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    Abstract 
   The symbiotic agreement of rhizobia with leguminous plants is making a valu-
able contribution to agriculture primarily as nitrogen fi xers and secondarily as 
plant growth promoters by their key role as phosphate solubilizers, growth hor-
mone producers, abiotic and biotic stress relievers, and host-plant resistance 
enhancer. In the so far identifi ed 14 genera and 105 species of rhizobia, a huge 
number of research reports were reported in various aspects. Genetically modi-
fi ed rhizobia with desirable traits have also been surfed to a large extent. Besides 
their potentiality, the commercial success of rhizobia as a bio-inoculant is poor, 
because most of the inoculants produced worldwide are of poor or suboptimal 
quality. Though voluminous data and better understanding are available on vari-
ous formulation technologies, longevity and effi cacy of the fi nal product are 
loosed at the farmer’s end. This book chapter is focused to address various types 
of formulations applicable to rhizobia, quality control for longevity, gaps in 
knowledge on bringing the native potential of rhizobia during formulation, and 
critical control points to be considered during its development. The chapter also 
shares ICRISAT’s experience in its rhizobial collection, formulation develop-
ments, and effi cacy testing.  
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3.1       Introduction 

 Approximately 80 % of the human dietary nitrogen needs, i.e., 24 Tg/year in tropics 
and subtropics, are satisfi ed by the plants. But with the increasing earth’s population 
at a rate of 1.4 % annually, the present scenario of crop production rates will not be 
suffi cient to maintain the dietary needs (Mannion  1998 ; Fink et al.  1999 ). 
Deterioration of agricultural lands and use of marginal lands for crop production are 
further complicating the scenario, because soil N management plays a critical role 
in crop yield (Huang and Rozelle  1995 ; Bramley et al.  1996 ; Rozelle et al.  1997 ; 
Savant et al.  1997 ). While considering the past scenario, i.e., between 1950 and 
1990, N fertilizers played a major role in increasing the cereal grain yield. They 
yielded 6–9 mg grain/hand take-up 200–300 kg N ha year −1  (Vance  1998 ). Still the 
use of N fertilizers at global scale is in increasing trend as per the FAOSTAT data. 
Though nitrogen fertilizers gave an increase in crop production, there was a great 
impact in the environment which includes NOx loss, acid rain, higher leaching, 
change in the global N cycle, and polluted ground water. When developed countries 
were facing such problems, developing countries were affected by the additional 
issues of fertilizer cost, availability, and distribution problems (Kinzig and Socolow 
 1995 ; Vitousek et al.  1997 ). 

 In the context of sustainable N management, symbiotic nitrogen fi xation (SNF) 
plays a vital role. Though it represents systems including either rhizobia,  Azolla , or 
 Anabaena  with either leguminous or cereal crops, the system of legume-rhizobia 
symbiosis is the critical factor as it involved in 80 % (approximately 100–
122 Tg year −1 ) of biologically fi xed nitrogen by involving a range of species such as 
 Rhizobium ,  Bradyrhizobium ,  Sinorhizobium ,  Azorhizobium ,  Mesorhizobium , and 
 Allorhizobium  (Vance  1998 ; Herridge et al.  2008 ). The process of nitrogen fi xation 
through SNF was reviewed periodically at various aspects covering biochemical 
and molecular mechanisms and genetic factors (Jiao et al.  2016 ; Remigi et al.  2016 ). 
When considering the fi xed nitrogen effect by fertilizer and SNF, two key factors 
have to be considered: (i) fi xed N by SNF is less susceptible to volatilization, leach-
ing, or denitrifi cation than fertilizer N, and (ii) industrial production of N requires 
approximately 1.5 Kg oil Kg −1  fertilizer in order to reduce N to ammonia along with 
the requirement of high temperature and pressure. Though SNF is also an energy- 
demanding process involving 16–24 moles of ATP for reducing 1 mole of dinitro-
gen, its persistence, stability, and absence of post-fi xation effects add positive 
impact over fertilizer N. As per the review by Herridge et al. ( 2008 ), symbiosis by 
rhizobia is the effi cient system for SNF as it contributes 55,140 kg N ha −1 , whereas 
0.330 kg N ha −1  is by other biological systems. The symbiosis by cyanobacteria 
contributes for 5 Tg N, whereas by free-living, associative, and endophytic bacteria 
provides 10–20 Tg N. Actinorhizal symbiosis estimates about 4–42 g N tree −1  
(Dommergues  1995 ), and cycads contribute 8–19 kg N h −1  in a year (Vessey et al. 
 2004 ). 

