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ABSTRACT  

  
There are situations in which a number of inbred lines are found grouped into classes, depending on their origin 
and phenology. Interest in such situations lies in the estimation of genotypic variations between the genotypes from 
individual groups, whereas all genotypes are evaluated in a single trial conducted in a randomized complete block 
design (RCBD) or an incomplete block design (IBD). The objective of this study was to apply a Bayesian approach 
to estimate genotypic variation, heritability, and genetic advances within individual groups of groups of genotypes. 
A set of 360 barley genotypes were evaluated in a two replicate alpha-design with blocks of 10 plots each. The 
standard frequentist method to estimate variance components was carried out by the restricted maximum likelihood 
method on the days to flower data from the IBD as well as by an RCBD by ignoring the incomplete blocks. The 
Bayesian approach with selection of best priors was implemented for the estimation. We noticed a substantial 
difference in the estimates of the various genetic parameters across the groups. The estimation of variations between 
the genotypes from individual groups (RCBD or IBD) is needed as the basis of many agricultural research or plant 
breeding/agronomy trials. The Bayesian approach uses broader inference framework to integrate the prior 
information on parameters with the likelihood of the current data. Therefore, the Bayesian approach presented here 
for estimation of heritability and genetic gain for subsets of genotypes evaluated in a larger set of genotypes in the 
block design is recommended for use in similar situations. 
 
Keywords: Bayesian estimation, genotypic variance, heritability, genetic advance. 
_____________________________________________________________________________________________ 
 

INTRODUCTION 
 

In self-pollinated crops, plant breeders develop inbred lines (genotypes) over a course of time[15].In many 
situations, these genotypes can be traced back to have arisen from a number of distinct crosses[17]. The genotypes 
may also be grouped according to genetic make-up, e.g., being derived from the same cross, genetic marker class, 
seed colour, some phonological characteristics such as flowing time - early, medium and late flowering lines, and 
maturity time – early, medium or late maturing lines, etc.[11].Eventually, the groups may represent different target 
objectives or target environments as in breeding programs based on decentralized selection [4]. The interest lies in 
estimating the genetic parameters based on the genotypes within each group, while the evaluation of all the 
genotypes is done using a single trial in randomized complete block design (RCBD) or incomplete block design 
IBD[1]. The genotypes of the individual groups are not evaluated in separate trials[10]. 
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Two approaches for estimation of parameters, frequentist and the Bayesian can be pursued.In Bayesian analysis, 
prior assumptions and the likelihood of the data at hand form the joint posterior density of all unknown variables in 
a model underlying the observed phenotypes[8]. The prior information is generally available in an ongoing Crop 
Improvement Program. Markov chain Monte Carlo (MCMC) methods can be used for exploration of complex non-
standard joint densities and marginal posterior densities of parameters of interest in genetic gain for subsets of 
genotypes approximated[5]. There are variety of techniques for their implementation[7]of which Gibbs sampling[9] 
is the most commonly used in the Bayesian approach analyses and in combination with MCMC methods, have been 
applied in human genetics[21]and in plant genetics[16]genotyped individuals[12]. Heritability (ℎ�) is one of the 
genetic parameters, which measures variability that can be expressed in terms of the phenotypic variability existing 
in a population of inbred lines and also determines the expected genetic advance due to selection of desired 
genotypes[6].A Bayesian approach for estimating heritability’s using Markov-chain Monte Carlo (MCMC) 
simulationshas been given in [18].The objective of this paper is to present estimation of genetic parameters such as 
heritability and genetic advance for each group of genotypes by due partitioning of total genotypic variability into 
variability within and between the groups, under frequentist and the Bayesian approach. This investigation may shed 
light on a hypothesis that the magnitude of heritability does not only depend on the environment (it is often said that 
in stress environment heritability is lower than in non-stress environments, even if this is not necessarily true as in 
Table 3 of [2,3],but also on the difference in adaptation between the parents. The application was made on barley 
datasets where genotypes were derived from four crosses[13]. Estimation of heritability and genetic gains for 
subsets of genotypes evaluated in a larger set of genotypes in block design were evaluated in the same trial 
[14].Therefore, evaluating groups of genotypes in the same block design is an efficient cost-effective operation and 
to ensure the best possible genetic material is identified [22]. 
 

