FINE MAPPING OF THE "*QTL-hotspot*" REGION FOR DROUGHT TOLERANCE IN CHICKPEA (*Cicer arietinum* L.)

THESIS SUBMITTED TO OSMANIA UNIVERSITY FOR THE AWARD OF DOCTOR OF PHILOSOPHY

IN GENETICS

Deepa Jaganathan

DEPARTMENT OF GENETICS

OSMANIA UNIVERSITY, HYDERABAD

2016

CERTIFICATE

This is to certify Ms. Deepa Jaganathan has carried out the research work embodied in the present thesis entitled "Fine mapping of the "*QTL-hotspot*" region for drought tolerance in chickpea (*Cicer arietinum* L.)" for the degree of Doctor of Philosophy under the joint-supervision of Dr. Rajeev K Varshney, Research Program Director, Grain Legumes, Director, Center for Excellence in Genomics (CEG), ICRISAT, Patancheru and Prof. PB Kavi Kishor, Department of Genetics, Osmania University, Hyderabad.

This is an original work carried out at ICRISAT and is satisfactory for the award of Doctor of Philosophy. Any part of this work has not been submitted for the award of any degree or diploma of any other university or institute.

Dr. Rajeev K Varshney

Supervisor

Prof. PB Kavi Kishor

Co-supervisor

DECLARATION

I hereby declare that the research work presented in this thesis entitled "**Fine mapping of the** "*QTL-hotspot*" region for drought tolerance in chickpea (*Cicer arietinum* L.)" has been carried out under the supervision of Dr. Rajeev K Varshney at International Crops Research Institute for the Semi-Arid tropics (ICRISAT), Patancheru and co-supervision of Prof. PB Kavi Kishor at Department of Genetics, Osmania University, Hyderabad.

This work is original and no part of the thesis has been submitted earlier for the award of any degree or diploma of any University.

Date:

(Deepa Jaganathan)

Place: Hyderabad

ACKNOWLEDGEMENTS

The first and foremost thanks are due to **Dr. Rajeev K Varshney**, Director, Center of Excellence in Genomics (CEG) and Research Program Director, Grain Legumes, ICRISAT for kindly accepting me as his student. I express my sincere gratitude from bottom of my heart for his invaluable guidance, encouragement and the confidence he had on me to handle this work. I thank him for being a strict teacher, good friend and caring guide. His firm support, kind concern, splendid care and warm guidance in all the possible ways have led me to finish this study successfully.

I would like to extend my thanks to my co-supervisor **Prof. PB Kavi Kishor**, Department of Genetics, Osmania University for his kind support and care in completing this study. I feel great and thank him for providing a fatherly care throughout the study. I am grateful to him for his help to complete all academic processes on time.

I express my sincere thanks to **Dr. Mahendar Thudi**, Scientist, Chickpea Genomics, ICRISAT, for his kind guidance, friendly suggestions and for his help to improve my skills in performing experiments and writing manuscripts throughout this study.

I am happy to thank **Dr. Pooran Gaur**, Principal Scientist, Chickpea Breeding, ICRISAT, for his continuous support, care and suggestions in designing the breeding experiments as well as for happily providing breeding materials. I extend my thanks to **Dr. L. Krishnamurthy** for his kind guidance in carrying out the physiological experiments.

I am grateful to **Dr. Tim Sutton**, South Australian Research and Development Institute (SARDI), Adelaide, South Australia, for his valuable suggestions and discussions which helped me in improving knowledge in the subject and for his care during my visit to Australian Centre for Plant Functional Genomics (ACPFG). I also thank **Prof. Dave Edwards, Dr. Jacqueline Batley** and **Mr. Pradeep** University of Western Australia, Perth.

I am glad to thank **Dr. Roja Rani**, Head, Department of Genetics, Osmania University and **Dr. Smita Pawar**, Chairperson, Board of studies in Genetics, Osmania University for their timely help in completing all the academic processes. I also extend my thanks to all the teaching faculty members and non-teaching staffs of Department of Genetics, Osmania University for their help and support.

I would like to extend my sincere thanks to all the scientists, scientific and technical staffs of the CEG group, especially **Ms. Anu, Dr. Sandip Kale, Dr. Manish Roorkiwal** and **Dr. Hima Bindu**. Special thanks are due to **Mr. Sarwar Azam, Mr. Aamir** and **Mr. Dadakhalandar** for their help in bioinformatic analyses. I would like to extend my sincere thanks to the scientists who have helped me to understand the project and to obtain basic knowledge through enthusiastic discussions especially, Dr. Spurthi Nayak, Dr. Dong H`yun Kim, Dr. Reyaz Rouf Mir, Dr. Punna Ramu, Dr. Shiva Kumar, Dr. Raja Ram and Dr. Vikas Kumar Singh.

I thank administration team of CEG for their continuous and immediate support at needs, Ms. Seetha Kannan, Ms. Manjula, and Mr. Anjaiah. I wish to thank Mr. Gafoor, Mr. Manikyam, Mr. Jaipal and Mr. Vinay Kumar for their technical assistance in this study. I extend my sincere thanks to lab attenders Mr. Malla Reddy, Mr. Ramdas, Mrs. Bakkamma and Mr. Nagesh.

I take this opportunity to thank staffs and technicians from Chickpea Breeding division especially **Dr. Srinivasan Samineni, Mr. B.V. Rao, Dr. Muninder singh, Dr. Madhuparani** Sen, Mr. Sudharshan, Mr. Vijay and Mr. Aziz. I also acknowledge **Drs. Venkatesh Bhat**, Revanappa and Ramesh Bhat and field staffs at IIPR-Off season nursery, Dharwad for their kind support and help during the field trial.

It is the turn to thank my dear most sweet friends who are the reasons for smile behind my hurdle moments and proud behind the successful moments. I thank Usha, Swathi, Krithika, Pushpa, Swarupa, Revathi, Namrutha, Sriswathi, Poornima, Judith, Meredith, Jimmy, Kishan, Vanika, Shashi, Pavana, Lekha, Abirami, Ankit, Sunitha, Pallavi and Yeri.

I feel blessed to have my family for their hope, long waiting's, sacrifices and continuous love for me in all the moments. I take this opportunity to thank my beloved parents Mr. S. P. Jaganathan and Ms. S. J. Tamilselvi for their strong confidence, immense support and boundless love, and to my treasured brother Mr. S. J. Dhiyaneswaran for his infinite affection and care. I also express my thanks to my big family - Mr. Palaniappan, Ms. Loganayaki, Mr. Duraiswamy, Ms. Poongothai, Mr. Jagadeesh, Ms. Senbagam, Ms. Sanju, Ms. Surya and Master. Roshan for their belief, unconditional love and hope which in fact made me run towards my goals throughout the years and who are the sole source for this success.

I acknowledge Australia- India Strategic Research Fund (AISRF) for the financial support and also the support from Generation Challenge Programme (GCP) for the TL I project funding is greatly acknowledged.

My heartfelt thanks to all friends and well-wishers for their direct or indirect help and forgive me if I suppose forget to mention your names by mistake.

Date:

Place: Hyderabad

(Deepa Jaganathan)

Dedicated to my dearest and respectful grandfather Late Mr. B. A. Palaniappan, who was my inspiration and my first teacher!

Chapter No	Title	Page No
1	Introduction	1
2	Review of Literature	5
3	Materials and Methods	25
4	Results	38
5	Discussion	101
б	Summary	115
7	References	119
	Appendices	136

ABBREVIATIONS

100-SDW	: 100-seed weight
°C	: degree Celsius
μl	: microliter
χ^2	: Chi square
ABA	: Abscisic acid
AFLP	: Amplified Fragment Length Polymorphism
BAC	: Bacterial Artificial Chromosome
BES	: BAC-end Sequences
BIBAC	: Binary Bacterial Artificial Chromosome
BLAST	: Basic Local Alignment Search Tool
BM	: Biomass
bp	: base pair
BP	: Biological Processes
CAPS	: Cleaved Amplified Polymorphic Sequences
CaM	: Cicer arietinum Microsatellite
CC	: Cellular Components
cDNA	: complementary DNA
CKAM	: Chickpea KASPar assay markers
CIM	: Composite Interval Mapping
сМ	: centiMorgan
COS	: Conserved Orthologous Set
СТАВ	: Cetyl-trimethyl-ammonium Bromide
DArT	: Diversity Array Technology

DAS	: Days after Sowing
dCAPS	: derived Cleaved Amplified Polymorphic Sequences
DC	: Delta Carbon ratio
DF	: Days to 50% Flowering
DM	: Days to Maturity
DNA	: Deoxyribonucleic Acid
DREB	: Drought Responsive Element Binding protein
DSI	: Drought Susceptibility Index
DTI	: Drought Tolerance Index
DUG	: Durgapura
EDTA	: Ethylenediaminetetraacetic acid
EST	: Expressed Sequence Tag
EST-SSR	: Expressed Sequence Tag-Simple Sequence Repeat
E-QTL	: Epistatic QTL
FAO	: Food and Agriculture Organization of the United Nations
GBS	: Genotyping-by-sequencing
Gb	: gigabases (one billion bases)
GCP	: Generation Challenge Programme
$\mathbf{G} imes \mathbf{E}$: Genotype \times Environment
GMM	: Genic Molecular Marker
GO	: Gene Ontology
GWAS	: Genome Wide Association Studies
HI	: Harvest Index
HIR	: Hiriyur
Hrs	: Hours

ICRISAT: International Crops Research Institute for the Semi-Arid Tropics:ISSR: Inter Simple Sequence RepeatKASPare: KBioscience Competitive Allele-Specific Polymerase chain reactionKbp: kilo base pairsICB: kilo gramLDW: Leaf Dry WeightLG: Laf Dry WeightLOD: Logarithm of odds (base 10)MAF: MolarMAF: MolarMAF: MolarMAF: Million basesMAS: Million basesMag: Million basesMag: MilligramMag: MilligramMAF: Mereit ComponentionMag: MillinolarMag: MillinolarMag: MilligramMAF: Majoneffect QTLMAR: Sodium ChlorideMACA: Sodium AcetateMAGA: Sodium AcetateMAGA: Sodium AcetateMAGA: Matonal Center for Biotechnology InformationMAS: Nato-Generation Sequencing	ICCM	: ICRISAT Chickpea Microsatellite
KASPar: KBioscience Competitive Allele-Specific Polymerase chain reactionKbp: kilo base pairsKg: kilo gramLDW: Leaf Dry WeightLG: Linkage GroupLOD: Logarithm of odds (base 10)M: MolarMAF: Minor Allele FrequencyMAS: Marker Assisted SelectionMF: Molecular FunctionMg: MilligramMJ: MegajoulemI: millifiremAf: MegajouleMI: Million basesMJ: Sodium ChorideMAS: MilligramMAF: Major effect QTLMAN: Sodium ChorideNaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	ICRISAT	: International Crops Research Institute for the Semi-Arid Tropics
Kbp: kilo base pairsKg: kilogramLDW: Leaf Dry WeightLG: Linkage GroupLOD: Logarithm of odds (base 10)M: MolarMAF: Minor Allele FrequencyMAS: Marker Assisted SelectionMb: Million basesMF: Molecular FunctionMg: MiligramMJ: MilligramMI: millilitreInM: millinolarMay: Majo effect QTLNAN: Sodium ChlorideNaOAc: Sodium AcetateNCBI: Sodium AcetateNCBI: National Center for Biotechnology Information	ISSR	: Inter Simple Sequence Repeat
Kg: kilogramLDW: Leaf Dry WeightLG: Linkage GroupLOD: Logarithm of odds (base 10)M: MolarMAF: Minor Allele FrequencyMAS: Marker Assisted SelectionMb: Million basesMF: Molecular FunctionMJ: Meajouleml: millilitremM: MilgramMJ: MolarMather Assisted SelectionMF: Molecular FunctionMg: MilligramMJ: MolagioulemI: MilgramMJ: MeajoulemA: millinolarMather Assisted SelectionMather Assisted Selection	KASPar	: KBioscience Competitive Allele-Specific Polymerase chain reaction
LDW: Leaf Dry WeightLG: Linkage GroupLOD: Logarithm of odds (base 10)M: MolarMAF: Minor Allele FrequencyMAS: Minor Allele FrequencyMAS: Marker Assisted SelectionMb: Million basesMF: Molecular FunctionMg: MilligramMJ: MegajoulemI: millitreMAF: Million basesMJ: Million basesMJ: Molecular FunctionMJ: MegajouleMJ: MilligramMJ: MilligramMI: MillinolarMI: MillinolarMain: millinolarMay: Solium ChlorideNAN: Sodium ChlorideNaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	Kbp	: kilo base pairs
LG: Linkage GroupLOD: Logarithm of odds (base 10)M: MolarMAF: Minor Allele FrequencyMAS: Minor Allele FrequencyMAS: Marker Assisted SelectionMb: Million basesMF: Molecular FunctionMg: MolegiouleMI: MegajouleMI: millilitreMA: millimolarMt: millimolarMap: Solium ChlorideNAOAC: Sodium AcetateNCBI: National Center for Biotechnology Information	Kg	: kilogram
LOD: Logarithm of odds (base 10)M: MolarMAF: Minor Allele FrequencyMAS: Marker Assisted SelectionMb: Marker Assisted SelectionMb: Million basesMF: Molecular FunctionMg: Molecular FunctionMJ: MegajoulemI: millilitremM: millinolarMt: millinolarMque: Major effect QTLNAN: NandyalNaCla: Sodium ChlorideNaOAce: Sodium AcetateNCBI: National Center for Biotechnology Information	LDW	: Leaf Dry Weight
M: MolarMAF: Minor Allele FrequencyMAS: Marker Assisted SelectionMb: Million basesMF: Molecular FunctionMg: MiligramMJ: Megajouleml: millitremM: nillimolarMt: netric tonMAPQTL: Major effect QTLNAN: Sodium ChlorideNaOAc: Sodium AcetateNCBI: Matonal Center for Biotechnology Information	LG	: Linkage Group
MAF: Minor Allele FrequencyMAS: Marker Assisted SelectionMb: Million basesMF: Molecular FunctionMg: Molecular FunctionMg: MilligramMJ: Megajouleml: millilitremM: millimolarMt: metric tonM-QTL: Major effect QTLNAN: Sodium ChlorideNaOAc: Sodium AcetateNCBI: Matoral Center for Biotechnology Information	LOD	: Logarithm of odds (base 10)
MAS: Marker Assisted SelectionMb: Million basesMF: Molecular FunctionMg: MilligramMJ: Megajouleml: MegajoulemM: millilitremM: millimolarMt: metric tonM-QTL: Major effect QTLNAN: Sodium ChlorideNaOAc: Sodium AcetateNCBI: Maional Center for Biotechnology Information	М	: Molar
Mb: Million basesMF: Molecular FunctionMg: MilligramMJ: Megajouleml: MegajoulemM: millilitremM: millinolarMt: metric tonM-QTL: Major effect QTLNAN: Sodium ChlorideNaOAc: Sodium AcetateNCBI: Maional Center for Biotechnology Information	MAF	: Minor Allele Frequency
MF: Molecular FunctionMg: MiligramMJ: Megajouleml: MegajoulemM: mililitremM: milimolarMt: metric tonMAN: Major effect QTLNAN: Sodium ChlorideNaOAc: Sodium AcetateNCBI: Maional Center for Biotechnology Information	MAS	: Marker Assisted Selection
Mg: MiligramMJ: Megajouleml: mililitrenM: milimolarMt: metric tonM-QTL: Major effect QTLNAN: Sodium ChlorideNaCl: Sodium AcetateNaOAc: Sodium AcetateNCBI: Maional Center for Biotechnology Information	Mb	: Million bases
MJ: Megajouleml: millihremM: millimolarMt: metric tonM-QTL: Major effect QTLNAN: NandyalNaCl: Sodium ChlorideNaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	MF	: Molecular Function
nl: milliltremM: millimolarMt: metric tonM-QTL: Major effect QTLNAN: NandyalNaCl: Sodium ChlorideNaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	Mg	: Milligram
nM: millimolarMt: metric tonM-QTL: Major effect QTLNAN: NandyalNaCl: Sodium ChlorideNaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	MJ	: Megajoule
Mt: metric tonM-QTL: Major effect QTLNAN: NandyalNaCl: Sodium ChlorideNaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	ml	: millilitre
M-QTL: Major effect QTLNAN: NandyalNaCl: Sodium ChlorideNaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	mM	: millimolar
NAN: NandyalNaCl: Sodium ChlorideNaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	Mt	: metric ton
NaCl: Sodium ChlorideNaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	M-QTL	: Major effect QTL
NaOAc: Sodium AcetateNCBI: National Center for Biotechnology Information	NAN	: Nandyal
NCBI : National Center for Biotechnology Information	NaCl	: Sodium Chloride
	NaOAc	: Sodium Acetate
NGS : Next-Generation Sequencing	NCBI	: National Center for Biotechnology Information
	NGS	: Next-Generation Sequencing

ng	: nanograms
NIL	: Near Isogenic Lines
PAT	: Patancheru
PBS	: Primary branches
PCR	: Polymerase Chain Reaction
PHT	: Plant height
рН	: logarithmic measure of hydrogen ion concentration
POD	: pods/plant
PVE	: Phenotypic Variation Explained
Q score	: Phred quality score
QTL	: Quantitative Trait Locus
RAD	: Restriction site Associated DNA
RAPD	: Random Amplified Polymorphic DNA
RDp	: Rooting Depth
RDW	: Root Dry Weight
RECORD	: REcombination Counting and ORDering
RFLP	: Restriction Fragment Length Polymorphism
RGA	: Resistance Gene Analogues
RIL	: Recombinant Inbred Line
RL	: Root Length
RLD	: Root Length Density
rpm	: revolutions per minute
RSA	: Root Surface Area
RT	: Root Dry Weight/Total Dry Weight ratio
RT-PCR	: Real-Time PCR

RV	: Root Volume
RWL	: Leaf water loss
RWC	: Relative Water Content
SAD	: Sum of Adjacent Distances
SCAR	: Sequence Characterized Amplified Region
SDW	: Shoot Dry Weight
SHE	: Sehore
SNP	: Single Nucleotide Polymorphism
SOAP	: Short Oligonucleotide Analysis Package
SPD	: seeds/pod
SSR	: Simple Sequence Repeat
StDW	: Stem Dry Weight
STMS	: Sequence Tagged Microsatellite Sites
TE	: Tris (10 mm)-EDTA (1 mm)
TIC	: TIME FOR COFFE
TOG	: Tentative Orthologous Genes
WGRS	: Whole Genome Re-Sequencing
w/w	: weight/weight
w/v	: weight/volume
YLD	: Yield

LIST OF TABLES

Table No	Title	Page No
1.	List of molecular markers available for chickpea	15
2.	List of linkage maps available for chickpea	17
3.	List of mapped QTLs for drought tolerance related traits	19
4.	Summary of traits evaluated at different locations and seasons	32
5.	List of marker genotyping data used from the earlier studies for linkage map construction	40
6.	Distribution of different types of markers on the intra-specific genetic map of ICC $4958 \times ICC$ 1882 RIL population using GBS-SNP markers	44
7.	Robust main-effect QTLs (M-QTLs) identified for various drought tolerance related traits on ICC $4958 \times ICC 1882$	47
8.	Comparison of robust main-effect QTLs (M-QTLs) identified for various drought tolerance related traits in the present study with that of Varshney et al. (2014)	57
9.	Summary of validated CAPS/dCAPS markers on 5 parental lines of RIL populations	59
10.	Distribution of SNPs, recombination bins and markers mapped on chickpea pseudomolecules/linkage groups	63
11.	Distribution of number of QTLs on chickpea genome identified from the RIL population of ICC $4958 \times ICC$ 1882 cross using high density bin map	71
12.	Comparative analysis of topmost QTLs identified for drought related traits in chickpea from the RIL population of ICC $4958 \times ICC 1882$	75
13.	Background recovery of ICCX-110125-P18 using genome wide SSR markers	79
14.	Hybriditiy checking of F ₁ plants using SSR markers	82
15.	List of KASPar markers used for screening F ₂ plants	83
16.	Selected heterozygous recombinant lines for raising homozygous F_3 recombinants	84
17.	List and details of KASPar markers used for screening F ₃ plants	89
18.	Genotyping data of F _{2:3} plants for flanking KASPar markers	91
19.	Genotyping of 59 selected homozygous recombinants from $F_{2:3}$ families with newly developed KASPar markers	93
20.	QTLs identified from F ₃ fine mapping population for 100-SDW	96
21.	Genes identified from progeny testing of F_3 homozygous lines	96

LIST OF FIGURES

Figure	Title	Page
No		No
1	High density intra-specific genetic map of chickpea (ICC 4958 \times ICC	41-43
	1882) using GBS-SNP markers	
2	Saturated "QTL-hotspot" region with additional GBS-SNP markers	54
3	The electrophoretic profile of CAPS/dCAPS candidates after PCR and	60
	restriction digestion with their respective enzymes	
4	Genome-wide distribution of SNPs and recombination bins in chickpea	61
	using SNP markers generated from skim sequencing	
5	The recombination breakpoints identified in 222 recombinant inbred lines	65-66
	(RILs)	
6	Features of recombination bin mapping in chickpea using skim	67
	sequencing based SNP markers	
7	Concordance between the genetic map and physical map of chickpea	68-69
8	Genome-wide distribution of major QTLs identified for drought	72
	component traits using skim sequencing data	
9	Refinement of "QTL-hotspot" region into "QTL-hotspot_a" and "QTL-	73-74
	<i>hotspot_b</i> " and identification of candidate genes	
10	Fine mapping of "QTL-hotspot" for 100-seed weight (100-SDW) using	77
	RIL population	
11	Genotype classes of F_2 fine mapping lines using KASPar markers	86
12	Snapshots showing SNP genotyping with KASPar assays	88
13	Genotype classes of $F_{2:3}$ fine mapping lines using additional KASPar	94
	markers	
14	Fine genetic mapping of 100-SDW through progeny testing	97-98
15	Field view of fine mapping population in F_1 , F_2 and F_3 generations	99

ABSTRACT

Chickpea (Cicer arietinum L.) is the third most important grain legume cultivated in the arid and semi-arid regions of the world. Drought is one of the major constraints leading up to 50% production losses in chickpea. In order to understand the basics of drought tolerance, two recombinant inbred line (RIL) mapping populations (ICC 4958 \times ICC 1882 and ICC 283 \times ICC 8261) segregating for root traits were developed and a promising "QTL-hotspot" region was reported on these populations. With an objective to fine map this region, two approaches were adopted, i) genotyping-by sequencing (GBS) and ii) skim sequencing. GBS approach enabled identification of 828 single nucleotide polymorphism (SNP) markers. A high-density genetic map was developed, comprising 1,007 marker loci including 49 SNP markers in the "QTL-hotspot" region and spanning a distance of 727.29 cM. QTL analysis using the extended genetic map along with precise phenotyping data generated earlier, re-estimated the "QTL-hotspot" from 29 cM to 14 cM. In addition, these 49 SNPs were converted into cleaved amplified polymorphic sequence (CAPS)/derived CAPS (dCAPS) markers which can be used in marker assisted breeding. An ultra-high-density bin map was developed using 53,223 SNPs obtained through skim sequencing approach and its analysis with the phenotyping data, split the "QTL-hotspot" region into two sub-regions namely "QTL-hotspot_a" of 139.22 kb with 15 genes and "QTL-hotspot_b" of 153.36 kb with 11 genes. To validate and find more recombination in these regions, a large mapping population was developed. Flanking SNP markers of the two regions were converted to KASPar assays and screened on 1,911 F₂ lines. Progeny testing on F_{2:3} lines revealed the role of "QTL-hotspot_a" in controlling 100-SDW. A total of 15 candidate genes were reported in this region. In summary, the refined region will help in precise introgression of the "QTL-hotspot" in breeding program for yield improvement under drought conditions and the reported genes can be used for further cloning studies to dissect the molecular basis of drought tolerance in chickpea.

INTRODUCTION

1. INTRODUCTION

Chickpea (Cicer arietinum L.) is the world's third most important food legume crop after common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) and cultivated primarily on marginal lands in the arid and semi-arid regions of South Asia and Sub-Saharan Africa. It is a self-pollinated species with eight chromosomes (Arumuganathan and Earle 1991) and genome size of 738 Mb (Varshney et al. 2013a). Globally chickpea is cultivated on 13.5 Mha with an annual production of 14.23 Mt (FAO 2014). It is a rich source of protein (20-30%), carbohydrates (~40%) and minerals, and thus serves as an important sources of nutrients in vegetarian diets, especially in developing countries (Jukanti et al. 2012). It is a member of Leguminosae family, which includes 18,000 species, grouped into 650 genera (http://www.ildis.org/Leguminosae). Like other legumes, chickpea can fix atmospheric nitrogen through symbiosis with rhizobia. The two well-known types of cultivated chickpeas are, *desi*, which is a smaller, brown tough coated seed and *kabuli* which is a bold and cream soft coated seed. In India, the desi cultivar accounts for nearly 90% of total area under cultivation and the remaining area is occupied by the kabuli type (Pundir et al. 1985). Over 95% of chickpea production and consumption occur in developing countries, most of them are grown in rainfed conditions. India is the largest producer of chickpea (~43%), followed by Australia, Pakistan, Turkey and Myanmar (FAO 2014).

Legume crops production is affected extremely due to increasing water limitation and recent persisting fluctuations in rainfall conditions (Daryanto et al. 2015). Chickpea production is affected by various abiotic and biotic stresses. Among abiotic stresses, drought causes heavy yield losses to chickpea. As chickpea is predominantly cultivated on residual soil moisture, terminal drought is a serious problem and will become more prevalent due to climate changes and global warming (Tuberosa 2012). During terminal drought stress, the crop suffers at

grain filling stages due to less or no water availability, which directly affects the yield (Zaman-Allah et al. 2011). In the past three decades, there has been a shift in cultivation of chickpea from cooler to warmer regions both in Asia and Africa (Kimurto et al. 2014; Krishnamurthy et al. 2013) which has also increased the impact of drought on crop productivity. Therefore, the current focus in different breeding programs is to enhance drought tolerance in chickpea to stabilize yield and increase production.

Yield losses due to terminal drought can be overcome through combined approaches of genomics with breeding and physiological methods, known as 'genomics assisted breeding' (Varshney et al. 2005). It is essential to identify quantitative trait loci (QTLs) or genes that confer drought tolerance, which can be deployed in breeding programmes to generate superior cultivars. Marker assisted selection (MAS) methods have proven to accelerate the process of variety development (Ibitoye and Akin-Idowu 2010). However, breeding efforts towards developing drought tolerant chickpea varieties has remained slow, mainly because of precision issues in phenotyping for drought, low genetic base and limited availability of genomic resources. Nevertheless, in recent years, the availability of large-scale genomic resources and physiological methods with high throughput phenotyping and analyzing methods have facilitated progress towards understanding the genetic basis of drought tolerance in chickpea. Various studies have mapped QTLs for different drought component traits like flowering time, seed weight, plant height, root length etc. (Or et al. 1999; Cho et al. 2002; Rehman et al. 2011; Varshney et al. 2014; Bajaj et al. 2015).

Recent advances in sequencing technology provide a cost effective way to develop thousands of single nucleotide polymorphisms (SNPs) in a limited period of time on large mapping populations, by sequence-based genotyping methods (Cronn et al. 2008). One such technique, genotyping-by-sequencing (GBS) offers simultaneous SNP detection and genotyping, therefore is now being used in several crops for diversity assessment, trait mapping, genomewide association studies (GWAS) and genomic selection (Elshire et al. 2011; Deschamps et al. 2012; Poland et al. 2012). GBS approach, however, suffers from the limitation of missing regions of the genome and bias based on methylation and restriction site abundance (Chen et al. 2014). An alternate approach to overcome missing data challenges is whole genome re-sequencing (WGRS) wherein samples can be sequenced at greater depth thereby reducing the missing data issue. To save the cost of sequencing, WGRS can be done at a lower depth and in that scenario the approach is referred to as skim sequencing (Golicz et al. 2015). This approach is very useful to identify sequence variants/SNPs in species where the reference genome sequence is available. However, the SNPs identified using next-generation sequencing (NGS) technologies cannot be directly used for QTL studies as: i) NGS technologies are prone to small but unrecoverable sequencing errors and therefore an individual SNP site cannot be used as a reliable marker for genotyping, ii) it is very difficult to score all SNP sites in an entire recombinant population, and iii) limitations of QTL analysis software to handle such a huge dataset. To address these issues, a parent dependant sliding window approach was used to identify true recombination breakpoints and to construct a recombination bin map using SNP data of an entire recombinant population in rice (Huang et al. 2009).

Recently, Varshney et al. (2014) reported 45 robust main-effect QTLs (M-QTLs; QTLs which explain >10% phenotypic variation (PVE)) and 973 epistatic QTLs (E-QTLs) explaining 58.2% and 92.19% PVE respectively, using two intra-specific recombinant inbred line (RIL) mapping populations (ICC 4958 × ICC 1882, referred as ICCRIL03, where ICCRIL denotes ICRISAT Chickpea RIL, 03 denotes population number and ICC 283 × ICC 8261 referred as ICCRIL04). In addition, the study also revealed nine QTL clusters including a genomic region on linkage group 4 (CaLG04) referred to as "QTL-hotspot", harboring several QTLs for drought tolerance related traits. Generally QTL analysis on bi-parental

populations accounts for the QTL represented by the specific allelic segregation which may not be identified in other population (Holland 2007; Jamann et al. 2015). In this context, "QTL-hotspot" region was considered to be an important region for improving drought component traits in chickpea, as it was also identified in another intra-specific mapping population (ICC 283 × ICC 8261). However, the "QTL-hotspot" was large (~29 cM on the genetic map and 7.74 Mb on the physical map) (Varshney et al. 2014) and contained only few SSR markers, making it difficult to identify polymorphism between the recurrent and target genotypes in a backcrossing strategy and also to identify genes associated with drought tolerance in this region (Thudi et al. 2014). Enriching this region with additional markers will facilitate fine mapping and precision breeding for drought tolerance. Further, dissection of this region will enable identification of candidate genes for drought tolerance that can be deployed for chickpea crop improvement.

In order to fine map the "*QTL-hotspot*" region and identify candidate genes, this study was planned to propose with the following objectives:

- 1. SNP discovery and genotyping of the RIL population (ICC $4958 \times ICC 1882$)
- 2. Marker saturation in the "QTL-hotspot" region
- 3. Development of high resolution mapping population
- 4. Identification of the candidate gene(s) for drought component traits

REVIEW OF LITERATURE

2. REVIEW OF LITERATURE

2.1 Chickpea

2.1.1 Origin and history

Chickpea (*Cicer arietinum* L.) is one of the oldest and most used legumes in the Middle and Far East. Its domestication started before 12,000-10,000 years ago in the Fertile Crescent. It was cultivated mainly in the semi-arid and temperate to warm regions of the Old World (Zohary and Hopf 1973; van der Maesen 1972). Chickpea was introduced by Spanish and Portuguese to the new world in 16th century and *kabuli* types moved to India through Mediterranean in 18th century. *Cicer reticulatum* is the wild relative of domestic chickpea and it was cultivated in South-East Turkey. Chickpea is preferably cultivated during summer in Middle East and North America whereas it is cultivated during dry winter in India while in Australia it is grown during winter (Redden and Berger 2007).

2.1.2 Taxonomy and types

Wild and cultivated chickpeas are in the genus *Cicer* which comprises of 44 species among which 9 are annual and 35 are perennial. *Cicer* belongs to the family, Fabaceae under *Cicerae* tribe. The only domesticated member of *Cicer* is *Cicer arietinum* which is a self-pollinated, diploid crop with 16 chromosomes. Pollination is completed within the bud before flowering and usually one seed is set per pod. Cultivated chickpea comprises of two genetically distinct sub-types, *desi* and *kabuli*. *Kabuli* types seem to be evolved from *desi* and the genetic diversity is comparatively high in *desi* than *kabuli* (Redden and Berger 2007).

2.1.3 Nutritional value

From the beginning of agriculture, grain legumes have been used extensively for human consumption and for animal feed. Chickpea plays a major role in vegetarian diets and it is a staple food in many parts of the world especially in Asian countries. Chickpea is a good source of energy (14 to 19 MJ/kg), protein (12.6 to 30.6%), carbohydrates (51 to 71%), minerals, vitamins, fiber and phytochemicals (Wood and Grusak 2007). Chickpea has been consumed in several forms; it has been consumed directly or by boiling, roasting, puffing, frying and also in the form of dhal, flour and sprout. Apart from its nutritional value, several reports have stated that in ancient times, chickpea has been used for medicinal purposes. For instance, Dodonaeus (16th century) believed drinking of chickpea soaked water would cure kidney and bladder stones, the same water with rosemary would cure jaundice (van der Maesan 1987). Additionally, chickpea can meet around 80% of the nitrogen through symbiotic nitrogen fixation. Chickpea can fix up to 140 kg nitrogen/ha (Saraf et al. 1998).

2.2 Constraints for Chickpea Production

Though chickpea is grown in more than 50 countries worldwide, the major producers includes India, Australia, Pakistan, Turkey, Myanmar, Iran, Ethiopia, Canada and USA. The top five producers of chickpea in the world includes, India contributing 43.41% (6.18 Mt), followed by Turkey (0.58 Mt), Pakistan (0.58 Mt), Australia (0.33 Mt), and Iran (0.27 Mt) (FAO 2014). In spite of its high yield potential, chickpea production is majorly affected due to adverse biotic and abiotic stresses. Globally, abiotic stresses lead to major yield losses compared to biotic stresses. The important causative abiotic stresses include drought, heat, cold and salinity. The major biotic stresses include pod borer, ascochyta blight, fusarium wilt, botrytis grey mould, dry root rot, collar rot, foot rot and stem rot (Toker et al. 2007). Among the abiotic stresses, drought plays a major role in yield loss by making the crop loss up to

33% globally. In the case of biotic stresses, pod borer causes 21% of yield losses. Especially in India insect pest are estimated to cause 7-15% yield loss and fusarium wilt can cause up to 100% yield loss during favorable adverse conditions (Chattopadhyay and Mohapatra 2015).

2.2.1 Drought stress in chickpea

Drought is defined as a water stress due to inadequate rainfall or water supply in which the crop fails to meet its transpiration needs (Tuberosa 2012). It is not only determined by rainfall and also due to evaporation, soil water holding capacity and crop water requirement. It is the most important environmental stress in agriculture. Drought stress in chickpea is mainly due to the growing season and environment. Chickpea faces two types of drought stresses, (i) terminal drought - which occurs due to the depletion of water in soil especially during the end of the growing season and (ii) intermittent drought - which occurs due to insufficient rainfall during growing season (see Toker et al. 2007).

Chickpea is grown widely in the arid and semi-arid zones and ~90% of the world's chickpea is grown under rainfed conditions (Kumar and Abbo 2001). Especially in South Asia and Northern Australia, chickpea is predominantly grown in post rainy season where terminal drought is a major limiting factor of productivity. Terminal drought affects mainly during pod filling and seed development resulting in high yield losses up to 80% (Gaur et al. 2014). The yield loss can go up to 100% based on the genotype and type of drought experienced in the given environment. Drought accompanied with heat can cause severe yield losses due to shortening of growing season by affecting the yield component traits like biomass, pod number, seed number, seed weight and quality (Saxena 1993; Leport et al. 1999; see Toker et al. 2007).

Drought resistance mechanism includes drought escape, drought avoidance and drought tolerance. Drought escape can be achieved through earliness, early vigour and dehydration postponement. Dehydration postponement is obtained by managing water uptake and thereby reducing water loss. Other water management technique includes osmotic adjustment, turgor potential, root length density, rooting depth and leaf types and movements (Turner et al. 2001).

Drought tolerance can be achieved by the ability of the cells to metabolize at low water status which can be obtained through membrane stability, lethal water potential, chlorophyll content, polyamine, brassinosteroids, jasmonates, phosphatidic and salicylic acids synthesis (Nayyar et al. 2005; Davies 1995).

2.3 Breeding for Drought Tolerance

Breeding for abiotic stresses is limited due to the quantitative nature of these stresses which is also affected by genotype-by-environment ($G \times E$) interaction (Jha et al. 2014). Breeding for drought escape can be achieved by developing early maturing varieties where the plant flowers and completes the cycle before it faces the drought stress. Drought avoidance can be achieved by improved root traits whereas drought tolerance can be achieved by searching of germplasm for the donors with suitable drought tolerant traits. Though drought resistance is obtained through escape, avoidance and tolerance mechanisms, cases of selection for escape and avoidance are only reported (Saxena 1987; Kashiwagi et al. 2005). Wild species are the natural sources of stress resistance which are unnoticed and lost during crop domestication and selection, resulting in narrow genetic components (Zamir et al. 2001).

Several studies during the past three decades focused to determine the factors controlling drought tolerance in chickpea. For instance, Singh et al. (1997) screened around 4,000 chickpea lines to find the tolerant sources for drought in the spring chickpea in the Mediterranean. This study identified 19 drought tolerant lines among 4,165 lines screened during 1992 to 1995. These lines are being used for developing drought resistant cultivars. In

2002, Anbessa and Bejiga evaluated around 400 Ethiopian landraces for drought tolerance. This study reported two better performing resistance genotypes, ACC 41235 and ACC 209025 selected from 19 drought tolerant lines which were identified earlier by screening 482 genotypes. Smaller leaf area and root traits like root dry weight (RDW), root volume (RV) and rooting depth (RD) are the sources of resistance as these traits helps in reduced water loss and extensive soil moisture extraction respectively. Serraj et al. (2004) reported the evaluation of RIL population derived from a longer rooting genotype ICC 4958 and an agronomically important genotype Annigeri during 2001 and 2002. It was observed that high yielding lines were possessing longer roots, however general correlation was not observed between these two traits whereas, high shoot biomass and harvest index contributed to high yield.

At ICRISAT, screening of 216 genotypes including mini-core germplasm collection revealed two drought tolerant genotypes ICC 8261 and ICC 4958 possessing longer root length density (RLD). This study concluded deeper root system can be a trait of drought avoidance to improve yield under less soil moisture conditions and provides a baseline for breeding and selection for drought avoidance root traits in chickpea (Kashiwagi et al. 2005). Subsequent studies identified that wild species are more drought resistant than the cultivated lines including the highly tolerant ICC 4958 (Toker et al. 2007). Consideration of including such wild lines in breeding will contribute to developing best drought tolerant cultivars. Intraspecific mapping populations (ICC 4958 × ICC 1882 and ICC 8261 × ICC 283) segregating for root traits were also developed and used for drought tolerance studies (Gaur et al. 2008). Further, few studies reported some important physiological traits like excised leaf water loss (RWL), relative water content (RWC), membrane permeability, ascorbic acid, proline content to be considered for selection procedure (Gunes et al. 2008). In another study, two *desi* chickpeas, ACC 316 and ACC 317 for drought and heat tolerance were reported by screening 377 chickpea accessions (Canci and Toker 2009). This study also found seed weight as an early selection trait and reported phenological traits like days to flowering and maturity should be considered for drought avoidance. Root traits had been majorly focused in terminal drought tolerance of chickpea (see Kashiwagi et al. 2015).

2.4 Chickpea Genomics

2.4.1 Genomic resources for chickpea

Until late 1990s morphological and isozyme marker based maps were available for chickpea (Gaur and Slinkard 1990; Kazan et al. 1993). Weising et al. (1989, 1991, 1992) reported fingerprinting of *C. arietinum* and its wild relatives using oligonucleotide probes. In the following years, several studies reported the development of microsatellite markers in chickpea (Table 1). For instance, Sharma et al. (1995) studied the polymorphism of di-, triand tetra- nucleotide repeats and reported the use of these SSR (simple sequence repeat) markers in linkage mapping. Subsequently, development of STMS (sequence tagged microsatellite sites) and large set of SSR markers from bacterial artificial chromosome (BAC) and binary bacterial artificial chromosome (BIBAC) libraries were reported (Hüttel et al. 1999; Winter et al. 1999; Lichtenzveig et al. 2005; Nayak et al. 2010)

Along with microsatellite marker development, transcriptomic studies were also made available in the early 2000s. For instance, studies identified dehydration specific transcripts and few potential candidate genes for drought, heat and cold stress through transcriptional profiling of differentially expressed genes (Boominathan et al. 2004; Mantri et al. 2007). Consequently, development of EST-SSR markers from the EST libraries were also reported for drought and salinity stresses (Buhariwalla et al. 2005; Varshney et al. 2009). Further, sequencing and annotation of these libraries resulted in identification of stress specific genes and also resulted in the identification of SSR and SNP markers from the generated ESTs (Table 1). Physical map of chickpea with 1,945 BAC/BIBAC contigs with average length of 559 kb was reported by Zhang et al. (2010). This map covered 1,088 Mb and this is the first genome wide physical map in chickpea. Further, the genome sequence of chickpea was made available in 2013 (Varshney et al 2013a; Jain et al. 2013).

Sequencing by synthesis methods greatly reduced the time and cost of SNP identification and genotyping. Various approaches were introduced in sequencing and library construction methods which were further improvised. For instance, the technique of reduced representation library in which the size reduction was carried out using restriction enzymes was introduced in 2007 and was further improved by adding barcode and multiplexing with Illumina sequencing technologies in the subsequent years (Miller et al. 2007; Baird et al. 2008). Genotyping-by sequencing (GBS) method was proposed by Elshire et al. (2011) which follows the same principle but includes high multiplexing and less complicated steps. GBS is widely accepted for various studies like genome wide analysis, QTL mapping, and diversity studies and also applied in different species like Lolium, barley, wheat etc. (Pfender et al. 2011; Chutimanitsakun et al. 2011; Poland et al. 2012). The notable advantage of GBS approach is that SNP discovery and genotyping can be done at the same time (Poland and Rife et al. 2012).

A large scale development of EST-SSR markers were reported from transcriptome assembly of chickpea using Roche / 454 technologies/ pyro sequencing for various tissues of drought stressed genotypes (Hiremath et al. 2011; Garg et al. 2011). Illumina/Solexa sequencing was carried out to identify drought responsive genes between drought sensitive line, ICC 1882 and drought tolerant line, ICC 4958 (Hiremath et al. 2011). Using these same genotypes further studies identified genes that were up and down regulated between contrast genotypes under terminal drought stress (Deokar et al. 2011) and a total of 3,062 unigenes were identified in this study and few selected genes were also validated by real-time polymerase

chain reaction (RT-PCR) and northern blotting. Thudi et al. (2011) reported the development of large number of SSR markers from bacterial artificial chromosome (BAC) end sequences (BES-SSR) and diversity array technology (DArT) markers. A large set of SNP markers (2,486) was reported by Hiremath et al. (2012) using Solexa/Illumina sequencing, amplicon sequencing of tentative orthologous genes, mining of expressed sequence tags and sequencing of candidate genes. Among which, 2,005 SNPs were successfully converted into KASPar assays. Golden gate assays for few of these reported SNPs (96) were made available for the effective use of these SNPs in future studies (Roorkiwal et al. 2013).

During last 5 years, the number of marker resources emerged in surplus amount due to sequencing approaches and advances in SNP identification methods (Azam et al. 2012; Roorkiwal et al. 2013; Agarwal et al. 2015; Kujur et al. 2015a). Whole genome re-sequencing (WGRS) and GBS approaches resulted in generating plenty of marker resources and the availability of genome sequences enhanced several re-sequencing and marker discovery studies. At ICRISAT, to catalogue such marker information, two databases CicArVarDB and CicArMiSatDB were recently developed which describes the SSR and SNP marker information identified in chickpea genome. CicArMiSatDB helps the users to mine and filter the SSR markers, whereas CicArVarDB helps to visualize the read and mapping quality, SNP marker locations, etc. through webBLAST and JBrowse (Doddamani et al. 2014, 2015).

2.4.2 Genetic linkage maps

Molecular markers based first linkage map was reported by Simon and Muehlbauer (1997). This map had ~90 markers on ten linkage groups representing eight chromosomes of chickpea with restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers along with isozyme and morphological markers. Followed by, ISSR (inter simple sequence repeat) marker based maps were reported on a RIL population (ICC 4958 \times PI 489777) developed for fusarium wilt resistance (Ratnaparkhe et al. 1998). Later, linkage maps of few hundred markers including ISSR, RGS, STMS, and SSR were reported (Winter et al. 1999; Flandez-Galvez et al. 2003) on inter and intra-specific mapping populations. Mapping of gene specific markers for plant defense response on an inter-specific map was reported using RIL population (ICC 4958 \times PI 489777) by Pfaff and Kahl (2003).

Further, studies reported the construction of consensus map for two or more mapping populations to avail the marker information on different maps. For instance, Cobos et al. 2005 reported the construction of consensus map for two intra-specific RIL populations (CA2156 × JG 62 and CA2139 × JG 62) with 160 markers spanning 427.9 cM. A consensus map of 10 mapping populations including 5 wide crosses (*C. arietinum* × *C. reticulatum*) and 5 narrow crosses (*desi* × *kabuli*) were constructed with 555 markers spanning 652.67 cM on wide crosses and with 299 loci spanning 426.99 cM on narrow crosses (Milan et al. 2010).