 Rhizobia, the effi cient nitrogen fi xer, are a term used for collective bacteria that 
enters symbiosis with legumes. Initially, till 1982, it was considered that  Rhizobium  
is the only bacteria that possess these properties, but today, it was identifi ed that 
there are 14 genera in two subphyla of Proteobacteria, viz., α-Proteobacteria and 
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β-Proteobacteria. α-Proteobacteria includes the genera  Agrobacterium , 
 Allorhizobium ,  Azorhizobium ,  Bradyrhizobium ,  Devosia ,  Mesorhizobium , 
 Methylobacterium ,  Ochrobactrum ,  Phyllobacterium ,  Rhizobium ,  Shinella , and 
 Sinorhizobium  (syn.  Ensifer ), and β-Proteobacteria includes  Burkholderia , 
 Cupriavidus , and  Herbaspirillum . The number of genera in the rhizobia list is 
increasing day by day by various studies. This increasing number of rhizobia isola-
tion led to reclassifi cation and redesignation of some species (Lindström et al. 
 2010 ). 

 Development of such rhizobia as inoculants for legume crops is the most valu-
able contributions ever made by science to agriculture since it is evident to reduce 
N fertilizer use. Initial studies of inoculation were performed at a very basic level 
and laborious moving of soil from fi elds of well-nodulated legumes to legume-free 
fi elds (Fred et al.  1932 ). European countries initiated the inoculums development by 
advising their farmers to treat legume seeds with glue and sieved air-dried soil from 
well-nodulated plants (Walley et al.  2004 ). The work of Hellriegel and Beijerinck in 
the 1880s has brought a record on using pure cultures of rhizobia on inoculation of 
legume seeds. Within a couple of years, rhizobia were available in the European 
market for a range of species, and still it is getting developed involving new tech-
nologies (Guthrie  1896 ; Perret et al.  2000 ). But in the context of Asian countries, 
still the legume inoculant technology is underdeveloped due to a range of factors. 
Hence, this book chapter is focused to discuss the factors affecting rhizobia inocu-
lant development in Asia.  

3.2     Beneficial Traits of Rhizobia 

 Rhizobia are primarily considered for nitrogen fi xation. Still the research on SNF in 
relation to rhizobia is ongoing including genetically modifi ed rhizobia (Lindström 
and Mousavi  2010 ; Okazaki et al.  2016 ). After the concept of plant growth- 
promoting rhizobacteria by Kloepper, rhizobia have also been surfed to a large 
extent for its plant growth-promoting (PGP) properties (Kloepper and Schroth 
 1978 ). Hence, a developed rhizobial inoculum will provide additional plant and soil 
health benefi ts besides fi xing nitrogen. PGP properties of rhizobia have been 
reviewed previously by Gopalakrishnan et al. ( 2014 ) and Naveed et al. ( 2015 ). The 
representatives of rhizobia with PGP traits have been given here. 

3.2.1     Rhizobia as Phosphate Solubilizers 

 Rhizobia including  Rhizobium leguminosarum ,  Rhizobium meliloti ,  Mesorhizobium 
mediterraneum ,  Bradyrhizobium  sp., and  Bradyrhizobium japonicum  (Vessey  2003 ; 
Afzal and Bano  2008 ) are the potential P solubilizers. The solubilization was aided 
by low molecular organic acids produced by them, for instance, 2-ketogluconic acid 
production by  R. leguminosarum  (Halder et al.  1990 ) and  R. meliloti  (Halder and 
Chakrabarty  1993 ). Enhanced growth in chickpea and barley plants by P-solubilizing 
rhizobia  M. mediterraneum  has been demonstrated by Peix et al. ( 2001 ).  
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3.2.2     Rhizobia as Iron Mobilizers 

 Iron exists as insoluble hydroxides and oxyhydroxides which cannot be accessed by 
both plant and microbes. Some bacteria synthesize low molecular weight com-
pounds termed as siderophores which are capable of sequestering Fe 3+ . Many rhizo-
bia species including  R. meliloti ,  Rhizobium tropici ,  R. leguminosarum , 
 Sinorhizobium meliloti , and  Bradyrhizobium  sp. are reported to be potent sidero-
phore producers (Arora et al.  2001 ; Carson et al.  2000 ).  

