Available online at www.pelagiaresearchlibrary.com

f Ex
'\\_}\ ] X D @,;'.

7
s %

#

Pelagia Research Library

opean,
R I%

European Journal of Experimental Biology, 2014, 4(8566-575

Pelagia Research

. eiagia esearcn
Library

ISSN: 2248 —9215
CODEN (USA): EJEBAU

Bayesian estimation of heritability and genetic gai for subsets of
genotypes evaluated in a larger set of genotypesarblock design

Siraj Osman Omer', Abdelwahab Hassan Abdall4, Salvatore Ceccarelfi*, Stefania Grandd*and
Murari Singh ®

*Experimental Design and Analysis Unit, AgricultuRésearch Corporation (ARC), Wad Medani, Sudan
?Department of Agronomy, Faculty of Agriculture, \erisity of Khartoum, Sudan
%International Center for Agricultural Research imetDry Areas (ICARDA), Amman, J ordan
“International Crops Research Institute for the Sémd Tropics (ICRISAT), Patancheru, Andhra Praddsidia

ABSTRACT

There are situations in which a number of inbrated are found grouped into classes, depending ein ¢igin
and phenology. Interest in such situations liethim estimation of genotypic variations betweengeotypes from
individual groups, whereas all genotypes are evidddn a single trial conducted in a randomized ptete block
design (RCBD) or an incomplete block design (IBLWe objective of this study was to apply a Bayeajgproach
to estimate genotypic variation, heritability, agdnetic advances within individual groups of groapgenotypes.
A set of 360 barley genotypes were evaluated iwareplicate alpha-design with blocks of 10 plotésle The
standard frequentist method to estimate variancapmments was carried out by the restricted maxirfiketihood
method on the days to flower data from the IBD a#l as by an RCBD by ignoring the incomplete bloddse
Bayesian approach with selection of best priors waplemented for the estimation. We noticed a sulbist
difference in the estimates of the various gemmrameters across the groups. The estimation datians between
the genotypes from individual groups (RCBD or IBDheeded as the basis of many agricultural researcplant
breeding/agronomy trials. The Bayesian approachsubeoader inference framework to integrate the prio
information on parameters with the likelihood of tturrent data. Therefore, the Bayesian approaasented here
for estimation of heritability and genetic gain feubsets of genotypes evaluated in a larger sgeonbtypes in the
block design is recommended for use in similaasituns.

Keywords: Bayesian estimation, genotypic variance, heritgbigjenetic advance.

INTRODUCTION

In self-pollinated crops, plant breeders developred lines (genotypes) over a course of time[15jiany

situations, these genotypes can be traced bacaue d&risen from a number of distinct crosses[1lg Genotypes
may also be grouped according to genetic make-gp, leeing derived from the same cross, genetikenarass,
seed colour, some phonological characteristics sisctiowing time - early, medium and late floweriinges, and
maturity time — early, medium or late maturing 8netc.[11].Eventually, the groups may represeffierdint target
objectives or target environments as in breedimg@ms based on decentralized selection [4]. Ttezdst lies in
estimating the genetic parameters based on thetypmsowithin each group, while the evaluation df the

genotypes is done using a single trial in randodhieemplete block design (RCBD) or incomplete blagsign
IBD[1]. The genotypes of the individual groups ao# evaluated in separate trials[10].
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Two approaches for estimation of parameters, fretigteand the Bayesian can be pursued.In Bayesialysis,
prior assumptions and the likelihood of the dathaatd form the joint posterior density of all unkmovariables in
a model underlying the observed phenotypes[8]. fitie information is generally available in an oimgp Crop
Improvement Program. Markov chain Monte Carlo (MCMflethods can be used for exploration of complex no
standard joint densities and marginal posteriorsilis of parameters of interest in genetic gaindabsets of
genotypes approximated[5]. There are variety dfin@ques for their implementation[7]of which Gibkengpling[9]
is the most commonly used in the Bayesian appraaalyses and in combination with MCMC methods, Hasen
applied in human genetics[21]and in plant genetiggfenotyped individuals[12]. Heritabilityaf) is one of the
genetic parameters, which measures variability ¢hatbe expressed in terms of the phenotypic viitjgbxisting
in a population of inbred lines and also determittes expected genetic advance due to selectionesiredi
genotypes[6].A Bayesian approach for estimatingitdiatity’'s using Markov-chain Monte Carlo (MCMC)
simulationshas been given in [18].The objectivehid paper is to present estimation of geneticipatars such as
heritability and genetic advance for each grougeriotypes by due partitioning of total genotypiciaaility into
variability within and between the groups, undegfrentist and the Bayesian approach. This inveiiiganay shed
light on a hypothesis that the magnitude of hellitsfwioes not only depend on the environmentgibften said that
in stress environment heritability is lower thannion-stress environments, even if this is not reardy true as in
Table 3 of [2,3],but also on the difference in adtipn between the parents. The application wasenwadbarley
datasets where genotypes were derived from foussesjl3]. Estimation of heritability and genetidngafor
subsets of genotypes evaluated in a larger setenbtgpes in block design were evaluated in the sarmak
[14].Therefore, evaluating groups of genotypeshim $ame block design is an efficient cost-effectiperation and
to ensure the best possible genetic material igtiftked [22].

