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    Chapter 14   
 Role of Heat Shock Proteins in Improving 
Heat Stress Tolerance in Crop Plants                     
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    Rahul     B.     Nitnavare    ,     Srikrishna     Mahanty    , and     Malireddy     K.     Reddy   

    Abstract     High temperature response (HTR) or heat stress response (HSR) is a 
highly conserved phenomenon, which involves complex networks among different 
crop species. Heat stress usually results in protein dysfunction by improper folding 
of its linear amino acid chains to non-native proteins. This leads to unfavourable 
interactions and subsequent protein aggregation. To tackle this, plants have devel-
oped molecular chaperone machinery to maintain high quality proteins in the cell. 
This is governed by increasing the level of pre-existing molecular chaperones and by 
expressing additional chaperones through signalling mechanism. Dissecting the 
molecular mechanism by which plants counter heat stress and identifi cation of 
important molecules involved are of high priority. This could help in the develop-
ment of plants with improved heat stress tolerance through advanced genomics and 
genetic engineering approaches. Owing to this reason molecular chaperones/Heat 
shock proteins (Hsps) are considered as potential candidates to address the issue of 
heat stress. In this chapter, recent progress on systematic analyses of heat shock proteins, 
their classifi cation and role in plant response to heat stress along with an overview of 
genomic and transgenic approaches to overcome the issue, are summarized.  
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  Abbreviations 

   HSE    heat-shock element   
  HSF    heat shock factor   
  HSPs    heat shock proteins   
  HSR    heat stress response   
  HTR    high temperature response   

14.1         Introduction 

  Global warming  , along with the inevitable  climatic changes   is estimated to affect 
the global temperatures by an average of 3–5 °C increase in near future (Kerr 
 2007 ). With this predicted rise in temperature, heat stress is gaining as the trait of 
importance to breed for climate resilient crops. Prolonged incidents of heat waves 
caused by frequent fl uctuations in daily and seasonal temperatures pose a serious 
challenge for agricultural production worldwide, affecting plant growth and yield 
with annual loss estimated up to billions of dollars (Mittler et al.  2012 ). Hence 
increasing crop productivity in view of escalating population and diminishing 
arable land and natural resources has become a matter of urgency than merely a 
research theme. To overcome such heat stress conditions, plants have developed 
several tolerance mechanisms. To understand the molecular basis of the tolerance 
mechanisms, knowledge of modern tools in molecular and genetic engineering is 
essential. Many  abiotic stress  -inducible genes were dissected and their functions 
are precisely characterized using functional genomics approaches. Another sig-
nifi cant progress made in understanding this complex trait of heat tolerance is 
completion of the genome sequence information in major crop species including 
rice, maize, sorghum etc. This information has allowed identifi cation and moni-
toring of transcript profi ling for all the predicted genes at a single shot by either 
microarray or RNA sequencing approaches. The availability of vast amount 
of genome data has also enabled the identifi cation of potential  cis -regulatory ele-
ments and  trans -factors. 

 Heat stress usually effects in protein dysfunction by improper folding of its lin-
ear peptide chains to non-native proteins leading to unfavourable interactions and 
subsequent  protein aggregations   (Moriwaki et al.  1999 ). Under stress conditions not 
only the nascent polypeptides face error-prone folding but also a large portion of the 
folded proteins gets partially or completely denatured and re-enter the protein qual-
ity control machinery assisted by  molecular chaperones      (Hebert and Molinari 
 2007 ). Nature has developed effi cient molecular chaperon machinery in plants to 
maintain high quality proteins in the cells by increasing the level of pre-existing 
molecular chaperones and by expressing additional chaperones through signalling 
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mechanism (Buchberger et al.  2010 ). Many proteins in a living cell will not fold 
properly without the assistance of molecular chaperones (Buchberger et al.  2010 ). 
Heat shock proteins (Hsps) are class of molecular chaperones that play an essential 
role in preserving cellular functions under stressful conditions. All living organisms 
are equipped with evolutionarily conserved Hsps to encounter sudden climate 
changes of nature. Hsps have broad range of functions ranging from the prevention 
of  protein aggregation  , refolding of misfolded proteins, and degradation of unstable 
proteins and dissolution of protein complexes, besides some act as transcription fac-
tors. Based on their differences in molecular weight, Hsps are classifi ed into fi ve 
sub-classes: Hsp100,  Hsp90  ,  Hsp70  , Hsp60 and low molecular weight Hsps or 
small sHsps (Wang et al.  2004 ). Various members of Hsps have been cloned and 
functionally characterized and some of these have resulted in developing transgenic 
plants showing tolerance to various  abiotic stresses   (Lavania et al.  2015 ). Hsps and 
heat shock transcription factors ( Hsfs  ) play a crucial role in heat stress tolerance 
during fl owering and grain fi lling stages as evident in several examples (Waters 
 2003 ; Bita and Gerats  2013 ). However, detailed characterization and the role of 
plant Hsps as chaperones have been investigated only in a few model plants. The 
mechanisms of Hsps underlying abiotic stress adaptation in plants and the pivotal 
role of molecular chaperons will be discussed in the light of recent developments in 
genomics and genetic engineering approaches. The information and list of the trans-
genic plants developed for heat stress tolerance are discussed under the following 
sections.  