3.2.3     Phytohormone Production of Rhizobia 

 Phytohormones are the essential substances for plant growth stimulation. They 
include indole-3-acetic acid (IAA), cytokinin, and gibberellins. IAA is the foremost 
phytohormone and plays a role in cell division and differentiation and also in nodule 
formation. Rhizobia strains are also reported to produce IAA via indole-3-pyruvic 
acid and indole-3-acetaldehyde pathway (Camerini et al.  2008 ). Similarly rhizobia 
have been reported to produce cytokinins which are involved in root development 
and root hair formation (Senthilkumar et al.  2009 ). Gibberellins which are respon-
sible for stem elongation and leaf expansion are also reported in  Rhizobium  (Boiero 
et al.  2007 ). Some reports are there for production of abscisic acid which stimulates 
stomatal closure, induces seeds to store proteins, and induces gene transcription for 
protease inhibitors (Dobbelaere et al.  2003 ).  

3.2.4     Rhizobia as Biocontrol Agents 

 Biocontrol properties have been demonstrated in several rhizobia strains through 
the mechanisms like competition for nutrients (Arora et al.  2001 ), production inhib-
itory substances including antibiotics (Chandra et al.  2007 ), production of hydro-
lytic enzymes (Ozkoc and Deliveli  2001 ), siderophores (Carson et al.  2000 ; Deshwal 
et al.  2003 ), and low molecular weight metabolites (Bhattacharyya and Jha  2012 ). 
Phytopathogens such as  Rhizoctonia solani ,  Macrophomina phaseolina , and 
 Fusarium solani  were found to be controlled by rhizobia.  

3.2.5     Rhizobia as Abiotic Stress Relievers 

 The stress of the plant depends on host-plant reaction which can be infl uenced by 
rhizobia and the symbiosis (Yang et al.  2009 ). Several reviews periodically docu-
mented the stress tolerance of  Rhizobium  and  Bradyrhizobium  against soil salinity, 
acidity, alkalinity, osmotic stress, and temperature fl uctuations (Graham  1992 ; 
Kulkarni and Nautiyal  2000 ; Grover et al  2010 ).   

R. Vijayabharathi et al.



51

3.3     Development of Rhizobia Formulations 

 Development of an inoculant technology for microbes is a time-consuming and 
cumbersome process as it faces various issues because many of the microbes pro-
duce fruitful laboratory results but fail to refl ect similar effects under fi eld condi-
tions. So the success of an inoculant depends on its optimal results in situ and 
sophisticated use including cost-benefi t ratio by end user (Xavier et al.  2004 ). In the 
context of inoculant development, carrier, a vehicle which transfers the microbes 
from laboratory to fi eld, plays a crucial role. An ideal carrier should provide a ben-
efi cial microenvironment for the inoculated microbes against a range of biotic and 
abiotic stress factors including contaminants, soil antagonists, soil health deteriora-
tion, temperature, dryness, UV light, and mechanical stress. It should include the 
features such as (1) sustained availability, (2) low cost, (3) high moisture absorption 
capacity, (4) easy to process, (5) easy to sterilize, and (6) buffering capacity (Keyser 
et al.  1993 ). An overview on the available carrier materials and different types of 
inoculants is given in Fig.  3.1 . Each carrier and formulation technology has its own 
pros and cons; and several reviews summarizing the same are available (Jung et al. 
 1982 ; Van Elsas and Heijnen  1990 ; Daza et al.  2000 ; Catroux et al.  2001 ; Amarger 
et al.  2001 ; Deaker et al.  2004 ; Bashan et al.  2014 ; Nehra and Choudhary  2015 ; 
Gopalakrishnan et al.  2016 ). Different rhizobial formulations tested on various 
crops are summarized in Table  3.1 .