MATERIALS AND METHODS

EXPERIMENTAL DESIGNS AND DATASETS

A set of 360 barley genotypesderived from four sesswere evaluated in analpha-design with blockiOoplots
eachand two replications during 1998/99 at Tel tad\eppo, Syria. From each cross, we grew 88 Rdhd the
two parents. Plot-wise data on days to heading aeadyzed.The four populations, one from each crasse
chosen among twelve mapping populations developé@ARDA by advancing through single seed descéngus
parents with various combinations of adaptatiorSisian dryland conditions.. Plot size was 8 rows2@tcm
distance and 2.5 m long. We represent the crosgbe groups of genotypes by 3, 6, 7 and 9as givable 1.

Two datasets referred here are: incomplete blogigde[IBD] dataset, Dataset-IBD (consisting of cohs of
replications, incomplete blocks within replicatipmsosses/groups of genotypes, days to headind)raamdomized
complete block design [RCBD] dataset, Dataset-R@BEained from Dataset-IBD by removing the columrthef
incomplete blocks.

Table 1. The four populations of RIL’'s used in 19989

Group Cross Name Combination of[Row type
1 3 |WI2269/Line 251-11-2/3/Leb71/CBB37//Leb71/CBB29 A xNA 2
2 6 |Gustoe/6/M64-76/Bon//Jo/York/3/M5/Galt//As46MB84-80/ Astrix/5/NK1272  NA x NA 6
3 7 |Arta/3/Harmal-02//Esp/1808-4L A xA 2
4 9 |Zanbaka/5/Pitayo/Cam//Avt/RM1508/3/Pon/4/MoredBCam A xNA 2

* A= Adapted and NA = not adapted parents

ESTIMATION OF HERITABILITY AND GAIN DUE TO SELECTIO N WITHIN GROUPS OF
GENOTYPES

Let the total of v genotypes be grouped into s gsowith y genotypes in group k, k =1, ..., s.Heritability agan
due to selection are expressed in terms of estgmategenotypic varianceagzk)within group kand common
experimental error (environmental) variantzEj() obtained from modeling of all the v genotypes emithe chosen

experimental design, RCBD or IBD[19].Heritability,broad-sense and on a mean-basis, is givér} byagzk/
(a;k + ¢2/r), where I'is the number of replications armd= 1,..,s wheresis the number of groups. Assuming
normal distribution for the trait, the genetic gdine to selection for the group k, GA()%, at selection intensity

212

o — _ 1 2
p is givenby %GAk(p) = 100 C(0 3/Y)/(0 %+ o 2/)*? where 0< p < 1,C—me . The
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Tl e _
truncation pointzp in the standard normal distribution is given bg ﬂrquation'[ \/— e *2dx=1- p,Yis
5 N 27T

the trial or location mean. Fgp = 0.20,C =1.4[17].