14.2     Heat Shock Proteins (Hsps) 

 Heat stress disturbs cellular homeostasis, causes severe growth retardation effecting 
plant development, and become more vulnerable if occurs during fl owering. Higher 
plants are unable to cope up with the extended exposure to temperatures above 
45 °C (Herrenkohl and Politch  1978 ). The loss of biological activity of proteins 
upon high temperature stress may be due to aggregation and/or protein misfolding 
(Grover et al.  2013 ). The stress-induced accumulation of aggregated and mis-folded 
proteins is irreversible and deleterious to the cell functioning. To balance the homeo-
stasis of cellular proteins under heat stress, plant cell upregulates several heat induc-
ible genes, commonly referred as “heat shock genes” (HSGs), which encode Hsps 
that makes plants survival under high temperature (Chang et al.  2007a ,  b ). A wide 
range of proteins have been reported to possess  chaperone   activity (Lindquist and 
Craig  1988 ). These are also called as  molecular chaperones   because with the help 
of several other proteins, commonly called as co-chaperones, they bind to partially 
folded or denatured proteins and prevent them from self-aggregation or promote 
their proper folding both in ATP dependent and independent manner. However, dur-
ing their function they neither covalently bind to the substrate proteins nor form the 
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part of the fi nal product. These Hsps are broadly divided into two major families 
i.e., low and large molecular weight Hsps which again subdivided into fi ve major 
classes based on the sizes of the corresponding proteins such as Hsp100/Clp, Hsp90, 
Hsp70, Hsp60/chaperonin and sHsps (Wang et al.  2004 ). Under normal conditions 
they perform many cellular functions such as (1) folding or assisting folding of 
newly synthesized proteins (Hsp70, Hsp60), (2) guiding translocation of proteins 
across organellar membranes and between intercellular compartments (Hsp70) (3) 
preventing aggregation, desegregation of oligomeric proteins, and unfolding 
(Hsp70, Hsp100, Hsp90, small Hsps) (4) facilitating proteolytic degradation of 
unstable proteins (Hsp70, Hsp100), (5) maturation of signaling molecules, signal 
transduction and transcriptional activation of transcription factors (Hsp70, Hsp90) 
(Driedonks et al.  2015 ) (Fig.  14.1 ). Many plant biotechnologists characterized the 
transcription and translation of Hsps in response to heat stress in different plant spe-
cies ( Arabidopsis , rice, wheat, tomato and maize) and their involvement in regulat-
ing thermotolerance has been established through forward and reverse genetic 
approaches (Lavania et al.  2015 ; Driedonks et al.  2015 ; Usman et al.  2014 ).

  Fig. 14.1    Diverse functions of Heat shock proteins (Hsps)       

 

P.S. Reddy et al.



287

14.3         Small Heat Shock Proteins   (sHsps) 

 Among fi ve conserved families of Hsps, the sHsps are found to be most prevalent in 
plants and their expression can be increased up to 200 folds under heat stress (Wang 
et al.  2004 ). sHsps range in size from 10 to 42 kDa and share a conserved C-terminal 
domain that is common to all eukaryotic organisms (Waters et al.  1996 ). sHsps fam-
ily shows diversity with respect to sequence similarity, cellular location and func-
tions (Reddy et al.  2014 ; Reddy et al.  2015 ). In plants six different multi gene 
families that encode for sHsp proteins are localized in compartments like cytosol, 
endoplasmic reticulum (ER), mitochondria and chloroplast (Reddy et al.  2014 ). 
sHsps do not actively participate in refolding of non-native proteins (Veinger et al. 
 1998 ; Lee and Vierling  2000 ). They possess a high capacity of binding to non- 
native proteins, through hydrophobic interaction (Reddy et al.  2000 ). sHsps perhaps 
prevent non-native aggregation, thereby facilitating subsequent refolding through 
ATP-dependent  chaperones   such as the DnaK system or ClpB/DnaK. 

 The abundance of sHsps in plants and their functional characteristics of binding 
and stabilizing denatured proteins suggest that sHsps play an important role in 
plant-acquired stress tolerance (Sun et al.  2002 ). To support this, transgenic carrot 
cell lines with  Hsp17.7  gene under the control of CaMV35s promoter were devel-
oped, which resulted in enhanced survival of cell lines and plants at high tempera-
ture (48 °C) (Sun et al.  2002 ). The transformed seedlings with Class I sHsps showed 
higher cotyledon opening rate in tobacco plant (Park et al. 2002). In contrary, seed-
lings raised with the antisense construct in this experiment showed increased sensi-
tivity to heat shock indicating the role of sHsps in seed germination at high 
temperatures. Transgenic rice plants over expressing with  OsHsp17.7  gene showed 
increased thermo tolerance as well as increased resistance to UV-B irradiation 
(Murakami et al.  2004 ). Tomato  mtLeHsp  gene when over expressed in tobacco- 
conferred thermotolerance up to 48 °C compared to their counter transgenics devel-
oped through antisense construct of the same gene (Sanmiya et al.  2004 ). Transgenic 
 Arabidopsis  plants over expressing with  NnHsp17.5, RcHsp17.8, ZmHsp22, 
ScHsp26  and  LdHsp16.45  showed heat tolerance to varied extents (Rhoads et al. 
 2005 ; Jiang et al.  2009 ; Sun et al.  2012 ; Zhou et al.  2012 ). Transgenic  Arabidopsis  
plants over expressed with  WsHsp26  was tolerant under continuous high tempera-
ture and produced bold seeds under high temperature, having higher germination 
rate than wild type (Mu et al.  2013 ). In  Arabidopsis , over expression of  RcHsp17.8  
enhanced SOD activity (Jiang et al.  2009 ) whereas over expression studies of 
 ZmHsp16.9  in tobacco enhanced POD, CAT and SOD activity indicating the role of 
sHsps in oxidative stress tolerance (Chauhan et al.  2012 ). Altogether, it may be 
hypothesized that the sHsp proteins positively affect thermotolerance by maintain-
ing the threshold levels of ROS scavenging enzymes, that could initiate the signal-
ing pathway of thermotolerance (Driedonks et al.  2015 ). The updated list of the 
transgenic plants developed for sHsps is listed in Table  14.1 .
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       Table 14.1    Transgenic plants made by means of dissimilar Hsp genes for heat stress tolerance   

 S. No  Gene  Source  Transgenic  Promoter  Reference 

 1   Hsp17.7    D. carota    D. carota   35s  Malik et al. 
( 1999 ) 

 2   sHsp17.7    O. sativa    O. sativa   35s  Murakami 
et al. ( 2004 ) 

 3   sHsp17.7    O. sativa    O. sativa   35s  Sato and 
Yokoya ( 2008 ) 

 4   Hsp17.5    N. nucifera    A. thaliana   35s  Zhou et al. 
( 2012 ) 

 5   Hsp17.8    R. chinensis    A. thaliana   35s  Jiang et al. 
( 2009 ) 

 6   Hsp17.8    A. thaliana    L. sativa   35s  Kim et al. 
( 2013 ) 

 7   Hsp17/Hsp23    O. sativa    O. sativa   35s  Zou et al. 
( 2012 ) 

 8   Hsp17.9    P. mume    A. thaliana   35s  Wang et al. 
( 2016 ) 

 9   Tlhs1    N. tabacum    N. tabacum   35s  Park and Hong 
( 2002 ) 

 10   mtsHsp    S. lycopersicon    N. tabacum   35s  Sanmiya et al. 
( 2004 ) 

