.29% 

301 Tdl across  Xiabt466 SSR - 7.74E-05 0.4342 42.27% 

302 Tdl across  S10_57547037 - - 7.79E-05 0.4671 42.26% 

303 Tdl across  S10_58022779 Sb10g028130 " Putative thaumatin-protein" 7.88E-05 0.4638 42.25% 

304 Tdl across  S10_58663475 - - 8.11E-05 0.4375 42.23% 

305 Tdl across  S10_56678635 - - 8.60E-05 0.477 42.17% 

306 Tdl across  S10_56678638 - - 8.60E-05 0.477 42.17% 

307 Tdl across  S10_59202679 - - 8.66E-05 0.4276 42.17% 

308 Tdl across  S10_57088032 Sb10g027340  O-methyltransferase ZRP4 9.01E-05 0.4934 42.13% 

309 Tdl across  S10_58048884 - - 9.49E-05 0.4507 42.09% 

310 TDU_K13 S10_57432493 Sb10g027640 Omethyl transferase 1.38E-04 0.4704 28.71% 

311 TDU_K13 S10_57427894 - - 2.80E-04 0.4967 27.88% 

312 TDU_K13 S10_57548453 - - 1.03E-03 0.4901 26.36% 

313 TDU_K13 S10_59483624 Sb10g029750 " Putative uncharacterized protein OJ1119_H02.21 1.18E-03 0.3914 26.21% 

314 TDU_K13 S10_57403166 - - 1.21E-03 0.3059 26.18% 

315 TDU_K13 S10_59434640 Sb10g029690 " GCIP-interacting family protein-like" 1.24E-03 0.4046 26.16% 

316 TDU_K13 S10_57963498 - - 1.29E-03 0.4803 26.12% 

317 TDU_K13 S10_59571447 - - 1.42E-03 0.4309 26.01% 

318 TDU_K13 S10_57453732 - - 1.61E-03 0.4704 25.86% 

319 TDU_K13 S10_57831107 Sb10g027980 Cysteine protease Mir1 1.66E-03 0.4901 25.83% 

320 TDU_K13 S10_56958200 Sb10g027240 Trans_IPPS_HT; Trans-Isoprenyl Diphosphate Synthases, head-to-tail 1.71E-03 0.5 25.80% 

321 TDU_K13 S10_57251912 Sb10g027450 " 40S ribosomal protein S14-1" 2.16E-03 0.4934 25.53% 

322 TDU_K13 S10_58299415 - - 2.29E-03 0.4474 25.47% 

323 TDU_K13 S10_57484592 - - 2.35E-03 0.5 25.44% 
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324 TDU_K13 S10_57484595 - - 2.35E-03 0.5 25.44% 

325 TDU_K13 S10_57484597 - - 2.35E-03 0.5 25.44% 

326 TDU_K13 S10_57484598 - - 2.35E-03 0.5 25.44% 

327 TDU_K13 S10_53826992 Sb10g024670 unknown protein 3.22E-03 0.4276 25.09% 

328 TDU_K13 S10_57453669 - - 3.24E-03 0.4474 25.08% 

329 TDU_K13 S10_57400347 Sb10g027610 " EF-hand Ca2+-binding protein CCD1" 3.38E-03 0.4737 25.04% 

330 TDU_K13 S10_57449076 - - 3.54E-03 0.4868 24.99% 

331 TDU_K13 S10_57036097 Sb10g027290 Galactosyl_T; Galactosyltransferase 3.56E-03 0.4803 24.98% 

332 TDU_K13 S10_58356653 - - 3.92E-03 0.4507 24.87% 

333 TDU_K13 S10_54646100 Sb10g025360 SAM (Sterile Alpha Motif) 3.93E-03 0.3816 24.87% 

334 TDU_K13 S10_57490614 Sb10g027680 " Armadillo/beta-catenin repeat protein-like" 4.15E-03 0.4803 24.81% 

335 TDU_K13 S10_57623967 Sb10g027790 " Auxin response factor 18" 4.23E-03 0.4638 24.79% 

336 TDU_K13 S10_57423429 - - 4.91E-03 0.4737 24.63% 

337 TDU_K13 S10_51517153 Sb10g023140 Galactose oxidase/kelch repeat superfamily protein 5.09E-03 0.3224 24.59% 

338 TDU_K13 S10_58652432 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family protein 5.23E-03 0.4243 24.56% 

339 TDU_K13 S10_57145296 Sb10g027370 PBP1_GABAb_receptor 5.38E-03 0.4901 24.53% 

340 TDU_K13 S10_56930141 - - 5.67E-03 0.4868 24.47% 

341 TDU_K13 S10_58261872 Sb10g028430 Catylatic activity in RNA Degradation pathway-Chromosome chr12 

scaffold_18, whole genome 

5.82E-03 0.4901 24.44% 

342 TDU_K13 S10_58839711 Sb10g029010 DUF617; Protein of unknown function 6.26E-03 0.4243 24.36% 

343 TDU_K13 S10_58640688 Sb10g028790 4Oxalocrotonate_Tautomerase 6.34E-03 0.4408 24.35% 

344 TDU_K13 S10_57253966 Sb10g027460 OsENODL1_like; Early nodulin-like protein  6.48E-03 0.4967 24.33% 

345 TDU_K13 S10_57253967 Sb10g027460 OsENODL1_like; Early nodulin-like protein  6.48E-03 0.4967 24.33% 

346 TDU_K13 S10_51517147 Sb10g023140 Galactose oxidase/kelch repeat superfamily protein 6.67E-03 0.3257 24.29% 

347 TDU_K13 S10_57036100 Sb10g027290 Galactosyl_T; Galactosyltransferase 6.96E-03 0.4836 24.25% 

348 TDU_K13 S10_57036103 Sb10g027290 Galactosyl_T; Galactosyltransferase 6.96E-03 0.4836 24.25% 

349 TDU_K13 S10_57036106 Sb10g027290 Galactosyl_T; Galactosyltransferase 6.96E-03 0.4836 24.25% 
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350 TDU_K13 S10_57036107 Sb10g027290 Galactosyl_T; Galactosyltransferase 6.96E-03 0.4836 24.25% 

351 TDU_K13 S10_59525199 - - 7.03E-03 0.4408 24.24% 

352 TDU_K13 S10_56393810 - - 7.64E-03 0.4605 24.15% 

353 TDU_K13 S10_56393811 - - 7.64E-03 0.4605 24.15% 

354 TDU_K13 Xtxp141 - - 7.71E-03 0.4704 24.14% 

355 TDU_K13 S10_50855577 - - 7.82E-03 0.4507 24.12% 

356 TDU_K13 S10_52042465 Sb10g023430 CESA1 (CELLULOSE SYNTHASE 1); cellulose synthase/ transferase 8.13E-03 0.375 24.08% 

357 TDU_K13 S10_59566699 Sb10g029820 AdoMet_Mtases( involves the direct methylation of oleic acid esterified as 

a component of phospholipids/it directly interacts with DNA,RNA also) 

8.46E-03 0.4276 24.04% 

358 TDU_K13 S10_57103838 Sb10g027350 p450; Cytochrome P450 8.77E-03 0.4934 24.00% 

359 TDU_K13 S10_54646082 Sb10g025360 SAM (Sterile Alpha Motif) 9.07E-03 0.375 23.96% 

360 TDU_K13 S10_57773700 - - 9.66E-03 0.4737 23.90% 

361 TDU_K13 S10_57830472 - - 9.72E-03 0.4704 23.89% 

362 TDU_K13 S10_57830492 - - 9.72E-03 0.4704 23.89% 

363 TDU_K13 S10_57830499 - - 9.72E-03 0.4704 23.89% 

364 TDU_K13 S10_57760921 Sb10g027920 COG0724; RNA-binding proteins 9.79E-03 0.4934 23.88% 

365 TDU_R13 S10_57427894 - - 2.59E-06 0.4967 50.61% 

366 TDU_R13 S10_57963498 - - 2.60E-06 0.4803 50.61% 

367 TDU_R13 S10_57253966 Sb10g027460 OsENODL1_like; Early nodulin-like protein  2.90E-06 0.4967 50.51% 

368 TDU_R13 S10_57253967 Sb10g027460 OsENODL1_like; Early nodulin-like protein  2.90E-06 0.4967 50.51% 

369 TDU_R13 S10_58299415 - - 3.84E-06 0.4474 50.24% 

370 TDU_R13 S10_57145296 Sb10g027370 PBP1_GABAb_receptor 4.01E-06 0.4901 50.20% 

371 TDU_R13 S10_57400347 Sb10g027610 " EF-hand Ca2+-binding protein CCD1" 5.13E-06 0.4737 49.96% 

372 TDU_R13 S10_57251912 Sb10g027450 " 40S ribosomal protein S14-1" 6.61E-06 0.4934 49.73% 

373 TDU_R13 S10_57831107 Sb10g027980 Cysteine protease Mir1 7.98E-06 0.4901 49.55% 

374 TDU_R13 S10_58069749 - - 9.76E-06 0.4704 49.36% 

375 TDU_R13 S10_57773700 - - 9.94E-06 0.4737 49.34% 
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376 TDU_R13 S10_57936524 - - 1.01E-05 0.4474 49.33% 

377 TDU_R13 S10_57453669 - - 1.17E-05 0.4474 49.19% 

378 TDU_R13 S10_57484592 - - 1.26E-05 0.5 49.13% 

379 TDU_R13 S10_57484595 - - 1.26E-05 0.5 49.13% 

380 TDU_R13 S10_57484597 - - 1.26E-05 0.5 49.13% 

381 TDU_R13 S10_57484598 - - 1.26E-05 0.5 49.13% 

382 TDU_R13 S10_58079690 Sb10g028200 Catalytic domain of Protein Kinases 1.63E-05 0.4474 48.89% 

383 TDU_R13 S10_57432493 Sb10g027640 Omethyl transferase/WRKY 2.78E-05 0.4704 48.40% 

384 TDU_R13 S10_57103838 Sb10g027350 p450; Cytochrome P450 3.55E-05 0.4934 48.17% 

385 TDU_R13 S10_57548453 - - 3.72E-05 0.4901 48.13% 

386 TDU_R13 S10_56958200 Sb10g027240 Trans_IPPS_HT; Trans-Isoprenyl Diphosphate Synthases, head-to-tail 6.59E-05 0.5 47.61% 

387 TDU_R13 S10_57453732 - - 7.22E-05 0.4704 47.53% 

388 TDU_R13 S10_58035226 Sb10g028140 AA-amino acid hydrolase 7.75E-05 0.4638 47.47% 

389 TDU_R13 S10_58048884 - - 8.14E-05 0.4507 47.42% 

390 TDU_R13 S10_57024276 Sb10g027275 pyrrolidone-carboxylate peptidase; K01304 pyroglutamyl-peptidase 8.73E-05 0.4967 47.36% 

391 TDU_R13 S10_58022908 Sb10g028130 " Putative thaumatin-protein" 1.11E-04 0.4408 47.14% 

392 TDU_R13 S10_58261872 Sb10g028430 catylatic activity in RNA Degradation pathway-Chromosome chr12 

scaffold_18, whole genome 

1.30E-04 0.4901 47.01% 

393 TDU_R13 S10_57403166 - - 1.34E-04 0.3059 46.98% 

394 TDU_R13 S10_57490614 Sb10g027680 " Armadillo/beta-catenin repeat protein-like" 1.34E-04 0.4803 46.98% 

395 TDU_R13 S10_58022907 Sb10g028130 " Putative thaumatin-protein" 1.68E-04 0.4441 46.78% 

396 TDU_R13 S10_58310186 Sb10g028500 " Peroxidase 16 protein" 1.76E-04 0.4441 46.74% 

397 TDU_R13 Xtxp141 - - 1.95E-04 0.4704 46.65% 

398 TDU_R13 S10_57623967 Sb10g027790 " Auxin response factor 18" 2.08E-04 0.4638 46.59% 

399 TDU_R13 S10_57036097 Sb10g027290 Galactosyl_T; Galactosyltransferase 2.31E-04 0.4803 46.50% 

400 TDU_R13 S10_57936436 - - 2.72E-04 0.4671 46.36% 
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401 TDU_R13 S10_57022696 - - 2.91E-04 0.4474 46.30% 

402 TDU_R13 S10_57449076 - - 3.09E-04 0.4868 46.25% 

403 TDU_R13 S10_57036100 Sb10g027290 Galactosyl_T; Galactosyltransferase 3.44E-04 0.4836 46.15% 

404 TDU_R13 S10_57036103 Sb10g027290 Galactosyl_T; Galactosyltransferase 3.44E-04 0.4836 46.15% 

405 TDU_R13 S10_57036106 Sb10g027290 Galactosyl_T; Galactosyltransferase 3.44E-04 0.4836 46.15% 

406 TDU_R13 S10_57036107 Sb10g027290 Galactosyl_T; Galactosyltransferase 3.44E-04 0.4836 46.15% 

407 TDU_R13 S10_58050683 Sb10g028160 N-terminal domain (domain I) of transcription elongation factor S-II 

(TFIIS) 

4.32E-04 0.477 45.95% 

408 TDU_R13 xiabt466 - - 5.87E-04 0.4342 45.69% 

409 TDU_R13 S10_58163876 Sb10g028300 " Zinc finger protein-like" 6.45E-04 0.4474 45.61% 

410 TDU_R13 S10_57808411 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 6.61E-04 0.4868 45.59% 

411 TDU_R13 S10_57808412 Sb10g027950 AT5MAT; O-malonyltransferase/ transferase 6.61E-04 0.4868 45.59% 

412 TDU_R13 S10_57024290 Sb10g027275 pyrrolidone-carboxylate peptidase; K01304 pyroglutamyl-peptidase 6.94E-04 0.4901 45.55% 

413 TDU_R13 S10_57252004 Sb10g027450 " 40S ribosomal protein S14-1" 6.98E-04 0.4803 45.54% 

414 TDU_R13 S10_57252006 Sb10g027450 " 40S ribosomal protein S14-1" 6.98E-04 0.4803 45.54% 

415 TDU_R13 S10_57252007 Sb10g027450 " 40S ribosomal protein S14-1" 6.98E-04 0.4803 45.54% 

416 TDU_R13 S10_57785077 - - 9.79E-04 0.4243 45.25% 

417 TDU_R13 S10_57760921 Sb10g027920 COG0724; RNA-binding proteins 1.05E-03 0.4934 45.19% 

418 TDU_R13 S10_57331278 - - 1.20E-03 0.5 45.08% 

419 TDU_R13 S10_57549720 - - 1.26E-03 0.477 45.04% 

420 TDU_R13 S10_58048950 Sb10g028160 N-terminal domain (domain I) of transcription elongation factor S-II 

(TFIIS) 

1.53E-03 0.4638 44.87% 

421 TDU_R13 S10_57522978 Sb10g027730 F-box domain 1.88E-03 0.4836 44.71% 

422 TDU_R13 S10_57303312 - - 1.96E-03 0.3618 44.67% 

423 TDU_R13 S10_57032564 Sb10g027280 similar to Putative transcription factor GAMyb 2.41E-03 0.4934 44.50% 

424 TDU_R13 S10_58155733 - - 2.41E-03 0.4704 44.50% 

425 TDU_R13 S10_57088032 Sb10g027340  O-methyltransferase ZRP4 2.50E-03 0.4934 44.47% 

426 TDU_R13 S10_57423429 - - 2.77E-03 0.4737 44.38% 
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427 TDU_R13 S10_57331385 - - 3.70E-03 0.4671 44.15% 

428 TDU_R13 S10_57547037 - - 4.56E-03 0.4671 43.97% 

429 TDU_R13 S10_57036758 Sb10g027290 Galactosyl_T; Galactosyltransferase 4.69E-03 0.4737 43.95% 

430 TDU_R13 S10_57036791 Sb10g027290 Galactosyl_T; Galactosyltransferase 4.69E-03 0.4737 43.95% 

431 TDU_R13 S10_57830472 - - 5.77E-03 0.4704 43.78% 

432 TDU_R13 S10_57830492 - - 5.77E-03 0.4704 43.78% 

433 TDU_R13 S10_57830499 - - 5.77E-03 0.4704 43.78% 

434 TDU_R13 S10_57482523 - - 5.86E-03 0.4539 43.77% 

435 TDU_R13 S10_57036796 Sb10g027290 Galactosyl_T; Galactosyltransferase 7.73E-03 0.4671 43.55% 

436 TDU_R13 S10_57403220 - - 8.87E-03 0.4342 43.44% 

437 TDU_R13 S10_57403113 - - 9.14E-03 0.4836 43.42% 

438 TDU_R13 S10_57341007 Sb10g027550 "weakly  Zinc finger (C2H2 type) protein-like 9.50E-03 0.4803 43.39% 

439 TDU_R13 S10_57547066 - - 9.73E-03 0.4605 43.37% 

440 Tdu across  S10_57427894 - - 2.66E-07 0.4967 42.89% 

441 Tdu across  S10_57432493 Sb10g027640 Omethyl transferase 6.91E-07 0.4704 41.86% 

442 Tdu across  S10_57963498 - - 1.06E-06 0.4803 41.40% 

443 Tdu across  S10_57548453 - - 1.51E-06 0.4901 41.03% 

444 Tdu across  S10_58299415 - - 2.08E-06 0.4474 40.70% 

445 Tdu across  S10_57400347 Sb10g027610 " EF-hand Ca2+-binding protein CCD1" 2.09E-06 0.4737 40.69% 

446 Tdu across  S10_57145296 Sb10g027370 PBP1_GABAb_receptor 2.10E-06 0.4901 40.69% 

447 Tdu across  S10_57253966 Sb10g027460 OsENODL1_like; Early nodulin-like protein  2.39E-06 0.4967 40.55% 

448 Tdu across  S10_57253967 Sb10g027460 OsENODL1_like; Early nodulin-like protein  2.39E-06 0.4967 40.55% 

449 Tdu across  S10_57251912 Sb10g027450 " 40S ribosomal protein S14-1" 2.73E-06 0.4934 40.41% 

450 Tdu across  S10_56958200 Sb10g027240 Trans_IPPS_HT; Trans-Isoprenyl Diphosphate Synthases, head-to-tail 3.27E-06 0.5 40.22% 

451 Tdu across  S10_57453732 - - 5.94E-06 0.4704 39.60% 

452 Tdu across  S10_57403166 - - 7.14E-06 0.3059 39.41% 

453 Tdu across  S10_57831107 Sb10g027980 Cysteine protease Mir1 7.58E-06 0.4901 39.35% 
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454 Tdu across  S10_57773700 - - 8.45E-06 0.4737 39.24% 

455 Tdu across  S10_57453669 - - 9.59E-06 0.4474 39.11% 

456 Tdu across  S10_57484592 - - 1.16E-05 0.5 38.92% 

457 Tdu across  S10_57484595 - - 1.16E-05 0.5 38.92% 

458 Tdu across  S10_57484597 - - 1.16E-05 0.5 38.92% 

459 Tdu across  S10_57484598 - - 1.16E-05 0.5 38.92% 

460 Tdu across  S10_57490614 Sb10g027680 " Armadillo/beta-catenin repeat protein-like" 1.24E-05 0.4803 38.85% 

461 Tdu across  S10_57103838 Sb10g027350 p450; Cytochrome P450 1.33E-05 0.4934 38.78% 

462 Tdu across  S10_57036097 Sb10g027290 Galactosyl_T; Galactosyltransferase 1.47E-05 0.4803 38.67% 

463 Tdu across  S10_57449076 - - 2.40E-05 0.4868 38.18% 

464 Tdu across  S10_57623967 Sb10g027790 " Auxin response factor 18" 2.43E-05 0.4638 38.17% 

465 Tdu across  S10_58079690 Sb10g028200 Catalytic domain of Protein Kinases 2.59E-05 0.4474 38.10% 

466 Tdu across  S10_57936524 - - 2.66E-05 0.4474 38.07% 

467 Tdu across  S10_59571447 - - 3.00E-05 0.4309 37.95% 

468 Tdu across  S10_56930141 - - 3.16E-05 0.4868 37.90% 

469 Tdu across  S10_57036100 Sb10g027290 Galactosyl_T; Galactosyltransferase 3.33E-05 0.4836 37.85% 

470 Tdu across  S10_57036103 Sb10g027290 Galactosyl_T; Galactosyltransferase 3.33E-05 0.4836 37.85% 

471 Tdu across  S10_57036106 Sb10g027290 Galactosyl_T; Galactosyltransferase 3.33E-05 0.4836 37.85% 

472 Tdu across  S10_57036107 Sb10g027290 Galactosyl_T; Galactosyltransferase 3.33E-05 0.4836 37.85% 

473 Tdu across  Xtxp141 - - 3.82E-05 0.4704 37.71% 

474 Tdu across  S10_56932767 - - 3.91E-05 0.5 37.69% 

475 Tdu across  S10_58261872 Sb10g028430 catylatic activity in RNA Degradation pathway-Chromosome chr12 

scaffold_18, whole genome 

4.02E-05 0.4901 37.66% 

476 Tdu across  S10_58356653 - - 4.37E-05 0.4507 37.58% 

477 Tdu across  S10_58035226 Sb10g028140 AA-amino acid hydrolase 4.54E-05 0.4638 37.54% 

478 Tdu across  S10_58345765 - - 5.59E-05 0.4441 37.33% 

479 Tdu across  S10_58069749 - - 6.68E-05 0.4704 37.16% 
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480 Tdu across  S10_58652432 Sb10g028810 UDP-glucoronosyl/UDP-glucosyl transferase family protein 7.88E-05 0.4243 36.99% 

481 Tdu across  S10_57024276 Sb10g027275 pyrrolidone-carboxylate peptidase; K01304 pyroglutamyl-peptidase 8.75E-05 0.4967 36.89% 

482 Tdu across  S10_59434640 Sb10g029690 " GCIP-interacting family protein-like" 8.77E-05 0.4046 36.89% 

483 Tdu across  S10_58022907 Sb10g028130 " Putative thaumatin-protein" 8.80E-05 0.4441 36.88% 

484 Tdu across  S10_58022908 Sb10g028130 " Putative thaumatin-protein" 9.03E-05 0.4408 36.86% 

        
 

Table 24: Stay-green candidate genes in the target region of sorghum chromosome SBI-10L 

S No: Trait SNP Gene ID Functional Annotation Rice Homologs 

1 %GL7 S10_58311699 Sb10g028500 similar to Peroxidase 16 protein LOC_Os06g48030.1 

2 %GL7 S10_58357039 Sb10g028550 similar to Putative uncharacterized protein LOC_Os06g48160.1 

3 %GL7 S10_58683017 Sb10g028870 similar to Putative meiotic serine proteinase LOC_Os06g48650.1 

4 %GL7 S10_59833299 Sb10g030080 weakly similar to Putative uncharacterized protein LOC_Os06g50070.1 

5 %GL7 S10_59148610 Sb10g029305 similar to Os02g0137100 protein LOC_Os06g49180.1 

6 %GL7 S10_58839857 Sb10g029010 similar to Putative uncharacterized protein LOC_Os05g20030.1 

7 %GL7 S10_58652548 Sb10g028810 similar to Os03g0824600 protein; UDP glycosyl transferase LOC_Os03g60960.1 

8 %GL7 S10_59316155 Sb10g029530 similar to Pentatricopeptide (PPR) repeat-containing protein-like LOC_Os09g24640.1 

9 %GL7 S10_59024190 Sb10g029190 similar to Squamosa promoter-binding-like protein 12 LOC_Os06g49010.1 

10 %GL7 S10_59069052 Sb10g029245 similar to translation initiation factor IF-2 - 

11 %GL7 S10_59833250 Sb10g030080 weakly similar to Putative uncharacterized protein LOC_Os06g50070.1 

12 %GL7 S10_58839711 Sb10g029010 similar to Putative uncharacterized protein LOC_Os05g20030.1 

13 %GL7 S10_59020155 Sb10g029180 similar to Putative uncharacterized protein LOC_Os06g48980.1 

14 %GL7 S10_59020363 Sb10g029190 similar to Squamosa promoter-binding-like protein 12 LOC_Os06g49010.1 

15 %GL7 S10_59062420 Sb10g029230 similar to hAT dimerisation domain-containing protein-like LOC_Os06g49050.1 

16 %GL7 S10_59554262 Sb10g029810 similar to MADS box transcription factor LOC_Os06g49840.1 
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17 %GL7 S10_58634237 Sb10g028780 similar to Mitogen-activated protein kinase 3 LOC_Os06g48590.1 

18 %GL7 S10_59419567 Sb10g029670 similar to Putative uncharacterized protein LOC_Os06g49700.1 

19 %GL7 S10_59958913 Sb10g030270 similar to Putative receptor protein kinase LOC_Os06g50340.1 

20 %GL7 S10_59970887 - - - 

21 %GL7 S10_60024056 Sb10g030330 similar to Aspartic proteinase nepenthesin II-like LOC_Os06g50390.1 

22 %GL14 S10_52940776 Sb10g024110  Helix-loop-helix DNA-binding - 

23 %GL14 S10_54877607 Sb10g025540  Putative prolylcarboxypeptidase isoform 1 - 

24 %GL14 S10_53576112 Sb10g024500 NADP binding domain - 

25 %GL14 S10_54081973 Sb10g024920 weakly similar to Putative uncharacterized protein LOC_Os06g43060.1 

26 %GL14 S10_54532995 Sb10g025283 NBS-LRR disease resistance protein - 

27 %GL14 S10_54585199 Sb10g025310 similar to Ankyrin repeat-containing protein-like LOC_Os06g43680.1 

28 %GL14 S10_54535306 Sb10g025283 NBS-LRR disease resistance protein - 

29 %GL14 S10_54185546 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 

30 %GL14 S10_54185539 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 

31 %GL14 S10_60024056 Sb10g030330 similar to Aspartic proteinase nepenthesin II-like LOC_Os06g50390.1 

32 %GL14 S10_60333532 Sb10g030700 Predicted protein (autophagy related transport to  vacuole) LOC_Os05g30640.1 

33 %GL14 S10_60413173 Sb10g030770 No apical meristem (NAM) protein - 

34 %GL14 S10_60423900 Sb10g030776 " Starch branching enzyme I precursor" - 

35 %GL14 S10_60194381 Sb10g030520 similar to Senescence-associated protein LOC_Os06g50930.1 

36 %GL14 S10_60194379 Sb10g030520 similar to Senescence-associated protein LOC_Os06g50930.1 

37 %GL14 S10_60308140 Sb10g030660 

Exo70 exocyst complex subunit (autophagycytosis/programmed cell 

death mechanism) - 

38 %GL14 S10_60297335 Sb10g030640 

Exo70 exocyst complex subunit (autophagycytosis/programmed cell 

death mechanism) LOC_Os05g30660.1 
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39 %GL14 S10_60287963 Sb10g030620 

Exo70 exocyst complex subunit (autophagycytosis/programmed cell 

death mechanism) LOC_Os09g17810.1 

40 %GL14 S10_60349808 Sb10g030720 similar to Cell division protease ftsH homolog, chloroplast precursor LOC_Os06g51029.1 

41 %GL14 S10_59946860 Sb10g030260 similar to Putative senescence-associated protein LOC_Os06g50330.1 

42 %GL14 S10_59946877 Sb10g030260 similar to Putative senescence-associated protein LOC_Os06g50330.1 

43 %GL14 S10_60701880 Sb10g031030 similar to Putative AGO1 homologous protein LOC_Os06g51310.1 

44 %GL21 S10_58634237 Sb10g028780 similar to Mitogen-activated protein kinase 3 LOC_Os06g48590.1 

45 %GL21 S10_59419567 Sb10g029670 similar to Putative uncharacterized protein LOC_Os06g49700.1 

46 %GL21 S10_59342804 Sb10g029570 similar to Putative uncharacterized protein P0655A07.24 LOC_Os06g49650.1 

47 %GL21 S10_59564696 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 

48 %GL21 S10_59215385 Sb10g029392 MATE efflux family protein - 

49 %GL21 S10_59342804 Sb10g029570 similar to Putative uncharacterized protein P0655A07.24 LOC_Os06g49650.1 

50 %GL21 S10_59564696 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 

51 %GL21 S10_59564696 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 

52 %GL21 S10_59564696 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 

53 %GL21 S10_59564696 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 

54 %GL21 S10_59419567 Sb10g029670 similar to Putative uncharacterized protein LOC_Os06g49700.1 

55 %GL21 S10_59476045 Sb10g029740 similar to Putative uncharacterized protein LOC_Os06g49770.1 

56 %GL21 S10_59413371 Sb10g029660 anthocyanin1 - 

57 %GL21 S10_59835807 Sb10g030090 similar to Os06g0714800 protein LOC_Os06g50080.1 

58 %GL28 S10_53160198 Sb10g024190 similar to Putative leucine zipper LOC_Os06g41100.1 

