Fast-track approach to breeding high-iron pearl millet cultivars

Mahalingam Govindaraj1, Kedar N Rai1, Wolfgang H Pfeiffer2 and Aanand Kanatti1

1 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Telangana, India. m.govindaraj@cgiar.org
2 HarvestPlus, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia

Pearl millet [Pennisetum glaucum (L.) R. Br.,] is an important food and nutritional security cereal, grown on more than 28 million ha in some of the most marginal dryland environments in the arid and semi-arid tropical regions of Africa and Asia (largely India). The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), in alliance with the HarvestPlus, has undertaken biofortification research to develop high-iron cultivars of this crop. As a fast-track approach, high-iron open-pollinated varieties (OPVs) and hybrid parents identified from the mainstream breeding program; which did not include Fe density as a target trait, have been used to breed cultivars with enhanced iron (Fe) density. For instance, exploitation of intra-population variability in ICTP 8203, a high-Fe commercial OPV in India, led to the development of its higher-Fe version, released at All India level as Dhanashakti, which had 71 mg kg⁻¹ Fe density (9% higher than ICTP 8203). It also had 11% higher grain yield. Dhanashakti has now been adopted by 60,000 farmers. Intra-population improvement for Fe density in three other OPVs has led to similar results. Two high-Fe hybrids (ICMH 1201 and ICMH 1301) were developed by crossing high-Fe hybrid parents identified from the mainstream breeding program, which have the Fe density similar to that of Dhanashakti but 33-38% higher grain yield. ICMH 1201 is being commercialized using Truthfully Labeled Seed by a seed company, reaching 35,000 farmers in 2014. ICMH 1201, ICMH 1301, along with several other high-Fe hybrids, are at advanced testing stage in the national and state trials. Further, within-line selection in the parental lines of hybrid ICMH 1201 produced sub-hybrids that had significant variability among them, with some sub-hybrids having 7-12% higher Fe density and 4-8% higher grain yield than ICMH 1201.

Key words: Pearl millet; Biofortification; Iron; Zinc