 11   Hsp21    S. lycopersicon    S. lycopersicum   35s  Neta-Sharir 
et al. ( 2005 ) 

 12   Hsp16.9    Z. mays    N. tabacum   35s  Sun et al. 
( 2012 ) 

 13   Hsp16.45    L. davidii    A. thaliana   35s  Mu et al. 
( 2013 ) 

 14   Hsp18    O. streptacantha    A. thaliana   35s  Salas-Munoz 
et al. ( 2012 ) 

 15   Hsp22    Z. mays    A. thaliana   35s  Rhoads et al. 
( 2005 ) 

 16   Hsp23    M. sativa    A. stolonifera   35s  Lee et al. 
( 2015 ) 

 17   Hsp23    M. sativa    F. arundinacea   35s  Lee et al. 
( 2012 ) 

 18   Hsp24.4    M. acuminata    S. lycopersicum   35s  Mahesh et al. 
( 2013 ) 

 19   Hsp26    O. sativa    F. arundinacea   35S  Kim et al. 
( 2012 ) 

 20   Hsp26    S. cerevisiae    A. thaliana   35s  Xue et al. 
( 2010 ) 

 21   Hsp26    T. aestivum    A. thaliana   35s  Chauhan et al. 
( 2012 ) 

 22   ChlDnaJ/Hsp40    L. esculentum    L. esculentum   35s  Kong et al. 
( 2014 ) 

(continued)
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14.4        Heat Shock Protein 70 (Hsp70) 

 The second most evolutionarily conserved  Hsp family   in diverse organisms is 
Hsp70 (Boorstein et al.  1994 ). Hsp70’s have two major functional domains, an 
ATPase domain of 44 kDa at the N-terminus and a 25 kDa peptide-binding domain 
at C-terminus and, are separated by small linker region (Reddy et al.  2010 ). The 
substrate-binding domain comprises of a sandwich of 2-four-stranded  ß -sheets, 
where the peptide-binding cleft resides. Another feature of plant Hsp70’s is the 
presence of identifi able unique amino acid signature motif at the C-terminus 
that can be used to distinguish the protein’s sub-cellular location. The EEVD 
motif indicates the cytosol-specifi c, HDEL for endoplasmic reticulum-specifi c; 

Table 14.1 (continued)

 S. No  Gene  Source  Transgenic  Promoter  Reference 

 23   DnaK/Hsp70    A. halophytica    N. tabacum   35s  Ono et al. 
( 2001 ) 

 24   DnaK/Hsp70    A. halophytica    N. tabacum, O. 
sativa  

 35s  Uchida et al. 
( 2008 ) 

 25   Hsp70    N. tabacum    N. tabacum   35s  Cho and Choi 
( 2009 ) 

 26   Hsp70    T. harzianum    A. thaliana   35s  Montero- 
Barrientos 
et al. ( 2010 ) 

 27   mtHsp70    O. sativa    O. sativa   35s  Qi et al. 
( 2011 ) 

 28   Hsp70    C. morifolium    A. thaliana   35s  Song et al. 
( 2014 ) 

 29   Hsp70    B. campestris    N. tabacum   35s  Wang et al. 
( 2015 ) 

 30   Hsp70    E. arundinaceus    Saccharum spp.   Ubi2.3  Augustine 
et al. ( 2015b ) 

 31   Hsp70    A. thaliana    M. sativa   35s  Ferradini et al. 
( 2015 ) 

 32   Hsp70    M. unifl orum    A. thaliana   35s  Masand and 
Yadav ( 2016 ) 

 33   Hsp90    G. max    A. thaliana   35s  Xu et al. 
( 2013 ) 

 34   Hsp90.7    A. thaliana    A. thaliana   35s  Chong et al. 
( 2015 ) 

 35   Hsp101    A. thaliana    A. thaliana   35s  Queitsch et al. 
( 2000 ) 

 36   Hsp101    A. thaliana    O. sativa   ZmUbi  Katiyar- 
Agarwal et al. 
( 2003 ) 

 37   Hsp101    O. sativa    N. tabacum   35s  Chang et al. 
( 2007a ) 
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PEGDVIDADFTDSK for plastid-specifi c and PEAEYEEAKK for mitochondrion- 
specifi c location of Hsp70 proteins (Reddy et al.  2010 ; Guy and Li  1998 ). Hsp70 
class of proteins involved in many functions like controlling the biological activity 
of folded regulatory proteins, negative repressors of heat-shock factor (Hsf) medi-
ated transcription. Some Hsp70’s also exists in symbiosome membrane, which is 
known to play an important role in nodule development (He et al.  2008 ). The activ-
ity of Hsp70’s can also be regulated by post-translational modifi cations (Napolitano 
et al.  1987 ) and by interaction with other co- chaperones   (Santacruz et al.  1997 ). 
Hsp70’s are also involved in protein import and translocation processes, and in 
facilitating the proteolytic degradation of unstable proteins by targeting the proteins 
to lysosomes or proteasomes (Hartl  1996 ). In addition to its general chaperone func-
tions, Hsp70 also displays a regulatory role in other stress-associated gene expres-
sion (Lee and Schoffl   1996 ). Unfortunately, the role of Hsp70’s in the modulation 
of signal transduction has not been studied in plants. 

 Hsp70’s have been reported to be involved in ABA responses, redox signalling, 
chloroplast development, and protein translocation into chloroplasts and mitochon-
dria and hence over expression of this class of chaperons leads to increased resis-
tance against drought, high salt and heat stresses in plants (Lee et al.  2012 ). A 
halotolerant cynobacterial Hsp70/DnaK gene, when over expressed in tobacco and 
rice exhibited increased levels of anti-oxidant enzymes and enzymes involved in 
Calvin cycle conferring temperature and drought stress tolerance particularly dur-
ing reproductive stage (Uchida et al.  2008 ). The over expression of Hsp70 from 
fungus  Trichoderma harzianum  in  A. thaliana  resulted in increased level of Na/H 
transporter (SOS1) and APX1 with decreased levels of  Hsf   and Hsp transcripts 
(Montero-Barrientos et al.  2010 ). Over expression of rice  mtHsp70  in rice resulted 
in lesser production of heat induced ROS, higher mitochondrial membrane potential 
and suppressed programmed cell death (Qi et al.  2011 ). Constitutive expression of 
a chrysanthemum Hsp70 in  A. thaliana  enhanced the tolerance against heat, drought 
and salinity stresses (Song et al.  2014 ). Hsp 70 from  E. arundinaceus  in sugar-
cane was shown tolerance to drought and salt stresses (Augustine et al.  2015a ). Over 
expression of  B. campestris  Hsp70 in transgenic tobacco plant had shown heat 
stress tolerance by enhancing superoxide dismutase (SOD) and peroxidase (POD) 
activity, soluble sugar content and reduced electrical conductivity than control plant 
(Masand and Yadav  2016 ). Transgenic  A. thaliana  over expressing Hsp70 of  M. 
unifl orum  confers tolerance to multiple  abiotic stresses   and further shown the 
reduced levels of malondialdehyde (MDA), H 2 O 2  and proteolytic activity. The 
transgenics have maintained the better shoot biomass, root length, relative water 
content and chlorophyll content during exposure to stresses relative to wild type 
plant (Chen et al.  2006 ). Other studies have found similar effects of Hsps on ROS 
scavenging proteins up on heat stress. The current status and updated list of the 
Hsp70 transgenic plants is given in Table  14.1 .  
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14.5     Heat Shock Protein 90 (Hsp90) 