ESTIMATES OF VARIANCE COMPONENTS FOR GENOTYPEEFFECT S

Let the genotype factor within group k be represdnby abbreviated textGgnand the group factor by Grp
(k=1,2...,s).The replications are denoted by Repiandmplete blocks within replications by Blk.Reghel model
for variance component was fitted in terms of additandom effects factors 1) Rep, Grp and Gen@&hdg, ...,
Genos for data from RCBD, and 2) Rep, Blk.Rep, &r1g Genol, Geno2, ..., Genosfor data from incomjhlietek
design. Furthermore, the effects of the factoralimve order and plot-errors were assumed to folhmnmal

distribution with mean zero and variancesr?, g..,,0,,....0 4 ands ? respectively for RCBD and

o010 11010 5 @ando ? respectively for IBD datasets.

2 2
ol, 0,,04,,

BAYESIAN ESTIMATION
The R2WinBUGS software was the environment for MCM@Qulation using the Gibbs sampler[20]. The assume
a priori distributions for various variance componentsliated in the following for the two models.

For the variance components from RCBD:
1)P: the priors for the standard deviation componeats 0., ,0; ... 0 ando follow Uniform (0, & =50)or

Uniform (0, @ =100)
2)P2: the priors for the standard deviation componentsa, 0, ... 0, ando follow

positive half-normal distributionv (0,7! = 100). Here, T is precisionparametei::J_Zgiven as inverse of

variance. In the notation of WinBUGS, this disttiba is denoted as dnorm(®))(0,) or dnorm(0, 0.01)1(0,). 1(0,)
denotes that only the positive values were taken.

3)Ps: the priors for the standard deviation componeditsa, , 0, ... O, ando follow positive Half-t

distributiondt(0,c,0) 1 (0, ). Here, Cis non-centrality parameter aridlis the degree of freedom of the t-

distribution. The values o€and U are set at 5 and 2 respectively.
4)P,: the priors of PwithC= 2 andU = 4.

For variance components from IBD:

1) Q1: the priors for the standard deviation congmis 0, ,J, ,0,
Uniform (0, 100) or Uniform (10, 100) or Uniform@Q@, 1000)

2) Q: the priors for the standard deviation compone@hitsdy, ,0,,,,0 ;... O ando follow , the positive Half-
normal (0.5, 0.01), Half-normal (0.5, 0.5), Hatfrmal (0.5, 0.1), or Half-normal (0.1, 0.1) .

3) Q;: The priors for the standard deviation compone@hitsdy, ,0,,,0 ;... 0 ando follow Half-t distribution

yp1T g1+ O gs@Ndo follow Uniform (0, 10) or

grp?
dt(0,c,v0) 1 (0, )nere, Cis non-centrality parameter aridlis the degrees of freedom of the t-distributione Th
values ofCand U are set at Half-t (0, 2, 3), Half-t (0,5, 2) anthlf-t (0,5, 3).

RESULTS
Selection of priors and estimates of Heritability ad Genetic Advance for Dataset-RCBD

The standard frequentist analysis of RCBD dataset earried out by REML for estimating variance congnts.
Selection of the best priors for Bayesian analysis carried out using the discrepancy statistieergin Table 2.
For the priors sets,;Ro B, (uniform and Half normal distributions), the vatuof deviance information criterion
(DIC) and effective number of parameters were cldgeever, the prior set,Beems to have numerically lowest
value of DIC (4418.72). We took For further estimation of the heritability pararaes.
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Table 2. Deviance information criterion (DIC) values for selection of the priors for Dataset-RCBD

— A

Priors set D D pD DIC
P, 4259.22| 4099.04 160.197 4419.41
P, 4261.33| 41039 157.386 4418.72
P; 4299.05| 4166.93 132.099 4431.15

D =posterior mean of (- 2 x Iog-likelihoodﬁ: - 2 x log-likelihood at posterior means of paréene Py =
effective number of paramethIC = Deviance information criterion. Priors set are:

P10y, 04pp , O, -, 0gsanda, independently ~ uniform(0, 10)

P, 0y, 04pp , Ogi, -, Ogsando, independently ~ half — normal (0.1, 0.1)

Ps. 0y, 04p , Ogi, .., 0gsando, independently ~ halft(0, 5,2 )