MATERIALS AND METHODS 
 
EXPERIMENTAL DESIGNS AND DATASETS 
A set of 360 barley genotypesderived from four crosses were evaluated in analpha-design with blocks of 10 plots 
eachand two replications during 1998/99 at Tel Hadya, Aleppo, Syria. From each cross, we grew 88 RIL's and the 
two parents. Plot-wise data on days to heading were analyzed.The four populations, one from each cross, were 
chosen among twelve mapping populations developed at ICARDA by advancing through single seed descentusing 
parents with various combinations of adaptation to Syrian dryland conditions.. Plot size was 8 rows at 20 cm 
distance and 2.5 m long. We represent the crosses or the groups of genotypes by 3, 6, 7 and 9as given in Table 1.  
 
Two datasets referred here are: incomplete block design [IBD] dataset, Dataset-IBD (consisting of columns of 
replications, incomplete blocks within replications, crosses/groups of genotypes, days to heading), and randomized 
complete block design [RCBD] dataset, Dataset-RCBD obtained from Dataset-IBD by removing the column of the 
incomplete blocks. 
 

Table 1. The four populations of RIL’s used in 1998/99 
 

GroupCross Name Combination of * Row type 
1 3 WI2269/Line 251-11-2/3/Leb71/CBB37//Leb71/CBB29 A ×NA 2 
2 6 Gustoe/6/M64-76/Bon//Jo/York/3/M5/Galt//As46/4/Hj34-80/ Astrix/5/NK1272 NA × NA 6 
3 7 Arta/3/Harmal-02//Esp/1808-4L A ×A 2 
4 9 Zanbaka/5/Pitayo/Cam//Avt/RM1508/3/Pon/4/Mona/Ben//Cam A ×NA 2 

* A= Adapted and NA = not adapted parents 
 
ESTIMATION OF HERITABILITY AND GAIN DUE TO SELECTIO N WITHIN GROUPS OF 
GENOTYPES 
Let the total of v genotypes be grouped into s groups, with vk genotypes in group k, k =1, …, s.Heritability and gain 
due to selection are expressed in terms of estimates of genotypic variance (���

� )within group kand common 

experimental error (environmental) variance (2eσ ) obtained from modeling of all the v genotypes under the chosen 

experimental design, RCBD or IBD[19].Heritability,in broad-sense and on a mean-basis, is given byℎ�
� = ���

� /

(���
� + ��

�/
), where r is the number of replications and � = 1, ..,s where �is the number of groups. Assuming 
normal distribution for the trait, the genetic gain due to selection for the group k, GA (p )%, at selection intensity 

p  is givenby %GA�(p) = 100 C(σ��
� /Y�)/(σ��

� +  σ�
�/r)�/�, where 0 1,p< <

2 /21
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−= . The 



Siraj Osman Omer et al Euro. J. Exp. Bio., 2014, 4(3):566-575         
______________________________________________________________________________ 

568 
Pelagia Research Library 

truncation point pz  in the standard normal distribution is given by the equation
2/21

1
2

p

x

z

e dx p
π

∞
− = −∫ , Y is 

the trial or location mean. For p  = 0.20, C  = 1.4 [17]. 

ESTIMATES OF VARIANCE COMPONENTS FOR GENOTYPEEFFECT S 
Let the genotype factor within group k be represented by abbreviated textGenok and the group factor by Grp 
(k=1,2…,s).The replications are denoted by Rep and incomplete blocks within replications by Blk.Rep. The model 
for variance component was fitted in terms of additive random effects factors 1) Rep, Grp and Geno1, Geno2, …, 
Genos for data from RCBD, and 2) Rep, Blk.Rep, Grp and Geno1, Geno2, …, Genosfor data from incomplete block 
design. Furthermore, the effects of the factors in above order and plot-errors were assumed to follow normal 

distribution with mean zero and variances, 2 2 2 2 2
1, , , ..., andr grp g gs eσ σ σ σ σ respectively for RCBD and 

2 2 2 2 2 2
1, , , ,..., andr b grp g gs eσ σ σ σ σ σ respectively for IBD datasets. 

 
BAYESIAN ESTIMATION 
The R2WinBUGS software was the environment for MCMC simulation using the Gibbs sampler[20]. The assumed 
a priori distributions for various variance components are listed in the following for the two models.  

