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� Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków 2017

Abstract Of the various environmental stresses that a

plant can experience, temperature has the widest and most

far-reaching effects on legumes. Temperature extremes,

both high (heat stress) and low (cold stress), are injurious to

plants at all stages of development, resulting in severe loss

of productivity. In response to unfavorable temperatures,

plant biomolecules such as stress proteins, enzymatic and

non-enzymatic antioxidants, organic osmolytes and phy-

tohormones come into play, usually, as a part of the plant

defense mechanisms. The accumulation of these mole-

cules, which may be useful as metabolic indicators of stress

tolerance, depend on the plant species exposed to the

temperature stress, its intensity and duration. Some of these

molecules such as osmolytes, non-enzymatic antioxidants

and phytohormones may be supplied exogenously to

improve temperature stress tolerance. Legumes show

varying degrees of sensitivity to high and low-temperature

stresses, which reduces their potential performance at

various developmental stages. To address the ever-fluctu-

ating temperature extremes that various legumes are being

constantly exposed, efforts are being made to develop

tolerant plant varieties via conventional breeding methods

as well as more recent molecular breeding techniques. In

this review, we describe the progress made towards the

adverse effects of abnormal temperatures on various

growth stages in legumes and propose appropriate strate-

gies to resolve these effects.
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OEC Oxygen evolving complex

O–J–I–P Transient fluorescence induction transient

defined by the names of its intermediate steps

PAs Polyamines

POX Peroxidase

RCA Ribulose activase

ROS Reactive oxygen species

SA Salicylic acid

SNP Sodium nitroprusside

SOD Superoxide dismutase

Introduction

Temperature is one of the most important factors determin-

ing where crops are grown and, depending on their temper-

ature sensitivities, affecting crop phenology and yield (Repo

et al. 2008). Crops are exposed to a wide range of tempera-

ture fluctuations under natural growth conditions. Temper-

ature instabilities may be experienced by crops at micro or

macro-environment levels, but both can have serious

implications on normal growth and production. Climatic

hazards are likely to increase in the near future and plants will

face lethal temperature leading to a pragmatic shift in tem-

perature zones, differential rainfall patterns and agricultural

production belts. Considering this, several studies have

evaluated different legume species for their responses to

temperature stress, e.g., broad bean (Vicia faba; Hamada

2001), soybean (Glycine max; Board and Kahlon 2011),

chickpea (Cicer arietinum; Kaushal et al. 2013).

Several abiotic and biotic factors limit the production

potential of legumes (Dita et al. 2006) with temperature

stress as one of the most important (Kumar et al. 2010;

Gaur et al. 2015). Global climate change is resulting in

extreme temperature (high or low) situations in different

regions of the world (Porter and Semenov 2005), which

affects the performance of winter as well as summer-sea-

son legumes (Stoddard et al. 2006; Board and Kahlon

2011). It is important to understand the responses of vari-

ous legumes to high or low temperatures in order to address

their stress tolerance to ensure global food availability,

both now and in the future. Various cool-season legumes

[chickpea, lentil (Lens culinaris), pea (Pisum sativum),

broad bean] are susceptible to rising temperatures, as

indicated by experiments in the field and in the controlled

environment (Stoddard et al. 2006). Each legume species

has its own range of maximum and minimum temperatures,

threshold temperature (Table 1), and extreme variations in

temperature will have serious repercussions on every stage

of plant development (Zinn et al. 2010), resulting in severe

loss of productivity.

Globally, legume production ranks third preceded by

cereals and oilseeds (Popelka et al. 2004), contributing up to

*27% of total crop production (Graham and Vance 2003).

The principal grain legumes in order of their respective

global consumption are common bean, pea, chickpea, pigeon

pea (Cajanus cajan), cowpea (Vigna unguiculata) and lentil

(Reddy et al. 2012). Legumes, especially grain legumes,

account for about 33% of dietary protein requirements, serve

as an animal feed and fodder, and are source of income for

small farmers, especially in developing and under-develop-

ing countries (Vance et al. 2000; Popelka et al. 2004). These

are ecologically desirable but despite these facts, pulses are

regarded as secondary crops worldwide, with the global area

under cereal cultivation about ten times higher than that of

pulses (Cernay et al. 2016).

The human population will grow to around 9 billion by

2050 and the demand for world food production is

expected to rise by 70%. It will be challenging for agri-

cultural experts to meet the food demand of the growing

Table 1 Threshold temperature

range of some legumes
Legumes Threshold temperature range (�C) References

Pea (Pisum sativum) 15–20

20–21

Mahoney (1991)

Fletcher et al. (1966)

Lentil (Lens culinaris) 15–25 Barghi et al. (2012)

Roy et al. (2012)

Chickpea (Cicer arietinum) 15–30 Singh and Dhaliwal (1972)

Wang et al. (2006)

Cowpea (Vigna unguiculata) 18–28 Craufurd et al. (1997)

Pigeon pea (Cajanus cajan) 18–29 Duke (1981)

Common bean (Phaseolus vulgaris) 20–24 Kigel et al. (1991)

Konsens et al. (1991)

Soybean (Glycine max) 26–36 Boote et al. (2005)

Mung bean (Vigna radiata) 28–30 Poehlman (1991)

Groundnut (Arachis hypogaea) 30–35 Talwar et al. (1999)

Prasad et al. (2000)
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population, e.g., global legume demand has increased from

26–27 million tons in 1975–76 to 43–44 million tons in

2007 (FAOSTAT; Fig. 1) while production has not

increased accordingly (Fig. 2).

Owing that, this review provides information on the

responses of various important legumes to low and high-tem-

perature regimes at different organizational levels and proposes

suitable measures to manage such temperature stresses.

The harmful effects of temperature stress are summa-

rized below in the context of legumes.

Vegetative phase

Stressful temperatures affect the plants at all stages of devel-

opment. Unfavorable temperatures can directly influence seed

germination and emergence, early survival and growth of

seedlings, e.g., in chickpea, chilling stress during germination

not only enhanced the susceptibility to soil-borne diseases, but

also led to poor crop establishment and even seedling death

(Croser et al. 2003). Likewise, low temperature (1 �C for 4, 6

and 8 h) exposures led to early vegetative phase damage in

soybean (1 �C; Posmyk et al. 2005), pea (3 �C for variable

durations for different experiments; Badaruddin and Meyer

2001), broad bean (5 �C for 24 h; Hamada 2001), chickpea

[(less than 10 �C from the onset of podding till maturity) Kaur

et al. (2008); (-10 �C for 15 and 30 min) Heidarvand et al.

2011], and complete seedling death under extreme cold

(Badaruddin and Meyer 2001).

High temperatures also potentially harm seed vigor,

seed germination, seedling emergence and survival (Wahid

et al. 2007) as observed in various legumes, e.g., alfalfa

(Medicago sativa; Mingpeng et al. 2010), mungbean (Ku-

mar et al. 2011a), and chickpea (Kaushal et al. 2011;
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Fig. 1 Global food

consumption of some important

legumes from 1975 to 2007.