An inter-specific map on a RIL population (ICC $4958 \times PI \ 489777$) with 521 loci spanning 2,602 cM was constructed by integration of newly developed SSR markers and SNP markers (Nayak et al. 2010). A high density genetic linkage map with 1,291 loci was constructed by Thudi et al. (2011) which spanned a distance of 845.56 cM with DArT and BES-SSR markers. Further, SNP markers were integrated into this map which had 1,328 loci including 625 CKAM (chickpea KASPar assay markers) and 317 TOG (tentative orthologous genes) SNP and 396 published loci spanning 788.6 cM (Hiremath et al. 2012). A consensus map on two intra-specific mapping populations was reported by Varshney et al. (2014). This map includes 352 loci spanning 771.39 cM including SSR, DArT and genic molecular markers (GMM). It was constructed using two individual maps, including a map on ICC 4958 × ICC 1882 with 241 loci spanning 621.51 cM and on ICC 283 × ICC 8261 with 168 loci spanning

533.06 cM. Availability of NGS technologies has resulted in identifying 1000s of SNP and developing ultra-high density maps (Kujur et al. 2015c; Table 2).

2.4.3 QTLs for drought tolerance

Drought is a complex trait, inherited quantitatively and can be improved through its component traits like days to flowering, days to maturity, seed weight, seed size, biomass, yield and root traits and other physiological traits like water use efficiency, stomatal conductance, transpiration efficiency, osmotic adjustment, relative water content, canopy temperature and drought sensitivity index. Here listed are few studies in which QTLs for these traits were mapped in chickpea to improve yield under drought conditions. For instance, Cho et al. (2002) mapped a major gene for pigmentation on linkage group (LG) 8, four QTLs for 100-seed weight (100-SDW) on LG4 and LG9, one QTL for seed number on LG4 and a QTL for days to 50% flowering on LG3. Further a consensus map on two RIL populations, JG $62 \times$ Vijay and Vijay \times ICC 4958 was reported and used for QTL studies (Radhika et al. 2007). QTL analysis using these maps identified 8 QTLs for seed weight on LG1, LG3 and LG4. In another study, QTL for seed weight was mapped on three linkage groups (LG1, LG6 and LG4B) and the most significant QTL was found on LG4B flanked by GA24 and STMS11 (Abbo et al. 2005). This study also mapped QTLs for beta carotene on LG1, LG2, LG3 and LG4 and for lutein concentration on LG1 using F_2 population (Hadas × Cr205). Seed size and seed weight, are the most studied traits in chickpea. For instance, Cobos et al. (2007) mapped two QTLs for seed size on LG4 and LG8, and one QTL each for yield and days to flowering on LG4. Two major QTLs for seed weight were reported by Cobos et al. (2009) on LG4 and LG2. QTL on LG4 was flanked by GAA47 and STMS 11 with high phenotypic variation of 32%. This QTL was reported to be the same QTL identified earlier by Cho et al. (2002); Abbo et al. (2005); Cobos et al. (2007). Additionally, QTLs for seed coat thickness and flowering time were mapped on LG4 and LG3A respectively.

Marker	Able 1. List of molecular markers available for encepea Marker Number of markers Reference	
Microsatellite markers		
SSR^1	38	Sharma et al. 1995
STMS ²	28	Hüttel et al. 1999
SSR	174	Winter et al. 1999
SSR	233	Lichtenzveig et al. 2005
STMS	13	Choudhary et al. 2006
SSR	92	Sethy et al. 2006a
SSR	11	Sethy et al. 2006b
SSR	311	Nayak et al. 2010
SSR	6,845	Thudi et al. 2011
SSR	728	Hiremath et al. 2011
STMS	181	Gaur et al. 2011
Functional markers		
EST-SSRs		
EST-SSR ³	106	Buhariwalla et al. 2005
EST-SSR	64	Qadir et al. 2007
EST-SSR	60	Choudhary et al. 2009
EST-SSR	177	Varshney et al. 2009
EST-SSR	51	Gujaria et al. 2011
EST-SSR	202	Agarwal et al. 2015
SNPs		
$CAPS^4$	73	Varshney et al. 2007
SNP ⁵	21,405	Varshney et al. 2009
SNP	71	Nayak et al. 2010
SNP	495	Hiremath et al. 2011
CAPS	143	Gujaria et al. 2011
$DArT^{6}$	5,397	Thudi et al. 2011
SNP	2,005	Hiremath et al. 2012
SNP	4,543	Azam et al. 2012
SNP	96	Roorkiwal et al. 2013
SNP	44,844	Kujur et al. 2015a
SNP	43,358	Kujur et al. 2015c
Others		
CISR ⁷	87	Gujaria et al. 2011
ISR ⁸	2,088	Hiremath et al. 2011
\cos^9	387	Hiremath et al. 2011

Table 1: List of molecular markers available for chickpea

SSR¹- simple sequence repeats; STMS²- sequence tagged microsatellite sites; EST-SSR³expressed sequence tag-SSR; CAPS⁴- cleaved amplified polymorphic sequences; SNP⁵single nucleotide polymorphism; DArT⁶- diversity array technology; CISR⁷- chickpea intron spanning region; ISR⁸- intron spanning region; COS⁹- conserved ortholog set. A subsequent study on drought tolerance related traits by Rehman et al. (2011) identified 15 genomic regions, controlling drought related traits like harvest index, days to flowering, days to maturity, stomatal conductance, canopy temperature, by developing a linkage map and QTL analysis using ILC 588 × ILC 3279 RIL population. On the same population, Hamwieh et al. (2013) studied 12 drought related traits including drought resistance score, 100-seed weight, plant height, days to flowering, days to maturity, seed number, biological yield, percentage of empty pods, number of empty pods, harvest index, pod number and grain yield. In this study, LG3 and LG4 were found to contain QTLs for many traits and were reported to have pleiotropic effects. In another study, 45 QTLs for 20 drought component traits on two intra-specific RIL mapping populations namely ICC 4958 × ICC 1882 (ICCRIL03) and ICC 283 × ICC 8261 (ICCRIL04) were reported (Varshney et al. 2014). This study also reported nine important QTL clusters scattered on chickpea genome for 12 out of 20 traits studied which included a promising "QTL-hotspot" region on LG4 which explains a highest PVE of 58.20%. This region was used in molecular breeding program and successfully introgressed into the chickpea elite line JG11 (See Varshney et al. 2013b). The availability of SNP based ultra-high density maps allow to detect QTLs for any trait within the shortest defined locations (<1 cM). A high density map with >4,000 markers was constructed on RIL population (ICC 12299 × ICC 8261) using GBS based SNPs identified by mapping reads on desi genome, similarly >2,500 SNPs were mapped on the same population using SNPs identified through mapping of kabuli genome (Kujur et al. 2015b, c) (Table 3).

Mapping population	Population	Number of markers	Map length (cM)	Reference
Inter-specific cross				
ICC 4958 × PI 489777	$\operatorname{RIL}^{\#}$	112	613.00	Winter et al. 1999
ICC 4958 × PI 489777	RIL	354	2077.90	Winter et al. 2000
FLIP 84-92C × PI 599072	RIL	167	1174.50	Tekeoglu et al. 2002
ICC 4958 × PI 489777	RIL	296	2483.30	Pfaff and Khal 2003
Hadas \times Cr205	F_2	72	344.60	Abbo et al. 2005
ICCL 81001 × Cr5-9 ICC 4958 × PI 489777, FLIP 84-92C × PI 599072, Hadas × Cr205, ILC 72 × Cr5-10	RIL	121	848.10	Cobos et al. 2009
and ICCL 81001 × Cr5-9	RIL, F_2	555	652.67	Milan et al. 2010
ICC 4958 × PI 489777	RIL	521	2602.00	Nayak et al. 2010
ICC 4958 × PI 489777	RIL	1,291	845.56	Thudi et al. 2011
ICC 4958 × PI 489777	RIL	300	766.56	Gujaria et al. 2011
ICC 4958 × PI 489777	RIL	1,328	788.60	Hiremath et al. 2012
Intra-specific cross				
ICCV $2 \times JG$ 62	RIL	111	297.00	Cho et al. 2002
ICC 12004 × Lasseter	RIL	66	534.50	Flandez-Galvez et al. 200
CA2156 \times JG 62 and CA 2139 \times JG 62	RIL	160	427.90	Cobos et al. 2005
JG 62 \times Vijay and Vijay \times ICC 4958	RIL	230	739.60	Radhika et al. 2007
ICCV 96029 \times CDC Frontier	F_2	144	1285.00	Anbessa et al. 2009
ICCV 96029 × CDC Luna	F_2	76	497.00	Anbessa et al. 2009
ICCV 96029 × CDC Corinne	F_2	61	391.00	Anbessa et al. 2009
ICCV 96029 × Amit ICCV 2 × JG 62, ILC 3279 × WR 315, WR 315 × C104, CA 2139 × JG 62 and CA 2156	F ₂	42	276.00	Anbessa et al. 2009
× JG 62	RIL	229	426.99	Milan et al. 2010
ICCV $2 \times JG$ 62	RIL	138	630.90	Garg et al. 2011
C 214 × WR 315	F_2	57	347.90	Sabbavarapu et al. 2013

Table 2: List of linkage maps available for chickpea

C 214 × ILC 3279	F_2	58	386.30	Sabbavarapu et al. 2013
ILC 588 × ILC 3279	RIL	99	157.60	Rehman et al. 2011
ILC $3279 \times ICCV 2$	F_3	57	379.47	Jamalabadi et al. 2013
ILC 588 × ILC 3279	RIL	77	520.00	Hamwieh et al. 2013
ICC 4958 × ICC 1882	RIL	241	621.51	Varshney et al. 2014
ICC 283 × ICC 8261	RIL	168	533.06	Varshney et al. 2014
ICC 4958 × ICC 1882, ICC 283 × ICC	8261 RIL	352	771.39	Varshney et al. 2014
ICC 6013 × ICC 7346	\mathbf{F}_4	292	785.60	Kujur et al. 2015b
ICCV $2 \times JG$ 11	RIL	56	329.60	Pushpavalli et al. 2015
ICC 12299 × ICC 8261	RIL	4,448	714.09	Kujur et al. 2015c
ICC 12299 × ICC 8261	RIL	2,689	798.47	Kujur et al. 2015c

RIL[#]- recombinant inbred lines

Mapping population	Trait	Linkage group (LG)	Reference
Inter-specific cross			
Hadas \times Cr 205	Seed weight	LG1, LG6, LG4B	Abbo et al. 2005
ICCL 81001 × Cr 5-9	Flower colour	LG3A	Cobos et al. 2009
	Seed size	LG4, LG2	
	Seed coat thickness	LG4	
Intra-specific cross			
ILC 588 × ILC 3279	Harvest index	LG1, LG3	Rehman et al. 2011
	Days to flowering	LG1, LG3, LG4, LG8	
	Stomatal conductance	LG3, LG7	
	Days to maturity	LG1, LG3, LG7	
	Cooler canopies	LG1, LG3, LG4, LG6	
	Grain yield	LG1, LG4	
	Drought tolerance score	LG1, LG3, LG7, LG8	
	Reproductive period	LG1, LG3, LG7	
	Plant height	LG1, LG4	
ILC $3279 \times ICCV 2$	Days to flowering	LG3	Jamalabadi et al. 2013
	Plant height	LG3	
	100-seed weight	LG4	
ILC 588 × ILC 3279	Drought resistance score	LG3, LG4	Hamwieh et al. 2013
	100-seed weight	LG3, LG4, LG5, LG7	
	Pod number	LG3, LG4, LG7	
	Grain yield	LG3, LG4	
	Days to flowering	LG3, LG4	
	Plant height	LG1, LG2, LG3, LG7	
	Days to maturity	LG1, LG2, LG3, LG4	
		LG1, LG2, LG3, LG4,	
	Harvest Index	LG5	
	Percentage of empty pods	LG1, LG2	
	Empty pods	LG2, LG3	

Table 3: List of mapped QTLs for drought tolerance related traits

	Seed number	LG3, LG4	
	Biological yield	LG3, LG7	
ICCV $2 \times JG$ 62	Pigmentation	LG8	Cho et al. 2002
	100-seed weight	LG4, LG9	
	Seed number/plant	LG4	
	Days to 50% flowering	LG3	
JG 62 \times Vijay and Vijay \times ICC 4958	Seed weight	LG1, LG3, LG4	Radhika et al. 2007
ICC 4958 × ICC 1882	Root length density	LG4, LG6, LG7	Varshney et al. 2014
	Root dry weight	LG1, LG3, LG7	
	Root surface area	LG4, LG6	
	Root volume	LG6	
	R-T ratio	LG4	
	Shoot dry weight	LG4, LG6	
	Plant height	LG3, LG4, LG6, LG7,	
		LG8	
	Plant width	LG5	
	Primary branches	LG6	
	Days to 50% flowering	LG3, LG4, LG6, LG7, LG8	
	Days to maturity	LG4, LG6, LG7, LG8	
	Pods/plant	LG4	
	Seeds/pod	LG3, LG4, LG7	
	100-seed weight	LG1, LG4	
	Biomass	LG1, LG3, LG4, LG7,	
		LG8	
	Harvest index	LG1, LG3, LG4, LG6, LG8	
	Yield	LG1, LG3, LG4, LG6	
	Delta carbon ratio	LG4	
	Drought tolerance indices	LG1, LG4	

U 1 I	LG7, LG4	
Root dry weight	LG8	Varshney et al. 2014
Rooting depth	LG3	·
R-T ratio	LG1, LG2, LG3, LG4,	
	LG5	
Shoot dry weight	LG4	
Plant height	LG1, LG3,LG4, LG5,	
	LG6, LG7, LG8	
	LG8	
-	LG6	
Days to 50% flowering		
-		
Days to maturity		
Dodg/plant		
-		
e		
	,	
	LG1, LG2, LG3	
0	LG1, LG5	
	LG3	
Pod number/plant	LG1, LG2, LG4, LG5,	
		Kujur et al. 2015b
e		
Seed number/plant		
100		Varian et al. 2015 -
e		Kujur et al. 2015c
r ou number / prant		
Seed number/plant		
	Rooting depth R-T ratio Shoot dry weight Plant height Plant width Primary branches Days to 50% flowering Days to maturity Pods/plant 100-seed weight Biomass Harvest index Yield Drought tolerance indices Drought susceptibility indices Pod number/plant 100-seed weight Seed number/plant	Rooting depthLG3R-T ratioLG1, LG2, LG3, LG4, LG5Shoot dry weightLG4Plant heightLG1, LG3,LG4, LG5, LG6, LG7, LG8Plant widthLG8Primary branchesLG6Days to 50% floweringLG1, LG2 LG3,LG4, LG5, LG6, LG7Days to maturityLG1, LG2 LG3,LG4, LG5, LG6, LG7Pods/plantLG4, LG6, LG8100-seed weightLG1, LG2, LG3BiomassLG6Harvest indexLG6, LG8YieldLG1, LG2, LG3, LG4, LG5, LG6, LG7, LG8Drought tolerance indicesLG1, LG2, LG4, LG5, LG6, LG7, LG8100-seed weightLG3, LG5, LG6Seed number/plantLG2, LG3, LG4, LG5, LG7100-seed weightLG3, LG5, LG6Seed number/plantLG2, LG3, LG4, LG5, LG7100-seed weightLG7, LG8100-seed weightLG7, LG8100-seed weightLG7, LG8100-seed weightLG7, LG8100-seed weightLG7, LG8

2.5 Fine Mapping Studies

In order to develop resistant material for any biotic or abiotic stress, it is necessary to identify QTL or genes linked to the particular trait. This can be achieved through bi-parental linkage map based QTL analysis or linkage disequilibrium (LD) based association mapping. QTL analysis aims to identify the sequence or nucleotide which is responsible for the trait effect via fine mapping and QTL cloning (Salvi and Tuberosa 2005; Holland 2007). The following step after identifying a major QTL for the trait of interest is to refine the region into a short interval to identify the genes controlling the trait. In brief, the process of identifying the closest marker of the target gene is known as fine mapping. It is always a concern that which population should be used for fine mapping. Several studies suggested the development of large mapping population while few studies used backcross populations, and near isogenic lines for fine mapping (Fridman et al. 2000; Jander et al. 2002; Xu et al. 2006; Uga et al. 2013; Song et al. 2015). Usually, numerous individuals are screened with the flanking markers of the target QTL, followed by phenotyping of the selected recombinant plants and progeny testing. The shortest segment obtained through this process is cloned and candidate genes are identified, however if the genome sequence is available the candidate genes can be directly pinpointed through precisely locating the QTLs (Price et al. 2006). Recent advances in sequencing technologies avoid laborious time taking genotyping methods by generating large number of SNP markers for map construction. It allows QTL mapping to obtain the resolution of fine mapping (Jamann et al. 2015).

Though fine mapping studies had started in early 1990s, several advancements have been made in recent years. "pre-NGS" era is described as where fine mapping has been done without using any NGS-derived markers. In early 1990s, non-PCR based markers were extensively utilized for fine mapping. In general, for the development of new markers in a targeted QTL region, markers flanking the QTL regions are mapped to their physical

positions by which the respective clones on the physical map can be identified. The identified clones are used for developing molecular markers. However by using such markers, several studies could reach finer intervals but not into gene levels (Eshed and Zamir et al. 1995), though limited studies reported fine mapping using SNP markers obtained from BAC/YAC clones (Fridman et al. 2000). Such studies could reach gene level of refinement, showing the power of SNP markers in refining the larger intervals.

While comparing with non-NGS technology based cloning methods, the advent of NGS technologies has reduced the time span into nearly half to clone a gene. Before the rise of genome sequences, gene isolation was possible only by isolating the respective YAC/BAC clones. Rather, post-NGS era has an advantage in direct identification of candidate genes from the genome sequence as the genome sequence is available for most of the important crops. Additionally genotyping-by sequencing approach for the entire population allow identifying several millions of SNPs in less cost and time. The high density of marker data allows identification of markers near or within the gene of interest.

Before NGS era, it was considered that using conventional populations like F_2 and RIL is difficult to identify and refine QTLs (Eshed and Zamir 1995). Currently this scenario has changed with the abundance of sequencing technologies and the knowledge of sequence variation. Now it is possible to use these populations for accurate QTL mapping and fine mapping. Recently, several studies have reported fine mapping and identification of genes on RIL population (Xu et al. 2011; Qi et al. 2014). About a decade earlier, it was thought that identification of candidate genes in shorter time period was possible only for model crops. Whereas the current situation with the genomic advancement made sure even for complex crops it is possible to identify candidate genes in shorter period. Fine mapping and QTL cloning are must in order to understand the functional mechanism of a trait and to precisely perform marker assisted selection (MAS). In fact, sequencing technologies have brought remarkable changes in genomics and breeding in the last 10 years. The amount of time taken for identifying candidate genes has reduced tremendously in recent years. The projects which were taking few years of time to fine map and identify a candidate gene are expected to take few months to a year with the availability of genome sequences and other developments in NGS technologies.

MATERIALS AND METHODS

3. MATERIALS AND METHODS

3.1 Generation of SNP Markers Using Genotyping-by Sequencing (GBS) Approach

3.1.1 Plant material

Based on screening of mini-core collection for drought tolerance-related root traits at ICRISAT, ICC 4958 (*C. arietinum*), a drought tolerant breeding line developed by Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhya Pradesh, India was found to possess larger root system, while ICC 1882 (*C. arietinum*) which is a landrace collected from India was found to possess shorter root system. These genotypes were assembled at ICRISAT's gene bank in 1973. These phenotypically and genetically distinct genotypes were used for developing an intra-specific RIL mapping population of 264 lines, namely ICCRIL03. This population which segregates for root traits was used in the current study.

3.1.2 High throughput DNA extraction

DNA isolation was carried out for RILs and the parental genotypes, using high throughput mini-DNA extraction method as described by Cuc et al. (2008). A total of 208 RILs with good quality DNA were used for further sequencing. The steps involved in DNA extraction protocol are explained below.

3.1.2.1 Sample preparation

- Leaves were harvested from 15 days old seedlings.
- 70-100 mg of leaf tissue was placed in 12 × 8-well strip tube with strip cap (Marsh Biomarket, USA) in a 96 deep-well plate together with two 4 mm stainless steel grinding balls (Spex CertiPrep, USA).

3.1.2.2 Cetyltrimethylammonium bromide (CTAB) extraction

- For each sample 450 µl of preheated (at 65 °C for half an hour) extraction buffer (100 mM Tris-HCl (pH-8), 1.4 M NaCl, 20 mM EDTA, CTAB (2-3% w/v), β-mercaptoethanol) was added and secured with eight strip caps.
- Samples were homogenized in a GenoGrinder 2000 (Spex CertiPrep, USA), following the manufacturer's instructions, at 500 strokes/min for 5 times at 2 min interval.
- Plate was incubated at 65 °C for 10 min with shaking at periodical intervals.

3.1.2.3 Solvent extraction

- For each sample, 450 µl of chloroform-isoamyl alcohol (24:1) was added and mixed thoroughly by inverting.
- Plate was centrifuged at 5,500 rpm for 10 min. The aqueous layer (300 µl) was collected.

3.1.2.4 Initial DNA precipitation

- 0.7 vol (210 µl) of isopropanol (stored at -20 °C) was added to the collected aqueous layer and mixed thoroughly by inverting.
- Plate was centrifuged at 5,000 rpm for 15 min.
- Supernatant was discarded from each sample and pellet was air dried for 20 min.

3.1.2.5 RNase treatment

 200 µl low salt TE (10 mM Tris EDTA (pH-8)) and 3 µl RNase (10 mg/ml) was added to each sample and incubated at 37 °C for 30 min.

3.1.2.6 Solvent extraction

- 200 µl of phenol-chloroform-isoamyl alcohol (25:24:1) was added to each sample and inverted twice to ensure proper mixing.
- Plate was centrifuged at 5,000 rpm for 5 min.

- Aqueous layer from each sample was transferred to a fresh 96 deep-well plate.
- 200 µl of chloroform-isoamylalcohol (24:1) was added to the aqueous layer and inverted twice to ensure proper mixing.
- Plate was centrifuged at 5,000 rpm for 5 min. Aqueous layer was transferred to fresh 96 deep-well plate.
- A total of 315 µl ethanol-acetate solution (30 ml ethanol, 1.5 ml 3 M NaOAc (pH-5.2))
 was then added to each sample and placed in 20 °C for 5 min.
- Plate was again centrifuged at 5,000 rpm for 5 min.
- Supernatant was discarded from each sample and pellet was washed with 70% ethanol.
- Plate was centrifuged at 6,000 rpm for 10 min.
- Supernatant was again decanted from each sample. Samples were air dried for 1 hour.
- Pellet was re-suspended in 100 µl low-salt TE and stored at 4 °C.

3.1.3 DNA quantification

Extracted DNA was quantified by loading the samples on 0.8% agarose gel containing 0.5 μ l/10 ml ethidium bromide (10 mg/ml). DNA was normalized to 5 ng/ μ l concentration with visual comparison by loading DNA samples with the standard λ DNA molecular weight markers (2.5 ng/ μ l, 5 ng/ μ l, 10 ng/ μ l) on 0.8% agarose gel. DNA quantity was measured using spectrophotometer (Shimadzu UV160A, Japan).

3.1.4 Sequencing methods

The extracted DNA samples were subjected to genotyping-by sequencing (GBS) approach for SNP identification and genotyping as described by Elshire et al. (2011). In brief, GBS libraries from parental lines and RILs were prepared using *Ape*KI endonuclease (recognition site: G/CWCG) and sequenced using the Illumina HiSeq 2000 platform (Illumina Inc, San Diego, CA, USA). Genomic DNA of selected mapping population and parental lines was subjected to restriction digestion using endonuclease *ApeK*I for 2 hrs at 75 °C. Adapters with unique multiplex sequence index (barcodes) were ligated to the sticky ends of the each sample using ligase buffer with ATP and T4 ligase. Reaction mix was incubated at 22 °C for 1 hr and heated to 65 °C for 30 min to inactivate the T4 ligase. Aliquots of each ligated sample (5 μ l) were pooled (multiplexed) and purified to remove the excess adapters. DNA samples were eluted in a final volume of 50 μ l.

PCR was performed to increase the restriction fragments from each library using primers complementary to corresponding adapters. The amplified pools constituting the "sequencing library" were cleaned up and evaluated for fragment sizes using a DNA analyzer. Libraries without adapter dimers were subjected to sequencing.

3.1.4.1 SNP calling

The reads obtained were first de-multiplexed according to the sample barcodes and adapter sequences were removed using custom perl script. The reads having more than 50% of low quality base pairs (Phred < 5%) were discarded and filtered data were used for calling SNPs after quality check (Q score > 20). The filtered, high quality data from each sample was aligned to the draft genome sequence (CaGAv1.0) of chickpea (Varshney et al. 2013a) using SOAP (Li et al. 2009). The nucleotide with highest probability at each position under a Bayesian model was identified for individual RILs and the consensus sequences were saved in FASTA format. Consensus sequences from all samples were compared to detect polymorphic loci. Polymorphic loci that were either heterozygous in any of the parents or present in < 50% individuals in the population were discarded and a high quality SNP dataset was generated.

3.1.5 Linkage mapping

Genotyping data for SNPs generated through GBS approach and genotyping data obtained from previous studies as mentioned in Varshney et al. 2014 were compiled for linkage analysis using JoinMap V4.0 (Van Ooijen and Voorrips 2006). Marker order was assigned using regression mapping algorithm with maximum recombination frequency of 0.4 at minimum logarithm of odds (LOD) of 3 and jump threshold of 5. Ripple command was used after adding each marker locus to confirm marker order. The Kosambi mapping function was used to calculate the map distance (Kosambi 1943). To detect segregation distortion, chi square (χ^2) values were calculated using Joinmap V4.0. Highly distorted and unlinked markers were excluded from analysis. Mapchart 2.2 (Voorrips 2002) was used to visualize the constructed map for each linkage group. Linkage groups were named according to Varshney et al. (2014).

3.1.6 Phenotyping for root traits

Phenotyping data on the ICCRIL03 population was obtained from the earlier studies (Varshney et al. 2014). The procedure of phenotyping is described in the following sections.

Phenotyping data was collected for 20 drought tolerance traits including 6 root traits, 6 yield and yield related traits, 5 morphological traits, 2 phenological traits and one physiological trait in 1 to 7 seasons (2005, 2006, 2007, 2008, 2009, 2010 and 2011) at 1 to 5 locations in India namely Patancheru (PAT) located at 17.53°N 78.27°E, Nandyal (NAN) located at 15.48°N 78.48°E, Durgapura (DUG) located at 23.55°N 87.32°E, Hiriyur (HIR) located at 13.95°N 76.62°E and Sehore (SEH) located at 23.2°N 77.08°E. Details of the traits analyzed are provided in Table 4. Root traits namely, root dry weight (RDW), rooting depth (RD), ratio between RDW and total dry weight (R/T), root length density (RLD), root surface area (RSA) and root volume (RV) were measured in 2005 and 2007 with three replications by Physiology Division at ICRISAT, Patancheru.

For taking root related observations, chickpea plants were grown in PVC cylinders (18 cm diameter, 120 cm height) with three replications. The PVC cylinders, except the top 15 cm, were filled with an equi-mixture (w/w) of vertisol and sand, mixed with di-ammonium

phosphate at the rate of 0.07 g kg⁻¹. The soil water content of the mixture was equilibrated to 70% field capacity to create the conditions similar to those in the field at sowing time, where the soil is not fully saturated with water. A mixture of soil and sand was used to decrease the soil bulk density and facilitate root growth and extraction.

Plants were sampled at 35 days after sowing (DAS) avoiding any physical damage to plants, as previous studies showed that maximum variation in root dry weight and root length density among genotypes could be best noticed in Patancheru environment at 35 DAS, and that variation is reduced after 41 DAS (Krishnamurthy et al. 1996). The methods employed for recording the observations of the root traits are explained in brief in the following sections.

3.1.6.1 Stem dry weight (StDW)

The weight of dried stem (without leaves) was measured after drying the stem in hot air oven at 80 °C for 72 hrs.

3.1.6.2 Leaf dry weight (LDW)

The weight of dried leaves (without stem) was measured after drying the leaves in hot air oven at 80 °C for 72 hrs.

3.1.6.3 Shoot dry weight (SDW)

Total shoot which include stem and leaves of each plant were dried in a hot air oven at 80 °C for 72 hrs. The weight of this dry matter was measured as SDW. SDW is the sum of StDW and LDW.

3.1.6.4 Root dry weight (RDW)

Root dry weight was recorded after drying the root in a hot air oven at 80 °C for 72 hrs.

3.1.6.5 Rooting depth (RD)

Rooting depth was measured after removing the soil particles from the root system under running water. The roots were straightened and depth to which the roots had been penetrated was measured.

3.1.6.6 Ratio of RDW and total dry weight (R/T)

It is ratio between the RDW and the total dry weight. Total dry weight is the collective dry weights of shoot and root system of each plant.

3.1.6.7 Root length (RL)

The soil from the roots was removed by rinsing the roots in running water. The root length was measured by using a digital image analysis system (WinRhizo, Regent Instruments Inc., Quebec, Canada). The image of the root is taken and the total length is obtained by measuring the length of tap and branch roots of the chickpea root system.

3.1.6.8 Root length density (RLD)

The root length density (RLD) was calculated by dividing the total root length per cylinder by the cylinder volume at the maximum rooting depth.

3.1.6.9 Root surface area (RSA)

The root surface area was measured by using a digital image analysis system (WinRhizo, Regent Instruments Inc., Quebec, Canada).

3.1.6.10 Root volume (RV)

The root volume is the volume of the soil in the PVC cylinder, at the maximum rooting depth.

Trait	ICCRIL03 (ICC 4958 × ICC 1882)							
	2005 *	2006*	2007 *	2008*	2009**			
Root traits [#]								
Root length density (RLD, $\rm cm \ cm^{-3}$)	PAT		PAT					
Root dry weight (RDW, g)	PAT		PAT					
Rooting depth (RDp, cm)	PAT		PAT					
Root surface area (RSA, cm ²)	PAT		PAT					
Root volume (RV, cm ³)	PAT		PAT					
Root dry weight / Total plant dry weight ratio (RTR, %)	PAT		PAT					
Morphological traits								
Shoot dry weight (SDW, g)	PAT		PAT					
Plant height (PHT, cm)	PAT	PAT	PAT	PAT,SEH,DUG,NAN	А			
Plant width (PWD, cm)	PAT	PAT	PAT					
Primary branches (PBS)	PAT	PAT	PAT					
Secondary branches (SBS)	PAT	PAT	PAT					
Phenological traits								
Days to 50% flowering (DF)	PAT	PAT	PAT	PAT,SEH,DUG,NAN	А			
Days to maturity (DM)	PAT	PAT	PAT	PAT,SEH,DUG,NAN	А			
Yield and yield related traits								
Pods/plant (POD)	PAT	PAT	PAT	PAT,SEH,DUG,NAN	А			
Seeds/pod (SPD)	PAT	PAT	PAT	PAT,SEH,DUG,NAN	А			
100-seed weight (100-SDW)	PAT	PAT	PAT	PAT,SEH,DUG,NAN	А			
Biomass (BM, g)	PAT	PAT	PAT	PAT,SEH,DUG,NAN	А			
Harvest index (HI, %)	PAT	PAT	PAT	PAT,SEH,DUG,NAN	А			
Yield (YLD, g)	PAT	PAT	PAT	PAT,SEH,DUG,NAN	А			
Transpiration efficiency related tra	nits							
Delta carbon ratio (δ^{13} C)				PAT,SEH,DUG				

 Table 4: Summary of traits evaluated at different locations and seasons

^{*}traits measured in PVC cylinders at rainout shelter. ^{*}measured in rainfed condition for the mentioned year. ^{**}measured in rainfed and irrigated condition.

A-Measured at all 5 locations (Patancheru, Sehore, Durgapura, Nandyal and Hiriyur).

PAT- Patancheru, SEH- Sehore, DUG- Durgapura, NAN- Nandyal.

3.1.7 QTL analysis

Genotyping data obtained from the current study along with the 318 markers generated earlier from Varshney et al. (2014) and the phenotyping data for 20 drought tolerance related traits obtained from Varshney et al. (2014) were used for QTL analysis using QTL Cartographer V.2.5 software (Wang et al. 2012). Composite interval mapping (CIM) was performed by selecting Model 6 with the default window size 10 cM, control marker number 5, and backward regression method. To obtain more precise results the default walk speed was reduced to 1 cM. LOD method (LOD >3) was used to determine the significance of each QTL interval with the threshold level performed at 1,000 permutations, significance level of $p \le 0.05$.

3.1.8 Development of CAPS/dCAPS (cleaved amplified polymorphic sequences/derived cleaved amplified polymorphic sequences) markers

SNPs integrated in the "*QTL-hotspot*" region were converted to CAPS or dCAPS using dCAPS Finder 2.0 (Neff et al. 2002). The predicted CAPS and dCAPS candidates were amplified in a 20 µl PCR reaction using GeneAmp® PCR System 9700 thermal cycler (Applied Biosystems, Foster City, CA, USA) on 5 parental genotypes of chickpea mapping populations (PI 489777, ICC 4958, ICC 1882, ICC 8261 and ICC 283). Amplicons for each CAPS and dCAPS were subjected to digestion using their respective restriction enzymes followed by separation on 2% agarose gel electrophoresis as described in Gujaria et al. (2011).

3.2 Marker Enrichment in the "QTL-hotspot" Region Using Skim Sequencing Approach

3.2.1 Library construction, skim sequencing and SNP calling

For RILs, a total of 50 ng DNA from each sample was used to prepare an Illumina Nextera library according to the manufacturer's instructions. In this procedure, the genomic DNA is

simultaneously fragmented and tagged with sequencing adaptors using an engineered transposome. The fragments were then amplified using a limited PCR cycle which also adds index sequences on both ends of the DNA, thus enabling dual-indexed sequencing of pooled libraries. Libraries for 96 individuals were pooled and sequenced on the Illumina HiSeq 2500 platform. Parental genotypes (ICC 4958 and ICC 1882) were sequenced separately at high sequencing depth (~8X) whereas ICCRIL03 population was sequenced at low coverage of $\sim 0.70X$ (average of RILs).

The reads obtained were filtered to remove low quality bases and used for SNP identification. Initially, the reads from the parental genotypes (ICC 4958 and ICC 1882) were aligned to the draft chickpea genome (CaGAv1.0) using SOAP (Li et al. 2009). Uniquely mapped reads were considered for SNP calling using SGSAutoSNP software (Lorenc et al. 2012) with default parameters. Similarly, the low quality reads obtained from RILs were filtered out and SNPs were identified from the remaining reads. The identified SNPs were filtered with a minor allele frequency (MAF) cutoff of 0.2 and lines with \geq 5% missing data were also excluded. SNPs were scored as "A" and "B" representing alleles from the two parents ICC 4958 and ICC 1882 respectively.

3.2.2 Identification of recombination break points

Sliding window approach was used to minimize the sequence errors during genotype calling and to determine the recombination break points using perl scripts as mentioned in Huang et al. 2009. Perl scripts from Huang et al. 2009 were used with necessary changes according to chickpea genome co-ordinates. In brief, a sliding window covering 15 SNPs moves from left to right one base at a time. For each window the ratio of the number of ICC 4958 to ICC 1882 SNPs (ICC 4958:ICC 1882) was calculated. Windows with nine or more SNPs (\geq 9:6 or \geq 6:9) from either parent were considered as homozygous for an individual. For instance, a window with \geq 9:6 (ICC 4958:ICC 1882) is considered homozygous for ICC 4958 and genotype call for this window is denoted as "A". While a window with $\leq 6:9$ (ICC 4958:ICC 1882) is considered homozygous for ICC 1882 and genotype call for this window is denoted as "B". While the window with $8:7 \geq$ (ICC 4858:ICC 1882) $\geq 7:8$ is considered as heterozygous genotype and denoted as "H". As the window slides, genotypes are called and the recombination break points were determined. Recombination break point was defined at the transition from one genotype to another. The recombination breakpoints obtained from all the individual RILs were aligned and compared over 100 kb intervals. The successive intervals lacking recombination break points within the entire population were combined and considered as a single bin. These bins were then used as markers for linkage map construction.

3.2.3 Construction of bin map

The bins were used as genetic markers for the construction of a linkage map. Map construction was carried out using QTL IciMapping Version 3.3 software (Meng et al. 2015). The REcombination Counting and ORDering (RECORD) algorithm was used for marker ordering. Sum of adjacent criterion (SAD) ripple was performed to confirm the marker order. The marker order and their positions on genetic and physical map were visualized using Strudel V. 1.12.03.20 (Bayer et al. 2011).

3.2.4 QTL analysis using IciMapping

QTL IciMapping software was also used with the phenotype data for 20 drought related traits and bin map for QTL analysis. The ICIM-ADD mapping method, along with other default parameters was used. The LOD threshold was set by using permutation 1000 and p value \leq 0.05. The results were compared with earlier studies (Varshney et al. 2014) and also with the results obtained from the GBS study (objective 1; chapter 3.1.4) to determine the quality and accuracy of the bin map. Further, the QTL results were checked to refine the earlier identified "*QTL-hotspot*" region and also to identify candidate genes controlling respective traits.

3.3 Development of Large Scale Fine Mapping Population

3.3.1 Selection of parental lines and crossing

ICCX-110125-P18 (BC₅F₁) is a near isogenic line generated by Chickpea Breeding Division, ICRISAT, carrying "*QTL-hotspot*" segment on linkage group 4 from ICC 4958 in the genetic background of ICC 1882. This line was generated through continuous backcrossing of ICC 4958 with ICC 1882. It was termed as NIL⁺ line as it carries "*QTL-hotspot*" from ICC 4958 in ICC 1882 genetic background. Background recovery of near isogenic lines was calculated using,

Background recovery = [(No. of recurrent allele + (No. of heterozygotes*1/2))/Total no. of markers] * 100

Selected progenies of ICCX-110125-P18 (BC₅F₁) NIL⁺ lines were crossed with ICC 1882 during June 2013 at ICRISAT to develop F₁ population for generating large scale fine mapping population. F₁ plants were screened with 6 SSR markers from the "*QTL-hotspot*" region to identify a plant carrying heterozygous segment for the QTL region and homozygous for ICC 1882 in rest of the chromosomes. Using the selected F₁ lines, a high resolution segregating mapping population of F₂ lines were constructed during June 2014 at Indian Institute of Pulses Research-Regional Research Station cum Off-season Nursery, Dharwad, India located at 15°27′30″N 75°00′30″E.

3.3.2 Genotyping and progeny testing

DNA was extracted from parental lines (ICC 4958 and ICC 1882) and F_2 progenies using high throughput mini-DNA extraction method as described in Cuc et al. (2008). SNP markers

(no=6) flanking the "*QTL-hotspot*" regions obtained from high density map based QTL analysis (chapter 3.2.4) were used for genotyping the large scale F_2 fine mapping population. Based on the genotyping data, recombinant lines for the "*QTL-hotspot*" regions were selected and the selected plants were further advanced to obtain $F_{2:3}$ population. These F_3 lines were initially genotyped with the flanking SNP markers and the selected homozygous recombinant lines (a line carrying homozygous allele for both parent in a given segment) were further genotyped with all SNP markers (no=24) located in the "*QTL-hotspot*" regions. Phenotyping for yield related traits as mentioned in Table 4 was recorded. Progeny testing was carried out using the phenotyping data along with the genotyping data obtained on $F_{2:3}$ homozygous recombinant lines.

3.4 Candidate Gene Identification

The amino acid sequences of genes located in the "*QTL-hotspot*" region delimited through GBS approach were retrieved from draft genome sequence (CaGAv1.0) of chickpea (Varshney et al. 2013a) and searched against NCBI-nr protein database using blastp program implemented in Blast2GO software (Conesa et al. 2005) with an E-value threshold of $\leq e^{-20}$. Associated gene ontology (GO) terms were exported and searched for plant related GO terms using the GO slim viewer from the AgBase web server (http://www.agbase.msstate.edu), which also categorize terms into three different classes as biological processes (BP), molecular function (MF) and cellular components (CC). Similarly, co-ordinates of the delimited "*QTL-hotspot*" regions obtained from skim sequencing approach were mapped to the draft genome sequence (CaGAv1.0) of chickpea (Varshney et al. 2013a). The genes were extracted and looked for their functional role using Blast2GO. Corresponding amino acid sequences were mapped to uniprot database using BLASTp with an E-value threshold of $\leq e^{-20}$. Followed by the uniprot id's were extracted and mapping of these id's on retrieve/ID mapping resulted in finding out the annotation for these genes.

RESULTS

4. RESULTS

4.1 SNP Marker Development

4.1.1 Sequence data and SNP discovery using genotyping-by sequencing (GBS) approach

Parental genotypes of the mapping population (ICC 4958 and ICC 1882) were sequenced at higher depth (5X coverage) than RIL individuals (0.38X coverage on an average), and a total of 69.39 million reads amounting 6.24 Gb of ICC 4958 and 62.79 million reads amounting 5.65 Gb of ICC 1882 were generated. In addition, 701.05 million reads amounting 59.03 Gb were generated for 208 RILs (RIL001 to RIL208). The number of reads generated varied from 0.28 million (RIL078) to 19.23 million (RIL204) with an average of 3.37 million per line. The data obtained was filtered and used for SNP identification using SOAP software. The SNPs identified were again parsed to remove heterozygous SNPs in parents and a set of 828 SNPs were identified across 208 RILs. The flanking sequences of all the SNPs are made available through http://cmap.icrisat.ac.in/cmap/sm/cp/jaganathan/.

4.1.2 High density genetic map based on GBS derived SNP markers

Genotypic data for 828 polymorphic SNPs generated in this study along with 318 markers obtained from the earlier studies (Table 5), were used for genetic map construction. In total, 1,146 markers were used for genetic map construction, of which 1,007 (87.87%) were mapped on eight linkage groups (CaLG01 to CaLG08) covering 727.29 cM (Figure 1; http://cmap.icrisat.ac.in/cmap/sm/cp/jaganathan/). This map included 743 SNPs, 232 SSR, 21 DArT, 7 EST-SSR and 4 genic molecular markers GMM (Table 6). Highest number of markers was mapped on CaLG04 (386), while the lowest number of markers was mapped on CaLG05 (39). Distribution of marker loci on eight linkage groups has been shown in Figure 1.

The length of linkage groups varied from 59.41 cM (CaLG05) to 112.10 cM (CaLG04). Highest marker density was observed for CaLG04 with 3.44 markers per cM on an average whereas, lowest marker density was observed for CaLG07, which had an average of 0.62 markers per cM. Overall, the map had an average marker density of 1.30 per cM (Table 6 and Figure 1). Of 828 SNPs used for linkage map construction, 743 SNPs (89.73%) were mapped, among which 342 were mapped on CaLG04. Of 279 SSR markers used, 232 (83.15%) were mapped. Comparatively, SSR markers were mapped evenly on all the eight linkage groups. Highest number of SSR markers was mapped on CaLG02 (18). Out of 14 EST-SSRs, 7 markers were mapped, whereas all GMM and DArT markers used in the present study were mapped on different linkage groups. However, among 21 DArT markers mapped, 47.6% (10) were on CaLG01, 33.33% (7) on CaLG03, one each on CaLG02, CaLG05, CaLG06, and CaLG07. Out of four GMM, one each was mapped on CaLG02, CaLG04, CaLG07 and CaLG08.

4.2 Marker Enrichment in the "QTL-hotspot" Region

QTL analysis based on genotypic data for the mapped 1,007 markers and phenotypic data for 20 traits (as described in Varshney et al. 2014), identified a total of 164 robust M-QTLs by QTL Cartographer 2.5. More than 50% (91 M-QTLs) of these M-QTLs were located on CaLG04 and significantly, all 91 QTLs were detected in the "*QTL-hotspot*" region (Table 7). Earlier reported "*QTL-hotspot*" region (Varshney et al. 2014) had 7 SSR markers (ICCM0249, NCPGR127, TAA170, NCPGR21, TR11, GA24 and STMS11) and spanned 29 cM on linkage group 4. The current study integrates 49 new SNP markers into the "*QTL-hotspot*" region and the interval was re-estimated from 29 cM to 14 cM (Figure 2).

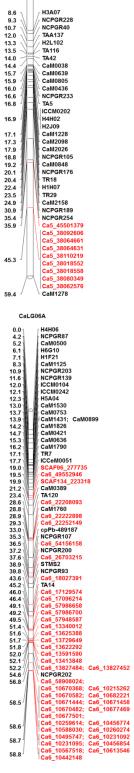
Marker	Number of markers	Reference
SSR ¹	103	Thudi et al. 2011
SSR	58	Winter et al. 1999
SSR	34	Gaur et al. 2011
SSR	32	Lichtenzveig et al. 2005
SSR	22	Nayak et al. 2010
SSR	22	Sethy et al. 2006
SSR	8	Huttel et al. 1999
EST-SSR ²	14	Varshney et al. 2009
DArT ³	21	Thudi et al. 2011
GMM^4	4	Gujaria et al. 2011
Total	318	

Table 5: List of marker genotyping data used from the earlier studies for linkage map construction

SSR¹- simple sequence repeats; EST-SSR²- expressed sequence tag-SSR; DArT³- diversity

array technology; GMM⁴- genic molecular markers.