  
For the variance components from RCBD:  

1) P1: the priors for the standard deviation components  1, , andr grp g gs eσ σ σ σ σK follow Uniform (0, θ =50)or 

Uniform (0, θ =100)  

2) P2: the priors for the standard deviation components 1, , andr grp g gs eσ σ σ σ σK follow  

positive half-normal distribution   (0, !"� = 100). Here, τ is precisionparameter, 
2τ σ −= given as inverse of 

variance. In the notation of WinBUGS, this distribution is denoted as dnorm(0, !)I(0,) or dnorm(0, 0.01)I(0,). I(0,) 
denotes that only the positive values were taken. 

3) P3: the priors for the standard deviation components 1, , andr grp g gs eσ σ σ σ σK follow positive Half-t 

distribution (0, , ) (0,)dt c Iυ . Here, c is non-centrality parameter and υ is the degree of freedom of the t-

distribution. The values of cand υ  are set at 5 and 2 respectively. 
4) P4: the priors of P3 withc= 2 and υ  = 4.  

 
For variance components from IBD: 

1) Q1: the priors for the standard deviation components 1, , , andr b grp g gs eσ σ σ σ σ σK follow Uniform (0, 10) or 

Uniform (0, 100) or Uniform (10, 100) or Uniform (100, 1000) 

2) Q2: the priors for the standard deviation components 1, , , andr b grp g gs eσ σ σ σ σ σK follow , the positive Half-

normal  (0.5, 0.01), Half-normal  (0.5, 0.5), Half-normal  (0.5, 0.1), or Half-normal  (0.1, 0.1) . 

3) Q3: The priors for the standard deviation components 1, , , andr b grp g gs eσ σ σ σ σ σK follow Half-t distribution 

(0, , ) (0,)dt c Iυ here, c is non-centrality parameter and υ is the degrees of freedom of the t-distribution. The 

values of cand υ  are set at Half-t (0,  2, 3), Half-t (0,5, 2) and  Half-t (0,5, 3). 
 

RESULTS  
 
Selection of priors and estimates of Heritability and Genetic Advance for Dataset-RCBD 

 
The standard frequentist analysis of RCBD dataset was carried out by REML for estimating variance components. 
Selection of the best priors for Bayesian analysis was carried out using the discrepancy statistics given in Table 2. 
For the priors sets, P1 to P2, (uniform and Half normal distributions), the values of deviance information criterion 
(DIC) and effective number of parameters were close.However, the prior set P2 seems to have numerically lowest 
value of DIC (4418.72). We took P2 for further estimation of the heritability parameters. 
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Table 2.  Deviance information criterion (DIC) values for selection of the priors for Dataset-RCBD 
 

Priors set D D̂ Dp DIC 

P1 4259.22 4099.02 160.197 4419.41 
P2 4261.33 4103.95 157.386 4418.72 
P3 4299.05 4166.95 132.099 4431.15 

D=posterior mean of (- 2 × log-likelihood). D̂= - 2 × log-likelihood at posterior means of parameters. Dp = 

effective number of parameters, DIC = Deviance information criterion. Priors set are: 

P1: �# , ��#$ ,  ��% , … , ��'and�� independently ~ uniform(0, 10) 
P2: �# , ��#$ ,  ��% , … , ��'and�� independently ~ half − normal (0.1, 0.1) 
P3:  �# , ��#$ ,  ��% , … , ��'and�� independently ~ halft(0, 5, 2 ) 
 
Table 3 gives estimates of variancescomponents and coefficients of variation to measure field heterogeneity under 
frequentist and Bayesian approaches. It also gives estimates of genotypic variance and heritability on mean-basis, 
genetic gain due to top 20% selection and a test for significance of genotypic variance.  Bayesian estimate of 
heritability (posterior expected value of the variance competent of frequentist approach especiallyvarianceof 
genotypes (group 1) was zero while Bayesian approach recorded the variance of genotypes group 1 as (1.543), this 
means that Bayesian approachgave an estimatebased on genotypic variance which is less likely to be fixed at a 
boundary.. The MC errors for all the parameters in Table 3 were very small indicating reliable numerical 
approximation based on 50000 iterations, 5000 simulation runs and three chains. It can be seen that distribution of 
variance components and heritability from Bayesian approach are skewed based on difference between their means 
and their variances. Their median values for the Bayesian estimateare very close to the frequentist estimates of 
GA(.20)%for genotypes Group 2, Group3  and Group4 as (2.03 vs.1.950), (3.88 vs.5.256)and (5.18 vs. 
5.16)respectively, while GA(.20)% of genotypes (Group 1) was(0.0001 vs.0.625). The median estimates for genetic 
gain are very close, under frequentist approach and Bayesian approach of genotypes Group 2, Group 3  and Group 4 
as (0.536 vs. 0.652), (0.336 vs. 0.352) and(0.635 vs. 0.649) respectively, while the genotypes of Group1 is totally 
different as (0.0001 vs. 0.135). Based on the genotypic variance, there is statistically significant variation in the 
genotypic means (P<0.01) under both theapproaches respectively.There wassubstantial variation due to the groups 
of the genotypes in the Bayesian estimates: 1.543 –18.93 for genotypic variance component, 0.113 -0.627 for 
heritability and 0.625 - 5.161% for genetic gain. Thus the selection of lines from a desired group or cross matters, 
e.g., Cross 6 (Group 2) gave highest genetic advance of 5.26% in RCBD. 