Pulses and soybean oil demand

increased while that of

groundnut oil hardly changed

Source: FAOSTAT; http://

faostat3.fao.org

Fig. 2 Global pulse production

from 1980 to 2004 Source:

FAOSTAT; http://faostat3.fao.

org
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Piramila et al. 2012). Heat tolerance in three prominent

legumes—bean, pea and soybean was investigated under

different (D/N) temperature regimes—control (20 �C/

10 �C), moderate high stress (MHT; 25 �C/25 �C) and

severe heat stress (SHT; 30 �C/30 �C). As anticipated, the

maximum heat stress injury was observed under SHT, with

regard to reduced seedling length and increased dead seed

percentage (Nemeskèri 2004). Growth of pea seedlings

decreased, when subjected to heat shock (45, 50 �C), but

surprisingly, the effects of heat injury were circumvented

by pre-exposing the heat-stressed seedlings to chilling

temperatures (Shereena and Salim 2006). Likewise, severe

damage to mungbean seedlings was noticed in terms of

mean seedling germination, growth and heat tolerance

index upon exposure to 50 �C for 2 h in mungbean

(Mansoor and Naqvi 2011) and 35–50 �C for 4 h in lentil

(Chakraborty and Pradhan 2011). High temperatures sim-

ilarly affected alfalfa plants resulting in stunted growth,

increased susceptibility to diseases and even plant death in

extreme cases (Mingpeng et al. 2010). Heat tolerance

evaluation of some important food legumes, exposed to

heat stress, revealed the following order: groundnut (most

tolerant)[ soya bean[ pigeon pea[ chickpea (least tol-

erant) on the basis of membrane stability and photosystem

(PSII) function (Srinivasan et al. 1996). Such a compara-

tive evaluation of all legumes under a similar set of

experimental conditions would provide greater insight

towards their relative sensitivities to low and high tem-

peratures and such similar studies are in need for other

legumes as well under varied temperature regimes.

Reproductive development

Among all stages in a plant life cycle, reproductive phase is

the most temperature vulnerable to many external con-

straints (Hedhly et al. 2008; Thakur et al. 2010). Unfa-

vorable temperatures at this stage impair flower set and

flower retention, gametophyte development, followed by

ovule abortion, reduced fruit set and impaired grain filling

(Fig. 3), eventually leading to the yield losses (Table 2).

Cool-season legumes, i.e., chickpea, lentil, pea and bean

are sensitive to low temperature, especially during pod

formation and seed filling (Maqbool et al. 2010). Low

temperatures impair carbohydrate metabolism leading to

energy-deprivation of various reproductive tissues such as

tapetum, style and endosperm resulting in gametophyte

sterility (Nayyar et al. 2005b; Oliver et al. 2005). Failed

chickpea fertilization has been attributed to reduced pollen

tube growth in the style thus leading to no pod set in cold-

stressed plants (Clarke and Siddique 2004). Such obser-

vations were further extended by fluorescence studies

which identified the loss in pollen load, reduced pollen

germination on the stigmatic surface and reduced pollen

tube growth under very low temperatures, thus leading to

the fertilization failure (Kumar et al. 2010).

Low-temperature damage to phenology and grain filling

has been well documented in various legumes (Table 2).

Grain filling depends on the source–sink relationship,

which declines under low temperature due to a reduction in

the duration and rate of grain filling, and inhibition of

accumulation of storage proteins, minerals and amino

Fig. 3 Various effects of temperature stress on reproductive development stages in legumes
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acids, as reported in chilling-stressed chickpea plants

(Nayyar et al. 2007). In soybean, exposure to cold stress at

flowering and podding stages reduced the yield drastically

as compared to the same exposure at maturity (Board and

Kahlon 2011) and the damage was more pronounced in

cold-sensitive varieties (Kurosaki and Yumoto 2003).

Severe chilling injury was also observed in pea acces-

sions from 34 countries at flowering and podding (Shafiq

et al. 2012). The low-temperature damage in pea resulted in

the appearance of aborted buds, flowers and fruit pods and

smaller seeds. Such observations could be used to screen

for cold-resistant and cold-tolerant accessions of various

legumes and to develop new cold-tolerant varieties.

A rise of even 1–2 �C above the threshold temperature

critically impairs the yield and related attributes of legumi-

nous crops (Barghi et al. 2012; Kumar et al. 2013) as

reported in snap bean (Omae et al. 2007; Kumar et al.

2008a), soybean (Board and Kahlon 2011; Djanaguiraman

et al. 2011), and chickpea (Kumar et al. 2013). In chickpea,

the yield loss has been proposed to be due to the heat stress

which induced multiple structural and functional abnor-

malities such as callose deposition in both pollen as well as

stigma, the former has been reported to be clearly more

sensitive (Devasirvatham et al. 2013). Likewise, in green/

snap bean, heat-tolerant genotype had higher pollen viability

than sensitive one producing abnormal pods and abscised

flowers at high temperatures (Suzuki et al. 2001, 2003)

which was attributed to the greater loss of relative tissue

water content (RWC) and leaf water potential (LWP; Omae

et al. 2005; Tsukaguchi and Egawa 2006). Ultrastructural

studies revealed that pollen sterility was due to degenerated

tapetum owing to heat stress (Suzuki et al. 2001). In lentil,

15 �C was the most favorable temperature for pollen ger-

mination and pollen tube growth, with higher temperatures

adversely affecting pollen tube growth (Barghi et al. 2013).

Not only cool-season legumes are susceptible to high

temperatures; some warm-season legumes such as cowpea

have experienced a reduction in pod set in response to the

moderately to high night temperatures (Thiaw and Hall

2004). The relationship between yield loss and heat stress

was so strong that yield and related attributes were advocated

in the screening of heat-tolerant and heat-sensitive chickpea

genotypes by exposing a reference collection of chickpea

germplasm to supra-optimum temperatures at their repro-

ductive phase (Krishnamurthy et al. 2011). Thus, various

legumes are sensitive to both low and high-temperature

stress from the vegetative to reproductive stage, resulting

both in metabolic, reproductive and yield losses (Table 3).

Further studies are needed to dissect the sensitivity of

various reproductive stages to the contrasting temperatures.

In addition, molecular mechanisms of pollen development

under cold or high-temperature stresses including genes

responding to temperature stress need to be further

elucidated. Identifying mechanisms associated with repro-

ductive temperature tolerance at different organizational

levels in various legumes will be achieved more easily if

contrasting genotypes with a relevant phenology are used.

Cell membranes

Under low temperatures, membranes get more static

thereby reducing fluidity and as a result, the membrane is

more rigid and may lose its function (Jewell et al. 2010).

The phase transitions in mungbean cell membranes were

acknowledged as a pioneering study on legumes (Raison

and Orr 1986). Five-day-old seedlings subjected to low

temperature (4 �C) had an irreversible chilling injury

inferred from increased electrolyte leakage (Chang et al.

2001). The solute leakage apparently resulted from dis-

ruption of the plasma membrane and tonoplast and the

results were in agreement with similar studies in broad

bean (Hamada 2001), chickpea (Croser et al. 2003; Nayyar

et al. 2005a), and mungbean (Saleh 2007).

Membranes are also the primary sites of injury under

heat stress (Wise et al. 2004) since high temperature affects

membrane structure and function by increasing membrane

fluidity (Wahid et al. 2007), and also activates the lipid-

based signaling pathways (Horváth et al. 2012). Cellular

membranes are susceptible to heat injury due to structural

modification of component proteins leading to increased

membrane permeability and hence increased electrolyte

leakage which serves as an indicator of membrane damage

and has been used to evaluate the thermostability of cell

membranes also under heat stress.

The effects of high temperature on cell membranes have

been studied in mungbean (Collins et al. 1995) and

chickpea (Kumar et al. 2013). Higher membrane damage

was observed in sensitive chickpea genotypes at 40/30 �C
(D/N), which was further aggravated at 45/35 �C (D/N;

Kumar et al. 2013). The extent of membrane injury can be

thus used as a criterion for evaluating relative heat sensi-

tivity of different genotypes, as studied in chickpea (Ibra-

him 1994) and cowpea (Ismail and Hall 1999). Likewise,

Srinivasan et al. (1996) tested cell membrane thermosta-

bility and correlated it with heat sensitivity in various

legumes in the following order: groundnut (most toler-

ant)[ soybean[ pigeon pea[ chickpea (most sensitive).