59 %GL28 S10_53834366 Sb10g024680 

similar to Chromosome chr14 scaffold_9, whole genome shotgun 

sequence LOC_Os06g42560.1 

60 %GL28 S10_52676228 Sb10g023920 similar to Pentatricopeptide (PPR) repeat-containing protein-like LOC_Os06g40860.1 

61 %GL28 S10_53058516 Sb10g024170 Signal transduction receptor-regulatr domain - 
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62 %GL28 S10_54269620 Sb10g025053 similar to Glossy15/Apetal2 - 

63 %GL28 S10_49366136 Sb10g022090 

similar to Chromosome chr9 scaffold_7, whole genome shotgun 

sequence LOC_Os06g36360.1 

64 %GL28 S10_54532995 Sb10g025283 NBS-LRR disease resistance protein - 

65 %GL28 S10_54585199 Sb10g025310 similar to Ankyrin repeat-containing protein-like LOC_Os06g43680.1 

66 %GL28 S10_60282257 Sb10g030610 similar to Putative uncharacterized protein P0548E04.19 LOC_Os06g51010.1 

67 %GL28 S10_59946988 Sb10g030260 similar to Putative senescence-associated protein LOC_Os06g50330.1 

68 %GL28 S10_60024056 Sb10g030330 similar to Aspartic proteinase nepenthesin II-like LOC_Os06g50390.1 

69 %GL28 S10_60333532 Sb10g030700 Predicted protein (autophagy related transport to  vacuole) LOC_Os05g30640.1 

70 %GL28 S10_60413173 Sb10g030770 No apical meristem (NAM) protein - 

71 %GL28 S10_60423900 Sb10g030776 " Starch branching enzyme I precursor" - 

72 %GL28 S10_60194381 Sb10g030520 similar to Senescence-associated protein LOC_Os06g50930.1 

73 %GL28 S10_60194381 Sb10g030520 similar to Senescence-associated protein LOC_Os06g50930.1 

74 %GL28 S10_60308140 Sb10g030660 Predicted protein;cullin protein  - 

75 %GL35 S10_54877607 Sb10g025540 Putative prolylcarboxypeptidase isoform 1 - 

76 %GL35 S10_60900987 Sb10g031250 similar to Os06g0731700 protein LOC_Os06g51500.1 

77 %GL35 S10_60900987 Sb10g031250 similar to Os06g0731700 protein LOC_Os06g51500.1 

78 %GL35 S10_60344348 Sb10g030710 Predicted protein LOC_Os08g13570.1 

79 %GL35 S10_59889374 Sb10g030175 rod shape-determining protein MreC - 

80 %GL35 S10_59946988 Sb10g030260  Putative senescence-associated protein LOC_Os06g50330.1 

81 %GL35 S10_60287963 Sb10g030620 Predicted protein LOC_Os09g17810.1 

82 %GL35 S10_60349808 Sb10g030720 similar to Cell division protease ftsH homolog, chloroplast precursor LOC_Os06g51029.1 

83 %GL35 S10_59946860 Sb10g030260 similar to Putative senescence-associated protein LOC_Os06g50330.1 

84 %GL35 S10_59946877 Sb10g030260 similar to Putative senescence-associated protein LOC_Os06g50330.1 

85 %GL35 S10_60701880 Sb10g031030 similar to Putative AGO1 homologous protein LOC_Os06g51310.1 

86 %GL35 S10_59930523 Sb10g030230 similar to Putative uncharacterized protein LOC_Os06g50240.1 
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87 %GL42 S10_52781712 Sb10g023955 similar to Seven transmembrane protein Mlo7 LOC_Os02g10350.1 

88 %GL42 S10_53058516 Sb10g024170 Signal transduction receptor-regulatr domain - 

89 %GL42 S10_54269620 Sb10g025053 similar to glossy15 - 

90 %GL42 S10_49366136 Sb10g022090 

similar to Chromosome chr9 scaffold_7, whole genome shotgun 

sequence LOC_Os06g36360.1 

91 %GL42 S10_53714284 Sb10g024610 similar to Os01g0609200 protein LOC_Os01g42380.1 

92 %GL42 S10_54185069 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 

93 %GL42 S10_53576112 Sb10g024500 NADP binding domain - 

94 %GL42 S10_55599913 Sb10g026200 similar to SBP-domain protein 4 LOC_Os06g44860.1 

95 %GL42 S10_57400347 Sb10g027610 similar to EF-hand Ca2+-binding protein CCD1 LOC_Os06g46950.1 

96 %GL42 S10_57552719 Sb10g027760 F-box/LRR - 

97 %GL42 S10_57248800 Sb10g027440 similar to Putative uncharacterized protein LOC_Os06g46700.1 

98 %GL42 S10_57432493 Sb10g027640 weakly similar to O-methyltransferase ZRP4 - 

99 %GL42 S10_57522978 Sb10g027730 Predicted protein LOC_Os02g06520.1 

100 %GL42 S10_58640688 Sb10g028790 similar to Putative uncharacterized protein LOC_Os06g48600.1 

101 %GL42 S10_58022779 Sb10g028130 similar to Putative thaumatin-protein LOC_Os06g47600.1 

102 %GL42 S10_58311699 Sb10g028500 similar to Peroxidase 16 protein LOC_Os06g48030.1 

103 %GL42 S10_58357039 Sb10g028550 similar to Putative uncharacterized protein LOC_Os06g48160.1 

104 %GL42 S10_60282257 Sb10g030610 similar to Putative uncharacterized protein P0548E04.19 LOC_Os06g51010.1 

105 %GL42 S10_59946988 Sb10g030260 similar to Putative senescence-associated protein LOC_Os06g50330.1 

106 %GL42 S10_60024056 Sb10g030330 similar to Aspartic proteinase nepenthesin II-like LOC_Os06g50390.1 

107 %GL42 S10_60333532 Sb10g030700 Predicted protein (autophagy related transport to  vacuole) LOC_Os05g30640.1 

108 %GL42 S10_60413173 Sb10g030770 No apical meristem (NAM) protein - 

109 %GL42 S10_60423900 Sb10g030776 " Starch branching enzyme I precursor" - 

110 %GL42 S10_60194381 Sb10g030520 similar to Senescence-associated protein LOC_Os06g50930.1 
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111 %GL42 S10_60194379 Sb10g030520 similar to Senescence-associated protein LOC_Os06g50930.1 

112 %GL42 S10_60308140 Sb10g030660 Predicted protein;cullin protein  - 

113 %GL49 S10_52700141 Sb10g023930 similar to Type III chlorophyll a/b-binding protein LOC_Os02g10390.1 

114 %GL49 S10_52940776 Sb10g024110  Helix-loop-helix DNA-binding - 

115 %GL49 S10_54877607 Sb10g025540  Putative prolylcarboxypeptidase isoform 1 - 

116 %GL49 S10_53576112 Sb10g024500 NADP binding domain - 

117 %GL49 S10_54081973 Sb10g024920 weakly similar to Putative uncharacterized protein LOC_Os06g43060.1 

118 %GL49 S10_54532995 Sb10g025283 NBS-LRR disease resistance protein - 

119 %GL49 S10_54585199 Sb10g025310 similar to Ankyrin repeat-containing protein-like LOC_Os06g43680.1 

120 %GL49 S10_54535306 Sb10g025283 NBS-LRR disease resistance protein - 

121 %GL49 S10_54185546 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 

122 %GL49 S10_54185539 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 

123 %GL49 S10_60413173 Sb10g030770 No apical meristem (NAM) protein LOC_Os06g51070.1 

124 %GL49 S10_60423900 Sb10g030776 " Starch branching enzyme I precursor" - 
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Table 25: Candidate genes for agronomic and yield related traits in the mapped QTL regions of SBI-10 

  

S. 

NO. 
Trait SNP Gene ID Functional annotaation Rice homolog Pos in CM 

1 FT S10_51071502 Sb10g022800 similar to Putative nitrate transporter NTL1 LOC_Os06g38294.1 25.88 

2 FT S10_51228412 Sb10g022900 
weakly similar to Chromosome undetermined scaffold_151, whole 

genome shotgun sequence 
LOC_Os06g38980.1 26.918 

3 FT S10_52042465 Sb10g023430 similar to Putative uncharacterized protein LOC_Os06g39970.1 27.524 

4 FT S10_52676228 Sb10g023920 similar to Pentatricopeptide (PPR) repeat-containing protein-like LOC_Os06g40860.1 27.785 

5 FT S10_51224387 Sb10g022890 
weakly similar to Chromosome chr1 scaffold_46, whole genome 

shotgun sequence 
LOC_Os06g38970.1 28.41 

6 FT S10_52677221 Sb10g023920 similar to Pentatricopeptide (PPR) repeat-containing protein-like LOC_Os06g40860.1 29.365 

7 FT S10_52676281 Sb10g023920 similar to Pentatricopeptide (PPR) repeat-containing protein-like LOC_Os06g40860.1 29.715 

8 FT S10_51919897 Sb10g023350 similar to Elongation factor 1-alpha LOC_Os03g08050.1 30.959 

9 FT S10_52781712 Sb10g023955 similar to Seven transmembrane protein Mlo7 LOC_Os02g10350.1 32.291 

10 FT S10_53682073 Sb10g024575 DUF597 
 

34.972 

11 FT S10_53160198 Sb10g024190 similar to Putative leucine zipper LOC_Os06g41100.1 35.678 

12 FT S10_53834366 Sb10g024680 
similar to Chromosome chr14 scaffold_9, whole genome shotgun 

sequence 
LOC_Os06g42560.1 35.758 

13 FT S10_52675727 Sb10g023920 similar to Pentatricopeptide (PPR) repeat-containing protein-like LOC_Os06g40860.1 35.997 

14 FT S10_53058516 Sb10g024170 Signal transduction receptor-regulatr domain 
 

36.145 

15 FT S10_54269620 Sb10g025053 similar to glossy15/AP2 
 

36.401 

16 FT S10_49366136 Sb10g022090 
similar to Chromosome chr9 scaffold_7, whole genome shotgun 

sequence 
LOC_Os06g36360.1 37.73 

17 FT S10_53714284 Sb10g024610 similar to Os01g0609200 protein LOC_Os01g42380.1 38.079 

18 FT S10_54185069 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 38.342 

19 FT S10_50232566 Sb10g022450 Role in Cytochrome P_450 (photosynthesis)  
 

39.38 

20 FT S10_50232568 Sb10g022450 Role in cytochrome P_450 (photosynthesis)  
 

39.38 
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21 FT S10_53544398 Sb10g024460 Predicted protein LOC_Os09g39020.1 39.394 

22 FT S10_52700141 Sb10g023930 similar to Type III chlorophyll a/b-binding protein LOC_Os02g10390.1 39.782 

23 FT S10_52940776 Sb10g024110 Catalytic activity 
 

40.377 

24 FT S10_54877607 Sb10g025540  Putative prolylcarboxypeptidase isoform 1 
 

40.677 

25 FT S10_53576112 Sb10g024500 NADP binding domain 
 

40.76 

26 FT S10_54081973 Sb10g024920 weakly similar to Putative uncharacterized protein LOC_Os06g43060.1 41.371 

27 FT S10_54532995 Sb10g025283 NBS-LRR disease resistance protein 
 

43.958 

28 FT S10_54585199 Sb10g025310 similar to Ankyrin repeat-containing protein-like LOC_Os06g43680.1 44.416 

29 FT S10_54535306 Sb10g025283 NBS-LRR disease resistance protein 
 

44.945 

30 FT S10_54185546 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 45.857 

31 FT S10_54185539 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 45.985 

32 Pl Ht S10_57088032 Sb10g027340 weakly similar to O-methyltransferase ZRP4 LOC_Os12g25450.1 96.055 

33 Pl Ht S10_57400347 Sb10g027610 similar to EF-hand Ca2+-binding protein CCD1 LOC_Os06g46950.1 97.265 

34 Pl Ht S10_57552719 Sb10g027760 F-box/LRR 0 98.396 

35 Pl Ht S10_57248800 Sb10g027440 similar to Putative uncharacterized protein LOC_Os06g46700.1 99.044 

36 Pl Ht S10_57432493 Sb10g027640 weakly similar to O-methyltransferase ZRP4 0 99.608 

37 Pl Ht S10_57522978 Sb10g027730 Predicted protein LOC_Os02g06520.1 101.244 

38 Pl Ht S10_58640688 Sb10g028790 similar to Putative uncharacterized protein LOC_Os06g48600.1 102.44 

39 Pl Ht S10_58022779 Sb10g028130 similar to Putative thaumatin-protein LOC_Os06g47600.1 103.623 

40 Pl Ht S10_58311699 Sb10g028500 similar to Peroxidase 16 protein LOC_Os06g48030.1 104.802 

41 Pl Ht S10_58357039 Sb10g028550 similar to Putative uncharacterized protein LOC_Os06g48160.1 108.032 

42 Pl Ht S10_58683017 Sb10g028870 similar to Putative meiotic serine proteinase LOC_Os06g48650.1 108.615 

43 Pl Ht S10_59833299 Sb10g030080 weakly similar to Putative uncharacterized protein LOC_Os06g50070.1 109.008 

44 Pl Ht S10_59148610 Sb10g029305 similar to Os02g0137100 protein LOC_Os06g49180.1 109.224 

45 Pl Ht S10_58839857 Sb10g029010 similar to Putative uncharacterized protein LOC_Os05g20030.1 109.466 

Table 25: (Contd..)  
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46 Pl Ht S10_58652548 Sb10g028810 similar to Os03g0824600 protein LOC_Os03g60960.1 109.901 

47 Pl Ht S10_59316155 Sb10g029530 similar to Pentatricopeptide (PPR) repeat-containing protein-like LOC_Os09g24640.1 110.125 

48 Pl Ht S10_59024190 Sb10g029190 similar to Squamosa promoter-binding-like protein 12 LOC_Os06g49010.1 110.337 

49  Pl Ht S10_59069052 Sb10g029245 
similar to Putative uncharacterized protein/translation initiation factor 

IF-2 
- 110.528 

50 HGM S10_59342804 Sb10g029570 similar to Putative uncharacterized protein P0655A07.24 LOC_Os06g49650.1 114.593 

51 HGM S10_59564696 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 114.809 

52 HGM S10_59215385 Sb10g029392 MATE efflux family protein - 115.101 

53 HGM S10_59342820 Sb10g029570 similar to Putative uncharacterized protein P0655A07.24 LOC_Os06g49650.1 115.321 

54 HGM S10_59566700 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 115.589 

55 HGM S10_59566699 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 115.632 

56 HGM S10_59565625 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 116.207 

57 HGM S10_59565627 Sb10g029820 similar to Putative uncharacterized protein LOC_Os06g49860.1 116.207 

58 HGM S10_59418734 Sb10g029670 similar to Putative uncharacterized protein LOC_Os06g49700.1 116.702 

59 HGM S10_59476045 Sb10g029740 similar to Putative uncharacterized protein LOC_Os06g49770.1 117.456 

60 HGM S10_59413371 Sb10g029660 anthocyanin1 - 117.994 

61 HGM S10_59835807 Sb10g030090 similar to Os06g0714800 protein LOC_Os06g50080.1 118.575 

62 HGM S10_59775260 Sb10g030040 
" Calcium/calmodulin-dependent protein kinase;LYR motif containing 

protein 
- 118.728 

63 HGM S10_59866581 Sb10g030150 " Calcium-dependent protein kinase CPK1 adapter protein 2 - 119.287 

64 HGM S10_59826585 Sb10g030060 
similar to Chromosome chr16 scaffold_86, whole genome shotgun 

sequence 
LOC_Os06g50050.1 119.868 

65 HGM S10_59525199 Sb10g029810 29kb down-stream to MADS box transcriptional factor 
 

116.941 

66 
GNP/plot & 

GNPP 
S10_57522978 Sb10g027730 Predicted protein LOC_Os02g06520.1 101.244 

67 
GNP/plot & 

GNPP 
S10_58640688 Sb10g028790 similar to Putative uncharacterized protein LOC_Os06g48600.1 102.44 

Table 25: (Contd..)  
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68 
GNP/plot & 

GNPP 
S10_58022779 Sb10g028130 similar to Putative thaumatin-protein LOC_Os06g47600.1 103.623 

69 
GNP/plot & 

GNPP 
S10_58634237 Sb10g028780 similar to Mitogen-activated protein kinase 3 LOC_Os06g48590.1 113.523 

70 
GNP/plot & 

GNPP 
S10_59419567 Sb10g029670 similar to Putative uncharacterized protein LOC_Os06g49700.1 113.698 

71 
GNP/plot & 

GNPP 
S10_60282257 Sb10g030610 similar to Putative uncharacterized protein P0548E04.19 LOC_Os06g51010.1 122.169 

72 
GNP/plot & 

GNPP 
S10_59946988 Sb10g030260 similar to Putative senescence-associated protein LOC_Os06g50330.1 122.798 

73 
GNP/plot & 

GNPP 
S10_60024056 Sb10g030330 similar to Aspartic proteinase nepenthesin II-like LOC_Os06g50390.1 123.601 

74 
GNP/plot & 

GNPP 
S10_60287963 Sb10g030620 Predicted protein LOC_Os09g17810.1 129.512 

75 
GNP/plot & 

GNPP 
S10_60349808 Sb10g030720 similar to Cell division protease ftsH homolog, chloroplast precursor LOC_Os06g51029.1 129.798 

76 
GNP/plot & 

GNPP 
S10_60245187 Sb10g030580 similar to Putative uncharacterized protein LOC_Os06g50980.1 133.343 

77 

PnDW/Plot 

& 

GDW/plot 

S10_58357039 Sb10g028550 similar to Putative uncharacterized protein LOC_Os06g48160.1 108.032 

78 

PnDW/Plot 

& 

GDW/plot 

S10_58683017 Sb10g028870 similar to Putative meiotic serine proteinase LOC_Os06g48650.1 108.615 

79 

PnDW/Plot 

& 

GDW/plot 

S10_59833299 Sb10g030080 weakly similar to Putative uncharacterized protein LOC_Os06g50070.1 109.008 

80 

PnDW/Plot 

& 

GDW/plot 

S10_59148610 Sb10g029305 similar to Os02g0137100 protein LOC_Os06g49180.1 109.224 

81 

PnDW/Plot 

& 

GDW/plot 

S10_58839857 Sb10g029010 similar to Putative uncharacterized protein LOC_Os05g20030.1 109.466 

82 

PnDW/Plot 

& 

GDW/plot 

S10_58652548 Sb10g028810 similar to Os03g0824600 protein/Glycosyl transferase protein LOC_Os03g60960.1 109.901 

Table 25: (Contd..)  
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83 PHI S10_60308140 Sb10g030660 Exo70 exocyst complex subunit - 125.703 

84 PHI S10_59419567 Sb10g029670 Transcription termination factor Rho; Provisional - 113.698 

85 PHI S10_60324251 - INTERGENIC - 122.46 

86 PHI S10_50140543 - INTERGENIC - 35.288 

87 PHI S10_56252649 Sb10g026810 RF4; DNA polymerase sigma - 73.641 

88 PHI S10_51263932 - INTERGENIC - 18.488 

 

Table 26: Shoot fly resistance candidate genes in the target region of sorghum chromosome SBI-10L 
  

S No. Trait SNP Gene ID Functional Annotation Rice homolog Pos in cM 

1 Gls S10_54223864 Sb10g025040 

C2 CaLB binds to membrane lipids and mediate signal 

transduction - 54.416 

2 Gls S10_53058516 Sb10g024170 Signal transduction receptor-regulatr domain - 36.145 

3 Gls S10_54269620 Sb10g025053 similar to glossy15/AP2 - 36.401 

4 Gls S10_53099908 Sb10g024180 

MYB transcriptional factor alters WIN1/SHN1 which 

encodes AP2/EREBP  - - 

5 Gls S10_52940776 Sb10g024110 Basic helix loop helix family protein - 40.377 

6 Gls S10_54877607 Sb10g025540 Putative prolylcarboxypeptidase isoform 1 - 40.677 

7 Gls S10_53576112 Sb10g024500 NADP binding domain - 40.76 

8 Gls S10_54081973 Sb10g024920 weakly similar to Putative uncharacterized protein LOC_Os06g43060.1 41.371 

9 Gls S10_54532995 Sb10g025283 NBS-LRR disease resistance protein - 43.958 

10 Gls S10_54585199 Sb10g025310 similar to Ankyrin repeat-containing protein-like LOC_Os06g43680.1 44.416 

11 Gls S10_54535306 Sb10g025283 NBS-LRR disease resistance protein - 44.945 

12 Gls S10_54185546 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 45.857 

13 Gls S10_54185539 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 45.985 

Table 25: (Contd..)  
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14 Gls S10_54185186 Sb10g025010 similar to Putative uncharacterized protein LOC_Os01g33090.1 46.461 

15 TDU/TDL S10_54966382 Sb10g025600 WRKY transcription factor 

 

47.424 

16 TDU/TDL S10_56186177 Sb10g026730 Speckle POZ protein  

 

- 

17 TDU/TDL S10_57031008 Sb10g027280 MYB transcryption factor 

 

- 

18 TDU/TDL S10_57341007 Sb10g027550 weakly similar to Zinc finger (C2H2 type) protein-like LOC_Os06g46910.1 91.295 

19 TDU/TDL S10_57145296 Sb10g027370 similar to Os06g0680500 protein LOC_Os06g46670.2 93.122 

20 TDU/TDL S10_57552456 Sb10g027760 F-box/LRR - 94.409 

21 TDU/TDL S10_57088032 Sb10g027340 weakly similar to O-methyltransferase ZRP4 LOC_Os12g25450.1 96.055 

22 TDU/TDL S10_57400347 Sb10g027610 similar to EF-hand Ca2+-binding protein CCD1 LOC_Os06g46950.1 97.265 

23 TDU/TDL S10_57552719 Sb10g027760 F-box/LRR - 98.396 

24 TDU/TDL S10_57248800 Sb10g027440 similar to Putative uncharacterized protein LOC_Os06g46700.1 99.044 

25 TDU/TDL S10_57432493 Sb10g027640 weakly similar to O-methyltransferase ZRP4 - 99.608 

26 TDU/TDL S10_57522978 Sb10g027730 Predicted protein: F-box domain LOC_Os02g06520.1 101.244 

27 TDU/TDL S10_58640688 Sb10g028790 similar to Putative uncharacterized protein LOC_Os06g48600.1 102.44 

28 TDU/TDL S10_58022779 Sb10g028130 similar to Putative thaumatin-protein LOC_Os06g47600.1 103.623 

29 TDU/TDL S10_58311699 Sb10g028500 similar to Peroxidase 16 protein LOC_Os06g48030.1 104.802 

30 TDU/TDL S10_58357039 Sb10g028550 similar to Putative uncharacterized protein LOC_Os06g48160.1 108.032 

31 TDU/TDL S10_58683017 Sb10g028870 similar to Putative meiotic serine proteinase LOC_Os06g48650.1 108.615 

32 TDU/TDL S10_59833299 Sb10g030080 weakly similar to Putative uncharacterized protein LOC_Os06g50070.1 109.008 

33 TDU/TDL S10_59148610 Sb10g029305 similar to Os02g0137100 protein LOC_Os06g49180.1 109.224 

34 TDU/TDL S10_58839857 Sb10g029010 similar to Putative uncharacterized protein LOC_Os05g20030.1 109.466 

35 TDU/TDL S10_58652548 Sb10g028810 

similar to Os03g0824600 protein/Glycosyl transferase 

protein LOC_Os03g60960.1 109.901 

36 TDU/TDL S10_57490614 Sb10g027680 Armidillo repeat protein - - 

       

Table  26: (Contd..) 
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Table 27: Selected double recombinants performing better than parent or nearby parental donors for 

further generation advancing (pyramiding) 
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1 U120020 97.72 95.91 93.57 70.44 52.68 34.28 18.49 98.89 95.30 79.40 70.08 58.36 24.42 24.34 98.53 96.68 87.20 71.07 56.24 30.64 21.71 

2 U120201 92.43 85.91 62.46 46.06 33.43 25.63 17.27 99.01 85.99 76.93 70.10 54.94 49.67 43.03 95.74 85.79 70.51 58.71 44.42 36.71 29.30 

3 U120356 92.40 85.32 69.22 51.45 42.41 32.02 22.52 99.07 85.00 73.41 66.40 46.54 31.54 26.14 95.82 85.11 71.33 59.00 43.69 32.44 24.66 

4 U120609 97.72 95.83 88.18 66.44 50.21 34.21 23.58 98.87 91.63 79.67 65.92 56.09 45.47 36.86 98.49 94.63 85.09 66.88 53.71 39.69 30.38 

5 U120807 97.74 96.06 86.72 64.79 43.57 28.70 16.15 98.94 90.85 76.38 68.90 57.93 39.85 35.18 98.50 93.96 81.85 67.58 51.45 34.29 25.24 

6 U120860 97.73 95.93 86.84 64.91 48.74 31.07 17.53 99.03 87.87 73.64 66.34 50.04 40.17 32.76 98.49 91.91 79.85 65.50 48.93 35.55 24.76 

7 U121011 97.76 96.43 82.59 63.33 44.47 31.67 20.41 98.87 78.46 68.22 61.89 44.12 39.85 34.68 98.38 87.15 74.48 62.18 43.84 36.04 27.50 

8 U121021 97.73 95.66 76.11 57.20 45.57 30.22 23.05 99.10 96.30 83.68 74.26 66.05 46.82 35.22 98.62 96.68 80.71 66.22 56.61 37.92 28.85 

9 U121062 83.05 73.27 62.40 49.96 39.51 29.60 18.33 99.10 82.39 69.22 61.44 49.14 45.60 38.27 91.14 77.62 65.32 55.50 43.95 37.30 27.63 

10 U121113 97.77 96.49 86.70 69.74 51.65 40.10 27.32 98.98 90.44 76.08 68.85 56.13 45.55 40.89 98.41 93.95 81.73 69.81 54.17 43.30 33.99 

11 U121114 97.78 96.59 89.34 69.70 51.98 37.10 21.26 99.14 87.02 76.98 69.29 52.75 46.93 36.55 98.46 91.91 83.10 70.02 52.64 42.13 28.78 

12 U121124 87.07 74.71 62.39 44.55 35.72 27.35 16.30 98.98 85.43 77.22 70.07 51.38 37.20 33.52 93.08 79.67 69.90 57.46 43.60 32.49 24.27 

13 U121147 97.74 96.13 66.42 53.98 39.62 27.22 20.58 98.91 83.24 71.95 61.68 53.47 39.82 35.97 98.48 89.87 69.19 57.86 46.69 33.63 28.10 

14 U121163 97.76 96.20 74.56 55.34 40.75 27.22 19.25 96.56 87.33 76.60 67.30 53.39 40.00 20.45 97.15 91.91 75.83 61.47 47.25 33.67 20.55 

15 U121168 97.78 96.64 88.03 67.49 48.49 31.74 22.36 99.12 91.21 79.08 71.12 62.75 51.24 41.24 98.45 93.95 83.77 69.71 55.76 40.93 31.15 

16 U121564 89.71 84.94 65.16 48.68 34.69 25.37 18.64 99.02 79.98 69.55 62.61 48.90 34.51 11.80 94.49 82.39 67.18 55.31 41.40 30.09 16.04 

17 U121644 97.76 96.45 81.25 59.35 45.06 30.11 19.59 98.87 90.96 75.59 66.77 58.28 38.57 41.03 98.38 93.95 78.45 63.41 52.11 34.31 28.86 

18 U121658 97.75 96.19 79.96 60.58 40.76 31.87 22.36 99.03 93.13 76.47 69.01 61.17 45.59 39.45 98.44 94.63 77.84 64.76 51.06 38.49 30.47 

19 U121700 91.10 80.49 65.14 49.97 38.19 27.80 20.61 98.98 90.68 78.68 72.24 59.61 48.40 28.39 95.01 85.11 71.97 61.55 49.11 37.33 24.67 

20 U121717 97.74 95.99 82.67 65.89 52.35 37.56 27.74 99.01 84.57 73.77 67.48 45.91 31.60 7.83 98.52 90.55 78.45 67.28 48.81 35.50 22.23 

Table 27: (Contd..) 
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1 3 U122011 U120020 1.84 78.24 16.99 2.46 101.03 47.37 32.90 2.01 91.00 