 
Table 3. Frequentist and Bayesian estimates of variances components, heritability and genetic gain for days to heading using Dataset-

RCBD 
 

Parameters@ 
Frequentist approach  Bayesian approach (priors set : P2)  

Estimate SE Estimate SE MC error 
Percentile 

2.50%   50% (median)  97.50%   
ℎ�

� 0.000 0.000 0.113 0.102 0.006 0.001 0.088 0.369 
ℎ�

� 0.536 0.075 0.633 0.063 0.002 0.502 0.637 0.750 
ℎ9

� 0.336 0.108 0.315 0.114 0.005 0.074 0.322 0.516 
ℎ:

� 0.635 0.059 0.627 0.061 0.002 0.495 0.632 0.731 
GA(.2)1% 0.00 --- 0.625 0.612 0.036 0.005 0.459 2.219 
GA(.2)2% 3.88 --- 5.256 0.896 0.032 3.641 5.204 7.154 
GA(.2)3% 2.03 --- 1.950 0.820 0.034 0.381 1.944 3.551 
GA(.2)4% 5.18 --- 5.161 0.848 0.027 3.564 5.158 6.919 

��
� 21.52 1.44 21.79 1.63 0.06 18.91 21.65 25.19 

���
�  0.001 0.001 1.543 1.638 0.091 0.012 1.067 5.901 

12.44 3.52 19.470 4.818 0.174 11.540 18.970 30.450 
5.44 2.51 5.373 2.611 0.102 0.887 5.169 10.870 
18.73 4.42 18.930 4.473 0.144 11.150 18.630 29.380 

�#
� 0.55 0.86 4.576 8.125 0.240 0.065 1.389 28.210 

Mean  93.29 2.380 92.840 0.249 0.008 92.350 92.840 93.310 
@ ℎ�

�= heritability from group k (k= 1…4), SE= standard error, MC error: Monte Carlo error, GA(.2)k %: genetic advance at 20% selection 
intensity for group k, k=1…4. 

 
Selection of priors and estimates of Heritability and Genetic Advance for Dataset-IBD 
The frequents analysis components of Dataset-IBD was carried out byREML variance components usingGenStatand 
WinBUGS program codes along with the statistics using Bayesian approach. The choices of priors for Bayesian 
analysis were made fromthe statistics given in Table 4. The values of DIC and pD varied over the three priors 
sets,4405.03 (for Q1) 4388.54(for Q2) and 4387.02 (Q3).Since the prior set Q3gavethe lowest value of DIC, we took 
Q3for further estimation of the genetic parameters. 
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Table 4.  Deviance information criterion (DIC) values for selection of the priors variance components for days to heading using Dataset-
IBD 

 

Priors set D D̂ Dp DIC 

Q1 4268.27 4131.5 136.765 4405.03 
Q2 4217.43 4046.32 171.11 4388.54 
Q3 4217.84 4048.66 169.179 4387.02 

D=posterior mean of (- 2 × log-likelihood). D̂= - 2 × log-likelihood at posterior means of parameters. Dp = 

effective number of parameters, DIC = Deviance information criterion. Priors set are: 

Q1: �# , �; , ��#$  ,  ��% , … , ��'and�� independently ~ uniform(0, 100) 
Q2: �# , �; , ��#$  , ��% , … , ��'and��independently ~ half − normal (0, 0.01) 
Q3:  �# , �; , ��#$  , ��% , … , ��'and��independently ~ half − t(0, 5, 2 ) 
 