Similar studies on cool-season legumes (chickpea, faba

bean and lentil) revealed membrane thermostability to be

closely related to plant heat tolerance (Ibrahim 2011).

Recently, the heat tolerance studies on nine lentil geno-

types, subjected to different temperatures ranging from 15

to 45 �C with 10 �C interval, proposed 15 �C to be the

most favorable temperature as subsequent higher temper-

atures increased the electrolyte leakage due to heat stress-

Acta Physiol Plant (2017) 39:68 Page 5 of 22 68

123



inflicted membrane damage (Barghi et al. 2013). Heat-in-

duced membrane damage has also been reported in broad

bean (Mansoor and Naqvi 2013), chickpea (Kumar et al.

2013) and soybean (Djanaguiraman et al. 2011).

On the whole, membrane damage can conveniently be

considered a reliable indicator of stress tolerance in

legumes and can be effectively employed to screen these

crops for cold or heat tolerance.

Metabolic effects

Photosynthesis and respiration

The rate of photosynthesis varies in different plant species

and is temperature dependent (Hikosaka et al. 2006). Low

temperatures and high light intensity bring about photo-

oxidation of the photosynthetic machinery in chickpea

(Nayyar et al. 2005a, b, c, d) which impairs electron

transport, deactivates rubisco and closes stomata resulting

in reduced CO2 assimilation (Allen and Ort 2001). Low

temperature affects the activity of enzyme ribulose activase

(RCA), changes the availability of large and small subunits

of rubisco, disrupts PSII oxygen-evolving complex (OEC)

and damages the structure and functioning of D1 and D2

polypeptides of PSII (Aro et al. 1990). While studying

temperature sensitivity in two pea cultivars, Georgieva and

Lichtenthaler (2006) found that chlorophyll fluorescence

and the chl/car ratio decreased while the chl a/b ratio

increased under cold stress. Photosynthesis declined in

soybean by more than 50% when subjected to only one

night of chilling treatment (Van Heerden and Krüger 2000;

Van Heerden et al. 2003). Chilling inhibited photosynthe-

sis, which was further confirmed in soybean (Board and

Table 2 Temperature-sensitive reproductive developmental stages in various legumes

Developmental

stage

Effects Cold stress (references) Heat stress (references)

Pre-fertilization Impaired microsporogenesis and

megasporogenesis

Cicer arietinum (Kumar et al. 2010)

Glycine max (Ohnishi et al. 2010)

Phaseolus vulgaris (Porch and Jahn

2001; Suzuki et al. 2001)

Loss of pollen viability Cicer arietinum (Kumar et al. 2010) Cicer arietinum (Kumar et al. 2013)

Loss of pollen germination Cicer arietinum (Srinivasan et al. 1999)

Glycine max (Koti et al. 2004; Salem et al.

2007)

Phaseolus vulgaris (Porch and Jahn

2001)

Arachis hypogaea (Kakani et al. 2005)

Cicer arietinum (Kumar et al. 2013)

Lens spp. (Barghi et al. 2013)

Pollen tube growth inhibition Cicer arietinum (Clarke and Siddique

2004; Kumar et al. 2010)

Glycine max (Koti et al. 2004; Salem et al.

2007)

Arachis hypogaea (Kakani et al. 2005)

Cicer arietinum (Kumar et al. 2013)

Lens spp. (Barghi et al. 2013)

Loss of stigma receptivity Cicer arietinum (Nayyar et al. 2005b;

Kumar et al. 2010)

Cicer arietinum (Kumar et al. 2013)

Loss of ovule viability Cicer arietinum (Srinivasan et al. 1999;

Nayyar et al. 2005b)

Cicer arietinum (Jakobsen and Martens

1994)

Phaseolus vulgaris: (Gross and Kigel

1994)

Abscised flowers Pisum sativum (Shafiq et al. 2012) Glycine max (Board and Kahlon 2011)

Fertilization Fertilization arrest Cicer arietinum (Clarke and Siddique

2004)

Glycine max (Ohnishi et al. 2010)

Cicer arietinum (Kumar et al. 2013)

Post-

fertilization

Reduced embryogenesis Cicer arietinum (Srinivasan et al. 1999;

Nayyar et al. 2005b)

Cicer arietinum (Kumar et al. 2013)

Decreased ovule number and

increased ovule abortion

Cicer arietinum (Srinivasan et al. 1999) Cicer arietinum (Kumar et al. 2013)

Abnormal pod formation and seed

filling

Glycine max (Kurosaki and Yumoto 2003;

Funatsuki et al. 2004)

Phaseolus vulgaris (Djanaguiraman et al.

2013)

Poor seed quality Cicer arietinum (Nayyar et al. 2005c;

Kumar et al. 2010)

Pisum sativum (Shafiq et al. 2012)

Glycine max (Board and Kahlon 2011)

Cicer arietinum (Kumar et al. 2013)

The effects are indicated along with respective references
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Kahlon 2011), common bean (Tsonev et al. 2003), and

broad bean (Vicia faba; Hamada 2001). The OJIP test

(fluorescence induction transient defined by the names of

its intermediate steps) measures rapid fluorescence tran-

sients (Strasser and Strasser 1995) and hence gives a clear

idea about the efficiency of photosynthetic machinery,

especially PSII function. The OJIP test thus can indicate

stress in plants before appearance of symptoms on the

leaves (Christen et al. 2007). When conducted on beans,

this test revealed that cold-induced photosynthetic

machinery damage was due to impeded chlorophyll a flu-

orescence (Goltsev et al. 2010).

An initial increase in temperature may increase photo-

synthetic activity, but prolonged exposure above the nor-

mal growth temperature range inhibits photosynthesis

(Schuster and Monson 1990). Supra-optimal temperature

deteriorates photosynthetic pigments and carboxylation

function (Kumar et al. 2013) and damage photosynthetic

machinery especially the thylakoid lamellae (Hamada

2001; Tambussi et al. 2004). Chlorophyll fluorescence

parameters also decreased remarkably in heat-sensitive

common bean genotypes over tolerant one (Petkova et al.

2007). Even short exposure to temperatures above 40 �C
disrupted the normal functioning of PSII and impaired the

structure and functioning of related proteins and enzymes

in soybean (Board and Kahlon 2011) and bird’s foot trefoil

(Lotus japonicus; Sainz et al. 2010). The studies carried out

by Kumar et al. (2013) on the response of chickpea

genotypes to heat stress also corroborated the heat sensi-

tivity of photosynthetic machinery, which correlated with a

severe reduction in growth and yield (Kaushal et al. 2013).

However, some reports state that under moderately high

temperature (35 �C), the functional potential of the pho-

tosynthetic apparatus was preserved, e.g., in pea (Haldi-

mann and Feller 2005).

Thus, the performance of plants under temperature stress

is directly related to their photosynthetic efficiency, and

research aimed at elucidating detailed mechanisms under-

lying the response of photosynthetic machinery to tem-

perature stress in terms of photosynthetic rate and

chlorophyll fluorescence will provide a better understand-

ing of the correlation between the two, and hence, may be

used in screening large numbers of genotypes for temper-

ature tolerance in food legumes.