Table 3 gives estimates of variancescomponentaefficients of variation to measure field hetenmogjey under
frequentist and Bayesian approaches. It also gigéisnates of genotypic variance and heritabilitynogan-basis,
genetic gain due to top 20% selection and a tessifjnificance of genotypic variance. Bayesianneste of
heritability (posterior expected value of the vada competent of frequentist approach especiaignaeof
genotypes (group 1) was zero while Bayesian approaoorded the variance of genotypes group 1 843}, this
means that Bayesian approachgave an estimatebasgdnotypic variance which is less likely to beefixat a
boundary.. The MC errors for all the parametersTable 3 were very small indicating reliable numalic
approximation based on 50000 iterations, 5000 sitiaal runs and three chains. It can be seen te#ikdition of
variance components and heritability from Bayesipproach are skewed based on difference betwegmibans
and their variances. Their median values for thgeB&n estimateare very close to the frequentisinates of
GA(.20)%for genotypes Group 2, Group3 and Group4 (203 vs.1.950), (3.88 vs.5.256)and (5.18 vs.
5.16)respectively, while GA(.20)% of genotypes (@rd) was(0.0001 vs.0.625). The median estimategdbetic
gain are very close, under frequentist approachBaygsian approach of genotypes Group 2, Group@Group 4
as (0.536 vs. 0.652), (0.336 vs. 0.352) and(0.6391649) respectively, while the genotypes of @fiois totally
different as (0.0001 vs. 0.135). Based on the ggiotvariance, there is statistically significargriation in the
genotypic means (P<0.01) under both theapproadsgectively. There wassubstantial variation duénéogroups
of the genotypes in the Bayesian estimates: 1.34893 for genotypic variance component, 0.113 -D.&&
heritability and 0.625 - 5.161% for genetic gaitu$ the selection of lines from a desired groupross matters,
e.g., Cross 6 (Group 2) gave highest genetic advahb.26% in RCBD.

Table 3. Frequentist and Bayesian estimates of vamces components, heritability and genetic gain fatays to heading using Dataset-

RCBD
a Frequentist approach Bayesian approach (priors set) P
Paramete . . Percentile
Estimate SE Estimatel SE MC error 250% | 50% (median)| 97.50%
h? 0.000 0.000 0.113 | 0.102| 0.006 0.001 0.088 0.369
h 0.536 0.075 0.633 0.063 0.002 0.502 0.637 0.75p
h 0.336 0.108 0.315 0.114 0.005 0.074 0.322 0.516
hZ 0.635 0.059 0.627 0.061 0.002 0.495 0.632 0.731L
GA(.21% 0.00 - 0.625 0.617 0.036 0.00p 0.459 2.219
GA(.2),% 3.88 5.256 0.896 0.032 3.641L 5.204 7.184
GA(.2%% 2.03 1.950 0.82( 0.034 0.38]L 1.944 3.551
GA(.2):% 5.18 5.161 0.844 0.027 3.564 5.158 6.919
a? 21.52 1.44 21.79 1.63 0.06 18.91 21.65 25.19
o2 0.001 0.001 1.543 1.638 0.091] 0.012 1.067 5.901
12.44 3.52 19.470 4.818 0.174] 11.540 18.970 30.450
5.44 251 5.373 2.611 0.102 0.887 5.169 10.470
18.73 4.42 18.930| 4.478 0.144] 11.150 18.630 29.380
a? 0.55 0.86 4.576 8.12% 0.240 0.065 1.389 28.210
Mean 93.29 2.380 92.840  0.249 0.008 92.350 92.840 93.310

@ h2= heritability from group k (k= 1...4), SE= standaedror, MC error: Monte Carlo error, GA(.20%: genetic advance at 20% selection
intensity for group k, k=1...4.

Selection of priors and estimates of Heritability ad Genetic Advance for Dataset-IBD

The frequents analysis components of Dataset-IBB eaaried out byREML variance components usingGaasd
WinBUGS program codes along with the statisticsgidayesian approach. The choices of priors foreBian
analysis were made fromthe statistics given in &abl The values of DIC and pD varied over the ttpgers

sets,4405.03 (for {p 4388.54(for @ and 4387.02 (6).Since the prior set Qavethe lowest value of DIC, we took
Qsfor further estimation of the genetic parameters.
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Table 4. Deviance information criterion (DIC) valwes for selection of the priors variance componentsr days to heading using Dataset-
IBD