CaLG01	CaLG02	CaLG03	
		0.0 CaM0998	
3.1 1 ICCM0120 9.4 1 Ca1_33095591	0.0) CaM0861	3.6 CaM1376 5.0 CaM1988	
10.0 Ca1_33095577 10.1 Ca1_11669794	20.5 1 (CaM0801	6.6 CaM1905	
10.0 -	23.6 H2B061	7.3 1 CaM0520 8.8 1 H3C06	
14.4 - Ca1_14015757 15.0 - Ca1_12337445	24.3 TA200 27.2 TA110	10.5 CaM1232 10.7 CaM1568	
26.8 Ca1_15965278	29.8 TA206	12.1 CaM2031	
14.4 Ca1 14015757 15.0 Ca1 1237445 26.8 Ca1 15965278 28.8 Ca1 16379258 29.2 TS71	31.5 TA37 34.0 TA96	12.9 H3F08 13.2 Provide NCPGR26	8
32.0 ICCM0297 34.6 TA1	34.7 📲 📕 H1P092;T	A27 14.9 NCPGR25	5
34.9 TA30s	34.8 H1H011 35.2 ICCM0082	15.6 NCPGR17 16.0 CaM1851	3
35.3 CaM0694 37.6 Ca1_19572408; Ca1_19572494		16.3 NCPGR27	
38.3 Ca1_40339065	36.6 Cal 40366862 37.6 TAA194	16.7 - A	3
38.5 1 Ca1_40366866; Ca1_40366858; 38.7 1 Ca1_40358747; Ca1_27745471;	Ca1_37690465	9763; Ca2 32481983 17.9 CaM1024	
38.8 Ca1_40358693; Ca1_38877670;	Ca1_39436291 47.2 Ca2_3241	9763; Ca2_32481983 17.9 7 CaM1024 5809; Ca2_32416166 18.1 7 H2101 58591; Ca2_32061054 18.4 7 CaM1024	
Ca1_37880995; Ca1_40346280;	Ca1_30232233 47.4 Ca2_3205	8591; Ca2_32061054 18.4 CaM0120 5320 18.5 CAM0120	
38.9 Ca1_30262124; Ca1_28082758; Ca1_34727251	Ca1_40190230 47.5 Ca2_3206	1053 18.6 CaM0003	
Ca1_40343216; Ca1_34272001;	Ca1_40190093 47.6 Ca2_3200	1930: Ca2 32140030 40.0 CaM0712	CaM1843
39.0 Ca1_31393408; Ca1_34161921; Ca1_40367940	Ca1_20129901 47.7 Ca2_3214	18.9 18.9 Calvio410	
37.6 ·	47.8 - Ca2_3142		CaM1835
40.6 CaM0102	47.9 Ca2_3190	19.5 NCPGR49	
41.6 CaM1702 41.8 CaM0403		244: Ca2 31100355 20.4 M CaM0204	0
41.9 Cam0015	Ca2_3110	2436; Ca2_31201859 20.8 21.3 21.3 21.5 SCAF8210	0_1451 2249; SCAF1281_316037
42.2 CaM0046	40 D Ca2_3095	1/24; Ca2_31109435 21.4 Ca3 6258	240; Ca3 3617555
42.9 NCPGR263 43.5 NCPGR136	Ca2_3095	0243; Ca2_31201872 21.5 SACAF198 4317; Ca2_31005845 21.8 CaM1973	1_339547; Cā3_9223875
44.3 Ca1 16552751	Ca2_3088	0246; Ca2_31005847 22.2 GA119	
45.3 48.2 H2A08	(a a / =) Ca2 3092	4305; Ca2_31005670 23.4 CaM0051 5784; Ca2_31203154 23.9 TR56	
49.9 ^J CaM0393 64.5 J Ca1_6540035	48.3 Ca2 3092	5755 24.5 TA78	50
64.7 \ Ca1_6540013	48.4 Ca2_3108 48.5 Ca2_3108	7902 Ca2 31428024 23.1 C SCAF420	
65.0 Ca1_6329814 65.6 Ca1_6390541; Ca1_6433925		8429 25.0 TAO	
65.8 Ca1_6491008; Ca1_6491017	48.7 Ca2_3212 48.9 Ca2_3235	26.3 Call Call 1900	
65.9 Ca1_6512349; Ca1_6478736; C Ca1_6470708; Ca1_6521670; C	a1_6521673 49.0 Ca2_3211	0331; Ca2_32119268 30.1 - NCPGR10	
66.1 Ca1_6553107 Ca1_6521856	50.5 - SCAF80_4 51.4 - CISR2	30.5 STMS14	
66.2 Ca1_6521859	52.0 - cpPb-489		
71.3 71.4 cpPb-679216;cpPb-679915; cpF	Pb-677690 57.1 NCPGR14 60.0 Ca2 3544		5247
74 0 Ca1 5240969	61.9 Ca2 3567	41.3 41.3 Ca3_2701	0875
77.6 Ca1_5093607	62.1 Ca2_3570	9129; Ca2 35673262 45.1 Ca3_2789 3797; Ca2_35593824 48.7 Ca3_3126	0849 8038
80.4 Ca1_2807604 81.0 Ca1_2885817	Ca2_3559	3827; Ca2_35612587 51.3 Ca3_3083	7284
81.3 Ca1_2855927 81.4 Ca1_2856003		2895; Ca2_35759932 52.4 4287; Ca2_35754350 52.5 4287; Ca2_35754350 52.5	
81.8 Ca1 3047634	Ca2 3575	4617; Ca2 35612644 52.9	8882; Ca3_31321725; Ca3_31321778
83.0 Ca1_1859914; Ca1_1858608; Ca1_1858608; Ca1_1858600		9940; Ca2_35754557	1142; Ca3_31521155; Ca3_31631534
83.1 Ca1_1861837	62.4 - Ca2_3570	9981 Ca3_3163 9004; Ca2_35709032 53.0 Ca3_3163 6127; Ca2_35676160 Ca3_3143	1561; Ca3_31268143; Ca3_31341335 0190: Ca3_31520119: Ca3_31630195
83.1 83.3 83.5 83.5 83.5 83.5 87.9	62.5 Ca2_3567	6127; Ca2_35676160 Ca3_3143	1142; Ca3_31521155; Ca3_31631534 1561; Ca3_31268143; Ca3_31341335 0190; Ca3_31520119; Ca3_31341335 1216; Ca3_31516662; Ca3_31516766 7136; Ca3_31517201; Ca3_31279605
87.8 cpPb-171485; cpPb-490962	62.6 Ca2_3570 62.7 Ca2_3565	4069; Ca2_35704018 53.1 Ca3_3151 8537 Ca3_3130	2060;
CPPD-077038	UT.I GAID	5127; Ca2_35676160 4069; Ca2_35704018 5537 553.2 55.6 55.6 55.6 55.6 55.5 55.5 55.5 55	8829; 2504:
91.1 CCM0009a; CCM0009b 92.3 Ca1_1098874 92.4 Ca1_1098703	92.2 ^J GA20	59.5 Ca3_3449	6982;
92.4 Ca1_1098703 92.7 Ca1_1083388; Ca1_1083403		72.7 Ca3 3644	7364
101.3 NCPGR184		72.8 4Ca3_3644	7520; Ca3_36447274


a.

Contd..

CaLG04A

0.0 1		
0.4		Ca4_48269138 Ca4_48263603; Ca4_48275016; Ca4_48322502
0.5		Ca4_48263603; Ca4_48275016; Ca4_48322502 Ca4_48228061; Ca4_48228110; Ca4_48355358; Ca4_48355468; Ca4_48498331
		Ca4_48355358; Ca4_48355468; Ca4_48498331 Ca4_48498334; Ca4_48501662; Ca4_48465107
0.6		Ca4_48467653; Ca4_48498181; Ca4_48485263
0.8		Ca4_48478018; Ca4_48478303; Ca4_48475461 Ca4_48345604; Ca4_48345608
1.1		Ca4_48457876 Ca4_47592455
10.0 12.9		Ca4_47592455 cpPb-490776: cpPb-678284: GA137
13.6		+cpPb-490776; cpPb-678284; GA137 -Ca4_37576578
15.4 23.7		Ca4_46613068 CaM0821
25.1		ICCM0257
26.2 27.4		Ca4_45225063 Ca4_45035589
27.8		Ca4_45019764
27.9 · 30.1 ·		Ca4_44979108 {Ca4_44590678; Ca4_44590652
30.4		Ca4_44590697 Ca4_35346417
35.8 · 37.3 ·		ICCeM0058
38.2 40.8		Ca4_41698382 Ca4_41032599
41.1		Ca4_40941283
41.2 41.3		Ca4_41032590; Ca4_41032564; Ca4_40795060 Ca4_40723212
		Ca4_41142290; Ca4_40723208; Ca4_41142288 Ca4_41142299; Ca4_40807053; Ca4_40839967
41.4		Ca4 40839949
41.6 41.7		łCa4_40795085; Ca4_40806995 łCa4_41144277; Ca4_40357182
41.8		Ca4 41094554
41.9 42.1		Ca4_40734765 {Ca4_40668451; Ca4_40668481; Ca4_40668487
42.1		Ca4 40597534
42.4		Ca4_40203462; Ca4_40203399; Ca4_40203432 Ca4_40429386; Ca4_40267713; Ca4_40429328
42.5		Ca4 40185702
42.6 42.8		1 Ca4 41145875; Ca4 40154361
42.9		Ca4_40062233
43.1 44.0		Ca4_40059880 Ca4_39719606
44.4		Ca4_37453590
44.8 44.9	$\left \cdot \right $	Ca4_38929681
45.0		Ca4_39081951; Ca4_39086269; Ca4_39086017 Ca4_39031823; Ca4_39042938
45.1		1Ca4_38215267; Ca4_38831427
		Ca4_38659377; Ca4_38179583; Ca4_38420093 Ca4_38157210; Ca4_38153183; Ca4_38153198
45.2		Ca4 38194220; Ca4 38918430; Ca4 38153216
		Ca4_38181292 Ca4_38194159; Ca4_38834383; Ca4_38918394
		Ca4_3884341; Ca4_38362132; Ca4_38475310 Ca4_38425720; Ca4_38289066; Ca4_3843633 Ca4_38288823; Ca4_38289997; Ca4_38289052 Ca4_982344; Ca4_38268997; Ca4_3827456
45.3	H	Ca4_38288823; Ca4_38288997; Ca4_38289052 Ca4_38770348; Ca4_38405153; Ca4_38770450
	H	Ca4_38770348; Ca4_38405153; Ca4_38770450 Ca4_38540247; Ca4_38770510; Ca4_38540201 Ca4_38358067; Ca4_38770506; Ca4_38834405
		Ca4_38358067; Ca4_38770606; Ca4_38834405 Ca4_38358398; Ca4_38475547; Ca4_38370848
		Ca4_38358398; Ca4_38475547; Ca4_38370848 Ca4_38370902; Ca4_38833304 { Ca4_38759640
45.4		Ca4_38039251; SCAF40_1053215; Ca4_38039037
45.5		
		Ca4_38039046; Ca4_38039076; Ca4_38039088
		SCAF40_1049594; SCAF40_1050164 Ca4_37364980; SCAF40_1052983; Ca4_37630520
		SCAF40_1049594; SCAF40_1050164 Ca4_37364980; SCAF40_1052983; Ca4_37630520
45.6		SCAF40_1049594; SCAF40_1050164 CcA_37364980; SCAF40_1052983; CcA_37630520 CcA_38918547; CcA_38029208; CcA_38029215 CcA_38029358; CcA_38029308; SCAF40_968798 CcA_38029898; CcA_37286652
		SCAF40_1049544; SCAF40_1050164 [Ca4_37364960; SCAF40_1052983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039298; Ca4_38029380; SCAF40_968798 [Ca4_38039298; Ca4_37550122; Ca4_37286632 [Ca4_380392193; Ca4_37550122; Ca4_37286632
		SCAF40_104954; SCAF40_105763 Ca4_37364969; SCAF40_1052983; Ca4_37630520 Ca4_38018547; Ca4_38029208; Ca4_38029215 Ca4_38039286; Ca4_3029300; SCAF40_968798 Ca4_38039289; Ca4_37550122; Ca4_37268632 Ca4_38039289; Ca4_37564326632 Ca4_38008062; Ca4_380227; Ca4_380344; Ca4_38008062; Ca4_380227; Ca4_38008082; Ca4_37576730
45.6		SCAF40_1049594; SCAF40_1050164 [Ca4_37364960; SCAF40_1052983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_3802915 [Ca4_38029358; Ca4_38029308; SCAF40_968798 [Ca4_38029358; Ca4_37550122; Ca4_37286632 [Ca4_38029136; Ca6_37530144; [Ca4_3764295; SCAF40_871346; Ca4_38008062 [Ca4_38008227; Ca4_38008082; Ca4_3756730 Ca4_3785751; Ca4_3787261; SCAF306 19215
		SCAF40_1049594; SCAF40_1050164 [Ca4_37364960; SCAF40_1052983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_3802915 [Ca4_38029358; Ca4_38029308; SCAF40_968798 [Ca4_38029358; Ca4_37550122; Ca4_37286632 [Ca4_38029136; Ca4_37530144; [Ca4_3764295; SCAF40_871246; Ca4_38008062 [Ca4_38008227; Ca4_38008082; Ca4_37576730 [Ca4_37807251; Ca4_3787261; SCAF306_19215 [Ca4_378008255; SCAF40_911602; Ca4_37349212 [Ca4_378008255; SCAF40_911602; Ca4_37349212 [Ca4_3780048255; SCAF40_911602; Ca4_37349212 [Ca4_3780048255; SCAF40_911602; Ca4_37349212 [Ca4_3780048] SCAF40_911602; Ca4_37491602; Ca4_3749164] SCAF40_911602; Ca4_3749166] SCAF40_911602; Ca4_374916] SCAF40_911602; Ca4_374916] SCAF40_911602; Ca4_374916] SCAF40_911602; Ca4_374916] SCAF40_911602; SCAF40_9166] SCAF40_9160
45.6		SCAF40_1049594; SCAF40_1050164 [Ca4_37364960; SCAF40_1052983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_3802915 [Ca4_38029358; Ca4_38029308; SCAF40_968798 [Ca4_38029358; Ca4_37550122; Ca4_37286632 [Ca4_38029136; Ca4_37530144; [Ca4_3764295; SCAF40_871246; Ca4_38008062 [Ca4_38008227; Ca4_38008082; Ca4_37576730 [Ca4_37807251; Ca4_3787261; SCAF306_19215 [Ca4_378008255; SCAF40_911602; Ca4_37349212 [Ca4_378008255; SCAF40_911602; Ca4_37349212 [Ca4_3780048255; SCAF40_911602; Ca4_37349212 [Ca4_3780048255; SCAF40_911602; Ca4_37349212 [Ca4_3780048] SCAF40_911602; Ca4_37491602; Ca4_3749164] SCAF40_911602; Ca4_3749166] SCAF40_911602; Ca4_374916] SCAF40_911602; Ca4_374916] SCAF40_911602; Ca4_374916] SCAF40_911602; Ca4_374916] SCAF40_911602; SCAF40_9166] SCAF40_9160
45.6		SCAF40_0104954; SCAF40_1057643 CcA_37364960; SCAF40_01052983; CcA_37630520 CcA_38018547; CcA_38029208; CcA_38029215 CcA_38039258; CcA_38029380; SCAF40_968798 CcA_38039258; CcA_3802930; SCAF40_968798 CcA_38039289; CcA_3750122; CcA_37286632 CcA_38030289; CcA_3783044; CcA_38008082; CcA_3783051; CcA_3787261; SCAF40_9175730 CcA_3783051; CcA_3787261; SCAF306_19215 CcA_3783044; CcA_437497261; SCAF306_19215 CcA_37830404; SCAF40_911602; CcA_37349212 CcA_37830404; SCAF40_911602; CcA_37349212 CcA_37830404; SCAF40_911602; CcA_37349212 CcA_37830404; SCAF40_911602; CcA_3735261 CcA_37830404; SCAF40_911602; CcA_4_37450251 CcA_37630404; SCAF40_911602; CcA_37630527 CcA_37630445; CcA_4_37450206; SCAF10_7100364 CcA_437450226; CcA_437450224 CcA_37450224 CcA_3745028; SCAF157
45.6		SCAF40_0104954; SCAF40_1057643 CcA_37364960; SCAF40_01052983; CcA_37630520 CcA_38018547; CcA_38029208; CcA_38029215 CcA_38039258; CcA_38029380; SCAF40_968798 CcA_38039258; CcA_3802930; SCAF40_968798 CcA_38039289; CcA_3750122; CcA_37286632 CcA_38030289; CcA_3783044; CcA_38008082; CcA_3783051; CcA_3787261; SCAF40_9175730 CcA_3783051; CcA_3787261; SCAF306_19215 CcA_3783044; CcA_437497261; SCAF306_19215 CcA_37830404; SCAF40_911602; CcA_37349212 CcA_37830404; SCAF40_911602; CcA_37349212 CcA_37830404; SCAF40_911602; CcA_37349212 CcA_37830404; SCAF40_911602; CcA_3735261 CcA_37830404; SCAF40_911602; CcA_4_37450251 CcA_37630404; SCAF40_911602; CcA_37630527 CcA_37630445; CcA_4_37450206; SCAF10_7100364 CcA_437450226; CcA_437450224 CcA_37450224 CcA_3745028; SCAF157
45.6 45.7 45.8		SCAF40_01049544; SCAF40_1050164 [Ca4_37364969; SCAF40_0152983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039258; Ca4_38029300; SCAF40_968798 [Ca4_38039258; Ca4_37550122; Ca4_37266632 [Ca4_3803927; Ca4_38008082; Ca4_37576730 [Ca4_3802927; Ca4_38008082; Ca4_37576730 [Ca4_3802927; Ca4_38008082; Ca4_37576730 [Ca4_3802925; SCAF40_911602; Ca4_37549212 [Ca4_37630404; SCAF40_1053247; SCAF40_1053261 [Ca4_37630445; Ca4_437139846; Ca4_37459212 [Ca4_37630404; SCAF40_1055267; Ca4_37650294 [Ca4_37363026; Ca4_37459206; SCAF40_1055261 [Ca4_37363145; Ca4_37293773; Ca4_3833333 [Ca4_38467880 [Ca4_38467800 [SCAF175] [Ca5311; SCAF2763_492700; Ca4_3803344
45.6 45.7		SCAF40_01049544; SCAF40_1050164 [Ca4_37364969; SCAF40_0152983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039258; Ca4_38029300; SCAF40_968798 [Ca4_38039258; Ca4_37550122; Ca4_37266632 [Ca4_3803927; Ca4_38008082; Ca4_37576730 [Ca4_3802927; Ca4_38008082; Ca4_37576730 [Ca4_3802927; Ca4_38008082; Ca4_37576730 [Ca4_3802925; SCAF40_911602; Ca4_37549212 [Ca4_37630404; SCAF40_1053247; SCAF40_1053261 [Ca4_37630445; Ca4_437139846; Ca4_37459212 [Ca4_37630404; SCAF40_1055267; Ca4_37650294 [Ca4_37363026; Ca4_37459206; SCAF40_1055261 [Ca4_37363145; Ca4_37293773; Ca4_3833333 [Ca4_38467880 [Ca4_38467800 [SCAF175] [Ca5311; SCAF2763_492700; Ca4_3803344
45.6 45.7 45.8		SCAF40_104954; SCAF40_1050164 [Ca4_3736496; SCAF40_1052983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039289; Ca4_38029308; SCAF40_968798 [Ca4_38039289; Ca4_37550122; Ca4_37286632 [Ca4_3803136; Ca4_3753014; [Ca4_37454296; SCAF40_971306927; Ca4_37576700 [Ca4_37897351; Ca4_378090827; Ca4_37576700 [Ca4_37807351; Ca4_378090827; Ca4_37576700 [Ca4_37801351; Ca4_378097261; SCAF30_19215 [Ca4_37630404; SCAF40_911602; Ca4_37549212 [Ca4_37630404; SCAF40_911602; Ca4_3753627 [Ca4_37630404; SCAF40_911692; SCAF40_1055261 [Ca4_37450326; Ca4_37319846; Ca4_37530527 [Ca4_37450326; Ca4_37450206; SCAF157_100364 [Ca4_38333415; Ca4_37393773; Ca4_3883333 [Ca4_3833415; SCAF2763_49700; Ca4_30300334 [SCAF157_106331; SCAF2763_49700; Ca4_30300334 [SCAF157_106549; SCAF2763_49709; Ca4_30300334 [SCAF2763] [04549; Ca4_36979926; Ca4_3059188
45.6 45.7 45.8		ISCAFA0_0104954; SCAF40_1050164 CcA_37364969; SCAF40_0152983; CcA_37630520 CcA_378918547; CcA_38029208; CcA_38029215 CcA_3803558; CcA_38029208; CcA_470966798 CcA_3803558; CcA_38029300; SCAF40_966798 CcA_3803258; CcA_37550122; CcA_37266632 CcA_3803227; CcA_38008082; CcA_37576730 CcA_3763055; SCAF40_911602; CcA_3754227; CcA_3763055; SCAF40_911602; CcA_3756730 CcA_3763055; SCAF40_911602; CcA_37630527 CcA_3763055; SCAF40_911692; CcA_37630527 CcA_3763052; CcA_3719846; CcA_37630527 CcA_37319326; CcA_37630527 CcA_37630527 CcA_3734315; CcA_37450204; SCAF40_900344 CcA_3373453841; CcA_37283773; CcA_33033333 CcA_33243415; CcA_237283773; CcA_33033333 CcA_33521891; SCAF276_349700; CcA_3303334 CcA_335231991; SCAF276_349700; CcA_330599188 SCAF2763 M04589;
45.6 45.7 45.8 45.9		\$CAF40_104954; \$CAF40_1050164 [Ca4_3736496; \$CAF40_1052983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039289; Ca4_38029380; SCAF40_968798 [Ca4_38039289; Ca4_37550122; Ca4_37286632 [Ca4_38039289; Ca4_3753044; [Ca4_37454296; SCAF40_871346; Ca4_38008062 [Ca4_3751730] [Ca4_3783751; Ca4_37809282; Ca4_37749730 [Ca4_3783751; Ca4_37809285; Ca4_40_1053261 [Ca4_37630404; SCAF40_1053247; SCAF306_19215 [Ca4_37630404; SCAF40_1053247; SCAF40_1053261 [Ca4_37630404; SCAF40_1053247; SCAF40_1053261 [Ca4_37630404; SCAF40_1053247; SCAF40_1053261 [Ca4_37630404; SCAF40_1053247; SCAF40_1053261 [Ca4_37630404; SCAF40_1053247; SCAF40_1053261 [Ca4_3763026; SCAF40_308565; Ca4_375450294 [Ca4_37450326; Ca4_37450206; SCAF157_100364 [Ca4_38833415; Ca4_376390773; Ca4_38833333 [Ca4_3867980 [SCAF157_106331; SCAF2763_49700; Ca4_30300334 [SCAF157_106349; SCAF2763_49700; Ca4_30300334 [SCAF157_106349; SCAF2763_49709; Ca4_30300334 [SCAF2763_104549; Ca4_36979926; Ca4_3059188 [SCAF2783_50311; SCAF2763_108763; Ca4_368053 [SCAF2763_5031; SCAF2763_108763; Ca4_368053 [SCAF2763_1071719; SCAF2763_498733]
45.6 45.7 45.8		SCAF40_1049544; SCAF40_1050164 [Ca4_37364969; SCAF40_1052983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039289; Ca4_3029300; SCAF40_968798 [Ca4_38039289; Ca4_37550122; Ca4_37266532 [Ca4_38039289; Ca4_37550122; Ca4_37268632 [Ca4_3803927; Ca4_3800892; Ca4_37576730 [Ca4_3803927; Ca4_3809802; Ca4_37576730 [Ca4_3803925; SCAF40_911602; Ca4_37349212 [Ca4_37830344; Ca4_37897261; SCAF306_19215 [Ca4_378303445; Ca4_37897261; SCAF306_19215 [Ca4_378303445; Ca4_37819846; Ca4_37439212 [Ca4_37830345; Ca4_3719846; Ca4_37630527 [Ca4_373630445; Ca4_38038958; Ca4_37630527 [Ca4_37316738 [Ca4_3831345; Ca4_37293773; Ca4_38833333 [Ca4_38457800 [Ca4_3833145; Ca4_37293773; Ca4_38833333 [Ca4_38457800] [Ca4_3833145; Ca4_37293773; Ca4_38833333 [Ca4_3853145; Ca4_37293773; Ca4_38833333 [Ca4_3853191]; SCAF2763_396785; Ca4_3868053 [Ca4_3852783_20311; SCAF2763_396785; Ca4_3868053 [Ca4_3852783_20311; SCAF2763_396785; Ca4_3868053 [Ca4_3852783_20311; SCAF2763_396785; Ca4_3868053 [Ca4_3852783_20311; SCAF2763_396785; Ca4_3859785] [Ca4_3852783_20311; SCAF2763_397865; Ca4_385875 [Ca4_3852783_20311; SCAF2763_397865; Ca4_3859785] [Ca4_3852783_27853] [Ca4_3852783_27853] [Ca4_3852783_27853] [Ca4_385783_27853] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_38578] [Ca4_385783] [Ca4_385783] [Ca4_38578] [Ca4_38578] [Ca4_38578] [Ca4_385783] [Ca4_38578] [Ca4_38578] [Ca4_385788]
45.6 45.7 45.8 45.9		SCAF40_1049544; SCAF40_1050164 [Ca4_37364969; SCAF40_1052983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039289; Ca4_3029300; SCAF40_968798 [Ca4_38039289; Ca4_37550122; Ca4_37266532 [Ca4_38039289; Ca4_37550122; Ca4_37268632 [Ca4_3803927; Ca4_3800892; Ca4_37576730 [Ca4_3803927; Ca4_3809802; Ca4_37576730 [Ca4_3803925; SCAF40_911602; Ca4_37349212 [Ca4_37830344; Ca4_37897261; SCAF306_19215 [Ca4_378303445; Ca4_37897261; SCAF306_19215 [Ca4_378303445; Ca4_37819846; Ca4_37439212 [Ca4_37830345; Ca4_3719846; Ca4_37630527 [Ca4_373630445; Ca4_38038958; Ca4_37630527 [Ca4_37316738 [Ca4_3831345; Ca4_37293773; Ca4_38833333 [Ca4_38457800 [Ca4_3833145; Ca4_37293773; Ca4_38833333 [Ca4_38457800] [Ca4_3833145; Ca4_37293773; Ca4_38833333 [Ca4_3853145; Ca4_37293773; Ca4_38833333 [Ca4_3853191]; SCAF2763_396785; Ca4_3868053 [Ca4_3852783_20311; SCAF2763_396785; Ca4_3868053 [Ca4_3852783_20311; SCAF2763_396785; Ca4_3868053 [Ca4_3852783_20311; SCAF2763_396785; Ca4_3868053 [Ca4_3852783_20311; SCAF2763_396785; Ca4_3859785] [Ca4_3852783_20311; SCAF2763_397865; Ca4_385875 [Ca4_3852783_20311; SCAF2763_397865; Ca4_3859785] [Ca4_3852783_27853] [Ca4_3852783_27853] [Ca4_3852783_27853] [Ca4_385783_27853] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_385783] [Ca4_38578] [Ca4_385783] [Ca4_385783] [Ca4_38578] [Ca4_38578] [Ca4_38578] [Ca4_385783] [Ca4_38578] [Ca4_38578] [Ca4_385788]
45.6 45.7 45.8 45.9		SCAF40_0104954; SCAF40_01052983; Ca4_37630520 CcA_37630585; Ca4_30029208; Ca4_376205215 CcA_38018547; Ca4_38029208; Ca4_38029215 CcA_38039285; Ca4_3029300; SCAF40_966798 CcA_38039285; Ca4_37550122; Ca4_37266632 CcA_38039286; Ca4_3756142; Ca4_37266632 CcA_3803227; Ca4_3000802; Ca4_3756730 CcA_3763055; SCAF40_91602; Ca4_37542763 CcA_3763055; SCAF40_91602; Ca4_3749212 CcA_3763005; SCAF40_91602; Ca4_37630527 CcA_3763026; Ca4_37630527 Ca4_37630527 CcA_37363026; Ca4_37630527 Ca4_3745204; CcA_37316738 Ca4_37450204; SCAF167_100364 CcA_3373145; CcA4_37293773; Ca4_38033333 CcA_35231891; SCAF157_52857; SCAF853_42329 CcA_3507979; CcA_3697926; CcA_309148655 CcA_3507979; CcA_3697926; CcA_30599188 SCAF157_10565; SCAF157_100529 SCAF157_100529 SCAF1575;
45.6 45.7 45.8 45.9		SCAF40_01049544; SCAF40_1050164 [Ca4_37364969; SCAF40_0152983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039289; Ca4_3029300; SCAF40_966798 [Ca4_38039289; Ca4_37550122; Ca4_32806632 [Ca4_3803927; Ca4_38008082; Ca4_37576730 [Ca4_3736327; Ca4_38008082; Ca4_37576730 [Ca4_37897351; Ca4_37897261; SCAF306_19215 [Ca4_37630205; SCAF40_911926; Ca4_37349212 [Ca4_37630445; Ca4_371987261; SCAF306_19215 [Ca4_37630205; SCAF40_911926; Ca4_37530277 [Ca4_37630445; Ca4_43719846; Ca4_37530577 [Ca4_3763045; Ca4_43719846; Ca4_37630527 [Ca4_37363026; Ca4_37459206; SCAF40_1053261 [Ca4_37316738 [Ca4_33731452; Ca4_37293773; Ca4_3833333 [Ca4_338457896] [Ca4_3823145; Ca4_37293773; Ca4_38833333 [Ca4_38467880 [SCAF157_106331; SCAF2763_49700; Ca4_30030344 [Ca4_382763_104546; Ca4_3697926; Ca4_30599188 [SCAF357_105485; Ca4_357753_108763; Ca4_3645980 [Ca4_320311; SCAF2763_107488; Ca4_260039148 [SCAF376_3011; SCAF2763_107488; Ca4_260039148 [Ca4_320311; SCAF2763_107488; Ca4_26002991 [SCAF376_3074865; Ca4_3171506; SCAF157_100529 [SCAF2763_107486; SCAF2763_107488; Ca4_26002991 [SCAF376_107486; Ca4_3005305; Ca4_29598113 [Ca4_320311; SCAF2763_107488; Ca4_26002991 [SCAF376_107486; Ca4_3053365; Ca4_2958113 [SCAF376_307488; Ca4_305356; Ca4_2958113 [SCAF376_307488; Ca4_3053365; Ca4_2958113 [SCAF376_307488; Ca4_3053365; Ca4_2958113 [SCAF376_307488; Ca4_3053365; Ca4_3958776 [Ca4_32923300; Ca4_3684745; Ca4_368984727 [Ca4_32923300; Ca4_3684745; Ca4_368984727 [Ca4_32923300; Ca4_3684745; Ca4_368984727 [Ca4_32923300; Ca4_3684745; Ca4_368984727 [Ca4_3207475]; Ca4_3684745; Ca4_3689475; Ca4_36894775 [Ca4_3292380; Ca4_3689475; Ca4_36894727 [Ca4_32074575]; Ca4_3684755; Ca4_36894727 [Ca4_32074575]; Ca4_3684755; Ca4_36894727 [Ca4_32074575]; Ca4_3684755; Ca4_36894727 [Ca4_32074575]; Ca4_3684755; Ca4_36894727 [Ca4_32074575]; Ca4_3053382; Ca4_36894727 [Ca4_32074575]; Ca4_3053382; Ca4_36894727 [Ca4_32074575]; Ca4_3053382; Ca4_36894727 [Ca4_32074575]; Ca4_3053382; Ca4_36894727 [Ca4_32074575]; Ca4_3053
45.6 45.7 45.8 45.9		SCAF40_01049544; SCAF40_1050164 [Ca4_37364969; SCAF40_0152983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039289; Ca4_3029300; SCAF40_966798 [Ca4_38039289; Ca4_37550122; Ca4_32806632 [Ca4_3803927; Ca4_38008082; Ca4_37576730 [Ca4_3736327; Ca4_38008082; Ca4_37576730 [Ca4_37897351; Ca4_37897261; SCAF306_19215 [Ca4_37630205; SCAF40_911926; Ca4_37349212 [Ca4_37630445; Ca4_371987261; SCAF306_19215 [Ca4_37630205; SCAF40_911926; Ca4_37530277 [Ca4_37630445; Ca4_43719846; Ca4_37530577 [Ca4_3763045; Ca4_43719846; Ca4_37630527 [Ca4_37363026; Ca4_37459206; SCAF40_1053261 [Ca4_37316738 [Ca4_33731452; Ca4_37293773; Ca4_3833333 [Ca4_338457896] [Ca4_3823145; Ca4_37293773; Ca4_38833333 [Ca4_38467880 [SCAF157_106331; SCAF2763_49700; Ca4_30030344 [Ca4_382763_104546; Ca4_3697926; Ca4_30599188 [SCAF357_105485; Ca4_357753_108763; Ca4_3645980 [Ca4_320311; SCAF2763_107488; Ca4_260039148 [SCAF376_3011; SCAF2763_107488; Ca4_260039148 [Ca4_320311; SCAF2763_107488; Ca4_26002991 [SCAF376_3074865; Ca4_3171506; SCAF157_100529 [SCAF2763_107486; SCAF2763_107488; Ca4_26002991 [SCAF376_107486; Ca4_3005305; Ca4_29598113 [Ca4_320311; SCAF2763_107488; Ca4_26002991 [SCAF376_107486; Ca4_3053365; Ca4_2958113 [SCAF376_307488; Ca4_305356; Ca4_2958113 [SCAF376_307488; Ca4_3053365; Ca4_2958113 [SCAF376_307488; Ca4_3053365; Ca4_2958113 [SCAF376_307488; Ca4_3053365; Ca4_3958776 [Ca4_32923300; Ca4_3684745; Ca4_368984727 [Ca4_32923300; Ca4_3684745; Ca4_368984727 [Ca4_32923300; Ca4_3684745; Ca4_368984727 [Ca4_32923300; Ca4_3684745; Ca4_368984727 [Ca4_3207475]; Ca4_3684745; Ca4_3689475; Ca4_36894775 [Ca4_3292380; Ca4_3689475; Ca4_36894727 [Ca4_32074575]; Ca4_3684755; Ca4_36894727 [Ca4_32074575]; Ca4_3684755; Ca4_36894727 [Ca4_32074575]; Ca4_3684755; Ca4_36894727 [Ca4_32074575]; Ca4_3684755; Ca4_36894727 [Ca4_32074575]; Ca4_3053382; Ca4_36894727 [Ca4_32074575]; Ca4_3053382; Ca4_36894727 [Ca4_32074575]; Ca4_3053382; Ca4_36894727 [Ca4_32074575]; Ca4_3053382; Ca4_36894727 [Ca4_32074575]; Ca4_3053
45.6 45.7 45.8 45.9 46.0		SCAF40_0104954; SCAF40_1050164 [Ca4_3736496; SCAF40_0152983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_3802915 [Ca4_38039289; Ca4_3029300; SCAF40_966798 [Ca4_38039289; Ca4_37550122; Ca4_37266632 [Ca4_38039289; Ca4_37550122; Ca4_38008062 [Ca4_3803927; Ca4_38008082; Ca4_37576730 [Ca4_3763205; SCAF40_911092; Ca4_37549730 [Ca4_37897351; Ca4_37897261; SCAF306_19215 [Ca4_37630404; SCAF40_911926; Ca4_37549212 [Ca4_37630404; SCAF40_911926; Ca4_37549212 [Ca4_37630404; SCAF40_911926; Ca4_37630527 [Ca4_3763026; Ca4_37198765; Ca4_37630527 [Ca4_37363026; Ca4_3719864; Ca4_37630527 [Ca4_37363026; Ca4_37293773; Ca4_3833333 [Ca4_38457800 [Ca4_38457806] [SCAF157,106331; SCAF2763_49700; Ca4_3080334 [Ca4_3823145; Ca4_3897261; SCAF2763_49700; Ca4_3000334 [Ca4_3823145]; Ca4_38678926; Ca4_30599188 [SCAF357,106351; SCAF2763_49700; Ca4_30599188 [SCAF357,106351; SCAF2763_107676; Ca4_36959188 [SCAF357,107488; Ca4_3679826; Ca4_36959188; Ca4_360530 [Ca4_36468003]; Ca4_35717150; SCAF2763_49533 [Ca4_36468003]; Ca4_357763_107488; Ca4_26002991 [SCAF376,107488; Ca4_36739826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36959188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_36981777150; SCAF3753,107678; Ca4_26002991 [SCAF3763,107488; Ca4_369539382; Ca4_39854706 [Ca4_372763,107633; SCAF2763,10766; SCAF3753,10766 [SCAF2763,10763]; SCAF3763,10766; SCAF3763,107437 [SCAF2763,10764; SCAF3763,107437; SCAF2763,107437 [SCAF2763,10764; SCAF3763,107437 [SCAF2763,10764; SCAF3763,107437 [SCAF2763,10764; SCAF3763,107437 [SCAF2763,107437 [SCAF2763,107437] [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCA
45.6 45.7 45.8 45.9		SCAF40_0104954; SCAF40_1050164 [Ca4_3736496; SCAF40_0152983; Ca4_37630520 [Ca4_38918547; Ca4_38029208; Ca4_3802915 [Ca4_38039289; Ca4_3029300; SCAF40_966798 [Ca4_38039289; Ca4_37550122; Ca4_37266632 [Ca4_38039289; Ca4_37550122; Ca4_38008062 [Ca4_3803927; Ca4_38008082; Ca4_37576730 [Ca4_3763205; SCAF40_911092; Ca4_37549730 [Ca4_37897351; Ca4_37897261; SCAF306_19215 [Ca4_37630404; SCAF40_911926; Ca4_37549212 [Ca4_37630404; SCAF40_911926; Ca4_37549212 [Ca4_37630404; SCAF40_911926; Ca4_37630527 [Ca4_3763026; Ca4_37198765; Ca4_37630527 [Ca4_37363026; Ca4_3719864; Ca4_37630527 [Ca4_37363026; Ca4_37293773; Ca4_3833333 [Ca4_38457800 [Ca4_38457806] [SCAF157,106331; SCAF2763_49700; Ca4_3080334 [Ca4_3823145; Ca4_3897261; SCAF2763_49700; Ca4_3000334 [Ca4_3823145]; Ca4_38678926; Ca4_30599188 [SCAF357,106351; SCAF2763_49700; Ca4_30599188 [SCAF357,106351; SCAF2763_107676; Ca4_36959188 [SCAF357,107488; Ca4_3679826; Ca4_36959188; Ca4_360530 [Ca4_36468003]; Ca4_35717150; SCAF2763_49533 [Ca4_36468003]; Ca4_357763_107488; Ca4_26002991 [SCAF376,107488; Ca4_36739826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36959188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_3697826; Ca4_36989188 [SCAF357,107488; Ca4_36981777150; SCAF3753,107678; Ca4_26002991 [SCAF3763,107488; Ca4_369539382; Ca4_39854706 [Ca4_372763,107633; SCAF2763,10766; SCAF3753,10766 [SCAF2763,10763]; SCAF3763,10766; SCAF3763,107437 [SCAF2763,10764; SCAF3763,107437; SCAF2763,107437 [SCAF2763,10764; SCAF3763,107437 [SCAF2763,10764; SCAF3763,107437 [SCAF2763,10764; SCAF3763,107437 [SCAF2763,107437 [SCAF2763,107437] [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCAF2763,107437 [SCA
45.6 45.7 45.8 45.9 46.0		SCAF40_01049544; SCAF40_0105164 [Ca4_37364969; SCAF40_0152993; Ca4_37530520 [Ca4_38918547; Ca4_38029208; Ca4_37630520 [Ca4_38039289; Ca4_3029300; SCAF40_068798 [Ca4_38039289; Ca4_37550122; Ca4_37266532 [Ca4_3803927; Ca4_3800802; Ca4_37576730 [Ca4_380327; Ca4_3800802; Ca4_37576730 [Ca4_380327; Ca4_3800802; Ca4_37576730 [Ca4_380327; Ca4_3800802; Ca4_37576730 [Ca4_380325; SCAF40_91602; Ca4_37549212 [Ca4_37630445; Ca4_437897261; SCAF306_19215 [Ca4_37630445; Ca4_437897261; SCAF306_19215 [Ca4_37630445; Ca4_43719846; Ca4_37630527 [Ca4_37630445; Ca4_43719846; Ca4_37630527 [Ca4_37316738 [Ca4_381315; Ca4_37293773; Ca4_38833333 [Ca4_38457800 [Ca4_381315; Ca4_37293773; Ca4_38833333 [Ca4_38457800; SCAF476_349700; Ca4_30300334 [Ca4_383315]; Ca4_37293773; Ca4_38833333 [Ca4_38457800] SCAF157_106331; SCAF2763_49700; Ca4_30300334 [Ca4_383231891; SCAF157_35567; SCAF95_010364] [Ca4_383231891; Ca4_387926; Ca4_3059188 SCAF2763_045480; Ca4_35117119; SCAF2763_48633 [Ca4_385231891; Ca4_3879126; Ca4_3864303 [Ca4_385231891; Ca4_3871715; SCAF2763_168633 [Ca4_385231891; Ca4_3851926; Ca4_3954813 SCAF2763_04548; Ca4_3059186; Ca4_3954813 SCAF2763_04548; Ca4_3059186; Ca4_3954813 SCAF2763_04548; Ca4_3059186; Ca4_3954813 SCAF2763_04548; Ca4_3059186; Ca4_2958113 SCAF157,10228; Ca4_3053932; Ca4_3958776 [Ca4_327763_00733; CCAF2763_109767; SCAF2763_109767 [Ca4_295776] 106393; SCAF2763_109767; SCAF2763_109767 [Ca4_295776] 106393; SCAF2763_109767; SCAF2763_107687 [Ca4_295776] 10733; CCAF2763_109767; SCAF2763_107687 [Ca4_295776] 10733; CCAF2763_109767; SCAF2763_107437 [SCAF2763_10733; SCAF2763_10736; SCAF2763_107687 [SCAF2763_10736]; SCAF2763_10736; SCAF2763_107687 [SCAF2763_10736]; SCAF2763_10736; SCAF2763_107376 [Ca4_295716] SCAF2763_107365; SCAF2763_107687 [SCAF27763_10736]; SCAF2763_10736; SCAF2763_107437 [SCAF2763_10736]; SCAF2763_10736; SCAF2763_107437 [SCAF2763_10737]; SCAF2763_10736; SCAF2763_107437 [SCAF2763_10737]; SCAF2763_10736; SCAF2763_10748 [SCAF2763_10737]; SCAF2763_10736; SCAF2763_10748
45.6 45.7 45.8 45.9 46.0		SCAF40_01049544; SCAF40_0105164 [Ca4_37364969; SCAF40_0152993; Ca4_37530520 [Ca4_38918547; Ca4_38029208; Ca4_37630520 [Ca4_38039289; Ca4_3029300; SCAF40_068798 [Ca4_38039289; Ca4_37550122; Ca4_37266532 [Ca4_3803927; Ca4_3800802; Ca4_37576730 [Ca4_380327; Ca4_3800802; Ca4_37576730 [Ca4_380327; Ca4_3800802; Ca4_37576730 [Ca4_380327; Ca4_3800802; Ca4_37576730 [Ca4_380325; SCAF40_91602; Ca4_37549212 [Ca4_37630445; Ca4_437897261; SCAF306_19215 [Ca4_37630445; Ca4_437897261; SCAF306_19215 [Ca4_37630445; Ca4_43719846; Ca4_37630527 [Ca4_37630445; Ca4_43719846; Ca4_37630527 [Ca4_37316738 [Ca4_381315; Ca4_37293773; Ca4_38833333 [Ca4_38457800 [Ca4_381315; Ca4_37293773; Ca4_38833333 [Ca4_38457800; SCAF476_349700; Ca4_30300334 [Ca4_383315]; Ca4_37293773; Ca4_38833333 [Ca4_38457800] SCAF157_106331; SCAF2763_49700; Ca4_30300334 [Ca4_383231891; SCAF157_35567; SCAF95_010364] [Ca4_383231891; Ca4_387926; Ca4_3059188 SCAF2763_045480; Ca4_35117119; SCAF2763_48633 [Ca4_385231891; Ca4_3879126; Ca4_3864303 [Ca4_385231891; Ca4_3871715; SCAF2763_168633 [Ca4_385231891; Ca4_3851926; Ca4_3954813 SCAF2763_04548; Ca4_3059186; Ca4_3954813 SCAF2763_04548; Ca4_3059186; Ca4_3954813 SCAF2763_04548; Ca4_3059186; Ca4_3954813 SCAF2763_04548; Ca4_3059186; Ca4_2958113 SCAF157,10228; Ca4_3053932; Ca4_3958776 [Ca4_327763_00733; CCAF2763_109767; SCAF2763_109767 [Ca4_295776] 106393; SCAF2763_109767; SCAF2763_109767 [Ca4_295776] 106393; SCAF2763_109767; SCAF2763_107687 [Ca4_295776] 10733; CCAF2763_109767; SCAF2763_107687 [Ca4_295776] 10733; CCAF2763_109767; SCAF2763_107437 [SCAF2763_10733; SCAF2763_10736; SCAF2763_107687 [SCAF2763_10736]; SCAF2763_10736; SCAF2763_107687 [SCAF2763_10736]; SCAF2763_10736; SCAF2763_107376 [Ca4_295716] SCAF2763_107365; SCAF2763_107687 [SCAF27763_10736]; SCAF2763_10736; SCAF2763_107437 [SCAF2763_10736]; SCAF2763_10736; SCAF2763_107437 [SCAF2763_10737]; SCAF2763_10736; SCAF2763_107437 [SCAF2763_10737]; SCAF2763_10736; SCAF2763_10748 [SCAF2763_10737]; SCAF2763_10736; SCAF2763_10748
45.6) 45.7 []] 45.8 []] 45.9 []] 46.0 []]		SCAF40_0104954; SCAF40_1050164 [Ca4_3736496; SCAF40_0152983; Ca4_37530520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039289; Ca4_3029300; SCAF40_966798 [Ca4_38039289; Ca4_37550122; Ca4_37266632 [Ca4_38039289; Ca4_3753014; [Ca4_37454296; SCAF40_911346; Ca4_38008062 [Ca4_3803227; Ca4_3800802; Ca4_37576730 [Ca4_37597351; Ca4_37897261; SCAF306_19215 [Ca4_37597252; Ca4_3008022; Ca4_37576730 [Ca4_37503026; SCAF40_911602; Ca4_37549212 [Ca4_37503026; SCAF40_911602; Ca4_37549212 [Ca4_37530445; Ca4_43719846; Ca4_37549212 [Ca4_37530445; Ca4_43719846; Ca4_37530527 [Ca4_37363026; Ca4_37293773; Ca4_3833333 [Ca4_333415; Ca4_37293773; Ca4_3833333 [Ca4_335415; Ca4_37293773; Ca4_3833333 [Ca4_35231891; SCAF2763_49700; Ca4_30300334 [Ca4_35231891; SCAF2763_49700; Ca4_30300334 [Ca4_35231891; SCAF2763_49700; Ca4_30599188 [SCAF276]_04549; Ca4_36979926; Ca4_30599188 [SCAF357_10531]; SCAF2763_107488; Ca4_360599188 [SCAF357_107486; SCAF2763_107488; Ca4_360599188 [Ca4_3025214]; SCAF2763_107488; Ca4_3600529 [Ca4_3252783_107488; Ca4_300589475; Ca4_30595188 [Ca4_3252783_107488; Ca4_3005844129; [SCAF2763_107485; Ca4_30559464; SCAF157_100529 [SCAF2763_107485; Ca4_30559464; SCAF157_3059188 [SCAF357_107488; Ca4_3075844]; SCAF157_3059188 [SCAF357_107488; Ca4_3075844]; [SCAF2763_107485; Ca4_30559464; SCAF157_3059188 [SCAF357_107488; Ca4_300584475; Ca4_30599188 [SCAF2763_107486; SCAF2763_10748; Ca4_26002991 [SCAF2763_10748; Ca4_30559464; SCAF157_30576 [Ca4_325785]; Ca4_30658932; Ca4_30584757 [SCAF2763_107633; SCAF2763_10768; SCAF2763_107687 [SCAF2763_107634; SCAF2763_10768; SCAF2763_107687 [SCAF2763_107634; SCAF2763_10768; SCAF2763_107847 [SCAF2763_10764]; SCAF2763_107376; SCAF2763_10784 [SCAF2763_10784]; SCAF2763_10785; SCAF2763_107847 [SCAF2763_10784]; SCAF2763_10785 [SCAF2763_10784]; SCAF2763_10786 [SCAF2763_10784]; SCAF2763_10786 [SCAF2763_10784]; SCAF2763_10786 [SCAF2763_10784]; SCAF2763_10786 [SCAF2763_10784]; SCAF2763_10786 [SCAF2763_10784]; SCAF2763_10786 [SCAF2763_10784]; SCAF2763_10
45.6 45.7 45.8 45.9 46.0		SCAF40_01049544; SCAF40_0105164 [Ca4_37364969; SCAF40_0152993; Ca4_37530520 [Ca4_38918547; Ca4_38029208; Ca4_37630520 [Ca4_38039289; Ca4_3029300; SCAF40_068798 [Ca4_38039289; Ca4_37550122; Ca4_37266532 [Ca4_3803278; Ca4_37630042; [Ca4_37454296; SCAF40_0171346; Ca4_38008062 [Ca4_380327; Ca4_3800802; Ca4_37576730 [Ca4_37897351; Ca4_37897261; SCAF306_19215 [Ca4_37897351; Ca4_37897261; SCAF306_19215 [Ca4_37897351; Ca4_37897261; SCAF306_19215 [Ca4_37897351; Ca4_37897261; SCAF40_1053261 [Ca4_37850444; Ca4_37819846; Ca4_37439212 [Ca4_37850444; Ca4_3719846; Ca4_37630527 [Ca4_37363026; Ca4_37492026; Ca4_37630527 [Ca4_37316738 [Ca4_38324547; Ca4_38038959; Ca4_37630527 [Ca4_38324547; Ca4_38038959; Ca4_37630527 [Ca4_38323526; Ca4_37293773; Ca4_38833333 [Ca4_383873415; Ca4_37293773; Ca4_38833333 [Ca4_38373147; Ca4_37293773; Ca4_38833333 [Ca4_383731979; Ca4_38644149; SCAF2763_04549; Ca4_3879265; Ca4_33699188 SCAF2763_04549; Ca4_38719265; Ca4_3868033 [Ca4_383231891; Ca4_38719265; Ca4_3868033 [Ca4_383231891; Ca4_38719265; Ca4_3868033 [Ca4_383231891; Ca4_38719265; Ca4_3868033 [Ca4_3839380; Ca4_367175, 106736; Ca4_3868033 [Ca4_3839380; Ca4_36517150, 107632; Ca4_286803 [Ca4_3839380; Ca4_36539382; Ca4_39684735 [SCAF2763_107285; SCAF2763_107865; CA2F763_10782 [SCAF2763_107285; SCAF2763_10785; CA4_29858113 [SCAF2763_10733; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10733; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10733; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10733; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10733; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10733; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10736; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10736; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10736; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10736; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10736; SCAF2763_10736; SCAF2763_10784 [SCAF2763_10736; SCAF2763_10736 [SCAF2763_10734; SCAF2763_10736 [SCAF2763_10734; SCAF2763_10736 [SCAF2763_10734; SCAF2763_10736 [SCAF2763_10734; SCAF2763_10736
45.6) 45.7 ^J 45.8 ^J 45.9 ^J 46.0 ^J 46.1 ^J 46.2 ^J		SCAF40_104954; SCAF40_1050164 [Ca4_37364969; SCAF40_1052983; Ca4_37530520 [Ca4_38918547; Ca4_38029208; Ca4_38029215 [Ca4_38039289; Ca4_3029300; SCAF40_968798 [Ca4_38039289; Ca4_37550122; Ca4_37266532 [Ca4_38039289; Ca4_37530124; Ca4_3726730 [Ca4_3803927; Ca4_3800892; Ca4_37576730 [Ca4_380327; Ca4_380982; Ca4_37576730 [Ca4_37897351; Ca4_37897261; SCAF306,19215 [Ca4_37897351; Ca4_37897261; SCAF306,19215 [Ca4_37897351; Ca4_37897261; SCAF306,19215 [Ca4_37897251; SCAF40_1053247; SCAF40_1053267 [Ca4_37897262; Ca4_3719846; Ca4_37630527 [Ca4_37897262; Ca4_3719846; Ca4_37630527 [Ca4_37316738 [Ca4_38324547; Ca4_38038959; Ca4_37630527 [Ca4_38324547; Ca4_38038959; Ca4_37630527 [Ca4_38324547; Ca4_38038959; Ca4_37630527 [Ca4_38324515; Ca4_37293773; Ca4_38833333 [Ca4_3853145; Ca4_37293773; Ca4_38833333 [Ca4_3853145; Ca4_37293773; Ca4_38833333 [Ca4_38531991; SCAF2763_49700; Ca4_30300334 [Ca4_385218919; SCAF475_325857; SCAF855_42329 [Ca4_385218919; Ca4_3644149; SCAF187_106331; SCAF2763_49700; Ca4_3089188 [SCAF283_200311; Ca4_7773_107863; Ca4_3868053 [Ca4_38521803]; Ca4_3711719; SCAF2763_40833 [Ca4_38521803]; Ca4_3711719; SCAF2763_40833 [Ca4_38521803]; Ca4_3711719; SCAF2763_40833 [Ca4_3852180]; Ca4_35711719; SCAF2763_40833 [Ca4_3852712; Ca4_3025844; SCAF157_3052747 [SCAF2763_107288; CA272763_10788; CA2_9958113 [SCAF157_100228; Ca4_358382; Ca4_3585706 [Ca4_32128047; Ca4_3858382; Ca4_3698770; [Ca4_2285530; Ca4_3653382; Ca4_3698770; [Ca4_2285701; SCAF2763_107378; [SCAF2763_10733; SCAF2763_107378; [SCAF2763_10733; SCAF2763_107378; [SCAF2763_10733; SCAF2763_107378; [SCAF2763_10733; SCAF2763_107378; [SCAF2763_10733; SCAF2763_107378; [SCAF2763_10734; [SCAF2763_10735]; SCAF2763_10734; [SCAF2763_10735]; SCAF2763_107370; [SCAF2763_10735]; SCAF2763_107376; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_10737]; [SCAF2763_1
45.6) 45.7 []] 45.8 []] 45.9 []] 46.0 []]		SCAF40_0104954; SCAF40_1057983; Ca4_37630520 Ca4_38918547; Ca4_38029208; Ca4_38029215 Ca4_38039289; Ca4_3029300; SCAF40_968798 Ca4_38039289; Ca4_37550122; Ca4_3802802 Ca4_38039289; Ca4_37550122; Ca4_37286632 Ca4_38039289; Ca4_37583044; Ca4_37454296; SCAF40_91105224; SCAF306_19215 Ca4_37897351; Ca4_37897261; SCAF306_19215 Ca4_37897351; Ca4_37897261; SCAF306_19215 Ca4_37897351; Ca4_37897261; SCAF306_19215 Ca4_37897351; Ca4_37897261; SCAF306_19215 Ca4_37897351; Ca4_37892763; SCAF40_1053261 Ca4_37630445; Ca4_4319846; Ca4_37459212 Ca4_3763026; Ca4_37450206; SCAF40_1053261 Ca4_37316738 Ca4_37316738 Ca4_3324547; Ca4_38038959; Ca4_37630527 Ca4_3324547; Ca4_3802905; Ca4_37630224 Ca4_3324515; Ca4_37293773; Ca4_38833333 Ca4_35467980 SCAF157_106531; SCAF2763_49700; Ca4_30300334 Ca4_35231891; SCAF157_325857; SCAF953_42329 Ca4_36467980 SCAF2763_104549; Ca4_36979926; Ca4_30599188 SCAF35_706331; SCAF2763_108783; Ca4_36599188 SCAF35_705311556; SCAF2763_107487; Ca4_860053 Ca4_35468003; Ca4_35171156; SCAF2763_107487; Ca4_80053 Ca4_35684803; Ca4_3517156; SCAF2763_107487; Ca4_80053 Ca4_3503915; Ca4_350559164; SCAF2763_107487; SCAF2763_107487; SCAF157_10028; Ca4_30559464; SCAF157_3052747 SCAF157_302712; Ca4_3055948475; Ca4_366984727 SCAF2763_107033; SCAF2763_107076; SCAF2763_107487; SCAF2763_107033; SCAF2763_107076; SCAF2763_107487 SCAF2763_107033; SCAF2763_107076; SCAF2763_107437 SCAF2763_107033; SCAF2763_107076; SCAF2763_107437 SCAF2763_107033; SCAF2763_107076; SCAF2763_107437 SCAF2763_107073; SCAF2763_10748; CA429803105 Ca4_2857501; SCAF2763_107076; SCAF2763_107437 SCAF2763_107033; SCAF2763_107073; SCAF2763_107437 SCAF2763_107033; SCAF2763_107037; SCAF2763_107437 SCAF2763_107033; SCAF2763_107037; SCAF2763_107437 SCAF2763_10743; SCAF1763_10748; CA42765_107433 SCAF2763_107433; CAF2763_10748; CA42763_107437 CA42857501; SCAF2763_10737; SCAF2763_10748; CA42763_107437 CA42765_19242; SCAF2763_192362; CA42763_107437 CAF2763_10743; CAF2763_10726; SCAF2763_10748 CAF2763_10743; CAF27763_10726;
45.6) 45.7 J 45.8 J 45.9 J 46.0 J 46.1 J 46.1 J 46.2 - 46.3 - 46.4 J		SCAF40_0104954; SCAF40_1057983; Ca4_37630520 Ca4_338918547; Ca4_38029208; Ca4_38029215 Ca4_38039289; Ca4_3029300; SCAF40_968798 Ca4_38039289; Ca4_37550122; Ca4_37266632 Ca4_38039289; Ca4_37550122; Ca4_37266632 Ca4_3803927; Ca4_38008082; Ca4_37576730 Ca4_37587351; Ca4_37897261; SCAF306_19215 Ca4_37630205; SCAF40_911920; Ca4_3749212 Ca4_37630205; SCAF40_911920; Ca4_3756720 Ca4_37630205; SCAF40_911920; Ca4_37630527 Ca4_37630205; SCAF40_911920; Ca4_37630527 Ca4_37630205; SCAF40_911920; Ca4_37630527 Ca4_37630206; Ca4_3749206; SCAF40_1053261 Ca4_37316738 Ca4_37316738 Ca4_38457980 SCAF157_106331; SCAF2763_49700; Ca4_30300334 Ca4_35231891; SCAF157_325857; SCAF953_42329 Ca4_36457980 SCAF2763_104549; Ca4_3697926; Ca4_30599188 SCAF2763_104549; Ca4_3697926; Ca4_30599188 SCAF2763_104549; Ca4_3697926; Ca4_30599188 SCAF35_700311; SCAF2763_108783; Ca4_36459803 Ca4_36468003; Ca4_35171719; SCAF2763_49700; Ca4_26002991 SCAF2763_107486; SCAF2763_107483; Ca4_26002991 SCAF2763_107486; SCAF2763_107487; Ca4_26002991 SCAF2763_107486; SCAF2763_107487; Ca4_26002991 SCAF2763_107486; SCAF2763_107487; Ca4_26002991 SCAF2763_107486; SCAF2763_107487; SCAF2763_107487; SCAF157_352712; Ca4_30153055; Ca4_29058113 SCAF2763_10748; SCAF2763_107487; SCAF2763_107487; SCAF2763_107033; SCAF2763_107087; SCAF2763_107487 SCAF2763_107033; SCAF2763_107087; SCAF2763_107487 SCAF2763_107033; SCAF2763_107087; SCAF2763_107047 SCAF2763_107033; SCAF2763_107087; SCAF2763_107047 SCAF2763_107037; SCAF2763_107047; SCAF2763_107047 SCAF2763_107033; SCAF2763_107047; SCAF2763_107047 SCAF2763_107033; SCAF2763_107047; SCAF2763_107047 SCAF2763_107033; SCAF2763_107047; SCAF2763_107047 SCAF2763_107034; SCAF2763_107047; SCAF2763_107047 SCAF2763_107034; SCAF2763_107037; SCAF2763_107047 SCAF2763_107047; SCAF2763_107047; SCAF2763_107047 SCAF2763_107047; SCAF2763_107037 SCAF2763_107047; SCAF2763_107047 SCAF2763_107047; SCAF2763_107047 SCAF2763_107047; SCAF2763_107047 SCAF2763_107047; SCAF2763_107047 SCAF2763_107047; SCAF2763_107047
45.6) 45.7 ^J 45.8 ^J 45.9 ^J 46.0 ^J 46.1 ^J 46.2 ⁴ 46.3 ⁴		SCAF40_01049544; SCAF40_01052983; Ca4_37630520 Ca4_338918547; Ca4_38029208; Ca4_38029215 Ca4_38039289; Ca4_3029300; SCAF40_068798 Ca4_38039289; Ca4_37550122; Ca4_3802802 Ca4_38039289; Ca4_37530124; Ca4_37454296; SCAF40_911045; Ca4_3720802 Ca4_3803227; Ca4_3800882; Ca4_37576730 Ca4_37897351; Ca4_37897261; SCAF306_19215 Ca4_37897351; Ca4_37897261; SCAF306_19215 Ca4_37897351; Ca4_37897261; SCAF306_19215 Ca4_37897351; Ca4_37897261; SCAF40_1053261 Ca4_37890320; Ca4_3719846; Ca4_37459212 Ca4_378917351; Ca4_38038959; Ca4_37630527 Ca4_37897326; Ca4_37459206; SCAF40_1053261 Ca4_37316738 Ca4_37316738 Ca4_38315; Ca4_37293773; Ca4_38833333 Ca4_336467980 SCAF157_106531; SCAF2763_49700; Ca4_30300334 Ca4_35231891; SCAF157_325857; SCAF953_42329 Ca4_36467980 SCAF2763_104549; Ca4_36979926; Ca4_30599188 SCAF2763_104549; Ca4_3697926; Ca4_30599188 SCAF35_7043_107486; SCAF2763_10788; Ca4_3659342 Ca4_36468003; Ca4_35171719; SCAF2763_49533 Ca4_36468003; Ca4_35171719; SCAF2763_10788; Ca4_26002991 SCAF2763_107486; SCAF2763_107487; Ca4_8003024 Ca4_3053031; SCAF2763_107487; Ca4_805937 SCAF157_302712; Ca4_30559464; SCAF157_305271 Ca4_26002991 SCAF2763_10738; SCAF2763_10768; SCAF2763_107687; SCAF2763_10738; SCAF2763_10768; SCAF2763_107687; SCAF2763_10738; SCAF2763_10768; SCAF2763_107687; SCAF2763_10738; SCAF2763_10768; SCAF2763_107687; SCAF2763_107033; SCAF2763_10768; SCAF2763_107677; SCAF2763_107033; SCAF2763_10768; SCAF2763_107637; SCAF2763_107033; SCAF2763_10776; SCAF2763_107637; SCAF2763_107033; SCAF2763_107037; SCAF2763_107683 SCAF2763_107033; SCAF2763_10768; SCAF2763_107637; SCAF2763_107034; SCAF2763_10737; SCAF2763_107034; SCAF2763_10737; SCAF2763_107034; SCAF2763_10737; SCAF2763_107034; SCAF2763_10737; SCAF2763_107034; SCAF2763_10737; SCAF2763_107034; SCAF2763_10737; SCAF2763_107034; SCAF2763_10737; SCAF2763_107034; SCAF2763_107034; SCAF2763_10737; SCAF2763_107034; SCAF2763_10734; SCAF2763_10734; SCAF2763_10734; SCAF2763_10734; SCAF2763_10734; SCAF2763_10734; SCAF2763_10734; SCAF2763_10734; SCAF276