 Hsp90 family, which is highly, conserved  molecular chaperones      that are ubiqui-
tously present in a wide range of organisms from prokaryotes to eukaryotes, except 
Archaea (Johnson and Brown  2009 ). In eukaryotic organisms, the cytosolic Hsp90 
exists in two isoforms, inducible α-form and constitutive ß-form and at least one of 
these isoforms is functionally essential for the survival of the organism (Reddy et al. 
 2011 ). Due to slight variations in their relative molecular masses, these protein 
homologs have been represented by different names in literature (e.g. Hsp80, 
Hsp81, Hsp82, Hsp83, Hsp84, Hsp90 etc.). Amino acid sequence analysis of Hsp90 
gene family can reveal their subcellular localization. This is possible due to pres-
ence of distinguishable amino acid signature motifs either at the N- or C-terminus 
region i.e. C-terminus MEEVD penta-peptide motif for cytosol-specifi c Hsp90 iso-
forms and C-terminus HDEL motif for endoplasmic reticulum-specifi c Hsp90 iso-
forms, whereas a characteristic N-terminus extension of signal peptide sequence for 
chloroplast and mitochondrion-specifi c Hsp90’s (Pearl and Prodromou  2006 ). 
Hsp90 family predominantly occurs as a homodimer with three modular structural 
domains (Sangster and Queitsch  2005 ). The N-terminal domain contained the ATP- 
binding site responsible for the weak intrinsic ATPase activity of Hsp90. The mid-
dle domain, deliberated as a major site for client protein interaction, was connected 
to the N-terminal domain through a highly charged linker region. The C-terminal 
domain confi ned with the dimerization interface and a conserved C-terminal 
MEEVD motif, which was responsible for interaction with tetratricopeptide repeat 
(TPR) domain-containing co- chaperones  . Hsp90’s are constitutively present up to 
1–2 % in cellular proteins; however, their expression is increased further by several 
folds on exposure to  abiotic stresses   mainly heat stress. Hsp90’s are also considered 
as marker for morphological evolution (Sangster and Queitsch  2005 ). This suggests 
that Hsp90 functions as regulatory housekeeping protein as well as a molecular 
 chaperone   (Liu et al.  2006 ; Xu et al.  2013 ). Similar results were obtained during 
over expression of fi ve Hsp90 genes of  Glycine max  in  A. thaliana.  Results obtained 
showed involvement of Hsp90 in different plant functions like higher biomass pro-
duction, pod setting, reduction in lipid peroxidation and loss of chlorophyll under 
heat stress (Neuwald et al.  1999 ). The updated list of the transgenic plants devel-
oped for Hsp90 is presented in the Table  14.1 .  

14.6     Heat Shock Protein 100 (Hsp100) 

 The Hsp100/Clp are hexameric rings belonging to the large AAA ATPase super 
family with a broad spectrum of diverse functional properties (Agarwal et al.  2001 ; 
Keeler et al.  2000 ). Hsp100 was fi rst described as components of the two-subunit 
bacterial Clp protease system, which consists of regulatory ATPase/ chaperones   
(such as ClpA and ClpX) and proteolytic (ClpP) subunits. So far, Hsp100/Clp 
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proteins have been reported in many plant species, such as  Arabidopsis , soybean, 
tobacco, rice, maize, lima bean ( Phaseolus lunatus ) and wheat (Keeler et al.  2000 ; 
Adam et al.  2001 ; Schirmer et al.  1996 ). Hsp100 family is divided into two major 
classes and eight distinct subfamilies. Members of the fi rst class (A-D) contain two 
nucleotide-binding domains (also called ATP-binding domains), whereas those in 
the second class (M, N, X, Y) have only one nucleotide-binding domain (Schirmer 
et al.  1994 ). In lima bean, Hsp100’s are revealed to have expression in cytosol and 
chloroplasts when exposed to heat stress (Adam et al.  2001 ). Genetic evidence indi-
cates a role for this family of proteins in thermo protection (Lee et al.  1994 ; Glover 
and Lindquist  1998 ). Contrasting to the regular chaperone function of preventing 
 protein aggregation   and misfolding, the Hsp100/Clp family has a functional role in 
protein disaggregation and/or protein degradation. The removal of non-functional 
but potentially harmful polypeptides arising from misfolding, denaturation or 
aggregation is important for the maintenance of cellular homeostasis. The mecha-
nism for rescuing proteins from aggregation also involves the cooperation of another 
ATP-dependent  chaperone   system, the Hsp70. The Hsp100/Clp family solubilizes 
the aggregated protein and releases it in a state that can be refolded with the assis-
tance of the Hsp70 system (Goloubinoff et al.  1999 ; Adam and Clarke  2002 ) Like 
many other Hsps/chaperones, Hsp100/Clp family chaperones are often constitu-
tively expressed in plants, but their expression is developmentally regulated and is 
induced by different environmental assaults, such as heat, cold, dehydration and 
high salt or dark-induced etiolation. In addition to their normal cellular functions, 
these are now considered as a major group of stress related proteins, which function 
through cross-talk with other stress related proteins to decrease cellular damage. 

 In many studies, while analyzing global changes of  gene expression analysis  , the 
expression pattern of Hsps was found to be majorly altered under almost all type of 
 abiotic stresses   like salt, cold, drought and high light (Keeler et al.  2000 ; Adam 
et al.  2001 ; Queitsch et al.  2000 ). However, evidences for the direct involvement of 
these proteins under abiotic stresses except heat stress are very few. A study revealed 
that cisgenic  Arabidopsis  plants with altered AtHsp100 protein survived as high as 
45 °C (1 h) temperature stress and also showed vigorous growth after the removal 
of stress (Katiyar-Agarwal et al.  2003 ). The transgenic rice lines over expressed 
with AtHsp101 showed re-growth in the post-high temperature stress recovery 
phase while the untransformed plants could not recover to the similar extents (Spiess 
et al.  2004 ). The updated list of the transgenic plants developed for Hsp100 is given 
in the Table  14.1 .  