2 10 U122064 U120201 2.07 97.92 20.24 2.44 75.09 42.72 32.24 2.14 89.07 

3 14 U122086 U120356 2.31 74.54 29.01 2.70 79.13 41.84 36.36 2.43 78.48 

4 26 U122138 U120609 2.77 78.25 22.14 3.07 108.94 59.40 42.59 2.90 94.67 

5 31 U122162 U120807 2.78 118.41 38.99 2.43 110.86 47.00 42.99 2.56 117.32 

6 36 U122173 U120860 2.07 106.72 30.85 1.87 81.83 55.18 45.16 1.87 98.00 

7 52 U122210 U121011 1.82 68.63 29.47 2.14 68.91 26.16 27.82 1.88 68.12 

8 53 U122211 U121021 2.31 67.83 30.48 2.72 63.42 43.20 37.71 2.43 66.35 

9 60 U122223 U121062 2.78 91.40 22.84 2.76 83.13 38.01 30.87 2.73 90.69 

10 70 U122236 U121113 3.01 72.97 17.90 2.19 79.24 33.62 25.54 2.59 77.65 

11 71 U122237 U121114 2.54 99.31 17.85 3.07 75.56 65.94 43.65 2.73 88.79 

12 73 U122241 U121124 1.83 94.72 29.97 2.74 92.27 54.87 43.34 2.16 95.10 

13 77 U122247 U121147 2.78 78.88 19.73 2.72 56.86 43.86 31.94 2.72 66.82 

14 78 U122250 U121163 2.54 99.61 24.50 3.04 109.26 39.99 32.99 2.74 105.66 

15 81 U122253 U121168 1.84 86.46 26.01 2.47 67.32 34.20 30.47 2.00 79.15 

16 107 U122349 U121564 2.55 63.66 13.85 2.72 93.69 51.05 32.82 2.56 77.75 

17 116 U122365 U121644 2.77 65.29 36.93 3.06 63.70 29.28 33.67 2.89 62.56 

18 119 U122369 U121658 2.30 73.00 39.90 2.43 61.36 40.34 41.06 2.30 69.63 

19 124 U122376 U121700 2.79 57.78 12.60 2.44 100.48 25.06 18.13 2.57 77.26 

20 126 U122382 U121717 2.55 107.54 50.67 2.46 97.74 62.27 57.66 2.43 105.41 

  

Table 27: (Contd..) 
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Table 28: Shoot fly meta QTL analysis on SBI-10 

Reference 

Trait of 

SFR  Marker interval 

genetic map 

dist 

Closest 

marker 

Physical 

map 

positions 

(Mb) 

Size of QTL 

in physical 

positions Pedegree 

QTL 

mapping 

methods Population  

Sajjanar 2002 Gls* Xgap001-Xtxp141 34cM Xgap001 54.50-58.24 3.74Mb Btx623/IS18551 

CIM/Cartogra

pher 259 RIL 

Sajjanar 2002 TD* Xgap001-Xtxp141 34cM Xtxp141 54.50-58.24 3.74Mb Btx623/IS18551 ‒ 259 RIL 

Deshpandae 2005 TD Xgap001-Xcup67 22cM ‒ 54.50-12.27 42Mb 296B/IS18551 ‒ 213 RIL 

Mehtre 2006 TD Xgap001-Xcup67 22cM ‒ 54.50-12.27 42Mb 296B/IS18551 ‒ 213 RIL 

Satish et al. ,2009 Gls* Xgap001-Xnhsbm1043 10cM ‒ 54.50-56.88 2.38Mb 296B/IS18551 ‒ 168 RIL 

Satish et al. ,2009 TD Xgap001-Xnhsbm1043 10cM ‒ 54.50-56.88 2.38Mb 296B/IS18551 ‒ 168 RIL 

Satish et al., 2009 TD* Xnhsbm1013-Xnhsbm1048 11cM ‒ 55.04-57.39 2.35Mb 296B/IS18551 ‒ 168 RIL 

Aruna et al., 2011 Gls*** Xtxp320 -Xcup16 17cM ‒ 55.38-57.76 2.38Mb 296B/IS18551 ‒ 168 RIL 

Aruna et al., 2011 TD* Xtxp320 -Xcup16 17cM ‒ 55.38-57.76 2.38Mb 27B/IS2122 ‒ 210 RIL  

Aruna et al., 2011 TD Xgap001-Xtxp320 4cM ‒ 54.50-55.38 880kb 27B/IS2122 ‒ 210 RIL  

Satish et al., 2012 Gls* Xgap001-Xnhsbm1011 5cM Xgap001 54.50-54.90 400kb 296B/IS18551 ‒ 168 RIL 

Satish et al., 2012 Gls** SvpepcA- XnhsbmSFC4 5.9cM ‒ 47.13-46.50 630Mb 296B/IS18551 ‒ 168 RIL 

Satish et al., 2012 Gls*** 

XnhsbmSFC34-

Xnhsbm1039 8cM ‒ 57.83-58.24 410kb 296B/IS18551 ‒ 168 RIL 

Satish et al., 2012 TD Xgap001-Xnhsbm1011 5cM Xgap001 54.50-54.90 400kb 296B/IS18551 ‒ 168 RIL 

Satish et al., 2012 TD* 
XnhsbmSFC34-
Xnhsbm1039 8cM ‒ 57.83-58.24 410kb 296B/IS18551 ‒ 168 RIL 

kiranmayee et al., 

2016 Gls* Xgap001-Xnhsbm1044 10cM Xgap001 54.50-56.96 2.46Mb RSG04008-6/J2614-11 

CIM/QTLCar

tographer 1894 F2 
kiranmayee et 

al.,2016 TD* Xnhsbm1044-Xtxp141 8cM ‒ 57.00-58.24 740kb RSG04008-6/J2614-11 

CIM/QTLCar

tographer 1894 F2 

kiranmayee et 

al.,2016 Gls* XIsp10263-Xgap001 14cM Xgap001 49.67-54.50 4.83Mb RSG04008-6/J2614-11 PlaB QTL 369 F2:3 

kiranmayee et 

al.,2016 TD* Xnhsbm1044-Xtxp141 8cM ‒ 57.00-58.24 740kb RSG04008-6/J2614-11 PlaB QTL 369 F2:3 

Usha  Thesis 2016 Gls 54185546-54532800  S10_54269620  S10_54269620  54.18-54.55 384kb RSG04008-6/J2614-11 

CIM/QTLCar

tographer 152 F4 

Usha Thesis 2016 TDL 
S10_57331385-
S10_57552719 S10_57432493  S10_57432493  57.34-57.56 221kb RSG04008-6/J2614-11 

CIM/QTLCar
tographer 152 F4 

Usha Thesis 2016 TDU 

S10_57331385-

S10_57552719 S10_57432493  S10_57432493  57.34-57.56 221kb RSG04008-6/J2614-11 

CIM/QTLCar

tographer 152 F4 
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Table 29: Candidate genes in mapped intervals of seedling leaf blade glossiness 

and trichome density QTLs on sorghum chromosome SBI-10L 

Marker 

interval:Trait 

Sorghum 

gene ID 

Description Functional role Reference 

Xgap001-
Xnhsbm1044 

(2Mb; Gls) 

Sb10g0250

40 

C2 calcium lipid-

binding domain 

C2 CaLB binds to membrane lipids 

and mediate signal transduction 
De Silva et al. (2011) 

 Sb10g0251

10 

Cytochrome P450 Oxidoreductase activity in 

wax/cutin biosynthesis 

Li-Beisson et al. (2009) 

Gls fine mapped 

region (384kb) 

Sb10g0250

53 

glossy15/AP2/EF/ 

EREBP 
transcryptional factor 

Controls juvenile epidermal leaf 

trait and epicuticular wax synthesis 
and cutin deposition in maize 

Foerster et al. (2015) 

 Sb10g0249

50 

MYB transcription 

factor and DNA 
binding domain 

Over expression of MYB 

transcriptional factor alters 
WIN1/SHN1 encodes AP2/EREBP 

family that encodes glossy 

Cominelli. et al. (2008) 

Xisep0630-
Xtxp141(800kb;T

d) 

Sb10g0256
00 

WRKY40 
transcription factor 

Transparent Testa Glabra2 ( TTG2) 
encodes WRKY transcription 

factor and control trichome out 

growth 

Ishida et al. (2007) 

 Sb10g0267

80 

Speckle-type POZ 

protein 

Expressed in Arabidopsis 

trichomes 

Jakoby et al. (2008) 

 Sb10g0272

80 

MYB transcription 

factor 

WD40-HLH-MYB complex 

regulates trichome development in 

Arabidopsis 

Liang et al. (2014) 

 Sb10g0275

50 

C2H2 Zinc finger 

protein 

C2H2 zinc finger protein regulates 

trichome cell initiation in 

arabidopsis 

Zhou et al. (2013) 

 Sb10g0276

10 

EF-hand Ca2+-

binding protein CCD1 

Interacts with a microtubule motor 

protein and regulates trichome 

morphogenesis 

Reddy et al. (2004) 

Td fine mapped 

region (221kb) 

Sb10g0276

70 

Cyclin deppendant 

kinase (CDKB2;1) 

Involved in endoreduplication 

cycle of trichome cell  development 

process 

Schnittger et al. (2003) 

 Sb10g0276

80 

Armadillo repeat 

protein 

Sequence-specific DNA binding 

functional transcriptional regulator 

for plant development activity 

Patra et al. (2013) 

 Sb10g0277

30 

F-box domain Acts as transcriptional factors in 

developmental and degradation 

process 

Coates et al 2007) 
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Fig .3F1 hybrid identification (Gene mapper profile) 

 
 

  

Fig .4 Recombinant population sub-set selected based on SSR 

genotyping data (red coloured are selected and black ones are not 

selected) 

FIGURES 
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Fig .5  a) RSG04008-6 parent showing non–glossy leaves b)J2614-11 parent 

showing glossy leaves c) F2 population sown in pots 
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Fig .6 Trait segregation among 1,894 F2 individuals  for glossy score and trichome 

density score 
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Fig .7 Stay-green mean performance during 2013 and 2014 Post-rainy (rabi) 

a) %GL7 DAF b) %GL14 DAF c) %GL21 DAF d) %GL28 DAF e) %GL35 

DAF  f) %GL42 DAF g) %GL9 DAF 
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Fig .8  Agronomic  and yield related traits mean performance during 2013 

and 2014 post-rainy (rabi) season  a) Days to 50% flowering (DAF) b) Plant 

height (PlHt) e) Grain dry weight per plot (GDW/Plot) f)  Hundred grain 

mass (HGM)  g) Grain no. per plot (GNP/plot) h) Grain no. per panicle 

(GNPP) 
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Fig .9 Shoot fly morphological traits mean  performance in parents 

and progeny during rainy (kharif) and Post-rainy (rabi) 2013 season   

a) Glossy score b) %Shoot fly dead heart (%SFDH) c) Trichome 

density upper (TDU) d) Trichome density lower (TDL) e) Leaf sheath 

Pigmentation (LSP)  f ) Seedling vigour (SV) 
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Fig .10 F4 population showing non glossy, glossy leaves and Trichomes 

presence and absence profiles 
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Fig .11  Frequency distribution graphs of F4 progeny for Stay-green traits 

during Post-rainy 2013 and 2014 seasons  a ) %GL7DAF b) %GL14DAF c) 

%GL21DAF d) GL28DAF e) %GL35 DAF f) %GL42 DAF g) %GL49DAF 
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 Fig .12 Frequency distribution graphs of  F4 progeny for agronomic and 

yield traits during  Post-rainy 2013 and 2014 seasons a) FT b) PlHt c) 

PnDW/Plot d) GDW/Plot e) GNP/Plot f) GNPP g) Hundred grain mass 

(HGM) h)Panicle harvest index (PHI)      Frequency distribution of 152, F4 

recombinant progeny derived from cross RSG04008-6 x J2614-11 for 

agronomic traits  in two screening environments rabi 2012-2013 (summer 

2013) and rabi 2013-2014 (summer 2014) at ICRISAT , Patancheru. X-axis 

groups of concerned traits, Y-axis no. of individual frequencies of each group 
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 Fig .13 Frequency distribution graphs of F4 progeny for shoot fly 

morphological traits  during post-rainy 2013 and 2014 seasons a) Glossy 

score b) Trichome density lower (TDL) c) Trichome density upper (TDL) d ) 

Leaf sheath pigmentation (LSP) e) Seedling vigour (SV) f) Percent shoot fly 

dead heart (%SFDH) 
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Fig .14 Frequency distribution graphs of F4 progeny for Stay-green traits for across 

season  a ) %GL7DAF b) %GL14DAF c) %GL21DAF d) GL28DAF e) %GL35 

DAF f) %GL42 DAF g) %GL49DAF 
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Fig .15 Frequency distribution graphs of  F4 progeny for agronomic and yield 

traits for across season a) FT b) PlHt c) PHI d) PnDW/Plot  e) GDW/Plot f ) 

GNP/Plot  g) HGM h) GNPP 
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Fig .16  Frequency distribution graphs of F4 progeny for shoot fly 

morphological traits  for across season a) Glossy score b) Trichome density 

upper (TDU) c) Trichome density lower (TDL)   d ) % Shoot fly dead heart 

(%SFGDH) e) Plant vigour  f) Leaf sheath pigmentation (LSP) 
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Fig .17 Genetic linkage map constructed based on SSR markers on SBI-

10L 

a) 5 SSR markers on 1894 F2 population  b) with 7 SSRs on 369 selective 

informative recombinant individuals and linkage map vs physical map 
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Fig .18 Graphical Genotype representation (GGT) of 182 selected 

recombinants 
 

 

 

 

Fig .19 SNP effect of the identified SNPs in SBI-10L 
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Fig .20 Proportion of ‘B’ alleles of SNPs plotted against proportion 

‘B’ alleles of SSRs 
 

 

Fig .21 Distance matrix 1 calculated from THREaD mapper for 392 SNPs 

and 7SSR markers 
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Fig .22 Horseshoe effect of markers in PCA plot 
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Fig .23 Distance matrix plot for 265 markers in Horseshoe line 
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Fig .24 High density linkage map of SNPs integrated in SSR map 
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Fig .25 Genetic map distances plotted against physical map distances on SBI-

10L 
 

 

Fig .26   a) Map for glossiness score and trichome density score QTLs on 

SBI-10L among 1,894 F2 individuals evaluated in rabi season of 2010-2011, b) 

QTL confirmation among 369 selected informative recombinant F2 

individuals evaluated in rabi season of 2010-2011 and their derived F2:3 

progenies evaluated in a late kharif season 2012 sowing. 
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Fig .27: F2, F2:3 QTL mapping for a) seedling leaf blade glossiness 

b) trichome density on high density map 
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Fig .28 F4 QTL mapping of stay-green, shoot fly morphological , agronomic 

and yield related traits for individual seasons 
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Fig .28 contd.. F4 QTL mapping  of stay-green, shoot fly morphological , 

agronomic and yield related traits for individual seasons 
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Fig .29 F4 QTL mapping of stay-green, shoot fly morphological, agronomic and 

yield related traits for across season 
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Fig .30 QTL LOD graphs for stay-green traits with candidate genes 

underlying 
  



 

235 
 

 
 

Fig .30 Contd.. QTL LOD graphs for stay-green traits with 

candidate genes 
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Fig .30 Contd.. QTL LOD graphs for stay-green traits with 

candidate genes 
 

 

  



 

237 
 

 
Fig .31 QTL LOD graphs for agronomic traits with candidate genes 

underlying 
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Fig .31 Contd.. QTL LOD graphs for Yield related traits 

with candidate genes 
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Fig .32 QTL LOD graphs for shoot fly morphological traits 

with candidate genes underlying 
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Fig .32 contd.. QTL LOD graphs for shoot fly morphological traits  

with candidate genes underlying 
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Fig .33  cQTLstg10.1 fine mapping 
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Fig .34 cQTLstg10.2 Fine mapping 
 

 

Fig .35 cQTLstg10.3 Fine mapping 
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Fig .36  cQTLstg10.4 Fine mapping 
 

 

Fig .37 cQTLstg10.5 Fine mapping 
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Fig .38 cQTLstg10.6 Fine mapping 
 

 

Fig .39 cQTLstg10.7  Fine mapping 
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Fig .40 Fine mapping of stay-green QTL clusters fine mapping with candidate genes 
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Fig 41: Fine mapping  Flowering time  region on SBI-10 
 

 

 

Fig 42: Fine mapping  Plant height region on SBI-10 
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Fig 43: Fine mapping HGM region on SBI-10 
 

 

 

Fig 44: Fine mapping  gnp/Plot  region on SBI-10 
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Fig 45: Fine mapping Glossy region on SBI-10 
 

 

 

Fig 46:Fine mapping trichome lower region on SBI-10 
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Fig 47:Fine mapping trichome upper region on SBI-10 
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Fig .48 GWAS for stay-green 

Mb-Million base pairs,  

%GL-percent green leaf area 
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Fig .49 GWAS of Agronomic traits 
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Fig .60 GWAS for SFR component traits 
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5. DISCUSSION 

 

Present discussion is based on the results obtained from the focused fine genetic 

mapping of stay-green and shoot fly resistance QTLs observed on Sorghum 

bicolor chromosome SBI-10 from introgression line cross RSG04008-6 

(moderately stay-green and shoot-fly susceptible) × J2614-11 (moderately shoot-

fly resistant and moderately senescent). Fine mapping was carried out using F2, 

F2:3 and F2:4 phenotyping and construction of high density linkage map with GBS 

SNPs, and QTL mapping, Fine mapping and GWAS analysis identified probable 

candidate genes based on functional annotation and discussed below in detail. As 

the parents (RSG04008-6 from Kassahun, 2006 and J2614-11 from Jyothi, 2010) 

are introgression lines derived from different MABC programs of ICRISAT, 

Patancheu, there would be a chance of unexpected cross-contamination of seed 

or DNA samples. Care was taken to ensure the parental seed material and 

experimental parents (RSG04008-6 and J2614-11) were compared to their 

grandparents with the help of molecular markers in the target genomic region. 

Confirmed true heterozygote F1 hybrids were selfed to produce F2 fine mapping 

population seed material. Since both the parents are introgression lines, they 

reduce the linkage drag and more advantageous than the pure lines for fine 

mapping or genetic dissection of particular trait studies. 

 

5.1. F2 and F3-derived informative F3 and F4 progenies  

In order to reduce the cost effect of genotyping, we used 5 SSR markers for 

identification of recombination break point in 1894 F2 fine mapping populations 

and based on molecular marker data, 384 F2 double  recombinant genotypes were 

selected. Selected double recombinant F2 s were screened with the additional 3 

new markers and then selfed to produce F3 seed which was replicated for seed 

multiplication in order to validate the shoot fly morphological traits and stay-

green characters. Breeding to increase recombination and marker based selection 

of genotypes with right recombination rate results in increased response to 
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selection (McClosky et al., 2013). Selective genotyping approach is 

advantageous and it reduces time and cost of genotyping by selection of desired 

recombinants from the high resolution population (Hillel et al., 1990, Tanskley, 

1993, Darvasi, 1997). 

 

5.1.1. Parental variation and mean performances of parents, F2 and F4 

populations 

Parents varied in the initial stages but both were showing moderate stay-green 

levels at the end of the grain filling stage. A graph was plotted between both 

parental mean values as well as progeny mean values that showed better 

performance of F2:4 progeny than both the parents, inferring the contribution of 

stay-green alleles from both the parents. Shoot fly morphological traits in F2 

populations like seedling leaf blade glossiness and trichome density looked like 

that of parents. In case of agronomic traits both the parents varied much for plant 

height, flowering time, and hundred grain mass. Traits like PnDw/Plot, 

GDW/Plot, GNP/Plot and GNPP for RSG04008-6 and J2614-11 showed low 

yield in summer 2013 when compared to summer 2014 due to high levels of 

stress in summer 2013 due to the delay in sowing. 

5.1.2. Frequency distribution 

Transgressive segregation was observed for trichome density lower and upper. In 

case of F4 stay-green observations, % GL 7 and % GL 14 completely skewed 

towards female parent and % GL 21, 28, 35, 42, 49 showed near to normal 

distribution pattern for both the seasons with transgressive segregation. 

Agronomic traits like flowering time, plant height, PnDW/Plot, GBW/Plot, 

GNP/Plot, GNPP, PHI and HGM exhibited near to normal distribution which 

indicates a polygenic inheritance (Thoday et al., 1976). 
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5.1.3. Phenotypic correlation coefficient 

 

5.1.3.1. Shoot fly traits association 

Glossiness is positively correlated with % SFDH, TDL and TDU where 

increased glossy values (non-glossiness) lead to shoot fly susceptibility and 

positively associated with seedling vigour and leaf sheath pigmentation. This 

indicates glossy leaves are erect and show plant vigour in early stages of plant. 

Both TDU and TDL were highly negatively correlated with shoot fly dead hearts 

since the trichomes prevent shoot fly infestation. As the leaf glossiness, seedling 

vigour, leaf sheath pigmentation, trichome density, oviposition are associated 

with shoot fly resistance/susceptibility, these traits can be utilized as 

morphological markers in screening shoot fly resistance and while breeding for 

the trait (Riyazaddin et al., 2015). 

5.1.3.2. Stay-green and agronomic traits association 

When the correlation results were compared with Haussmann et al., (2002b), 

their two RIPs were positively correlated but no effect of GL was noticed on 

grain yield for RIP1. Two different seasons stay-green phenotyping displayed 

many overlapping or co-localized QTLs as well as new and unique QTLs. 

Common correlations among varying environments were rarely seen. But in 

present study all the stay-green traits are positively correlated with each other in 

both the environments.  In case of correlation with yield it was negative during 

rabi 2012/2013 whereas it was positively correlated during rabi 2013/2014 

which has been supported by Jordan et al., (2012) also. During rabi 2012/2013, 

seeds were sown very late and the crop experienced heavy stress during anthesis 

when compared to rabi 2013/2014. The strength of correlation between % GL 

and grain yield (GY) (GDW/plot and PnDW/Plot) depends on environmental 

conditions and genetic background as pointed out by Jordan et al., (2012) and 

Gregersen et al., (2013). Stay-green data were positively correlated with 

GDW/plot, PnDW/plot, GNP/plot and GNPP for summer 2014 whereas negative 

correlation was observed for summer 2013. Our correlation results were also in 

agreement with the results obtained by Jordan et al., (2012). Haussmann et 
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al.,(2002b) mapped stg QTLs on LG-G (SBI-10L) between flanking markers 

Xgap001 and Xtxp141. Stay-green QTLs were mapped beyond Xtxp141 (Mace 

and Jordon 2011; Mace et al., 2012). So, for identifying those previously mapped 

stg QTLs in the present introgression line cross, F2:4 populations and its fine 

mapping may generate data that can help to understand the delay in senescence. 

Haussmann et al., (2002b) showed 5-7% phenotypic variance for the individual 

QTLs which was almost similar but slightly better phenotypic variances (9.8%) 

was observed in the present study for individual seasons. During rabi 2013/2014, 

senescence data were positively correlated with grain yield (grain number, grain 

dry weight, panicle dry weight and panicle harvest index). This indicates that 

moderately stressed plants can with stand drought and can give high yields. FT 

shows significant positive correlation with plant height and HGM indicates 

positive association but negative correlation with % GL shows the 

photosynthetic activities require more nutrients for translocation from leaves to 

seed. 

5.1.4. Impact of Population, size and field design 

In our present study F2 1894 fine mapping population was used for genetic 

dissection of traits. F2 population can reduce number of generations and more 

advantageous when comes to recombination events due to meiotic divisions and 

the increased population size gives more frequency to identify desired 

recombinants. F2 and F3 populations are early generation populations mostly 

used for QTL mapping and fine mapping studies (Vales et al., 2005). F2:4 

recombinant population studies are rarely conducted but with increased marker 

density we can reduce the number of generation leads to reduction of time, 

money and man power. As F2:4 mapping population is 152 still it has its own 

significance but when compared to 1894 F2 population it has less efficiency in 

identifying genomic regions but, increased maker density and field replicated 

data has reduced the negative effects of reduced population size. Alpha lattice 

design will minimize the experimental errors. Unbalanced ANOVA is preferred 
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for alpha lattice design to reduce the experimental errors. BLUPs were estimated 

for unbalanced ANOVA instead of predicted means in order to minimize errors 

 

5.1.5. Molecular markers 

Till now, sorghum RFLP (Pereira et al., 1994, Xu et al., 1994), SSRs (Brown et 

al., 1996; Bhattramakki et al., 2000; Kong et al., 2000; Hausmann et al., 2002a), 

AFLP, RAPD (Menz et al., 2002) were rapidly used for mapping strategies. But, 

recent advancement in next generation sequencing technologies and improved 

computational advances were utilized for molecular marker data generation and 

analysis. DArT (Mace et al., 2008, 2009) and SNPs are recent advanced marker 

systems where data generation and the cost are inversely proportional as the time 

frame is increasing. In the present study, SSR markers were used initially for 

recombinant selections and then selected recombinants were skimmed and 

sequenced by GBS methods. GBS was used extensively in sorghum for 

population diversity studies (Nelson et al., 2011; Morris et al., 2013a,b; Thurber 

et al., 2013; Perez et al., 2014; Lasky et al., 2015; Zhang et al., 2015). We have 

performed GWAS analysis also with GBS SNP and genotyped SSR markers for 

locating the variant genomic regions responsible for stay-green and agronomic as 

well as shoot fly morphological traits. 

 

5.1.6. Genetic linkage map on total F2 and selected F2 population with SSR 

markers 

In the present study, initial linkage map of 37 cM length was constructed using 

five SSR markers on F2 population of 1,894 individuals derived from cross 

RSG04008-6 × J2614-11. In previous studies this target region was reported to 

be above 45 cM interval but now it is 37 cM (5 Mb), which indicates a reduction 

in map length most likely due to moderately large F2 population size. After 

adding three additional flanking markers and reducing the population size to 369 

(selected recombinants), the map length increased to 72 cM (15 Mb), partly due 

to double crossovers as the recombination frequencies were converted to map 

distance based on the Kosambi mapping function (Kosambi, 1943), but largely 
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due to the addition of flanking markers on both ends of the mapped interval. 

Mace and Jordan (2011) integrated different sorghum QTL mapping studies onto 

the physical map resulting in a QTL cluster in sorghum and thus many QTL 

clusters were identified. Similarly, a comparison has been made in the present 

attempt, for all the shoot fly resistance QTL mapping studies to delimit the 

glossy and trichome density QTL size on SBI-10L. Our results are in agreement 

with earlier studies which showed Xgap001 – Xnhsbm1044 and Xisep0630 

‒Xtxt141 intervals which need to be further studied in detail by utilizing high 

through put marker genotyping or SNP. 

5.1.6.1. Genetic linkage map is highly informative for F2 selected 

recombinants: Horseshoe effect and principle co-ordinate analysis (PCA)  

GBS approach has been followed for increasing marker density in the target 

region. We have a different approach for the mapping or integrating GBS SNPs 

into the SSR genetic map of SBI-10L. As per Cheema and Dicks (2009), map 

estimation is an iterative process. We initially studied the marker genotyping 

data sets clearly and eliminated the disturbance and created marker sets from the 

SNP marker data set of SBI-10L. Cheema and Dicks (2009) discussed nearly 11 

software methods for genetic mapping and concluded that the genetic mapping 

depends on the type of population, type of marker data and the principles of 

software. For developing a genetic linkage map, it needs to be studied clearly 

and one should approach the best method that suits the genotyping data for 

linkage mapping. Linkage mapping completely depends on the recombination 

fraction between two loci or LD decay observed between non-random 

associations of markers. In the present study, we selected double recombinants 

which can give wrongly expanded map distances that may lead to unwanted 

estimation of QTLs and error prone fine mapping. In order to overcome the 

errors, we utilized THREaD Mapper Studio which calculates inter marker 

distances using principle co-ordinate analysis (PCA). A total of 1515 SNPs were 

identified from 45-60 Mb physical intervals where we are suspecting the 

presence of stay-green QTL co-localization based on the results published by 

several workers (Haussmann et al., 2002b; Mace and Jordon 2011 and Mace et 
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al., 2012). Due to large 1515 SNP markers, the online THREad mapper was 

unable to generate complete map but generated a distance matrix plot for 392 

SNPs + 7 SSR markers. We cross checked the allelic composition of SSRs and 

compared them with SNPs and also the spurious (distracted) markers by PCA. 

PCA can be utilized in genetic marker analysis because the order of the marker 

data point along the curve that correspond to their linkage. These nearly linked 

markers were again recalculated for distance matrix which shows reduced 

disturbances in the distance matrix plot. PCA was used in the present study, 

since it has advantages like fast recalculation and identification of unreliable data 

points which can help to reduce the marker order uncertainty. The marker 

distribution of linkage map was compared with the physical map and they are 

near to similar with little noise in the marker order due to huge missing data in 

SNP markers.   