47.4 Ca4_37575636 50.4 CaM2093 50.6 CaM2093 50.7 cpPb-490406 50.8 Ca41328 50.9 Ca41328 50.9 Ca41328 50.9 Ca41328 50.9 Ca41328 50.9 Ca41328 51.0 cpPb-676685 51.1 ICCM0069 51.7 NCPGR27 52.0 ICCM0250 52.1 ICCPGR31 53.2 ICCPGR31 53.2 CAM1903 54.4 NCPGR30 55.5 NCPGR30 56.0 HHA11 56.1 HCPGR31 57.5 ICCM0250 58.4 Ca4_1525936 59.7 Ca4_1524936 59.8 Ca4_15278671 50.7 Ca4_15278671 50.7 Ca4_15278671 50.7 Ca4_15278671 50.7 Ca4_15278671 50.7 Ca4_15278671 50.7 Ca4_15278674 50.7 Ca4_15363001 </th <th>CaL</th> <th>.G0</th> <th>4B</th>	CaL	.G0	4B
50.2 Ca4_20161601 50.4 CaM2093 50.7 CpPb-490406 50.8 Ca4/1328 50.9 Ca4/1322 51.0 CpPb-676668 51.1 TA132 51.1 CCM0069 51.1 NCPGR27 52.2 ICCM0068 52.4 ICCM0250 52.5 HIB17 52.7 CpB-322921 53.5 ICCM0250 54.6 IRE0 54.6 IRE0 55.5 ICCPGR30 56.6 IRE0 55.5 ICCPGR30 56.6 IRE0 57.7 Ca4_15625936 58.8 ICCPGR30 59.9 Ca4_15625936 59.9 ICCM1903 59.7 ICA4_15625936 59.8 ICA4_15625936 59.4 ICA4_15625936 59.5 ICA4_15625936 59.4 ICA4_15625936 59.7 ICA4_15625836	47.4		- Ca4_37575636
50.4 CaM2003 50.7 CpPb-490406 50.8 CaM1328 50.9 CaM1328 51.1 CpPb-676868 51.1 TA132 51.3 CpPb-682025 51.4 ICCM0069 52.2 ICCM0069 52.4 ICCM0250 52.5 ICCM0250 52.4 ICCPQR21 52.5 CaM1684 53.5 CaM1684 53.5 CaM1684 54.4 ICCPQR23 55.5 ICCPQR30 56.0 HIA11 56.3 ICCPQR31 56.4 IR20 57.5 ICCM250 58.8 ICCPQR31 59.7 Cad_15325935 59.7 Cad_15325935 59.7 Cad_15325010 50.7 Cad_16278671 50.7 Cad_16278671 50.7 Cad_1532610 51.7 Cad_16278671 51.7 Cad_114414135			
50.6 CaM0507 6.07 6.074006 50.8 CaM1328 50.9 CaM1328 50.9 CaM1328 51.1 TA132 51.1 TA132 51.3 CCM0068 51.4 NCPGR27 52.4 NCPGR7 52.4 NCPGR31 53.5 CaM1684 54.0 CCM0250 54.0 CCM0263 55.1 CaM1684 55.4 NCPGR31 55.5 NCPGR30 56.0 H4G11 56.5 Cad_15925936 59.4 Cad_15925936 59.3 Cad_15925936 59.4 Cad_15925936 59.5 Cad_15925936 59.7 Cad_15925936 59.8 Cad_15925936 59.4 Cad_1592480 59.4 Cad_15934901 50.7 Cad_15934901 50.7 Cad_15934901 50.7 Cad_15934901			
50.7 CpPb.90406 50.8 Cad_18223721 51.0 CcPb.676668 51.1 CCM0069 51.1 ICCM0068 51.7 ICCM0068 52.2 ICCM0058 52.4 ICCM0250 52.4 ICCM0250 52.4 ICCM0250 52.4 ICCM0250 53.5 ICCPGR7 53.4 ICCPGR3 53.5 ICCPGR3 53.5 ICCPGR3 54.6 ICCPGR31 55.5 ICCPGR30 56.5 IH117 56.5 ICCPGR30 57.7 ICA41504288 58.8 ICC4_1527600 59.8 ICA41504288 59.8 ICA4_1504288 59.8 ICA41504288 59.8 ICA415034007 51.2 IRA41507 51.3 ICA415042860 51.2 ICA415285160 51.2 ICA415276601 51.2 ICA415285160 </th <th>50.6</th> <th></th> <th></th>	50.6		
60.9 Cad_18223721 51.0 cpPb-676868 51.1 TA132 51.5 CCM0069 51.7 NCPOR27 52.0 ICCM0068 52.2 NCPOR7 52.4 ICCM0071 52.4 ICCM0250 52.4 ICCM0250 53.5 Cad_1623 54.0 Cad_1623 54.0 CAM1684 54.4 NCPOR231 55.5 ICCM0260 56.0 H40f1 56.5 ICCM2681 56.6 H419 56.7 H419 56.8 ICCM2680 59.9 Cad_1592936 59.0 Cad_1592086 59.1 Cad_1592086 59.2 Cad_1592086 59.3 Cad_1592086 50.3 Cad_1592086 50.4 Cad_1592086 50.7 Cad_1592070 61.2 Cad_1592070 61.2 Cad_114141355			cpPb-490406
11.0 cpPb-678668 51.1 TA132 51.5 CCM0069 51.7 ICCM0059 52.2 ICCM0268 52.4 ICCM0250 52.4 ICCM0250 52.4 ICCM0250 52.4 ICCM0250 52.4 ICCM0250 52.5 ICCM0250 53.5 ICCM0250 53.5 ICCM0250 54.6 TR20 54.6 TR20 54.6 TR20 55.5 ICCPGR231 56.6 IMCPGR30 56.7 IMCPGR30 57.7 Cad_1525936 59.3 ICCA_1525936 59.4 ICCA_1525936 59.7 ICCA_1525936 50.7 ICCA_1525936 50.7 ICCA_1525100 51.1 ICCM0249 52.4 ICCM0249 53.7 ICCM0249 54.7 ICCM0249 55.7 ICCM0249 56	50.8		
51.1 IA132 51.5 ICCM0066 51.7 ICCM0068 52.2 ICCM0058 52.2 ICCM0250 52.4 ICCM0250 52.5 IHB17 52.7 CAM0520 52.8 INCPCR7 52.4 ICCM0250 52.5 CAM0923 54.0 CAM1684 54.4 ICCPCR31 55.5 ICCM0250 56.0 H4G11 56.5 IHA19 58.8 ICC4_15925938 59.4 ICC4_15925936 59.7 ICA_15925936 59.7 ICA_15934001 50.7 ICA_1593401 50.7 ICA_1127251 50.7 ICA_11393460 50.7 ICA_1138089 50.7 ICA_113177244 50.7 <t< th=""><th>50.9</th><th></th><th></th></t<>	50.9		
51.3 i. cpPb.682025 51.5 i. CCM0069 51.7 i. NCPGR27 52.2 i. CCM0077 52.4 i. CCM0750 52.4 i. CCM0750 52.4 i. CCM0750 52.7 i. CPGR71 52.8 i. CCM0750 53.5 i. CCM0750 54.0 i. CCM0720 54.1 i. NCPGR216 55.5 i. NCPGR230 56.5 i. NCPGR231 56.5 i. NCPGR230 56.6 i. H1A19 56.7 i. CAI 19303 59.8 i. Ca4_15278671 50.7 i. Ca4_15278671 50.7 i. Ca4_1534007 51.2 i. CCM0249 56.3 i. CCM0249 56.3 i. CCM0249 56.4 i. CCM0249 56.5 i. Ca4_1327866 57.7 i. Ca4_132466 58.8 i. Ca4_132466 58.7 i. Ca4_132466 58.8 i. Ca4_132466 58.9 i. Ca4_132470 58.9 i. Ca4_1324836			
51.5 ICCM0069 51.7 NCPGR27 52.0 ICCM0250 52.4 ICCM0250 52.5 OPPD-322921 53.5 CAM1684 53.5 CAM1684 54.4 NCPGR31 53.5 CAM1684 54.6 NCPGR31 55.5 CAM1684 55.5 NCPGR30 56.5 NCPGR30 56.5 CA_15942388 59.7 Cad_16278671 59.8 Cad_16278671 59.7 Cad_16394007 59.8 Cad_16278671 50.7 Cad_16394007 51.1 Cad_16394007 51.1 Cad_16394007 51.1 Cad_1144130 51.1 Cad_1144130 52.7 Cad_15326160 52.7 Cad_1144130 53.8 CCM0249 54.4 Cad_11389895 55.7 Cad_11389895 56.7 Cad_11389895 57.7 Cad_11389			
51.7 CCPGR7 52.0 ICCM0250 52.4 ICCM250 52.4 ICCM250 52.4 ICCM250 52.5 ICPGR1 52.7 ICCM250 53.5 ICCM250 53.5 ICCM250 54.0 ICCM250 54.0 ICCPGR3 54.0 ICCPGR3 54.0 ICCPGR3 55.5 ICCPGR30 56.0 IH4G11 56.5 ICCM1903 59.0 ICA_15925936 59.0 ICA_15925936 59.0 ICA_1593288 59.1 ICA_15925936 59.3 ICA_15932936 59.3 ICA_1593298 59.4 ICA_15925836 59.7 ICA_15934907 50.7 ICA_11419998; CA_16046228 50.7 ICA_113413989; CA_116046228 50.7 ICA_11341325; CA_11341300 50.7 ICA_11341325; CA_11341430 50.7 ICA_11341735; CA_111341330			
52.0 ICCM0068 52.4 ICCM0250 52.4 ICCPR7 52.4 ICCPR31 52.5 ICPR31 53.5 ICCR031 53.5 ICCR031 53.5 ICCPR31 53.5 ICCPR32 ICPR32 ICCPR33 55.5 ICCPR33 56.5 ICCPR33 56.5 ICCPR30 58.8 ICCA_15651804 59.3 ICCA_1567801 59.3 ICCA_1567801 59.4 ICCA_15925936 59.7 ICCM0249 Cad_15925160 ICCA_15934001 60.2 ICCM0249 ICCA_1380407 61.3 ICCM0249 ICCM0249 66.3 ICCM0249 ICCM0249 66.3 ICCM0249 ICCM0249 67.7 ICCA_11388095 Cad_1138040251 68.7 ICCM0249 ICCM0249 69.6 ICCA_11388095 Cad_1143151 7.7 ICCA_11388095 Cad_			
52.2 NCPGR7 52.4 ICCM0250 52.4 ICCPGR31 53.5 ICPGR31 53.5 ICCPGR31 53.5 ICPGR31 53.5 ICPGR31 53.5 ICPGR30 54.4 ICPGR30 54.5 ICPGR30 54.6 ICPGR30 56.0 IHA11 58.8 ICCA_15925936 59.0 ICA_15925936 59.0 ICA_15925936 59.0 ICA_15925936 59.0 ICA_15925936 59.0 ICA_15925936 59.0 ICA_15925936 59.7 ICA_15934901 60.3 ICCM0249 ICA_15957070 ICA_15934901 60.3 ICCM0249 ICCM0240 ICCM0240 ICCM0240 ICCM0240 ICCM0240 ICCM0240 ICCA_1380480; CA_113400 ICA_11343267; CA_1134300 ICA_11347825; CA_1134340 ICA_11347825; ICA_11434330 ICA_11347855; CA_111343500; C			
52.4 ICCM0250 52.7 - epPb-322921 53.5 - epPb-32293 54.0 - epPb-32293 54.0 - R20 54.6 - TR20 54.6 - R20 55.5 - MCPOR230 56.0 - H4G11 56.5 - Cad_1592595 59.0 - Cad_15934607 59.8 - Cad_15934607 60.7 - Cad_15934607 61.2 - Ccd_1595707 61.2 - Ccd_1595707 61.2 - Ccd_12265618 62.5 - Ccd_1237466 63.7 - Ccd_1237466 63.7 - Ccd_1237466 64.5 - Ccd_1141735; Ccd_11434230; Ccd_11435651 65.5 - Ccd_113889956; Ccd_13690663 65.7 - Ccd_11276413; Ccd_11324120 70.0 - Ccd_114173; Ccd_1143230; Ccd_114345651 71.7 - Ccd_			
52.7 CpPb-322921 53.5 CcM1684 54.0 CcM1684 54.4 NCPQR31 55.5 NCPQR31 55.5 NCPQR31 55.5 NCPQR31 55.5 NCPQR31 55.5 NCPQR30 56.0 H4611 56.5 H1419 56.6 H4611 56.7 Cad_15925936 59.8 Cad_15925936 59.8 Cad_1593288 59.8 Cad_1593288 59.8 Cad_15932936 59.8 Cad_1593208 59.8 Cad_1592760 59.8 Cad_1592760 59.8 Cad_1592707 61.2 Ccd_1595707 10.4 Cad_112625 50.7 Cad_1328055 10.4 1264/1340251 10.4 Cad_1127625 50.8 ICCM0248 10.4 ICAd_11341735 50.8 ICAd_11341735 10.4 ICAd_11341735 <th></th> <th></th> <th>- ICCM0250</th>			- ICCM0250
53.2 CCPGR11 53.5 CaMM923 54.4 CAM923 54.4 CAM923 54.4 CAM923 54.4 CCPGR236 54.5 NCPGR30 55.5 NCPGR30 56.0 H4G11 56.5 H4G11 56.5 H4G11 56.5 H4G11 56.7 Cad_15925936 59.0 Cad_15925936 59.0 Cad_15925936 59.0 Cad_1592438 59.7 Cad_15934001 60.7 Cad_15934007 61.1 Cad_15226160 60.7 Cad_15226160 61.2 Cad_15226160 62.3 Cad_1274665 63.4 Cad_1334021 63.5 Cad_13240464 64.5 Cad_112725 65.6 Cad_112725 65.7 Cad_112725 65.8 Cad_112725 65.9 Cad_112725 65.9 Cad_1127157 <th>52.6</th> <th></th> <th></th>	52.6		
53.5 CaM0923 54.4 CaM1684 54.4 CCM0235 54.4 CCPGR236 54.4 CCPGR236 54.8 CCPGR236 55.5 NCPGR30 56.0 H4G11 58.8 Cad_15925936 59.0 Cad_15925936 59.1 Cad_1594238 60.3 Cad_16278671 60.3 Cad_15934901 60.4 Cad_15925936 59.7 Cad_16278671 61.1 Cad_15926160 61.2 Cad_15934901 62.4 Cad_15926160 61.1 Cad_15926160 61.2 Cad_12585541 63.5 Cad_13804964 7.7 Cad_1380494 7.8 Cad_1380494 7.7 Cad_1380494 63.5 Cad_1380494 7.6 Cad_1380494 7.7 Cad_158551 7.7 Cad_12525541 63.7 Cad_1380494 7.7 Cad_1380494 7.7 Cad_1380494			
54.0 CaM1684 54.4 NCP0R236 54.5 NCP0R231 55.5 NCP0R30 56.0 H4G11 56.5 CaM1693 58.8 Cad_15925936 59.0 FAC1933 59.1 Cad_15925936 59.3 Cad_15925936 59.4 Cad_159238 59.8 Cad_159238 59.8 Cad_159238 59.8 Cad_159238 59.8 Cad_159238 59.8 Cad_15934607 60.7 Cad_15926160 61.2 Cad_15926160 61.2 Cad_1323666 10.4 Cad_1324666 63.7 Cad_1324666 63.7 Cad_1324666 64.7 Cad_1324666 65.7 Cad_1324666 66.3 Cad_1324666 67.7 Cad_1324666 68.7 Cad_1324666 68.7 Cad_1324666 69.6 Cad_1324666 69.7 Cad_132466 69.8 Cad_14147355			
54.4 NCPGR236 54.6 TR20 54.8 NCPGR31 55.5 NCPGR31 56.6 H4G11 56.7 Cad_1525936 59.3 Cad_15425893 59.4 Cad_15651804 59.7 Cad_15651804 59.7 Cad_15651804 59.7 Cad_15651804 59.7 Cad_15631804 59.7 Cad_15934001 60.2 -TR8 60.3 Cad_15934001 61.1 Cad_15934001 61.2 Cad_15934001 61.3 Cad_15937070 61.4 Cad_13808056; Cad_13690663 61.5 ICCM0249 66.3 ICCM0249 61.4 ICCM0249 62.5 ICCM0249 63.7 ICCM0249 64.13880956; Cad_13809663 68.8 ICad_1272625 69.6 ICCM0249 69.7 ICCM0249 7.7 ICad_11380826; Cad_113809653 69.6 ICad_1134257; Cad_11234130 70.1 ICad_1134257; Cad_11434330 70.1 ICad_1134257; Cad_11434330 70.2 ICad_1134257; Cad_11434330 70.3 ICad_11446003; Cad_1127481; Cad_11446043; Cad_1144			
54.6 IR20 54.8 IRCPQR30 55.5 IRCPQR30 56.0 IHAG11 56.5 Cad_15925936 59.0 ICAd_1993 59.3 Cad_15925936 59.4 Cad_15925936 59.7 Cad_15925936 59.8 Cad_15925936 59.7 Cad_15925936 59.8 Cad_15934801 60.2 Cad_15934801 60.3 Cad_15926160 61.1 Cad_15926160 61.2 CCM0249 62.4 ICCM0248 66.3 Ccd_13589956; Cad_13699663 67.7 Cad_12585541 68.7 Ccd_13808995; Cad_13690663 68.7 Cad_11276225 69.8 Cad_11398899; Cad_11234130 70.1 ICAd_11441753; Cad_11435309; Cad_113540251 71 Cad_11398692; Cad_1127413 72.4 ICAd_1144152; Cad_11343300; Cad_1127411 73.1 ICAd_1144153; Cad_1134330; Cad_11274541; 74.1 ICAd_11441505; Cad_11274541; Cad_11441641; 75.2 ICAd_11441505; Cad_11277644;	1		
54.8 NCCPGR231 55.5 NCCPGR30 56.5 H4G11 56.5 H4G11 56.5 H4G11 56.5 H4G11 56.5 Cad_15925936 59.0 Cad_15925936 59.0 Cad_15925936 59.0 Cad_1592438 59.7 Cad_15934901 60.2 Cad_15926160 60.7 Cad_15926160 60.7 Cad_15926160 61.2 Cad_15926160 62.4 Cad_12926160 63.7 Cad_15926160 63.7 Cad_1324064 64.5 Cad_1324064 65.7 Cad_1324064 66.3 Cad_1324064 66.3 Cad_1324064 66.3 Cad_1324064 67.7 Cad_1324064 68.8 Cad_11276413 67.7 Cad_1127623 69.6 Cad_1127623 69.6 Cad_11276413 60.7 Cad_11244173 70.7			
55.5 NCP0R30 56.5 H44011 56.5 H44011 56.5 H44011 58.8 Cad_15925936 59.0 Cad_15942388 59.7 Cad_16578604 59.7 Cad_16278671 60.3 Cad_15934607 61.1 Cad_15934607 61.2 Cad_16278671 60.3 Cad_15926160 61.1 Cad_15926160 61.2 Cad_16278671 61.3 NCCM0249 161.4 Cad_15926160 61.5 Cad_15926160 61.4 Cad_13808965; Cad_13690663 61.5 Cad_11272625 61.6 Cad_1127625; Cad_1133900251 62.7 Cad_1127625; Cad_11340251 63.8 Cad_1127625; Cad_11340251 63.9 Cad_11389895 70.0 ICad_1127625; Cad_11343300; Cad_11435651 71.4 Cad_1139682; Cad_1134130 72.4 Cad_1139685; Cad_1127405 72.4 Cad_1139685; Cad_1127405 73.0 Cad_1387649; Cad_1378748 74.4 Cad_1387649; C			
56.5 H1A19 58.8 Cad_1525936 59.0 Cad_15425836 59.4 Cad_15651804 59.7 Cad_15651804 59.8 Cad_15651804 59.7 Cad_15651804 59.8 Cad_15278671 60.2 - 61.1 Cad_153934001 61.2 - 61.3 Cad_151957070 61.3 - 1CCM0249 Cad_13580956; Cad_13690663 66.3 - 1CCM0249 Cad_13280956; Cad_13690663 68.8 - 1CCM0249 - 69.6 - 1CCM0249 - 69.6 - 1CA_13880956; Cad_113690663 68.8 - 1CA_13840857; Cad_11234130 1CA_1134257; Cad_11234130 1Cad_1134257; Cad_1124133 1Cad_1134257; Cad_112413433 Cad_1139662; Cad_1134135651 Cad_11246033; Cad_1141574141 Cad_11246033; Cad_11427481; Cad_114187441 Cad_11246035; Cad_11517542; Cad_11242617 Cad_11446049; Cad_13787448			
58.8 Cad_15925936 59.0 Cad_15925936 59.3 Cad_15925936 59.4 Cad_15925936 59.7 Cad_15925936 59.7 Cad_15925936 59.7 Cad_15925936 59.7 Cad_15925936 59.7 Cad_15925060 59.8 Cad_15934607 60.7 Cad_159250707 61.1 Cad_15957070 61.3 CcM_0269 66.3 Cad_135989956 66.3 Cad_13598956 67.7 Cad_113988956 68.7 Cad_113988956 68.8 Cad_113988956 69.6 Cad_11398895 70.0 Cad_11398895 71.1 Cad_1139889 72.8 Cad_1139889 73.1 Cad_1139889 74.1 Cad_11398692 75.2 Cad_11398692 76.4 Cad_11396892 76.4 Cad_11396892 76.4 Cad_11396892 76.4 Cad_11343200 <th>56.0</th> <th>11</th> <th>H4G11</th>	56.0	11	H4G11
99.0 CaM1903 99.3 Cad_15942388 99.7 Cad_15942388 99.7 Cad_15942388 99.7 Cad_15942388 99.7 Cad_15927600 90.7 Cad_15925160 90.7 Cad_15925160 90.7 Cad_15925160 91.7 Cad_15925160 91.7 Cad_15925160 91.7 Cad_1525070 91.3 Cad_1222466 91.7 Cad_1324666 91.7 Cad_1324666 91.7 Cad_11274613 91.7 Cad_11274714 91.7 Cad_11274613 91.7 Cad_11274513 91.7 Cad_11274513	56.5	11	
59.3 Ca4_15942388 59.4 Ca4_15942388 59.7 Ca4_16578601 59.8 Ca4_16278671 60.2 Ca4_15934601 61.1 Ca4_15934601 61.2 Ca4_16278671 61.3 Ca4_15926160 61.4 Ca4_16149998; Ca4_16046928 61.5 ICCM0249 61.6 ICCM0249 61.7 Ca4_13580956; Ca4_13690663 61.8 ICCM0249 61.8 ICCM0249 62.9 ICCM0249 63.9 ICCM0249 64.13808956; Ca4_13890663 Ica4_138408251 69.5 ICa4_1127622; Ca4_11338699 69.6 ICA_11247613; Ca4_11234130 10.1 ICa4_1127622; Ca4_1134350; Ca4_1134350; Ca4_1134360 10.4 ICa4_11396892; Ca4_1134130 10.4 I127622; Ca4_1134237; Ca4_114174141 10.4 I1246164; Ca4_11338089; Ca4_1134350; Ca4_11274151 10.4 I1246164; Ca4_11339696; Ca4_1334350 10.4 I1277232; Ca4_11274043; Ca4_11276174; Ca4_		11	
99.4 Cad_15651804 99.7 Cad_15278601 90.2 Cad_15278601 90.3 Cad_15394607 90.4 Cad_15394607 90.7 Cad_15394607 90.7 Cad_15394607 90.7 Cad_15395100 91.7 Cad_153950707 91.8 CCM00249 91.2 CCM0249 91.3 CCM0249 91.4 Cad_1324666 91.5 Cad_1324666 91.6 Cad_11274613 91.6 Cad_11274613 91.6 Cad_11274613 91.6 Cad_11276225 91.6 Cad_11276213 91.6 Cad_1127613 91.6 Cad_113388925 92.7 Cad_11398692 93.8 Cad_11398692 94.1 Cad_11398692 95.6 Cad_11398692 95.7 Cad_11398692 95.8 Cad_11398692 95.9 Cad_11441603 95.9 Cad_11441603 95.8 Cad_11441603 95.8		H	
59.7 Cad_16278600 59.8 Cad_15934901 60.2 TR8 60.3 Cad_15934901 61.1 Cad_15934607 61.1 Cad_159367070 61.3 CcMu065 61.3 CcMu065 61.4 CcMu065 67.7 Cad_13593695 68.8 CcA_13593695 69.6 Cad_11276225 69.6 Cad_11276225 69.6 Cad_11241614 61.4 Cad_11276225 70.0 Cad_1124603 70.1 Cad_11246143 70.2 Cad_1124141 70.3 Cad_11241414 70.4 Cad_11241414 70.4 Cad_11241414 70.4 Cad_11441735; Cad_1143230; Cad_11434330; Cad_1143433 71.4 Cad_1145075; Cad_1143230; Cad_11343433 72.4 Cad_11441604; Cad_1138699; Cad_11324333 73.4 Cad_1383928; Cad_13839294; Cad_1384343 73.4 Cad_13839283; Cad_13839294; Cad_13867456 73.4 Cad_13839288; Cad_13839294; Cad_13687456 73.4 Cad_13839288; Cad_13839294; Cad_1368			Ca4_15942388
9.8.8 Cad_15934901 60.2 Cad_15934607 60.3 Cad_16278671 60.4 Cad_15957070 61.1 Cad_15957070 61.2 Cad_15957070 61.3 Cad_15957070 61.4 Cad_15957070 61.5 Cad_15957070 61.6 Cad_15957070 61.7 Cad_15957070 61.8 Cad_12558541 61.7 Cad_125858541 62.7 Cad_125858541 63.8 Cad_11276225 69.6 Cad_11276225 69.8 NCPGR127 70.0 ICad_11276131 Cad_11240164; Cad_11343300 Cad_11240173 Cad_11240164; Cad_1134320; Cad_11241741 Cad_11240164; Cad_1134320; Cad_11244174 Cad_1139662; Cad_1127421; Cad_11416473 Cad_1139662; Cad_11274231; Cad_1141416473 Cad_114405075 Cad_114405075 Cad_114405075 Cad_114405075 Cad_1383766 Cad_228 Cad_138376 Cad_228 Cad_138376 Cad_323876 Cad_338376 <th></th> <th>I</th> <th></th>		I	
60.2 - TR8 60.3 - Ca4_16278671 60.7 - Ca4_15926160 7.7 - Ca4_15926160 61.2 - Ca4_15926160 7.7 - Ca4_15926160 61.3 - ICCM0249 61.4 - Ca4_155389356; Ca4_13599663 62.5 - Ca4_12724666 68.5 - Ca4_11274613; Ca4_11324120 70.4 - ICAH0249 69.5 - Ca4_13724666 68.7 - Ca4_113988955; Ca4_13840251 69.6 - Ca4_11398895; Ca4_11324120 70.1 - Ca4_11276413; Ca4_1143230; Ca4_11435651 Ca4_112746143; Ca4_1134230; Ca4_11435651 Ca4_11398889; Ca4_11274740 70.4 - Ca4_11398682; Ca4_1137574; Ca4_11435434 Ca4_1127451; Ca4_1127754; Ca4_11431644 Ca4_1127455; Ca4_1127754; Ca4_11431644 Ca4_11248056; Ca4_11277644; Ca4_11274571 Ca4_11248056; Ca4_11277644; Ca4_11276443; Ca4_11441673 70.3 - Ca4_128220 72.8 - Ca4_13841340 73.4 - Ca4_1383796 73.4 - Ca4_13841340 73.4		N=	
60.3 C.a.4_15934607 61.1 C.a.4_15934607 61.2 C.a.4_15934607 61.3 C.a.4_159357070 61.3 C.C.M0249 61.3 C.C.M0249 61.4 C.C.M0249 61.5 C.C.M0249 61.6 C.C.M0249 61.7 C.C.M0249 61.8 C.C.M0249 61.7 C.C.M0249 61.8 C.C.4_1358955; C.a.4_135896633 61.8 C.C.4_11276225 61.9.6 C.C.4_11276225; C.a.4_113340251 61.9.6 C.a.4_1124413; C.a.4_11234130 70.0 I.C.4_11247641; C.a.4_1149869; C.a.4_11435651 C.A.4_11241614; C.a.4_1134959; C.a.4_11435651 C.A.4_1124603; C.A.4_1134230; C.A.4_1134350 C.A.4_1124603; C.A.4_1134243; C.A.4_11341561 C.A.4_1124603; C.A.4_11347461 C.A.4_1124603; C.A.4_1134243; C.A.4_11349184 C.A.4_1124603; C.A.4_11441604; C.A.4_11441673 C.A.4_1144049; C.A.4_13787448 C.A.4_1383928; C.A.4_1383924; C.A.4_13687456 T.A.170 T.A.170 T.A.170 T.A.170 T.A.170		ł	
61.1 - C.ad_15926160 61.2 - C.ad_15957070 61.3 - C.CM0249 61.4 - C.CM0249 62.3 - C.CM0249 63.3 - C.CM0249 63.4 - C.CM0249 63.7 - C.ad_13589565 68.8 - C.ad_132589565 69.6 - C.ad_11276225 69.6 - C.ad_11276225 69.6 - C.ad_1124603 70.0 - C.ad_1124613 70.1 - C.ad_1124613 70.2 - C.ad_1124613 70.4 - C.ad_1124613 70.5 - C.ad_1124603 70.4 - C.ad_1124603 70.4 - C.ad_1124603 70.4 - C.ad_1124603 70.4 - C.ad_11380627 70.4 - C.ad_11490100 C.ad_1134333 70.4 - C.ad_11380628 C.ad_1134343 72.4 -		Æ	⊂ Ca4_16278671
61.2 Cad_15957070 61.3 Cad_15957070 61.3 Cad_15957070 61.3 Cad_15957070 61.4.5 Cad_16149998; Cad_16046928 61.5 Cad_12585541 62.5 Cad_12585541 63.5 Cad_13808956; Cad_13699663 68.8 Cad_13808956; Cad_138040251 69.5 Cad_11277622; Cad_11234130 70.0 Cad_11277643; Cad_11234130 70.1 Cad_11240164; Cad_11349089; Cad_1134350; Cad_11219682; Cad_113413029; Cad_11547541 Cad_11240163; Cad_1134257; Cad_112477405 Cad_112140603; Cad_1127405; Cad_11240164; Cad_11398089; Cad_1134350; Cad_11298682; Cad_113415752; Cad_11246173 Cad_11456075; Cad_11441604; Cad_11334343 Cad_1124395; Cad_11274045; Cad_11277405 Cad_1124046; Cad_13787448 Cad_1388796 Cad_1388796 73.0 Cad_1388796 73.1 Cad_1388796 73.2 Cad_13838796 73.4 Cad_13838796 73.4 Cad_1383764 75.4 Cad_1383764 75.5 Cad_4185075 76.4 Cad_13839294; Cad_13839294; Cad_13687456	60.7	11	
61.3	61.1	1H	
64.5 ICCM0249 66.3 ICCM0065 67.7 Ca4_12558541 68.7 ICCM0265 68.7 ICCM0265 68.7 ICCM0265 68.7 ICCM0265 68.7 ICCM1266 68.7 ICCM127 69.5 ICC4_11276225 69.6 ICC4_1127413; Ca4_11234130 70.0 ICC4_112441735; Ca4_1134320; Ca4_11435651 70.1 ICC4_1124603; Ca4_1132430; Ca4_11435651 70.2 ICC4_1124603; Ca4_1132420; Ca4_11435651 70.3 ICC4_1124603; Ca4_112754; Ca4_1149164 70.4 ICC4_1124605; Ca4_1137754; Ca4_1149164 70.3 ICC4_1124605; Ca4_1127754; Ca4_1149164 70.4 ICC4_11465075; Ca4_1127642; Ca4_113787448 72.4 ICC4_1387649; Ca4_13787448 72.4 ICC4_13839288; Ca4_13839294; Ca4_13687456 73.4 ICCA_1387649; Ca4_13787448	61.2	(JHA)	
66.3 VicCM0065 67.7 Ca4_12555541 68.7 Ca4_12525541 68.7 Ca4_12525541 68.7 Ca4_13526956; Ca4_13699663 68.7 Ca4_131724665 68.7 Ca4_11398899 69.5 Ca4_11276225 69.6 Ca4_11276213; Ca4_11433300; Ca4_11435651 70.0 ICa4_11247613; Ca4_11342307; Ca4_1154751 70.1 ICa4_1124164; Ca4_134069; Ca4_11343350 70.3 ICa4_11240164; Ca4_11390690; Ca4_11343435 70.4 ICa4_11396682; Ca4_11374745 70.4 ICa4_1127328; Ca4_11477455 70.4 ICa4_1127328; Ca4_11274215; Ca4_11244173 70.4 ICa4_1127328; Ca4_11274241; Ca4_11274141 70.4 ICa4_11377649; Ca4_11274241; Ca4_11274141 71.4 ICa4_1383766 72.4 ICa4_1383766 73.2 ICa4_13838796 73.2 ICa4_13838796 73.2 ICA4_13838796 73.2 ICA4_13838796 73.2 ICA4_13838796 73.2 ICA4_13838796 73.2<	61.3		
67.7 Cad_12528541 68.5 Cad_13724666 68.5 Cad_13589356; Cad_13690653 68.6 Cad_13889356; Cad_13690663 68.7 Cad_11276225 69.6 Cad_11276213; Cad_11324130 70.0 Cad_11276413; Cad_11435360; Cad_11435651 70.1 ICad_11240164; Cad_11398699; Cad_11345651 70.2 ICad_11240164; Cad_11396699; Cad_11345561 70.3 ICad_11240164; Cad_11396699; Cad_1134343 70.3 ICad_11240164; Cad_11396699; Cad_1133434 70.4 ICad_112757; Cad_11414000; Cad_1133434 70.4 ICad_11240164; Cad_1127764; Cad_141246173 70.4 ICad_112400495; Cad_11277644; Cad_11241344 70.4 ICad_11274281; Cad_1141604; Cad_11414173 70.4 ICad_11248057; Cad_11377448 72.4 ICad_112487649; Cad_13787448 72.4 ICad_1383796 73.4 ICad_1383796 73.4 ICad_1383796 73.4 ICad_13838796 73.4 ICad_1383796 73.4 ICad_1383796 73.5 ICad_1383876 74.6 ITA170 75.7 <	64.5		
68.5 - Cad_13724666 68.7 - Cad_13589356; Cad_13569663 68.7 - Cad_13589356; Cad_13569663 68.7 - Cad_13589356; Cad_13840251 69.5 - Cad_11276225 69.6 - Cad_11276225 69.6 - Cad_11276213; Cad_1123306; Cad_11435651 70.0 - ICad_11241614; Cad_11349669; Cad_11547561; 70.1 - ICad_11241614; Cad_11349669; Cad_11547561; 70.3 - Cad_1124603; Cad_11517582; Cad_11547582; 70.4 - Cad_1139662; Cad_11517582; Cad_11246173 70.3 - Cad_1139662; Cad_11517582; Cad_11246173 70.3 - Cad_1139662; Cad_11377481; Cad_1127571; 70.4 - Cad_13840227 71.4 - Cad_1387649; Cad_1376448; Cad_11246173 72.4 - Cad_13839288; Cad_13839294; Cad_13687456 77.4 - Cad_13839288; Cad_13839294; Cad_13687456 77.4 - Cad_13839288; Cad_13839294; Cad_13687456 77.4 - Cad_13839288;	66.3		
68.7 Cad_13580956; Cad_13609663 68.8 Cad_13580956; Cad_13609251 69.6 Cad_11276225 69.6 Cad_1139889 70.0 Cad_11276213; Cad_11234130 70.1 Cad_1139889 70.1 Cad_11276413; Cad_11435300; Cad_11435651 70.2 Cad_11240164; Cad_1134320; Cad_11435651 70.3 Cad_11240164; Cad_11398690; Cad_1133433 70.3 Cad_1127328; Cad_1113752; Cad_11240173 70.4 Cad_1127328; Cad_11277574; Cad_1149164 70.3 Cad_1127328; Cad_11277574; Cad_1149164 70.4 Cad_1127328; Cad_11277674; Cad_1149164 70.4 Cad_11380692; Cad_11277634; Cad_1149164 70.4 Cad_11377649; Cad_11274281; Cad_11416473 72.4 Cad_1383706 73.4 Cad_1383706 73.5 Cad_138170	68.5		
68.8 Cad_13840484; Cad_13840251 69.5 Cad_11276225 69.6 Cad_11276225 69.6 Cad_11276225 60.7 Cad_11276225 70.0 Cad_112343257; Cad_11234330; Cad_11435651 70.1 Cad_11241614; Cad_1138699; Cad_11343551 70.2 Cad_11241614; Cad_1138699; Cad_1134350; Cad_1144150551 70.3 Cad_11246033; Cad_111342320; Cad_114141673 70.3 Cad_11246033; Cad_11137582; Cad_1149164 70.3 Cad_11246057; Cad_11149100; Cad_1134343 70.4 Cad_11465075; Cad_1149100; Cad_1134343 72.4 Cad_1389262; Cad_11327644; Cad_1149164 72.4 Cad_13840227 72.4 Cad_13840227 72.5 Cad_1383928; Cad_13839294; Cad_13687456 73.4 Cad_13839288; Cad_13839294; Cad_13687456 73.4 Cad_1485075 73.5 Cad_13839281; Cad_1438045		8 1	
69.5 Cad_11276225 69.6 Cad_1129889 70.0 Cad_11276413; Cad_11234130 70.1 Cad_11276413; Cad_11234130 70.2 Cad_1124089 70.3 Cad_11240143; Cad_1134230; Cad_11435651 70.4 Cad_11240143; Cad_11340809; Cad_11547541 70.3 Cad_11240143; Cad_113190609; Cad_11547405 70.4 Cad_11240143; Cad_1151752; Cad_11247145 70.4 Cad_11517551; Cad_11277454 70.4 Cad_11240049; Cad_11274251; Cad_11247414 70.4 Cad_1124705; Cad_11274241; Cad_11247444 70.4 Cad_1124705; Cad_11274241; Cad_112474144 70.4 Cad_13787649; Cad_13787448 72.9 Cad_1383796 73.0 Cad_13838796 73.1 Cad_13838796 73.2 Cad_13838796 73.4 Cad_13838796 73.4 Cad_13838796 73.4 Cad_13838796 73.4 Cad_13838796 73.4 Cad_13838796 73.4 Cad_13838796 73.5 Cad_1414101 Ca			
69.8 NCPGR127 70.0 IC4_11276413; Ca4_11234130 1Ca4_11343257; Ca4_1133320; Ca4_11435651 ICa4_11343257; Ca4_11343230; Ca4_11547541 70.1 IC4_11343257; Ca4_11343230; Ca4_11547541 1Ca4_11343257; Ca4_1127405; Ca4_11547649; Ca4_1139669; Ca4_11334350 IC4A_11346093; Ca4_11517582; Ca4_11547649; Ca4_1139669; Ca4_1134343; Ca4_11460507; Ca4_11491604; Ca4_1144673 70.3 IC4A_1139669; Ca4_11376449; Ca4_11244313 72.4 IC4A_11397649; Ca4_13787448; Ca4_11246173 72.4 IC4A_1387649; Ca4_13787448; Ca4_11246173 72.4 IC4A_1387649; Ca4_13787448 72.9 IC4A_13839288; Ca4_13839294; Ca4_13687456 73.0 IC4A_13839288; Ca4_13839294; Ca4_13687456 73.4 ICA4_13839288; Ca4_13839294; Ca4_13687456 73.4 ICA4_13839288; Ca4_13839294; Ca4_13687456 74.4 ICA4_13839288; Ca4_13839294; Ca4_13687456 75.4 ICA406759 75.4 ICA4907599 75.7 ICA4_458230; Ca4_4535728; Ca4_45536310 75.8 ICA4_4568394; Ca4_454305; Ca4_4454464 <t< th=""><th></th><th>II</th><th></th></t<>		II	
70.0 I Ca4_11276413; Ca4_11234130 70.1 I Ca4_11241735; Ca4_11343200; Ca4_11545651 70.2 I Ca4_11245164; Ca4_11343200; Ca4_11345651 70.3 I Ca4_11245164; Ca4_11398699; Ca4_1134350 70.3 I Ca4_11240164; Ca4_11398699; Ca4_112747165 70.3 I Ca4_11240164; Ca4_11277574; Ca4_11248173 70.3 I Ca4_1127328; Ca4_11277574; Ca4_11248173 70.4 Ca4_1127328; Ca4_11277648; Ca4_11274571 70.4 I Ca4_11277328; Ca4_11276484; Ca4_11274571 70.4 I Ca4_11280496; Ca4_11277634; Ca4_11241633 70.4 I Ca4_1124320; Ca4_11276484; Ca4_11275717 70.4 I Ca4_11287649; Ca4_11276484; Ca4_11275171 70.4 I Ca4_13830706 71.4 I Ca4_13830706 72.8 I Ca4_13830706 73.1 I Ca4_13830706 73.2 I Ca4_13830706 73.4 I Ca4_13830706 73.4 I Ca4_13814100 73.4	69.6		
70.1 - ICad_11441735; Cad_11435380; Cad_11435651 70.2 - ICad_11441735; Cad_11432380; Cad_11547141 70.2 - ICad_11441735; Cad_1134230; Cad_11547141 70.3 - ICad_1124603; Cad_1134230; Cad_11542; Cad_1133430 70.3 - ICad_1124603; Cad_1127542; Cad_11246173 70.3 - ICad_1124603; Cad_1127674; Cad_11246173 70.4 - ICad_11460507; Cad_1127641; Cad_1127644; 70.4 - ICad_11465075; Cad_1127644; Cad_11244334 72.4 - ICad_1387649; Cad_13787448 72.8 - ICad_1383928; Cad_13839294; Cad_13687456 73.1 - ICad_13839288; Cad_13839294; Cad_13687456 73.1 - ICad_13839288; Cad_13839294; Cad_13687456 73.4 - ICad_13839288; Cad_13839294; Cad_13687456 73.5 - ICad_13839288; Cad_13839294; Cad_13687456 74.7 - ICad_13839288; Cad_13839294; Cad_13687456			
Cad_11343257; Cad_11343230; Cad_1134730; Cad_11246033; Cad_11343230; Cad_1134350; Cad_11246033; Cad_11273405; Cad_11246033; Cad_11273405; Cad_1134757; Cad_1127754; Cad_1149164; Cad_1134757; Cad_1137754; Cad_1149164; Cad_11345075; Cad_1149100; Cad_1134334; Cad_11465075; Cad_1127648; Cad_1134334; Cad_11465075; Cad_1127648; Cad_11275171; Cad_11465075; Cad_1127648; Cad_11275171; Cad_11465075; Cad_1127648; Cad_11275174; Cad_13787649; Cad_13787448; Cad_13887649; Cad_13787448; Cad_13880227; Cad_13880227; Cad_13839288; Cad_13839294; Cad_13687456; T7.4 Cad_1445075 Cad_13839288; Cad_13839294; Cad_13687456; T7.4 Cad_13839288; Cad_13839294; Cad_13687456; T7.4 Cad_13839288; Cad_13839294; Cad_13687456; Cad_13839288; Cad_13839294; Cad_13687456; Cad_623 TAA170 NCPOR21 STMS11 CpPb-680552 Cad_6390317 Cad_6390317 O5.0 Cad_43171317 S5.8 Cad_43171317 S6.8 Cad_43934; Cad_452043; Cad_44536310 Cad_4458304; Cad_45305; Cad_445464 Cad_4468394; Cad_454305; Cad_4452018 Cad_4468394; Cad_4452305; Cad_3990334 Cad_4097935; Cad_3990334 99.4 Cad_4097935; Cad_4097935; Cad_3990334 02.5 TR611	70.0		
70.2 I Ca4_11246164; Ca4_11396699; Ca4_11334350 Ca4_11396682; Ca4_1137405 70.3 I Ca4_11246164; Ca4_11277574; Ca4_11246173 Ca4_11396682; Ca4_11277574; Ca4_11491684 70.3 I Ca4_1127571; Ca4_11277574; Ca4_11491684; Ca4_11491684; Ca4_11274582; Ca4_1140010; Ca4_11334343 70.3 I Ca4_1127571; Ca4_11277544; Ca4_11491684; Ca4_11275171; Ca4_11276484; Ca4_11275171; Ca4_11445057; Ca4_11276484; Ca4_11275174 72.4 I Ca4_1282200 72.8 I Ca4_13841340 73.0 Ca4_13847649; Ca4_13787448 72.4 I Ca4_13830281; Ca4_13830294; Ca4_13687456 73.0 Ca4_13830288; Ca4_13830294; Ca4_13687456 73.1 I Ca4_13830285; Ca4_13830294; Ca4_13687456 73.4 I Ca4_01830227 73.5 I Ca4_13830288; Ca4_13830294; Ca4_13687456 74.7 NCPGR21 STMS11 79.6 I Ca4M0856 63.3 Tp684964 Ca4_49017859 95.0 Ca4_491103 Ca4_45328510 95.7 Ca4_4911130 Ca4_45328510 96.7 Ca4_4532306 Ca4_4452305; Ca4_4535728; Ca4_455510 97.3 Ca4_4532306	70.1	П	
Ca4_11246003; Ca4_1127405 Ca4_11246003; Ca4_1151752; Ca4_11274573 Ca4_112305862; Ca4_1151752; Ca4_1149164 Ca4_11273328; Ca4_11490100; Ca4_1133433 Ca4_11244395; Ca4_1127617; Ca4_11244334 Ca4_11404055; Ca4_1127421; Ca4_11244334 Ca4_11404055; Ca4_112741; Ca4_11244334 Ca4_11465075; Ca4_1127648; Ca4_11275171 Ca4_11465075; Ca4_1127648; Ca4_11275171 Ca4_11465075; Ca4_1127648; Ca4_11275171 Ca4_11465075; Ca4_1127648; Ca4_11275171 Ca4_13830285; Ca4_13787448 Ca4_13839284; Ca4_13839294; Ca4_13687456 TAA170 TAA170 TR3. NCPCR21 STMS11 Opb-680522 Ca4_0530317 Opb-68052 Ca4_307559 Ca4_407559 Ca4_41103 Gra4_41103 Gra4_41103 Gra4_41103 Gra4_41103 Gra4_4114673 Ca4_43171317 B8. Ca4_4452305; Ca4_4535728; Ca4_44536310 Ca4_4468394; Ca4_4452305; Ca4_4452018 Ca4_4482504 Ca4_4482504	70.2		
70.3 Ca4_11398682: Ca4_11517582; Ca4_11246173 70.3 Ca4_11398682: Ca4_11517582; Ca4_11246173 70.3 Ca4_11517317; Ca4_11277574; Ca4_11491864 70.4 Ca4_1127328; Ca4_11274281; Ca4_1149186 70.4 Ca4_1127328; Ca4_11276484; Ca4_11274374 70.4 Ca4_1124328; Ca4_11276484; Ca4_11274571 70.4 Ca4_1124350; Ca4_11276484; Ca4_11275171 70.4 Ca4_124950; Ca4_11276484; Ca4_11276173 72.4 Ca4_12840227 73.1 Ca4_138430227 73.2 Ca4_13830766 77.4 Ca4_13830766 77.4 Ca4_138430227 73.2 Ca4_13830766 77.4 Ca4_13830766 77.4 CA4_13840227 73.2 Ca4_13830766 77.4 CA4_138052 77.4 Ca4_1383076 77.4 CA4_1384173 78.8 STM511 79.6 CPGPC1 78.8 CA4_4907559 73 Ca4_491103 73 Ca4_491103 74.3 Ca4_4512817 <	10.2		
70.3 Image: Cad_11273328; Cad_11490100; Cad_11334343 70.3 Image: Cad_11273328; Cad_11327481; Cad_11243343 70.4 Image: Cad_1127481; Cad_1127481; Cad_11243343 72.4 Image: Cad_11376434; Cad_1127481; Cad_11441604; Cad_11441673 72.4 Image: Cad_11376749; Cad_113767448 72.9 Image: Cad_13787649; Cad_13787448 72.9 Image: Cad_13787649; Cad_13787448 72.9 Image: Cad_13787649; Cad_13787448 72.9 Image: Cad_13839288; Cad_13839294; Cad_13687456 73.1 Image: Cad_13839288; Cad_13839294; Cad_13687456 77.4 Image: Cad_13839288; Cad_13839294; Cad_13687456 77.4 Image: Cad_13839288; Cad_13839294; Cad_13687456 77.4 Image: Cad_13839284; Cad_13839294; Cad_13687456 77.4 Image: Cad_13839284; Cad_13839294; Cad_13687456 77.4 Image: Cad_13839284; Cad_13687456 77.4 Image: Cad_13839284; Cad_13839294; Cad_13687456 77.4 Image: Cad_408552 78.8 Image: Cad_4097559 75.7 Image: Cad_4097559 75.7 Image: Cad_43171317 75.8 Image: Cad_4453208; Cad_44530510 <tr< th=""><th></th><th></th><th></th></tr<>			
70.3 = Cad_11490496; Cad_11274281; Cad_11244334 Cad_114490496; Cad_11276484; Cad_11275711 Cad_1144305; Cad_11276484; Cad_11275711 Cad_11465057; Cad_11276484; Cad_11275714 Cad_1292200 72.4 = Cad_13841340 Cad_13841340 Cad_13838796 73.1 = Cad_13838796 73.2 = Cad_13838796 73.3 = Cad_13838796 73.4 = Cad_13838796 73.5 = Cad_13838796 73.6 = Cad_13838796 73.7 = Cad_13838796 73.4 = Cad_13838796 73.5 = Cad_13839283; Cad_13839294; Cad_13687456 73.4 = Cad_13839284; Cad_13839294; Cad_13687456 74.7 = Orpbe680552 63.3 Tp684964 Cad_4907559 95.0 Cad_4907559 Cad_491103 95.0 Cad_491103 Cad_4532656; Cad_4535728; Cad_455510 98.1 Cad_4536856; Cad_4535728; Cad_4545018 Cad_4452309; 98.1 Cad_4452306; Cad_454305; Cad_4545464 Cad_4452309			Ca4_11517517; Ca4_11277574; Ca4_11491864
Cad_1130439; Cad_11274281; Cad_11274334 Cad_11443035; Cad_11274284; Cad_11275171 Cad_1145075; Cad_11276484; Cad_11275171 Cad_1145075; Cad_11276484; Cad_11275171 Cad_1455075; Cad_11441604; Cad_11275171 Cad_12882420 Cad_1387649; Cad_13787448 Cad_13838796 73.0 Cad_13838796 Cad_13838796 Cad_13838796 Cad_13838796 Cad_13838796 Cad_13838796 Cad_13838796 Cad_13838796 Cad_13838796 Cad_1383928; Cad_13839294; Cad_13687456 TAA170 FR3.3 ICPGR21 SMS11 -opb-680552 Cad_4907559 S.7 Cad_4907559 S.7 Cad_4911130 Grad_4526243; Cad_45356310 Cad_4526264; Cad_4535728; Cad_452618 Cad_4526834; Cad_4452018 Cad_468394; Cad_4454305; Cad_454646 Cad_468394; Cad_464305; Cad_3990334 Gad_4079389; Cad_4097935; Cad_3990334 Gad_40797899; Cad_4097935; Cad_3990334	70.3		
Cad_1145075 Cad_1145075 Cad_12862420 Cad_12862420 Cad_12862420 Cad_1387649; Cad_13787448 Cad_1383736 Cad_1383736 Cad_1383736 Cad_1383736 Cad_1383736 Cad_1383736 Cad_1383736 Cad_1383736 Cad_13838736 Cad_1389294; Cad_13839294; Cad_13867456 TAAT70 R38 CaM0845 84.0 CaM0856 63.3 Tp684964 95.4 Cad_497859 95.7 Cad_4911130 97.3 Cad_4552857 Cad_4452	10.5		
70.4 ICad_1145057; Cad_11441604; Cad_11441673 72.4 ICad_1382420 72.8 ICad_13787649; Cad_13787448 72.9 ICad_13836796 73.0 ICad_13830288; Cad_13830294; Cad_1367456 73.1 ICad_13830288; Cad_13830294; Cad_13687456 73.2 ICad_13830288; Cad_13830294; Cad_13687456 73.2 ICad_13830288; Cad_13830294; Cad_13687456 73.4 ICPGR21 78.8 CaM0845 82.6 ICaM0856 86.3 ICad_4907859 95.7 Cad_4911083 97.8 ICad_4578674; Cad_4628243; Cad_4536310 98.2 ICad_4578674; Cad_4585728; Cad_4526810 14 ICad_4578836 98.3 ICad_44823834; Cad_4454305; Cad_4454464 15.4 ICad_4097899; Cad_4097935; Cad_3990334 102.3 NCP0R91 102.6 TR11			
72.4 - - Ca4_12882420 72.8 - ICa4_13787649; Ca4_13787448 72.9 - Cc4_13840227 73.0 - Cc4_13839786 73.1 - Cc4_13839786 73.2 - ICa4_13839786 73.4 - Cc4_13839288; Cc4_13839294; Cc4_13687456 73.4 - Cc4_13839288; Cc4_15839284; Cc4_1368745 74.4 - Cc4M0845 75.7 - Cc4_4097859 95.7 - Cc4_4011083 95.8 - Cc4_4011083 95.8 - Cc4_453674; Cc4_4628243; Cc4_4536310 96.4 - Cca_4536266; Cca_4535728; Cca_4452018 97.4 - Cca_4482506; Cca_4454305; Cca_4454305; Cca_43452018 98.4 - Cca_44087929; 99.5 - Cca_44097929; Cc	70.4		
72.8 I Cad_13787649; Cad_13787448 72.9 Cad_13841340 72.9 Cad_13841340 73.1 Cad_13841340 73.1 Cad_13838796 73.2 I 6.4.13838796 Cad_13839298; Cad_13839294; Cad_13687456 77.4 Cad_13839288; Cad_13839294; Cad_13687456 77.4 I 78.3 I 78.4 I 8.5 ISTMS11 79.6 I 79.6 CaM0645 8.4 Cad_M0856 6.3 Tp684964 9.3 Cad_4911083 95.6 Cad_4911130 95.7 Cad_45376574; Cad_4628243; Cad_4556310 98.1 Cad_4536856; Cad_4535728; Cad_4452018 Cad_4537886; Cad_45305728; Cad_4545464 Cad_44578836 98.3 Cad_4482309; Cad_4454305; Cad_4545464 Cad_4245229 99.4 Cad_4097898; Cad_4097935; Cad_3990334 102.3 NCPCR81 102.6 TR11			
72.9 Cad_13841340 73.0 Cad_13840227 73.1 Cad_1383028; Cad_13839294; Cad_13687456 73.2 Icad_13839288; Cad_13839294; Cad_13687456 77.4 TAA170 78.8 ISTM\$11 79.6 cpbb.680552 82.6 CaM0845 84.0 Cad_5390317 95.7 Cad_4911083 95.7 Cad_4911083 95.8 Cad_453626; Cad_4535728; Cad_4536310 96.4 Cad_4536268; Cad_4535728; Cad_452018 Cad_453280; Cad_4454305; Cad_4454464 Cad_4462343; Cad_4545464 Cad_4486394; Cad_4454305; Cad_4454464 Cad_4452308 99.4 Cad_4097899; Cad_4097935; Cad_3990334 102.3 NCPGR21			
7.3.0 Cad_13840227 7.3.1 Cad_13838796 7.3.2 Cad_13838796 7.3.2 Cad_13838796 7.3.2 Cad_13838796 7.3.4 TAA170 7.8.3 ICPGR21 7.8.4 STMS11 7.8.5 ICPGR21 7.8.4 STMS11 7.8.5 CadM0615 8.8 CaM0856 8.0 Cad_390317 9.5.1 Cad_4917859 9.5.2 Cad_4911033 9.5.4 Cad_43171317 9.5.4 Cad_435826 9.5.3 Cad_43171317 9.4.1 Cad_4363845 9.5.3 Cad_44526365 9.5.4 Cad_44528365 9.5.5 Cad_44528365 9.5.6 Cad_4452380 9.6 Cad_4027829 9.9.4 Cad_4027829 9.9.5 Cad_4027829 9.9.6 Cad_4027829 9.9.7 Cad_4027829 9.9.8 Cad_4027829			
73.2 I Ca4_13839288; Ca4_13839294; Ca4_13687456 77.4 TAA170 78.3 INCPGR21 78.4 STM\$11 79.6 -CaM08552 82.6 -CaM0845 84.0 CcaM0845 94.3 -Ca4_4907859 95.7 Cca4_4911083 97.3 -Cca4_311130 97.3 -Cca4_451268; Cca4_452843; Cca4_4536310 98.3 -Cca4_458294; Cca4_45305; Cca4_452018 Cca4_45208; Cca4_454305; Cca4_454464 Cca4_452289; Cca4_452018 Cca4_4148230 -Gca4_4542454305; Cca4_4545405; Cca4_452454305; Cca4_455405 99.4 Cca4_4097989; Cca4_4097935; Cca4_3990334 102.3 NCPCR911	73.0		Ca4_13840227
77.4 I TAA170 78.3 INCPGR21 78.4 STMS11 79.6 - CpPb-680552 82.6 CaM0615 83.8 CaM0856 84.0 CaM0856 85.3 Tp684964 94.3 Ca4_4907859 95.4 Ca4_4911083 95.5 Ca4_4911033 95.4 Ca4_43171317 98.1 I Ca4_4578674; Ca4_4628243; Ca4_4536310 98.2 Ca4_4578836; Ca4_455728; Ca4_455018 Ca4_4578836; Ca4_4545464 Ca4_452694 99.4 Ca4_4097899; Ca4_4097935; Ca4_3990334 102.3 NCPGR91 102.6 TR11		Þ	
78.3 NCPGR21 78.8 STMS11 79.6 -cpPb-680552 82.6 -CaM0615 83.8 -CaM0845 4.0 -CaM0845 86.3 -Tp684964 95.7 -Ca4_4907859 95.7 -Ca4_491083 95.8 -Ca4_391130 97.3 -Ca4_4578674; Ca4_4628243; Ca4_4536310 98.2 -Ca4_458386; Ca4_4535728; Ca4_452018 Ca4_45268; Ca4_4535728; Ca4_445405; Ca4_452018 Ca4_4652380 98.3 -Ca4_4097893; Ca4_454305; Ca4_454464 Ca4_4097899; Ca4_4097935; Ca4_3990334 102.3 99.9 -Ca4_4097899; Ca4_4097935; Ca4_3990334 102.3 NCPCR81			
78.8 ISTMS11 79.6 cpPb-680552 82.6 CaM0615 83.8 CaM0845 84.0 CaM0856 96.3 Tp684964 94.3 Ca4_5390317 95.7 Ca4_4917859 95.7 Ca4_4911083 95.8 Ca4_4911083 95.8 Ca4_43171317 98.1 ICa4_452626; Ca4_45243; Ca4_452618 Ca4_45266; Ca4_4535728; Ca4_452018 Ca4_454266; Ca4_454305; Ca4_4454464 Ca4_4468394; Ca4_4454305; Ca4_4454464 Ca4_4097895; Ca4_4097935; Ca4_3990334 102.3 NCPCR91 105.6 TR11			
79.6 CpPb-680552 82.6 - CaM0615 83.8 CaM0845 84.0 - CaM0845 94.3 - CaM0845 95.0 - Ca4_097859 95.7 - Ca4_3097859 95.7 - Ca4_311083 95.8 - Ca4_311083 95.4 - Ca4_3171317 98.1 - Ca4_457674; Ca4_4628243; Ca4_4556310 Ca4_457874; Ca4_46583728; Ca4_455018 Ca4_4578836 Ca4_4578836 Ca4_4452380 99.4 - Ca4_402729 99.9 - Ca4_4097899; Ca4_407935; Ca4_3990334 102.3 NCPGR81 105.6 TR11			
82.6 CaM0615 83.8 CaM0845 4.0 CaM0845 86.3 Tp684964 94.3 Ca4_5390317 95.7 Ca4_4907859 95.7 Ca4_4911083 97.3 Ca4_3171317 98.4 Ica4_452686; Ca4_4535728; Ca4_4536310 98.3 Ca4_458394; Ca4_4454305; Ca4_4454046 Ca4_4458394; Ca4_4454305; Ca4_4454464 Ca4_4458230 99.4 Ca4_4097899; Ca4_4097935; Ca4_3990334 102.3 NCPCR81 105.6 TR11			
83.8 CaM0845 84.0 CaM0856 84.1 CaM0856 85.3 Tp884964 94.3 Cad_930317 95.4 Cad_4907859 95.7 Cad_911130 97.3 Cad_43171317 98.1 ICad_4578674; Cad_4628243; Cad_4536310 98.2 ICad_4578674; Cad_4525728; Cad_4452018 Cad_4578836; Cad_4535728; Cad_4454464 Cad_4578836 98.3 ICad_4578269; Cad_4545405; Cad_4454464 99.4 Cad_4142520 99.5 ICad_4097899; Cad_4097935; Cad_3990334 102.3 NCPCR911 105.6 TR11			
Basel Tp684964 94.3 Cad_S300317 95.0 Cad_4007859 95.7 Cad_411103 95.8 Cad_411130 97.3 Cad_4517137 98.1 Cad_453268; Cad_4628243; Cad_4536310 98.2 Cad_453268; Cad_4535728; Cad_4452018 Cad_4528268; Cad_4454305; Cad_4454464 Cad_4452380 99.4 Cad_4452380 99.6 Cad_4027829 99.9 ICad_4097895; Cad_4097935; Cad_3990334 102.3 NCPCR011 105.6 TR11	83.8		
94.3 Ca4_5390317 95.0 Ca4_907859 95.7 Ca4_411083 95.8 Ca4_411130 97.3 Ca4_3111317 98.1 Ica4_4578674; Ca4_4628243; Ca4_4536310 98.2 Ca4_4578674; Ca4_4535728; Ca4_4452018 Ca4_4578836 Ca4_4458304; Ca4_454305; Ca4_4454464 98.3 Ca4_44523804; Ca4_4454305; Ca4_4454464 99.4 Ca4_4168250 99.5 Ca4_4097899; Ca4_4097935; Ca4_3990334 102.3 NCPR91 105.6 TR11			CaM0856
95.0 Cad_4077859 95.7 Cad_4011083 95.8 Cad_4011130 97.3 Cad_4711130 97.3 Cad_4711130 97.3 Cad_4578674; Cad_4628243; Cad_4536310 Cad_4578674; Cad_45836728; Cad_4452018 Cad_4578836 Cad_4578836 Cad_4485394; Cad_4454305; Cad_4454464 Cad_4482380 99.4 Oad_44097899; Cad_4097935; Cad_3990334 102.3 NCPOR91 TR11	86.3		
95.7 Cad_911083 95.8 Cad_411130 97.3 Cad_3171317 98.4 Icad_4578674; Cad_4628243; Cad_4536310 98.2 Icad_4536286; Cad_4535728; Cad_4452018 Icad_4536286; Cad_4535728; Cad_4452018 Icad_4548304; Cad_4454305; Cad_4454464 Icad_44582380 99.4 99.6 Cad_4027829 99.9 Icad_4027829 99.9 Icad_4027829 102.3 NCPGR91 105.6 TR11			- Ca4_5390317
95.8 Ca4_4911130 97.3 Ca4_4911130 97.3 Ca4_4511130 98.1 Ca4_4578674; Ca4_4628243; Ca4_4536310 98.2 Ca4_4578674; Ca4_4658243; Ca4_455018 Ca4_4578836 Ca4_454305; Ca4_454305; Ca4_4454464 98.3 Ca4_44523804; Ca4_4454305; Ca4_4454464 Ca4_44823804; Ca4_4454305; Ca4_4454464 Ca4_4452380 99.4 Ca4_4097899; Ca4_4097935; Ca4_3990334 102.3 NCPGR91 105.6 TR11			Ca4_4907859
97.3 Cad_3171317 98.1 I Cad_4578674; Cad_4628243; Cad_4536310 98.2 I Cad_4558266; Cad_4535728; Cad_4452018 98.3 Cad_4578836 0.4 4536236; Cad_4535728; Cad_44540464 Cad_458334; Cad_4454305; Cad_4454464 Cad_44582300 99.4 Cad_418250 99.9 I Cad_4097989; Cad_4097935; Cad_3990334 102.3 NCPCR011 105.6 TR11			
98.1 Ica4_4578674; Ca4_4628243; Ca4_4536310 98.2 Ica4_4578674; Ca4_4538728; Ca4_4452018 98.3 Ica4_458386 98.3 Ica4_458394; Ca4_4454305; Ca4_4454464 99.4 Ca4_4468394; Ca4_4454305; Ca4_4454464 99.4 Ca4_418250 99.6 Ca4_4079395; Ca4_4097935; Ca4_3990334 102.3 NCPGR91 105.6 TR11			
98.2 Ca4_4536286; Ca4_4535728; Ca4_4452018 Ca4_4538286; Ca4_454305; Ca4_445408 Ca4_4452380 98.3 Ca4_44523804; Ca4_4454305; Ca4_4454464 99.4 Ca4_418250 99.5 Ca4_4077829 99.9 Ca4_4097989; Ca4_4097935; Ca4_3990334 102.3 NCPGR91 105.6 TR11			
9.5.2 Ca4_4578836 98.3 Ca4_4578836 98.4 Ca4_4463394; Ca4_4454305; Ca4_4454464 Ca4_418250 99.4 99.6 Ca4_418250 99.9 Ca4_4027829 99.9 Ca4_4097989; Ca4_4097935; Ca4_3990334 102.3 NCPCR91 105.6 TR11			
98.3 Ca4_4468394; Ca4_4454305; Ca4_4454464 09.4 Ca4_4452300 99.6 Ca4_4142500 99.6 Ca4_4027829 99.9 Ca4_4097989; Ca4_4097935; Ca4_3990334 102.3 NCPGR91 105.6 TR11	98.2		
94 Cca4_414250 99.6 Cca4_414250 99.6 Cca4_4027829 99.9 Cca4_4097989; Cca4_4097935; Cca4_3990334 102.3 NCPGR91 105.6 TR11			Ca4_4468394; Ca4_4454305; Ca4_4454464
99.6 Ca4_4027829 99.9 ICa4_4097989; Ca4_4097935; Ca4_3990334 102.3 NCPGR91 105.6 TR11			Ca4_4452380
99.9 Ca4_4097989; Ca4_4097935; Ca4_3990334 102.3 NCPGR91 105.6 TR11			
102.3 NCPGR91 105.6 TR11			
105.6 TR11			
			-