— A

Priors set D D Po DIC

Q 4268.27| 4131.5| 136.76p 4405.03
Q2 4217.43| 4046.34 171.11 4388.%4
Qs 4217.84| 4048.66 169.179 4387.02

5=posterior mean of (- 2 x log-likelihood]) = - 2 x log-likelihood at posterior means of paréene Py =
effective number of paramethIC = Deviance information criterion. Priors set are:

Q1. 0y, 04, Ogrp » Tgi, -, 0gsando, independently ~ uniform(0, 100)
Q2. 0y, 04, Ogyp , Ogus -, Ogsando.independently ~ half — normal (0,0.01)
Qs! 0y, 0p, Ogrp » Ogy, -, Ggsando,independently ~ half —t(0,5,2)

Table 5 shows the posterior means of frequentidtBayesian estimates of heritability and genetio flar Dataset-
IBD. The Bayesian estimate of genetic varianceethasn mean value is slightly higher (9%) than tinader the
Frequentist approach with highly heritability angirgselection parameters. Their median valuesherBayesian
estimateare very close to the frequentist estimate&A (.20)% of genotypes Group 2, Group 3 andupr4 as
(3.891, frequentist vs. 3.903, Bayesian), (2.0392/828) and (5.185 vs. 5.367)respectively, whik(20)% for
Groupl) as (0.075 vs. 0.350), is different compamvith others, in another words the GA(.20)% ob@r 2 was
the best group of genotypes comparing to otherggoudhe median estimates for heritability are v@doge to each
other, under frequentist and Bayesian approacheabtypes for groupsas (0.016 vs. 0.046), (0.540.540),
(0.346 vs. 0.332) and (0.647 vs. 0.650)respectivtbly genotypic estimatesof heritability of gen@&ymroupsare
heterogeneity also Group4 was given highest valummparing to others. The Bayesian approach baisgaiors
under model @vas statistically significant at P<0.05 under theo tapproaches, while the significance was
relatively greater in Bayesian approach. There wgel®stantial variation in the estimates of herligband genetic
gain across the crosses/groups of the genotypege ra.046 -0.650 for heritability and 0.235 -5.36#%0genetic
advance. Furthermore comparing the results of BaBland 5, we notic clearly the importance of expenting

with incomplete blocks.

Table 5. Frequentist and Bayesian estimates of vaces components, heritability and genetic gain fadays to headings using Dataset-

IBD
Frequentist approach Bayesian approach (priors models) Q

Parametef Estimate SE Estimate] SE MCMC error 550% 505/?;523:2”) 9750%
h? 0.016 0.173 0.046 0.06p 0.004 0.000 0.015 0.229
h2 0.549 0.077 0.540 0.07p 0.002 0.373 0.548 0.674
h3 0.346 0.112 0.332 0.124 0.006 0.053 0.347 0.544
h2 0.647 0.060 0.650 0.06p 0.002 0.521 0.655 0.752
GA(.2):% 0.075 0.235 0.35( 0.022 0.000 0.074 1.263
GA(.2),% 3.891 3.903 0.834 0.025 2.326 3.894 5.599
GA(.2):% 2.039 2.028 0.884 0.038 0.264 2.044 3.745
GA(.2):% 5.185 5.367 0.88( 0.026 3.721 5.340 7.113

Trial mean 93.28 2.6 93.21 0.168 0.006 92.890 9B.2 93.530

@h2= heritability from group k (k= 1...4), SE= standaedror, MC error: Monte Carlo error, GA(.2W%: genetic advance at 20% selection
intensity for group k, k=1...4.