 

5.1.6.2. Advantages of Ultra-high density map developed from GBS, SNP 

data  

In sorghum, Mace and Jordan (2011) and Zou et al., (2012) have carried out 

genetic and physical map integration studies. GBS and SNP studies have 

revealed an average marker density of 2.1 markers per centimorgan and this was 

found to be the high density map of sorghum. In the present study, average 

marker density of sorghum chromosome SBI-10L was 1.95 markers per 

centimorgan which shows the importance of the GBS SNP integrated SNP map 

of target region. Our study is the first fine mapping study in sorghum targeting 

stay-green and the results are near to similar to that of the results obtained by 

Haussmann et al., (2002b). This could be because of the stay-green source E36-1 

that was used for both the stay-green QTL mapping studies. This is first fine 

mapping study for seedling leaf blade glossiness and trichome density (upper and 

lower) where initially with F2 fine mapping population 2.46 Mb and 730 kb 

regions were further fine mapped to 283 kb, 221 kb respectively by utilizing 

GBS, SNP data and F4 phenotyping data. From the F4 QTL mapping, it was 

clearly evident that glossy 15 in the 283 kb interval and O-methyl transferase and 
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EF-hand Ca
2+

-binding protein CCD1 in 221 kb interval are the most probable 

candidate genes. As the population selected itself is a double recombinant 

population, the frequency of recombination was more when compared to the 

whole population which can lead to artefactual increase of the map distance. In 

order to nullify the double recombinants effect, SNPs have been filtered using 

horseshoe effect before constructing the high resolution genetic linkage map. 

Construction of genetic map with all the 1515 SNPs may lead to false 

QTLs/pseudo QTLs. Most of the distracted markers were removed before 

mapping. When the genetic map order was compared with physical map order, 

they have been found not exactly the same but few marker positions were 

misplaced. Physical positions were determined based on the reference genome 

and in the present study none of the parents were pure lines. 

 

5.1.6.3. Segregation distortion 

Segregation distortion was observed for all markers and this could be due to 

selective recombinants which increased heterozygous nature along with 

homozygous alleles distorted in their meiotic segregation. Population type and 

size of population, crosses and marker type, also affect the segregation 

distortions (Liang et al., 2006). Low to moderate size of population shows more 

segregation distortion when compared to large population as the 1894 F2 

populations exhibited low segregation distortion when compared with 152 F4 

genotypes in our study. Segregation distortion is recognized as a powerful 

evolutionary force and affects the construction of linkage maps (Liu et al., 2010). 

Segregation distortion depends on the recombination frequencies and then 

impedes mapping precision and the linkage analysis of QTLs (Wu et al., 2010). 

In the present study, the segregation distortion skewed towards male parent 

J2614-11 which indicates the presence of genes or markers influence segregation 

distortion towards the male parent J2614-11 (Tao et al., 1998a). 
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5.1.6.4. Efficiency and essence of GBS, SNP map on SBI-10L 

Annotated sorghum genome sequence was utilized for the functional analysis of 

the QTL mapped and fine mapped regions. In this QTL, known SAP, SAGs, 

NAC, WRKY, AP2/ERF (Guo and Gan, 2006; 2012) genes for stay-green fine 

mapped region and AP2/glossy15 and zinc finger (C2H2 type) protein, EF-hand 

Ca
2+

-binding protein CCD1 and O-methyl transferase genes for glossy and 

trichome density mapped regions have been noticed. These results indicate the 

efficiency and essence of the GBS SNP map. SAP-senescence associated 

proteins involved in senescence mechanism have been found to be SEN1 and 

DIN (Oh, 1996). SAG-senescence associated genes which are activated under 

drought stress conditions belong to the categories SAS and NAC that have been 

reported to be involved in senescence mechanism in many studies of rice and 

Arabidopsis (Guo and Gan, 2006; Li et al., 2012; Liang et al., 2014), WRKY- 

transcription factors that play major role in overcoming drought and senescence-

associated problems (Cai et al., 2014), AP2/ERF transcription factors that are 

reported to be involved in drought tolerance (Guo and Gan, 2012; Licausi et al., 

2013; Mawlong et al., 2015). Crasta et al., (1999) identified stay-green QTLs on 

SBI-10 and Haussmann et al., (2002b) identified  stay-green QTLs (% GL 15, 

30, 45) on SBI-10L between Xgap001 and Xtxp141 flanking markers using two 

different populations having common stay-green donor E36-1 which are 

overlapping with nodal root angle QTLs (Mace et al., 2012, Singh et al., 2012). 

The co-localization of the QTL as evident from the previous studies (Haussmann 

et al., 2002b; Crasta et al., 1999) as well as the QTL identified in the present 

study show the importance of the GBS-SNP map. In the present study, identified 

QTLs for stay-green were overlaying with the QTLs identified by Haussmann et 

al., (2002b) earlier. Calcium/calmodulin-dependent protein kinase 

(Sb10g030040) has been identified in the present study, which plays a functional 

role in the identification of drought tolerant locus in the fine mapped regions as 

well as GWAS analysis (Franz et al., 2011). QTL cQstg10.5 was stable across 

both the environments mapped at same location (S10_59342820) which encodes 

for LEA2 proteins (Sb10g029570) reported to play a role in late embryogenesis 
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and drought stress mechanisms. Thus, these results suggest that the GBS SNP 

map is of high quality efficient map and is suitable for QTL identification and 

gene mapping. GBS was vastly used by molecular breeders as this is an effective 

method for genotyping huge population with high efficiency. 

 

5.2. QTL mapping advantages over SFR morphological traits 

For breeding shoot fly resistance, pyramiding resistance component traits appear 

to be the best way to develop commercially usable levels of host plant resistance, 

with timely sowing (to avoid high population pressure of pest). Timely sowing 

provides the most eco-friendly method for the management of shoot fly pest. 

Combined effects of glossiness and trichome density reduces the severity of 

shoot fly infestation and plants with high levels of expression for both the traits 

show better resistance to this insect pest. These morphological traits are well 

studied (Sharma et al., 2005; Dhillon et al., 2005; Dhillon et al., 2006; Kumar et 

al., 2008, 2011), genetically mapped (Sajjanar, 2002; Folkertsma et al., 2003; 

Deshpande, 2005; Mehtre, 2006, Satish et al., 2009, 2012; Aruna et al., 2011; 

Apotikar et al., 2011) and further introgressed (Jyothi et al., 2010) into to 

cultivated varieties in order to deploy insect pest resistance in combination with 

other economically important traits like high grain and stover yields and quality. 

Previously, these SBI-10 QTLs for trichomes and glossiness were detected in 

many studies, and summarized in Table 28. Except in the study of Aruna et al., 

(2011) (IS2122), all other SFR QTL mapping studies used IS18551 donor for 

shoot fly resistance, but the mapping populations used varied in population size, 

type (segregating and recombinant inbred lines), environment and location. 

Regions of the sorghum genome contributing to insect resistance are mostly 

syntenic to maize, suggesting such regions are highly conserved. The glossiness 

QTL and possible trichome density QTL identified in the present study were 

detected earlier by Sajjanar (2002); Deshpande (2005); Mehtre (2006); Jyothi 

(2010); Aruna et al., (2011) and Satish et al., (2009; 2012). However, the present 

work shows evaluation of ‘Gls’ and ‘Td’ QTLs in the SBI-10 over different 

environments (late rabi 2011/12 and kharif 2012), across the seed generations 
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(F2 and F2:3), different population sizes (1894 and 369), different mapping 

methods (QTL cartographer for F2 and PLAB QTL for the selected subset of F2 

and its derived F2:3) and mapping approaches (traditional fine mapping) which 

resulted in consistent QTLs. 

 

5.2.1. QTL mapping of seedling leaf blade glossiness and trichome density in 

total F2 and F2:3 population with initial SSR linkage map 

Due to large F2 population, many recombination events have been found within 

the introgressed genomic segment originally introduced to BTx623-background 

from IS18551 by marker-assisted backcrossing (MABC) that affects the shoot fly 

reaction phenotype. The background of the parents varies from the introgressed 

segment and the F2 progeny with increased number of recombination. This may 

affect the QTL detection power when compared to recombinant inbred lines. 

QTL analysis can also be affected by the size of the early-generation (F2 and F3) 

and high populations can result in detection of large numbers of QTLs including 

minor effect QTLs (Vales et al., 2005). However, F2 and F3 QTL mapping 

results, based on rabi and kharif season evaluations respectively, were found 

similar for glossiness. Leaf glossiness characterized by deposition of less wax or 

alteration in quantity and quality of epicuticular wax accumulation on leaves 

may be controlling the leaf smoothness of the surface and could be responsible 

for leaf blade erectness (Li et al., 2013). A single gene may not be solely 

responsible for the glossy phenotype as other genomic regions influence the up- 

and/or down-regulation of wax synthesis, and at least four glossiness-associated 

QTLs have been detected in sorghum. Key transcription factors responsible for 

glossy phenotypes were consistently reported in the mapped QTL region 

between Xisp10263, Xgap001and Xnhsbm1044. This target glossy QTL 

(QGls10) was detected in both screening environments and also reported in 

previous studies (Sajjanar, 2002; Folkertsma et al., 2003; Deshpande, 2005; 

Mehtre, 2006; Satish et al., 2009, 2012; Jyothi, 2010; Apotikar et al., 2011, and 

Aruna et al., 2011). Genomic recombination events were searched by traditional 

fine mapping, and Xgap001 showed clear association with glossiness, and 
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glossy15 (Sb10g025053) gene is just 237 kb away from Xgap001 within the 

mapped QTL region. Thus, glossy15 (Sb10g025053) could be a likely candidate 

gene for ‘QGls10’ as it is known to control transcriptional regulation of glossy 

phenotype expression in maize (Moose and Sisco, 1994). This suggests that 

‘QGls10’ needs to be studied further in the fine mapping approach with higher 

density markers in this, and other possible candidate genes in the target interval 

as well as further narrowing down the QTL. In the search for recombination 

events in the support interval, the ‘QTd10’ QTL have been found to be highly 

associated with Xtxp141 and Xisep0630. Precise microscopic field observations 

of trichome density may resolve the location of its controlling genomic regions. 

But, these were not practical due to large number individuals observed in the full 

F2 population. Presence of ‘QTd10’ within the same support interval (Xisep0630-

Xtxp141) showed the consistency of the QTLs in sorghum molecular mapping of 

component traits for shoot fly resistance. 

 

5.2.1.1. F2 and F2:3 QTL mapping on selected 369 individuals 

It is concluded that one QTL for glossiness score (with the glossy allele 

originating from donor parent IS18551) is present in the SBI-10L target region.  

QTLs for trichome density were mapped differently in the rabi and kharif 

seasons, but within support intervals sharing a common marker, Xtxp141. To 

clearly differentiate these F2 and F2:3 ‘QTd10’ QTLs, increased marker density 

and more efficient phenotyping is required. Fine mapping of these QTLs will 

improve our understanding of the molecular basis of seedling leaf blade 

glossiness and trichome density traits (important morphological component traits 

contributing to sorghum shoot fly resistance). In F2 subset, the rate of 

recombination has increased due to selected recombinants with heterozygous 

nature, which will increase the recombination fraction and this could affect the 

QTL detection power and may increase the rate of false discovery rate (FDR) of 

QTLs. Sometimes, missing marker data and segregation distortion in early 

generation population like F2 may lead to disturbance in estimation of QTL 

position and its effects. Since F2 selected informative recombinants are highly 
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distorted from the normal Mendelian segregation, increased heterozygosity may 

increase the dominance effect of the detected QTL, which may be due to over 

dominance effect or the pseudo over dominance effect of the QTL. Segregating 

populations (F2 and F2:3) have heterozygous variant regions which complicate the 

gene action during linkage repulsion phase of two dominant alleles. This may 

result in over dominance or pseudo over dominance. When both the loci are 

dominant, it may result in over dominance as in the case of trichome density. The 

statistical analysis methods, experimental designs and the phenotyping technique 

variations could also affect the dominance and over dominance effects of the 

detected QTL (Schnable and Springer, 2013). QTLs from resistant parent express 

dominance or over dominance; but if they segregate in the next generation they 

may not be detected due to less trait variation or other genomic regions might 

have more influence in phenotype expression. This could also be due to 

environmental effect on trichome density levels which may lead to less 

phenotypic variation and cannot separate the genomic regions responsible for the 

phenotypic variation in the target QTL region (SBI-10L).  

 

5.2.1.2. F2:4 QTL mapping on selected 152 genotypes 

A total of 39 QTLs were detected for six component traits of shoot fly resistance 

- seedling leaf blade glossiness (Gls-4), trichome density lower (Tdl-8) and 

trichome density upper (Tdu-7). Out of 39 QTLs, 20 are major QTLs and 

remaining 19 are minor QTLs. When the fine map QTLs were compared with 

earlier results, QGls10 was consistently mapped from F2, F3 generations and now 

F4 mapping resulted into a single gene glossy15 which was predicted earlier 

(Satish et al., 2009, 2012; Aruna et al., 2011; Kiranmayee et al., 2016). In case 

of trichome density lower, it is clearly evident that O-methyl transferase is 

mapped with high phenotypic variance during kharif with 48% phenotypic 

variance and 23 LOD. This could be the appropriate candidate gene that 

exhibited consistency across seasons but the same QTL was observed with 8% 

phenotypic variance during rabi. Percent shoot fly dead heart rabi QTL was also 

mapped at same position where trichome density lower was mapped with high 
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LOD and 12% phenotypic variance. This implies that trichome density lower has 

relation with shoot fly dead heart percentage and indicated that % SFDH and 

trichome density lower have interrelations. The level of shoot fly infestation and 

the level of trichome density lower affected needs to be studied alongside O-

methyl transferase encoding gene and  cyclin dependant kinase CDKB2;1gene. 

Thsese genes must be cloned and expressed in the plants to find out its exact 

function.  

5.2.1.3. Comparison of identified shoot fly component trait QTLs with 

previous SFR QTL 

Our fine genetic mapping revealed glossy15 (Sb10g025053) could be the 

probable candidate gene as revealed by QTL analysis during the two seasons and 

across season data mapped at SNP S10_54269620. When comparing the 

identified QTL regions with previous studies, the mapped QTLs were overlying 

with glossiness and trichome density QTLs detected by Sajjanar (2002), 

Deshpande (2005), Mehtre (2006), Satish et al., (2009, 2012) and Aruna et al., 

(2011). 

5.2.2. Stay-green (post flowering drought tolerance) 

In the present study, we aimed to develop a high resolution genetic map with 

newly developed SNP integrated with SSR markers for increasing the marker 

density of SBI-10L. This would be further helpful for dissecting the stay-green 

QTLs under terminal drought stress conditions and for estimating genomic 

regions that control the onset of senescence. Usually senescence is a regular 

developmental process in plant life cycle. But in few genotypes, senescence is 

delayed by the effect of environmental factors or mutations or alteration in the 

genomic regions. These changes in turn may alter the availability of specific 

nutrients (C, N). Stay-green was well studied (Borrell et al., 2014a, b) and 

various stay-green QTLs have been mapped in different genetic backgrounds 

(Borrell et al., 2000; Xu et al., 2000, Subudhi et al., 2000; Kebede et al., 2000; 

Crasta et al., 2000; Haussmann et al., 2002b, Harris et al., 2007; Kassahun et al., 

2010; Mace and Jordon, 2011; Mace et al., 2012; Naga raja Reddy et al., 2014). 



 

267 
 

Interestingly, all the previous studies on stay-green QTLs were co-localized with 

one or the other studies irrespective of genetic background and the stay-green 

donors which show the conserved stay-green regions in sorghum. Our present 

study focuses on the mapped (Haussmann et al., 2002b), introgressed (Kassahun, 

2006) reliable stay-green QTLs on sorghum chromosome SBI-10L.We fine 

mapped the % GL 7, 14, 21, 28, 35, 42 and 49 QTLs, of which few were 

identified by Haussmann et al., (2002b) earlier. Co-localization of QTLs may be 

due to tight linkage of the genes or pleiotropic effect of the locus that results in 

clustering of QTLs over generations. Stay-green QTLs were consistent over 

environments and in different genetic backgrounds also. 

5.2.2.1. Stay-green QTL co-localization/comparison with previously 

identified stay-green QTLs 

The studies of Crasta et al., (1999), Haussmann et al., (2002b) and the present 

study identified different QTLs that have been found to be co-localized (Fig .40). 

Few completely new QTLs were also identified (Table 17). E36-1 was the source 

of drought tolerance as has been revealed by the studies of Haussmann et al., 

(2002b) and the present studies also. Haussmann et al., (2002b) mapped the Stg 

QTLs between Xgap001 and Xtxp141 SSR markers. So, this has been utilized in 

the present study, along with few other SSR markers developed by others (Ramu 

et al., 2010). The QTLs identified in our present study can be roughly compared 

with QTLs discovered by Haussmann et al., (2002b). All the 33 identified QTLs 

along with 6-7 QTL clusters were located within the QTLs mapped by 

Haussmann et al., (2002b) which are overlying with the STG QTLs developed 

by Crasta et al., (1999). But, we could not conclude if the QTL clusters identified 

in the present study are the same as have been identified earlier. To date, there 

were no reports of fine mapping studies related to stay-green in sorghum but 

attempts were made by Borrell et al., (2009) and Harris et al., (2007) to study 

another popular stay-green source B35-1 but on chromosomes other than SBI-10. 

Therefore, this is the first stay-green fine mapping report in sorghum which 

generated probable candidate genes related to delay in the onset of senescence. 
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With the genes identified in the present study, one can perform positional 

cloning experiments to validate the major gene effects in stay-green phenotype. 

Our fine mapping analysis shows that gene as well as QTL cluster was 

influencing the stay-green trait but not a solitary gene. However, it is very 

difficult to conclude that which genomic region is responsible for which 

pathway. Knock out mutation experiments may reveal the functional role(s) of 

these genes during drought stress tolerance. BSA with a larger population may 

reveal about the genes responsible for delayed senescence, or as distinct from 

stay-green phenotypes. Identification of genes from this region that are 

differentially expressed between parents under drought stress conditions is vital 

for future studies. But, there was no clear evidence that a single gene is 

responsible for the delay in senescence in these lines. Identification of the net-

work of genes that act simultaneously and modulate the down-stream genes is 

necessary to develop stay-green phenotypes and drought tolerant lines in 

sorghum.  

 

5.2.2.2. Advantages of stay-green fine mapping using progeny testing or 

haplotype analysis 

With the help of haplotype analysis/progeny test, stay-green genomic regions 

have been narrowed down into genes. As the identified stay-green QTLs were 

co-localized, QTL clusters for stay-green were identified and further fine mapped 

to important regions where it ended up with single genes for each stay-green 

QTL clusters. This helped us to identify candidate genes underlying the stay-

green traits. 

 

5.3. Candidate genes in sorghum SBI-10L showing both QTL and GWAS 

evidences for agronomic and yield traits:  

 

5.3.1. Flowering time 

QTL mapping studies for flowering time identified 2 major QTLs with 12% PVE 

for each QTL. Earlier studies identified ma1, ma2, ma3, ma4 and ma5 QTLs on 

SBI-06, 07, 01, 10, 2 (Quinby and Karper, 1945; Quinby, 1966, 1967; Rooney 
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and Aydin, 1999; Crasta et al., 1999; Mace and Jordan2011) and our results 

revealed nine QTLs for days to 50% flowering on SBI-10. These data may be 

similar to ma4 and another major QTL similar to QDTFL5_10 (Crasta et al., 

1999; Mace and Jordon, 2011) and Qdf_dsr.2 (Naga raja Reddy et al., 2013). 

Nearly 24 genes were identified in the mapped flowering time QTLs on SBI-

10L. Out of these, pentatricopeptide (PPR) repeat-containing protein 

(Sb10g023920, cytochrome P_450 (photosynthesis) (Sb10g022450), type III 

chlorophyll a/b-binding protein (Sb10g023930), ankyrin repeat-containing 

protein (Sb10g025310), putative leucine zipper (Sb10g024190), putative 

uncharacterized protein (Sb10g023430, Sb10g025010, Sb10g024920, 

Sb10g025010), glossy15/AP2 (Sb10g025053), NBS-LRR (Sb10g025283) have 

been identified as the major contributors of flowering time in the present fine 

genetic mapping study. GWAS studies identified xyloglucan 

endotransglycosylase (Sb10g028550) and zinc finger POZ domain unique genes. 

Ankyrin repeat protein (Sb10g025310)and NBS-LRR (Sb10g025283) were 

located in both the analysis, but further studies are necessary to carry out the 

identified genes and QTLs on SBI-10L. 

 

5.3.2. Plant height 

In the present study, plant height QTL mapping identified 7 QTLs with 

combined phenotypic variance of 21%.Previous studies identified Dw1 on SBI-

09, Dw2 on SBI-06 and Dw3 on SBI-07 (Quinby, 1974; Mace and Jordan, 2011; 

Zou et al., 2012; Thurber et al., 2013; Higgins et al., 2014). Squamosa promoter-

binding-like protein 12 (Sb10g029190), O-methyl transferase ZRP4 

(Sb10g027340, Sb10g027640), development and cell death domain = N-rich 

protein, putative, expressed (Sb10g024460), AdoMet_Mtases (involves in the 

direct methylation of oleic acid esterified as a component of 

phospholipids/directly interacts with DNA, RNA also) (Sb10g029820), 

hypothetical protein, K03355 anaphase-promoting complex subunit 8 

(Sb10g025960), MADS box transcription factor (Sb10g029810), catalytic 

domain of protein kinases (Sb10g029180) are few important candidate genes 
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identified by QTL mapping and GWAS analysis. SPB protein has a role in 

dwarfing (Preston and Hileman, 2013) and may be one of the most probable 

candidate genes on SBI-10L. 

 

 

5.3.3. Grain dry weight/plot and panicle dry weight per plot 

For both the traits, two QTLs were commonly located at position 105.61 

(Xtxp141) and 117.31 (S10_59418734). GDW/Plot marker trait associations 

identified using GWAS and QTL analysis are similar to PnDW/Plot are Exo70 

exocyst complex subunit (Sb10g030660, Sb10g030710), transcription 

termination factor Rho; provisional (Sb10g029670), leucine rich repeat domain 

like (Sb10g030730), putative polycarboxypeptidase isoform 1 (Sb10g025540), 

putative uncharacterized protein (Sb10g028550, Sb10g030080, Sb10g029010), 

meiotic serine proteinase (Sb10g028870) and ADP binding protein 

(Sb10g021860). Few unique MTAs observed are putative uncharacterized 

proteins like P0548E04.1.9 (Sb10g030610) for PnDW/plot and NBS-LRR 

disease resistance protein (Sb10g025283), calcium-dependent protein kinase 

CPK1, adapter protein 2 (Sb10g030150) and putative uncharacterized proteins 

(Sb10g022900, Sb10g028550, Sb10g030080, Sb10g029010) for GDW/Plot. 

 

5.3.4. Hundred grain mass(HGM) 

Candidate genes located in HGM QTL interval are MATE efflux 

(SB10g029392), MADS box transcription factors near to S10_59525199 SNP 

and calcium/calmodulin-dependant kinase (SB10g030040) and few 

uncharacterized proteins, of which squamosa promoter–binding proteins are 

reported to be involved in 100 seed weight QTL GW8 in rice (Wang S et al., 

2012).  

 

5.3.5. Grain number per plot (GNP/Plot) and grain number per panicle 

(GNPP) 

As grain number per panicle is derived from grain number per plot, they are 

mapped at the same locations. MTAs identified  putative prolylcarboxypeptidase 
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isoform 1 (Sb10g025540), serine/threonine protein kinase (Sb10g022730), basic 

leucine zipper (Sb1024190), zinc binding family protein (Sb10g024575), 

polyphenol oxidase (Sb10g024220) and Arabidopsis response regulator 10-Myb 

like DNA binding domain. Candidate genes identified in QTL interval are mostly 

putative uncharacterized proteins (Sb10g028790, Sb10g029670, Sb10g030610, 

Sb10g30580), mitogen activated protein kinase (Sb10g028780) and cell division 

protease ftsH homolog (Sb10g030720). 

 

5.3.6. Panicle harvest index (PHI) 

Candidate genes underlying QTL interval are Exo70 exocyst complex subunit, 

transcription termination factor Rho (Sb10g029670) and RF4; DNA polymerase 

sigma (Sb10g026810). Five MTAs found in GWAS analysis revealed the 

presence of basic leucine zipper transcription factor (Sb10g024190), zinc finger 

POZ domain (Sb10g026760), F-box domain (Sb10g027760), TLP-PA; 

allergenic/antifungal thumatin like protein (Sb10g030230) and prolylcarboxy 

peptidase isoform1 (Sb10g025540). PHI is affected by FT, plant height, plant 

biomass and grain yield. Increasing PHI can be an alternative to increased seed 

yield in sorghum as pointed out by Luo et al., (2015). 

5.4. QTL co-localizations 

Significant correlations and associations have been observed between trait results 

in co-localisation of QTLs. Where common genomic regions influence different 

traits indicates pleiotropism and linkage of the traits. It is difficult to distinguish 

the pleiotrophy with linkage. As in the present study, stay-green (cQstg10.4), 

flowering time QTLs (QFT.3_14) were mapped at 44.1 cM which encode for 

ankyrin repeat protein. Such a protein has been reported in flowering mechanism 

as well as in drought tolerance (Xu et al., 2007). FT 2_14 was mapped at 36.91 

and stay-green QTL cluster (cQstg10.1) at 36.41 where the interval of the 

mapped QTLs regions are near to AP2 transcription factor. AP2 type of 

transcription factors are also involved in flowering mechanism (Jofuku et al., 

1994) and drought tolerance (Licausi et al., 2013). As expected, % SFDH QTL 

and trichome density lower QTLs of both rabi and kharif 2013 seasons were 
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falling at S10_57432493 (99.61 cM) which are near to O-methyl transferase 

protein and cyclin dependant kinase CDKB2;1 (Sb10g027670). Both these genes 

may have a role to play in trichome density and percent shoot fly dead heart 

according to the QTL data, fine mapping and GWAS analysis. GNP/Plot and 

GNPP QTL were mapped near to starch branching enzyme indicating their role 

in grain quantity increase. More grain number in general indicates more 

flowering. Interestingly, at 82.71 cM (S10_56433597), percent shoot fly dead 

heart QTL (Q%SFDH1_R13) and stay-green QTL (QGL14b_13) were co-

mapped which encode a tubulin beta-2/beta-3 chain protein. At this region, a 

grain dry weight QTL (QGDW/Pot.1_14) was observed which is very near to the 

cluster at 82.18 cM (S10_56205739) that encodes zinc finger POZ domain 

protein. Many of the identified genomic regions appear to affect multiple traits. 

Single gene or multiple gene clusters present in the mapped regions could be 

responsible which should be validated by cloning and overexpressing the 

probable candidate genes. As expected, the co-localized QTLs for the traits in the 

present study are supported by significant correlation among co-localized traits. 

5.5. GWAS results support the fine mapping results 

Association mapping can also be a powerful tool for fine mapping of quantitative 

traits (Flint-garcai et al., 2003). Our data on trichome density indicate that this 

population is highly variant for the trait. A total of 10 SNPs of the MTAs 

identified were over-lapping with QTL map and fine mapped candidate genes. 

This shows the importance of GWAS studies. 

5.5.1. Major component traits of shoot fly resistance and their candidate 

genes 

5.5.1.1. Glossiness 

Leaf glossiness trait has multiple functions in biotic (shoot fly resistance) and 

abiotic stress tolerance (drought, salinity, high temperature). Cuticular waxes on 

leaf could be the reason for the glossy phenotype. Water sprinkling method on 

leaves differentiates non-glossy leaves with glossy leaves by adherence and non-
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adherence of water droplets respectively (Tarumoto et al., 1980). Scanning 

electronic microscopic observations show increased number of wax crystals on 

leaf surface of non-glossy leaves when compared to glossy leaves (Tarumoto et 

al., 1981). The mapped QTL region was searched for candidate genes and 

several wax synthesis-related genes were found. One of the candidate genes 

related to wax synthesis and deposition of wax present in the QTL region has a 

C2 calcium lipid-binding domain (Sb10g025040), which is involved in plant 

stress signal transduction, and this C2 domain was able to bind membrane lipid 

ceramides (De Silva et al., 2011). These wax-deficient mutant loci in maize, 

Brassica and sorghum are defined as ‘glossy’ loci and in Arabidopsis and barley, 

they are named as ceriferum (cer) mutant loci (Kunst and Samuels, 2003, 2009). 

One of the candidate genes, glossy15 (Sb10g025053), encodes an APEPETAL2 

(AP2)-like transcription factor involved in the transition from juvenile leaf 

epidermis to adult leaf epidermis characteristics, and is expressed after second 

leaf growth stage (Moose and Sisco, 1994, 1996). AP2/ERF transcriptional 

factors have been reported to be involved in wax biosynthesis (Tiwari et al., 

2012). Recently, Go et al., (2014) reported that AP2/ERF (Sb10g025053) acts as 

a bi-functional transcriptional factor which down regulates the wax biosynthetic 

pathway by interacting with promoter regions of wax synthesis proteins. A MYB 

transcription factor (Sb10g024950) present in the mapped glossy QTL region has 

been reported to be involved in activation of AP2/ERF transcription factors 

associated in the wax biosynthesis (Cominelli et al., 2008). 

