eprintid: 10069 rev_number: 10 eprint_status: archive userid: 1305 dir: disk0/00/01/00/69 datestamp: 2017-06-30 07:59:18 lastmod: 2017-06-30 07:59:18 status_changed: 2017-06-30 07:59:18 type: article metadata_visibility: show contact_email: Library-ICRISAT@CGIAR.ORG creators_name: Nareshkumar, B creators_name: Akbar, S M creators_name: Sharma, H C creators_name: Jayalakshmi, S K creators_name: Sreeramulu, K icrisatcreators_name: Akbar, S M icrisatcreators_name: Sharma, H C affiliation: Department of Biochemistry, Gulbarga University (Gulbarga) affiliation: ICRISAT (Patancheru) affiliation: Department of Plant Pathology, Agriculture Research Station - University of Agricultural Sciences-Raichur (Gulbarga) country: India title: Evaluation of flubendiamide-induced mitochondrial dysfunction and metabolic changes in Helicoverpa armigera (Hubner) ispublished: pub subjects: h1 subjects: s2.7 divisions: CRPS2 full_text_status: restricted keywords: Phthalic acid diamide insecticides, cytochrome c, flubendiamide, Helicoverpa armigera, mitochondrial dysfunction, proteinases note: The current workwas supported by Gulbarga University, Gulbarga, India, under financial assistance for Ph.D. students (No. GUG/SC/ST cell/2013-14/375) and Special Assistance Programme (SAP) sanctioned to Department by Govt. of India.We are thankful to staff of Insect Rearing Laboratory Entomology, ICRISAT, Hyderabad, for providing the insect culture. We are also thankful to the Rallis India Limited, Bangalore, India, for kindly providing the technical grade flubendiamide. abstract: Phthalic acid diamide insecticides are the most effective insecticides used against most of the lepidopteran pests including Helicoverpa armigera, a polyphagous pest posing threat to several crops worldwide. The present studies were undertaken to understand different target sites and their interaction with insect ryanodine receptors (RyR). Bioassays indicated that flubendiamide inhibited the larval growth in dose-dependent manner with LD50 value of 0.72 μM, and at 0.8 μM larval growth decreased by about 88%. Flubendiamide accelerated the Ca2+-ATPase activity in dose-dependent trend, and at 0.8 μM, the activity was increased by 77.47%. Flubendiamide impedes mitochondrial function by interfering with complex I and F0F1-ATPase activity, and at 0.8 μM the inhibition was found to be about 92% and 50%, respectively. In vitro incubation of larval mitochondria with flubendiamide induced the efflux of cytochrome c, indicating the mitochondrial toxicity of the insecticide. Flubendiamide inhibited lactate dehydrogenase and the accumulation of H2O2, thereby preventing the cells from lipid peroxidation compared to control larvae. At 0.8 μM the LDH, H2O2 content and lipid peroxidation was inhibited by 98.44, 70.81, and 70.81%, respectively. Cytochrome P450, general esterases, AChE, and antioxidant enzymes (catalase and superoxide dismutase) exhibited a dose-dependent increasing trend, whereas alkaline phosphatase and the midgut proteases, except amino peptidase, exhibited dose-dependent inhibition in insecticide-fed larvae. The results suggest that flubendiamide induced the harmful effects on the growth and development of H. armigera larvae by inducing mitochondrial dysfunction and inhibition of midgut proteases, along with its interaction with RyR. date: 2017-06-20 date_type: published publication: Archives of Insect Biochemistry and Physiology publisher: Wiley pagerange: 1-13 id_number: 10.1002/arch.21401 refereed: TRUE issn: 07394462 official_url: http://dx.doi.org/10.1002/arch.21401 related_url_url: https://scholar.google.co.in/scholar?q=Evaluation+of+flubendiamide-induced+mitochondrial+dysfunction+and+metabolic+changes+in+Helicoverpa+armigera+%28Hubner%29&btnG=&hl=en&as_sdt=0%2C5 related_url_type: pub citation: Nareshkumar, B and Akbar, S M and Sharma, H C and Jayalakshmi, S K and Sreeramulu, K (2017) Evaluation of flubendiamide-induced mitochondrial dysfunction and metabolic changes in Helicoverpa armigera (Hubner). Archives of Insect Biochemistry and Physiology. pp. 1-13. ISSN 07394462 document_url: http://oar.icrisat.org/10069/1/doi%2010.1002%252Farch.21401.pdf