Respiration in plants is a temperature-sensitive process

and an initial increase in response to chilling has been

reported (Kaur et al. 2008). A 68% decrease in cellular

respiration was reported in chickpea (Nayyar et al. 2005c)

at very low temperatures (5 �C/13 �C), possibly due to

changes in mitochondrial structure, less kinetic energy and

Table 3 The proposed stressful temperature ranges for various legumes and their effects

Plant Stressful

temperature

Stage Effects References

Glycine max 42–43 �C Vegetative stage Damaged PSII Ferris et al. (1998)

Above 35 �C Reproductive stage Abscised flowers

Reduced yield

Koti et al. (2004)

Salem et al. (2007)

Cicer arietinum Below 15 �C Reproductive stage

Grain filling

Abscised flowers

Reduced pod set

Reduced yield

Srinivasan et al. (1999)

Clarke and Siddique (2004); Nayyar

et al. (2005c)

35/16 �C Flower and pod formation Reduced yield Wang et al. (2006)

45/35 �C
Above 32/20 �C

Reproductive stage Damaged PSII

Reduced rubisco activity and

sucrose content

Kumar et al. (2013)

Kaushal et al. (2013)

Vicia faba 5 �C for 1 day Vegetative stage Impaired growth, decreased

photosynthesis

Hamada (2001)

42 �C for 1 day Vegetative stage Impaired growth, decreased

photosynthesis

Hamada (2001)

Phaseolus

vulgaris

10 �C Vegetative stage Damaged PS II Tsonev et al. (2003)

Cajanus cajan Below 10 �C Seed germination till early

growth

High mortality Sandhu et al. (2007)

Pisum sativum -4.8 �C for 4 h Reproductive stage

Grain filling

Abscised flowers

Reduced pod set

Reduced yield

Shafiq et al. (2012)

Lupinus

angustifolius

Above 27 �C Reproductive stage Floret sterility

Reduced yield

Redden et al. (2013)
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impaired structure and function of some important house-

keeping proteins and enzymes related to cytochrome

activity, ubiquinone synthesis and phosphorylation reac-

tions related to ATP-dependent metabolism (Munro et al.

2004). In some cases, respiration rates continue to be ele-

vated even when cold exposure ends; this has been attrib-

uted to irreversible changes in metabolic machinery and

generation of some high-energy intermediates (Yadegari

et al. 2008). Under low temperature, the conventional

cytochrome pathway of electron transport is inhibited such

that, to improve the respiration rate, plants shift to alter-

native respiration pathways, i.e., AOX (alternative oxidase)

and PUMP [(plant uncoupling mitochondrial protein)

Vanlerberghe 2013; Chocobar-Ponce et al. 2014]. The

involvement of alternative pathways is evident from the

increased levels of AOX protein and cyanide-resistant

respiration in the mitochondria (Vanlerberghe 2013), as

observed in fully grown leaves of cold-stressed mungbean

and pea (Gonzalez-Meler et al. 1999); however, the

specific AOX gene isoforms preferentially expressed in

legumes need to be tested yet. The findings were further

corroborated in common bean seeds subjected to different

cold treatments. The seeds at normal temperature respired

normally for 1 week. However, at -19 �C seeds respired

for only 1 day and at 3 �C seeds respired for 5 days where

the rate of respiration was even higher than at normal

temperature. This adaptive behavior was attributed to the

involvement of AOX and PUMP pathways (Srivastava

et al. 2016). Some studies have suggested a possible cross-

talk between alternative pathways and other stress miti-

gating mechanisms such as SA (salicylic acid)-mediated

stress response in providing low temperature resistance

(Lei et al. 2010).

Respiratory pathway has been found to be more heat

sensitive than photosynthetic pathway. Respiration is

directly related to minimum air temperature and high

temperatures result in increased respiration and hamper

biomass and yield (Hatfield et al. 2011). High night tem-

perature-induced yield loss in soybean was also credited to

increased respiration and decreased photosynthesis

(Djanaguiraman et al. 2013). In response to an initial

increase in temperature, rate of respiration increases

exponentially but later plunges significantly (Hasanuzza-

man et al. 2013). Decreased respiration under high tem-

perature has been reported in chickpea (Kumar et al. 2013)

and was most likely due to impaired structure and function

of mitochondrial enzymes associated with electron trans-

port chain as reported in some non-leguminous crops such

as rice (Oryza sativa; Mohammed and Tarpley 2009),

tomato (Sato et al. 2003) and turf grasses (Festuca arun-

dinacea L., Poa pratensis L.; Jiang and Huang 2001).

Very sparse information is available in literature on the

effects of heat stress on respiration-related biochemical

pathways. Evaluation of expression of some key

enzymes/genes related to photosynthesis and respiration

functions, simultaneously, in contrasting genotypes of

various legumes growing under temperature extremes

would reveal some useful insight on mechanisms associ-

ated with yield losses. Especially, profiling of endogenous

levels of ATP, NADPH/NADH pool would be useful to

assess the redox potential and energy status of the tissue

under different temperature regimes.

Effects at ultrastructural levels

Damage to cellular components at ultrastructural levels, in

response to temperature stress, has been well researched

(Fig. 4). The extent of damage depends on the relative

sensitivity of the various organelles and the severity and

damage of the temperature stress (Lee et al. 2002). On the

basis of chilling experiments conducted by Wilson (1987)

on pea and bean, various organelles can be arranged in

decreasing order of chilling sensitivity: plastids[mito-

chondria[ peroxisome[ nuclear envelope[ tono-

plast[ plasmalemma. Chilling-stressed (28 �C dark

grown) plants showed irreversible etiolation indicating

damage to chloroplasts at the ultrastructural level and

suppression of 12 chloroplast-related cos (cold-suppressed)

genes (Yang et al. 2005).

Chilling-induced structural aberrations were noticed in

mungbean (Ma et al. 1990) were manifested in the form of

fewer and smaller starch granules and vesiculation of the

inner chloroplastic membrane leading to the formation of

peripheral reticulum. If unfavorable low temperatures

continued further, the chloroplasts deteriorated by devel-

oping lipid granules, reducing or eliminating starch gran-

ules, unstacking grana, disintegrating membranes and even

intermixing of chloroplastic and cytoplasmic content as

observed in cultured mungbean cells (Ishikawa 1996).

Likewise, chilling-inflicted ultrastructural damage in

mitochondria was reported as swelling and vacuolation,

membrane vesiculation, enlarged and deformed cristae or

loss of cristae, membrane disruption or even complete loss

of its contents thereby becoming transparent and resulting

in intermixing of mitochondrial and cytoplasmic content

(Kratsch and Wise 2000; Lee et al. 2002); however, further

details about organelle behavior during recovery phase are

not available for legumes. In cultured mungbean cells

subjected to chilling, nuclei shape was distorted, the

nuclear envelope was expanded, and chromatin material

condensed. Moreover, fibrillar and dense material mas-

sively accumulated in the nucleoplasm and cytoplasm

(Ishikawa 1996). Detailed studies reveal the cytoplasm and

organelle content intermixing to be due to disorganization

of cytoskeleton resulting in cell plasmolysis followed by
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vacuolation of cytoplasm and cellular organelles. Cellular

content-laden vesicles then fuse with these vacuoles.

Simultaneously, organelles are digested and aggregate into

a single large vacuole and undergo phagocytosis, remark-

ably similar to programmed cell-death events. The stress

recovery of different organelles is, however, species-de-

pendent thereby making it almost impossible in case of

extremely sensitive plants (Kratsch and Wise 2000). Other

deformities included cells losing their shape and swelling,

disrupted plasmalemma, disorganized tonoplast, enlarged

Golgi vesicles, and increased vesiculation of ER. Chilling-

induced aberrations in the cell wall and plasma membrane

have been reported in mungbean (Yamada et al. 2002).