CaLG05

Contd..

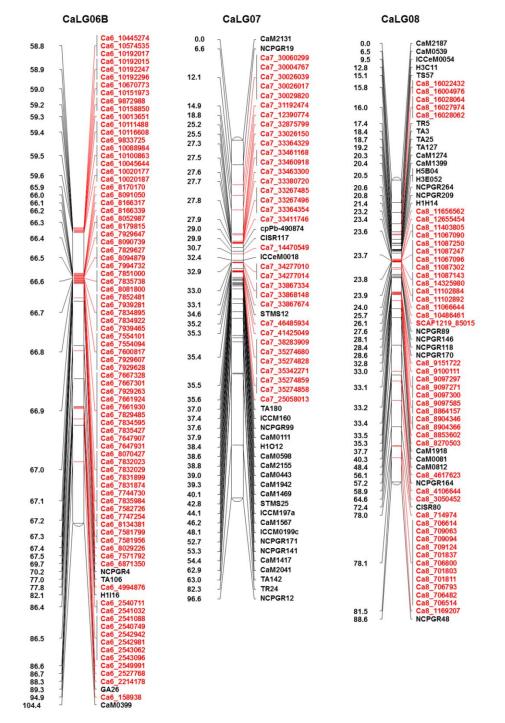


Figure 1: High density intra-specific genetic map of chickpea (ICC 4958 × ICC 1882) using GBS-SNP markers. a. Linkage groups 1-3; b. Linkage groups 4-6A; c. Linkage groups 6B-8. This map is comprised of 1,007 markers including 743 novel SNPs from GBS approach and spans 727.29 cM. Genetic distances (cM) were shown on the left side and the markers were shown on the right side of the bars. Map was constructed using JoinMap 4.0 and Kosambi mapping function. Markers in black colour font are from the framework map and markers in red colour font are newly generated SNP markers. For clear visualization, CaLG04 and CaLG06 were split into two parts and named as CaLG04A, CaLG04B, CaLG06A and CaLG06B.

c.

Table 6: Distribution of different types of markers on the intra-specific genetic map of ICC 4958 × ICC 1882 RIL population using

GBS-SNP markers

Marker series	SNP	SSR	EST-SSR	GMM	DArT	Total markers			
Total markers used	828	279	14	4	21	1146			
Total markers mapped	743	232	7	4	21	1007	— Map length	Density	
Percent mapped	89.73	83.15	50.00	100.00	100.00	87.87	(cM)	(Markers/cM)	
Markers unlinked	85	47	7	0	0	139			
Percent unlinked	10.3	16.85	50	0	0	12.13			
Markers mapped on	differen	t linkage	egroups						
CaLG01	77	21	1	-	10	109	101.27	1.08	
CaLG02	70	18	-	1	1	90	92.16	0.98	
CaLG03	41	47	2	-	-	90	72.78	1.24	
CaLG04	342	35	1	1	7	386	112.10	3.44	
CaLG05	9	29	-	-	1	39	59.41	0.66	
CaLG06	124	34	1	-	1	160	104.36	1.53	
CaLG07	33	24	1	1	1	60	96.59	0.62	
CaLG08	47	24	1	1	-	73	88.62	0.82	
Total	743	232	7	4	21	1007	727.29		
Average						125.88	90.91	1.30	

4.3 QTL Analysis for Drought Tolerance Related Traits

Out of 20 traits analyzed, QTLs were identified for 16 traits, including root length density (RLD, cm cm⁻³), root surface area (RSA, cm²), root dry weight/total plant dry weight (RTR, %), shoot dry weight (SDW, g), plant height (PHT, cm), primary branches (PBS), days to 50% flowering (DF), days to maturity (DM), 100-seed weight (100-SDW, g), biomass (BM, g), harvest index (HI, %), pods/plant (POD), seeds/pod (SPD), yield (YLD, g), drought susceptibility index (DSI), and drought tolerance index (DTI). QTL nomenclature was adopted as per Varshney et al. (2014). In case, a QTL reported for a given trait in Varshney et al. (2014) has been further resolved into two or more QTLs, the QTLs are further named using a decimal followed by a roman numeral. For instance QR3rld01 reported earlier was resolved into three QTLs, hence named as QR3rld01.1, QR3rld01.2, and QR3rld01.3 (Table 7). Here Q denotes QTL, R3 denotes ICCRIL03, rld denotes root length density and 01 denotes the QTL number. QTLs were considered as 'stable' (if they appeared in more than one location for the specified trait) and 'consistent' (if they appear in more than one year/season for the specified trait) as described in Varshney et al. (2014). Detailed description of the QTLs identified in this study for drought tolerance related traits is summarized below.