Table 5 shows the posterior means of frequentist and Bayesian estimates of heritability and genetic gain for Dataset-
IBD.  The Bayesian estimate of genetic variance based on mean value is slightly higher (9%) than that under the 
Frequentist approach with highly heritability and gain selection parameters. Their median values for the Bayesian 
estimateare very close to the frequentist estimates, of GA (.20)% of genotypes Group 2, Group 3 and Group 4 as 
(3.891, frequentist vs. 3.903, Bayesian), (2.039 vs. 2.028) and (5.185 vs. 5.367)respectively, while GA(.20)% for 
Group1) as (0.075 vs.  0.350), is different comparing with others, in another words the GA(.20)% of Group 2 was 
the best group of genotypes comparing to other groups.  The median estimates for heritability are very close to each 
other, under frequentist and Bayesian approach of genotypes for groupsas (0.016 vs.  0.046), (0.549 vs.0.540), 
(0.346 vs. 0.332) and (0.647 vs. 0.650)respectively, the genotypic estimatesof heritability of genotypes groupsare 
heterogeneity also Group4 was given highest value in comparing to others. The Bayesian approach based on priors 
under model Q3was statistically significant at P<0.05 under the two approaches, while the significance was 
relatively greater in Bayesian approach. There were substantial variation in the estimates of heritability and genetic 
gain across the crosses/groups of the genotypes: range 0.046 -0.650 for heritability and 0.235 -5.367% for genetic 
advance. Furthermore comparing the results of Tables 3 and 5, we notic clearly the importance of experimenting 
with incomplete blocks.  
 

Table 5. Frequentist and Bayesian estimates of variances components, heritability and genetic gain for days to headings using Dataset-
IBD 

 

Parameters@ 
Frequentist approach  Bayesian approach (priors model : Q3)  

Estimate SE Estimate SE MCMC error 
percentile 

2.50% 50% (median) 97.50% 
ℎ�

� 0.016 0.173 0.046 0.065 0.004 0.000 0.015 0.229 
ℎ�

� 0.549 0.077 0.540 0.079 0.002 0.373 0.548 0.674 
ℎ9

� 0.346 0.112 0.332 0.124 0.006 0.053 0.347 0.544 
ℎ:

� 0.647 0.060 0.650 0.060 0.002 0.521 0.655 0.752 
GA(.2)1% 0.075 --- 0.235 0.350 0.022 0.000 0.074 1.263 
GA(.2)2% 3.891 --- 3.903 0.835 0.025 2.326 3.894 5.599 
GA(.2)3% 2.039 --- 2.028 0.884 0.038 0.264 2.044 3.745 
GA(.2)4% 5.185 --- 5.367 0.880 0.026 3.721 5.340 7.113 
Trial mean  93.28 2.6 93.21 0.168 0.006 92.890 93.210 93.530 

@ ℎ�
�= heritability from group k (k= 1…4), SE= standard error, MC error: Monte Carlo error, GA(.2)k %: genetic advance at 20% selection 

intensity for group k, k=1…4. 
 

DISCUSSION 
  

In crop improvement programs, normally a number of inbred lines or genotypes are evaluated in block designs and 
genetic gain is evaluated for a chosen intensity of selections. Parameters such as genotypic variance and heritability 
are evaluated for the situation where genotypes are assumed to have arisen from a common genetic pool. In breeding 
programs, often the several different types of crosses are made, say between parents adapted or non-adapted to 
different stresses, and the lines are developed by selections and crossing or selfing over the generations. It is of 
paramount interest to study the performance of lines and developing selection strategies with a cross type and 
estimate the genetic parameters within each group. The group of genetic material may also be represented by 
phenology, days to flower and maturity. However, in practice one may not evaluate the genetic materials from 
different crosses in separate experiments. This study addresses mainly three features of genetic evaluation— 1) 
parameters of interest vary with the group, 2) all the genotypes arising from various groups are evaluated in 
randomized complete block or incomplete block design, and 3) availability of prior information on variance 
components are available from the long-term ongoing experimentation. 
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The study demonstrated a statistical analysis procedure addressing the complex integration of the above three 
aspects. The parameters such as genetic variance, heritability and genetic advance were estimated under Bayesian 
approach for each of the two commonly used experimental designs: an incomplete block design or a large number of 
genotypes, and a complete block design for relatively a moderate number of genotypes.  The priors for standard 
deviation components were screened from the class of recommended priors (Gelman 2006). In the two situations 
presented here, priors based on uniform and positive Half-t distributions were found most suited prior out of the 
three priors considered. The resulting posteriors of these components could be used as the priors in later study to 
make the analysis more informative. The differences were obvious between frequentist and Bayesian approaches. 
One may choose Bayesian approach as it integrates the prior information with current data while the frequentist 
approach does not. It has also been differences in heritability and genetic advance estimates (Tables 3 and 5) arising 
due to accounting of the incomplete blocks, particularly for Cross 6 (Group 2), implying the need for experimenting 
in small size blocks for a better accountability of local variation. Extension of the method would be worth exploring 
for other variants of experimental design and data model. 
 