On the other hand, reports of ultrastructural damage

under high temperature are not available for legumes;

however, serious ultrastructural damage in non-leguminous

crops has been well reported, e.g., damaged chloroplasts in

turfgrass (Xu et al. 2006) and damaged mesophyll tissue,

disorganized cristae and emptied mitochondria in grapes

(Vitis vinifera; Zhang et al. 2005) and maize (Zea mays;

Karim et al. 1997). Exploring the effects of heat stress on

ultrastructure in legumes to determine the extent of damage

at the organelle level would be useful to link mechanisms

associated with heat tolerance. Observations on genotypes

differing in cold or heat sensitivity would reveal finer

cellular adaptations, which might be useful for further

investigation of the tolerance-associated mechanisms.

Symbiotic nitrogen fixation

Legumes contribute to about 40% of the biologically fixed

nitrogen and hence increase soil fertility and decrease

reliance on nitrogen fertilizers thereby, minimizing envi-

ronmental and socio-economic hazards due to the indis-

criminate use of fertilizers (Yadav 2008). However, the

nitrogen-fixing ability of various bacterial strains is sus-

ceptible to numerous adverse conditions (Alexandre and

Oliveira 2013; Niste et al. 2013) especially temperature

(Fig. 5). Sub-optimal temperatures prolong root infection

and impede nodule development and nitrogenase activity

(Drouin et al. 2000). Under low temperatures, the pro-

duction and secretion of Nod factors by Rhizobium legu-

minosarum bv. trifolii decreased thus retarding growth in

alfalfa (Rice and Olsen 1988) and soybean (Lynch and

Smith 1993). The threshold temperature for marked

nodulation interruption is legume specific, e.g., common

bean and soybean have a similar threshold whereas lentil is

comparatively cold tolerant in such a way that only tem-

peratures below 10 �C substantially diminish nodulation

(Lira et al. 2005). The earliest account of heat shock pro-

teins (HSPs) and cold-shock proteins (CSPs) induction in

rhizobial strains, similar to other bacteria, was reported in

heat as well as cold-treated temperate and arctic rhizobial

strains (Cloutier et al. 1992). The findings were further

confirmed in Sinorhizobium meliloti where a cspA cold-

Fig. 4 Effects of temperature stress on various organelles of a plant cell
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shock operon similar to E. coli cspA was found (O’Connell

and Thomashow 2000) followed by similar studies in R.

leguminosarum bv. viciae (microsymbiont of Lotus

japonicus, capable of growing at 5 �C; Drouin et al. 2000)

and Rhizobium DDSS69 strain (symbiont of Sesbania

cannabina; Sardesai and Babu 2001). The CSPs generated

by cold-tolerant rhizobia bind to nucleic acids and maintain

gene expression at low temperatures.

The temperature sensitivity of rhizobia, in turn, directly

affects the nitrogen fixation in legumes, e.g., two soybean

genotypes, differing in chilling sensitivity, under cold stress

showed impaired nodule respiration, nitrogenase activity

and NifH and nifK mRNA. After cold recovery, the cold-

tolerant genotypes kept nodule respiration unlike the sensi-

tive genotype, thereby fixing limited nitrogen and reducing

nitrogen availability to the plant (Van Heerden et al. 2008).

While temperatures below 10 �C result in poor nodu-

lation as well as rhizobial growth, some strains of Rhizo-

bium and Bradyrhizobium, particularly from arctic and sub-

arctic regions, are adapted to temperatures as low as 4 �C
(Van Heerden et al. 2004). These well-adapted rhizobia are

markedly competitive and could be used to improve sym-

biotic nitrogen fixation and hence the legume yield grown

under cold conditions (Prévost et al. 1999), e.g., inocula-

tion of soybean with Bradyrhizobium japonicum isolated

from cold soils in Japan (Lynch and Smith 1993) and

temperate legume sanfoin (Onobrychis viciifolia) with

rhizobial strains indigenous to Canadian high arctic (Pré-

vost et al. 1999) effectively ameliorated dry matter, yield

and nitrogen-fixing efficiency under low temperatures.

Compared to studies on cold stress, the impact of heat

stress on rhizobia has been thoroughly studied (Lira et al.

2005). Although high-temperature stressed common bean

plants (35 or 38 �C; 8 h/day) formed nodules, they were

inefficient in nitrogen fixation and the control plants (grown

at 28 �C) when exposed to even higher temperatures (40 �C;

8 h/day) at the flowering stage, displayed a substantial

reduction in nitrogenase activity and hence nitrogen-fixation

(Hungria et al. 1993). In a parallel study, no nodules were

formed in peanut at 40 �C and soybean at 37 �C (Hungria

and Vargas 2000), and it was further established that heat

tolerance of Bradyrhizobium directly affects the symbiotic

efficiency between the bacterium and host soybean at all

stages of legume–rhizobium symbiosis (Yadav and Nehra

2013). Further, the correlation between thermo-tolerance

and nitrogen-fixation efficiency of rhizobial strains has been

demonstrated in some studies worldwide, e.g., Bradyrhizo-

bium and Rhizobium strains capable of surviving at high

temperatures showed efficient nitrogen-fixation also under

heat stress (Kishinevsky et al. 1992; Nehra et al. 2007).

Tolerant strains of Mesorhizobium, when exposed to heat

shock, had increased GroEL (HSP60) gene expression

Fig. 5 Effect of temperature on symbiotic nitrogen fixation. Unfavorable temperatures impair nodulation and nitrogen fixation resulting in low

solute production, transportation and synthesis of various heat and cold-shock proteins
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compared to susceptible strains (Alexandre and Oliveira

2011; Laranjo and Oliveira 2011). The GroEL (HSP60) is an

HSP that acts as a chaperone and also regulates nif gene

(Ribbe and Burgess 2001; Horwich and Fenton 2009). The

proteome profiling ofRhizobium tropici strain PRF81 grown

at 28 and 35 �C revealed up-regulation of about 59 different

proteins under heat stress including HSPs such as DnaK and

GroEL, along with various anti-oxidative proteins indicating

some cross-talk between heat and oxidative stresses (Gomes

et al. 2012). On the other hand, some additional studies have

contradicted the positive correlation between temperature

tolerance and symbiotic nitrogen fixation where either no

correlation was observed, as reported in Acacia nilotica

(Rustogi et al. 1996), Bradyrhizobium and Rhizobium

(Gopalakrishnan and Dudeja 1999) or a negative correlation

was reported, as observed in lentil (Moawad and Beck 1991).

On the whole, studies have strongly suggested temper-

ature-tolerant nitrogen-fixing rhizobial strains as an effi-

cient intervention in mitigation of temperature stress in

legumes either directly (by inoculation) or indirectly (by

providing genes) for raising temperature stress-tolerant

transgenic plants.

Temperature-induced oxidative stress

Abiotic stresses alter normal metabolic functioning of

plants, which have developed some mechanisms to adjust

to stress conditions including enhancing anti-oxidative

machinery, recently reviewed by us in temperature-stressed

crops (Awasthi et al. 2015). Reactive oxygen species

(ROS) are normally produced as byproducts of various

cellular oxidation processes (Perl-Treves and Perl 2002)

and act as useful secondary messengers (Gechev et al.

2006; Yan et al. 2006); however, there is a delicate balance

between ROS generation and its scavenging and over-

production can be harmful (Esfandiari et al. 2007).