4.3.1 Root related traits

Three QTLs were identified, one each for RLD, RSA and RTR with PVE ranging from 10.65-13.56% (Table 8). Among them, RLD and RTR were identified in the "*QTL-hotspot*" as reported earlier, whereas a QTL for RSA was identified on CaLG06 (Table 7). The QTL for RLD, '*QR3rld01*' was refined to 3.23 - 5.37 cM from 10.54 cM, whereas that for RTR, '*QR3rtr01*' was refined to 1.81 - 5.37 cM from 5 cM (Table 7 and Table 8). Both QTLs were consistent across years (2005 and 2007).

4.3.2. Morphology related traits

A total of 3 and 9 QTLs were identified for SDW and PHT respectively, out of which 2 and 5 were newly identified for the respective traits. Overall, PVE ranged from 10.05 - 34.57% (Table 8). The QTL size for SDW '*QR3sdw01*' was similar as reported earlier, whereas QTL for PHT, '*QR3pht03*' was refined to 1.81 cM from 5.37 cM (Table 7). Out of 9 QTLs identified for PHT, 3 were stable and 5 were consistent. Interestingly, two QTLs, '*QR3pht06*', '*QR3pht08*' were found consistent and stable, which were previously reported to be unstable and inconsistent by Varshney et al. (2014). A QTL for primary branches (PBS) '*QR3pbs02*' was newly identified in the current study which explained the PVE of 12.92% (Table 7 and Table 8).

4.3.3 Phenology related traits

For phenological traits, 3 and 2 QTLs were identified for DF and DM, respectively. The maximum PVE explained by the QTL, 'QR3df04' was much higher (67.71%) as compared to the earlier study (26.87%) for DF (Table 7). This QTL has been refined to 1.81 cM from 5.14 cM. Similarly, the QTL, 'QR3dm01' explained 47.43% PVE for DM which was comparatively higher than reported earlier (19.71%) and was refined to 7.33 cM from 15.13 cM (Table 7 and Table 8).

4.3.4 Yield-related traits and drought indices

A total of 16 QTLs including 5 novel QTLs were identified for yield and yield related traits, including 2 each for 100-SDW, POD and 3 each for BM, HI, SPD and YLD. Overall, the QTLs spanned the same size as reported previously (Varshney et al. 2014), however QTLs for BM and POD has been refined to 15.13 cM and 5.37 cM respectively (Table 8). PVE explained by each QTL was comparatively high, especially for 100-SDW, '*QR3100sdw03*', this QTL explained phenotypic variation of 60.41% (Table 7).

Trait	Year	Location ^a	Environment ^b	Linkage group (LG)	QTL name	Marker interval	Size of the QTL (cM)	PVE (%) ^{***}	Additive effect	LOD [#]
Root traits							. /			
Root length density (RLD, cm cm ⁻³)	2005	PAT	CC	CaLG04	QR3rld01.1	ICCM0065 - Ca4_11276225	3.23	12.09	0.02	4.59
- /	2005	PAT	CC	CaLG04	QR3rld01.2	Ca4_13687456 - NCPGR21	5.14	11.90	0.02	7.09
	2007	PAT	CC	CaLG04	QR3rld01.3	Ca4_13840227 - NCPGR21	5.37	10.66	0.02	6.20
Root surface area (RSA, cm ²)	2007	PAT	CC	CaLG06	QR3rsa02	NCPGR4 - Ca6_4994876	7.57	11.04	62.35	5.02
Root dry weight/total plant dry weight (RTR, %)	2005	PAT	CC	CaLG04	QR3rtr01.1	Ca4_12558541 - Ca4_11276225	1.81	11.94	-0.94	7.03
	2005	PAT	CC	CaLG04	QR3rtr01.2	Ca4_13840227 - TAA170	4.39	10.86	-0.90	6.64
	2007	PAT	CC	CaLG04	QR3rtr01.3	ICCM0065 - Ca4_13588956	2.39	12.22	-1.15	7.18
	2007	PAT	CC	CaLG04	QR3rtr01.4	Ca4_13840227 - NCPGR21	5.37	13.56	-1.20	8.96
Morphological traits Shoot dry weight (SDW,	2005	PAT	RF	CaLG04	QR3sdw01.1	Ca4_12558541 - Ca4_11276225	1.81	10.78	0.11	6.40
g)	2005	PAT	RF	CaLG04	QR3sdw01.2	Ca4 12982420 - NCPGR21	5.91	12.59	0.12	7.40
	2007	PAT	RF	CaLG04	QR3sdw01.1	Ca4_12558541 - Ca4_11276225	1.81	25.47	0.13	16.47
	2007	PAT	RF	CaLG04	~ QR3sdw01.3	 Ca4_13840227 - TAA170	4.39	26.91	0.14	16.86
	2007	PAT	RF	CaLG04	∼ QR3sdw3*	 Ca4_15651804 - TR8	0.73	16.99	0.11	10.01
	2007	PAT	RF	CaLG04	 QR3sdw4*	Ca4_16149998 - ICCM0249	3.15	18.94	0.12	10.08
Plant height (PHT, cm)	2006	PAT	RF	CaLG08	~ QR3pht06.1	NCPGR164 - CISR80	15.13	15.14	-1.70	9.28
	2007	PAT	RF	CaLG08	QR3pht06.2	Ca8_4106644 - CISR80	13.44	12.09	-1.19	7.42
	2009	HIR	IR	CaLG08	QR3pht06.1	NCPGR164 - CISR80	15.13	10.13	-1.24	7.14
	2007	PAT	RF	CaLG04	QR3pht03.1	Ca4_12558541 - Ca4_11276225	1.81	17.21	1.41	10.95

Table 7: Robust main-effect QTLs (M-QTLs) identified for various drought tolerance related traits on ICC 4958 × ICC 1882

	2007	PAT	RF	CaLG04	QR3pht03.2	Ca4_13840227 - TAA170	4.39	13.99	1.27	9.65
	2008	NDL	RF	CaLG04	QR3pht03.1	Ca4_12558541 - Ca4_11276225	1.81	15.13	1.65	9.53
	2008	NDL	RF	CaLG04	QR3pht03.2	Ca4_13787649 - TAA170	4.56	18.36	1.82	10.57
	2008	PAT	RF	CaLG04	QR3pht03.2	Ca4_12982420 - TAA170	4.93	25.05	1.85	19.97
	2008	SEH	RF	CaLG04	QR3pht03.2	Ca4_13840227 - NCPGR21	5.37	20.37	1.91	11.75
	2009	HIR	RF	CaLG04	QR3pht03.1	Ca4_13724666 - Ca4_11276225	1.05	30.86	1.71	21.51
	2009	PAT	IR	CaLG04	QR3pht03.1	Ca4_12558541 - Ca4_11276225	1.81	17.92	1.21	12.83
	2009	PAT	RF	CaLG04	QR3pht03.1	Ca4_12558541 - Ca4_11276225	1.81	32.48	1.90	26.64
	2009	HIR	IR	CaLG04	QR3pht03.2	Ca4_13840227 - TAA170	4.39	21.59	1.88	13.49
	2009	NDL	RF	CaLG04	QR3pht03.2	Ca4_13840227 - NCPGR21	5.37	16.61	1.69	10.81
	2009	PAT	IR	CaLG04	QR3pht03.2	Ca4_13840227 - TAA170	4.39	22.40	1.35	15.26
	2009	PAT	RF	CaLG04	QR3pht03.2	Ca4_12982420 - TAA170	4.93	34.57	1.97	29.16
	2008	NDL	RF	CaLG04	QR3pht08.1	Ca4_16149998 - ICCM0065	4.99	11.80	1.47	6.45
	2008	PAT	RF	CaLG04	QR3pht08.2	ICCM0065 - Ca4_13588956	2.39	24.55	1.83	18.12
	2009	HIR	IR	CaLG04	QR3pht08.1	ICCM0065 - Ca4_11276225	3.23	21.77	1.89	14.83
	2008	DUG	RF	CaLG06	QR3pht01	Ca6_2540711 - CaM0399	17.94	10.46	2.00	3.97
	2008	DUG	RF	CaLG07	QR3pht09*	Ca7_12390774 - Ca7_33364329	8.46	10.05	2.23	4.63
	2008	DUG	RF	CaLG07	QR3pht10*	CISR117 - Ca7_34277010	3.02	10.16	2.50	5.67
	2008	PAT	RF	CaLG04	QR3pht11*	STMS11 - CaM0615	3.80	13.62	1.36	9.02
	2009	PAT	RF	CaLG04	QR3pht11*	STMS11 - CaM0615	3.80	13.07	1.20	8.06
	2008	PAT	RF	CaLG08	QR3pht12*	Ca8_4106644 - CISR80	13.44	24.29	-1.82	18.75
	2009	PAT	RF	CaLG08	QR3pht12*	Ca8_4106644 - CISR80	13.44	12.85	-1.18	11.37
	2009	NDL	IR	CaLG03	QR3pht13*	CaM0520 - ICCeM0050	3.41	10.34	-1.36	3.75
Primary	2006	PAT	RF	CaLG08	QR3pbs02*	CaM0812 - NCPGR164	8.81	12.92	-0.18	5.27
branches (PBS) Phenological										
traits										
Days to 50%	2005	PAT	RF	CaLG08	QR3df01	CaM0812 - NCPGR164	8.81	31.99	-2.40	14.84
flowering (DF)	2005	PAT	RF	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	39.07	-2.81	17.63
	2005	PAT	RF	CaLG08	QR3df01	Ca8_3050452 - CISR80	7.79	40.92	-3.01	6.35
	2000			5 41 500	2100JUL			10.72	2.01	0.00

	2006	PAT	RF	CaLG08	QR3df01	CaM0812 - NCPGR164	8.81	42.47	-1.49	17.31
	2006	PAT	RF	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	48.30	-1.56	27.94
	2007	PAT	RF	CaLG08	QR3df01	CaM0812 - NCPGR164	8.81	38.31	-4.05	21.77
	2007	PAT	RF	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	47.23	-4.49	26.71
	2008	NDL	RF	CaLG08	QR3df01	CaM0812 - NCPGR164	8.81	16.71	-2.20	9.04
	2008	NDL	RF	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	21.61	-2.50	10.37
	2008	PAT	RF	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	61.86	-2.44	30.63
	2009	DUG	IR	CaLG08	QR3df01	CaM0812 - NCPGR164	8.81	23.79	-3.13	11.70
	2009	DUG	IR	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	29.45	-3.47	16.30
	2009	DUG	RF	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	51.03	-5.63	32.82
	2009	HIR	IR	CaLG08	QR3df01	CaM0812 - NCPGR164	8.81	62.22	-2.82	31.91
	2009	HIR	IR	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	67.71	-2.95	46.03
	2009	HIR	RF	CaLG08	QR3df01	CaM0812 - NCPGR164	8.81	57.98	-2.86	28.60
	2009	HIR	RF	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	66.08	-3.04	44.42
	2009	NDL	IR	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	16.63	-1.29	9.22
	2009	NDL	RF	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	33.52	-2.02	19.09
	2009	PAT	IR	CaLG08	QR3df01	CaM0812 - NCPGR164	8.81	46.20	-3.24	25.72
	2009	PAT	IR	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	58.93	-3.64	37.55
	2009	PAT	RF	CaLG08	QR3df01	NCPGR164 - Ca8_3050452	7.33	27.70	-2.85	21.42
	2009	SEH	RF	CaLG08	QR3df01	NCPGR164 - CISR80	15.13	12.15	-1.46	7.22
	2008	SEH	RF	CaLG04	QR3df04.1	Ca4_12558541 - Ca4_11276225	1.81	13.74	-0.56	8.57
	2008	SEH	RF	CaLG04	QR3df04.2	Ca4_13687456 - NCPGR21	5.14	20.61	-0.66	11.77
	2008	PAT	RF	CaLG06	QR3df06*	Ca6_158938 - CaM0399	9.48	10.86	1.02	5.33
Days to maturity (DM)	2005	PAT	RF	CaLG08	QR3dm01	CaM0812 - NCPGR164	8.81	10.31	-1.25	5.34
× ,	2006	PAT	RF	CaLG08	QR3dm01	NCPGR164 - Ca8_3050452	7.33	21.79	-3.05	12.94
	2007	PAT	RF	CaLG08	QR3dm01	NCPGR164 - CISR80	15.13	12.98	-2.77	7.42
	2008	NDL	RF	CaLG08	QR3dm01	NCPGR164 - CISR80	15.13	18.47	-2.02	9.58
	2008	PAT	RF	CaLG08	QR3dm01	NCPGR164 - Ca8_3050452	7.33	36.58	-1.56	21.32
	2009	DUG	IR	CaLG08	QR3dm01	CaM0812 - NCPGR164	8.81	15.84	-2.55	7.66

	2009	DUG	IR	CaLG08	QR3dm01	NCPGR164 - Ca8_3050452	7.33	21.90	-2.99	11.36
	2009	DUG	RF	CaLG08	QR3dm01	NCPGR164 - Ca8_3050452	7.33	47.43	-5.24	30.01
	2009	HIR	IR	CaLG08	QR3dm01	CaM0812 - NCPGR164	8.81	25.93	-2.91	14.52
	2009	HIR	IR	CaLG08	QR3dm01	NCPGR164 - CISR80	15.13	26.47	-2.91	12.81
	2009	HIR	RF	CaLG08	QR3dm01	CaM0812 - NCPGR164	8.81	31.56	-3.80	18.16
	2009	HIR	RF	CaLG08	QR3dm01	NCPGR164 - Ca8_3050452	7.33	39.28	-4.22	23.20
	2009	NDL	RF	CaLG08	QR3dm01	NCPGR164 - Ca8_3050452	7.33	32.73	-3.65	22.67
	2009	PAT	IR	CaLG08	QR3dm01	CaM0812 - NCPGR164	8.81	15.62	-0.97	9.40
	2009	PAT	IR	CaLG08	QR3dm01	NCPGR164 - CISR80	15.13	28.49	-1.26	17.01
	2009	PAT	IR	CaLG08	QR3dm01	CISR80 - Ca8_714974	5.68	10.11	-0.73	5.62
	2009	PAT	RF	CaLG08	QR3dm01	NCPGR164 - Ca8_3050452	7.33	42.09	-2.80	33.34
	2009	SEH	RF	CaLG08	QR3dm01	NCPGR164 - Ca8_3050452	7.33	18.14	-0.86	11.01
	2008	SEH	RF	CaLG04	QR3dm04	Ca4_13687456 - NCPGR21	5.14	14.78	-0.43	8.67
Yield related										
traits 100-seed weight (100-SDW, g)	2005	PAT	RF	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	20.66	2.75	16.25
(, 8)	2005	PAT	RF	CaLG04	QR3100sdw03	Ca4_13687456 - NCPGR21	5.14	23.56	2.97	17.79
	2006	PAT	RF	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	26.92	3.28	18.11
	2006	PAT	RF	CaLG04	QR3100sdw03	Ca4_13687456 - NCPGR21	5.14	30.23	3.48	19.62
	2008	NDL	RF	CaLG04	QR3100sdw03	Ca4_13687456 - TAA170	4.16	35.61	3.00	21.51
	2008	NDL	RF	CaLG04	QR3100sdw03	STMS11 - CaM0615	3.80	20.45	2.29	11.33
	2008	PAT	RF	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	56.15	3.21	45.59
	2008	PAT	RF	CaLG04	QR3100sdw03	Ca4_13687456 - TAA170	4.16	60.41	3.33	50.13
	2008	SEH	RF	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	21.68	2.82	16.28
	2008	SEH	RF	CaLG04	QR3100sdw03	Ca4_13687456 - TAA170	4.16	55.97	3.24	34.16
	2009	DUG	IR	CaLG04	QR3100sdw03	Ca4_16149998 - ICCM0249	3.15	22.70	1.68	12.39
	2009	DUG	IR	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	32.90	2.11	27.18
	2009	DUG	RF	CaLG04	QR3100sdw03	Ca4_16149998 - ICCM0249	3.15	18.82	2.10	11.75
	2009	DUG	RF	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	42.35	2.86	41.58

2009	DUG	RF	CaLG04	QR3100sdw03	Ca4_13687456 - TAA170	4.16	48.94	3.12	46.31
2009	HIR	IR	CaLG04	QR3100sdw03	Ca4_16149998 - ICCM0249	3.15	12.79	1.92	8.56
2009	HIR	IR	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	39.14	3.03	42.38
2009	HIR	IR	CaLG04	QR3100sdw03	Ca4_13687456 - TAA170	4.16	42.74	3.20	44.68
2009	HIR	RF	CaLG04	QR3100sdw03	Ca4_16149998 - ICCM0249	3.15	16.40	2.10	11.10
2009	HIR	RF	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	41.52	3.14	44.06
2009	HIR	RF	CaLG04	QR3100sdw03	Ca4_13687456 - TAA170	4.16	48.76	3.35	51.43
2009	NDL	IR	CaLG04	QR3100sdw03	Ca4_16149998 - ICCM0249	3.15	22.10	2.37	12.57
2009	NDL	IR	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	47.92	3.55	38.22
2009	NDL	IR	CaLG04	QR3100sdw03	Ca4_12982420 - STMS11	6.41	49.72	3.62	41.38
2009	NDL	IR	CaLG04	QR3100sdw03	STMS11 - CaM0856	5.17	19.42	2.22	11.40
2009	NDL	RF	CaLG04	QR3100sdw03	Ca4_16149998 - ICCM0249	3.15	21.93	2.32	12.49
2009	NDL	RF	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	46.45	3.45	36.96
2009	NDL	RF	CaLG04	QR3100sdw03	Ca4_12982420 - STMS11	6.41	49.42	3.57	41.57
2009	NDL	RF	CaLG04	QR3100sdw03	STMS11 - Ca4_5390317	15.41	20.28	2.22	12.20
2009	PAT	IR	CaLG04	QR3100sdw03	Ca4_16149998 - ICCM0249	3.15	31.90	3.02	20.80
2009	PAT	IR	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	37.32	3.53	39.69
2009	PAT	IR	CaLG04	QR3100sdw03	Ca4_13687456 - TAA170	4.16	41.90	3.64	44.14
2009	PAT	RF	CaLG04	QR3100sdw03	Ca4_12558541 - Ca4_11276225	1.81	32.66	2.60	30.77
2009	PAT	RF	CaLG04	QR3100sdw03	Ca4_12982420 - STMS11	6.41	33.57	2.60	33.86
2009	PAT	RF	CaLG04	QR3100sdw03	STMS11 - CaM0856	5.17	12.29	1.54	9.06
2009	SEH	RF	CaLG04	QR3100sdw03	Ca4_12982420 - STMS11	6.41	16.20	1.37	8.47
2008	PAT	RF	CaLG01	QR3100sdw06*	Ca1_1083403 - NCPGR184	8.62	10.12	1.38	10.38
2009	HIR	IR	CaLG01	QR3100sdw06*	Ca1_1098874 - NCPGR184	8.93	14.71	1.78	18.04
2009	HIR	RF	CaLG01	QR3100sdw06*	Ca1_1098874 - NCPGR184	8.93	12.87	1.62	15.73
2009	PAT	IR	CaLG01	QR3100sdw06*	Ca1_1083388 - NCPGR184	8.62	15.61	2.12	18.32
2009	PAT	RF	CaLG01	QR3100sdw06*	Ca1_1083388 - NCPGR184	8.62	16.23	1.75	14.88
2008	PAT		CaLG08	QR3bm08*	TS57 - TR5	2.21	10.11	-37.42	7.81
2009	HIR	IR	CaLG04	QR3bm03	Ca4_12558541 - Ca4_11276225	1.81	13.07	8.12	7.52

51

Biomass (BM, g)

	2009	HIR	RF	CaLG04	QR3bm03	Ca4_12558541 - Ca4_11276225	1.81	13.26	7.05	8.18
	2009	HIR	RF	CaLG04	QR3bm03	Ca4_13687456 - NCPGR21	5.14	16.63	7.82	9.85
	2009	NDL	RF	CaLG08	QR3bm05	CaM0812 - NCPGR164	8.81	11.42	5.26	6.33
	2009	NDL	RF	CaLG08	QR3bm05	NCPGR164 - CISR80	15.13	16.17	6.28	7.87
Harvest index (HI, %)	2005	PAT	RF	CaLG08	QR3hi02	NCPGR164 - Ca8_3050452	7.33	15.32	-0.85	8.96
	2005	PAT	RF	CaLG08	QR3hi02	Ca8_3050452 - CISR80	7.79	14.07	-0.81	5.70
	2008	PAT	RF	CaLG08	QR3hi02	NCPGR164 - CISR80	15.13	16.87	0.02	7.76
	2008	PAT	RF	CaLG08	QR3hi02	CISR80 - Ca8_714974	5.68	11.12	0.01	5.45
	2009	PAT	IR	CaLG08	QR3hi02	NCPGR164 - Ca8_3050452	7.33	25.94	0.03	14.52
	2009	PAT	RF	CaLG08	QR3hi02	NCPGR164 - Ca8_3050452	7.33	15.68	0.02	8.11
	2009	HIR	IR	CaLG01	QR3hi06	H2A08 - Ca1_6540035	16.29	10.14	0.03	3.30
	2009	PAT	RF	CaLG04	QR3hi10	Ca4_12558541 - Ca4_11276225	1.81	13.40	-0.02	8.69
	2009	PAT	RF	CaLG04	QR3hi10	Ca4_11441735 - NCPGR21	8.24	13.40	-0.02	7.83
Pods/plant (POD)	2005	PAT	RF	CaLG04	QR3pod01	Ca4_13687456 - NCPGR21	5.14	15.09	-13.59	9.49
	2006	PAT	RF	CaLG04	QR3pod01	Ca4_16149998 - ICCM0065	4.99	10.73	-5.16	5.34
	2006	PAT	RF	CaLG04	QR3pod01	Ca4_13724666 - Ca4_11276225	1.05	22.85	-7.54	13.78
	2007	PAT	RF	CaLG04	QR3pod01	Ca4_12982420 - TAA170	4.93	12.28	-6.86	7.13
	2009	PAT	IR	CaLG04	QR3pod01	ICCM0065 - Ca4_13588956	2.39	28.56	-9.43	15.85
	2009	PAT	IR	CaLG04	QR3pod01	Ca4_13687456 - TAA170	4.16	32.34	-10.00	18.79
	2009	PAT	RF	CaLG04	QR3pod01	Ca4_16278671 - Ca4_15926160	0.86	16.74	-5.06	9.44
	2009	PAT	RF	CaLG04	QR3pod01	ICCM0065 - Ca4_11276225	3.23	20.03	-5.80	14.28
	2009	PAT	RF	CaLG04	QR3pod01	Ca4_13840227 - NCPGR21	5.37	21.43	-6.04	14.22
	2006	PAT	RF	CaLG04	QR3pod02*	STMS11 - CaM0615	3.80	12.81	-5.60	6.79
Seeds/pod (SPD)	2007	PAT	RF	CaLG04	QR3spd04*	Ca4_16149998 - ICCM0249	3.15	25.98	2.58	14.71
	2007	PAT	RF	CaLG04	QR3spd01	Ca4_12558541 - Ca4_11276225	1.81	45.40	3.43	31.13
	2007	PAT	RF	CaLG04	QR3spd01	Ca4_13840227 - TAA170	4.39	30.80	3.09	25.26
	2007	PAT	RF	CaLG04	QR3spd05*	STMS11 - CaM0845	4.96	11.09	1.78	7.27
Yield (YLD, g)	2009	HIR	IR	CaLG01	QR3yld03	CaM0046 - Ca1_16552751	2.08	14.19	5.22	9.11

	2009 2009	HIR NDL	RF RF	CaLG04 CaLG08	QR3yld04 QR3yld10*	Ca4_13687456 - NCPGR21 Ca8_4106644 - CISR80	5.14 13.44	11.67 18.64	4.30 3.39	6.47 10.94
Drought Indices Drought susceptibility	2009	DUG		CaLG07	QR3dsi02*	ICCM0199c - CaM1417	6.28	13.00	-2.42	3.65
index (DSI) Drought tolerance index (DTI)	2009	HIR		CaLG04	QR3dti02	Ca4_12558541 - Ca4_11276225	1.81	10.10	0.13	6.54
× /	2009	NAN		CaLG01	QR3dti05*	H2A08 - Ca1_6540035	16.29	10.61	0.08	3.17
	2009	NAN		CaLG08	QR3dti06*	NCPGR164 - CISR80	15.13	10.76	0.08	6.00

^aPAT - Patancheru; NDL - Nandyal; SEH - Sehore; DUG - Durgapura; HIR – Hiriyur.
^bRF - Rainfed; IR - Irrigated; CC - Cylider culture.
^{*} newly appearing QTL.
^{**} phenotypic variation explained.
[#] logarithm of odds (base 10).
QTLs represented in red bold fonts are consistent; QTLs represented in blue bold fonts are stable and consistent.

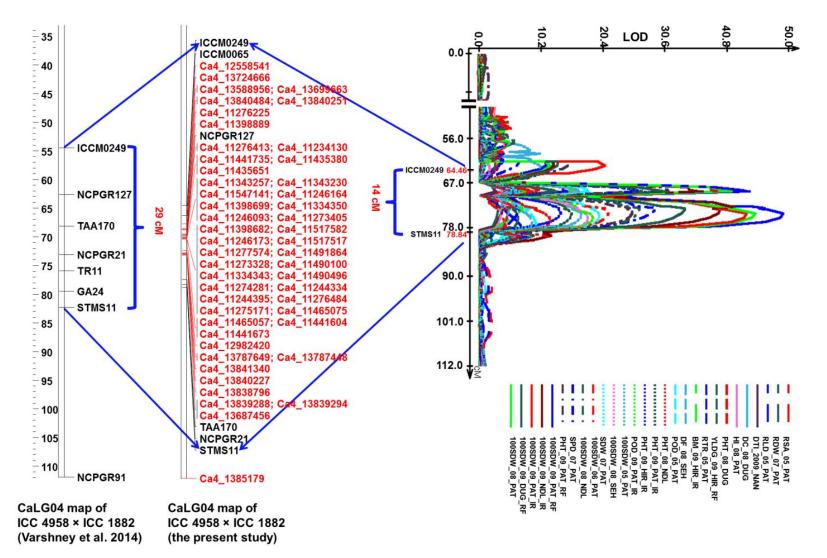


Figure 2: Saturated "*QTL-hotspot*" region with additional GBS-SNP markers. The figure shows comparison of the "*QTL-hotspot*" updated with 49 novel SNP markers in this study and with the one reported by Varshney et al. (2014).

In the case of drought indices, a novel QTL, '*QR3dsi02*' was identified explaining 13% phenotypic variation for DSI, whereas no QTL for DSI was reported in the earlier study (Varshney et al. 2014) (Table 8). Three QTLs were identified for DTI, of which 2 were novel. Interestingly, a QTL from the "*QTL-hotspot*", '*QR3dti02*' which was earlier reported to be a minor QTL, was ranked as robust QTL in this study (Table 7 and Table 8).

4.4 Conversion of SNP Markers into CAPS

As breeders are interested in an inexpensive and technically less demanding genotyping platform for marker assisted breeding, the SNPs integrated into the "*QTL-hotspot*" were converted to CAPS/dCAPS markers. A total of 16 CAPS and 33 dCAPS primer pairs were designed and verified for amplification (Table 9, Appendix 1). However only 20 out of 49 primer pairs showed single prominent amplicon and subsequently used for restriction digestion on a panel of 5 parental genotypes. As a result, 14 CAPS and 1 dCAPS were developed (Figure 3). In total, 8 CAPS markers were polymorphic in the parents of inter-specific mapping population ICC 4958 × PI 489777, while 14 (13 CAPS and 1 dCAPS) each in the parents of two intra-specific mapping populations ICC 4958 × ICC 1882 and ICC 283 × ICC 8261 were polymorphic (Table 9, Appendix 1).

4.5 Refining the "QTL-hotspot" Region Using Ultra Density Bin Map

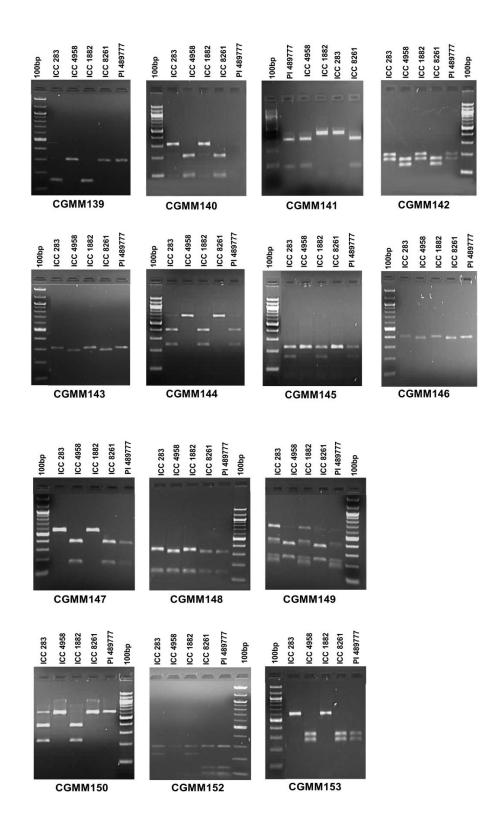
Coarse mapping for drought component traits resulted in identifying "*QTL-hotspot*" region with 7 SSR markers spanning 7.74 Mb on physical map and 29 cM on genetic map (Varshney et al. 2014). GBS based SNP marker analysis resulted in refining the region into 14 cM on genetic map and ca.3 Mb on physical map (chapter 4.2). However the refined region needs further fine mapping in order to delimit the "*QTL-hotspot*" into few genes.

4.5.1 SNP discovery through skim sequencing

ICCRIL03 population was genotyped using a skim sequencing approach. In the first instance, a total of 5.90 Gb and 5.94 Gb data were generated for ICC 4958 and ICC 1882 respectively, which represents an estimated coverage of 7.90X and 8.03X. SGSautoSNP identified 84.963 SNPs, out of which 64,581 were distributed over the 8 pseudomolecules and 20,382 were located on unplaced contigs. Subsequently, a total of 497.60 Gb of Illumina paired read sequence data were generated for 232 RIL samples. The data obtained ranged from 0.21X to 4.9X per RIL, with an average of 0.72X, however, RIL219 had exceptionally low (0.002X) data. A total of 2,836 SNPs predicted between the parents were found to be monomorphic in the population and were discarded, leaving 82,127 SNPs. However, only 62,370 SNPs that were located on pseudomolecules were considered for further analysis. These SNPs were further filtered, using the criteria of minimum allele frequency (MAF) of ≥ 0.20 and lines having $\geq 5\%$ missing data were discarded, which resulted in 53,169 SNPs across 222 RILs analyzed. Additionally 54 SNPs mapped within the "QTL-hotspot" (see chapter 4.2) were also included and thus in total 53,223 SNPs were used map construction. The distribution of SNPs on the eight chickpea pseudomolecules is represented in Figure 4 and Table 10. The highest number of SNPs were identified on Ca4 (18,989 SNPs), while only 954 SNPs were identified on Ca5.

	Varshn	ey et al. (202	Curren	t GBS study (I	CC 4958 × 1	(CC 1882)						
Trait	Total QTLs	No. of QTLs in <i>"QTL-</i> hotspot"	Stable QTLs	Consistent QTLs	Position (cM)	PVE ^a (%)	Total QTLs	No. of QTLs in <i>"QTL-</i> hotspot"	Stable QTLs	Consistent QTLs	Position (cM)	PVE ^a (%)
Root												
RLD	1	1	-	-	10.54	10.90	1	1	-	1	3.23 - 5.37	10.65 - 12.09
RSA	1	1	-	-	13.86	10.26	1	-	-	-	7.57	11.04
RTR	1	1	-	-	5.00	16.67	1	1	-	1	1.81 - 5.37	10.85 - 13.56
-	ological											
SDW	1	1	-	1	5.00	13.89 -	3*	3	-	1	0.73 - 5.91	10.78 - 26.91
PHT	4	1	1	2	0.96 - 42.39	17.59 10.00 - 30.20	9*	3	3	5	1.05 - 17.94	10.05 - 34.57
PBS	-	-	-	-	-	-	1^*	-	-	-	8.81	12.92
Phenol	ogical											
DF	2	1	1	1	5.53 - 22.86	10.51 - 26.87	3*	1	1	1	1.81 - 15.13	10.86 - 67.71
DM	3	1	1	1	5.53 - 31.09	12.13 - 19.71	2	1	1	1	5.14 - 15.13	10.11 - 47.43
Yield r	elated					17./1						
100- SDW	2	1	1	1	10.53 - 16.65	10.31 -	2	1	2	2	1.81 - 15.41	10.12 - 60.41
BM	2	1	-	-	10.54 -	58.20 10.95	3*	1	-	-	1.81 -	10.11 -

Table 8: Comparison of robust main-effect QTLs (M-QTLs) identified for various drought tolerance related traits in the present study with that of Varshney et al. (2014)


Total	25	13	4	7	• .• 1		41	20	7	14		
DTI	1	-	-	-	28.90	11.23	3*	1	-	-	1.81 - 16.29	10.10 - 10.76
Drought indices DSI	t -	-	-	-	-	-	1^*	-	-	-	6.28	13.00
YLD	2	1	-	-	1.92 - 5.00	13.98 - 15.71	3*	1	-	-	2.08 - 13.44	11.67 - 18.64
SPD	1	1	-	-	5.00	42.07	3*	3	-	-	1.81 - 4.96	11.09 - 45.40
POD	1	1	-	1	10.54	14.36 10.19 - 23.18	2^*	2	-	1	0.86 - 5.37	10.73 - 32.34
HI	3	1	-	-	5.00 - 20.23	21.32 10.67	3	1	-	1	1.81 - 16.29	10.14 - 25.94
					22.86	-					15.13	16.63

^{*}Newly identified M-QTLs; ^aPVE - phenotypic variation explained.

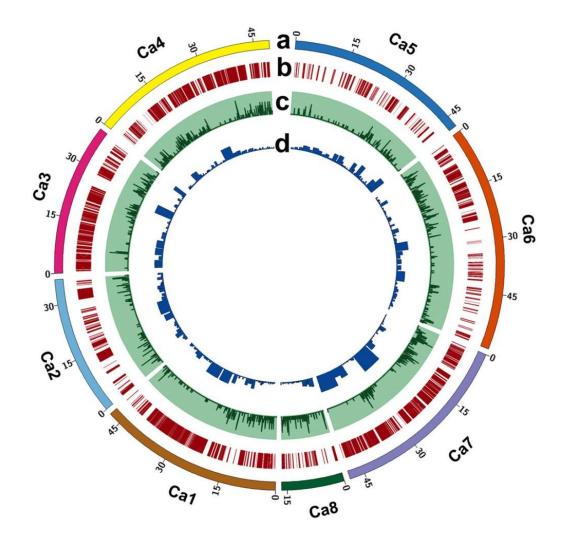

SNP ID	Marker [*]	Marker type	Enzyme	*Polymorphism status of	f the parental lines of diffe	erent mapping populations
				ICC 4958 × PI 489777	ICC 4958 × ICC 1882	ICC 283 × ICC 8261
Ca4_12558541	CGMM139	CAPS	MnlI	M	Р	Р
Ca4_13840251	CGMM140	CAPS	MboII	Р	Р	Р
Ca4_11276225	CGMM141	CAPS	AciI	М	Р	Р
Ca4_11435380	CGMM142	CAPS	RsaI	Р	Р	Р
Ca4_11435651	CGMM143	dCAPS	HpaII	М	Р	Р
Ca4_11547141	CGMM144	CAPS	HphI	Р	Р	Р
Ca4_11334350	CGMM145	CAPS	MboII	Р	Р	Р
Ca4_11246093	CGMM146	CAPS	AvaI	Р	Р	Р
Ca4_11517582	CGMM147	CAPS	HaeIII	M	P	Р
Ca4_11244334	CGMM148	CAPS	MseI	М	Р	Р
Ca4_11465075	CGMM149	CAPS	BsaBI	Р	P	Р
Ca4_11441673	CGMM150	CAPS	EcoRI	М	Р	Р
Ca4_13838796	CGMM151	CAPS	MnlI	M	M	М
Ca4_13839288	CGMM152	CAPS	MnlI	Р	Р	Р
Ca4_13839294	CGMM153	CAPS	MseI	М	Р	Р

Table 9: Summary of validated CAPS/dCAPS markers on 5 parental lines of RIL populations

*Validated CAPS/dCAPS nomenclature is as per Gujaria et al. (2011); *M - monomorphic, P - polymorphic.

Figure 3: The electrophoretic profile of CAPS/dCAPS candidates after PCR and restriction digestion with their respective enzymes. Restricted digested products were shown on 1.2% agarose gel. Polymorphic bands were clearly observed between ICC 4958 and ICC 1882.

Figure 4: Genome-wide distribution of SNPs and recombination bins in chickpea using SNP markers generated from skim sequencing. (a) Chickpea pseudomolecules, labelled as Ca1 to Ca8 and each pseudomolecule is shown in a different colour. The numbers on arches represent the scale for the size of pseudomolecules in Mb; (b) Distribution of 53,223 SNPs on eight chickpea pseudomolecules. Each SNP is represented as a single vertical line. Aggregation of vertical lines indicates SNP dense regions, while SNP sparse regions are depicted by blank spaces; (c) Distribution of 1,610 recombination bins on chickpea pseudomolecules. The number of recombination bins within 100 kb intervals were calculated and plotted as a smooth line curve. The height of the line indicates the number of bins within the respective 100 kb interval. A flat line corresponds to no or limited recombination regions; (d) Distribution of genes among recombination bins. The number of genes located within each recombination bin was identified by comparing the coordinates of the respective bin with chickpea gene models. The width of the column is proportional to the recombination bin interval while column height is proportional to the number of genes within that interval.

4.5.2 Recombination breakpoints and bins

By using the sliding window approach on 53,223 SNPs segregating in 222 RILs, a total of 1,610 bins were identified (Figure 5 and Table 10). The average number of bins identified in an individual RIL was 35.71, while the number of bins per pseudomolecule ranged from 2.75 to 6.12. The minimum number of bins (112) was identified on Ca2, whereas the highest number of bins (292) was identified on Ca6 (Figure 4 and Figure 6a). The bin sizes ranged from 41 bp to 8.05 Mb, with an average of 210.60 kb and median of 54.77 kb. In total, 91% bins were of size ≤ 5 Mb while ~9% bins (144) had a size >5 Mb (Figure 6b). By considering 28,269 genes in the chickpea genome (Varshney et al. 2013a), the defined bin map covered 23,277 genes. In total, 8.68% (139) bins contained no gene, 14.29% (229) had only one gene, while 45.82% (734) had two to ten genes. Thus, 68.79% of bins had ≤ 10 genes (Figure 6c).

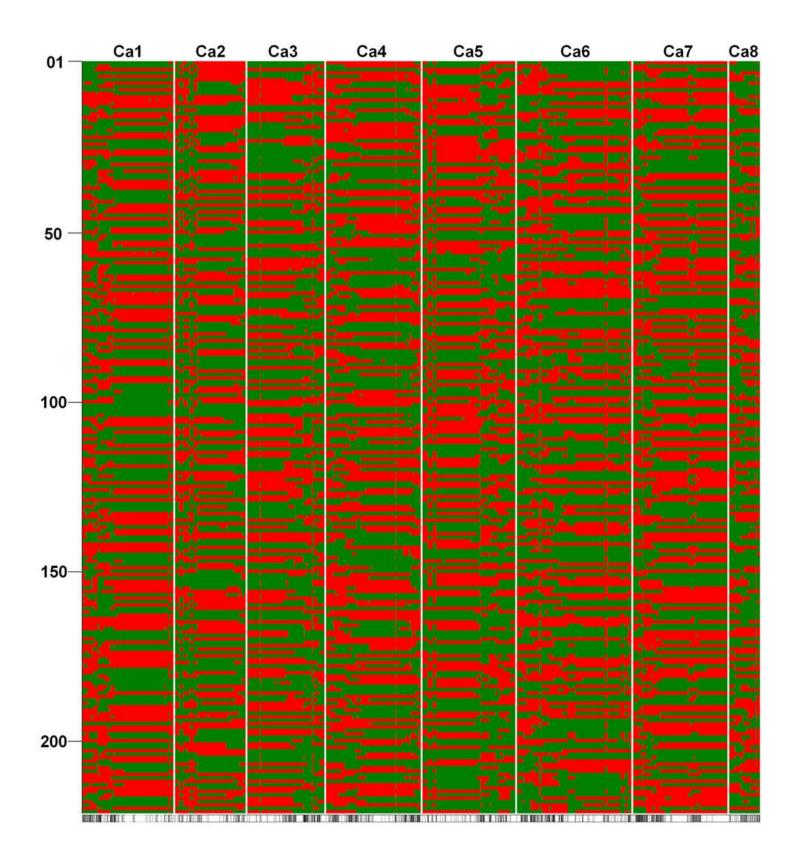
4.5.3 Bin markers based genetic linkage map

All 1,610 bins, as mentioned above, were used as molecular markers for developing a genetic map (http://cegresources.icrisat.org/cmap/Chickpea_bin_map). Out of which, 1,557 (96.71%) bins could be integrated into a genetic map that spans 973.94 cM (Table 10) and corresponds to 757.75 kb/cM by considering the chickpea genome size of 738 Mb (http://cegresources.icrisat.or-g/cmap/ Chickpea_bin_map/). The average inter-bin interval per linkage group ranged from 0.45 cM (CaLG04) to 0.93 cM (CaLG02) with an overall average value of 0.66. The size of the linkage groups varied from 70.57 cM (CaLG08) to 196.27 cM (CaLG06) (Table 10). The highest number of bins (286) was mapped on CaLG06, followed by CaLG04 (277), while the minimum number of bins was mapped on CaLG02 (103) (Table 10).

Pseudomolecules	Number of SNPs identified	Number of bins identified	Number of bins mapped	Map length (cM)	Density (no.of bins/cM)
Cal	12,225	223	223	179.85	0.81
Ca2	4,422	112	103	95.9	0.93
Ca3	2,365	188	174	80.44	0.46
Ca4	18,989	281	277	123.6	0.45
Ca5	954	151	143	119.06	0.83
Ca6	5,759	292	286	196.27	0.69
Ca7	7,158	248	242	108.25	0.45
Ca8	1,351	115	109	70.57	0.65
Total	53223	1610	1557	973.94	
Average					0.66

 Table 10: Distribution of SNPs, recombination bins and markers mapped on chickpea pseudomolecules/linkage groups

The order of bins on the genetic map was compared with their physical position on the chickpea genome sequence (CaGAv1.0). While excellent concordance was observed for linkage groups 4 and 8 and minor differences were observed on other linkage groups (Figure 7).


4.5.4 Bin map based QTL analysis

Genotyping data for 1,557 bins were analyzed together with phenotyping data collected for 20 traits at 1 - 5 locations in 1 - 5 seasons, mentioned in Table 4. QTLs with >10% PVE were considered as major QTLs while others were considered as minor QTLs. In summary, a total of 134 QTLs for 17 traits and two drought indices were identified, out of which 71 were major QTLs and 63 were minor QTLs (Table 11 and Appendix 2). PVE for major QTLs ranged from 10.14 to 59.83% at 3.12 to 43.56 LOD value while for minor QTLs, PVE ranged from 4.75 to 9.85% at 3.00 to 4.91 LOD value.

Major QTLs were identified for 11 traits (RLD, RTR, SDW, PHT, PBS, DF, DM, POD, 100-SDW, HI and DC) and minor QTLs were identified for all the analyzed traits (Table 11 and Appendix 2). The distribution of all the major QTLs in the chickpea genome has been shown in Figure 8 and summarized in Appendix 2. A total of 29 major QTLs for 9 traits (RLD, RTR, SDW, PHT, DM, POD, 100-SDW, HI and DC) were observed on CaLG04 and interestingly all were identified within the "*QTL-hotspot*" region. On the other hand, 30 major QTLs for five traits (PHT, PBS, DF, DM and HI) were observed on CaLG08.

4.5.5 Refined regions of "QTL-hotspot"

Although 1 - 17 major QTLs per trait were identified (Table 12), we targeted the topmost QTL (QTL which explained the highest phenotypic variation) for a given trait. As a result, 11 topmost

Figure 5: The recombination breakpoints identified in 222 recombinant inbred lines (**RILs**). A parent dependent 15 bp sliding window approach was used to identify true recombination breakpoints. A total of 53,223 SNPs identified were scored as "A" and "B" representing alleles from the two parents ICC 4958 and ICC 1882 respectively, and for each individual, the ratio of A and B alleles within the window was calculated using a perl script (Huang et al. 2009). Windows with nine or more alleles from either parent were considered as homozygous for the respective region. The recombination break point was defined at the transition from one genotype to another. The chromosomes are labelled as Ca1 to Ca8 and are separated by vertical lines while each horizontal line represents a single RIL. Green and red bars represent segments from ICC 4958 and ICC 1882 genotypes, respectively. The number of bins per pseudomolecule ranged from 2.75 to 6.12 while an average of 35.71 bins was identified in an individual RIL. The black and white panel at the bottom indicates the consensus 1,610 bins identified in the entire RIL population.