CONCLUSION 
  

The Bayesian approach integrates the prior information with likelihood of the current data. It has been applied to 
estimate genetic parameters based on the genotypes from individual  groups, while the genotypes from all the groups 
were evaluated in the same single trial conducted in a randomized complete or incomplete block design.  
Comparison with frequentist approach made. It demonstrates a step-wise procedure from selection of the best priors 
and estimation of heritability and genetic advance with help of codes in WinBUGS and R- packages. The procedure 
presented here is recommended for use in a similar situation in genetic studies. 
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Appendix 
 
A.1: R- codesforreading data from an RCBD dataset and calling the ‘bugs’ function   
#load packs 
library(lattice) 
library(coda) 
library(R2WinBUGS) 
#data from comb......................................... 
Gdata<- read.table("GroupDataRCB.txt", header=TRUE) 
Gdata 
rp<- Gdata$Rep   # rp for replication vector 
grp<-Gdata$Grp # grp for group vector 
gn<- Gdata$Geno  # gn for genotype vector 
y<-Gdata$dh 
print(cbind(rp, gn,grp, y)) 
NR<- 2 
NG<- 360 
NGRP<- 4 
NR1<- NR-1 
N<- NR*NG           # number of observations 
print(cbind(NR,NG, N,NGRP))  
mn<- mean(y) 
mn 
# define the first and last genotype numbers in the groups 
first<- c(1, 91,  181, 271) 
last<- c(90, 180, 270, 360) 
#--------------------------------- 
data<- list("mn", "y","rp","gn","N", "NR","NGRP", "first","last") 
data 
inits1<-  list(m=2, rho=c(rep(.01,NR)), g=c(rep(.01,NG)),grp=c(rep(.1,NGRP)),  sig.e=1,  sig.r=1.0, sig.grp=1.0, sig.g=c(rep(.5,NGRP)) ) 
inits2<-  list(m=1, rho=c(rep(.01,NR)), g=c(rep(.01,NG)),grp=c(rep(.11,NGRP)),   sig.e=1.2,  sig.r=1.0,sig.grp=1.1,  sig.g=c(rep(.5,NGRP)) ) 
inits3<-  list(m=1, rho=c(rep(.01,NR)), g=c(rep(.01,NG)),grp=c(rep(.12,NGRP)),   sig.e=1.1,  sig.r=1.0,sig.grp=1.0,  sig.g=c(rep(.5,NGRP)) ) 
inits<- list(inits1, inits2, inits3) 
inits 
#Step 6 
parameters <- c("m", "sig2.r", "sig2.grp", "sig2.g", "sig2.e", "h2", "GA20") 
parameters 
GroupHeritRCB.sim<- bugs(data, inits, parameters, "GroupHeritRCB.bug", n.chains=3, n.iter=50000, n.sims=5000, debug=TRUE) 
#Step 6 
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A.2:WinBUGS codesto model data from RCBD and estimation of heritability and genetic gain  
# RCBD data analysis 
model {  
for (i in 1:N){  
  y[i] ~ dnorm(mu[i] , tau.e) 
mu[i]<-  m + rho[rp[i]] + g[gn[i]]                                            
                      } 
for (i in 1: (NR - 1) ) { rho[i] ~ dnorm(0, tau.r) } 
 