DISCUSSION

In crop improvement programs, normally a numbeinbfed lines or genotypes are evaluated in blodkgs and
genetic gain is evaluated for a chosen intensityeddctions. Parameters such as genotypic varamatderitability
are evaluated for the situation where genotypesssemed to have arisen from a common genetic jrobteeding
programs, often the several different types of seesare made, say between parents adapted or apteddo
different stresses, and the lines are developedebsctions and crossing or selfing over the geiwarst It is of
paramount interest to study the performance ofslised developing selection strategies with a ctggs and
estimate the genetic parameters within each grébup. group of genetic material may also be represebly
phenology, days to flower and maturity. However pitactice one may not evaluate the genetic masefiaim
different crosses in separate experiments. Thidysaddresses mainly three features of genetic atrahi— 1)
parameters of interest vary with the group, 2)th# genotypes arising from various groups are ewetlin
randomized complete block or incomplete block designd 3) availability of prior information on varice
components are available from the long-term ongekperimentation.
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The study demonstrated a statistical analysis piree addressing the complex integration of the abibwee
aspects. The parameters such as genetic variaeggbility and genetic advance were estimated uBdgesian
approach for each of the two commonly used experiahelesigns: an incomplete block design or a latgaber of
genotypes, and a complete block design for rellgtisemoderate number of genotypes. The priorsstandard
deviation components were screened from the classcommended priors (Gelman 2006). In the twoasituns
presented here, priors based on uniform and peskii&lf-t distributions were found most suited praat of the
three priors considered. The resulting posteridrdiese components could be used as the priomatén study to
make the analysis more informative. The differeneese obvious between frequentist and Bayesianoagpes.
One may choose Bayesian approach as it integrageprior information with current data while theduentist
approach does not. It has also been differenchsritability and genetic advance estimates (TaBlaad 5) arising
due to accounting of the incomplete blocks, paldidy for Cross 6 (Group 2), implying the need &xperimenting
in small size blocks for a better accountabilityaxfal variation. Extension of the method wouldvw@th exploring
for other variants of experimental design and datael.

CONCLUSION

The Bayesian approach integrates the prior infaonawith likelihood of the current data. It has heapplied to
estimate genetic parameters based on the gendtgpesndividual groups, while the genotypes frolintlae groups
were evaluated in the same single trial conductedairandomized complete or incomplete block design.
Comparison with frequentist approach made. It destrates a step-wise procedure from selection ob#st priors
and estimation of heritability and genetic advawith help of codes in WinBUGS and R- packages. pieeedure
presented here is recommended for use in a sisiflation in genetic studies.
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Appendix

A.1: R- codesforreading data from an RCBD datasetrad calling the ‘bugs’ function

#load packs

library(lattice)

library(coda)

library(R2WinBUGS)

#data from comb..........cccoooviiniiinninn.

Gdata<- read.table("GroupDataRCB.txt", header=TRUE)

Gdata

rp<- Gdata$Rep # rp for replication vector

grp<-Gdata$Grp # grp for group vector

gn<- Gdata$Geno # gn for genotype vector

y<-Gdata$dh

print(cbind(rp, gn,arp, y))

NR<- 2

NG<- 360

NGRP<- 4

NR1<- NR-1

N<- NR*NG # number of observations

print(cbind(NR,NG, N,NGRP))

mn<- mean(y)

mn

# define the first and last genotype numbers irgtioeips

first<- c(1, 91, 181, 271)

last<- c(90, 180, 270, 360)

H.

data<- list("mn", "y","rp","gn","N", "NR","NGRP", first","last")

data

inits1<- list(m=2, rho=c(rep(.01,NR)), g=c(rep(,NG)),grp=c(rep(.1,NGRP)), sig.e=1, sig.r=1.@,gip=1.0, sig.g=c(rep(.5,NGRP)) )
inits2<- list(m=1, rho=c(rep(.01,NR)), g=c(rep(,RG)),grp=c(rep(.11,NGRP)), sig.e=1.2, sig.rs8iflgrp=1.1, sig.g=c(rep(.5,NGRP)))
inits3<- list(m=1, rho=c(rep(.01,NR)), g=c(rep(,NG)),grp=c(rep(.12,NGRP)), sig.e=1.1, sig.rs8id@dgrp=1.0, sig.g=c(rep(.5,NGRP)))
inits<- list(inits1, inits2, inits3)

inits

#Step 6

parameters <- c("m", "sig2.r", "sig2.grp", "sig2.45ig2.e", "h2", "GA20")

parameters

GroupHeritRCB.sim<- bugs(data, inits, parameteBpupHeritRCB.bug", n.chains=3, n.iter=50000, nssiB000, debug=TRUE)
#Step 6
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A.2:WinBUGS codesto model data from RCBD and estintaon of heritability and genetic gain