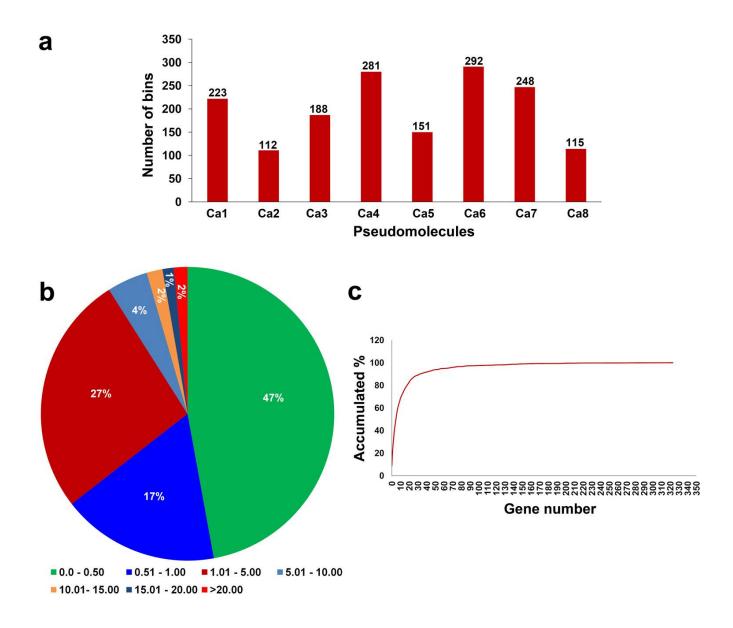
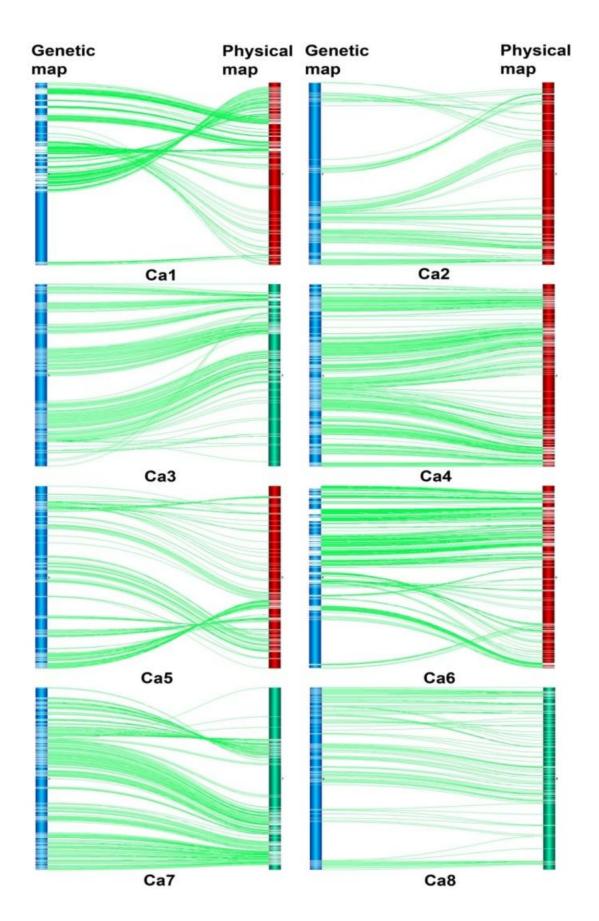



Figure 6: Features of recombination bin mapping in chickpea using skim sequencing based SNP markers. (a) Distribution of the recombination bins on eight chickpea pseudomolecules. The number of recombination bins identified in each psudomolecule was depicted on top of each column. A minimum of 112 bins were identified on Ca2 while maximum 292 bins were identified on Ca6; (b) Distribution of bin sizes identified in ICC 4958 × ICC 1882 population. Approximately, 50% of the bins were of ≤ 0.50 Mb size indicating majority of the recombination bin represented on the X-axis and the accumulated percentage of bins are on the Y-axis. In total, 8.68% (139) bins contained no gene, 14.29% (229) had only one gene, while 45.82% (734) had two to ten genes. Thus, 68.79% of bins had ≤ 10 genes.

Figure 7: Concordance between the genetic map and physical map of chickpea. The order of each bin on linkage and physical map was visualized using Strudel V. 1.12.03.20 software. Each green line represents the position of the bin marker on respective genetic and physical map. Straight lines indicate markers on genetic and physical maps are in same order while crossing of lines indicate interchange of those markers on genetic and physical maps. Excellent consistency in marker order was observed between genetic and physical map in case of Ca3, Ca4, Ca6 and Ca8 pseudomolecules whereas slight deviation was observed for other pseudomolecules (Ca1, Ca2, Ca5 and Ca7). This may be due to the misassembly in some regions in the draft genome of chickpea.

QTLs with 10.14 - 59.83% PVE were selected for 11 traits (Table 12). While analyzing flanking markers for these topmost QTLs, we identified two genomic regions, namely bin_4_13239546 - bin_4_13378761 of 139.22 kb and bin_4_13393647 - bin_4_13547009 of 153.36 kb sizes on CaLG04 containing the topmost QTLs for RLD, PHT, POD, 100-SDW and DC; and for RTR and SDW, respectively (Table 12). Similarly, one genomic region (bin_8_6034209 - bin_8_5984553) of 49.66 kb size was identified on CaLG08 containing topmost QTLs for PBS, DF and HI (Table 12). However the topmost QTL for DM was present solitary on CaLG07. As expected, the two genomic regions on CaLG04 mentioned above were present within the "*QTL-hotspot*" region. In brief, this study split the "*QTL-hotspot_a*" (bin_4_13239546 - bin_4_13378761, equivalent to 139.22 kb) and "*QTL-hotspot_b*" (bin_4_13393647 - bin_4_13547009, equivalent to 153.36 kb) (Figure 9).

4.6 Candidate Genes from Various Approaches for Drought Tolerance Related Traits

4.6.1 Genes identified from GBS-SNP based QTL analysis

A detailed analysis of QTLs from the "*QTL-hotspot*" region showed that, QTLs of 9 traits (RTR, SDW, PHT, DF, 100-SDW, DM, HI, SPD and DTI) were flanked by Ca4_12558541 - Ca4_11276225 marker. Further, the traits RTR, RLD, PHT, DF, DM, 100-SDW, BM, POD and YLD were flanked by Ca4_13687456 - NCPGR21. As the QTLs for 13 out of 16 traits fall between markers Ca4_11276225 and NCPGR 21 (whose physical position on genome is 14146315 bp), ~3 Mb regions between these markers were selected for candidate gene identification (Table 7). This 3 Mb region contained 286 genes. Amino acid sequences for these 286 genes were searched against the NCBI-nr protein database.

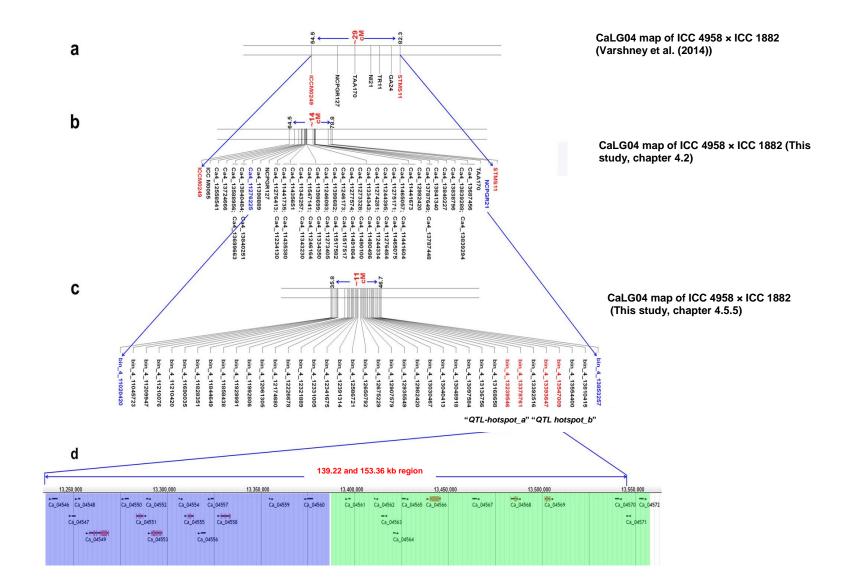

Trait	CaLG01	CaLG02	CaLG03	CaLG04	CaLG05	CaLG06	CaLG07	CaLG08	Total
Root length density (RLD, cm cm ⁻³)				1 (1)					1 (1)
Root surface area (RSA, cm ²)								1	1
Root volume (RV, cm ³)								1	1
R-T ratio (RTR, %)				2 (2)					2 (2)
Shoot dry weight (SDW, g)				1 (1)					1 (1)
Plant height (PHT, cm)				14 (8)		7 (3)		5 (2)	26 (13)
Primary branches (PBS)	1						1	2 (1)	4(1)
Secondry branches (SBS)	1			1				1	3
Days to 50% flowering (DF)	1(1)				7	1		14 (13)	23 (14)
Days to maturity (DM)		1		1 (1)	4(1)	3	3 (1)	14 (13)	25 (16)
Pods/plant (POD)				2 (2)					2 (2)
Seeds/pod (SPD)					1			1	2
100-seed weight (100-SDW, g)	9 (5)			12 (12)					21 (17)
Biomass (BM, g)	1			1			1		3
Harvest index (HI, %)				1 (1)		2 (1)	1	4 (1)	8 (3)
Yield (YLD, g)			1	1			1		3
Delta carbon ratio (δ^{13} C)				3 (1)					3 (1)
Drought tolerance indices (DTI)	1						2	1	4
Drought susceptibility indices (DSI)								1	1
Total	14 (6)	1	1	40 (29)	12 (1)	13 (4)	9 (1)	44 (30)	134 (71)

Table 11: Distribution of number of QTLs identified on chickpea genome from the RIL population of ICC 4958 × ICC 1882 cross using high density bin map

Numbers in parenthesis represent major QTLs.

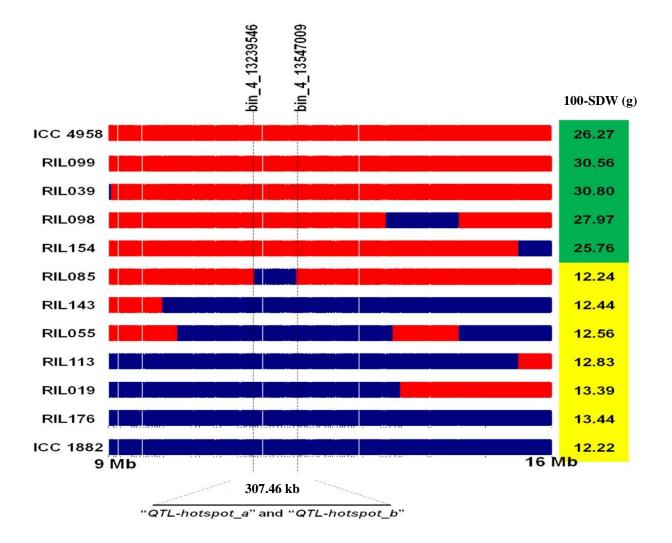
Figure 8: Genome-wide distribution of major QTLs identified for drought component traits using skim sequencing data. The linkage groups are separated by vertical lines, genetic distance is represented on the X-axis and LOD values are represented on Y-axis. Different coloured lines for each trait represent the phenotypic data collected over 1-5 seasons, 1-5 locations.

Figure 9: Refinement of "QTL-hotspot" region into "QTL-hotspot_a" and "QTL-hotspot_b" and identification of candidate genes.

a) The "QTL-hotspot" region, reported by Varshney et al. 2014, spanning 29 cM (corresponds 7.74 Mb on physical map) harbouring QTLs for several drought tolerance related traits on CaLG04; b) Refined "QTL-hotspot" region (~14 cM corresponding to ~3 Mb on physical map) reported from the current study consisted of 49 SNPs and six SSRs (chapter 4.2); c) Refined "QTL-hotspot" region on CaLG04 with newly integrated markers (recombination bins) from skim sequencing. The markers, viz. bin_4_11020420 and bin_4_13853257 correspond to the refined 3 Mb "QTL-hotspot" region reported in the current study (chapter 4.2). Integration of 1,421 SNPs to the "QTL-hotspot" region resulted in the identification of 38 recombination breakpoints and thereby split the "QTL-hotspot" region into "OTL-hotspot a" (139.22 kb; 0.23 cM) and "OTL-hotspot b" (153.36 kb; 0.22 cM). "OTL-hotspot a" was flanked by bin 4 13239546 and bin 4 13378761 while "OTL-hotspot b" was flanked by bin 4 13393647 and bin 4 13547009. These four flanking markers were shown in red colour font; d) A ~300 kb (13239546 - 13547009) snapshot of chickpea genome from JBrowse showing twenty six candidate genes identified in the "QTL-hotspot_a" and "QTL-hotspot_b" regions. A total of 15 genes (highlighted in blue colour area) were identified from "QTL-hotspot_a" while 11 candidate genes (highlighted in green colour area) were identified from "OTL-hotspot b" region.

Table 12: Comparative analysis of topmost QTLs identified for drought related traits in chickpea from the RIL population of ICC

4958 × ICC 1882


	Bin mapp	ing (current study)						Coarse m	apping (Varshne	ey et al. 20	014)	GBS (curr	ent study)		
Trait Name	Linkage group	Markers flanked	Cluster	Physical size (kb)	Genetic size (cM)	LOD [#]	PVE [*] (%)	Linkage group	Markers flanked	LOD [#]	PVE [*] (%)	Linkage group	Markers flanked	LOD [#]	PVE [*] (%)
RLD	CaLG04	bin_4_13239546 - bin_4_13378761	1	139.22	0.23	5.23	10.36	CaLG04	NCPGR127 - NCPGR21	4.78	10.90	CaLG04	ICCM0065 - Ca4_11276225	4.59	12.09
PHT	CaLG04	bin_4_13239546 - bin_4_13378761	1	139.22	0.23	24.34	41.76	CaLG04	NCPGR127 - NCPGR21	16.55	30.20	CaLG04	Ca4_12982420 - TAA170	29.16	34.57
POD	CaLG04	bin_4_13239546 - bin_4_13378761	1	139.22	0.23	9.82	16.66	CaLG04	NCPGR127 - NCPGR21	13.14	23.18	CaLG04	Ca4_13687456 - TAA170	18.79	32.34
100- SDW	CaLG04	bin_4_13239546 - bin_4_13378761	1	139.22	0.23	43.56	59.83	CaLG04	NCPGR127 - NCPGR21	32.38	58.20	CaLG04	Ca4_13687456 - TAA170	50.13	60.41
DC	CaLG04	bin_4_13239546 - bin_4_13378761	1	139.22	0.23	6.11	11.90	CaLG04	NCPGR127 - NCPGR21	3.54	9.38	-	-	-	-
RTR	CaLG04	bin_4_13393647 - bin_4_13547009	2	153.36	0.22	10.57	20.09	CaLG04	TAA170 - NCPGR21	7.59	16.67	CaLG04	Ca4_13840227 - NCPGR21	8.96	13.56
SDW	CaLG04	bin_4_13393647 - bin_4_13547009	2	153.36	0.22	13.78	25.22	CaLG04	TAA170 - NCPGR21	7.97	17.59	CaLG04	Ca4_13840227 - TAA170	16.86	26.91
PBS	CaLG08	bin_8_6034209 - bin_8_5984553	3	49.66	9.47	5.70	11.27	CaLG06	TA106 - H1I16	3.01	8.73	CaLG08	CaM0812 - NCPGR164	5.27	12.92
DF	CaLG08	bin_8_6034209 - bin_8_5984553	3	49.66	9.47	28.19	44.76	CaLG08	NCPGR164 - CaM1918	9.63	26.87	CaLG08	NCPGR164 - Ca8_3050452	46.03	67.71
HI	CaLG08	bin_8_6034209 - bin_8_5984553	3	49.66	9.47	8.01	15.42	CaLG01	cpPb-679915 - CaM0393	4.96	14.36	CaLG08	NCPGR164 - Ca8_3050452	14.52	25.94
DM	CaLG07	bin_7_12870961 - bin_7_12856579	-	14.38	0.23	19.53	45.38	CaLG04	NCPGR127 - TAA170	8.75	19.71	CaLG08	NCPGR164 - Ca8_3050452	30.01	47.43

LOD[#] - logarithm of odds (base 10); PVE^{*} - phenotypic variation explained.

Of these, 211 sequences were annotated and 1,050 GO terms were obtained. Categorization of these terms into biological processes (BP), molecular function (MF) and cellular components (CC) showed predominance of stress related GO terms in BP class while in MF class GO terms for binding, catalytic, transferase, hydrolyses and kinase activity were predominantly present. Genes having a direct role in stress such as dehydration responsive element binding protein (DREB), heat stress transcription protein, thiamine thiazole synthase and few uncharacterized proteins were also identified in the region (http://cmap.icrisat.ac.in/cmap/sm/cp/jaganathan/).

4.6.2 Genes identified from skim sequencing-SNP based QTL analysis

The number of genes obtained from GBS-SNP based QTL analysis was high (286 genes in ~3 Mb), which needs further refinement to identify candidate genes for drought component traits under study. Therefore QTL analysis based on bin mapping from skim sequencing approach was looked for candidate gene identification. It is evident from the research presented above that QTL analysis using high density bin mapping refined the "*QTL-hotspot*" region from 3 Mb (chapter 4.2) to two sub-regions of 139.22 kb ("*QTL-hotspot_a*") and 153.36 kb ("*QTL-hotspot_b*"). Comparison of these sub-regions with the chickpea genome assembly (Varsheny et al. 2013a) and genome annotations identified a total of 26 genes in these two regions. The "*QTL-hotspot_a*" sub-region contained 15 genes and the "*QTL-hotspot_b*" contained 11 genes. Further, a detailed analysis of recombination at "*QTL-hotspot_a*" and "*QTL-hotspot_b*" along with the phenotypic data for 100-SDW for 10 RILs (4 high and 6 low) clearly indicated the possible role of "*QTL-hotspot_a*" and "*QTL-hotspot_b*" to govern 100-SDW trait in chickpea (Figure 10).

Figure 10: Fine mapping of "*QTL-hotspot*" **for 100-seed weight** (**100-SDW**) **using RIL population.** The recombination breakpoints in "*QTL-hotspot*" region spanning 7 Mb size (9-16 Mb on CaLG04 of physical map) among 4 recombinant inbred lines (RIL099, RIL038, RIL098, and RIL154) with high 100-SDW, 6 RILs (RIL085, RIL143, RIL055, RIL113, RIL019, and RIL176) with low 100-SDW and parental genotypes (ICC 4958 shown in red colour bars-high 100-SDW, ICC 1882 shown in blue colour bars-low 100-SDW) are shown. No recombination was observed within ~300 kb refined region ("*QTL-hotspot_a*" and "*QTL-hotspot_b*") in the case of RIL085 and other low and high RILs. This clearly indicates that the refined "*QTL-hotspot_a*" and "*QTL-hotspot_b*" are the candidate regions for 100-SDW in chickpea.

4.7 High Resolution Fine Mapping Cross

To confirm and further narrow down the two regions identified from skim sequencing based SNP analysis, a high resolution mapping population was developed which allows more recombination events leading to determine the possible shortest region responsible for controlling the traits of interest.

4.7.1 Marker screening and parent selection

In order to develop a large fine mapping population, a near isogenic line, BC_3F_1 -ICCX-110125-P18 derived from continuous back crossing of ICC 4958 (male parent) with ICC 1882 (female parent) was selected. This line is termed as NIL⁺ line as it carries "*QTL-hotspot*" from ICC 4958 in ICC 1882 genetic background. This NIL⁺ line was selected by screening a total of 75 BC_3F_1 plants (coming from TL1 project) with 6 SSR markers (ICCM0249, TAA170, NCPGR127, GA24, NCPGR21 and STMS11) flanking the "*QTL-hotspot*". The plants showing heterozygous allele for all the flanking markers (no=22 lines) were selected and background recovery was calculated for the selected 22 lines using 51 SSR markers from overall genome. Based on the analysis, BC_3F_1 -ICCX-110125-P18 showed highest genome (98.95%) recovery and was selected as NIL⁺ line to be used further as male parent for the development of a large fine mapping population (Table 13). A total of 86 seedlings (BC_6F_1) which were obtained by the selfing of selected BC_3F_1 -ICCX-110125-P18 were screened with flanking markers (Appendix 3). Among which, 8 lines showed homozygous allele for all the screened markers and these lines were crossed with the sensitive line (ICC 1882) and F_1 s were obtained.

Marker	Position (cM)	LG	ICC 4958	ICC 1882	ICCX-110125-P18
STMS21	23.18	CaLG01	А	В	В
H2A08	63.659	CaLG01	А	В	В
CAM0015	70.494	CaLG01	А	В	В
CaM0403	70.633	CaLG01	А	В	В
TA30	99.271	CaLG01	А	В	В
CAM0293	17.342	CaLG02	А	В	Н
TA37	30.829	CaLG02	А	В	В
H1H011	34.198	CaLG02	А	В	В
TA194	46.494	CaLG02	А	В	В
TA103	50.158	CaLG02	А	В	В
GA16	60.325	CaLG02	А	В	В
GA20	78.502	CaLG02	А	В	В
H3C06	2.32	CaLG03	А	В	В
GA119	11.038	CaLG03	А	В	В
TR56	16.369	CaLG03	А	В	В
ICCeM50	21.807	CaLG03	А	В	В
CAM0520	26.371	CaLG03	А	В	В
CaM0615	6.675	CaLG04	А	В	В
CaM0845	7.863	CaLG04	А	В	В
CaM0856	8.106	CaLG04	А	В	В
ICCM0257	19.604	CaLG04	А	В	В
H1A19	35.73	CaLG04	А	В	В
TR20	37.031	CaLG04	А	В	В
NCPGR7	38.929	CaLG04	А	В	В
NCPGR27	39.088	CaLG04	А	В	В
CaM0507	39.671	CaLG04	А	В	В
CaM2093	40.063	CaLG04	А	В	В
CaM0923	40.487	CaLG04	А	В	В
TA132	44.88	CaLG04	А	В	В
CaM1328	46.787	CaLG04	А	В	В
ICCeM058	49.493	CaLG04	А	В	В
CaM1903	53.246	CaLG04	А	В	В
TR18	10.246	CaLG05	А	В	В
TA5	16.389	CaLG05	А	В	В
H2J09	16.518	CaLG05	А	В	В
H3A07	20.626	CaLG05	А	В	В
CAM2158	24.271	CaLG05	А	В	В
CaM0500	20.244	CaLG06	А	В	В
TA120	20.955	CaLG06	А	В	В

Table 13: Background recovery of ICCX-110125-P18 using genome wide SSR markers

Recovery					98.95%	
TA3	39.233	CaLG08	А	В	В	
TR24	81.555	CaLG07	А	В	В	
H1O12	38.638	CaLG07	А	В	В	
CAM2155	36.962	CaLG07	А	В	В	
STMS25	32.149	CaLG07	А	В	В	
CAM1760	80.685	CaLG06	А	В	В	
H6G10	38.473	CaLG06	А	В	В	
H1F21	37.493	CaLG06	А	В	В	
CAM1431	30.634	CaLG06	А	В	В	

4.7.2 F₁ and F₂ populations

A total of 73 $F_{1}s$ were generated by crossing of the selected 8 NIL⁺ line (male parent) with ICC 1882 (female parent). These plants were tested with 2 SSR markers (TAA170 and NCPGR21) for selecting true hybrids. The hybridity test resulted in identifying 58 true $F_{1}s$ (Table 14). Further self-pollination of these $F_{1}s$ resulted in generating large F_{2} mapping population comprised of 1,911 seedlings.

4.7.3 Recombinant lines from F₂ population

In order to identify recombination events within "QTL-hotspot_a" and "QTL-hotspot_b" regions, 6 KASPar markers namely CKAM2210, CKAM2177, CKAM2178, CKAM2179, CKAM2181 and CKAM2182 were employed for genotyping. The primer sequences and their physical locations can be found in Table 15. Based on the refined QTL analysis from section 4.6.2, CKAM2210 (13221840 bp on pseudomolecule 4) and CKAM2178 (13365751 bp on pseudomolecule 4) were selected as flanking markers for "QTL-hotspot a". Similarly CKAM2179 (13391772 bp on pseudomolecule 4) and CKAM2182 (13550069 bp on pseudomolecule 4) were selected as flanking markers for "QTL-hotspot_b". A total of 1,911 seedlings were screened with these markers along with one additional marker from each region which identified 42 heterozygous recombinants. Out of 42 recombinants, 15 recombinants were identified for "OTL-hotspot a" having recombination events between CKAM2210 and CKAM2178 and 11 recombinants were found to have recombination event between CKAM2179 and CKAM2182 for "QTL-hotspot_b". However, 16 plants were found to have recombination events for both the regions (Table 16). Detailed analysis of the recombination events between CAKM2210 and CKAM2182 revealed 22 types of genotype classes (Figure 11).

ICC 4958	TAA170	NCPGR21	Line	TAA170	NCPGR21
	А	А	ICCX-130026-P37	Н	Н
ICC 1882	В	В	ICCX-130026-P38	В	В
ICCX-130026-P1	В	В	ICCX-130026-P39	В	В
ICCX-130026-P2	Н	Н	ICCX-130026-P40	В	В
ICCX-130026-P3	Н	Н	ICCX-130026-P41	Н	Н
ICCX-130026-P4	В	В	ICCX-130026-P42	В	В
ICCX-130026-P5	Н	Н	ICCX-130026-P43	Н	Н
ICCX-130026-P6	Н	Н	ICCX-130026-P44	Н	Н
ICCX-130026-P7	Н	Н	ICCX-130026-P45	Н	Н
ICCX-130026-P8	Н	Н	ICCX-130026-P46	Н	Н
ICCX-130026-P9	Н	Н	ICCX-130026-P47	В	В
ICCX-130026-P10	В	В	ICCX-130026-P48	В	В
ICCX-130026-P11	Н	Н	ICCX-130026-P49	Н	В
ICCX-130026-P12	Н	Н	ICCX-130026-P50	В	В
ICCX-130026-P13	Н	Н	ICCX-130026-P51	Н	Н
ICCX-130026-P14	Н	В	ICCX-130026-P52	Н	Н
ICCX-130026-P15	Н	Н	ICCX-130026-P53	Н	Н
ICCX-130026-P16	Н	Н	ICCX-130026-P54	В	В
ICCX-130026-P17	Н	Н	ICCX-130026-P55	Н	Н
ICCX-130026-P18	Н	Н	ICCX-130026-P56	Н	Н
ICCX-130026-P19	Н	Н	ICCX-130026-P57	В	В
ICCX-130026-P20	Н	Н	ICCX-130026-P58	Н	Н
ICCX-130026-P21	Н	Н	ICCX-130026-P59	Н	Н
ICCX-130026-P22	Н	Н	ICCX-130026-P60	Н	Н
ICCX-130026-P23	Н	Н	ICCX-130026-P61	Н	Н
ICCX-130026-P24	Н	Н	ICCX-130026-P62	Н	Н
ICCX-130026-P25	Н	Н	ICCX-130026-P63	Н	Н
ICCX-130026-P26	Н	Н	ICCX-130026-P64	Н	Н
ICCX-130026-P27	Н	Н	ICCX-130026-P65	Н	Н
ICCX-130026-P28	В	В	ICCX-130026-P66	Н	Н
ICCX-130026-P29	Н	Н	ICCX-130026-P67	Н	Н
ICCX-130026-P30	Н	Н	ICCX-130026-P68	Н	Н
ICCX-130026-P31	Н	Н	ICCX-130026-P69	Н	Н
ICCX-130026-P32	Н	Н	ICCX-130026-P70	Н	Н
ICCX-130026-P33	Н	Н	ICCX-130026-P71	Н	Н
ICCX-130026-P34	Н	Н	ICCX-130026-P72	Н	Н
ICCX-130026-P35	В	В	ICCX-130026-P73	Н	Н
ICCX-130026-P36	В	В			

 Table 14: Hybridity confirmation of F1 plants using SSR markers

Primer ID	SNP	Allele in	Allele in	Flanking sequences used for primer designing
	position	ICC 4958	ICC 1882	
CKAM2210	13221840	G	Т	TTAAACTCACTTACCCTCTTTCCTTTCCATTTCCTTTCTTTCAAAATTCTCCTATATCCT[G/T]C
				TAATACAGATACTTTGCAACCCATTTTTTTTGTCAACAAAGTGTTATTGGGTGAGTTCA
CKAM2177	13323947	С	Т	TATCAAATTTGAAAGATGACAATGACGTTCCCCTTCGATTAGTTCAAAAATCTCAAAGAA[C/
				T]AAAGTTCAATCTAAATGGTTAACAAGTCAAAAATTAATCGTGGAATCGCCATATCTCTAC
CKAM2178	13365751	А	G	AATGATTGAGTTTTTCCTTATAATTGAGTTTCTCCTATGGCAATTATTATACTATAATTA[A/G]
				TTTTAACCTATTTATTTTGTCTAACAATTTTTTTTTTCCTAATGTACAATATTATTAATAT
CKAM2179	13391772	G	Т	ATGTCTTCGGCTTCCAGATTTGTGTTTGGTGACATGACCGAAGAAAGCTTGAAATGAGCT[G/
				T]ATAGTGAAGAGCTCACTGCCTTTGATTCACACATATTGAATCTATTTAGAACCTTTCCAA
CKAM2181	13471138	С	Т	TTGTCTGCCACGCCAAATTACGATAATCATCATCTCTCTTCCAGTTCTGTTCGTCAAGCC[C/T]
				CATTTGATATTGTTGGACATCGCAAATCTCAACGACACTGTAAACCACCTGCCCGTTTCC
CKAM2182	13550069	С	Т	AACCACATGAAGAAAATAAATTATGTAAAATGTGTTGTTTCTTCGAATCAACTATGGTAT[C/
				T]GAGGCTATTCTGGATATCGAAGGGACATAATGAAAGAGAGAG

F ₂ recombinants	CKAM2210	CKAM2177	CKAM2178	CKAM2179	CKAM2181	CKAM2182
ICCX-130026-P34-P12	Н	Н	Н	Н	Н	А
ICCX-130026-P65-P75	Н	Н	Н	Н	Н	А
ICCX-130026-P20-P47	Н	Н	Н	Н	Н	А
ICCX-130026-P20-P9	Н	Н	Н	Н	Н	А
ICCX-130026-P6-P16	Н	Н	Н	Н	Н	А
ICCX-130026-P31-P57	В	В	В	В	В	Н
ICCX-130026-P9-P104	Н	Н	Н	Н	А	А
ICCX-130026-P27-P54	В	В	В	В	Н	Н
ICCX-130026-P34-P132	В	В	В	В	Н	Н
ICCX-130026-P37-P178	Н	Н	Н	А	А	А
ICCX-130026-P17-P21	Н	Н	Н	А	А	А
ICCX-130026-P6-P17	Н	Н	Н	А	А	А
ICCX-130026-P18-P54	В	В	В	Н	Н	Н
ICCX-130026-P29-P86	В	В	В	Н	Н	Н
ICCX-130026-P9-P33	В	В	В	Н	Н	Н
ICCX-130026-P24-P41	Н	Н	А	А	А	А
ICCX-130026-P25-P42	Н	Н	А	А	А	А
ICCX-130026-P44-P28	Н	Н	А	А	А	А
ICCX-130026-P24-P57	В	В	Н	Н	Н	Н
ICCX-130026-P43-P42	В	В	Н	Н	Н	Н
ICCX-130026-P73-P221	В	В	Н	Н	Н	Н
ICCX-130026-P20-P12	В	В	Н	Н	Н	Н
ICCX-130026-P37-P193	В	Н	Н	Н	Н	Н
ICCX-130026-P27-P76	А	А	А	А	А	Н
ICCX-130026-P29-P64	А	А	А	А	А	Н
ICCX-130026-P56-P56	А	А	А	А	А	Н
ICCX-130026-P18-P5	А	А	А	А	А	Н
ICCX-130026-P9-P137	Н	Н	Н	Н	Н	В
ICCX-130026-P46-P44	Н	Н	Н	Н	Н	В
ICCX-130026-P13-P3	Н	Н	Н	Н	Н	В
ICCX-130026-P41-P7	А	А	А	А	Н	Н
ICCX-130026-P67-P31	А	А	А	А	Н	Н
ICCX-130026-P29-P4	Н	Н	Н	Н	В	В
ICCX-130026-P20-P80	Н	Н	Н	В	В	В
ICCX-130026-P17-P24	Н	Н	Н	В	В	В
ICCX-130026-P21-P16	Н	Н	В	В	В	В
ICCX-130026-P33-P84	Н	Н	В	В	В	В
ICCX-130026-P73-P1	Н	Н	В	В	В	В
ICCX-130026-P73-P64	Н	Н	В	В	В	В

Table 16: Selected heterozygous F_2 recombinant lines for raising homozygous F_3 recombinants

ICCX-130026-P20-P40	Н	Н	В	В	В	В
ICCX-130026-P30-P56	А	Н	Н	Н	Н	Н
ICCX-130026-P43-P64	А	В	В	В	В	В

A - homozygous allele for ICC 4958; B - homozygous allele for ICC 1882; H - heterozygous alleles for both parents.

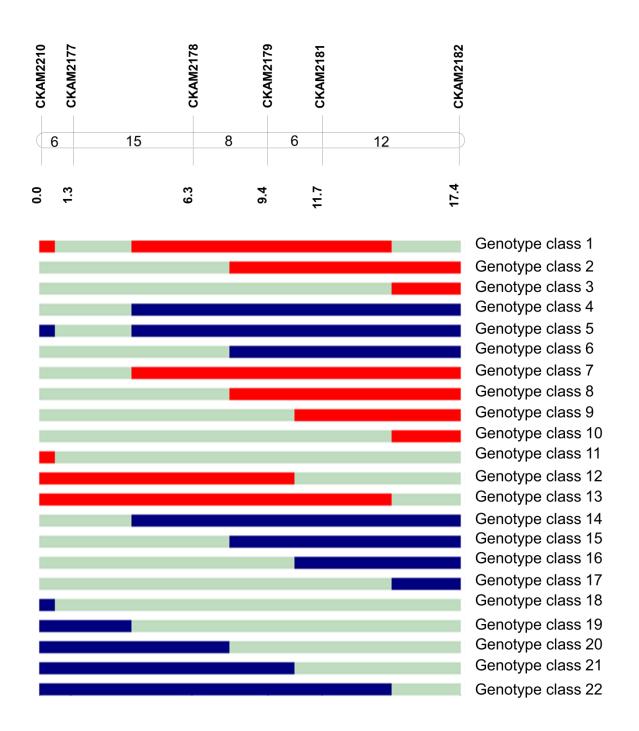
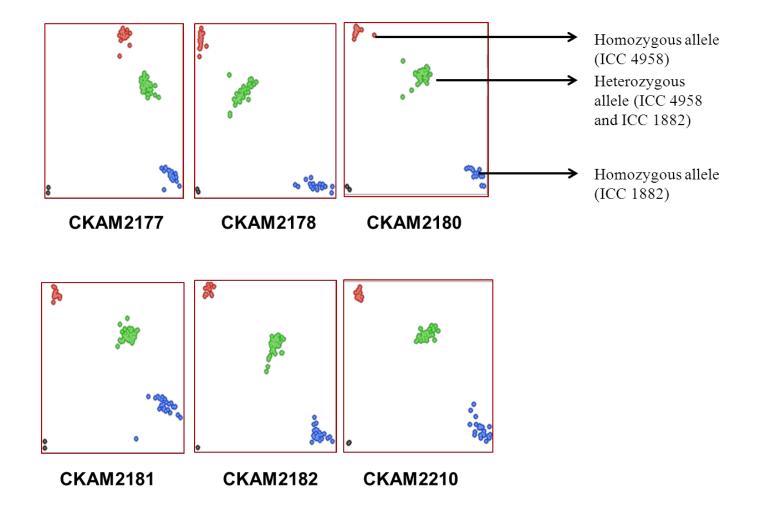



Figure 11: Genotype classes of F_2 fine mapping lines using KASPar markers. A total of 1,911 plants were genotyped with 6 KASPar markers and 22 types of genotypic classes were observed based on the recombination events occurred within this region.

4.7.4 High resolution map of selected recombinants

Further, to precisely locate and delimit "QTL-hotspot_a" and "QTL-hotspot_b" into few candidate genes, 18 SNP markers located within these regions were designed for KASPar assay (Table 17). The selected heterozygous F₂ recombinants were self-pollinated during November 2014 at ICRISAT, Patancheru. The F₃ families derived from F₂ individuals were subjected to genotyping with newly generated KASPar markers. A total of 284 plants from 19 F_{2:3} families were analyzed initially with 6 flanking markers. Among which, 52 plants showed homozygous recombination from 9 F₃ families. These lines were selected for further genotyping with newly generated 18 KASPar markers (CKAM2211, CKAM2213, CKAM2214, CKAM2215, KAM2216, CKAM2217, CKAM2218, CKAM2219, CKAM2220, CKAM2221, CKAM2222, CKAM2223, CKAM2224, CKAM2225, CKAM2226, CKAM2227, CKAM2228 and CKAM2229) to find more recombinations in the target regions. The flanking sequences and SNP information are explained in Table 17 whereas the KASPar marker profiles and genotyping data are shown in Figure 12 and Table 18 respectively. Based on the availability of seeds, 51 selected homozygous recombinants (one line was not included due to less seed number) along with 8 F_{2:3} lines showing parental type alleles for the targeted region were subjected for genotyping (Table 19). The genotyping data obtained was used to construct a high resolution map for "QTLhotspot_a" and "QTL-hotspot_b". Among 59 lines analyzed, 17 types of genotypes were observed (Figure 13).

Figure 12: Snapshots showing SNP genotyping with KASPar assays. Marker genotyping data generated for each genotype were used for allele calling using the automatic allele calling option of KBiosciences-KlusterCaller software. Allelic discrimination (two alleles) for a particular marker in the genotypes examined has been shown on a scatter plot with axes 'X' and 'Y'. Genotypes showing homozygosity for ICC 4958 allele are represented by red spots; Genotypes showing homozygosity for ICC 1882 allele are represented by blue spots; whereas, genotypes of heterozogosity (having both alleles) was shown in green spots.