 

5.5.1.2. Trichome density andcandidate genes  

Trichomes are non-glandular, cellular appendages that protrude above the 

epidermis (Maiti and Gibson, 1983). Trichomes act as physical barriers between 

the insect pests and the leaf blade epidermis that inhibit egg laying and/or larval 

movement, which leads to reduction in ‘dead heart’ formation. Trichome density 

is genetically controlled and negatively correlated with oviposition, and dead 

heart incidence (Maiti and Gibson, 1983; Dhillon et al., 2005). A MYB 

transcription factor gene homolog (Sb10g027280) was observed in the trichome 
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density QTL region. Liang et al., (2014) showed that in Arabidopsis, a WD40, 

HLH, and MYB transcriptional factors regulate the trichome initiation process 

programmed by cell development. These transcriptional factors recognize the 

specific DNA motifs in gene regulatory regions to activate or repress 

transcription, mostly by interacting with other proteins like Armadillo repeats, 

Specicle Poz-like proteins, F-box domain proteins, WRKY proteins, MYB 

transcription factors, ethylene zinc finger proteins, EF-hand Ca
2+

-binding 

proteins, and thumatin-like proteins. In Arabidopsisthaliana, TRANSPARENT 

TESTA GLABRA2 (TTG2) encodes a WRKY transcription factor and is 

expressed in young leaves, trichomes, seed coats, and root cells which are not 

involved in root hair production. During epidermal cell differentiation, MYB 

transcription factors and HLH transcription factors regulate TTG2, which 

modulates Glabra2 expression in trichomes (Eulgem et al., 2000; Johnson et al., 

2002; Ishida et al., 2007). One additional WRKY transcription factor gene 

homolog (Sb10g025600) is present in the target trichome density QTL region; 

and this may be one of the probable candidate genes. An ethylene zinc finger 

protein gene homologous with Sb10g027550 has also been observed to play a 

key role in regulating trichome development in Arabidopsis (Zhou et al., 2013). 

It appears that ZFP5 and ZFP6, the zinc finger proteins, necessary for gibberellic 

acid and cytokinin signalling regulate trichome cell differentiation (Zhou et al., 

2013). Cyclin dependant kinase CDK (Sb10g027670) has also been reported to 

be involved in trichome density (Pattanaik et al., 2014). CDKB2;1 is a B type 

cyclin dependant kinase and is unique to plants and are involved in G2-to-M 

phase mitotic events which may control the development of tissues such as 

trichomes  (Kono et al., 2003). In the process of trichome development, cells 

undergo endoreduplication where CDK was not expressed properly resulted in 

plants with few trichome or less trichomes (Schnittger et al., 2003). An 

Armadillo repeat protein gene that appears to be homologous to Sb10g027680 

regulates both the gene expressions and cell-cell adhesion. Patra et al., (2013) 

demonstrated that ubiquitin protein ligase3 (upl3) N-terminal domain has 

Armidallo repeats that interact with the C-terminal domain of Glabra3/Enhanced 
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Glabra3 for trichome development in Arabidopsis. An F-box domain protein 

homologous to Sb10g027730 has Armadillo repeats that may act as 

transcriptional factor and involved in plant developmental processes (Coates, 

2008). An EF-hand Ca
2+

-binding protein gene homolog (Sb10g027680) is one of 

the candidate genes underlying the putative QTd10 trichome density QTL. 

Kinesin-like calmodulin is EF-hand Ca
2+

-binding protein that interacts with a 

microtubule motor protein and regulates trichome morphogenesis. Over 

expression of KIC inactivates kinesin-like calmodulin binding protein (KCBP) 

by disrupting its interaction with microtubules and its participation in trichome 

morphological complex resulting in trichomes with less branches/no branches 

(Reddy et al.,  2004). Jakoby et al., (2008) mentioned Speckle type POZ proteins 

(homologous to Sb10g026780) which were also expressed in trichomes (Table 

29).  

In case of glossiness QTL, higher score value indicates the non-glossiness, and 

lower the score, more preferred the trait (glossy). Glossiness is inherited from 

resistant parent where the moderately large F2 population had more dominance 

effect due to higher population size and better scores which could influence the 

dominance nature of the detected QTL. In both the generations, glossiness QTL 

was detected within the same support interval. This confirms that single 

glossiness QTL is located in the target marker interval. Further fine mapping and 

focused gene expression studies can be carried out utilizing this high resolution 

cross. This should reveal which of the underlying candidate gene/s is responsible 

for the observed variation and its functional role. In contrast, the putative QTL 

for trichome density on the lower surface of seedling leaf blades, thought to have 

been introgressed from grandparent IS18551 into BTx623-background line 

J2614 as reported by Jyothi et al., (2010), was detected in the full F2 population 

and the subset of 369 informative recombinants selected from this under lower-

temperature, short-day length rabi conditions. But it was not clearly detected in 

the F3 progenies when the same were evaluated in the kharif. This warrants 

considerable further study, starting with phenotyping of the same F3 progenies 

for lower leaf blade trichome density during the rabi season using available 
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remnant seed. Expression of this QTL only under rabi verses kharif conditions 

would warrant further studies to understand the environmental regulation of this 

QTL for the trait. Based on F2 genotyping data of 7 co-dominant SSR markers 

and F2:3 phenotyping data, a further reduced subset of 182 most informative 

recombinants were selected, and corresponding F3 progenies were selfed to 

produce F4 seed which will go for field trials and can be used for further studies 

to restrict the genomic region that appears to contribute to the control of sorghum 

seedling leaf blade glossiness and lower surface trichome density. 

 

5.5.2. Genes related to delay in senescence and the identified stay-green 

QTL regions 

Leaf senescence is a complex trait which involves 1000 up- and down-regulated 

genes termed as senescent associated genes (SAGs) and senescence associated 

proteins (SAP) based on the environmental factors, physiological, chemical, 

developmental stages (Guo et al., 2004; Gepstein et al., 2004), degenerative 

process, developmentally regulated programmed cell death (PCD) mechanisms. 

Senescing leaf products such as nitrogen, phosphorus, metal ions, minerals and 

nutrients are translocated from leaves to the grain filling sites (Lim et al., 2003, 

2007; Buchanan et al., 2003). Studies on Arabidopsis have generated 

information on different mechanisms involved in autophagy, chlorophyll 

catabolism and nutrient remobilization during senescence (Sakuraba et al., 2014, 

Luo et al., 2013). 

 

5.6. Transcriptional factors, hormones and signal transduction proteins 

associated with senescence mechanism and present in the identified QTL 

regions 

In the present study, identified stay-green QTLs when searched for candidate 

genes, 2 NAM (Sb10g027100, Sb10g030770) transcriptional factors were 

located at 21.8 kb near to the identified Q10GL28a_13, Q10GL28a_across, 

Q10GL21c_13 QTLs detected during drought stress conditions. It has been 

reported earlier that increased expression of NAC transcription factor leads to 

drought stress tolerance and acts as a negative regulator of drought and increases 
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grain nitrogen concentration in wheat (Distelfeld et al., 2014; Zhao D et al., 

2015). Senescence-associated NAC transcription factors have been described in 

Arabidopsis thaliana (Lee et al., 2012; Guo and Gan, 2006), Oryza sativa (Liang 

et al., 2014), Bambusa emeiensis (Chen et al., 2011), barley (Christiansen and 

Gregersen, 2014; Distelfield et al., 2014) and maize (Mao et al., 2015). Another 

SNP S10_54532995, identified to encode NBS-LRR (Sb10g025283) reported to 

be a defense response protein (known for biotic stress) might be influenced 

during stress and this leads to increased levels of SA, ABA and cytokinin. NBS-

LRR mutant leads to early senescence; dwarfism and flower sterility. Therefore, 

it appears that it might play a role in senescence (Sarazin et al., 2015). 

Sb10g025053 (S10_545269620) gene encodes for AP2 transcription factor and is 

involved in the regulatory pathways of many plant biological mechanisms. Plants 

adapt to water deficient stress by initiating a series of molecular, biochemical 

and physiological changes. Over expression of AP2/ERF family genes have been 

shown to improve stress tolerance under water defect conditions (Guo and Gan, 

2012; Licausi et al., 2013; Mawlong et al., 2015). 

 

Nearly four SNPs S10_54966383, S10_55002960, S10_55315031, 

S10_57432493 have been detected that encode WRKY type of transcription 

factors (Sb10g025600, Sb10g025990, and Sb10g027640). Their over expression 

lead to drought tolerance in rice (Cai et al., 2015) and maize (Thirunavukarasu et 

al., 2014). MADS box transcription factors (Sb10g029810) are influenced under 

drought stress conditions and their alterations may lead to stay-green which is 

involved in many developmental processes (Shore and Sharrocks, 1995). 

Exocyst subunit (Sb10g030620) has been found to be involved in auto 

phagosome/autolysis associated in plant cell death process or programmed cell 

death. As senescence is a natural mechanism of cell death process, autolysis 

enzymes and proteins are involved in senescence (Lim et al., 2003, 2007). 

Sb10g031030 gene encodes for AGO1 argounates which is a part of gene 

silencing complex. AGO1 transcriptional activity increases under ABA and 

drought treatments suggesting that a transcriptional activation of MIR168a is 
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required for stabilising AGO1 during stress response (Li et al., 2012; Bologna 

and Voinnet, 2014; Zhao Y et al., 2015). Ankyrin repeat protein (Sb10g025310) 

is reported to be involved during flower senescence and a detailed study may 

reveal its role in leaf senescence (Xu et al., 2007). Transducin family 

protein/WD40 is also reported to be involved in senescence mechanism (Guo 

and Gan, 2012). Pentatricopeptide repeat protein (PPR) (Sb10g026180 SNP 

S10_55532236, Sb10g029530- SNP S10_59316155) is involved in chlorophyll 

degradation mechanism by stabilizing RNA in chloroplasts. PPR could be 

involved in chlorophyll catabolism during senescence and alteration in PPR may 

lead to stay-green phenotype (Yagi et al., 2013; Manna et al., 2015). Squamosa 

binding protein family transcriptional factors (SBP) (Sb10g026200, SNP 

S10_55599913) have been reported to be involved in leaf, flower, fruit and 

vegetative phase developmental stages (Preston and Hileman, 2013). Zinc finger 

(Sb10g028300- 58163876) proteins are also reported to be involved in 

senescence and few MYB transcription factors are known to modulate the 

process of senescence (Guo and Gan, 2012; Griffith et al., 2014). CGA1 

(CYTOKININ-RESPONSIVE GATA FACTOR 1; Sb10g022580) protein is 

known to be involved in chloroplast metabolism (Guo and Gan, 2012; Hudson et 

al., 2013). GA3 (Sb10g022520) and ethylene (C2H2 ZN finger) are the major 

phytohormones that enhance the transcriptional factors to trigger senescence 

(Guo and Gan, 2012). 

 

5.7. Shoot fly resistance and stay-green studies in improving productivity 

under stress 

As the shoot fly attacks the plants during early stages and damages the crop, 

molecular breeders are interested in developing shoot fly resistant cultivars 

utilizing molecular marker assisted breeding strategies. Improving yield under 

water limiting condition is another major challenge present in front of plant 

breeders. Molecular breeders are heading towards their goal by developing 

drought tolerant cultivars/stay-green cultivars utilizing molecular marker assisted 

breeding strategies. Genetic and genomic studies of crop plants helped us to 



 

279 
 

identify important genes involved in stay-green mechanism and the F4 plants 

with more stay-green activity with high agronomic performance along with shoot 

fly resistance were further selfed to homozygosity and can be released as a 

drought tolerant high yielding variety. 

 

5.7.1. Selection of superior F4 genotypes based on genotyping and 

phenotyping data 

Based on phenotypic BULP values of the F4 selective genotyping population, 

nearly 20 genotypes were selected and based on genotypic data within the 

phenotypic selection, up to 7 plants were preferred as breeding materials for “3-

gene cassette” unless selfed until homozygosity. These lines can be used as a 

donor in marker assisted breeding programs of multiple resistant varieties or 

could be released as varieties after multi-location trials. 

 

5.7.2. Conventional breeding approach 

Double selected recombinants have the favourable alleles at all three loci (for a 

high level of glossiness, good green leaf area retention, and high trichome 

density), and hence recombinants could be used as donors of the “cassette” of 

these three genes in applied marker-assisted breeding programs targeting the rabi 

sorghum production where both shoot fly resistance and terminal drought 

tolerance are essential traits. In the course of producing such a recombinant from 

the cross of the BTx623-background, shoot fly resistance QTL (J2614-11) and 

the R16-background stay-green QTL introgression lines (RSG04008-6), these 

regions were fine mapped and the underlying genes for all three of these 

components of the cassette were found out. Based on increased marker density 

and reduced genomic regions of shoot fly component traits, stay-green, yield and 

agronomic traits, probable candidate genes underlying the QTLs and their 

involvement for the trait have been found out. Marker  assisted selection strategy 

can be applied for reduced errors in selection as MAS is time-efficient, non-

destructive, cost-insensitive and reduces linkage drag of the target genomic 

region with unfavourable alleles from their common donor parent. Multi-location 

field evaluations of the identified QTLs across environments and generations are 
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vital to find out the QTL stability. QTL mapping and their fine mapping as well 

as transfer of resistant genomic regions and pyramiding them is critical for 

developing a stress tolerant line alongside utilizing the next generation 

sequencing technologies and GBS. GBS has been successfully used in GWAS, 

genomic diversity study, genetic linkage analysis, molecular marker discovery, 

genomic selection under large scale plant breeding programs (He et al., 2014).  

 

In this study, the stay-green genomic regions have been delimited from 15 Mb to 

8 genes, which are co-localized with a few genome-wide association study 

(GWAS) marker-trait associations (MTAs). As we have performed GWAS for 

the weekly % GL scores, 32 candidate genes for stay-green traits have been 

identified, of which WD40 repeat family protein (Sb10g025320), AGO1 

(Sb10g031030), GA3 (Sb10g022520) and NAC transcription factor 

(Sb10g030770) are crucial candidate genes for creating delayed senescent 

phenotypes. QTL mapping in F2, F2:3, F4 replicated data clearly show the glossy 

is highly associated with glossy15 (Sb10g025053) which has been reported in 

maize for glossiness. The present population displayed high variation for 

trichome density lower and upper and the percent shoot fly dead heart QTLs that 

overlapped with the trichome density lower indicate a close correlation of 

trichome density trait in shoot fly resistance. Many genes could be responsible 

for the stay-green trait as well as glossy and trichome density characters. It is 

interesting to note that the large effect stay-green QTL previously mapped to 

SBI-10L appears to be very complex than the mapped seedling leaf blade 

glossiness and trichome density upper and lower. Not all of its components from 

donor parent E36-1 may necessarily be economically desirable, so in the long 

term, detailed dissection and reconstruction studies may be required to form a 

superior cassette of favourable alleles across this chromosome arm that can be 

easily manipulated in sorghum breeding program targeting enhanced stability of 

the characters. But, it is necessary to validate the genes located in the QTL 

regions. It is concluded from the study, that marker assisted back cross programs 

can be widely used with the help of advanced next generation sequencing 
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technologies combined for breeding resistant lines. A crop plant with resistance 

to two different stresses can be overcome and a multiple resistant variety with 

high agronomic performance can result super 3-gene cassette crop sorghum. We 

have preferred HPR where the shoot fly infestation rate can be reduced with 

increased trichome density on both abaxial and adaxial leaf surfaces which 

prevent shoot fly from laying eggs and crawling of larvae on the leaf surface. In 

future, further isolation and characterization of glossy15 (Sb10g025053) on SBI-

10 needs to be studied in detail. 

 

 

Conclusions 

Our study reveals that advances in genomics, molecular breeding and NGS can 

help to dissect the stay-green character and also shoot fly resistance in sorghum. 

Genes responsible for stay-green, leaf blade glossiness and trichome density 

need to be cloned and their introgression and expression level studies should be 

made available in sorghum in order to enhance the genetic architecture. The 

parents are introgressed lines, they have different genetic backgrounds, but the 

background noise for the interested traits has not been reduced substantially. 

None-the-less, genotypes identified have a combination of RSG04008-6 stay-

green (drought tolerance) trait with glossiness and trichome density. 

Homozygous lines with these characters can lead to the development of a variety 

in sorghum with multiple resistances. 
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SUMMARY 

Sorghum [Sorghum bicolor (L.) Moench, 2n = 2x = 20] is the fifth most 

important cereal crop globally, and is grown primarily in arid and semi-arid 

conditions. Major biotic and abiotic constraints hampering sorghum production 

include shoot fly infestation during early stages of crop development (seedling 

establishment and early growth stages; but only present in the eastern 

hemisphere) and terminal drought stress during post-flowering growth stages. 

These two stresses can devastate the crop. Hence developing sorghum varieties 

with resistance for these two stresses is critical. In order to understand the 

genetic basis of sensitivity to these two stresses and to genetically dissect host 

plant resistance to shoot fly and tolerance to terminal drought stress, the 

following objectives were proposed for the present study: 

 to develop an introgression-line cross-based fine-mapping population for 

morphological components of shoot fly resistance and for the stay-green 

mechanism of terminal drought tolerance previously mapped to sorghum 

chromosome SBI-10L; 

 to fine-map the target traits by combining genotyping and phenotyping 

datasets of a selected recombinant sub-set of the fine-mapping population; 

 to annotate functionally and characterize candidate genes identified in the 

target region; and 

 to identify recombinant progenies with pyramided traits of interest. 

 

Genotyping-by-sequencing (GBS) and identification of single-nucleotide 

polymorphism markers (SNPs) 

At ICRISAT-Patancheru, Hyderabad, favourable alleles for shoot fly resistance 

(SFR) and stay-green (STG) quantitative trait loci (QTLs) have been introgressed 

into more elite backgrounds by pedigree selection and/or marker-assisted 

backcrossing (MABC) programs. QTL mapping of these traits suggests that the 

introgressed STG QTL from E36-1 (available in introgression line RSG04008-6) 

overlaps with SFR QTLs detected in IS18551 (available in introgression line 
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J2614-11) on the long arm of sorghum chromosome 10 (SBI-10L). This genomic 

region is flanked by simple sequence repeat markers (SSRs) Xisep0621 and 

Xisep1011, which is a 72 cM interval (45-60 Mb physical distance). An F2 fine-

mapping population with 1,894 plants was generated by crossing introgression-

line RSG04008-6, which is moderately stay-green but shoot fly susceptible, with 

introgression-line J2614-11, which is moderately senescent, but shows 

reasonable SFR, followed by selfing of a single true F1 hybrid from this cross. A 

total of 361 F2 recombinants in the target region harbouring these QTLs were 

identified by screening the full F2 population with 7 polymorphic SSRs mapping 

to the target interval on SBI-10L. From these 361 recombinants, DNA samples 

from 182 were sent for skim-sequencing. Using the skim-sequencing data for 

GBS genotyping with the TASSEL pipeline resulted in identification of 32,836 

SNPs. A total of 1,515 SNPs were found in the SBI-10L target region. 

Subsequent curation of the SNP data identified a total of 260 high quality SNPs, 

which were integrated with the base map of 7 SSRs distributed across the target 

region. The high-resolution genetic map constructed with five SSRs and these 

260 SNPs, spanned a length of 136 cM. Out of 182 F2 recombinants used for 

GBS, 152 progenies with sufficient seed were advanced to the F3 and F4 

generations, which were phenotyped for the target traits. Phenotyping was 

carried out during the post-rainy seasons (rabi) of 2013 and 2014 for STG and 

agronomic trails, and during the rainy season (kharif) of 2013 and rabi season of 

2013 for morphological traits contributing to SFR. Best linear unbiased 

predictors (BLUPs) were calculated, within and across seasons, from these 

observations and then used for further trait mapping analyses. 

 

Stay-green (STG) trait and QTLs 

Observations for the STG trait were scored as percent green leaf area (%GLA) at 

weekly intervals (i.e., %GLA07, %GLA14, %GLA21, %GLA28,%GLA35, 

%GLA42, and %GLA49). These STG observations and those for other 

agronomic and yield-related traits like flowering time, plant height, panicle dry 

weight per plot, graindry weight per plot, grain number per plot, grain number 
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per panicle, hundred-grain mass and panicle harvest index, were collected from 

both the 2013 and the 2014 post-rainy season trials. F4 progeny frequency 

distributions showed transgressive segregation for most of the observed traits, 

indicating their polygenic inheritance. Statistical analysis of these data 

demonstrated high heritabilities for the weekly stay-green scores. Stay-green 

scores from the two years trials were shown to be positively correlated (r≥0.90*) 

with each other, and negatively correlated with flowering time (r = -0.78*) and 

plant height (r = -0.21*), across seasons. Panicle dry weight per plot, grain dry 

weight per plot and grain number per plot were negatively correlated with 

%GLA scores during rabi 2013 (when plants severely drought stressed with high 

temperatures during grain filling) and positively correlated with %GLA scores 

during rabi 2014 (when plants were moderately stressed with low temperatures 

during grain filling). These data indicate that the recombinant fraction of the 

introgression-line fine-mapping population better withstands terminal drought 

stress under low temperature conditions. QTL analysis with the combined trial 

data set resulted in the identification of 33 putative QTLs for stay-green-related 

%GLA observations accounting for from 8 to 32% of their corresponding 

observed phenotypic variances, and 10 major QTLs for agronomic traits, 

accounting for 21 to 53% of their observed phenotypic variances, mapping to the 

SBI-10L target region. 

 

QTL clusters for the stay-green trait 

From 33 stay-green QTLs detected, 19 QTLs were clustered into seven groups 

on SBI-10L and named as cQstg10.1 (3 QTLs) at 36.41 cM (SNP 

S10_54269620), cQstg10.2 (4 QTLs) at 41.41 cM (SNP S10_54081973), 

cQstg10.3 (2 QTLs) at 44.41 cM (SNP S10_54585199),  cQstg10.4 (2 QTLs) at 

45.01 cM (SNP S10_54535306),  cQstg10.5 (3 QTLs) at 115.31 cM (SNP 

S10_59342820), cQstg10.6 (2 QTLs) at 120.6 cM (SNP S10_59775456) and 

cQstg10.7 (3 QTLs) at 125.01 cM (SNP S10_60194379). 
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Shoot fly resistance morphological component traits and their QTLs 

Morphological component traits of SFR, including seedling leaf blade glossiness 

score (Gls), trichome density on the upper leaf blade surface (TDU), and 

trichome density on the lower leaf blade surface (TDL), as well as seedling 

vigour score (SV) and shoot fly dead-heart percentage (%SFDH), showed 

transgressive segregation in the phenotyped portion of the recombinant 

population. Glossiness score and trichome density values showed high 

heritabilities (66-87%) across seasons, and were correlated (r = 0.16 and r = -

0.66*, for Gls and TDL, respectively) with %SFDH values. This confirms that 

increased trichome density on the lower surface of sorghum seedling leaf blades 

reduces the severity of shoot fly damage. QTL mapping for SFR-related 

morphological component traits detected 39 QTLs, of which 20 were major 

QTLs. A single QTL for glossiness score was consistently mapped to SNP 

S10_54269620, which falls in the glossy 15 gene region on SBI-10L. For TDL, a 

QTL at SNP S10_57432493 was consistently mapped in both seasons, as well as 

in the across-season analysis, explaining 76  of the observed phenotypic 

variance for this trait, and thereby identifying this as a ma or QTL for trichome 

density on the lower leaf blade surface (TDL). This SNP is  100kb upstream to O-

methyl transferase (Sb10g027640) and a cyclin-dependant kinase (Sb10g027670) 

genes. 

 

Genome-wide association mapping (GWAS) 

GWAS for weekly %GLA scores resulted in 207 stay-green-associated SNPs (P-

values 1.15×10
-2

 to 3.00×10
-4

) present in the vicinity of 32 candidate genomic 

regions, among which a leucine-rich repeat protein (Sb10g022060), WRKY 

(Sb10g025320), AGO1 (Sb10g031030), GA3 (Sb10g022520) and NAC 

transcription factor (Sb10g030770) genes appear to be crucial candidate genes 

for delaying senescence. Sixty-four candidate genes were identified by CIM-

based QTL mapping and thirty-four were identified by GWAS, of which 10 were 

common candidate genes identified by both analyses. In summary, stay-green 

genomic regions from 15 Mb were delimited to 7 QTL clusters on SBI-10L by 
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CIM, and these overlapped with 8 genes, which were also co-localized with 

marker-trait associations (MTAs) identified by GWAS. The identified candidate 

genomic regions can be utilized in drought tolerance breeding programs using 

marker assisted selection. SFR GWAS analysis indicated that the SNP 

S10_57432493 is associated with the trichome density lower (TDL) at the 

highest P value of 3.67×10
-10

. Nearly 480 marker-trait associations that are in 

congruence with the QTL mapping results were identified for Gls, TDU and 

TDL traits, with P values ranging from 3.67×10
-10

 to 9.91×10
-3

. 

 

Haplotype analysis for fine mapping the target genomic regions 

Seven QTL clusters were identified for the stay-green-related traits and 

subsequent haplotype analysis of 7 sub-regions identified 8 trait-associated SNPs 

present in the fine-mapped region spanning intervals 54-54.5 Mb (54081973-

54585199, 503 kb) and 59.3-60 Mb (59342820 – 60194379, 851 kb). The first 

four STG-QTL clusters (cQTL10.1, cQTL10.2, cQTL10.3, and cQTL10.4) fell 

within a 503 kb region and the remaining three QTL clusters (cQTL10.5, 

cQTL10.6, and cQTL10.7) fell within an 851 kb region, having 11 and 8 QTLs, 

respectively. The following SNPs were identified in these candidate genomic 

regions:  

 cQTLstg10.1 overlaps an AP2/ERF transcription factor family gene (SNP: 

S10_54269620; Gene Id: Sb10g025053);  

 cQTLstg10.2 contains a putative uncharacterized protein gene (SNP: 

54081973; Gene Id: Sb10g024920). 

 cQTLstg10.3 contains ankyrin-repeat protein gene (SNP: S10_54585199; Gene 

Id: Sb10g025310) and a WD40 repeat protein gene (SNP: S10_54593246; Gene 

id: Sb10g025320);  

 cQTLstg10.4 overlaps a NBS-LRR protein gene (SNP:54081973; Gene Id: 

Sb10g025283);  

  cQTLstg10.5 contains a LEA2 protein (SNP: S10_59342820; Gene Id: 

Sb10g029570).  
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 cQTLstg10.6 contains a calcium/calmodulin-dependant protein kinase 

gene(SNP:59775456; Gene Id: Sb10g030040),  

 cQTLstg10.7contains a senescence-associated protein gene (SNP: 

S10_60194379; GeneId: Sb10g030520),  

 

Fine-mapping of seedling leaf blade glossiness score (Gls), trichome density 

{(lower surface (TDL) and upper surface (TDU)} QTLs reduced their intervals 

from 2.46 Mb and 800 kb, respectively, to 347 kb (54185546-54532800 Mb) and 

221 kb (57331385-57552719 Mb), respectively. It is also evident from the QTL 

mapping that glossy15 (Sb10g025053) in the 347 kb interval is the most probable 

candidate gene for the Gls QTL. Further, O-methyl transferase 

(Sb10g027640),cyclin dependant kinaseCDKB2:1 (Sb10g027670), an ARM 

repeat super family protein gene (Sb10g027680) and EF-hand Ca
2+

 binding 

protein CCD1 (Sb10g027610) in the 221 kb interval are the most probable 

candidate genes for the trichome density (TDU and TDL) QTLs. A total of 44 

SNPs potentially associated with glossiness score (347 kb) and 37 SNPs 

potentially associated with trichome density (221 kb) were observed in these 

fine-mapped regions. 

 

Useful recombinants 

Finally, seven useful double-recombinant segregants from the phenotyped fine-

mapping population were identified based on their genotypic data and 

phenotypic expression of the desirable trait combination, which can be further 

inbred until they attain homozygosity, at which point they can be utilized as 

donors for pyramided two-component shoot fly resistance combined with the 

stay-green trait in genetic backgrounds with superior agronomic performance. 

These high-performance genotypes with combined shoot fly resistance and stay-

green traits also can be evaluated in multi-location trials and/or observation 

nurseries in both rabi and kharif seasons and can be further validated by 

expression analysis of their introgressed traits. Thus these selected progenies are 
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potentially valuable resources for sorghum breeding programmes in regions 

where sorghum shoot fly ordinarily limits sowing dates for this crop. 

 

Conclusions 

  Most of the target trait QTLs detected were consistently detected over 

environments, showing that they are highly reliable and stable. Stable QTLs 

were identified for seedling leaf blade glossiness and trichome density lower 

along with %GL14, %GL21 and %GL42 QTLs of stay-green in Sorghum bicolor 

on SBI-10L, and these results identified in our study are in agreement with 

previous reported QTLs and can be useful in improving SFR and drought 

resistance in sorghum through MAB and can be directly utilised in molecular 

breeding programs.. 