14.7     Chaperonins 

 Molecular chaperonins are a part of cellular machinery that assists folding of newly 
synthesized proteins to their native state. Chaperonins are unique, high molecular 
weight cylindrical complexes which aid  protein folding   that is unmanageable by 
simpler chaperon systems (Hemmingsen et al.  1988 ). The term chaperonin was fi rst 
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suggested (Ranson et al.  1998 ) to describe proteins that are evolutionarily homolo-
gous to  E. coli  GroEL, a class of  molecular chaperones      found in prokaryotes and in 
the mitochondria and plastids of eukaryotes (Hartl  1996 ). Major examples of chap-
eronins include the prokaryotic GroEL and the eukaryotic equivalent Hsp60. 
Chaperonins are classifi ed into two subfamilies, the GroE chaperonins (Group I) 
found in bacteria, mitochondria and chloroplasts (e.g. GroE and chCpn60) and the 
CCT chaperonins (Group II), found in Archaea and in the cytosol of eukaryotes 
(e.g. trigger factor 55, thermosomes and the TCP-1 ring complex) (Schroda  2004 ). 
Group I Cpn60 (also known as Hsp60), acts in the company of a co-chaperonin 
Cpn10 (Hsp10) in an ATP-dependent manner. While in bacteria, the Cpn10 is 
encoded by a single gene groES, in algae and plants, the plastid Cpn10 is encoded 
by multiple genes (Trosch et al.  2015 ). Although the bacterial Hsp10 is a ~10 kDa 
polypeptide, a ~20 kDa homologue comprising of two subunits is found in plastids. 
The two subunits are joined by a TDDVKD-linker sequence in head to tail fashion 
(Bukau and Horwich  1998 ). Hsp10 functions with Hsp60 as double-ring assemblies 
composed of back-to-back stacked rings of closely related rotationally symmetrical 
subunits (Kotak et al.  2007 ), assisting in folding, assembly and sorting of proteins. 

 There are Proteins with RNA  chaperone   activity that play important roles in cel-
lular mechanisms (Semrad  2010 ). They prevent RNA from misfolding by loosening 
misfolded structures without ATP consumption. Oligonucleotide- or ribozyme- 
based assays were used to study RNA chaperone activity. Due to their functional as 
well as structural diversity, a common chaperoning mechanism or universal motif 
has not yet been identifi ed. Although the exact mechanism is not yet understood, it 
is believed that disordered regions within proteins play an important role.  

14.8     Heat Shock Transcription Factors (Hsfs) 

 Under heat stress, plant induces expression of Hsp’s and other defensive genes. This 
happens due to the presence of conserved heat shock  elements   (HSEs) in the pro-
moter region of gene, which triggers transcription of  Hsp  genes in response to heat. 
These  cis -acting elements consist of the palindromic nucleotide sequence 
(5-AGAANNTTCT-3) that serve as recognizing as well as binding site for heat 
shock transcription factors or simply heat shock  factors   (HSFs) (Hasanuzzaman 
et al.  2013 ). As it is evident that Hsfs regulate  Hsp  genes,  Hsf  gene induction system 
has emerged as a powerful target for manipulating levels of Hsps through transgenic 
approach (Zhu et al.  2006 ; Zhu et al.  2009 ; Xin et al.  2010 ; Lee et al.  1995 ). Many 
researchers have opted for the transgenic approach to elucidate the function of  Hsp  
and  Hsf  genes. The summary of these efforts is listed in Table  14.2 . Over expression 
of  Arabidopsis HsfB4  resulted in altered root development and early duplication of 
endodermis cells, whereas impaired growth was observed in rice plants with sup-
pressed HsfC1b. A group of researchers have successfully altered the expression of 
Hsps by making a change in the transcription factor ( AtHSF1 ) responsible for acti-
vation of Hsps in  Arabidopsis  plants and able to produce heat stress tolerant 
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 Arabidopsis  (Prandl et al.  1998 ). Over expression of  Athsf3  in  A. thaliana  using 
CaMV35 promoter showed a clearly enhanced thermotolerance in transgenic plants 
(Panchuk et al.  2002 ; Mishra et al.  2002 ). A study revealed that over expressed 
tomato  HsfA1  gene showed increased thermotolerance while transgenic lines in 
which transgene was silenced due to co-suppression were thermosensitive (Li et al. 
 2005 ). The  Glycine max  transgenics developed by over expressing  HsfA1  showed 
enhanced heat tolerance through activation of Hsp70 (Zhu et al.  2009 ). Constitutive 
expression of  HsfA2  in  A. thaliana  conferred enhanced basal and acquired thermo-
tolerance (Yoshida et al.  2008 ; Zhu et al.  2006 ). The over expression of  AtHsfA3  in 
 A. thaliana  caused induction of a large number of heat stress associated genes that 
showed enhanced heat stress tolerance (Liu et al.  2009 ). Over expression of  OsHsp7  
in  Arabidopsis  exhibited enhanced expression of certain Hsf target genes, concomi-
tant to increased basal heat tolerance (Zhang et al.  2013 ). Hsf1 from resurrection 
plant  Boea hygrometrica  over expressed in  A. thaliana  and  N. tabacum  showed 
enhanced basal and acquired heat tolerance via regulation of genes involved in 
stress protection and mitotic cell cycle (Zhu et al.  2009 ). The over expression of 
 hsfA2  from  L. longiflorum  in  A. thaliana  activated  Hsp101 ,  Hsp70 ,  Hsp25.3  
and  APX2  genes, resulting into heat tolerance of the transgenic plants (Lee et al. 
 1995 ). Transgenic  A. thaliana  over expressing wheat  HsfA3  showed increased 

   Table 14.2    Particulars on transgenic plants developed by using different classes of  Hsf   genes for 
high temperature tolerance   