Each plant has its own anti-oxidative system where

ROS-scavenging enzymes such as SOD (superoxide dis-

mutase), CAT (catalase), APO (ascorbate peroxidase),

POX (peroxidase) and GR (glutathione reductase) come

into play along with non-enzymatic antioxidants such as

glutathione (GSH), ascorbate (AsA) and carotenoids

(Hasanuzzaman et al. 2013). ROS quenching by anti-ox-

idative machinery is linked to stress tolerance, e.g., higher

cold tolerance was observed in plants with enhanced

activities of anti-oxidative enzymes in chickpea (Kumar

et al. 2011b) and alfalfa (Wang et al. 2009). Soybean

seedlings exposed to very low temperature (1 �C)

increased activities of anti-oxidative enzymes (Posmyk

et al. 2005). Similarly, Kaur et al. (2008) reported

increased activity of anti-oxidative enzymes in chickpea

pod walls to protect pods and developing seeds from

chilling injury. The chilling experiments carried out by

Wang et al. (2009) on alfalfa genotypes with diverse

chilling sensitivities showed that the chilling-tolerant

genotypes had higher anti-oxidative activity than the chil-

ling-sensitive genotypes. Likewise, Turan and Ekmekçi

(2011) exposed chickpea cultivars to low temperatures (2

and 4 �C) and reported enhanced activities of PSII and

anti-oxidative enzymes in acclimated plants.

ROS generation has been also reported under heat stress

(Potters et al. 2007) and is an indicator of cellular damage

due to lipid peroxidation and altered membrane perme-

ability. Under high temperatures, a plant’s anti-oxidative

system gears up for easing heat-induced oxidative stress as

observed in selected fabaceous plants such as chickpea

(Kumar et al. 2013), soybean (Djanaguiraman et al. 2011),

mungbean (Mansoor and Naqvi 2013) and lentil (Chakra-

borty and Pradhan 2011). Chickpea plants exposed to

45/40 �C (D/N) showed varied expression of enzymatic

(SOD, CAT, APX, GR) and non-enzymatic antioxidants

(AsA, GSH) (Kaushal et al. 2011). Lipid peroxidation and

H2O2 levels were higher at higher temperature, i.e., at

40/30 �C (D/N), which further increased when the tem-

perature reached 45/35 �C (D/N). Simultaneously, the

expression of enzymatic and non-enzymatic antioxidants

also increased at 40/30 �C but decreased with any further

increase in temperature. Similar observations were recor-

ded by Chakraborty and Pradhan (2011) in their heat

treatment experiments on lentil, where tolerant varieties

had higher anti-oxidative properties than sensitive ones

when exposed to high temperatures (35–45 �C; D/N).

Mungbean exposed to high temperatures (50 �C for 2 h)

also expressed enhanced levels of anti-oxidative enzymes

such as CAT, POD, SOD and APO in thermo-tolerant

genotypes (Mansoor and Naqvi 2013). Ascorbic acid

(Kumar et al. 2011a) and glutathione (Nahar et al. 2015)

applications to heat-stressed mungbean decreased the

oxidative damage by improving the endogenous levels of

ascorbic acid, glutathione, proline and activating the

enzymes of glyoxalase system.

Considering the vital role of various antioxidants in

stress tolerance, further studies should focus on the use of

these molecules on a wider plant range experiencing mul-

tiple stresses so as to validate their protective roles and to

get an insight into the key strategies exercised by the plants

in response to various stresses under field conditions.

Osmolytes and phytohormones under temperature
stress

Of all the molecules in cells affected by temperature stress,

osmolytes and phytohormones have drawn the most

attention. Endogenous levels of these molecules change to
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varying degrees in response to stress possibly as a pro-

tection mechanism against the adverse conditions. More-

over, their exogenous application has been beneficial in

ameliorating plant performance under stressful conditions.

Previously, we have reported the detailed roles of various

cryoprotectants involving osmolytes and phytohormones

(Bhandari and Nayyar 2014); here we limit ourselves only

to the discussion of their involvement in response to tem-

perature stress and their potential application in improving

stress tolerance.

The endogenous levels of proline were up-regulated in

various cold-stressed legumes, e.g., soybean (Yadegari

et al. 2008), chickpea (Kumar et al. 2010) and Medicago

spp. (Zhang et al. 2011) and the increase was positively

correlated to cold tolerance. In mungbean, an exogenous

supply of proline during seed priming alleviated chilling

injury (Posmyk and Janas 2007). Likewise, under heat

stress also the endogenous levels of proline increased and

particularly higher levels were observed in heat-tolerant

genotypes (Kumar et al. 2013) suggesting a vital role for

proline in heat tolerance. However, under extreme heat

stress, proline levels in cowpea were reduced resulting in

impaired pollen development (Tang et al. 2008). Thus,

exogenous application of proline proved helpful in miti-

gating heat stress in chickpea by maintaining the efficiency

of anti-oxidative machinery and carbon assimilation

enzymes even under elevated temperatures (Kaushal et al.

2011). Moreover, transgenic soybean plants overproducing

proline exhibited heat tolerance (de Ronde et al. 2004)

thereby confirming its protective role.

Under cold stress, glycine betaine (GB) content

decreased markedly in cold-stressed chickpea, which was

related to reproductive failures (Nayyar et al. 2005d).

Hence, the exogenous application of GB not only improved

the reproductive biology attributes, but also increased plant

biomass and yield. Similar cryoprotective effects of

exogenously applied GB were reported in Medicago (Zhao

et al. 1992) as well. The role of glycine betaine in the

alleviation of heat stress injury for legumes needs to be

explored though similar investigations in other crops such

as wheat (Wang et al. 2010) and barley (Li et al. 2014)

have already been reported.

Another protective biomolecule, salicylic acid (SA) has

also been reported to impart temperature stress tolerance.

Bean plants initially subjected to chilling (0 �C for 2 days)

followed by heat stress (54 �C for 3 h) treated with SA or

acetylsalicylic acid (ASA) showed 100% survival com-

pared with untreated plants due to improved anti-oxidative

machinery (Senaratna et al. 2000). Similar findings were

reported for pea (Srivastava and Dwivedi 1998) and sug-

gested by Chen et al. (1997) in rice. Results were further

validated in heat-stress experiments in chickpea (Chakra-

borty and Tongden 2005). Additionally, SA also helps to

initiate and maintain legume–rhizobia symbiosis particu-

larly during the initial stages of the plant–rhizobium

interaction (Mabood and Smith 2007). The endogenous

levels of SA are thus positively co-related with temperature

tolerance and further studies on legumes in this regard will

provide better insight about its role under adverse

temperatures.

The role of an extra class of biomolecules, polyamines

(PAs) has also been proposed. Cryoprotective role of PAs

under low temperature stress has been reported in many

studies (Groppa and Benavides 2008; Alcázar et al. 2010).

Similar to other osmolytes, chilling-tolerant plants had

higher PA levels than relatively sensitive Phaseolus spp.

(Guye et al. 1986) and chickpea plants (Nayyar and

Chander 2004; Nayyar 2005). Exogenous PA treatment

hence alleviated cold-induced oxidative stress in chickpea

by increasing endogenous levels of putrescine along with

various enzymatic and non-enzymatic antioxidants (Nayyar

and Chander 2004). Supplementation with exogenous PAs

helped to maintain yield and other yield-related attributes

in winter-sown chickpea under cold-stressed conditions

(Nayyar 2005). Exogenous polyamines (putrescine, sper-

midine and spermine) supplementation augmented seedling

growth by maintaining membrane stability in heat-stressed

soybean (Nahar et al. 2015) by reducing oxidative damage

in heat-stressed pea (Todorova et al. 2016).