    America, Europe, and Australia have potential market for rhizobia and have 
well-developed inoculant technologies. It is estimated that, in Australia, legumes 
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   Table 3.1    Different formulations of rhizobia tested at fi eld levels   

 Formulation types 
 Additive/
treatment  Rhizobia  Crop tested  References 

 Liquid (culture 
media or water) 

 Glycerol, PVP, 
trehalose, 
FeEDTA 

  B. japonicum   Soybean  Singleton et al. 
( 2002 ) 

 PVP; FeEDTA  Several 
rhizobia;  B. 
japonicum  

 Soybean  Albareda et al. 
( 2008 ) 

 Unknown 
(commercial) 

  B. japonicum   Soybean  Maurice et al. 
( 2001 ) 

 Gum Arabic   Bradyrhizobium  
sp . ,  Rhizobium  
sp .  

  Acacia 
mangium , green 
gram,  Leucaena 
leucocephala  

 Diouf et al. 
( 2003 ); Wani 
et al. ( 2007 ) 

 Lyophilized 
cells 

 Soybean oil/
peanut oil 

  Rhizobium  sp .   Bean, cowpea, 
peanut 

 Kremer and 
Peterson ( 1983 ) 

 Organic carrier 

 Peat  None or with 
undisclosed 
additives 

  B. japonicum ; 
 Rhizobium  sp., 
 R. 
leguminosarum  
bv.  viciae  

 Chickpea; faba 
beans; maize; 
pea; soybean; 
wheat 

 Clayton et al. 
( 2004a ,  b ), 
Hamaoui et al. 
( 2001 ), Hungria 
et al. ( 2010 ), 
Hynes et al. 
( 2001 ), Khalid 
et al. ( 2004 ), and 
Revellin et al. 
( 2000 ) 

 Gum Arabic   Rhizobium , 
 Bradyrhizobium  

 Bean,  Lupinus , 
 Hedysarum  
Soybean 

 Albareda et al. 
( 2009 ) and 
Temprano et al. 
( 2002 ) 

 Coir dust/coco 
peat 

 None   Azorhizobium 
caulinodans  

 Rice  Van 
Nieuwenhove 
et al. ( 2000 ) 

 Vermicompost/
earthworm 
compost 

 Lignite   R. 
leguminosarum  

 Not tested  Raja Sekar and 
Karmegam 
( 2010 ) 

 Sawdust  Composted by 
inoculation with 
C ephalosporium  
sp. and 
 Azospirillum 
brasilense  

  B. japonicum ,  R. 
meliloti  

 Groundnuts, 
lucerne, and 
grass mixture of 
bird’s foot 
trefoil and 
ryegrass; 
soybean 

 Kostov and 
Lynch ( 1998 ) 

 Sawdust  None   R. 
leguminosarum  

  Trifolium repens   Arora et al. 
( 2008 ) 

(continued)

R. Vijayabharathi et al.



53

growing on 25 M ha of land fi x US$3–4 billion worth of N annually (Bullard et al. 
 2005 ). Report of Vessey ( 2004 ) states the benefi ts of rhizobial inoculants in the 
Northern Great Plains of the USA and Canada on soybean, lentil, pea, and faba bean 
with an overall response of 45 % yield increase. In the context of Asia, the situation 
is typically different though it contributes for maximum production of pulses than 
the other regions/continents. The statistical data of FAO (FAOSTAT  2016 ) on top 
seed producers and fertilizer users clearly indicates that the major seed producers 
are India and China; also the two Asian countries are the relatively top consumers 
of fertilizers (Fig.  3.2 ). All these together give a clear indication that the Asian coun-
tries depend more toward N fertilizers than the biofertilizers contributing nitrogen 

Table 3.1 (continued)