rho[NR]<-   -sum(rho[1:(NR -1)]) 
# Express genotype effects as group effect and genotype within group effects 
# Thus  g() = grp() + grp.g() 
for(j in 1: (NGRP - 1) ){ 
for (i in first[j]: (last[j]-1) ) { g[i] <- grp[j]+ grp.g[i]} 
g[last[j]]<-  -sum(grp.g[first[j]:(last[j]-1)] ) # the last geno in the group 
                         } 
    # For the last Group 
grp[NGRP]<-  -sum(grp[1:(NGRP-1)]) 
for(j in NGRP:NGRP){ 
for (i in first[j]: (last[j]-1) ) { g[i] <- grp[j]+ grp.g[i]} 
g[last[j]]<-  -sum(grp.g[first[j]:(last[j]-1)] )  # last geno in the last group 
} 
tau.e<- 1/(sig.e*sig.e) 
tau.r<- 1/(sig.r*sig.r) 
tau.grp<- 1/(sig.grp*sig.grp) 
 
for(j in 1:NGRP){ tau.g[j] <- 1/(sig.g[j]*sig.g[j]) } 
for(j in 1:NGRP){ sig2.g[j] <- (sig.g[j]*sig.g[j])   } 
                     sig2.e <- (sig.e*sig.e) 
                     sig2.r<- (sig.r*sig.r) 
                     sig2.grp<- (sig.grp*sig.grp) 
#priors 
m ~ dnorm(0.0, 1.0E-6)       
for(j in 1:(NGRP-1) ){grp[j]~ dnorm(0, tau.grp)}    # for group effects, except the last grpoup 
for(j in 1: NGRP ){ 
for (i in first[j]: (last[j]-1) ) { grp.g[i] ~ dnorm(0, tau.g[j]) } # geno, except the last geno in the group 
                                             } 
sig.e ~ dt(0, 5, 2)I(0,) 
for(j in 1:NGRP){     sig.g[j] ~ dt(0, 5, 2)I(0,) } 
sig.r ~ dt(0, 5, 2)I(0,) 
sig.grp~ dt(0,5,2)I(0,) 
 
# Prediction of parameters of interest-- means, heritability, SEs 
for(j in 1:NGRP) {  h2[j]<- tau.e/(tau.e + tau.g[j]/NR) } 
                    # this heritability is on  mean-basis, 8 Jan 2013 
 
     # gain due to 20% selection & 10%, 5% selection K=1.4, 1.755,2.063 
for(j in 1:NGRP) { GA20[j] <- 100*1.4/mn/sqrt(tau.g[j]*(1+tau.g[j]/NR/tau.e))  } 
 
        } 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A.3: R- codes for reading data from an IBD dataset and calling the ‘bugs’ function   
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#load packs 
library(lattice) 
library(coda) 
library(R2WinBUGS) 
#data from comb......................................... 
#----------------------------- 
Gdata<- read.table("GroupDataIBD.txt", header=TRUE) 
Gdata 
rp<- Gdata$Rep   # rp for replication vector 
bl<-Gdata$Blk     # bl for block vector 
grp<-Gdata$Grp # grp for group vector 
gn<- Gdata$Geno  # gn for genotype vector 
y<-Gdata$dh 
 
print(cbind(rp, bl, gn,grp, y)) 
NR<- 2 
NB<- 36 
NG<- 360 
NGRP<- 4 
N<- NR*NG           # number of observations 
NBR1<- NR*(NB-1)    # no of generated block effects (NB1 from each repl.: last bloack effect is calculated) 
 
print(cbind(NR,NB,NK,NG, N, NBR1, NGRP))  
mn<- mean(y) 
mn 
#--------------------------------- 
first<- c(1, 91, 181,271) 
last<- c(90, 180, 270, 360) 
print(cbind(first, last)) 
#--------------------------------- 
data<- list("mn", "y","rp","bl","gn","NR", "NB", "N","NGRP", "first", "last") 
data 
inits1<-  list(m=2, rho=c(rep(.01,NR)), bet= c(rep(.02, NBR1)), g=c(rep(.01,NG)), grp=c(rep(.1,NGRP)), sig.grp=1.1, sig.e=1,  sig.r=1.0,  
sig.b=.53, sig.g=c(rep(.5,NGRP)) ) 
inits2<-  list(m=2, rho=c(rep(.01, NR)), bet= c(rep(.01, NBR1)), g= c(rep(.02,NG)),grp=c(rep(.1,NGRP)), sig.grp=1.1, sig.e=1.1, sig.r=1.15,  
sig.b=.68, sig.g=c(rep(.52,NGRP)) ) 
inits3<-  list(m=2, rho=c(rep(.02,NR)), bet= c(rep(.02, NBR1)), g=c(rep(.01,NG)),grp=c(rep(.11,NGRP)), sig.grp=1.0,   sig.e=1.05, sig.r=1.25,  
sig.b=1.35, sig.g=c(rep(.51,NGRP)) ) 
inits<- list(inits1, inits2, inits3) 
inits 
parameters <- c("m", "sig2.grp", "sig2.r", "sig2.g", "sig2.e", "sig2.b","h2", "GA20") 
 