Besides, other molecules such as nitric oxide (NO),

abscisic acid (ABA) and brassinosteroids (BRs) may also

serve as potential cryo- and thermoprotectants. Endoge-

nous levels of NO were elevated in response to low tem-

peratures in bird’s foot trefoil (Shimoda et al. 2005) and

pea (Corpas et al. 2008) and to short-term heat stress in

alfalfa (Leshem 2001), thus suggesting its possible

involvement in temperature stress responses. The

involvement of NO in ABA-induced improvement in anti-

oxidative defenses in chilling-stressed Brazilian lucerne

(Stylosanthes guianensis) has also been reported (Zhou

et al. 2005). Application of exogenous NO in the form of

SNP (sodium nitroprusside as NO donor) during heat shock

in mungbean maintained photosynthetic machinery stabil-

ity, membrane integrity and improved the anti-oxidative

defense (Yang et al. 2006). It also improved the chloro-

phyll concentration in pea (Leshem et al. 1997) and ame-

liorated heat shock damage in mungbean leaves (Yang

et al. 2006). NO may interact with plant hormones to

influence the stress response.

Extensive studies on ABA mutants of alfalfa confirmed

the role of ABA in chilling tolerance (Mohapatra et al.

1988). Exogenous application of ABA is effective for cold

stress mitigation when applied alone (Bakht et al. 2006) or

in combination with other compounds such as SA (Szalai

et al. 2011), as seen in chickpea (Nayyar et al. 2005a;

Kumar et al. 2008b). Exogenous supplementation with

68 Page 12 of 22 Acta Physiol Plant (2017) 39:68

123



ABA not only mitigated stress injuries in chickpea by

improving pollen viability and germination, but also

improved yield and oxidative stress defense mechanisms

(Kumar et al. 2008b). Under heat stress, endogenous ABA

levels have reportedly increased suggesting its involvement

in thermo-tolerance (Robertson et al. 1994; Teplova et al.

2000), which was further confirmed in chickpea by Kumar

et al. (2012).

Brassinosteroids (BRs), naturally occurring steroid

hormones, have also been implicated in temperature stress

tolerance. The growth of chilling-stressed mungbean epi-

cotyls improved with the application of exogenous 24-BR

(Huang et al. 2006), which was in compliance with earlier

studies on groundnut (Vardhini and Rao 1998). The ben-

eficial effects of BRs have been reported under both cold

stress and heat stress in mungbean (El-Bassiony et al.

2012). Also, application of BRs improved growth and

biomass in these crops under temperature stress, thereby

substantiating the similar reports by Upreti and Murti

(2004) in water-stressed French bean.

Scarce data are available on the role and involvement of

various thermoprotectants in temperature-stressed legumes.

In view of their diverse and multiple roles in stress

response, it would be vital to examine their endogenous

levels in contrasting genotypes and to establish correlations

with level of tolerance. Further, it would be worthwhile to

investigate all these molecules at the same time in tem-

perature-stressed legumes to examine their integrative role.

The exogenous application of these molecules to temper-

ature-stressed legumes needs to be extended to several

species to authenticate their role in stress tolerance.

Screening and breeding for temperature tolerance

In order to cope up with the ever-fluctuating temperature

extremes (to which various legumes are exposed), efforts

are being made to develop more tolerant plant varieties.

Selection of temperature-tolerant lines has been done using

various methods. Classically, two criteria have been fol-

lowed to evaluate the tolerance of generated lines: survival

percentage and empirical scoring. Yield-related attributes

such as the number of filled pods, number of seeds and

harvest index can also be used to select better plants (Canci

and Toker 2009; Gaur et al. 2015). Additionally, pollen-

based screening marker-assisted selections along with

gametophytic selection and precise phenotyping can be

employed for better temperature stress tolerance evaluation

(Clarke et al. 2004; Gaur et al. 2015).

Using wild relatives of various cool-season legumes in

breeding experiments is one strategy to address cold tol-

erance (Muehlbauer et al. 1994). Wild species have been

collected from their supposed centers of origin (Van der

Maesen and Pundir 1984; Muehlbauer et al. 1990) to serve

as a potential genetic source of tolerance genes to various

abiotic and biotic stresses. However, some classical plant

breeders emphasize the need to first use the genomes of

already-cultivated crops (Hawtin et al. 1988). Nevertheless,

full use of wild germplasm has been limited due to the

crossability barrier, the basis of which Harlan and de Wet

(1971) divided various wild species into primary, sec-

ondary and tertiary gene pools (Table 4). The primary gene

pool consists of species which can freely interbreed and

produce fertile progenies while interbreeding is limited in

Table 4 Primary, secondary

and tertiary gene pool of some

important food legumes

(Muehlbauer et al. 1994)

Legume crop Gene pools

Primary Secondary Tertiary

Chickpea Cicer arietinum

Cicer reticulatum

Cicer echinospermum

– C. bijugum

C. pinnatifidum

C. judaicum

C. chorassanicum

C. montbretti

Lentil Lens culinaris ssp. culinaris

Lens culinaris ssp. orientalis

Lens culinaris ssp. odemensis

Lens nigricans ssp. nigricans

Lens nigricans ssp. ervoides

–

Pea Pisum sativum ssp. sativum

Pisum sativum ssp. elatius

Pisum sativum ssp. humile

Pisum fulvum –

Faba bean Vicia faba – V. narbonensis

V. hyaeniscyamus

V. galilaea

V. johannis

V. bithynica
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the secondary gene pool and hybrids are less fertile. In

tertiary gene pool, intercrossing is not feasible and, if

carried out, the progeny is sterile.

Following is an account of the potential genetic sources

(Table 5) identified worldwide for cold and heat tolerance

for various legumes.

Chickpea It is one of the most important cool-season

legumes and is temperature sensitive. Wild chickpea

germplasm, when screened, exhibited cold tolerance and

thus can be used in breeding experiments. The cold toler-

ance trait was found to be affected by additive and non-

additive gene actions along with other genic interactions

(Singh et al. 1994). Many studies have been conducted to

screen for heat-tolerant chickpea genotypes using param-

eters such as pollen viability, stigma receptivity and yield.

ICRISAT (International Crops Research Institute for the

Semi-arid Tropics) and ICARDA (International Center for

Agricultural Research in the Dry Areas) have identified

several heat-tolerant genotypes (Table 5) for both desi and

kabuli chickpea. Of these, ICCV92944 (desi chickpea) has

been released in developing countries such as India,

Myanmar and Kenya with supra-optimum temperature

exposures and is being quickly adopted by farmers (Gaur

et al. 2015).