 Formulation types 
 Additive/
treatment  Rhizobia  Crop tested  References 

 Grape bagasse, 
cork compost 

 Gum Arabic, 
CMC 

 Several 
rhizobia;  B. 
japonicum  

 Soybean  Albareda et al. 
( 2008 ) 

 Wastewater 
sludge 

 Acid, alkaline, 
and oxidative 
pretreatments 

  S. meliloti , 
 R. 
leguminosarum  
bv.  viciae , 
 B. japonicum , 
 B. elkanii  

 Not tested  Ben Rebah et al. 
( 2002a ,  b ) 

 Inorganic carrier 

 Clay minerals, 
perlite 

 Gum Arabic, 
CMC 

 Several 
rhizobia,  B. 
japonicum  

 Soybean  Albareda et al. 
( 2008 ) 

 Coal  None   R. 
leguminosarum  
bv.  phaseoli  

 Pinto bean  Crawford and 
Berryhill ( 1983 ) 

 Vermiculite  None   B. japonicum , 
 S. meliloti , 
 R. 
leguminosarum  
bv.  phaseoli  

 Navy beans  Graham-Weiss 
et al. ( 1987 ) and 
Sparrow and 
Ham ( 1983 ) 

 Perlite  Gum Arabic   Rhizobium , 
 Bradyrhizobium  

 Bean;  Lupinus , 
 Hedysarum ; 
soybean 

 Temprano et al. 
( 2002 ) 

 Sucrose   R. 
leguminosarum  
bv.  phaseoli , 
 R. tropici , 
 B. japonicum  

 Bean, soybean  Daza et al. 
( 2000 ) 

 Polymeric carrier 

 Alginate  None   Rhizobium  spp.   Leucaena 
leucocephala  

 Forestier et al. 
( 2001 ) 

  Modifi ed from Bashan et al. ( 2014 )  
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  Fig. 3.3    Overview of barriers in inoculant development       

 

 

R. Vijayabharathi et al.



55

including  Rhizobium  inoculants. The problem in the context of Asian scenario in 
 Rhizobium  inoculant technology is described here in various aspects, and an over-
view is given in Fig.  3.3 .

3.3.1        Inoculant Strain Selection 

 Effective rhizobial strain is the central core for developing an inoculant which is 
necessitated in order to provide rhizobia for new legume cultivars and species and 
extend and optimize the legume cultivation under fl uctuating environmental condi-
tions. Brockwell et al. ( 1995 ) have listed a set of essential and desirable characters 
for inoculant strains including host specifi city, competence with native rhizobia 
population and also with agrochemicals, genetic stability, etc. Asian countries 
including India (Ansari et al.  2014 ), China (Jiao et al.  2015 ), Nepal (Adhikari et al. 
 2012 ), and Myanmar (Htwe et al.  2015 ) have been reported with vast diversity of 
nodulating rhizobia. Recent reports on diversity analysis of rhizobia under hostile 
environments such as soils with acidity (Mishra et al.  2014 ), alkalinity (Singh et al. 
 2016 ), and micronutrient defi ciency (Unno et al.  2015 ) indicate the research initia-
tives on the exploration of Asian rhizobial strains. The large genetic diversity noticed 
on soybean native rhizobia of Asian countries further supports the phenomenon 
(Biate et al.  2014 ). Reeve et al. ( 2015 ) captured the phylogenetic and biogeographic 
diversity of root nodule bacteria across the world through two genome sequencing 
reports, which has only 7 entries for rhizobia from Asian origin among the 107 
selected strains. However, these 7 entries include 3 among the total of 13 type strains 
and 1 among the total of 14 elite strains with commercial signifi cance, indicating 
that the complete characterization and exploration of rhizobial biodiversity of Asian 
countries will pave way for inoculant development.  

3.3.2     Genetically Modified Rhizobia 

 Besides the native fl ora, genetic modifi cation has also been done in rhizobia, mainly 
to compete with the indigenous strains and to improve its effi cacy to form nodules 
and to fi x nitrogen. 