# RCBD data analysis
model {
for (i in 1:N)X{
y[i] ~ dnorm(mul[i] , tau.e)
muli]<- m + rho[rp[i]] + glgn(il]

for (iin 1: (NR - 1) ) { rho[i] ~ dnorm(0, tau.#)

rho[NR]<- -sum(rho[1:(NR -1)])

# Express genotype effects as group effect andtgeaaithin group effects
#Thus g() = grp() + grp.g()

for(jin 1: (NGRP - 1) ){

for (i in first[j]: (last[j]-1) ) { g[i] <- grp(j]+ grp.gfil}

gflast[j]]<- -sum(grp.g[first[j]:(last[j]-1)] ) #he last geno in the group

# For the last Group
grp[NGRP]<- -sum(grp[1:(NGRP-1)])
for(j in NGRP:NGRP){
for (i in first[j]: (last[j]-1) ) { g[i] <- grp(j]+ grp.glil}
gflast[j]]<- -sum(grp.g[first[j]:(last[j]-1)] ) #ast geno in the last group
}

tau.e<- 1/(sig.e*sig.e)
tau.r<- 1/(sig.r*sig.r)
tau.grp<- 1/(sig.grp*sig.grp)

for(j in 1:NGRP){ tau.qg[j] <- 1/(sig.g[il*sig-g[j])}
for(j in 1:NGRP){ sig2.g[j] <- (sig.g[j]*sig.g[j]) }
sig2.e <- (sig.e*sig.e)
sig2.r<- (sig.r*sig.r)
sig2.grp<- (sig.grp*sig.grp)
#priors
m ~ dnorm(0.0, 1.0E-6)
for(j in 1:(NGRP-1) ){grp[j]~ dnorm(0, tau.grp)} # for group effects, except the last grpoup
for(j in 1: NGRP ){
for (i in first[j]: (last[j]-1) ) { grp.g[i] ~ dnom(O, tau.g[j]) } # geno, except the last geno ia gioup
}

sig.e ~ dt(0, 5, 2)I(0,)
for(j in 1:NGRP){  sig.g[j] ~ dt(0, 5, 2)I(0,) }
sig.r ~ dt(0, 5, 2)I(0,)
sig.grp~ dt(0,5,2)I(0,)

# Prediction of parameters of interest-- meanstaiglity, SEs
for(j in 1:NGRP) { h2[j]<- tau.e/(tau.e + tau.gdiNR) }
# this heritability is on mehasis, 8 Jan 2013

# gain due to 20% selection & 10%, 5% selecks1.4, 1.755,2.063
for(j in 1:NGRP) { GA20[j] <- 100*1.4/mn/sqrt(taufjgf(1+tau.g[jl/NR/tau.e)) }

}

A.3: R- codes for reading data from an IBD dataseand calling the ‘bugs’ function
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#load packs

library(lattice)

library(coda)

library(R2WinBUGS)

#data from comb..........cccoocvveiiiiiiiiennn.

#.

Gdata<- read.table("GroupDatalBD.txt", header=TRUE)
Gdata

rp<- Gdata$Rep # rp for replication vector
bl<-Gdata$Blk  # bl for block vector
grp<-Gdata$Grp # grp for group vector
gn<- Gdata$Geno # gn for genotype vector
y<-Gdata$dh

print(cbind(rp, bl, gn,grp, y))

NR<- 2

NB<- 36

NG<- 360

NGRP<- 4

N<- NR*NG # number of observations

NBR1<- NR*(NB-1) # no of generated block effe(fB1 from each repl.: last bloack effect is cadtatl)

print(cbind(NR,NB,NK,NG, N, NBR1, NGRP))
mn<- mean(y)

mn

#

first<- c(1, 91, 181,271)

last<- ¢(90, 180, 270, 360)

print(cbind(first, last))

H.