 S. No  Gene  Source  Transgenic  Promoter  Reference 

 1   Hsf1    A. thaliana    A. thaliana   35s  Lee et al. ( 1995 ) 
 2   Hsf3    A. thaliana    A. thaliana   35s  Prandl et al. ( 1998 ) 
 3   HsfA2    A. thaliana    A. thaliana   35s  Li et al. ( 2005 ) 
 4   HsfA2e    O. sativa    A. thaliana   ZmUbi1  Yokotani et al. ( 2008 ) 
 5   HsfA1    S. lycopersicon    S. lycopersicon   35s  Mishra et al. ( 2002 ) 
 6   Hsf3    A. thaliana    A. thaliana   35s  Panchuk et al. ( 2002 ) 
 7   HsfA1    G. max    G. max   35s  Zhu et al. ( 2006 ) 
 8   HsfA2    A. thaliana    A. thaliana   35s  Ogawa et al. ( 2007 ) 
 9   HsfA3    A. thaliana    A. thaliana   35s  Yoshida et al. ( 2008 ) 
 10   Hsf 7    O. sativa    A. thaliana   35s  Liu et al. ( 2009 ) 
 11   Hsf 1    B. hygrometrica    A. thaliana, N. 

tabacum  
 35s  Zhu et al. ( 2009 ) 

 12   HsfA2    L. longifl orum    A. thaliana   35s  Xin et al. ( 2010 ) 
 13   HsfC1b    O. sativa    O. Sativa   ZmUbi1  Schmidt et al. ( 2012 ) 
 14   Hsf A1a    A. thaliana    A. thaliana   35s  Qian et al. ( 2014 ) 
 15   Hsf A3    T. aestivum    A. thaliana   35s  Zhang et al. ( 2013 ) 
 16   Hsf A3    S. lycopersicon    A. thaliana   35s  Li et al. ( 2013 ) 
 17   HsfA1    L.longifl orum    A. thaliana   35s  Gong et al. ( 2014 ) 
 18   HsfA6f    T. aestivum    T. aestivum   HVA1s  Xue et al. ( 2015 ) 
 19   HsfA1d    T. salsuginea    A. thaliana   35s  Higashi et al. ( 2013 ) 
 20   HsfA2d    T. aestivum    A. thaliana   35s  Chauhan et al. ( 2013 ) 
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thermotolerance (Li et al.  2013 ). Over expression of tomato  HsfA3  in  Arabidopsis  
showed increased levels of several Hsp transcripts and increased heat tolerance 
(Higashi et al.  2013 ). Transgenic  A. thaliana  plants over expressing  HsfA1d  from 
 Thelluginella salsuginea  developed enhanced thermotolerance via induction of 
 AtHsfA1  regulon in the transgenic plants (Chauhan et al.  2013 ). Over expression of 
 TaHsfA2d , which is expressed mainly in developing seeds, conferred higher toler-
ance to heat, salinity and drought stresses in  A. thaliana  in terms of higher survival 
rate, yield and biomass accumulation (Gong et al.  2014 ). Increased heat resistance 
was noted in transgenic  A. thaliana  plants over expressing a novel class of  AtHsfA1 , 
 LlHsfA1  from  L. longifl orum , which was found to interact with  LlHsfA2  (Xue et al. 
 2014 ). Wheat plant over expressing  TaHsfA6f  showed tolerance to high temperature 
(Sakuma et al.  2006a ). The updated list of the transgenic plants developed for  Hsfs   
are summarized in the Table  14.2 .

14.9        Heat Shock Promoters 

 During the last decade, several candidate genes, pathways and strategies have been 
identifi ed by various groups across the globe and provided insight in plant heat 
stress adaptation. Nevertheless, we are still far from complete understanding of the 
molecular basis and regulatory mechanisms of  abiotic stress   adaptations, especially 
in crop plants. The regulated expression of transgenes in plants has attracted as one 
of the best approach in minimizing stress damage. Strong constitutive promoters are 
routinely used in plant transformation with a regulated expression of stress- 
responsive genes resulting in serious penalties on plant development with overall 
negative performance of transgenics. The use of stress inducible promoters may be 
more reliable for regulated expression of stress-responsive transgene for achieving 
the desired stress tolerance. Serious shortcomings on plant growth and development 
with overall negative performance of transgenics were observed when constitutive 
promoter was used for generation of transgenics (Sakuma et al.  2006b ; Augustine 
et al.  2015b ). Still, most of the researchers follow CaMV35S based expression for 
generation of stress tolerant transgenic plants (Table  14.3 ). Only few examples are 
available where investigators have examined alternative promoters like ubiquitin 
(Matsuura et al.  2013 ; Glover and Lindquist  1998 ). Since constitutive promoters are 
hampering the fi nal productivity, it is important for us to identify and isolate heat- 
stress- inducible promoters and use them while developing transgenic crops. A typi-
cal  Hsp  gene is tightly regulated and rapidly and transiently activated upon stress. 
This happens as heat shock  elements   present in the promoter region of the  Hsp  
genes, that makes Hsp promoter an ideal candidate for heat stress responsive pro-
moter for generation of transgenic plants (Khurana et al.  2013 ). However, only few 
examples are available on the use of Hsp promoters for the transcriptional regula-
tion of stress-related genes. The use of stress-related genes under transcriptional 
control of inducible promoters may minimize the adverse effect of the exogenous 
gene at phenotypic level. A prevailing approach for quantifying the activity of any 
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heat-shock promoter is by fusing the promoter of heat-shock gene to reporter genes 
such as GFP or GUS. This permits measuring the developmental and tissue-specifi c 
expression of genes with or without heat stress (Takahashi et al.  1992 ). There are 
few examples where Hsp promoters are fused with reporter or other gene. Hsp18.2 
promoter fused to the  UidA  gene transgenic  Arabidopsis  plants showed that heat 
stress induced the  UidA  gene activity in almost all the organs of the plant (Lee et al. 
 2007 ). Similarly,  AtHsp18.2  promoter has been successfully used in  N. plumbagini-
folia  (Moriwaki et al.  1999 ) and  N. tabacum  hairy roots (Yabe et al.  1994 ). Likewise, 
heat-shock-induced GUS activity was observed in transgenic  Arabidopsis  when the 
promoter of  Hsp81  gene was used (Crone et al.  2001 ). GmHsp17.5E promoter in all 
the organs and tissues of the fl ower is found to be differentially expressed in heat 
stress (Saidi et al.  2007 ). Moreover, the inducibility of GmHsp17.3B promoter was 
studied in the moss  Physcomitrella patens  (Proveniers and van Zanten  2013 ). This 
intricacy is now being divided into features like heat shock  elements   (HSEs), heat- 
shock factors (HSFs), and possible receptors of the heat-shock response, signaling 
components, and chromatin remodeling aspects (Wu et al.  2009 ). Transgenic rice 
seedlings expressing OsWRKY11 transcription factor under the rice HSP101 pro-
moter were shown to survive longer and lose less water under a short, severe drought 
treatment, than wild type plants (Freeman et al.  2011 ). Transgenic wheat showed 
lower expression of  uidA  (beta-glucuronidase, GUS) reporter gene in older tissues, 
when  uidA  gene was fused with  HvHsp17  promoter but expression in other organs 
and tissues was normal. This observation was recorded upon induction of Hsp-GUS 
expressed transgenic plants (Nollen and Morimoto  2002 ). The deletion analysis of 
 Ta Hsp26 promoter revealed the mechanism underlying  Ta Hsp26 mediated regula-
tion of heat tolerance. This study was done to characterize  Ta Hsp26 promoter from 
wheat and  Arabidopsis  to generate transgenic plant (Takahashi et al.  1992 ). Although 
there are some reports on heat-stress inducible promoters, many gaps need to be 
fi lled to evaluate their role in crop plants. List of the transgenic plants developed for 
Hsp promoters is listed in the Table  14.3 .