3.3.2.1     Modification in Nodulation 
 To increase the nodulation effi ciency, two approaches were carried out. One is by 
introducing genes encoding for trifoliotoxin, an antibiotic to which indigenous fl ora 
is sensitive. Robleto et al. ( 1998 ) used this construct in  Rhizobium elti , the common 
bean microsymbiont. They differ with the indigenous strain only in the production 
of nodules. Over 2 years, the genetically modifi ed strains had occupied 20 % of the 
nodules in comparison to non-trifoliotoxin-producing strains. Another approach is 
to modify the expression of metabolite  putA  gene which is responsible for root sur-
face colonization. Dillewijn et al. ( 2001 ) followed this approach in alfalfa fi eld with 
 S. meliloti  strains overexpressing  putA  gene. On 1 month of inoculation, a large 
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number of strains occupied the nodules than the control strains. It appears to be an 
effi cient method of nodulation, but on the yield of crop after 3 years of experimenta-
tion, they were all equal in inoculated and un-inoculated plants. This informs that 
inoculant strains will improve in nodulation only when indigenous competing popu-
lation is less effi cient which might not be frequent.  

3.3.2.2     Modification in Nitrogen Fixation 
 To improve the nitrogen fi xation, two approaches were followed. One is involving 
modifi cation in  nifA  gene which regulates the expression of genes necessary for 
enzymes involved in nitrogen fi xation. The other is by modulating dicarboxylate 
transport ( dct ) genes which supplies the carbon and energy required for nitrogen 
fi xation. A construct with extra copy of  nifA  and/or  dct  genes was inoculated in  S. 
meliloti  and released in four fi elds (Bosworth et al.  1994 ). There was an increase by 
13 and 18 % of alfalfa biomass in wild-type strains and non-inoculated control, 
respectively. But they were shown only at the sites with very low population of 
indigenous fl ora and low nitrogen content. Further, these were not found after 
3 years of exploitation (Scupham et al.  1996 ). A study on soybean cultivation with 
release of  B. japonicum  with or without extra copy of  nifA  gene did not neither 
increase the yield nor the nitrogen fi xation (Ronson et al.  1990 ). Summarily, the 
success of genetic modifi cation has the potential to bring out a success in poor agri-
cultural conditions.  

3.3.2.3     Interaction Between Indigenous and Genetically Modified 
Rhizobia 

 In response to the introduction of genetically modifi ed rhizobia, there was a change 
in number, composition, and activities of indigenous microfl ora and most impor-
tantly exchange genetic material with indigenous microfl ora. There were very less 
differences observed in rhizospheres of different hosts (Hirsch and Spokes  1994 ; 
Amarger et al.  2001 ) which informs only less changes happen on introduction. 
Similarly, vice versa transfer, i.e., plasmids from native fl ora to the introduced fl ora, 
was also not detected on re-isolating the genetically marked rhizobia after 1–2 years 
of introduction (Hirsch  1997 ). Data predicts that plasmid acquisition takes place at 
a frequency of 8 × 10 6 /recipient cell in one site after 7 years of release which is not 
a stable conjugant. Studies have reported that there is no transfer of Tn-7 plasmid 
that occurs at any stage. If occurred also, the frequency is less than 10 7  events/gram 
of soil (Drahos et al.  1986 ). Lilley and Bailey ( 1997 ) had reported that transfer from 
indigenous to genetically marked rhizobia takes place with a frequency from 5 × 10 7  
to 1 per recipient which varies with the year of experiment. However, the generated 
transconjugant is not stably maintained in the cell.   