 Next-generation sequencing data coupled with GBS-SNP analysis resulted in 

the identification of genomic regions that contain candidate genes associated 

with the stay-green character and shoot fly resistance. In addition, this identified 

a huge number of SNPs that can be useful for genomics-assisted sorghum 

breeding. The complete set of candidate genes identified for target traits reported 

in this study could be useful in shoot fly resistance and stay-green mechanism of 

sorghum. 

 Further cloning and expression studies of the significantly associated 

candidate genes may reveal the appropriate role in the biological processes 

associated with sorghum shoot fly resistance and the stay-green (component of 

both terminal drought tolerance and ruminant livestock feeding value of sorghum 

stover).  

 After attaining homozygosity, the seven selected recombinants identified as 

having the favourable alleles desired for a “3-trait cassette” (stay-green + glossy 

seedling leaf blades + high seedling leaf blade trichome density) can be released 

for commercial use as potentially valuable parents for breeding commercial 

hybrids. These lines also can be used by sorghum breeders as donors for the “3-

gene cassette” in both conventional and genomics-assisted sorghum breeding 

programmes. 
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 APPENDIX 

 Composition of solutions and Reagents 

Shoot fly Resistance screening reagents 

Interlard fish meal 

Moistened fishmeal kept in plastic bags in the interlards to attract shoot flies 

Acetic acid: Alcohol (2:1) 

Acetic acid  100 ml 

Alcohol 50 ml 

Mix well to prepare 150ml of Acetic acid : Alcohol solution for clearing chlorophyll  

Lactic Acid (90%) 

Lactic Acid   90 ml 

Distilled water  10 ml 

 Solutions and Reagents for molecular work 

SDS buffer (2%, 1 lit, pH=8) 

Tris buffer (1M, pH=8) 100ml 

NaCl sol. (5M)  20 ml 

EDTA (0.5M, pH=8)  100ml 

SDS     20g 

Adjust pH=8 and then makeup volume to 1000ml. 

Proteinase K (10mg/ml stock) 

100mg proteinase K dissolved in 10ml of SDW. 
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T10E1 

Tris (Trizma) (1M, pH=8): 5ml  

EDTA (0.5M, pH=8): 1ml  

Make upto 500ml using DDW. 

T50E10  

Tris (1M, pH=8)  50ml 

EDTA (0.5M, pH=8)  10ml 

Make upto 500ml using DDW 

5M NaCl 

292.2 g NaCl in 750ml of SDW 

Makeup the volume to 1 lit. 

Ethanol (70%) 

Absolute 70ml alcohol 

 Distilled water 30ml 

RNase (50ml of 10mg/ml) 

 RNase    500 mg 

Tris (1M, pH=8)  1ml 

NaCl (5M)  150 ul 

Make up to 50 ml using SDW and keep in boiling water for 10-15 minutes to dissolve  
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3M Sodium Acetate (pH=5.2, 250ml) 

Sodium acetate  102.6g 

Dissolve in 100 ml of SDW.  

Adjust the pH to 5.2 using Acetic acid.  

And finally makeup to 250ml using SDW. 

T10E1  1lit    

Trizma base  1.21g    

EDTA  0.372 g    

3% CTAB of 1lit 

CTAB    30 g 

NACL  81.8 g 

EDTA  7.45 g 

Tris.HCL  12.1g 

Make up to      1000 ml 

PH   8 

Chloroform: isoamyl alcohol (24:1).  

 Chloroform  240 ml   

Isoarnylalcohol  10 ml   

Store in dark at room temperature 

Make up and dispenses the solution in a fumed cupboard 
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Phenol: Chloroform: Isoamyl alcohol (25:24:1) 

Mix equal volumes of buffered Phenol and Chloroform and isoamyl alcohol (25:24:1). 

 Store at 4˚C. 

10X Tris-Borate Buffer (TBE) (per lit) 

Tris buffer    108g (Tris base) 

Boric Acid 55g 

EDTA  9.3g 

Add deionised water and make upto 1lit. 

PH     8.3 

.6X gel loading buffer (0.25% Bromophenol blue,40% sucrose) (10ml) 

Sucrose  4 g 

Bromophenol Blue 2.5 g 

dH2O   10 ml 

store at 4˚C. 

Ethidium bromide (10 mg/l) 

Dissolve 100 mg of ethidium bromide in 10 ml of distilled water. 

Wrap tube in aluminum foil and store at room temperature 

100 base pair ladder (50 ng/ul) 

100bp ladder (stock conc.1 ug/ul) - 50 ul 

  



 

334 
 

ANNEXURE 

  Annexure 1: Total SSR markers  screened in 15Mb region 

S No * 

Marker_nam

e 

*Physic

al 

position 

* 

Primer_Sequences_F

orward 

* 

Primer_Sequences

_Reverse 

* Motif *Polymorphism 

information(P) 

1 Xisep0621 46.5478 CAGTCGCGGTGGT

AGACAT 

GCCGAGTCGTC

AGAAGAAGA 

(GCG)4 P 

2 SvPEPCAA 47.1317 GCAGCTCAGGGACA
AATAC 

CTGCTTCAGGTA
AGGATCG 

(AT)10 P 

3 Xisep0625 48.098 CTAGCAGCAGCAGC

AGTCAC 

GCCTTTGCTTGCT

TTGATTT 

(TCC)4 P 

4 Xtxp290 49.2964 CACGACGTTGTAAA

ACGACGCCGTTCTC

CTCTC 

TAAAACCAGTGG

CAAAACTA 

(CT)17 PA 

5 Xisp10263 49.6729 TATCTTCTCCGCCC

TTTC 

TAAGNGCCAAG

GGAATG 

CA/CTG P 

6 Xiabtp131 53.7667 TCGGTTACGAGAGC
AGACCTG 

CTCTCCGAGTGCT
GGATGTC 

NN  PA 

7 Xisep0634 54.4266 GCATAGCCACCAGA

TCTTCC 

AATCATGCTTGC

ACACTTGC 

(CAG)5 P 

8 Xiabtp294 54.4296 GAAGCAGGCAGAG

AGGTGAC 

GCTGCTTCCTCCT

CCTCTTTC 

NN  PA 

9 1Xgap001 54.5072 TCCTGTTTGACAA

GCGCTTATA 

AAACATCATACG

AGCTCATCAATG 

(AG)16 P 

10 Xiabtp410 54.7746 CATACCAGAGTGCT

CGCAAA 

AGCGAGCGAGAG

AGACAGAG 

NN NA 

11 2Xnhsbm1008 54.7809 TGAATGGCAATGT

GTTTGGT 

ACGTGTTCCCGT

AGGTTGTC 

(TCTA)18 PA 

12 3Xnhsbm1011 54.9085 TGGGATGCCATAT

TCTTTTTG 

GTTCCTGGTGTT

CGTTTGCT 

(TTC)17 P 

13 4Xisep0643 55.0106 CTCACCTTGGGAG

CTGAATC 

GGAGGACCTAG

CAAGCAAGA 

(TC)7 P 

14 Xnhsbm1013 55.044 GCAACTCGTGACAC

CAGAGA 

TGCCGATTCATCT

TCCAAAT 

(GT)13 PA 

15 5Xiabtp389 55.1128 GCACGAGAACAGC

ACGATTA 

AATCCATCGCAC

ACATCAGTA 

NN P 

16 XmSbCIR262 55.3239 GCACCAAAATCAGC

GTCT 

CCATTTACCCGTG

GATTAGT 

(CATG)3.2

5 

M 

17 Xtxp320(Phy

B) 

55.3811 TAAACTAGACCATA

TACTGCCATGATAA 

GTGCAAATAAGG

GCTAGAGTGTT 

(AAG)20 PA 

18 Xiabtp502 55.4724 ATCTAACACTGGGC

CCTGAC 

CGAACGTACATA

CTCATGTCTCC 

NN M 

19 Xiabtp152 55.4982 CCGTCCGAGAAGGA

CTACTG 

CGTAGCCAGCTG

ATCCAGA 

NN M 

20 Xisep0639 55.6679 TCGGACGGAGTCAT
CAGATA 

GCCTTCGTGTCTT
CTGTCCT 

(TCT)6 M 

21 Xnhsbm1033 55.9881 GGCCTTTTGGTTAT
GATTGC 

GGGTCTATTGTGC
CTTGACG 

(GA)19 NA 

22 Xnhsbm1043 56.886 TTTCTCATCGCGACT

CACAC 

TGGATGAGACAT

CGACCTTG 

(AGAT)13 PA 

23 6Xnhsbm1044 56.9659 GCGCACCAGAGTC

ATATTGTT 

GCCCTTTTGCAA

CGTCTAAA 

(TATG)16 P 

24 7Xiabtp340 57.1881 CATTGCTCACTGCT
CAGTTCA 

CCATCGATCGAG
CTCTCTG 

NN P 

25 Xiabtp203 57.1901 AACTGTCGAAAGCG

ATGGTC 

CATGGACATGCA

CCAAGAAC 

NN M 

26 Xiabtp476 57.338 CTTCTTCCCGTGCCT

TTTCTG 

CACCACCTCCAC

CTCCTCTC 

NN P 

27 Xiabtp117 57.3866 ACCAAAGCAAACGA
CATGC 

GAGAGGAAGTCG
GTGACGAG 

NN M 

28 Xnhsbm1048 57.3932 CGAACCCCCTACTC

CACTCT 

CGCGATTTTCTTT

CACACAA 

(ACTCT)5 M 
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29 8Xisep0630 57.4008 GATCGAGTCGTTC

GTCGAGT 

AAATCCATCGAC

CAATCAGC 

(GTC)5 P 

30 Xiabtp146 57.6243 AAAGGAGGCTTGTC

GTGCTA 

GTCCAGGCACCT

GTCACTCTC 

NN M 

31 Xiabtp488 57.6718 AAAAGGCACCACCT
TCTCCTC 

GCATCGCCATCTC
TCTCTTC 

NN M 

32 Xcup16 57.7692 TGCAGTGCTAGCTC

ATGGTC 

CTTTCCAGCCTCC

CATATCC 

(CTTTT)4  PA 

33 Xiabtp267 57.9237 CTCGTTCCCGTAGC

TGTCTC 

AAGAGATCGGAG

AAGGTCTCG 

NN M 

34 Xiabtp264 58.0157 AAAAAGGCAACAG
CAACACC 

AGACTGGAGGGA
GCAAGTGA 

NN M 

35 Xgap325 58.1707 AGCGCAGGAGCGCG

AA 

TCATCCGCTACTA

CCGTCAGAAA 

(AAG)22 M 

36 9Xtxp141 58.2451 TGTATGGCCTAGC

TTATCT 

CAACAAGCCAAC

CTAAA 

(GA)23 P 

37 Xiabtp466 58.3103 AGCTCCCAGTGTTA
GCTCCA 

CGGAAGCCCACA
GCTTATAC 

NN P 

38 Xiabtp208 58.4112 CTACTCCAGCCTGT

GGAACG 

AGGTCCAGCTCC

TGGTTGTA 

NN M 

39 Xisep0646 58.6222 AGAGGAGGACGAG

GAGGAAG 

ACAGGGTGAGCT

GGTTGGT 

(GGA)5 M 

40 Xcup07 60.5691 CTAGAGGATTGCTG
GAAGCG 

CTGCTCTGCTTGT
CGTTGAG 

(CAA)8 P 

41 Xisep1011 60.7464 GGAGAAGGAGGTG

CAGGAG 

CACTGACTGACC

ACGAGCTT 

(GT)5 P 

       
PA-poor amplification, P-polymorphic, M-monomorphic, NA- not amplified

    
Nine markers in red font are used for F1 heterozygosity confirmation between Xgap001- Xtxp141

   
Additional three markers added are in bold fonts

 
 

 

Annexure 2: Total GBS SNP count chromosome wise 

 

Chromosome SNP Count 

   
 

 

1 5,920 

 

 

2 5,102 

 

 

3 3,534 

 

 

4 2,848 

 

 

5 2,372 

 

 

6 2,719 

 

 

7 2,215 

 

 

8 2,387 
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10 3,390 
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Abstract Shoot fly is a major insect pest of sorghum damag-
ing early crop growth, establishment and productivity. Host
plant resistance is an efficient approach to minimize yield
losses due to shoot fly infestation. Seedling leaf blade glossi-
ness and trichome density are morphological traits associated
with shoot fly resistance. Our objective was to identify and
evaluate QTLs for glossiness and trichome density using- i)
1894 F2s, ii) a sub-set of 369 F2-recombinants, and iii) their
derived 369 F2:3 progenies, from a cross involving introgres-
sion lines RSG04008-6 (susceptible)×J2614-11 (resistant).
The QTLs were mapped to a 37–72 centimorgan (cM) or
5–15 Mb interval on the long arm of sorghum chromosome
10 (SBI-10L) with flanking markers Xgap001 and Xtxp141.
One QTL each for glossiness (QGls10) and trichome density
(QTd10) were mapped in marker interval Xgap001-
Xnhsbm1044 and Xisep0630-Xtxp141, confirming their loose
linkage, for which phenotypic variation accounted for ranged
from 2.29 to 11.37 % and LOD values ranged from 2.03 to
24.13, respectively. Average physical map positions for gloss-
iness and trichome density QTLs on SBI-10 from earlier

studies were 4 and 2 Mb, which in the present study were
reduced to 2 Mb and 800 kb, respectively. Candidate genes
Glossy15 (Sb10g025053) and ethylene zinc finger protein
(Sb10g027550) falling in support intervals for glossiness
and trichome density QTLs, respectively, are discussed. Also
we identified a sub-set of recombinant population that will
facilitate further fine mapping of the leaf blade glossiness
and trichome density QTLs on SBI-10.

Keywords Shoot fly . F2 . F2:3 . Leaf blade glossiness .

Trichome density . QTLs

Introduction

Sorghum [Sorghum bicolor (L.) Moench] is the fifth most
important cereal crop globally. It is grown predominantly in
semi-arid tropical conditions and used for food, feed, fodder
and fuel (FAOSTAT 2010). Shoot fly, Atherigona soccata
(Rondani) is one of the major insect pests of sorghum grown
in Africa, Asia and Mediterranean Europe. In peninsular
India, sorghum is cultivated during rainy and post-rainy sea-
sons where shoot fly attacks the crop and damages early stages
of crop growth, adversely affecting establishment and produc-
tivity (Sharma et al. 2003). Shoot fly infests sorghum seed-
lings from 7 days after emergence (DAE) to 30 DAE. The
female shoot fly has just 30-days’ life span and lays white,
elongated cigar-shaped eggs singly on the abaxial (lower) sur-
face of leaf blades parallel to the midrib (Dhillon et al. 2006).
Eggs hatch into maggots following 1–2 days of incubation,
and each larva/maggot enters the central leaf whorl of the
seedling on which it hatched. The larva reaches and cuts the
seedling growing point, and feeds on the decaying tissue,
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resulting in drying of the central whorl causing a typical ‘dead
heart’ symptom.

Among several components of integrated pest manage-
ment practices used to minimize losses due to shoot fly
infestation of sorghum, host plant resistance (HPR) and
timely sowing remains the most preferred options as they
are cost-effective, eco-friendly and easily adopted by
farmers (Kumar et al. 2008). HPR to shoot fly is mediated
by a number of morphological, biochemical and genetic
factors. Shoot fly morphological component traits includ-
ing seedling leaf blade glossiness (Maiti et al. 1984), seed-
ling leaf blade trichome density (Maiti and Bidinger
1979), seedling vigor and leaf sheath pigmentation are
positively associated with shoot fly resistance (SFR)
(Tarumoto 2005). Further, these SFR component traits
have been mapped, putative Quantitative Trait Loci
(QTLs) identified for individual traits, and subsequently
validated by marker-assisted backcrossing (MABC)-based
introgression into genetic backgrounds highly susceptible
to shoot fly (Usha Kiranmayee et al. 2015b). Using a
sorghum recombinant inbred line (RIL) population derived
from cross (BTx623×IS18551), Sajjanar (2002) and,
Folkertsma et al. (2003) mapped SFR QTLs on SBI-01,
SBI-03, SBI-05, SBI-07, SBI-09 and SBI-10. Similarly,
using a (296B× IS18551)-based RIL population,
Deshpande (2005); Mehtre (2006) and Satish et al.
(2009, 2012) mapped SFR QTLs on SBI-01, SBI-03,
SBI-04, SBI-05, SBI-06, SBI-09, SBI-07, and SBI-10.
Aruna et al. (2011) mapped SFR QTLs on SBI-01, SBI-
02, SBI-03, SBI-04, SBI-06, SBI-07, SBI-09, and SBI-10
using shoot fly resistance source IS2122. In a RIL popu-
lation based on a reciprocal cross (IS18551×296B),
Apotikar et al. (2011) found SFR QTLs on SBI-01 and
SBI-03. Five putative QTLs for SFR component traits
from IS18551 were then validated by MABC into the genetic
backgrounds of elite shoot fly-susceptible hybrid seed parent
maintainer lines 296B and BTx623 (Jyothi 2010). Probable
candidate genes underlying the target QTLs for seedling leaf
blade glossiness and trichome density have been reported by
Satish et al. (2009, 2012) and Aruna et al. (2011). In the
present study we attempted to refine QTL intervals for tri-
chome density and glossiness QTLs on SBI-10 by comparing
whole sorghum genome sequence (Paterson et al. 2009) an-
notation and a sequence-based physical map integrated with
sorghum linkage maps (Ramu et al. 2010), with genetic and
physical maps from different QTL mapping studies integrated
based on whole genome sequence information (Mace and
Jordan 2011). We also tried to compared earlier shoot fly
resistance QTL mapping studies on sorghum chromosome
SBI-10 with the present study based on genetic and physical
maps.

Identification of genes, pathways and mechanisms in-
volved in sorghum phenotypes for seedling leaf blade

glossiness and trichome density have not yet been com-
pleted in sorghum. Most such studies have been done in
model species like Oryza sativa (rice), Arabidopsis and
Zea mays (maize). Wax deficient mutant loci in maize,
Brassica napus and sorghum are defined as ‘glossy’
loci, where as in Arabidopsis thalina and Hordeum
vulgare (barley) they were named as ceriferum (cer)
mutant loci (Kunst and Samuels 2003). In Arabidopsis
many studies have reported shine (shn) mutants, which
were isolated and characterized, determining that the
shn gene encodes AP2/EREBP (ethylene responsive el-
ement binding protein) transcriptional factors that act in
up and down regulation of lipid biosynthesis (Aharoni
et al. 2004). More than 30 ‘glossy’ loci have been iden-
tified and a few were cloned (gl1, gl2, gl3, gl4, gl8,
gl13 and gl15) in maize (Li et al. 2013) and their func-
tional roles in glossiness have been reported. Similarly,
for trichome density many studies have reported that
WRKY and MYB transcription factors play important
roles (Eulgem et al. 2000; Johnson et al. 2002; Ishida
et al. 2007; Liang et al. 2014).

In order to understand the genomic regions responsi-
ble for seedling leaf blade glossiness and trichome den-
sity, several QTL mapping and validation studies have
laid the foundation for using favourable alleles at the
SFR QTLs in MABC programs. The reference genome
sequence for sorghum is that of elite, shoot-fly suscep-
tible sorghum maintainer line BTx623 (Paterson et al.
2009), which was one of the susceptible recurrent par-
ents into which favorable SFR alleles from resistance
source IS18551 were backcrossed for validation. When
resistance QTL introgression lines (ILs) were field eval-
uated for shoot fly resistance performance (Jyothi 2010),
one of the ILs viz., J2614-11 was identified as one of
the better performing SFR introgression lines. Thus we
used J2614-11 as the resistant parent in the present
study, which focused on linked SFR component trait
QTLs mapped to the long arm of chromosome SBI-10
(SBI-10L).

In the present study we have conducted experiments to
re-evaluate the presence of QTLs for seedling leaf blade
glossiness and trichome density as components of SFR on
sorghum chromosome SBI-10L. We used a cross of non-
glossy, shoot fly-susceptible, rabi adapted stay-green intro-
gression line (RSG04008-6) with a drought-sensitive,
glossy, shoot fly-resistant introgression line having high
trichome density (J2614-11), to produce a high-resolution
mapping population of 1,894 F2 individuals. We further
selected a sub-set of recombinant F2-derived F3 (F2:3)
progenies for refining the QTL interval of seedling leaf
blade glossiness and trichome density QTLs on SBI-10L.
The results of this study will contribute to fine mapping
and cloning of genes underlying the confirmed QTLs.
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Results

Development of High-Resolution Population

Parental Polymorphism and Confirming F1s

Introgression line J2614-11 was the donor parent for seedling
leaf blade glossiness and trichome density in the cross
RSG04008-6×J2614-11. Parents were clearly differentiated
visually for both glossiness and trichome density. In order to
confirm their allelic composition, nine polymorphic SSR
markers were assessed in pairs of parents (RSG04008-6 and
J2614-11) and grandparents (R16 and E36-1 for RSG04008-
6; BTx623 and IS18551 for J2614-11) across the target geno-
mic region (marker interval Xgap001-Xtxp141). Marker al-
leles for each parent - grandparent pair of E36-1 -
RSG04008, and J2614-11 - IS18551 were monomorphic
across this SBI-10 target region, but these marker alleles were
polymorphic between the two pairs of parents and the two
donor grandparents, confirming that the introgressed parental
target regions under study were derived from their respective
grandparent donors. A total of seven plant×plant crosses were
executed and seed from a single plant×plant cross was sown
with one seed per hill. From a single plant×plant cross involv-
ing RSG04008-6×J2614-11 during rabi season 2010 (with
plant no. U1000019) twelve putative F1 seeds were produced.
All 12 putative F1 plants were screened for heterozygosity
with a total of 9 polymorphic co-dominant SSR markers dis-
tributed across the target interval (Xgap001-Xtxp141). High
quality grade 1 (Kanyika et al. 2015) marker allele profiles
were obtained for all markers (Fig. S1). Eleven were con-
firmed to be true F1s having heterozygous parental alleles,
whereas one plant was homozygous for the seed-parent al-
leles, and was discarded.

Developing F2s and Selection of Informative F2:3-Progenies

All 11 of the true F1s were selfed to produce 11 F2 seed lots.
Out of these eleven, one seed lot derived from a single F1 plant
(U110055) with 1,958 seeds was selected for advancement
during late rabi season 2011/12, and used as a high-
resolution recombinant mapping population.

A total of 1,894 F2 individuals (surviving after sowing)
from the high resolution cross (HRC), along with its parental
introgression lines RSG04008-6 and J2614-11, were geno-
typed with 5 SSR markers covering the target SFR QTL re-
gion on sorghum chromosome SBI-10L. The five markers
were selected in particular for genotyping the population be-
cause the introgression line parent J2614-11 was bred using
Xgap001 and Xtxp141 as flanking markers for transfer of a
two-component shoot fly resistance QTL by MABC from
donor IS18551 into recurrent parent BTx623 background.
We genotyped the complete F2 population of 1,894

individuals with 5 SSRmarkers (Table S1) of which two were
flanking markers Xgap001 and Xtxp141 (Sajjanar 2002;
Deshpande 2005; Sharma et al. 2005; Dhillon et al. 2006;
Mehtre 2006; Jyothi 2010; Ramu et al. 2010); markers
Xnhsbm1044 (Satish et al. 2009) and Xisep0630 (Ramu
et al. 2010) were reported to be associated with trichome den-
sity that conferred shoot fly resistance in sorghum population
296B×IS18551 (Satish et al. 2009); and Xiabt340 was a
marker located between Xgap001 and Xtxp141 which was
not previously associated with either of the two shoot fly re-
sistance component target QTLs. We selected 369 homozy-
gous and nearly homozygous recombinant F2 plants based on
these 5 SSR markers. Individuals showing complete homozy-
gosity for- i) RSG04008 alleles, or ii) J2614 alleles, or iii)
complete heterozygosity across this region were not given
preference. The 369 selected informative F2 recombinant in-
dividuals were genotyped with 3 additional markers to extend
the flanking regions for detection of the exact location of the
target QTL regions and selection of a sub-set for fine mapping
(Table S1). All 369 selected informative recombinant F2 indi-
viduals were selfed to produce F3 seed during the late rabi
season 2011/12 sowing.

Trait Variation and Correlation of Seedling Leaf Blade
Glossiness and Trichome Density Scores

The parental introgression lines differ significantly with each
other for both glossiness and trichome density scores (Fig. 1
and Table 1). Among the F2 population and their recombinant
F3 progenies, glossiness scores ranged from 0.09 to 4.95 and

Fig. 1 a RSG4008-6 parent showing non-glossy leaves b J2614-11
parent showing glossy leaves c F2 population sown in pots
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trichome density scores ranged from 0.00 to 5.00. In both the
F2 population and its derived F3 progenies, glossiness and
trichome density scores were negatively correlated with each
other, indicating that a high trichome density score was asso-
ciated with a low glossiness score and therefore that high
trichome density is associated with a high degree of glossi-
ness. Heritability estimates were very high (≥0.90) for both
glossiness and trichome density scores (Table 1). The statisti-
cal Z test results showed (significant P<0.05) genetic varia-
tion for glossiness score (Gls) and trichome density (Td) indi-
cating that data is suitable for QTL mapping.

Seedling Leaf Blade Glossiness

We scored 1,894 individual F2 plants for the morphological
component traits of shoot fly resistance. The trait glossiness
was scored visually and the results were divided into two
categories- (i) glossy and (ii) non-glossy (Satish et al. 2009).
The complex glossiness trait was characterized by narrow,
erect, pale, shiny green leaves and 1,457 F2 individuals
(76.92 %) exhibited glossy leaves (Fig. 1a and b). A total of
437 F2 individuals (23.08 %) with non-glossy leaves were
characterized by broad, dull, droopy leaves. For this trait, the
phenotypes of F2 individuals followed Mendelian genetics
and segregated in a 3:1 ratio (χ2=0.99; Fig. 2a), with the
glossy phenotype of shoot fly-resistant introgression line par-
ent J2614-11 being dominant.

Seedling Leaf Blade Trichome Density

We observed substantial variation in trichome density score in
the F2 population (Fig. 2b). Very low trichome density scores
ranging from 0.0 to 1.0 were observed in 285 F2 individuals
(15.05 %), and low trichome density scores between 1.0 and
2.0 were observed for 260 F2 individuals (13.72%). Likewise,
under categories medium trichome density score 124 individ-
uals (6.54 %), high trichome density score 863 individuals
(45.56 %) and very high trichome density score 362 individ-
uals (19.11 %) were noted (Fig. 2b.).

Genetic Linkage Map

The entire F2 population of 1,894 individuals were genotyped
with 5 linked SSRs (Xgap001, Xnhsbm1044, Xiabt340,
Xisep0630, Xtxp141) spanning the introgression target region
for SBI-10, resulting in a map distance of 37 cM (Fig. 3a).
Based onmarker arrangement, genotyping datawere categorized
into different classes having homozygotes of RSG04008-6, ho-
mozygotes of J2614-11, heterozygotes and near-homozygotes
with different recombinations. Based on genotyping data across
this target region, 369 informative recombinant F2 individuals
were selected for advancement to the F3 generation. The selected
informative recombinant F2 individuals, were genotyped with
three additional markers (Xisep0621 and Xisp10262 above
Xgap001, and Xisep1011 below Xtxp141 on SBI-10L) to more

Table 1 Descriptive statistics
and correlations of seedling leaf
blade glossiness score and
trichome density score in the
complete F2 population and F3
progenies derived from 369
selected informative recombinant
F2 individuals

Trait P1 (RSG) P2 (J2614) Min Max Mean ± SE h2 (%) CV (%) Correlations

Gls Td

F2Gls 5.00 1.00 1.00 4.96 1.94±0.09 97.75 13.7 1

F2Td 2.00 4.00 0.00 5.08 2.66±0.11 89.22 11.9 −0.0097* 1

F3Gls 5.00 1.00 1.02 4.94 2.10±0.24 97.99 11.9 1

F3Td 2.00 5.00 0.27 4.90 3.63±0.25 91.95 11.7 −0.0065* 1

*correlation significant at P<0.05, F2 1,894 individuals, F3 selfed progeny of 369 selected informative recom-
binant F2 individuals, h

2 heritability, CV coefficient of variation, Gls glossiness, Td trichome density

Fig. 2 Trait segregation among
1,894 F2 individuals for a
Glossiness score, and b trichome
density score
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fully encompass the ‘Gls’ and ‘Td’ genomic regions. The linkage
map constructed for these selected recombinant F2 individuals
had an expanded total length of 72 cM with 7 SSRs (Xgap001,
Xnhsbm1044, Xisep0630, Xtxp141, Xisep0621, Xisp10262 and
Xisep1011) instead of eight and linkage map marker order was
similar to the physical map (Fig. 3b). Marker Xiabt340 was
excluded from the linkage map of the recombinant sub-set as it
had a large portion of missing data in the selected 369
recombinants when compared to the full population of 1,
894 F2 individuals.