parameters 
 
GroupHerit.sim<- bugs(data, inits, parameters, "GroupHeritIBD.bug", n.chains=3, n.iter=50000, n.sims=5000, debug=TRUE) 
#Step 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A.4: WinBUGS codes  to model data from IBD and estimation of heritability and genetic gain  
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# IBD data analysis 
model {  
for (i in 1:N){  
  y[i] ~ dnorm(mu[i] , tau.e) 
mu[i]<-  m + rho[rp[i]] + bet[rp[i],bl[i] ] + g[gn[i]]                                            
                      } 
  # rho[1...NR-1] Rep effects  result into rho[NR]  
for (i in 1:(NR -1)) { rho[i] ~ dnorm(0, tau.r)} 
rho[NR]<- - sum(rho[1:(NR-1)]) 
   for (i in 1:NR) { for(j in 1: (NB-1) ) { bet[i,j]~ dnorm(0,tau.b) }    # except the last, block effects within repl. 
bet[i,NB]<- -sum(bet[i,1:(NB-1)])   # last block in the replication  
                     } 
# Express genotype effects as group effect and genotype within group effects 
# Thus  g() = grp() + grp.g() 
for(j in 1: (NGRP - 1) ){ 
for (i in first[j]: (last[j]-1) ) { g[i] <- grp[j]+ grp.g[i]} 
g[last[j]]<-  -sum(grp.g[first[j]:(last[j]-1)] ) # the last geno in the group 
                         } 
    # For the last Group 
grp[NGRP]<-  -sum(grp[1:(NGRP-1)]) 
for(j in NGRP:NGRP){ 
for (i in first[j]: (last[j]-1) ) { g[i] <- grp[j]+ grp.g[i]} 
g[last[j]]<-  -sum(grp.g[first[j]:(last[j]-1)] )  # last geno in the last group 
} 
tau.e<- 1/(sig.e*sig.e) 
tau.r<- 1/(sig.r*sig.r) 
tau.b<- 1/(sig.b*sig.b) 
tau.grp<- 1/(sig.grp*sig.grp) 
for(j in 1:NGRP){ tau.g[j] <- 1/(sig.g[j]*sig.g[j]) } 
for(j in 1:NGRP){ sig2.g[j] <- (sig.g[j]*sig.g[j])   } 
sig2.e <- (sig.e*sig.e) 
                     sig2.r<- (sig.r*sig.r) 
                     sig2.b<- (sig.b*sig.b) 
sig2.grp<- (sig.grp*sig.grp) 
 #priors 
m ~ dnorm(0.0, 1.0E-6)       
for(j in 1:(NGRP-1) ){grp[j]~ dnorm(0, tau.grp)}    # for group effects, except the last grpoup 
for(j in 1: NGRP ){ 
for (i in first[j]: (last[j]-1) ) { grp.g[i] ~ dnorm(0, tau.g[j]) } # geno, except the last geno in the group 
                                             } 
sig.e ~ dunif(0,100) 
for(j in 1:NGRP){     sig.g[j] ~ dunif(0,100) } 
sig.r ~ dunif(0,100) 
sig.b ~ dunif(0,100) 
sig.grp~ dunif(0,100) 
    # Prediction of parameters of interest-- means, heritability, SEs 
for(j in 1:NGRP) {  h2[j]<- tau.e/(tau.e + tau.g[j]/NR) } 
                    # this heritability is on  mean-basis, 8 Jan 2013 
     # gain due to 20% selection & 10%, 5% selection K=1.4, 1.755,2.063 
for(j in 1:NGRP) { GA20[j] <- 100*1.4/mn/sqrt(tau.g[j]*(1+tau.g[j]/NR/tau.e))  } 

 