3.3.3     Nutritional Attributes for Rhizobia 

 After the selection of effective rhizobia, nutritional attributes have to be considered 
in order to evaluate whether the given carrier material will be enough to hold the 
viability or it requires any additional supplements for rhizobial maintenance. 
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Knowledge of nutritional requirement is a key factor when selecting complex mate-
rial like agricultural, industrial, and sewage sludge wastes for inoculant production. 
Broadly rhizobia are divided into two categories depending on nutritional require-
ment and growth rate. They are fast-growing and slow-growing rhizobia which are 
placed in the genus  Rhizobium  and  Bradyrhizobium , respectively (Jordan  1984 ). 
Fast growers are acid producers with 2–4 h as generation time. Slow growers are 
alkaline producers with 6–8 h as generation time (Jordan  1984 ). Fast growers can 
grow on various carbon sources such as hexoses, pentoses, disaccharides, trisac-
charides, and organic acids (Allen and Allen  1950 ), whereas the other type can grow 
only in the presence of pentose but can utilize many aromatic substrates (Parke and 
Ornston  1984 ). In the context of nitrogen, some fast growers are potent in utilizing 
nitrate, ammonia, and amino acids (Quispel  1974 ). Amino acid glycine, alanine, 
and certain  D -forms of amino acid might create a negative impact in nitrogen fi xa-
tion (Burton  1979 ). Vitamin requirements vary between the genera, for example,  R. 
leguminosarum  (bv.  trifolii  and bv.  phaseoli ) requires biotin, thiamine, or calcium 
pantothenate separately or in combination, whereas  S. meliloti ,  B. japonicum , etc. 
need only biotin (Graham  1963 ). In case of minerals, defi ciency of Ca 2+  and Mg 2+  
affects the growth and results in abnormal cells (Vincent  1962 ).  

3.3.4     Inoculant Development 

 Among the inoculants are the primitive types such as broth culture, agar culture, and 
dried/lyophilized cells. These types of inoculants could not be promoted to practical 
technology, though it is least laborious and has proved records at research centers, 
because of impractical application at large scales and its failure to meet economic 
and commercial needs (Bashan et al.  2014 ). Hence, a carrier is necessary for the 
development of a successful inoculant. 

 The major markets, such as Europe and Australia, supply the inoculants in solid 
carriers, most commonly peat, for seed application (Catroux et al.  2001 ; Singleton 
et al.  2002 ). However, in North and South America, the inoculants supplied are 
clay- and peat-based granular and liquid inoculants (Singleton et al.  2002 ; Xavier 
et al.  2004 ). The Asian market also depends on peat for its inoculants because of its 
potential in holding high numbers of rhizobia (greater than 10 8  cells/g) during the 
storage. Unlikely, they do not have enough peatlands due to the lack of harmonized 
policies related to the management of peatlands besides their presence in Indonesia, 
India, Malaysia, Myanmar, the Philippines, Singapore, Thailand, and Vietnam. In 
the last few years, a forward look for its sustainable management has arisen. The 
projects ASEAN Peat l and Forests Project (APFP) and SEApeat were aimed in 
reducing deforestation and degradation of peatland forests and to strengthen the 
policies for its management. On the other end, a large area of peatlands in Vietnam 
has been designated as protected area and national parks  (  http://www.aseanpeat.
net/    ). 

 It should also be considered that whether the peat belongs to these regions is 
original peat. Thomas et al. ( 1974 ) have evaluated the physicochemical characters 
of peat obtained from Nilgiri reserves of India and concluded that the material was 
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not an original peat as it lacks the main traits like water-holding capacity and organic 
carbon content. It is noticed that the Indian peat has 20–50 % organic carbon, 
whereas Australian and American peat has 65 and 86 % organic carbon content, 
respectively (NIIR  2004 ). Conservation policies for peatland management by 
Europe, Australia, and America have become stringent as they have key roles in 
biodiversity, carbon sequestration, and fuel-related application. This indirectly leads 
to the unavailability and high export cost for other countries (Joosten  2015 ). 

 As an alternative to peat, other organic carriers such as lignite and charcoal can 
be used which have also proved to be effi cient in carrying rhizobia with the shelf life 
of 4–6 months (Argal et al.  2015 ; Gao et al.  2015 ). Research on alternate carrier was 
started more than four decades ago on carriers such as lignite and coal, clays and 
mineral soils, compost, farmyard manure, pressmud, agricultural waste, and inor-
ganic materials like vermiculite, perlite, ground rock phosphate, calcium sulfate, 
polyacrylamide gels, and alginate (Kandasamy and Prasad  1971 ; Dube et al.  1980 ; 
Chao and Alexander  1984 ; Iswaran et al.  1972 ; Philip and Jauhri  1984 ; Sadasivam 
et al.  1986 ; Sparrow and Ham  1983 ; Dommergues et al.  1979 ; Jung et al.  1982 ). 