Common bean It is among the heat-sensitive legumes with

yield severely affected by high temperatures. Tepary bean

(Phaseolus acutiflolius) is inherently heat tolerant and thus

has been exploited in various breeding experiments at

CIAT (International Center for Tropical Agriculture). The

derived interspecific lines have recorded higher yields even

Table 5 The genetic sources (cultivars/accessions/elite lines/germplasm accessions) identified for cold and heat tolerance in various legumes

Crop Cold tolerant References Heat tolerant References

Chickpea Hybrids of C. bijugum Verma et al. (1990) FLIP 87-59C Singh et al. (1996)

C. judaicum

C. pinnatifidum

C. reticulatum

Singh et al. (1995) FLIP 92-154C Toker and Cagirgan (1998)

ICCV 92944, ICCV 93952

ICCV 96970, ICCV 94954

ICCV 07102, ICCV 07110

ICCV 07109, ICCV 07118

ICCV 07117, ICCV 07105

ICCV 07108, ICCV95332

FLIP 87-59C

Salawa, Burguieg

S051708, S00998

S03308, S03525

S051702, S051412

S03302, S02266

S051685, S051703

Gaur et al. (2015)

C. echinospermum

ILC 8262, ILC 8617,

FLIP 87-82C

Malhotra (1998)

SP1.563, Gully, 940–26 O’Toole et al. (2001)

Faba beans Côte d’Or, BPL 4628 Duc and Petitjean (1995) Shendi Gaur et al. (2015)

ILB 12, ILB 14

ILB318, ILB 3187

ILB 2999

Olszewski (1996) Marawa

Lentil LC9978057, LC9977006 Hamdi et al. (1996) ILL2181, ILL 82 Gaur et al. (2015)

LC9977116, LC9978013

ILL759, ILL1878,ILL4400

ILL7155, ILL8146,ILL8611

ILL9832, Kafcas, Cifei, Ubek

ILL 5151, ILL5416

ILL 4587, ILL 956

ILL 598,

FLIP 2009-55L

Balochistan local, ILL5865 Ali et al. (1999) ILL 2507, ILL 4248 Gaur et al. (2015)

WA8649041

WA8649090

Kahraman et al. (2004)

ILL1878

ILL662, ILL857,

ILL975, ILL1878

Sarker et al. (2002)

Pea EFB33, Unrra Urbatzka et al. (2005) Arka Ajit Upreti et al. (2000)

W}urttembergische Acc. 623, 765 Srikanthbabu et al. (2002)
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under high-temperature conditions when compared with

common bean (Gaur et al. 2015).

Faba bean This legume is sensitive to water, cold and heat

stress. Studies evaluating winter hardiness and frost toler-

ance in faba bean genotypes have indicated that traits such

as changes in fatty acid composition, ion leakage and free

proline content are strongly correlated with frost tolerance

(Arbaoui et al. 2008; Link et al. 2010), and hence, may be

used for screening tolerant lines. Two heat-tolerant vari-

eties of faba bean (Shendi and Marawi) have been released

in Sudan (Table 5; Gaur et al. 2015).

Lentil Lens culinaris ssp. orientalis is considered the best

source for winter hardiness (Hamdi et al. 1996), and the

progenies thus generated have been listed among the elite

lines in Lentil International Trials (Erskine et al. 1994).

Numerous late-sowing experiments have reported heat

sensitivity in lentil and a few heat-tolerant genotypes have

been identified (Gaur et al. 2015).

Molecular approaches and efforts in developing
transgenics

Conventional plant breeding methods often transfer unde-

sirable donor DNA fragments which may be harmful and

should be removed (Vogan and Higgs 2011). Thus, a sys-

tem based on foreground and background selection

involving molecular markers and linkage maps was

devised to minimize transfer of undesirable genes. Genetic

linkage maps have been developed for various cool-season

legumes such as pea (Weeden and Wolko 1990; Ellis et al.

1992), lentil (Weeden et al. 1992; Simon et al. 1993) and

chickpea (Simon and Muehlbauer 1991, Flandez-Galvez

et al. 2003).

With the revolutionary progress made in technologies

such as gene isolation, promoter identification, gene

transfer to monocots or dicots, and tissue-specific gene

expression, transgenic approaches have surpassed classical

and neo-classical plant breeding techniques. From the

construction of BAC (bacterial artificial chromosome)

libraries (in chickpea the first one, Rajesh et al. 2004) for

map-based isolation of genes to the sequencing of entire

genomes of several pulses, e.g., pigeon pea (Singh et al.

2012; Varshney et al. 2011), chickpea (Varshney et al.

2013), soybean (Schmutz et al. 2010), bird’s foot trefoil

(Sato et al. 2008) and barrel medic or clover (Young et al.

2011), gene identification and isolation is now faster and

easier. Advances in molecular biology have brought

functional genomics within the reach of common labs,

enabling elucidation of gene function using a process

called reverse genetics.

Transgenics using genes from several sources have been

reported for some pulses (Table 6) such as Medicago spp.

and chickpea, and have outperformed wild types under

stressful temperatures, e.g., transgenic chickpea possessing

choline oxygenase gene from Arthrobacter globiformis

accumulated higher levels of glycine betaine thereby, tol-

erating low temperature stress (Pardha Saradhi and Shar-

mila 2003).

The complexity of tolerance mechanisms to low and

high temperatures, which involves several genes and many

regulatory pathways, is a major bottleneck in the selection

of one or a few genes that provide high levels of tolerance

to abiotic stresses in transgenic plants. Another challenge is

an incomplete understanding of mechanisms in tempera-

ture stress tolerance. Further studies to identify the genes

related to cold or heat tolerance in food legumes are needed

to assist in the development of temperature-tolerant

transgenics.

Our findings on genes controlling pollen function in

chickpea have revealed that stable sucrose metabolism in

anthers is vital which affects pollen development during

cold stress. Investigations on the regulation of expression

of differentially expressed genes in anthers of cold-tolerant

genotypes under cold stress indicated that the main cate-

gories of genes governing cold tolerance in anthers were

Table 6 List of some temperature stress-tolerant transgenic legumes

Transgenic plant Source Gene transferred Stress mitigated References

Medicago sativa Nicotiana

plumbaginifolia

Mn-SOD cDNA

Fe-SOD cDNA

Freezing tolerance

Enhanced ROS

dismutation

McKersie et al. (1993, 2000)

Cicer arietinum Arthrobacter globiformis cod A (choline

oxygenase)

Frost resistance Pardha Saradhi and Sharmila

(2003)

Medicago sativa Saccharomyces cerevisae ScTPS1-ScTPS2 Freezing, heat tolerance Suárez et al. (2009)

Medicago

truncatula

Medicago truncatula DREB1C Freezing tolerance Chen et al. (2010)

Medicago falcata Medicago falcata MfGolS1 Raffinose accumulation

Cold tolerance

Zhuo et al. (2013)
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carbohydrate/triacylglycerol metabolism, signal transduc-

tion, pollen development and transport (Sharma and Nay-

yar 2014). Most of the genes in these categories were up-

regulated. Regulation of gene expression suggests that

chickpea anthers use a dual cold tolerance mechanism

wherein anthers sustain development under cold by

enhancing triacylglycerol and carbohydrate metabolism

while pollen grains maintain normal development by reg-

ulating pollen development genes (Sharma and Nayyar

2014).

Final remarks and conclusions

Food legumes are sensitive to both high and low-temper-

ature conditions at all phases of development in general,

and reproductive phase in particular. The plants are

affected at various physiological, metabolic and ultra-

structural levels and hence ultimately experiencing a huge

yield losses. These crops, in response, evoke numerous

defense mechanisms, such as the accumulation of various

osmolytes, but their concentrations usually remain low for

a high degree of temperature tolerance. Under such cir-

cumstances, cell protection occurs by exogenous supple-

mentation of the osmolytes or by raising temperature-

resistant lines via various plant breeding and genetic

transformation techniques. There are many instances when

transgenics did not meet the expected results while tested

under field conditions. Attention, therefore, must be

focused on elaborate studies of the wild germplasm of the

target crops and their ecological adaptations to gain

insights into their performance and stability under field

conditions. Similarly, efforts should be made to understand

the mechanisms and possibly the master genes by which

some accessions of wild species provide higher levels of

tolerance to temperature extremes. More consistent and

comprehensible lab selection processes involving testing

under more pragmatic controlled conditions are also

essential. This will not only assist in the formation of a

sound basis for protecting leguminous crops from the

evident temperature hazards, also ensure their availability

of improved quality seed in the future.
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