    Table 14.3    Genetically modifi ed plants advanced with diverse classes of Hsp promoters   

 S. no  Promoter  Source  Transgenic  Reference 

 1  Hsp18.2   A. thaliana    A. thaliana   Takahashi et al. ( 1992 ) 
 2  Hsp81   A. thaliana    A. thaliana   Yabe et al. ( 1994 ) 
 3  Hsp18.2   A. thaliana    N. plumbaginifolia   Moriwaki et al. ( 1999 ) 
 4  Hsp18.2   A. thaliana    N. tabacum   Lee et al. ( 2007 ) 
 5  HSP101   O. sativa    O. sativa   Proveniers and van Zanten ( 2013 ) 
 6  Hvhsp17   H. vulgare    H. vulgare   Freeman et al. ( 2011 ) 
 7  sHSP26   T. aestivum    A. thaliana   Khurana et al. ( 2013 ) 

P.S. Reddy et al.



297

14.10        Signaling Molecules Involved in the Heat  Stress 
Response   

 Acquired stress tolerance in plants is the result of various stress response mecha-
nisms that act synergistically to bring favourable changes at physiological, bio-
chemical and molecular level to prevent cellular damage during stress conditions. 
Substantial number of reports suggest that the Hsfs/Hsps interact with signalling 
molecules like growth hormones, protein kinases, cell cycle and cell death regula-
tors and also with stress inducible proteins involved in redox regulation (glutathione 
and thioredoxin), antioxidants (ascorbate peroxidase) and osmolytes (trehalose, 
glycine-betaine and proline), and  defense responses   (Wang et al.  2014 ; Driedonks 
et al.  2015 ; Reddy et al.  2009 ; Baniwal et al.  2007 ). Interaction of Hsfs with other 
proteins determines their activity and function. For example, HsfA1 interact with 
HsfA2 to form super activator complex to induce expression of heat stress respon-
sive genes. In contrary, interaction of HsfA5 with HsfA4 inhibits the activity of the 
HsfA4 through DNA binding (Lee et al.  2007 ; Fragkostefanakis et al.  2015 ). 
Members of class B Hsfs lack activation domain and therefore interaction with 
HsfA members is required for their function. In  Arabidopsis , the activity of HsfA2 
seems to be regulated by direct interaction of two co- chaperones  , ROF1 and ROF2 
with Hsp90 by either activating or repressing heat stress response respectively 
(Meiri et al.  2010 ). The regulation of Hsf activity is further complicated by interac-
tion with non-chaperones like heat shock binding protein (HSBP). Hsfs exist as 
monomers and associate with Hsp70 and Hsp90 in the cytoplasm. The redox signal-
ling moleculeH 2 O 2  regulates Hsf activity through MAPK pathway during heat and 
 oxidative stresses   (Driedonks et al.  2015 ). Hsf interactions with ROS signalling 
molecules and scavenging enzymes have been well demonstrated (Jung et al.  2013 ). 
HsfA2 was found to be required for expression of H 2 O 2  scavenging enzymes Apx1 
and Apx2. In  Arabidopsis , HsfA4a regulates expression of Apx1 through Zat12 
transcription factor. 

 Our earlier work revealed the presence of Hsf binding  cis -elements in the pro-
moter region of PgApx, suggesting the interaction with ROS scavenging enzymes 
during heat stress. Apart from heat and oxidative stress, Hsfs involved in several 
stress responses including salinity and anoxia. The role of Hsf in calcium signalling 
is through interaction with both Ca 2+/ calmodulin (CaM) and protein phosphatase 
(PP7). The mechanism by which CaM regulates Hsf is through interaction and 
phosphorylation of HsfA1a by CaM-binding protein kinase 3 (CBK3) that results in 
activation and binding of Hsf to  HSE   present in Hsp promoters (Liu et al.  2008 ). 
Wang et al. ( 2016 ) identifi ed and validated 430 interactors of Hsp70 through co- 
localization and function based method in rice. Hsp90 associate with multichaper-
one complexes with Hsp70 and various co- chaperones   such as HIP (Hsp70 
interacting protein), HOP (Hsp70/Hsp90 organizing protein), Hsp40 and p23. The 
Hsp90 is regulated by different  abiotic stresses   and hormones indicating its role in 
stress tolerance networks. The plasma membrane H + -ATPase (PM H + -ATPase) 
plays an important role in signal transduction during cell expansion, intra cellular p H  
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and stomata regulation during soil salinity. It has been shown that J3 chaperone 
(Hsp40-like) interact and repress the Salt Overly Sensitive2 (SOS2) like protein 
kinase5 that negatively regulates PM H + - ATPase   (Yang et al.  2010 ). Role of Hsps 
not only confi ned to countering  abiotic stresses   but also in  biotic   stress conditions. 
In an effector triggered immunity, precise regulation of R proteins is important for 
survival of plants. Studies support that Hsp90 plays crucial role along with RAR1 
and suppressor of G2 allele of skp1 (SGT1) in regulation of R proteins (Seo et al. 
 2008 ). Hsp90-associated chaperonin activity is regarded to be an important factor 
for  pathogen  -triggered immunity. Defense against rice blast fungus requires chitin 
receptor (Cerk1) that transport from endoplasmic reticulum to the plasma mem-
brane, which requires formation of Hsp90-HOP complex (Chen et al.  2010 ). In 
addition to Hsp90, Hsp70 is also important for defence response. From the available 
data, it is clear that plant immunity and heat response are connected through involve-
ment of Hsfs and Hsps in  defense response  . The transition from vegetative to repro-
ductive development in plants is controlled by multiple fl owering pathways, which 
converge at the integrators, Flowering Locus T (FT) and Suppressor of over expres-
sion of Constans1 (SOC1). Expressions of these integrators are suppressed by fl ow-
ering regulator Short Vegetative Phase (SVP). DNAJ HOMOLOG 3 (J3) of 
 Arabidopsis  expression is regulated by multiple fl owering pathways and loss of 
function results in late fl owering. It has been shown that J3 interacts directly with 
SVP and prevents binding of SVP to regulatory elements of SOC1 and FT there by 
promotes fl oral transition (Shen et al.  2011 ). During gametophyte development, 
abundant presence of Hsfs and Hsps supports the role of these proteins in fl oral 
development. Apart from this, sHsp’s are also involved in early embryogenesis as 
evident in  Arabidopsis , where double mutant for sHsps leads to seed abortion 
(Dafny-Yelin et al.  2008 ). Above evidence supports the role of Hsf/Hsp network in 
different plant developmental  processes  .  