data<- list("mn", "y","rp","bl","gn","NR", "NB", "N',"NGRP", "first", "last")

data

initsl<- list(m=2, rho=c(rep(.01,NR)), bet= c(réj®, NBR1)), g=c(rep(.01,NG)), grp=c(rep(.1,NGRR)y.grp=1.1, sig.e=1, sig.r=1.0,
sig.b=.53, sig.g=c(rep(.5,NGRP)) )

inits2<- list(m=2, rho=c(rep(.01, NR)), bet= c(f€d, NBR1)), g= c(rep(.02,NG)),grp=c(rep(.1,NGRR}Y.grp=1.1, sig.e=1.1, sig.r=1.15,
sig.b=.68, sig.g=c(rep(.52,NGRP)) )

inits3<- list(m=2, rho=c(rep(.02,NR)), bet= c(réj®, NBR1)), g=c(rep(.01,NG)),grp=c(rep(.11,NGRRB)y.grp=1.0, sig.e=1.05, sig.r=1.25,
sig.b=1.35, sig.g=c(rep(.51,NGRP)) )

inits<- list(inits1, inits2, inits3)

inits

parameters <- c("m", "sig2.grp", "sig2.r", "sig2.45ig2.e", "sig2.b","h2", "GA20")

parameters

GroupHerit.sim<- bugs(data, inits, parameters, UpideritiBD.bug", n.chains=3, n.iter=50000, n.sim888, debug=TRUE)
#Step 6

A.4: WinBUGS codes to model data from IBD and estiation of heritability and genetic gain
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# IBD data analysis
model {
for (i in 1:N)X{
y[i] ~ dnorm(muli] , tau.e)
muli]<- m + rho[rp[i]] + bet[rp[i],bl[i] ] + glgn[l]

}
# rho[1...NR-1] Rep effects result into rho[NR]
for (iin 1:(NR -1)) { rho[i] ~ dnorm(0, tau.r)}
rho[NR]<- - sum(rho[1:(NR-1)])
for (i in 1:NR) { for(j in 1: (NB-1) ) { bet[i,]~ dnorm(O,tau.b) } # except the last, blockeett within repl.
bet[i,NB]<- -sum(bet[i,1:(NB-1)]) # last block ithe replication

# Express genotype effects as group effect andtgeaavithin group effects
# Thus g() = grp() + grp.g()
for(jin 1: (NGRP - 1) ){
for (i'in firstfj]: (last[j]-1) ) { g[i] <- grp[il+ grp.g[il}
gllast[jJ]<- -sum(grp.g[first[j]:(last[j]-1)] ) #he last geno in the group
}

# For the last Group
grp[NGRP]<- -sum(grp[1:(NGRP-1)])
for(j in NGRP:NGRP){
for (i'in firstfj]: (last[j]-1) ) { g[i] <- grp[il+ grp.g[il}
gllast[jJ]<- -sum(grp.g[first[j]:(last[j]-1)] ) #ast geno in the last group
}

tau.e<- 1/(sig.e*sig.e)
tau.r<- 1/(sig.r*sig.r)
tau.b<- 1/(sig.b*sig.b)
tau.grp<- 1/(sig.grp*sig.grp)
for(j in 1:NGRP){ tau.g[j] <- 1/(sig.g[j]*sig.g[j])}
for(j in 1:NGRP){ sig2.g[j] <- (sig.g[j]*sig.g[i]) }
sig2.e <- (sig.e*sig.e)
sig2.r<- (sig.r*sig.r)
sig2.b<- (sig.b*sig.b)
sig2.grp<- (sig.grp*sig.grp)
#priors
m ~ dnorm(0.0, 1.0E-6)
for(j in 1:(NGRP-1) ){grp[j]~ dnorm(0, tau.grp)} # for group effects, except the last grpoup
for(jin 1: NGRP ){
for (i in first[j]: (last[j]-1) ) { grp.g[i] ~ dnom(O, tau.g[j]) } # geno, except the last geno ia gioup
}

sig.e ~ dunif(0,100)
for(j in 1:NGRP){  sig.g[j] ~ dunif(0,100) }
sig.r ~ dunif(0,100)
sig.b ~ dunif(0,100)
sig.grp~ dunif(0,100)

# Prediction of parameters of interest-- mehgstability, SEs
for(j in 1:NGRP) { h2[j]<- tau.e/(tau.e + tau.gdiNR) }

# this heritability is on mehasis, 8 Jan 2013

# gain due to 20% selection & 10%, 5% selecks1.4, 1.755,2.063

for(j in 1:NGRP) { GA20[j] <- 100*1.4/mn/sqrt(taufjgf(1+tau.g[jl/NR/tau.e)) }
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