QTLs Detected in Complete F2 Population

Composite interval mapping (CIM) analysis identified two
QTLs for shoot fly resistance component traits on SBI-10,
one each for leaf glossiness and trichome density in the F2
population of 1,894 individuals (Table 2). The QTL for

seedling glossiness score (QGls10) was mapped at LOD 24
(Fig. 4a) between markers Xgap001 and Xnhsbm1044 with an
R2 value of 6.23 % (indicating it is a relatively minor QTL but
mapped with high confidence), with homozygosity for the
J2614 allele from grandparent IS18551 reducing glossiness
score (but increasing glossiness) by circa 1.36 units compared
to the RSG04008 allele from grandparent E36-1. The seedling
leaf blade trichome density score QTL (QTd10) was mapped
between Xisep630 and Xtxp141 at LOD 8.11 with an R2 value
of 2.88 % (indicating unexpectedly that it too is a minor QTL)
(Fig. 4b). The glossiness QTL and trichome density QTL were
found within the intervals of 0–10 cM and 25–37 cM, respec-
tively, on the map of theXgap001-Xtxp141 interval on SBI-10L
of the F2 high resolutionmapping population (Table 2). F2 QTL
mapping resulted in incomplete confidence intervals for both
‘QGls’ and ‘QTd’ within the Xgap001 and Xtxp141 marker
interval. In order to more exactly locate flanking genomic

Fig. 3 Genetic linkage maps of
target region a with 5 SSRs on F2
population of 1,894 individuals b
with 7 SSRs on 369 selected
informative recombinant F2
individuals, and linkage map vs.
physical map

Table 2 Shoot fly resistance component trait QTLs detected on SBI-10 using QTL Cartographer with data from a large F2 population of 1,894
individuals derived from cross RSG04008-6×J2614-11

QTL Pos (cM) Marker interval Supp. IV (cM) LOD R^2 % Adda Dom*

QGls10 1.0 Xgap001-Xnhsbm1044 0–10 24.13 6.23 −0.69 0.01

QTd10 31.6 Xisep0630-Xtxp141 25–37 8.11 2.88 0.31 −0.09

QTL Quantitative trait locus, Pos Position of QTL in cM, LOD Logarithm of odds, R^2% Percentage of phenotypic variance, Add Additive, Dom
Dominance
a Genetic effects for the identified QTLs as per description in the QTL Cartographer Ver. 1.17 manual (page no.13. For trait Gls in this study, the lower
trait value (1-glossy) is preferred over higher trait value (5-non-glossy), the negative additive effects forQGls10 are contributed by J2614-11. ForQTd10,
the positive additive genetic effects are contributed by J2614-11
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regions contributing to the observed variation, three more poly-
morphic markers (Xisep0621, Xisp10263 and Xisep1011) were
added to the linkage map for the sub-set of selected informative
F2 individuals.

Mapping of Glossiness and Trichome Density Using the F2

Total Population with Physical Map Positions

A moderately large segregating population with 1,894 F2
indiviuals was developed from cross RSG04008-6×J2614-
11 and was used in further mapping of the SBI-10 ‘QGls’
and ‘QTd’ region using physical positions. By aligning
genotype and phenotype of all the 1,894 F2s (Table S1)
recombinant haplotypes were identified and their pheno-
typic variant locations were tabulated in Table 3. Marker
Xgap001 showed clear allelic association with glossy phe-
notype value. In case of trichome density, the marker in-
terval Xisep630-Xtxp141 might contain trichome coding
region/genes, but the evidence is not clear.

QTLs Detected Among Selected F2 Individuals and Their F2:3

Progenies

A sub-set of 369 F2 recombinants and their F2:3 progenies
were also utilized for QTL analysis. At LOD 5.95 the leaf
blade glossiness score QTL (QGls10) was mapped be-
tween Xisp10263 and Xgap001 with R2 of 11.37 % for
the selected F2 recombinant individuals and R2 of 6.60 %
for their F2:3 progenies, with LOD values of 9.67 and
5.95, respectively (Table 4). This shows that there was
indeed a glossiness QTL in the target region of sorghum
chromosome SBI-10L. Further, it was expressed in both
the post-rainy season (rabi, wherein the F2 population was

evaluated) and the rainy season (kharif, wherein the F2:3
progenies were evaluated). The trichome density QTL
(QTd10) for the selected 369 F2 recombinants mapped
between Xtxp141 and Xisep1011, whereas that for their
derived F2:3 progenies mapped between Xisep0630 and
Xtxp141, within the same support interval. The portion
of phenotypic variation accounted for by this trichome
density QTL for the 369 selected informative F2:3 proge-
nies was just 2.29 % and for the selected recombinant
subset of the F2 population was 3.70 % with LOD values
of 2.32 and 4.40, respectively (Fig. 4b, Table 4). The sub-
set of 369 F2 and F3 progenies were sown in different
environmental conditions and the F2 has many heterozy-
gous loci might have showed effects on QTL detection.

Mapping of QGls and QTd in F2:3 Selected Recombinants

From the complete F2 population, 369 recombinants
were selected and further genotyped with Xisep0621,
Xisp10263 and Xisep1011, and the combined marker
data was used for locating QTL-flanking markers for
both glossiness and trichome density. Genotype marker
data and their F3 phenotye data were aligned for recom-
binant identification. Various recombination groups and
their mean values were aligned and the F2 data results
were combined with F3 results, as well as QTL mapping
results. This clearly indicates a glossiness QTL region
near Xgap001 i.e., 54–55 Mb (interval Xisp10263-
Xgap001). There is weaker evidence for a trichome den-
sity QTL region at 57–58 Mb (Xisep0630-Xtxp141).
Nearly 2.0–2.5 Mb regions were reduced to 800 Kb
regions for each QTL (Table 5).

Fig. 4 a Map for glossiness score and trichome density score QTLs on
SBI-10L among 1,894 F2 individuals evaluated in rabi season of 2010–
2011, b QTL confirmation among 369 selected informative recombinant

F2 individuals evaluated in rabi season of 2010–2011 and their derived
F2:3 progenies evaluated in a late kharif season 2012 sowing
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Preliminary Identification of Candidate Genes

Annotation of the sorghum genome sequence was utilized
along with the UNIPROT database to identify probable can-
didate genes and their functional roles in controlling glossi-
ness and trichome density of sorghum seedling leaves. In the
total 15 Mb target region nearly 780 predicted genes are pres-
ent (Table S2), of which probable candidate genes for the
target traits based on their function are listed in Table 6. The
Xgap001-Xnhsbm1044 interval on SBI-10 L is about 2 Mb
long, and contains 179 predicted genes. In the trichome den-
sity marker interval Xisep0630-Xtxp141 94 predicted genes
are present (Table S2). Based on functional annotation
Glossy15/AP2 transcription factor (Sb10g025053), MYB
transcription factor (Sb10g024950), Calcium lipid binding do-
main (Sb10g025040) and cytochrome P450 (Sb10g025110)
were the most likely candidate genes for the glossiness QTL
as they are involved in different wax synthesis and transport

mechanisms directly and indirectly. In case of the trichome
density QTL, MYB transcription factor (Sb10g027280), eth-
ylene zinc finger protein (Sb10g027550), Armadillo repeat
protein (Sb10g027680), F-box domain (Sb10g027730), EF
hand Ca+2 binding protein (Sb10g027610) and a key tran-
scription factor WRKY (Sb10g025600) reported in many
Arabidopsis trichome initiation studies all appear to be good
candidates and have been previously reported in model plant
Arabidopsiswhich shows further study is necessary to decode
these glossy and trichome density regions.

Discussion

For breeding shoot fly resistance, pyramiding resistance com-
ponent traits appears to be the best way to develop commer-
cially usable levels of host plant resistance, which with timely
sowing (to avoid high population pressure of pest) provides

Table 3 Genotype and phenotype of homozygous recombinants selected from the F2 population

Physical pos (Mb) 54.51 56.97 57.19 57.40 58.25 BLUPs

F2 recombinant Xgap001 Xnhsbm1044 Xiabt340 Xisep0630 Xtxp141 Glossiness Trichome density No.

RSG04008-6 A A A A A 4.00 2.00 60

Rec1 A A B A A 4.91 0.00 1

Rec2 A A – B B 4.96 3.27 2

Rec3 A B – B B 4.93 4.91 2

Rec4 A B – A B 4.93 3.10 1

Rec5 A B – B A 4.96 1.46 1

Rec6 A A – B A 4.93 1.75 4

Rec7 B A A A A 1.05 3.00 16

Rec8 B A – B B 1.03 3.19 11

Rec9 B B – A B 1.02 4.00 6

Rec10 B B – B A 1.02 1.29 1

J2614-11 B B B B B 1.26 3.00 114

A and B are homozygotes for marker genotypes of RSG04008-6 and J2614-11, respectively

No. is the number of recombinants with the same genotype

BLUPs Best linear unbiased predicted means

Table 4 F2 and F2:3-based QTL
mapping on SBI-10 results
obtained using PlabQTL with
data from the selected 369
recombinant F2 individuals

QTL Pos (cM) Marker interval Supp. IV (cM) LOD R^2 % Add* Doma

F2QGls10 14 Xisp10263-Xgap001 6–20 9.67 11.37 0.69 −0.01
F3QGls10 12 Xisp10263-Xgap001 6–20 5.95 6.60 0.70 0.36

F2QTd10 58 Xtxp141-Xisep1011 48–70 4.40 3.70 −0.32 0.56

F3QTd10 48 Xisep0630-Xtxp141 46–54 2.32 2.29 0.03 0.01

QTLQuantitative trait loci, Pos Position of QTL in cM, LOD logarithm of odds, R^2%Percentage of phenotypic
variance, Add Additive, Dom Dominance
a genetic effects for the identified QTLs as per description in the PLABQTL manual (page no. 13); the additive
effect is half the difference between the genotypic values of the two homozygotes
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the most eco-friendly method for management of this pest.
Combined effects of glossiness and trichome density reduce
the severity of shoot fly infestation and plants with high levels
of expression for both traits show better resistance to this
insect pest. These morphological traits are well studied
(Sharma et al. 2005; Dhillon et al. 2005, 2006; Kumar et al.
2008, 2011), genetically mapped (Sajjanar 2002; Folkertsma
et al. 2003; Deshpande 2005; Mehtre 2006; Satish et al. 2009,
2012; Aruna et al. 2011; Apotikar et al. 2011) and further
introgressed (Jyothi et al. 2010) into two cultivated varieties
in order to deploy insect pest resistance in combination with
other economically important traits like high grain and stover
yields and quality. Previously these SBI-10 QTLs for tri-
chomes and glossiness were detected in many studies, as sum-
marized in Table 7. The average seedling leaf blade glossiness
and trichome density QTLs detected were nearly 15 cM
(4 Mb) in size for each trait. In the present study the size of
the QTLs was reduced to 2 Mb and 800 kb for ‘QGls10’ and
‘QTd10’, respectively, which signifies the present study.
Except for Aruna et al. (2011) (IS2122) all other QTL map-
ping studies, IS18551 was the donor for shoot fly resistance,
but the mapping populations used varied in population size,
type (segregating and recombinant inbred lines), environment
and location. In the present study introgression line J2614-11
derived its SFR traits from IS18551. Regions of the sorghum
genome contributing to insect resistance are mostly syntenic to
maize genomic regions contributing to insect resistance, sug-
gesting such regions were highly conserved. The glossiness
QTL and possible trichome density QTL identified in the pres-
ent study were detected earlier by Sajjanar (2002); Deshpande
(2005); Mehtre (2006); Jyothi (2010); Aruna et al. (2011) and
Satish et al. (2009, 2012). However, the present work shows
evaluation of ‘Gls’ and ‘Td’QTLs in the SBI-10 over different
environments (late rabi 2011/12 and kharif 2012), across two
seed generations (F2 and F2:3), different population sizes (1894
and 369), different mapping methods (QTL Cartographer for
F2 and PLAB QTL for the selected sub-set of F2 and its de-
rived F2:3) and mapping approaches (traditional CIM and fine
mapping) resulted in consistent QTLs.

In the present study, an initial linkage map of 37 cM length
was constructed using five SSR markers on an F2 population
of 1,894 individuals derived from cross RSG04008-6×J2614-
11. In previous studies this target region was reported to be
above 45 cM interval but now it is 37 cM (5 Mb), which
indicates a reduction in map length most likely due to popu-
lation type and size. After adding three additional flanking
markers and reducing the population size to 369 (selected
recombinants) the map length increased to 72 cM (15 Mb),
partly due to double crossovers as the recombination frequen-
cies were converted to map distance based on the Kosambi
mapping function (Kosambi 1943), but largely due to the ad-
dition of flanking markers on both ends of the mapped inter-
val. When marker order was compared with physical map, the

arrangement was the same (Fig. 3b). Mace and Jordan (2011)
integrated different sorghum QTL mapping studies onto the
physical map resulting in QTL clusters a in sorghum.
Similarly we have compared all the shoot fly resistance QTL
mapping studies in sorghum to delimit the glossy and tri-
chome density QTL sizes on SBI-10L. The present study re-
sults are in agreement with earlier studies which shows
Xgap001 – Xnhsbm1044 and Xisep0630 – Xtxt141 intervals
need to be further studied in detail by utilizing high through-
put marker genotyping or single nucleotide polymorphisms.

Due to large F2 population, many recombination events
have been found within the introgressed genomic segment
originally introduced to BTx623-background from IS18551
by marker-assisted backcrossing (MABC) that affects the
shoot fly reaction phenotype. The background of the parents
vary for the introgressed segment and the F2 progeny with
increased number of recombinations may affect the QTL de-
tection power when compared to recombinant inbred lines.
QTL analysis can also be affected by the size of the early-
generation (F2 & F3) and large populations can result in de-
tection of large numbers of QTLs including minor effect
QTLs (Vales et al. 2005).

In both the seasons, a single glossiness QTL (QGls10) was
mapped near SSR locus Xgap001. In addition, in the post-
rainy season (late rabi 2011/12) evaluation of the F2 popula-
tion, a QTL for leaf blade trichome density (QTd10) was
mapped near Xtxp141. During rainy season (kharif) 2012
‘QTd10’ was mapped near to Xisep0630; but the QTL inter-
vals for both the seasons were overlapping. However, F2 and
F3 QTLmapping results, based on post-rainy and rainy season
evaluations, respectively, were found similar for glossiness.
Leaf glossiness characterized by deposition of less wax, or
alteration in quantity and quality of epicuticular wax accumu-
lation on leaves which may be controlling the leaf smoothness
of the surface of the cuticle and could be responsible for leaf
blade erectness (Li et al. 2013). A single gene may not be
soley responsible for the glossy phenotype as other genomic
regions influence the up- and/or down-regulation of wax syn-
thesis, and at least four glossiness QTLs have been detected in
prior studies that considered the whole sorghum genome.
However, key transcription factors responsible for glossy phe-
notypes were consistently reported in the mapped QTL region
between Xisp10263, Xgap001 and Xnhsbm1044. This target
glossy QTL (QGls10) was detected in both screening environ-
ments and also reported in previous studies (Sajjanar 2002;
Folkertsma et al. 2003; Deshpande 2005; Mehtre 2006; Satish
et al. 2009, 2012; Jyothi 2010; Apotikar et al. 2011, and Aruna
et al. 2011).We looked into the genomic recombination events
by traditional fine mapping, Xgap001 was showing clear as-
sociation with glossiness, and glossy15 (Sb10g025053) gene
is just 237 kb away from Xgap001 within the mapped QTL
region. Thus glossy15 (Sb10g025053) could be a likely can-
didate gene for ‘QGls10’ as it is known to control

20 Tropical Plant Biol. (2016) 9:12–28
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transcriptional regulation of glossy phenotype expression.
This suggests that ‘QGls10’ needs to be studied further using
a fine-mapping approach with higher density markers in this
region, and other possible candidate genes in the target
interval.

The seedling leaf blade trichome density ‘QTd10’ was bet-
ter expressed in the post-rainy season (rabi, characterized by
lower temperatures and shorter photoperiods) than in the rainy
season, but in both F2 and F2:3 segregating populations it was
detected in the same support interval. In order to see the re-
combination events in the support interval the ‘QTd10’ QTL
was highly associated with Xtxp141 and Xisep0630. Trichome
density is largely dependent on the environmental factors and
is a complicated trait to measure. More precise microscopic
field observations of trichome density may resolve the loca-
tion of its controlling genomic regions – but these were not
practical for the large number individuals observed in the full
F2 population. Presence of ‘QTd10’ within the same support
interval (Xisep0630-Xtxp141) across generations and seasons
showed the consistency of the QTLs in sorghum molecular
mapping of component traits for shoot fly resistance..

F2 and F2:3 QTL Mapping on Selected 369 Individuals

A consistent QTL was detected in two different seasons with
two different generations, confirming the presence of a QTL
region for seedling leaf blade glossiness that needs to be finely
mapped in this population with a larger number of polymor-
phic molecular markers. We conclude that one QTL for gloss-
iness score (with the glossy allele originating from donor par-
ent IS18551) is present in the SBI-10L target region. QTLs for
trichome density mapped differently in the post-rainy and
rainy seasons, but within a support intervals sharing a com-
mon marker, Xtxp141. To clearly differentiate these F2 and
F2:3 ‘QTd10’ QTLs, increased marker density and more effi-
cient phenotyping is required. Fine mapping of these QTLs
will improve our understanding of the molecular basis of seed-
ling leaf blade glossiness and trichome density traits (impor-
tant morphological component traits contributing to sorghum
shoot fly resistance). As the glossiness and trichome density
QTLs were consistent in both the F2 and F3 generations but
showed deviation in the F2 population sub-set (Fig. 4b).

In F2 sub-set rate of recombination has increased due to
selected recombinants with heterozygous nature, which will
increase the recombination fraction and this could affect the
QTL detection power and may increase the rate of false dis-
covery rate (FDR) QTLs. Sometimes missing marker data and
segregation distortion in early generation population like F2
may lead to disturbance in estimation of QTL position and its
effects. As F2 selected informative recombinants are highly
distorted from the normal Mendelian segregation and in-
creased heterozygosity may increase the dominance effect of
the detected QTL, which may be due to over dominance effect

or the pseudo over-dominance effect of the QTL. Segregating
populations (F2 and F2:3) have heterozygous variant regions
which complicate the gene action during linkage repulsion
phase of two dominant alleles results in over dominance or
pseudo over dominance.

When both the loci are dominant which may result in over
dominance as in case of trichome density both the parents are
contributing low to medium and medium to high trichome
density so overall trichome density was more in the total.
The statistical analysis methods, experimental designs and
the phenotyping techniques variation could also affect the
dominance and over dominance effects of the detected QTL
(Schnable and Springer 2013). QTLs from resistant parent
express dominance or over dominance; but if they segregate
in the next generation theymay not be detected due to less trait
variation or other genomic regions might have more influence
in phenotype expression. This may also be due to environment
effect on trichome density levels leading to less phenotypic
variation which cannot separate the genomic regions respon-
sible for the phenotypic variation in the target QTL region
detected on SBI-10L.

Major Component Traits of Shoot Fly Resistance

Glossiness

Leaf glossiness trait has multiple functions in biotic (shoot fly
resistance) and abiotic stresses (drought, salinity, high temper-
ature). Glossiness is visually observed as erect, narrow, pale
green and shiny leaf appearance termed as the glossy trait but,
all the characteristics may not be controlled by same gene.
Cuticular waxes on leaf could be the reason for the glossy
phenotype. Water sprinkling method on leaves differentiates
non-glossy leaves from glossy leaves by adherence and non-
adherence of water droplets, respectively (Tarumoto 1980).
Scanning electronic microscopic observations show increased
number of wax crystals on leaf surface of non-glossy leaves
compared to glossy leaves (Tarumoto et al. 1981).

Candidate Genes for Glossiness

Seedling leaf blade glossiness variation was observed between
the two mapping population parents and QTL analysis con-
ducted on 1,894 F2 high resolution population and 369 F3
selected genotypes resulted in identification of very similar
QTLs, which we consider to be a single entity viz.,
‘QGls10’. In both phenotyping generations, this glossiness
QTL was mapped near to SSR marker Xgap001. The mapped
QTL region was searched for candidate genes and several wax
synthesis-related genes were found. One of the candidate
genes related to wax synthesis and deposition of wax present
in the QTL region has a C2 calcium lipid-binding domain
(Sb10g025040), which is involved in plant stress signal
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transduction, and this C2 domain was able to bind membrane
lipid ceramides (de Silva et al. 2011). These wax-deficient
mutant loci in maize, brassica and sorghum are defined as
‘glossy’ loci and in Arabidopsis and barley are named as
ceriferum (cer) mutant loci (Kunst and Samuels 2003, 2009).

One of the candidate genes, glossy15 (Sb10g025053), en-
codes an APEPETAL2 (AP2) -like transcription factor in-
volved in the transition from juvenile leaf epidermis charac-
teristics to adult leaf epidermis characteristics, and is
expressed after second leaf growth stage (Moose and Sisco
1994, 1996). AP2/ERF transcriptional factors are reported to
be involved in wax biosynthesis (Tiwari et al. 2012). Recently
Go et al. (2014) reported AP2/ERF (Sb10g025053) acts as a
bi-functional transcriptional factor that down regulates the
wax biosynthesis pathway by interacting with promoter re-
gions of wax synthesis proteins. MYB transcription factor
present in the mapped glossy QTL region (Sb10g024950)
has been reported to be involved in activation of AP2/ERF
transcription factors involved in wax biosynthesis (Cominelli
et al. 2008)

Trichome Density

Trichomes are non-glandular, cellular appendages that pro-
trude above the epidermis (Maiti and Gibson 1983).
Trichomes act as physical barriers between the insect pests
and the leaf blade epidermis that inhibit egg laying and/or
larval movement, which leads to reduction in ‘dead heart’
formation. Trichome density is genetically controlled and neg-
atively correlated with oviposition- and dead heart incidence-
based (Maiti and Gibson 1983; Dhillon et al. 2005) measures
of susceptibility sorghum shoot fly.

Candidate Genes for Trichome Density

An MYB transcription factor gene homolog (Sb10g027280)
is present in the trichome density QTL region-. Liang et al.
(2014) showed that in Arabidopsis a WD40 + HLH + MYB
transcriptional factor complex regulates the trichome initiation
process programmed by cell development. This complex rec-
ognizes the specific DNAmotifs in gene regulatory regions to
activate or repress transcription, mostly by interacting with
other proteins like Armadillo repeats, Speckle-type POZ-like
proteins, F-box domain proteins, WRKYproteins, MYB tran-
scription factors, ethylene zinc finger proteins, EF-hand Ca2+-
binding proteins, and thumatin-like proteins. In Arabidopsis
thaliana, TRANSPARENT TESTA GLABRA2 (TTG2) encodes
a WRKY transcription factor and is expressed in young
leaves, trichomes, seed coats, and root cells which are not
involved in root hair production. During epidermal cell differ-
entiation, MYB transcription factors and HLH transcription
factors regulate TTG2, which modulates Glabra2 expression
in trichomes (Eulgem et al. 2000; Johnson et al. 2002; Ishida

et al. 2007). One additional WRKY transcription factor gene
homolog (Sb10g025600) is present in the target trichome den-
sity QTL region; this is one of its probable candidate genes.
An ethylene zinc finger protein gene homologous with
Sb10g027550 has a key role in regulating trichome develop-
ment in Arabidopsis. ZFP5 and ZFP6, the zinc finger proteins,
necessary for gibberellic acid and cytokinin signalling to reg-
ulate trichome cell differentiation (Zhou et al. 2013). An
Armadillo repeat protein gene that appears to be homologous
to Sb10g027680 regulates both the gene expressions and cell-
cell adhesion. Patra et al. (2013) demonstrated that ubiquitin
protein ligase3 (upl3) N-terminal domain has Armidallo re-
peats that interact with the C-terminal domain of Glabra3/
Enhanced Glabra3 for t r ichome development in
Arabidopsis. An F-box domain protein homologous to
Sb10g027730 also has Armadillo repeats that may act as tran-
scriptional factors and involved in the degradation process
plant developmental processes (Coates 2008). An EF-hand
Ca2+-binding protein gene homolog (Sb10g027680) is also
one of the candidate genes underlying the putative QTd10
trichome density QTL. Kinesin-like calmodulin (KIC) is a
EF-hand Ca2+-binding protein that interacts with a microtu-
bule motor protein and regulates trichome morphogenesis.
Over expression of KIC inactivates kinesin-like calmodulin
binding protein (KCBP) by disrupting its interaction with mi-
crotubules and its participation in trichome morphological
complex resulting in trichomes with less branches/no
branches (Reddy et al. 2004). Jakoby et al. (2008) mentioned
Speckle-type POZ proteins (homologous to Sb10g026780)
were also expressed in trichomes.

In case of the glossiness QTL the increase in score value
indicates non-glossiness and lower scores are more preferred
for the trait (glossy). Glossiness is also inherited from resistant
parent where the moderately large F2 population had more
dominance effect due to large population size and high scores
which could influence the dominance nature of the detected
QTL. In both generations, a glossiness QTL was detected
within the same support interval. This confirms that a single
glossiness QTL is located in the target marker interval.
Further, fine mapping and focused gene expression studies
can be carried out utilizing this high resolution cross. This
should reveal which of the underlying candidate genes is re-
sponsible for the observed variation and its functional role. In
contrast, the putative QTL for trichome density on the lower
surface of seedling leaf blades, thought to have been
introgressed from grandparent IS18551 into BTx623-
background line J2614 by Jyothi et al. (2010), was detected
in the full F2 population and the sub-set of 369 informative
recombinants selected from this under lower-temperature,
short-day length post-rainy conditions, but was not clearly
detected in the derived F3 progenies when these were evalu-
ated in the rainy season. This warrants considerable further
study – starting with phenotyping of the same F3 progenies
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for lower leaf blade trichome density during the post-rainy
season using available remnant seed. Expression of this QTL
only under post-rainy conditions vs. rainy season conditions
would warrant considerable further study to understand envi-
ronmental regulation of this QTL for this trait. Based on F2
genotyping data of 7 co-dominant SSR markers and F2:3 phe-
notyping data, we have selected a further reduced sub-set of
182 most informative recombinants, and selfed their corre-
sponding F3 progenies to produce F4 seeds which can go for
replicated field trials and can be used for further study to restrict
the genomic region that appears to contribute to the control of
sorghum seedling leaf blade glossiness and lower surface tri-
chome density (Usha Kiranmayee et al. 2015a).

Implications of This Study in Breeding Program

As both the parental lines are introgression lines, but having
different genetic backgrounds, the background noise for the
interested traits has not been reduced substantially. None-the-
less, we could identify genotypes having combinations of
RSG04008-6 stay-green (drought tolerance) trait with
glossines and trichome density. Selfing until homozygosity
of the pyramided genotype should lead to development of a
multiple resistance trait donor for use in breeding and crossing
programs.

Materials and Methods

Parents

Parent J2614-11 (glossy, highly trichomed) is a single plant
selection from a shoot fly resistant introgression line derived
from IS18551 alleles introduced by MABC into BTx623
background having validated donor alleles for seedling leaf
blade glossiness and trichome density on SBI-10 (Fig. 1b)
(Jyothi 2010). RSG04008-6 (non-glossy, less trichomed) is a
single-plant selection from a high yielding drought tolerant
but shoot fly susceptible introgression line (IL) with E36-1
alleles for stay-green-associated drought tolerance in highly
senescent R16 background (Fig. 1a) (Kassahun 2006).

Plant Material: Development of the F2 Population
and Recombinant F2:3 Progenies

At ICRISAT-Patancheru, a manually emasculated and polli-
nated plant×plant cross was made between RSG04008-6
(susceptible) and J2614-11 (resistant) during post-rainy 2010
to produce F1 seeds. Morphologically and genotypically con-
firmed F1 plants were self-pollinated using selfing bags to
produce F2 seed lots. A moderately-large, high-resolution
mapping population of 1,894 F2 individuals derived from a
single selfed F1 plant (U110055), was grown in three batches

in plastic pots during late post-rainy (late rabi) 2011 (Feb -
Jun 2012) with triply-repeated parents for each F2 sowing.
The parental population were thinned to 3 plants per plot per
sowing. Plants were labelled individually (with plant number
starting from U120001 to U121931) for F2 progenies, while
parents were tagged with their names (Fig. 4c). DNA samples
of a emerged F2 plants and parents (9 repeats in total for each
parent) were isolated and genotyped initially with 5 simple
sequence repeat (SSR) markers namely Xgap001 ,
Xnhsbm1044, Xiabt340, Xisep630 and Xtxp141 on SBI-10L
where QTLs for seedling leaf blade glossiness and trichome
density from donor parent IS18551 had previously been
mapped, and then introgressed into BTx623 background to
produce parent J2614-11 (Jyothi 2010). By careful examina-
tion of the genotyping data across the target QTL region a sub-
set of homozygous and nearly homozygous recombinant F2
plants was selected. All the selected sub-set of recombinant F2
individuals were advanced by selfing to the F3 generation
(Fig. 5). All 1,894 individual F2 plants were scored for both
of the target traits, i.e., seedling leaf blade glossiness abbrevi-
ated as ‘Gls’ and seedling leaf blade trichome density abbre-
viated as ‘Td’. The selected subset of recombinant F3 proge-
nies were sown in the field during rainy season (kharif) 2012
(July), in a single plot of 4 m per entry with 10–12 plants per
plot after thinning, with two replications of parent.
Phenotyping in F3 generations was similar to F2 generation.