 There are numerous reports on research and development of successful rhizobial 
formulations which were tested in fi elds of various research stations. However, 
there are very few number of coordinated network projects on large-scale evaluation 
in Asian countries. On the contrary, the International Network of Legume Inoculation 
Trials (INLIT) funded by the US Agency for International Development (USAID) 
in the University of Hawaii’s NifTAL project assessed the need for inoculation in 
tropical agricultural systems by conducting 228 trials on various legumes such as 
green gram, soybean, black gram, groundnut, cowpea, chickpea, lentil, pigeon pea, 
and common bean. Worldwide Rhizobial Ecology Network (WREN), the follow-up 
program of NifTAL, evaluated the factors contributing to variations in inoculation 
response including a number of infective rhizobia, edaphic characteristics, crop 
fi xed-N demand, and soil fi xed-N supply (Singleton et al.  1992 ). 

 Effective regulatory quality control (QC) program has key role in the successful 
production of rhizobial inoculants. This may be supported by appropriate legislation 
as in Canada, Uruguay, and France or may be voluntary as in Australia, Thailand, 
New Zealand, and South Africa. Contrarily, in the USA, regulatory control and 
independent testing are considered unnecessary, with manufacturers conducting 
their own internal QC. Irrespective of the QC nature, all QC programs should moni-
tor the numbers and quality of the strains in the inoculants along with the contami-
nating microorganisms. In Asia, 90 % of inoculants sampled had <10 8  rhizobia g −1  
carrier and most of samples were contaminated (Thompson  1992 ). 

 Besides these barriers, many Asian countries commercialized rhizobia inocu-
lants. This includes the following: (1) Pakistan, Fasloon Ka Jarasimi Teeka (AARI), 
BioPower (NIBGE), Biozote (NARC), and Rhizogold (ISES, UAF), consists of 
 Rhizobium  sp. (Naveed et al.  2015 ), and (2) Japan, the Tokachi Federation of 
Agricultural Cooperative (TFAC), produces Mamezo (rhizobia are mixed with peat 
and the natural organic matters), R-processing seeds (leguminous seeds inoculated 
with rhizobia), and hyper-coating seeds (leguminous grass seed coated by rhizobia 
within the capsule of calcium carbonate) (Yokoyama and Ohyama  2007 ).   
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3.4     Work at ICRISAT 

 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), based 
at Patancheru, Hyderabad, India, has been using peat-based rhizobial formulation 
for its mandate crops chickpea, pigeon pea, and groundnut. In order to fi nd an effi -
cient alternative carrier material, a total of six rhizobia (two specifi c for chickpea, 
IC-59, IC-76; two specifi c for pigeon pea, IC-3195, IC-4062; two specifi c for 
groundnut, IC-7001, IC-7113) were formulated as fi ve different inoculants using 
peat, talc, talc amended with starch, charcoal, and charcoal amended with sugarcane 
powder, and shelf life was evaluated for a period of 13 months (Table  3.2 ). Among 
the carrier materials, peat was found to be the best as it holds 10 7  rhizobia for IC-76, 
IC-3195, IC-4062, IC-7001, and IC-7113 and 10 6  for IC-59 even after 13 months of 
storage. On the whole, the shelf life maintenance was observed in the order of 
peat > talc amended with starch > talc > charcoal amended with sugar cane pow-
der > charcoal. The results also suggest that the use of proper additives to the inocu-
lants can tremendously enhance the shelf life of the product.

3.5        Conclusions 

 From the literature survey, it is observed that legume inoculants gained more atten-
tion in developed countries with successful stories like soybean in Brazil, pea and 
lentil in Canada, and subterranean clover in Australia. In Asia, though there is a 
considerable interest in rhizobial inoculant development, still many factors such as 
undisturbed supply of good-quality carrier material, well-developed technology, 
quality control legislations, well-defi ned good manufacturing practices, training 
programs, well-planned fi eld demonstrations, and governmental support for small- 
scale industries are creating constraints for further development. Unifi cation of all 
these sectors can lead to the development of a low cost, high shelf life, and highly 
effective rhizobial inoculants.     
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