14.11     Genomic Approaches for Heat Stress Tolerance 

 DNA based molecular markers developed through contemporary technologies have 
become indispensable tools of plant breeding in enhancing genetic gains. Most of 
the studies on Hsps in relation to heat stress tolerance were either based on isolation 
and characterization of genes or  in vivo  expression analysis experiments but less 
attention has been paid towards marker assisted breeding compared to other abiotic 
traits like drought, salinity and cold. This could be due to the less availability of 
genetic resources and more complex nature of the trait. Linkage analysis based 
genetic mapping is the classical approach to identify QTLs related to quantitative 
traits. Mohammad et al. ( 2008 ) identifi ed 3-heat stress tolerant QTLs in wheat RIL 
population based on stress susceptibility index (SSI) that explain 44.3 %, 27.3 % 
and 16.7 % phenotypic variance susceptibility. Apart from the markers associated 
with above QTLs. Yang et al. ( 2002 ) identifi ed two more markers that could 
detect same QTLs but with additive effect for heat tolerance. In another independent 
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study, fi ve QTLs responsible for  pollen   stability at high temperature were identifi ed 
in maize RIL population (Frova and Gorla  1993 ). But the recent revolutions in 
sequence technologies offered new genomic tools by which complex traits can be 
dissected and targeted more accurately and effi ciently compared to SSR markers. In 
an independent study two QTLs related to heat tolerance were mapped in rice on 
chromosomes 3 and 4 using SSR markers (Lang et al.  2015 ). Using these markers, 
Lang et al. ( 2015 ) could successfully select homozygous plants through MABC 
program and this stood as successful example of molecular breeding. Hsp exhibit 
high genetic diversity that makes plants to behave differentially under heat stress. 
These allelic variations from natural populations can be captured using SNP mark-
ers and can be diploid in selection of superior genotypes in breeding programs. 
Identifying the naturally occurring allelic variations, that are functionally different 
from wild type and those that infl uence the target traits is really challenging. Using 
Eco-TILLING technology 11 SNP were identifi ed in barley Hsp17.8 and their func-
tional relevance to heat tolerance was evaluated. Garg et al. ( 2012 ) could identify a 
signifi cant SNP that can change function of Hsp16.9 in wheat and successfully con-
verted into breeder friendly marker. Ye et al. ( 2015 ) identifi ed six-heat tolerance 
QTLs at fl owering stage from two rice bi-parental populations using 6K SNP chip. 
Among these, two QTLs (q HTS 1.2 & q HTSF 6.1) contain Hsp genes, and this 
explains the role of Hsps in  pollen   fertility during heat stress in rice. This is sup-
ported by another independent study where Hsp101 was mapped on QTL region, 
identifi ed for heat stress tolerance in  Arabidopsis  (Thudi et al.  2014 ). 

  Next Generation Sequencing   (NGS) techniques can aid in the sequencing of con-
dition, stage and tissue-specifi c transcriptome identifi cation of heat, drought stress 
responsive genes, and helps in development of robust stress-associated molecular 
markers and construction of genetic and physical maps. This will help to elucidate 
key genes and metabolic pathways affected by heat and drought stresses, increase 
the adoptiveness and accuracy of breeding practices and accelerate crop improve-
ment through genomics-assisted breeding. Thudi et al. ( 2014 ) identifi ed signifi cant 
SNPs associated with heat tolerance in chickpea using GBS based genome wide 
association studies and found few SNPs that fall in Hsp genes. Markers developed 
from these SNPs can be applied to select donors from germplasam for developing 
improved varieties through molecular breeding practices. But contrary results were 
obtained in GWAS for heat stress during fl owering stage in  Arabidopsis  where no 
Hsps detected in genomic regions identifi ed for heat stress tolerance. Only two Hsps 
were identifi ed within 20 kb of moderately associated SNPs (threshold –log (P) = 
4), suggesting that allelic variation in Hsps or Hsfs is not the main cause of natural 
variation in heat tolerance during fl owering. Bulk segregation based sequence 
approach is another novel NGS method through which complex traits can be dis-
sected in much simple way than map based studies. Epigenetic studies are required 
to detect genetic elements infl uenced by environmental factor (GXE) as heat  stress 
response   differs under different agro ecologies. The available whole genome 
sequence information and vast genetic data of crops like maize, rice can be exploited 
to use in less explored/orphan crops to identify the functional polymorphism in heat 
tolerant genes/QTLs. Studies of molecular genetic diversity among cultivars, wild 
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accessions and ecotypes in crop species are useful for discovery of novel QTLs and 
alleles responsible for heat tolerance which can be further exploited in the pro-
grammes of thermotolerance improvement.  

14.12     Conclusion 

 Understanding  abiotic stress   adaptations in plants is considered more challenging 
owing to polygenic nature of the trait and occurrence. Heat stress, being the major 
component of this complexity drags attention of researchers since long. Important 
molecules underlying heat stress tolerance identifi ed are Hsps and Hsfs, showing 
chaperonin activity on various proteins of importance. Classifi cation of different 
Hsps and the metabolic pathways involved are summarized to the best understand-
ing. Role of Hsps and Hsfs as functional candidates in heat stress tolerance and 
other developmental pathways has been discussed with case studies. Though struc-
tural and functional characterization of Hsps/Hsfs established, their wide applica-
bility in crop plants is still lagging due to unavailability of genetic and genomic 
resources. The recent revolutions in the fi eld of genomics together with phenomics, 
offer exiting molecular tools which can be employed to breed heat tolerant crops. 
Further the cross talk molecules underlying heat stress tolerance during complex 
 abiotic stress   conditions need to be dissected.     
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