Phenotyping for Traits

F2 plants were tagged and scored individually for the two traits
during rabi11/12, whereas in the F2:3 generation the plants
were segregating for traits within each family; so maximum
group of plants with similar phenotype were scored for each
genotype family during kharif 2012. Seedling leaf blade gloss-
iness was scored visually at 12–15 days after emergence
(DAE) as described in Sharma et al. (1992) where 1=shiny,
pale green, pointed, narrow and erect leaves (glossy) and 5=
dull, dark green, broad and droopy leaves (non-glossy)
(Fig. 1a and b). Leaf blade trichome density was scored by
visual appearance of trichomes on leaves as described in
Bourland et al. (2003), but based on the trait variation, in the
present population, scores were defined as follows: As tri-
chomes are hairy leaf structures, leaf surface roughness indi-
cated degree of trichome density and smooth leaf surfaces
indicated absence of trichomes. Scores were given as 0=ab-
sent, 1=very low density, 2=low density, 3=medium density,
4=high density, 5=very high density.

DNA Isolation and Genotyping

Single plant DNA was extracted from each of the 1,894 F2
seedlings, and each sample of the two parents, using a
modified-CTAB and phenol:chloroform:isoamyl alcohol
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(25:24:1) method as described by Mace et al. (2003). DNA
was quantified on 0.8 % agarose gel and normalized to 2.5–
5 ng/μl using distilled water. PCR was performed in 5.0 μl
reaction volumes with 1.0 μl of normalized DNA, 2.0 mM
MgCl2, 0.1 mM of dNTPs, 1× PCR buffer, 0.4 pM of each
primer and 0.1 U of DNA polymerase enzyme using a Gene
Amp® PCR system 9700 thermal cycler (Applied
Biosystems®, USA).

PCR products were resolved by capillary electrophoresis
on an ABI 3730 DNA sequencer (Applied Biosystems®,
USA) and the data generated was analysed with
Genemapper® v4.0 software (Applied Biosystems®). This
analysis provides a series of automatic fragment sizing, allele
scoring, bin-building and auto panelize algorithms that helped
in calling A’, ‘B’ and ‘H’ allele scores (‘A’=homozygous for
allele of RSG04008, ‘B’=homozygous for allele of J2614-11,
and ‘H’=heterozygous) for PCR products from each SSR
primer pair. A set of 41 SSR markers mapping single-copy
loci in the extended target region of sorghum chromosome
SBI-10L (Table S3). For parental polymorphism assessment
a sub-set of nine (1Xgap001, 2Xnhsbm1008, 3Xnhsbm1011,
4Xisep0643, 5Xiabtp389, 6Xnhsbm1044, 7Xiabtp340,
8Xisep0630, 9Xtxp141) polymorphic SSRs were identified
for the initial target marker interval region of Xgap001-
Xtxp141.

Due to the large F2 population, initially a set of five SSRs
distributed across the Xgap001-Xtxp141 interval on SBI-10L
were selected based on their amplification, segregation pat-
terns, good polymorphism between parents, and clear peak
patterns for GeneMapper® analysis. SSR markers Xgap001
(Brown et al. 1996), and Xtxp141 (Bhattramakki et al. 2000)
were previously identified as flanking markers for the target
region (Deshpande 2005; Sharma et al. 2005; Dhillon et al.
2006; Mehtre 2006; Jyothi 2010; Ramu et al. 2010). Three
SSR markers mapping between these, viz. Xnhsbm1044
(Satish et al. 2009), Xisep0630 (Ramu et al. 2009), and
Xiabt340 (Ramu et al. 2010), were selected based on their

physical map positions, polymorphism and distribution across
this interval. To extend the flanking regions on either side of
the target interval, three additional SSR markers (Xisep0621,
Xisp10263 and Xisep1011) were later added. Due to large
percentage of missing data (>50 %) in 369 selected
recombinants, SSR marker Xiabt340 was dropped from link-
age analysis, and a new linkage map was developed with
seven SSRs (Fig. 3a and b).

Statistical Analysis

From the F2 and F3 generations, observed phenotyping data
was analysed using SAS software package (SAS Institute,
USA). A PROC – MIXED augmented design analysis using
‘entries’ as random model was used to provide covariance
parameter estimates and Best Linear Unbiased Predicted
means (BLUPs) were derived (with Z estimates).
Heritabilities values (h2) were estimated from the covariance
parameter values. The F2 population was sown in 3 blocks,
with each block including 600–650 individual F2 plants along
with three replicates of the parental checks in each block.
Block effect was estimated from the means of repeated checks
and adjusted for each F2 phenotype value in each block in
order to minimize the rate of experiment-level error. In case
of the F2-derived F3 progenies, parents repeated twice were
used as checks.

Linkage Map Construction and QTL Analysis

F2-population

To tide over the resources and time required for genotyping
the complete F2-population, we strategically selected only five
(Xgap001, Xnhsbm1044, Xiabt340, Xisep0630, Xtxp141) out
of total nine available polymorphic SSR markers spanning the
initial target region (Xgap001-Xtxp141). Genotyping data on
1894 F2 population for these five SSRs was generated and

Fig. 5 Schematic representation
for developing ILs and their
genetic material from ILs for
mapping ‘QGls10’ and ‘QTd10’
on SBI-10L
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used as input for JoinMap V3.0 (Van Ooijen and Voorrips
2001). This data was used to select a sub-set of informative
F2-individuals (to develop F3 progenies) capturing the recom-
bination events in steps. The Kosambi map function was used
to convert recombination fractions into centi-Morgans (cM)
(Kosambi 1943). Marker order was assigned at minimal LOD
3 and segregation distortion and chi-square values were cal-
culated using JoinMap V3.0 (Van Ooijen and Voorrips 2001).
QTL mapping for the 1,894-entry F2 population was per-
formed using Composite Interval Mapping (CIM) implement-
ed in QTL Cartographer Windows V2.5 (Wang et al. 2010)
with default settings (window size of 10 cM, walking speed of
1 cM, control markers=5 and backward regression).
Significance of each QTL interval was determined with the
threshold level estimated at 1000 permutations with P≤0.05
for significant QTL detection.

F2:3 population

Genotyping data of additional three markers (Xisep0621,
Xisp10263 and Xisep1011) on selected 369 F2 was used for
generating a new linkage map with 7 SSR markers with
JoinMapV3.0 (VanOoijen and Voorrips 2001). The phenotyp-
ing data for the 369 selected recombinant F3 progenies along
with their respective F2 individuals was merged with the cor-
responding F2 genotyping data, and QTLs were positioned
and their effects estimated by CIM (Zeng 1994; Jansen
1994) implemented in PLAB QTL version 1.2 (Utz and
Melchinger 1996) for both target traits. LOD 2 was set as
criteria for detecting QTLs at 1000 permutations. QTL
Cartographer Windows V2.5 was used for F2-population
QTL analysis and we used PLABQTL for F2:3 progenies.
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Abstract
Sorghum is a model tropical grass that uses

C
4
 photosynthetic activity.But its yield is affected

by many abiotic stresses likeheat, drought,
cold,salt and also biotic stresses such as shoot
fly, midges, and stem borerfromseedling stages
to maturity. This article summarizes the terminal
drought stress tolerance mechanism with stay-
green phenotype expression during post-
flowering and also mechanisms of early shoot
fly resistance during seedling stages of crop
growth. The trait stay-green is extensively studied
and its correlation to yield makes the stay-green
trait more special for research and in marker
assisted back cross programs. Under terminal
drought stress conditions, stay-green trait is
expressed with a complex mechanism involving
many transcription factors, chlorophyll retention
and nitrogen remobilization from leaves to
maintain longer photosynthetic activity. Shoot fly
resistance on the other hand, involves
manyphysico-chemical, biologicaland
morphological traits. Out of the many
morphological traits, seedling leaf blade
glossiness and trichome density are well
characterized at genetic level and can assist as
shoot fly resistance sources in marker-assisted
breeding programs as they are highly negatively
correlated with shoot fly dead heart formation.
However, quantitative trait loci (QTL) mapping
studies and candidate genes identified for the

stay-green and shoot fly component traits need
to be further validated with fine mapping, gene
cloning and expression level studies. Pyramiding
these two traits into a high yielding sorghum
variety may lead to multiple stress resistance
which could ultimately benefit the marginal
farmers in India.

Keywords: Sorghum, shoot fly resistance, stay-
green, drought tolerance, QTL, marker-assisted
selection

Introduction
Sorghum [Sorghum bicolor (L.) Moench]

is a cultivated tropical crop plant that belongs to
the family Poaceae, tribe Adropoganeae and
genus Sorghum. Sorghum is largely self-
pollinated diploid crop (2n=2õ=20) with fully
sequenced genome length of ~730Mb (1). It is
the fifth most important cereal crop globally (2)
providing food, feed, fiber, fuel, and chemical/
biofuels feed-stocks across a range of
environments and production systems.USA,
India, México, Nigeria, Sudan and Ethiopia are
the major producers of sorghum. Other sorghum
producing countries include Australia, Brazil,
Argentina, China, Burkina Faso, Mali, Egypt,
Niger, Tanzania, Chad and Cameroon. Grain is
mostly used as food (55%), in the form of breads
and porridges in Asia and Africa, and as feed
(33%) in the Americas. Its stover is an
increasingly important source of dry season
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fodder for livestock, especially in Asia (http://
www.icrisat.org/crop-sorghum.htm). Its
remarkable ability to produce yields under
adverse conditions like arid and semi-arid
regions, where water limited conditions exists
alongside heat stress. This makes sorghum an
important ‘fail-safe’ source of food, feed, fiber,
and fuel in the global agro-ecosystem. Sorghum
is a representative of tropical grasses that use
C

4
 photosynthesis, which results from complex

biochemical and morphological specializations
that improve carbon assimilation at high
temperatures. While the world’s average annual
yield for sorghum was 1.08 tonnes per hectare
in the year 2012, total production from all
sorghum producing countries was 57 million
tonnes. FAO reported the United States of
America as the top sorghum producer with a
harvest of 1.22 million tonnes followed by India,
Nigeria, Mexico and Sudan (3). In India, with its
large population and fragile balance in the
production and demand equation for food grains,
sorghum plays a crucial role in national food
security. Attempts to increase the production of
sorghum with the introduction of new high-
yielding varieties and hybrids since 1966, was
largely unsuccessful because of the susceptibility
of the improved cultivars to various abiotic
(drought)and biotic(shoot fly) (4,5,6,7)stresses.
But therate of loss due to biotic and abiotic
stresses in sorghumyear by year is increasing.

Drought stress and stay-green trait : Abiotic
stresses are the most harmful constraints
concerning the growth and productivity of crops
worldwide. After soil nutrient deficiency, drought
stress is the most important abiotic constraint for
sorghum production globally(8) Sorghum is well
adapted to semi-arid environments and regarded
as model crop for studying drought stress
tolerance among grass species. So, breeders
mostly have focused on improving drought stress
tolerant varieties of sorghum (9). If plants
withstand drought spell occurring at grain filling
stage, it is defined as terminal drought tolerance.
Drought stress during and after flowering typically
causes premature leaf senescence which in turn

lead to stalk lodging, stalk rot disease, reduced
grain filling, and significant grain and stover yield
losses.Plant characters best associated with
post-flowering drought tolerance, may be due to
delay in  leaf senescence or non-senescence or
“stay-green” trait(9,10,11,12,13,14,15,16).
Therefore, the “stay-green” trait is more than the
ability of the plant to maintain functional green
leaf area (GLA), to improve quality of residues
(17), to support the continuation of carbon fixation
and supply of starch to the grain filling site (18),
to prevent premature death and stalk lodging (19)
andto sustain grain-filling under water stress to
improve yield (14,20).Stay-green is of three types.
Type A stay-green phenotypes have a delayed
onset and a normal rate of senescence following
its onset. Type B stay-green phenotypes initiate
leaf senescence normally but the rate of
senescence is comparatively slower. Type C stay-
green phenotypes retain chlorophyll despite the
normal onset and progression through
senescence(21). Many crop plants other than
sorghum like rice, wheat, maize, barley, cotton,
tobacco have been reported till date with stay-
green character.

Mechanism of drought tolerance/stay-
greenand factors associated with stay-green
: Molecular mechanisms underlying delay in
senescence which extend the duration of active
photosynthesis in sorghum have not been
elucidated completely. Rosenow et al. (20)
observed positive impact of delayed leaf
senescence on crop performance of plants under
water limited conditions during grain filling.
Presence of stay-green phenotype is a result of
balance between nitrogen (N) demand by grain
and nitrogen captured by vegetative parts of
plants like increasing the supply of water by
modified root architecture which increases water
extraction from soil or reducing water demand
by reducing transpiration loss. Nitrogen
remobilization from leaves maintain longer
photosynthetic activity and supply adequate
carbohydrates to developing grains (10,22,23).
It appears that carbon, nitrogen ratios and ABA
levels affect senescence. Besides them,
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cytokinins also play a role in leaf senescence and
increased production of cytokinins lead to
delayed leaf senescence (24).Stay-green was
influenced by genetic factors, environmental
factors like high temperature, soil-water holding
capacity, soil moisture content at planting, vapor
pressure depict, rain fall during cropping and
management factors like population size and
planting time (14). Leaf chlorophyll content was
also significantly correlated with stay-green
scores under drought conditions as pointed out
by Xu et al. (25).

Nodal root angle depends on vertical and
horizontal distribution of rootsin soil. Theirprofile
is relevant to drought adaptation and is co-
localized with stay-green genomic regions which
show that roots and their growth are related
tostay-green phenotype expression
(12,26,27).Stay-green is highly negatively
correlated with flowering time and stover yield
(9). These correlation studies indicate early
flowering is associated with green leaf area. But,
stay-green shows positive association with grain
yield (9,11,14). Stay-green is negatively
correlated with flowering time, canopy size, size
of upper leaf,tillering. Under drought conditions
stay-green enhances grain yield, by altering the
canopy development and modifyingthe size of the
leaf (leaf anatomy), root growth (nodal root angle)
and water uptake mechanisms (11,12,28).
Reduction in leaf size leads to transfer of
photosynthetic nutrients to grains without
undergoing the drought stress.

Identification of genetic factors involved in
stay-green : Genomic regions responsible for
stay-green trait were detected with the help of
molecular markers and the phenotyping data of
the stay-green lines locate the variation in the
genomic regions which are important for drought
tolerance breeding programs. Quantitative trait
loci(QTLs) for stay-green have much importance
in improving the productivity under drought stress
conditions (23).Many QTL mapping studies
contributing to stay-green expression under
drought stress conditions have been evaluated
in mapping populations (8,15,29, 30,31,32,33,

34,35,36,37,38) introgression lines (9) and near
isogenic lines (29,30,31,33,34,35,15). Several
stay-green sources have been field evaluated
and used for crosses (39,40). Best stay-green
sources are B35,E36-1,and SC56 that are
involved in different marker assisted breeding
programs. Cross B35 (stay-green) × R16
(senescent) was developed (9) and their
introgression lines were field evaluated.B35
(stay-green) × Tx7000 (senescent) was also
extensively studied and their introgression lines
were used for fine mapping of different stay-green
QTLs (15,33,35). B35 × Tx430 (32), SC56 ×
Tx7000 (36), N13× E36-1, IS9830 × E36-1
(8),M35-1× B35 (16) crosses were made and
different stay-green QTLs were identified.Stay-
green was extensively studied in crops other than
sorghum like in maize (41), wheat (42),
barley(43), rice (44),and Arabidopsis(45).It
appears therefore that stay-green genotypes
need to be utilized in sorghum breeding programs
aimed at developing drought tolerant plants.

Marker-assisted breeding for stay-green :
Drought stress may be alleviated by developing
crops that are well adapted to dry-land
environments with marker assisted breeding crop
improvement programs.Increasing marker
density and identifying QTLs and narrow downing
the QTLs to smaller regions will improve marker
assisted breeding.Different types of stay-green
QTLs are influenced by different backgrounds
(28) and many crossing programs introgressed
stay-green into senescent breeding lines.
Therefore, marker assisted breeding programs
help us develop drought tolerant lines in sorghum.

Stay-green candidate genes : An alteration in
the chlorophyll break down mechanism
influenced by many key factors like plant
hormones, transcriptional factors and genes lead
to delayed degradation of chlorophyll.Cytokinins
are plant hormones involved in regulating
senescence process, and thecytokinin receptor
(AHK3), the type-B response regulator (ARR2)
and the recently identified cytokinin response
factor (CRF6) are involved in senescence signal
responses (46). No apical meristem (NAC/NAM)
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transcriptional factor is a developmental regulator
and accelerates senescence and increases
nutrient remobilization from leaves to developing
grains (47).In Arabidopsis,AtNAP encodes NAC
transcription factor which is closely associated
with senescence (48).OsNAP is a NAC
transcriptional activator identified in rice involved
in senescence pathway. Reduced OsNAP
expression lead to improved grain filling and seed
setting and subsequently increased grain yield
(49).Senescence associated genes (SAGs) were
up- and downregulated under stress conditions
(50). Chlorophyll catabolic enzymes and
STAYGREEN1 (SGR1), STAYGREEN2 are
regulators of chlorophyll degradation and their
mutants (sgr) exhibit stay-green phenotype which
is a desired phenotype for drought tolerance
(45).WRKY family transcriptional factors are also
involved in senescence pathwayand over
expression of WRKY transcriptional factors lead
to improved drought tolerance (51). Thus, the
above candidate genes appear to be crucial for
imparting drought stress tolerance. Their
overexpression in sorghum can certainly lead to
transgenic sorghum lines that can withstand
water limited conditions.

Shoot fly resistance  : Apart from abiotic
stresses, many biotic stresses are caused by
plant pathogens and insect pests.Nearly, 150
species of insect pests damage sorghum, of
which sorghum shoot fly Antherigonia soccata
(Rondani), is the major insect pest in Africa, Asia
and Mediterrian Europe (6). Shoot fly belongs to
the family Muscidae and is a devastating pest in
sorghum. It mostly attacks tropical grass species
like wheat, barley and sorghum.Female shoot fly
lays white, elongated,cigar shaped eggs singly
on abaxial (lower) surface of leaf, parallel to mid-
rib. Eggs hatch in 1-2 days of incubation and
larvae crawl into central leaf whorl and cuts the
growing tip resultingin typical wilting and drying
of the central whorl leaf known as ‘dead heart’.
As a result of dead heart formation, the young
seedlings may be killed outright or they may
produce axial tillers, which are rarely productive.
The axial tillers serve as a mechanism of

recovery resistance if they remain undamaged,
but if shoot fly infestation continues, the seedling
may die or present a rosette appearance and fail
to produce any grain (52). Larvae feed on the
decaying tissuewhich may lead to seedling
mortality and the crop gets damaged within 1-4
weeks after seedling emergence.

Mechanisms of shoot fly resistance :
Agronomic practices (timely sowing), natural and
synthetic insecticides, natural enemies and host
plant resistance (HPR), are all components of
integrated pest management practices used to
minimize sorghum losses due to shoot fly
infestation. Early sowing during rainy season can
also be one of the resistance mechanisms (53);
but HPR and timely sowing remains most
preferred as they are cost-effective, eco-friendly
and easily adapted by farmers. Mechanism of
resistance to shoot fly is complex and depends
on interplay of many component characters of
plant, insect and environmental factors
(54).Improvement in resistance will increase
ecological fitness, reduces pesticide use, and
facilitates creation of a sustainable production
system with increased efficiency, profitability and
enhances grain quality traits. Antixenosis for
oviposition is the primary mechanism of
resistance for shoot fly resistance in sorghum
(55,56). Antibiosis and tolerance also plays
important shoot fly resistance mechanism
(52,57).Of many important morphological
components of sorghum HPR identified, seedling
leaf blade glossiness (58), seedling leaf blade
trichome density (59), seedling vigor, and leaf
sheath pigmentation are all positively associated
with Shoot Fly Resistance (SFR). Leaf glossiness
reflects the flies from the host and increased
trichome density inhibits the larval movement on
leaf surface and acts as barrier between the leaf
and fly to prevent egg laying (antixenosis)(60).
Rapid growth of seedling due to seedling vigor
inhibits the larvae movement to reach the central
leaf whorland this reduces the frequency of dead
hearts(60). Cytoplasmic male sterilityalso
influences the expression of shoot fly resistance
mechanism (61,62). Chlorophyll content and leaf
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surface wetness, and waxy bloomhave been
reported to be associated with shoot fly
susceptibility (63). Increased secondary
metabolites also take path in shoot fly resistance
mechanism (64). Shoot fly resistant genotypes
were used in the breeding programs as a source
forresistance. Genotypes such as IS2122,
IS18551, IS2146, IS1054, IS2312, SFCR151,
ICSV705, SFCR125 were used in many crossing
programs as resistant donors for shoot fly
resistance (65,66,67). However, many of these
resistance mechanismsstill need to be evaluated
clearly at the molecular level. Genes associated
with these mechanisms and their cloning and
overexpression studies are also needed for
validation.

Factors associated with shoot fly resistance
: Resistance to shoot fly is mediated by many
physico-chemical, morphological,biological,
environmental, biochemical, cytoplasmic and
genetic factors.Chemicals and pesticides were
used to control shoot flies in the field. Fipronil
and imidacloprid were successfully evaluated for
shoot fly control (68).As the chemicals and
pesticides are not affordable by poor farmers and
can cause serious environmental hazards,it is
necessary to develop cultivars with shoot fly
resistance with the help of marker assisted back
cross (MABC) methods (64). Morphological traits
like seedling leaf blade glossiness, trichome
density in lower and upper leaf portions,leaf
sheath pigmentation, seedling vigor are
negatively correlated with percent shoot fly ‘dead
heart’ and positively associated with shoot fly
resistance.Significant correlation was observed
between shoot fly dead hearts and yield(53).
Morphological components like glossiness and
trichome density are negatively correlated to
shoot fly dead heart percentage and are
significantly associated to shoot fly resistance.
Combined effects of trichome density on abaxial
(lower), adaxial (upper) and leaf glossiness have
been shown to reduce dead heart percentage
and high shoot fly resistance (66).These
observations point out that glossiness and
trichome density are vital for shoot fly resistance

in sorghum. Environment is a major factor
associated with shoot fly resistance as the
rainy(Rabi) season is most suitable for shoot fly
infestation when compared to the post rainy
(Kharif) season.Biochemical factors like p-
hydroxy benzaldehyde, cinnamic acid, luteolin,
apigenin, and some unidentified compounds from
damaged and undamaged seedlings of sorghum
were associated with expression of resistance
for shoot fly as pointed out by Chamarthi et al.
(69). QTLs associated with shoot fly resistance
have beenidentified in many populations and
different crosses responsible. However,
candidate genes need to be identified and
validated in sorghum. SFR component traits have
been mapped and the putative QTLs identified
for individual traits and subsequently validated
by marker-assisted backcross (MABC)-
introgression into genetic backgrounds highly
susceptible to shoot fly. The cross BTx623 ×
IS18551(70, 71, 72, 73) mapped the shoot fly
resistance (SFR) QTLs on SBI-01, SBI-05, SBI-
07, and SBI-10. Similarly, using crosses 296B
(susceptible) × IS18551 (resistant) (60,74) and
cross 27B (susceptible) × IS2122 (resistant)
(75)mapped the SFR. In a reciprocal cross
IS18551 × 296B, Apotikar et al.(76) found SFR
QTLs on SBI-01 and SBI-03. Five putative QTLs
for SFR component traits from IS18551 were
then validated by MABC-introgression into the
genetic backgrounds of elite shoot fly-susceptible
hybrid seed parent maintainer lines 296B and
BTx623 (77). Thus, these studies point out that
it is possible to transfer shoot fly resistance
through classical breeding programs.

MABC for shoot fly resistance : Many crossing
programs at the National and International
Research Centers like Directorate of Sorghum
Research and ICRISAT, Patancheru, India,
resulted in the development of introgression lines
for shoot fly resistance which can be used in
further breeding programs. Jyothi(77)
introgressed SFR QTLs into BTx623 (fully
sequenced) (1) and into 296B backgrounds.
296B× IS18551 and BTx623× IS18551
(60,70,71,72,73,74,77) (crosses  were
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extensively  studied and their introgression lines
were field evaluated for the introgressed trait
validation. Utilizing these introgression lines in
future molecular breeding programs may help in
increasing the shoot fly resistance in different
genetic backgrounds and can be pyramided
along with other preferred traits to attain multiple
resistances to the sorghum plants.Gene
pyramiding is a breeding strategy that serves to
combine favorable alleles at multiple genetic loci
into a single plant genotype. This process of
stacking of genes/QTL into a single elite cultivar
background can now be efficiently performed by
marker-assisted selection (MAS), using
backcrossing or pedigree approaches. This
approach expedites the varietal development
process by providing the opportunity to select for
all desirable genes/QTLs simultaneously, as well
as eliminating the time-consuming process of
inoculation for different races or isolates at
different time intervals (78). Pyramiding of
multiple genes or common major QTLs for biotic
and abiotic stresses are important approaches
for genetical improvement of any sorghum
genotype. Fine mapping can be achieved by large
scale population with more markers showing
more recombination events. In early generation
populations like F

2
, F

3
populations many

recombination events can be utilized but,
heterozygosity segregation distortion, dominance
and epistasis need to be overcome to fine map
the interested regions. Advance molecular
toolsincrease the precision of crop improvement.
A genome-wide association study (GWAS) is a
further advanced method to understand the
marker trait associations based on linkage
disequilibrium and can identify the SNP
associated with the candidate genes (79).

Candidate genes responsible for shoot fly
resistance : Candidate genes underlying the
target QTLs like seedling leaf blade glossines
and trichome density have been reported by
Satish et al. (60,74) and Aruna et al. (75). Data
derived fromsorghum genome database and
studies on trichome density and glossiness in
different crops are consistent with the identified

QTLs. Identification of genes, pathways and
mechanism involved in sorghum seedling leaf
blade glossiness and trichome density have not
yet been clearly studied nor cloned in sorghum.
Majority of the studies were carried out in model
crop plants like Arabidopsis and maize. But
studies on sorghum are very few. Wax deficient
mutant loci inZea mays (maize), Brassica napus
and sorghum are defined as ‘glossy’ loci whereas
in Arabidopsis thaliana and Hordeum vulgare
(barley), they were named as ‘ceriferum’ (cer)
mutant loci (80). In Arabidopsis,shine (shn)
mutants were reported. Ithas been found that the
shn gene encodes for APETALA (AP2)/ethylene
response element binding protein (EREBP)
transcriptional factors that act in up- and
downregulation of lipid biosynthesis (81). More
than 30 ‘glossy’ loci have been identified and a
few were cloned (gl1, gl2, gl3, gl4, gl8, gl13 and
gl15) in maize (82) and their functional role in
glossiness has been reported. Similarly,many
studies reported that WRKY, MYB transcription
factors play important roles (83,84,85,86)for
developmental regulation of trichomes and
trichome morphology can also play important
roles in SFR (60). Further, Mir1 gene encodes
for cysteine proteasewhich can reduce the growth
of larvae as reported by (60). Transparent Testa
Glabra1 (TTG1), Glabrous 2 (Gl2) and Glabrous
3 (Gl3) are involved in trichome initiation and
TTG2 is also involved in trichomes throughout
their development (83,87). Thus, these data
appear that genes associated with both
glossiness and trichome density have been
identified and can be used in genetic engineering
techniques for generating transgenics with better
resistance.

Conclusions
Recent advances in genomics, molecular

breeding and next generation sequencing and
re-sequencing methodologies can be utilized in
future to decipher stay-green and morphological
traits of shoot fly resistance in sorghum. We need
to further fine map the mapped QTL genomic
regions and look for the maker trait associations
with the help of genome wide association studies
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(GWAS) in sorghum. Genes responsible for stay-
green, leaf blade glossiness and trichome density
need to be cloned and their introgression and
expression level studies should be made in
sorghum in order to enhance the genetic
architecture. In future, both these studies need
to be targeted with MABC and it could be possible
to pyramid the stay-green trait alongside shoot
fly component traits inorder to achieve a multiple
resistant variety for improved sorghum
productivity.
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