Primer ID	SNP position	Allele in ICC 4958	Allele in ICC 1882	Sequence used for primer designing
CKAM2211	13257253	A	G	GTGTTAATTATTGGATCAAAGAGATAAGAAACTTTG AGGTCTATAAGATGAGGAGCATGA[A/G]TTGTAGGT CTCATATTAGGGCATCCACAAATCTATGGACCAGTT CAGATATTGATGTTAT
CKAM2213	13272042	C	Т	AAACTTGACATTTGACTTTAGATGGTCCTTAATTCA AAATAATTAAATGGTACTAATGTT[C/T]CTTGATGAC TTTGGATTTGCAATATATTAAAACAATATATGATTA GACAAAGATGAACAA
CKAM2214	13282908	С	Т	TGGGTCGGTTAATGCATTACGCTGGCCTGCCCGCCC CAAGTTGAGAGTTGTCTAATGGGT[C/T]CTGGGCGA AGGCTCAATTCTCGTTGGTCCTAGACGTGAGGGCAC CGCGTGAGGCTGGCTT
CKAM2215	13297602	Α	G	ATCAAGTAGGGTAAAACTATAAATCATCTAGAATC ACTTCCCTTAAAAACCAAATTTTAT[A/G]AGAGGAG CATAAATAACATTCAAAATTTATTGATGTTACTATC CTTTGTGTGAAAGGAAA
CKAM2216	13327480	А	G	ATACATTTTGTTTTTCAAACTAGCTTTTTAAAGCATA ATACTTGTTCTGCCAAAAAAGGC[A/G]CCAACATCA TTTAATGATATGCTGAAGTCACTCAGAATTAAAATG AGCAGAGCAG
CKAM2217	13331455	А	С	TCTTTACCTACCTTATCCGGTGAGACTCCATCATAG ACATTAACCTTACCACAGTAGAAA[A/C]TTGTCATTT GCCCAAATGATCCGCTAGGTGCGCACCCTCTGTCCA AATCAAATTTTCAAG
CKAM2218	13334878	А	Т	AGAATGATGTGATAAGAAAATATAAATAGAGATCA AATAAAGTATTGAATGAATGTTTGG[A/T]ATTTCAA ATGTACATGTATCATTATTATTTCACAAAGTTATAA TTATAATTAGTATATGT
CKAM2219	13394035	С	Т	CTTGTTCCCTTCATGATTACCAATGATTCTTTTATGT CTTTTAGAGTGCATTTCTCTGCT[C/T]TGTATGAACA ACCAACTTCTTCCAACATTCCTAGAGAAATTAAATT
CKAM2220	13394283	С	Т	GTAGTTAAGAAATCAATCTCTATTTGAGGTCATGTG AAATTAACATCCAGAGTCAAGCAC[C/T]CAGTCATC ATCCATGATTTCAGTTGAATTTTTCATGAGAACCTC TGTGTTTTCATATCCT
CKAM2221	13420967	С	G	AGGTTCATTACCAGAACAACTCGGTCTCTTAACAGA CTTGGCCCTTTTCCACATAAACTC[C/G]AATCGATTC TGCGGTTCGCTCCCATATAATTTCACCTACCTTCAA CTTCTCCATGAATTA
CKAM2222	13430655	С	Т	AAACGCTCTAAAACTTAAATTGGTCGTATACGAGC AAACACAGTGAATGGTAACAACAAC[C/T]AAATGAT AATATGGTGACACTCGACTAGTGAACGATCAAATA GTTCAACTGAATAAGTTA
CKAM2223	13434985	Α	Т	TGAACAAAAACTTCTACGTGATCAGTTTGTCATATT TCACAAAAAAAAAA
CKAM2224	13436788	А	G	AATTGACAGCTCTACCCATAGGGTATGAACATGGA

Table 17: List and details of KASPar markers used for screening F₃ plants

				GTATTTTTTAGATCGTGGGTATAG[A/G]AACGAGT
				ACTATAATATCCTATCAAACTCCACCCATTGACATC
				TCTACCAACTATGTATA
CKAM2225	13439534	А	G	TTTGGTAACCAATAGAATATTCACACAACCGCTAAC
				ACAAGACTGCATAATTGCATGTAT[A/G]AGTTAACA
				TTGAAAGCAACAACAAGAAAAAATCCCTTAAGAAG
				GGCCACTTAAACCCGAA
CKAM2226	13445618	А	Т	CGCTATTAAGTACAAAAAATTGTCAAATAGCGGTT
				ATAGCAATCTATAGCGTTGTTGCTT[A/T]GAGGAAT
				ATAAATAAACCACTATTTTTCACAATCTGCGATTCA
				CAAAATTGGTATGTATG
CKAM2227	13510544	А	G	CGAGGCCCAAATCCAAAACCGGATTCAAATTCATTT
				TAAATATCCGGTTAAAATCATATG[A/G]TTATAATTT
				GGTTTATTTATAAACCGGTTGGATAACCACTTATGT
				TTTATATTTGGATTT
CKAM2228	13530557	С	G	CATCTGAAGATTATGTGCAGCTTAAGGTGTTGGCGG
				CAATTCAAGGGGACGCTAGTGTTT[C/G]TAAGGATG
				ACAAAATTGAGCATTTGTTCTTTTCCTTAATGTTTTT
				TCAAAAACTCTCAAT
CKAM2229	13543950	А	Т	TTCATTACATCGCATATTTGAGGTTAGGATTTCTGTT
				TAATAATTGGACTTCAAAAATCA[A/T]GTTTCTCATA
				GGATTTCGATAAAGACGTGATTAGTTGATTTTCAGT
				GCAGGAAATTTGAA

ICCX-130026-P33-P84-P1HHBBBBAABBBBICCX-130026-P13-P3-P1HHHHHBA-AAABICCX-130026-P13-P3-P15HHHHHBA-AAABICCX-130026-P13-P3-P17HHHHHBA-AAABICCX-130026-P13-P3-P17HHHHHBA-AAAAICCX-130026-P12-P10BBHHHBBA-AAAICCX-130026-P20-P12-P10BBHHHHBBA-AAAICCX-130026-P20-P12-P20BBHHHHBBA-AAAICCX-130026-P20-P12-P28BBHHHHBBA-AAAICCX-130026-P20-P12-P28BBHHHHBBA-AAAICCX-130026-P20-P12-P28BBHHHHBBA-AAAICCX-130026-P20-P12-P3BBHHHHBBA-AAAICCX-130026-P20-P12-P3BBHHHHBBA-AAAICCX-130026-P20-P12-P3BBHHHBBA-BBBBICCX-130026-P20-P40-P13HHBBBBA-BBBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBBBBBBBBBB <t< th=""><th>Genotype</th><th>F₂ score</th><th>CKAM2210</th><th>CKAM2177</th><th>CKAM2178</th><th>CKAM217</th><th>9 CKAM2181</th><th>CKAM2182</th></t<>	Genotype	F ₂ score	CKAM2210	CKAM2177	CKAM2178	CKAM217	9 CKAM2181	CKAM2182
ICCX-130026-P33-P84-P1HHBBBBAABBBBICCX-130026-P13-P3-P1HHHHHBA-AAABICCX-130026-P13-P3-P1HHHHHBA-AAABICCX-130026-P13-P3-P1HHHHHBA-AAAAICCX-130026-P20-P12-P10BBHHHHBBAAAAICCX-130026-P20-P12-P16BBHHHHBBAAAAICCX-130026-P20-P12-P26BBHHHHBBAAAAICCX-130026-P20-P12-P26BBHHHHBBAAAAICCX-130026-P20-P12-P28BBHHHHBBAAAAICCX-130026-P20-P12-P3BBHHHHBBAAAAICCX-130026-P20-P12-P8BBHHHHBBAAAAICCX-130026-P20-P12-P8BBHHHHBBAAAAICCX-130026-P20-P12-P8BBHHHHBBBBBBICCX-130026-P20-P12-P8BBHHHHBBBBBBICCX-130026-P20-P12-P8BBHHHHBBAAAAICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P15HHBBBBA-B <td>ICC 1882</td> <td>BBBBBBB</td> <td>В</td> <td>В</td> <td>В</td> <td>В</td> <td>В</td> <td>В</td>	ICC 1882	BBBBBBB	В	В	В	В	В	В
ICCX-130026-P13-P3-P1HHHHHBA-AAAABICCX-130026-P13-P3-P1HHHHHBA-AAABICCX-130026-P13-P3-P1HHHHHBA-AAABICCX-130026-P20-P12-P10BBHHHBBAAAAAICCX-130026-P20-P12-P10BBHHHHBBA-AAAICCX-130026-P20-P12-P20BBHHHHBBA-AAAICCX-130026-P20-P12-P20BBHHHHBBA-AAAICCX-130026-P20-P12-P20BBHHHHBBA-AAAICCX-130026-P20-P12-P20BBHHHHBBA-AAAICCX-130026-P20-P12-P3BBHHHHBBA-AAAICCX-130026-P20-P12-P3BBHHHHBBA-AAAICCX-130026-P20-P12-P3BBHHHHBBA-AAAICCX-130026-P20-P12-P3BBHHHHBBBBBBBBICCX-130026-P20-P12-P3BBHHHHBBA-AAAICCX-130026-P20-P40-P1HHBBBBA-BBBBBICCX-130026-P20-P40-P1HHBBBBA-BBBBBICCX-130026-P20-P40-P1HHBBBB<	ICC 4958	AAAAAA	А	А	А	А	А	А
ICCX-130026-P13-P3-P17HHHHHBAAAAAAICCX-130026-P13-P3-P17HHHHHBA-AAAICCX-130026-P20-P12-P10BBHHHHBBA-AAICCX-130026-P20-P12-P10BBHHHHBBA-AAICCX-130026-P20-P12-P21BBHHHHBBA-AAICCX-130026-P20-P12-P22BBHHHHBBA-AAICCX-130026-P20-P12-P24BBHHHHBBA-AAICCX-130026-P20-P12-P25BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P15HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-B<	ICCX-130026-P33-P84-P1	HHBBBB	А	А	В	В	В	В
ICCX-130026-P13-P3-P17HHHHHBA-AAAICCX-130026-P20-P12-P10BBHHHHBBAAAICCX-130026-P20-P12-P16BBHHHHBBAAAICCX-130026-P20-P12-P23BBHHHHBBAAAAICCX-130026-P20-P12-P24BBHHHHBBAAAAAICCX-130026-P20-P12-P26BBHHHHBBA-AAAICCX-130026-P20-P12-P28BBHHHHBBA-AAAICCX-130026-P20-P12-P29BBHHHHBBA-AAAICCX-130026-P20-P12-P29BBHHHHBBA-AAAICCX-130026-P20-P12-P3BBHHHHBBA-AAAICCX-130026-P20-P40-P13HBBBBA-BBBBICCX-130026-P20-P40-P14HBBBBA-BBBBICCX-130026-P20-P40-P14HBBBBAABBBBICCX-130026-P20-P40-P14HBBBBA-BBBBICCX-130026-P20-P40-P2HBBBBA-BBBBICCX-130026-P20-P40-P2HBBBBA-BBBBICCX-130026-P20-P40-P2HBBBBA-BBBAICCX-130026-P20-P40-P3HBBBB <td>ICCX-130026-P13-P3-P1</td> <td>HHHHHB</td> <td>А</td> <td>-</td> <td>А</td> <td>А</td> <td>А</td> <td>В</td>	ICCX-130026-P13-P3-P1	HHHHHB	А	-	А	А	А	В
ICCX-130026-P13-P3-P4HHHHBA-AAAICCX-130026-P20-P12-P10BBHHHHBBAAAICCX-130026-P20-P12-P21BBHHHHBBA-AAICCX-130026-P20-P12-P23BBHHHHBBA-AAICCX-130026-P20-P12-P24BBHHHHBBA-AAICCX-130026-P20-P12-P28BBHHHHBBA-AAICCX-130026-P20-P12-P28BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P12-P5BBHHHHBBA-AAICCX-130026-P20-P12-P5BBHHHHBBA-AAICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P13HHBBBBAABBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBAICCX-130026-P20-P40-P14HHBBBBA-BB<	ICCX-130026-P13-P3-P15	HHHHHB	А	А	А	А	А	В
ICCX-130026-P20-P12-P10BBHHHHBBAAAAICCX-130026-P20-P12-P23BBHHHHBBA-AAICCX-130026-P20-P12-P24BBHHHHBBA-AAICCX-130026-P20-P12-P24BBHHHHBBA-AAICCX-130026-P20-P12-P26BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P12-P8BBHHHHBBA-AAICCX-130026-P20-P12-P8BBHHHHBBA-AAICCX-130026-P20-P12-P8BBHHHHBBA-AAICCX-130026-P20-P12-P8BBHHHHBBA-AAICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P15HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBAICCX-130026-P20-P40-P16HHBBBBA-	ICCX-130026-P13-P3-P17	HHHHHB	А	-	А	А	А	В
ICCX-130026-P20-P12-P21 BBHHHH B B A - A A ICCX-130026-P20-P12-P24 BBHHHH B B A - A A ICCX-130026-P20-P12-P26 BBHHHH B B A - A A ICCX-130026-P20-P12-P26 BBHHHH B B A - A A ICCX-130026-P20-P12-P26 BBHHHH B B A - A A ICCX-130026-P20-P12-P3 BBHHHH B B A - A A ICCX-130026-P20-P12-P3 BBHHHH B B A - A A ICCX-130026-P20-P40-P13 HHBBBB A - B B B B B ICCX-130026-P20-P40-P13 HHBBBB A - B	ICCX-130026-P13-P3-P4	HHHHHB	А	-	А	-	А	В
ICCX-130026-P20-P12-P23BBHHHHBBAAAICCX-130026-P20-P12-P24BBHHHHBBA-AAICCX-130026-P20-P12-P28BBHHHHBBAAAAICCX-130026-P20-P12-P28BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P15HHBBBBA-BBBBICCX-130026-P20-P40-P17HHBBBBAABBBBICCX-130026-P20-P40-P22HHBBBAABBBBICCX-130026-P20-P40-P22HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P2HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBAICCX-130026-P20-P47-P1HHHHABBB	ICCX-130026-P20-P12-P10	BBHHHH	В	В	А	А	А	А
ICCX-130026-P20-P12-P26 BBHHHH B B A - A A ICCX-130026-P20-P12-P26 BBHHHH B B A - A A ICCX-130026-P20-P12-P28 BBHHHH B B A - A A ICCX-130026-P20-P12-P8 BBHHHH B B A - A A ICCX-130026-P20-P12-P8 BBHHHH B B A - A A ICCX-130026-P20-P12-P9 BBHHHH B B A - A A ICCX-130026-P20-P40-P13 HHBBBB A - B <t< td=""><td>ICCX-130026-P20-P12-P16</td><td>BBHHHH</td><td>В</td><td>В</td><td>А</td><td>-</td><td>А</td><td>А</td></t<>	ICCX-130026-P20-P12-P16	BBHHHH	В	В	А	-	А	А
ICCX-130026-P20-P12-P28BBHHHHBBAAAAICCX-130026-P20-P12-P28BBHHHHBBA-AAICCX-130026-P20-P12-P8BBHHHHBBA-AAICCX-130026-P20-P12-P8BBHHHHBBA-AAICCX-130026-P20-P12-P9BBHHHHBBA-AAICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P15HHBBBBAABBBBICCX-130026-P20-P40-P17HHBBBBAABBBBICCX-130026-P20-P40-P19HHBBBBAABBBBICCX-130026-P20-P40-P20HHBBBBAABBBBICCX-130026-P20-P40-P21HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBAICCX-130026-P20-P40-P14HHBBBBA-BBBBAICCX-130026-P20-P47-P13HHHHABBBBBAAICCX-130026-P20-P47-P13HHHHABBBBBAAICCX-130026-P20-P47-P13	ICCX-130026-P20-P12-P23	BBHHHH	В	В	А	А	А	А
ICCX-130026-P20-P12-P2BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P12-P3BBHHHHBBA-AAICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P15HHBBBBA-BBBBICCX-130026-P20-P40-P17HHBBBBA-BBBBICCX-130026-P20-P40-P17HHBBBBAABBBBICCX-130026-P20-P40-P12HHBBBBAABBBBICCX-130026-P20-P40-P22HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBAICCX-130026-P20-P40-P3HHBBBBA-BBBAAICCX-130026-P20-P40-P17HHBHHABBBBBAAICCX-130026-P20-P47-P13HHHHABBBBBAAICCX-130026-P20-P47-P13HHHHABBBBBBAICCX-130026-P20	ICCX-130026-P20-P12-P24	BBHHHH	В	В	А	-	А	А
ICCX-130026-P20-P12-P5BBHHHHBBAAAAICCX-130026-P20-P12-P8BBHHHHBBA-AAICCX-130026-P20-P12-P9BBHHHHBBA-BBBBICCX-130026-P20-P40-P13HHBBBBA-BBBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBBICCX-130026-P20-P40-P15HHBBBBAABBBBBICCX-130026-P20-P40-P19HHBBBBAABBBBBICCX-130026-P20-P40-P19HHBBBBAABBBBBICCX-130026-P20-P40-P19HHBBBBA-BBBBBICCX-130026-P20-P40-P20HHBBBBA-BBBBBBICCX-130026-P20-P40-P21HHBBBBA-BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAABBBBBBBAABBBBBBBBBBBBBBBBBBBBBB	ICCX-130026-P20-P12-P26	BBHHHH	В	В	А	А	А	А
ICCX-130026-P20-P12-P8BBHHHHBBAAAICCX-130026-P20-P40-P13HHBBBBA-BBBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBBICCX-130026-P20-P40-P15HHBBBBA-BBBBBICCX-130026-P20-P40-P17HHBBBBA-BBBBBICCX-130026-P20-P40-P19HHBBBBA-BBBBBICCX-130026-P20-P40-P20HHBBBBAABBBBBICCX-130026-P20-P40-P20HHBBBBAABBBBBICCX-130026-P20-P40-P20HHBBBBA-BBBBBICCX-130026-P20-P40-P20HHBBBBA-BBBBBBICCX-130026-P20-P40-P21HHBBBBA-BBBBBBAICCX-130026-P20-P40-P21HHBBBA-BBBBAICCX-130026-P20-P47-P1HHHHABBBBBAAICCX-130026-P20-P47-P1HHHHABBBBBAAICCX-130026-P20-P47-P1HHHHABBBBAAICCX-130026-P20-P47-P1HHHHABBBBAAICCX-130026-P20-P47-P1<	ICCX-130026-P20-P12-P28	BBHHHH	В	В	А	-	А	А
ICCX-130026-P20-P12-P9BBHHHHBBA-AAICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P15HHBBBBA-BBBBICCX-130026-P20-P40-P17HHBBBBA-BBBBICCX-130026-P20-P40-P19HHBBBBAABBBBICCX-130026-P20-P40-P20HHBBBBA-BBBBICCX-130026-P20-P40-P22HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBAICCX-130026-P20-P47-P1HHHHABBBBBAAICCX-130026-P20-P47-P1HHHHABBBBBAAICCX-130026-P20-P47-P1HHHHABBBBBAAICCX-130026-P20-P47-P1HHHHABBBBBAAICCX-130026-P20-P47-P1HHHHABBBBBAAICCX-1300	ICCX-130026-P20-P12-P5	BBHHHH	В	В	А	А	А	А
ICCX-130026-P20-P40-P13HHBBBBA-BBBBICCX-130026-P20-P40-P14HHBBBBA-BBBBICCX-130026-P20-P40-P15HHBBBBA-BBBBICCX-130026-P20-P40-P17HHBBBBA-BBBBICCX-130026-P20-P40-P19HHBBBBAABBBBICCX-130026-P20-P40-P20HHBBBBA-BBBBICCX-130026-P20-P40-P22HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBICCX-130026-P20-P40-P4HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBBA <td< td=""><td>ICCX-130026-P20-P12-P8</td><td>BBHHHH</td><td>В</td><td>В</td><td>А</td><td>-</td><td>А</td><td>А</td></td<>	ICCX-130026-P20-P12-P8	BBHHHH	В	В	А	-	А	А
ICCX-130026-P20-P40-P15 HHBBBB A A - B B B B B ICCX-130026-P20-P40-P15 HHBBBB A A - B B B B B ICCX-130026-P20-P40-P17 HHBBBB A A A B B B B B ICCX-130026-P20-P40-P20 HHBBBB A A A B B B B B ICCX-130026-P20-P40-P22 HHBBBB A - B B B B B ICCX-130026-P20-P40-P24 HHBBBB A - B B B B B ICCX-130026-P20-P40-P24 HHBBBB A - B B B B B ICCX-130026-P20-P40-P3 HHBBBB A - B B B B B ICCX-130026-P20-P40-P5 HHBBBB A - B B B B B ICCX-130026-P20-P40-P1 HHHHA B B B B B B B A ICCX-130026-P20-P47-P1 HHHHA B B B B B B B A ICCX-130026-P20-P47-P13 HHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B B A ICCX-130026-P20-P47-P2 HHHHA B B B B B B A ICCX-130026-P20-P47-P2 HHHHA B B B B B B A ICCX-130026-P20-P47-P9 HHHHA B B B B B A ICCX-130026-P20-P47-P9 HHHHA B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B B B B B A ICCX-130026-P20-P47-P17 HHHHA B B B	ICCX-130026-P20-P12-P9	BBHHHH	В	В	А	-	А	А
ICCX-130026-P20-P40-P15HHBBBBAABBBBICCX-130026-P20-P40-P17HHBBBBAABBBBICCX-130026-P20-P40-P20HHBBBBAABBBBICCX-130026-P20-P40-P22HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBICCX-130026-P20-P40-P6HHBBBBA-BBBBICCX-130026-P20-P40-P6HHBBBBA-BBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P19HHHHABBBBBAICCX-130026-P20-P47-P19HHHHABBBBBAICCX-130026-P20-P47-P9HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBA <td>ICCX-130026-P20-P40-P13</td> <td>HHBBBB</td> <td>А</td> <td>-</td> <td>В</td> <td>В</td> <td>В</td> <td>В</td>	ICCX-130026-P20-P40-P13	HHBBBB	А	-	В	В	В	В
ICCX-130026-P20-P40-P17HHBBBBA-BBBBICCX-130026-P20-P40-P20HHBBBBAABBBBICCX-130026-P20-P40-P22HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBAICCX-130026-P20-P40-P3HHBBBBA-BBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBBA </td <td>ICCX-130026-P20-P40-P14</td> <td>HHBBBB</td> <td>А</td> <td>-</td> <td>В</td> <td>В</td> <td>В</td> <td>В</td>	ICCX-130026-P20-P40-P14	HHBBBB	А	-	В	В	В	В
ICCX-130026-P20-P40-P19 HHBBBB A A A B B B B B ICCX-130026-P20-P40-P22 HHBBBB A A B B B B B ICCX-130026-P20-P40-P22 HHBBBB A - B B B B B ICCX-130026-P20-P40-P24 HHBBBB A - B B B B B ICCX-130026-P20-P40-P3 HHBBBB A - B B B B B ICCX-130026-P20-P40-P6 HHBBBB A - B B B B B B ICCX-130026-P20-P40-P6 HHBBBB A - B B B B B B A ICCX-130026-P20-P47-P1 HHHHA B B B B B B B A ICCX-130026-P20-P47-P1 HHHHA B B B B B B B A ICCX-130026-P20-P47-P13 HHHHHA B B B B B B B A ICCX-130026-P20-P47-P14 HHHHA B B B B B B B A ICCX-130026-P20-P47-P17 HHHHHA B B B B B B B A ICCX-130026-P20-P47-P18 HHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B A ICCX-130026-P20-P47-P19 HHHHA B B B B B B A ICCX-130026-P20-P47-P2 HHHHA B B B B B B A ICCX-130026-P20-P47-P2 HHHHA B B B B B B A ICCX-130026-P20-P47-P9 HHHHA B B B B B B A A ICCX-130026-P20-P47-P9 HHHHA B B B B B B A A ICCX-130026-P20-P47-P9 HHHHA B B B B B B A A ICCX-130026-P20-P47-P9 HHHHA B B B B B B A A ICCX-130026-P20-P47-P9 HHHHA B B B B B B A A ICCX-130026-P20-P47-P17 HHHHHA B B B B B B B A A ICCX-130026-P20-P47-P17 HHHHHA B B B B B B A A ICCX-130026-P20-P47-P9 HHHHHA B B B B B B A A ICCX-130026-P20-P47-P9 HHHHA B B B B B B A A ICCX-130026-P20-P47-P9 HHHHA B B B B B B A A ICCX-130026-P20-P47-P9 HHHHHA B B B B B B B A A ICCX-130026-P20-P47-P9 HHHHHA B B B B B B B A A ICCX-130026-P20-P47-P17 HHHHHA B B B B B B B A A ICCX-130026-P20-P47-P47 HHHHHA B B B B B B B A A ICCX-130026-P20-P47-P47 HHHHHA B B B B B B B A A ICCX-130026-P40-P47-P47 HHHHHA B B B B B B A A ICCX-130026-P40-P47-P47 HHHHHA B B B B B B A A ICCX-130026-P40-P47-P47 HHHHHA B B B B B B B A A ICCX-130026-P40-P47-P47 HHHHHA B B B B B B B A A ICCX-130026-P40-P47-P47 HHHHHA B B B B B B B A A ICCX-130026-P40-P47-P47 HHHHHA B B B B B B B A A ICCX-130026-P40-P47-P47 HHHHHA B B B B B B B B A A ICCX-130026-P40-P47-P47 HHHHHA B B B B B B B B A A	ICCX-130026-P20-P40-P15	HHBBBB	А	А	В	В	В	В
ICCX-130026-P20-P40-P20HHBBBBAABBBBICCX-130026-P20-P40-P22HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBBICCX-130026-P20-P40-P6HHBBBBA-BBBBBICCX-130026-P20-P47-P1HHHHHABBBBBAICCX-130026-P20-P47-P1HHHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P9-P10HHHHABBBBBAICCX-130026-P20-P9-P17HHHHABBBBBAICCX-130026-P20-P9-P17HHHHABBBBBAICCX-130026-P20-P9-P23HHHHABBBBBAICCX-130026-P20-P9-P29HHHHABBB<	ICCX-130026-P20-P40-P17	HHBBBB	А	-	В	В	В	В
ICCX-130026-P20-P40-P22HHBBBBA-BBBBICCX-130026-P20-P40-P24HHBBBBA-BBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBBICCX-130026-P20-P40-P6HHBBBBA-BBBBBICCX-130026-P20-P47-P1HHHHABBBBBAAICCX-130026-P20-P47-P13HHHHABBBBBAAICCX-130026-P20-P47-P17HHHHABBBBBAAICCX-130026-P20-P47-P18HHHHABBBBBAAICCX-130026-P20-P47-P19HHHHABBBBBAAICCX-130026-P20-P47-P2HHHHABBBBBAAICCX-130026-P20-P47-P3HHHHABBBBBAAICCX-130026-P20-P47-P3HHHHABBBBBAAICCX-130026-P20-P9-P10HHHHABBBBBAAICCX-130026-P20-P9-P17HHHHABBBBBAAICCX-130026-P20-P9-P23HHHHABBBBBAAICCX-130026-P20-P9-P29HHHHABBBBAAICCX-130026-P20-P9-P29HHHHABBB	ICCX-130026-P20-P40-P19	HHBBBB	А	А	В	В	В	В
ICCX-130026-P20-P40-P24HHBBBBAABBBBICCX-130026-P20-P40-P3HHBBBBA-BBBBICCX-130026-P20-P40-P6HHBBBBA-BBBBAICCX-130026-P20-P47-P1HHHHAABBBBBAAICCX-130026-P20-P47-P13HHHHAABBBBBAAICCX-130026-P20-P47-P13HHHHAABBBBBAAICCX-130026-P20-P47-P13HHHHAABBBBBAAICCX-130026-P20-P47-P19HHHHAABBBBBAAICCX-130026-P20-P47-P19HHHHAABBBBBAAICCX-130026-P20-P47-P19HHHHAABBBBBAAICCX-130026-P20-P47-P1HHHHAABBBBBAAICCX-130026-P20-P9-P10HHHHAABBBBBAAICCX-130026-P20-P9-P17HHHHAABBBBBAAICCX-130026-P20-P9-P23HHHHAABBBBBAAICCX-130026-P20-P9-P23HHHHAABBBBBAAICCX-130026-P20-P9-P29HHHHAABBBBBAAICCX-130026-P20-P9-P29HHHHAA<	ICCX-130026-P20-P40-P20	HHBBBB	А	А	В	В	В	В
ICCX-130026-P20-P40-P3 HHBBBB A - B B B B B ICCX-130026-P20-P40-P6 HHBBBB A - B B B B B B ICCX-130026-P20-P47-P1 HHHHHA B B B B B B B A ICCX-130026-P20-P47-P13 HHHHHA B B B B B B B B A ICCX-130026-P20-P47-P17 HHHHHA B B B B B B B B A ICCX-130026-P20-P47-P18 HHHHHA B B B B B B B B A ICCX-130026-P20-P47-P19 HHHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHHA B B B B B B B A ICCX-130026-P20-P47-P19 HHHHHA B B B B B B A ICCX-130026-P20-P47-P19 HHHHHA B B B B B B A ICCX-130026-P20-P47-P2 HHHHHA B B B B B B B A ICCX-130026-P20-P47-P9 HHHHHA B B B B B B A ICCX-130026-P20-P47-P9 HHHHHA B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P10 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P20 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P20 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P20 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P20 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P20 HHHHHA B B B B B B B B A ICCX-130026-P20-P9-P20 HHHHHA B B B B B B B B A	ICCX-130026-P20-P40-P22	HHBBBB	А	-	В	В	В	В
ICCX-130026-P20-P40-P6HHBBBBA-BBBBAICCX-130026-P20-P47-P1HHHHAABBBBBAICCX-130026-P20-P47-P13HHHHAABBBBBAICCX-130026-P20-P47-P17HHHHAABBBBBAICCX-130026-P20-P47-P18HHHHAABBBBBAICCX-130026-P20-P47-P19HHHHAABBBBBAICCX-130026-P20-P47-P2HHHHAABBBBAICCX-130026-P20-P47-P9HHHHAABBBBAICCX-130026-P20-P47-P1HHHHAABBBBAICCX-130026-P20-P9-P10HHHHAABBBBAICCX-130026-P20-P9-P17HHHHAABBBBBAICCX-130026-P20-P9-P23HHHHAABBBBAICCX-130026-P20-P9-P29HHHHAABBBAAICCX-130026-P20-P9-P29HHHHAABBBAAICCX-130026-P20-P9-P29HHHHAABBBBAAICCX-130026-P20-P9-P29HHHHAABBBBAAICCX-130026-P20-P9-P29HHHHAABBBBBAAICCX-130026-P20-P9-P29HHHHAABBBBBAA <td>ICCX-130026-P20-P40-P24</td> <td>HHBBBB</td> <td>А</td> <td>А</td> <td>В</td> <td>В</td> <td>В</td> <td>В</td>	ICCX-130026-P20-P40-P24	HHBBBB	А	А	В	В	В	В
ICCX-130026-P20-P47-P1HHHHHABBBBBBAICCX-130026-P20-P47-P13HHHHHABBBBBBAICCX-130026-P20-P47-P17HHHHHABBBBBAICCX-130026-P20-P47-P18HHHHHABBBBBAICCX-130026-P20-P47-P19HHHHABBBBBAICCX-130026-P20-P47-P2HHHHABBBBAICCX-130026-P20-P47-P9HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P47-P2HHHHABBBBAICCX-130026-P20-P9-P10HHHHABBBBBAICCX-130026-P20-P9-P22HHHHABBBBBAICCX-130026-P20-P9-P23HHHHABBBBBAICCX-130026-P20-P9-P29HHHHABBBBBA	ICCX-130026-P20-P40-P3	HHBBBB	А	-	В	В	В	В
ICCX-130026-P20-P47-P13HHHHHABBBBBAICCX-130026-P20-P47-P17HHHHHABBBBBAICCX-130026-P20-P47-P18HHHHHABBBBBAICCX-130026-P20-P47-P19HHHHHABBBBBAICCX-130026-P20-P47-P2HHHHABBBBBAICCX-130026-P20-P47-P9HHHHABBBBAICCX-130026-P20-P47-P9HHHHABBBBAICCX-130026-P20-P9-P10HHHHABBBBAICCX-130026-P20-P9-P17HHHHABBBBAICCX-130026-P20-P9-P22HHHHABBBBAICCX-130026-P20-P9-P23HHHHABBBBAICCX-130026-P20-P9-P29HHHHABBBBA	ICCX-130026-P20-P40-P6	HHBBBB	А	-	В	В	В	В
ICCX-130026-P20-P47-P17HHHHHABBBBBBAICCX-130026-P20-P47-P18HHHHHABBBBBBAICCX-130026-P20-P47-P19HHHHABBBBBBAICCX-130026-P20-P47-P2HHHHABBBBBAICCX-130026-P20-P47-P9HHHHABBBBBAICCX-130026-P20-P47-P1HHHHABBBBBAICCX-130026-P20-P9-P10HHHHABBBBAAICCX-130026-P20-P9-P17HHHHABBBBBAICCX-130026-P20-P9-P22HHHHABBBBBAICCX-130026-P20-P9-P23HHHHABBBBBAICCX-130026-P20-P9-P29HHHHABBBBBA	ICCX-130026-P20-P47-P1	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P47-P18HHHHHABBBBBAICCX-130026-P20-P47-P19HHHHHABBBBBAICCX-130026-P20-P47-P2HHHHABBBBBAICCX-130026-P20-P47-P9HHHHABBBBAICCX-130026-P20-P47-P1HHHHABBBBAICCX-130026-P20-P9-P10HHHHABBBBAICCX-130026-P20-P9-P17HHHHABBBBAICCX-130026-P20-P9-P23HHHHABBBBAICCX-130026-P20-P9-P29HHHHABBBBAICCX-130026-P20-P9-P29HHHHABBBBAICCX-130026-P20-P9-P29HHHHABBBBBA	ICCX-130026-P20-P47-P13	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P47-P19HHHHHABBBBBBAICCX-130026-P20-P47-P2HHHHHABBBBBAICCX-130026-P20-P47-P9HHHHHABBBBBAICCX-130026-P20-P9-P10HHHHHABBBBBAICCX-130026-P20-P9-P17HHHHHABBBBBAICCX-130026-P20-P9-P22HHHHABBBBBAICCX-130026-P20-P9-P23HHHHABBBBAICCX-130026-P20-P9-P29HHHHABBBBA	ICCX-130026-P20-P47-P17	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P47-P2HHHHHABBBBBAICCX-130026-P20-P47-P9HHHHHABBBBBAICCX-130026-P20-P9-P10HHHHABBBBBAICCX-130026-P20-P9-P17HHHHHABBBBBAICCX-130026-P20-P9-P17HHHHHABBBBAICCX-130026-P20-P9-P23HHHHABBBBAICCX-130026-P20-P9-P29HHHHABBBBA	ICCX-130026-P20-P47-P18	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P47-P9HHHHHABBBBBAICCX-130026-P20-P9-P10HHHHHABBBBBAICCX-130026-P20-P9-P17HHHHHABBBBBAICCX-130026-P20-P9-P22HHHHHABBBBBAICCX-130026-P20-P9-P23HHHHHABBBBBAICCX-130026-P20-P9-P23HHHHABBBBA	ICCX-130026-P20-P47-P19	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P9-P10HHHHHABBBBBAICCX-130026-P20-P9-P17HHHHHABBBBBAICCX-130026-P20-P9-P22HHHHHABBBBBAICCX-130026-P20-P9-P23HHHHHABBBBBAICCX-130026-P20-P9-P29HHHHHABBBBA	ICCX-130026-P20-P47-P2	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P9-P17HHHHHABBBBBAICCX-130026-P20-P9-P22HHHHHABBBBBAICCX-130026-P20-P9-P23HHHHHABBBBBAICCX-130026-P20-P9-P29HHHHHABBBBA	ICCX-130026-P20-P47-P9	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P9-P22 HHHHHA B B B B A ICCX-130026-P20-P9-P23 HHHHHA B B B B A ICCX-130026-P20-P9-P29 HHHHHA B B B B A ICCX-130026-P20-P9-P29 HHHHHA B B B B A	ICCX-130026-P20-P9-P10	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P9-P23 HHHHHA B B B B B A ICCX-130026-P20-P9-P29 HHHHHA B B B B B A	ICCX-130026-P20-P9-P17	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P9-P29 HHHHHA B B B B B A	ICCX-130026-P20-P9-P22	НННННА	В	В	В	В	В	А
	ICCX-130026-P20-P9-P23	НННННА	В	В	В	В	В	А
ICCX-130026-P20-P9-P30 HHHHHA B B B B B A	ICCX-130026-P20-P9-P29	НННННА	В	В	В	В	В	А
	ICCX-130026-P20-P9-P30	НННННА	В	В	В	В	В	А

Table 18: Genotyping data of the homozygous $F_{2:3}\ plants$ for flanking KASPar markers

ICCX-130026-P29-P4-P1	ННННВВ	А	А	А	-	В	В
ICCX-130026-P29-P4-P11	HHHHBB	А	-	А	-	В	В
ICCX-130026-P29-P4-P12	HHHHBB	А	-	А	-	В	В
ICCX-130026-P29-P4-P19	HHHHBB	А	-	А	-	В	В
ICCX-130026-P29-P4-P8	HHHHBB	А	А	А	А	В	В
ICCX-130026-P29-P4-P9	HHHHBB	А	А	А		В	В
ICCX-130026-P6-P16-P1	НННННА	В	В	В	В	В	А
ICCX-130026-P6-P16-P10	НННННА	В	В	В	В	В	А
ICCX-130026-P6-P16-P11	НННННА	В	В	В	В	В	А
ICCX-130026-P6-P16-P14	НННННА	В	В	В	В	В	А
ICCX-130026-P6-P16-P7	НННННА	В	В	В	В	В	А
ICCX-130026-P6-P17-P10	HHHAAA	В	В	В	-	А	А
ICCX-130026-P6-P17-P2	HHHAAA	В	В	В	-	А	А
ICCX-130026-P6-P17-P3	HHHAAA	В	В	В	-	А	А
ICCX-130026-P6-P17-P8	НННААА	В	В	В	-	А	А

Marker	-	CKAN42210	CKANA2211	CKAN42212	CKANADDI	4 644442215	CKANA2177	CKANA2216	CKAN42217	CKAM2210	CKAN42179	CKAN42170	CKAN42210	CKAN2220	CKAN42221	CKAM2222	CKAN2222	CKAN42224	CKANADOD	CKAN2220	CKAN2191	CKAM2227 CKAM2	128 CKAN	12220 CKAM2182
Marker	<u></u>	CKAIVIZZIU	CKAIVIZZII	CKAIVIZZ13	CKAWZZ14	4 CKAWIZZIS	CKAIVIZ177	CKAIVIZZ16	CKAIVIZZ17	CKAIVIZZI8	CKAIVIZ178	CKAWIZ175	CKAWZZIS	CKAIVIZZZU	CKAIVIZZZI	CKAIVIZZZZ	CKAIVIZZZ3	CKAIVIZZZ4	CKAIVIZZZ	CKAIVIZZZE	CKAWIZ181	CRAINIZZZI CRAINIZ	.28 CKAIV	ZZZ9 CKAWZ18Z
F23 recombinants	Family																						<u> </u>	
ICCX-130026-P13-P3-P1	BC ₆ F ₃ _1				A	A				A	A	A	A						A	A	A	B A	A	В
ICCX-130026-P13-P3-P4				A	A	A			A	A	A	A		A			Α		A	A		B A	A	B
ICCX-130026-P13-P3-P15				A	A	A			A	A	A	A	A	A	A		A	B	A	A	A	B A	A	B
ICCX-130026-P13-P3-P17				A	A	A			A	A	A	A	A	A					A	A	A	- A	A	B
ICCX-130026-P17-P21-P5	BC ₆ F ₃ _2			A	A	A			В	A	A	A	A	A					A	В		A B	A	A
ICCX-130026-P17-P21-P6				A	A	A		-	В	A	A	A	A	A				-	A	В		A B	A	A
ICCX-130026-P17-P21-P8				A	A	A			B	A	A	A	A	A					A	B		A B	A	A
ICCX-130026-P17-P21-P10				A	A	A			В	A	A	A	A	-			A		A	В		A B	A	A
ICCX-130026-P20-P40-P3	BC ₆ F ₃ _3	A .	A	A	A	A	A		A	A	В	В	В	В	5			В	A	В	-	B B	В	В
ICCX-130026-P20-P40-P6		A	A	A	A	A	Α	A	A	A	В	В	В	В	В	В	В	A	Α	A	В	в -	В	В
ICCX-130026-P20-P40-P13		A .	A	A	A	A	A	A	A	A	В	В	В	В	В	В	В	A	A	A	В		В	В
ICCX-130026-P20-P40-P14		A .	A	A	A	A	A	A	A	A	В	В	В	В	В	В	В	A	A	A	В	в -	B	B
ICCX-130026-P20-P40-P15		A .	A	A	A	A	A	A	A	A	В	В	В	В	В	В	В	A	A	В	В	B A	B	B
ICCX-130026-P20-P40-P17		A .	A	A	A	A	A	A	A	A	В	В	В	В	В	В	В	A	A	-	-	B A	B	В
ICCX-130026-P20-P40-P19				A	A	A			A	A	В	В	В	В	В		В		A	A	В	B A	B	B
ICCX-130026-P20-P40-P20				A	A	A			A	Α	В	В	В		-		В		Α	A	В	- A	В	В
ICCX-130026-P20-P40-P22				A	A	A			A	Α	В	В	В	В	В		В	A	A	A	В	B A	В	В
ICCX-130026-P20-P40-P24		A .	A	A	A	A	A	A	A	A	В	В	В	В	В	В	В	A	A	A	В	B A	В	В
ICCX-130026-P29-P4-P1	$BC_6F_3_4$	A .	A	A	A	A	Α	A	В	A	A	A	A	A	A	A	A	В	A	A	В	A B	A	В
ICCX-130026-P29-P4-P8		A	A	A	A	A	A	A	В	A	A	A	A	A	A	A	A	В	A	A	В	A B	A	В
ICCX-130026-P29-P4-P9		A	A	A	A	A	A	A	В	A	A	A	A	A	A	A	A	В	A	A	В	A B	A	В
ICCX-130026-P29-P4-P11		A	A	A	A	A	A	A	В	A	A	A	A	A	A	A	A	В	A	A	В	A B	A	В
ICCX-130026-P29-P4-P12		A .	A	A	A	A	А	A	В	A	A	A	A	A	A	A	A	В	A	A	В	A B	A	В
ICCX-130026-P29-P4-P19		A .	A	A	A	A	А	A	В	A	A	A	A	A	A	A	A	В	A	A	В	A B	A	В
ICCX-130026-P20-P12-P28		В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	В	A	В	Α	A B	A	A
ICCX-130026-P20-P12-P5	BC ₆ F ₃ 5	В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	A	A A	A	A
ICCX-130026-P20-P12-P8		В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	Α	A A	A	Α
ICCX-130026-P20-P12-P9		В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	Α	A A	A	A
ICCX-130026-P20-P12-P10		В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	Α	A A	A	A
ICCX-130026-P20-P12-P16		В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	Α	A A	A	A
ICCX-130026-P20-P12-P23		В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	Α	A A	A	A
ICCX-130026-P20-P12-P24		В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	Α	A A	A	A
ICCX-130026-P20-P12-P26		В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	Α	A A	A	Α
ICCX-130026-P6-P17-P2	$BC_6F_3_6$	В	В	В	в	в	в	В	В	В	В	A	A	A	A	A	A	A	A	A	А	A A	A	A
ICCX-130026-P6-P17-P3			В	В	В	В	в	в	В	В	В	A	A	A	A	A	A	A	A	A	А	A A	A	A
ICCX-130026-P6-P17-P8		В	В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	A A	A	A
ICCX-130026-P6-P17-P10		В	В	В	В	В	В	В	В	В	В	A	A	A	A	A	A	A	A	A	A	A A	A	A
ICCX-130026-P20-P47-P1	BC ₆ F ₃ 7	В	В	в	в	В	В	в	В	в	в	в	в	в	в	в	в	A	A	A	В	B A	в	Α
ICCX-130026-P20-P47-P2				В	B	В		B	R	B	В	B	B	B	B		B		A	A	B	B A	В	Δ
ICCX-130026-P20-P47-P9					B	B			B	B	B	B	B	B	B		B		A	A		B A	B	A
ICCX-130026-P20-P47-P13		-	-	B	B	B			B	B	B	B	B	B	B		B		A	A	B	B A	B	Δ
ICCX-130026-P20-P47-P17				B	B	B			B	В	В	B	B	B	-				A	A	B	B A	B	A
ICCX-130026-P20-P47-P18					B	B			B	B	B	B	B	B			B		A	A		B A	B	A
				B	-	-	-	-	-	B	B	-	-	в	-		в			A	В		B	
ICCX-130026-P20-P47-P19		-	-	-	В	B		-	B	5	-	B	B	-	B				A			B A	-	A
ICCX-130026-P13-P3-P5	BC ₆ F ₃ _8		-	5	В	В	-	5	В	В	В	В	В	В	В	-	В		A	A	5	B A	В	В
ICCX-130026-P13-P3-P6			-	В	В	В		-	В	В	В	В	В	В	В		В	A	A	A	-	B A	В	В
ICCX-130026-P13-P3-P7			В	В	В	В		В	В	В	В	В	В	В	В		В	A	A	A	В	B A	В	B
ICCX-130026-P13-P3-P8		В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	A	A	A	В	B A	В	B
ICCX-130026-P20-P9-P10	$BC_6F_3_9$	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	A	Α	В	В	A B	В	Α
ICCX-130026-P20-P9-P17		В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	A	A	В	В	A B	-	Α
ICCX-130026-P20-P9-P22		В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	A	A	В	В	A B	В	A
ICCX-130026-P20-P9-P23		В	В	В	В	В		В	В	В	В	В	В	В	В	В	В	A	A	В	В	A B	В	A
ICCX-130026-P20-P9-P29		В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	A	A	В	В	A B	В	A
ICCX-130026-P20-P9-P30		В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	A	A	В	В	A B	В	A
ICCX-130026-P6-P16-P1	BC ₆ F ₃ _10	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	A	В	В	В	A B	В	A
ICCX-130026-P6-P16-P7			В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	A	В	В	В	в в	В	A
ICCX-130026-P6-P16-P10		B	H	H	н	н	B	H	н	н	В	В	н	н	н		н	A	н	н	В	н н	н	A
ICCX-130026-P6-P16-P11		B	В	В	В	В	B	В	В	В	В	В	В	В	В	В	В	A	В	В	В	B B	B	A
ICCX-130026-P6-P16-P14					В	В			В	В	В	в	В			В			В	В		B B	B	A
				•																				

Table 19: Genotyping of 59 selected homozygous recombinants from F_{2:3} families with newly developed KASPar markers

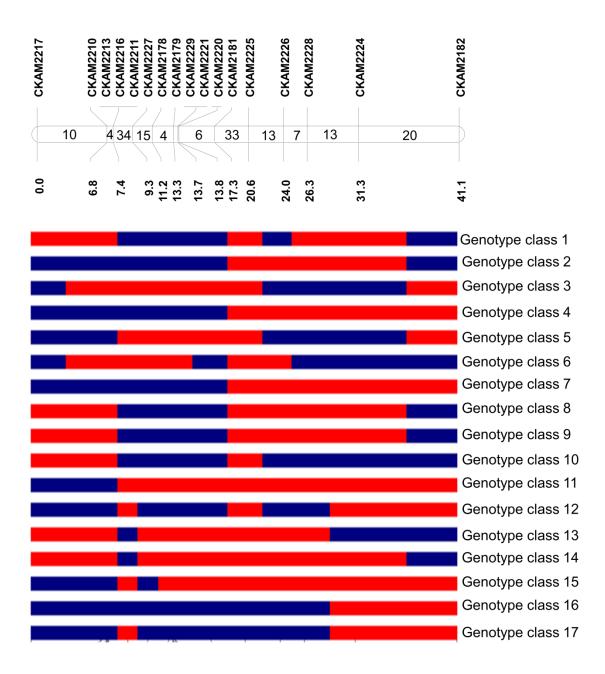


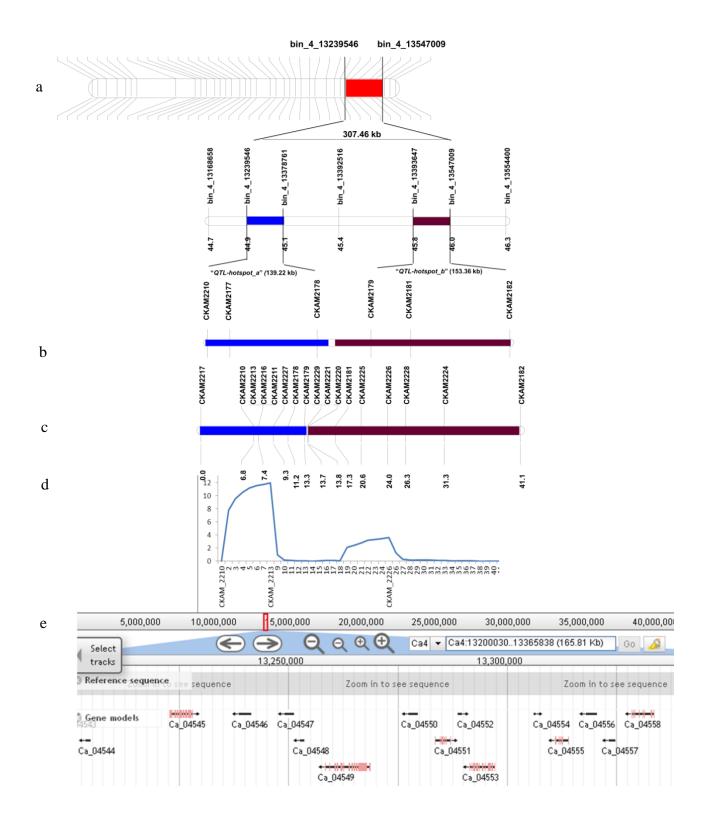
Figure 13: Genotype classes of $F_{2:3}$ fine mapping lines using additional KASPar markers. The selected $F_{2:3}$ recombinant lines (no=59) were further genotyped with newly generated 18 KASPar markers. Genotyping of these $F_{2:3}$ lines with additional KASPar markers resulted in 17 genotype classes based on the recombination identified in this region.

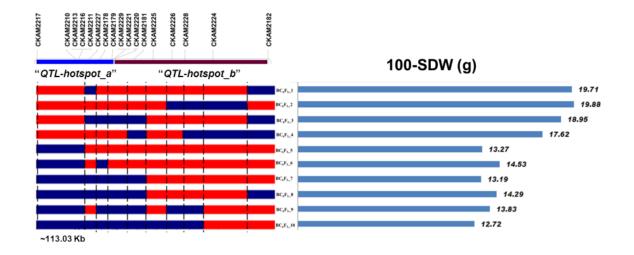
4.7.5 Identification of QTL using F₃ data

The genetic linkage map constructed for fine genetic mapping of "*QTL-hotspot*" comprised 21 markers and the total map distance was 41.09 cM. The high resolution map along with the phenotyping data were used for QTL-fine mapping. Two QTLs were identified for 100-SDW, of which one QTL was flanked by CKAM2210 and CKAM2213 with the phenotypic variation of 56.12% and the LOD of 11.95 whereas the other QTL was flanked by CKAM2225 and CKAM2226 with the LOD of 3.64 and PVE of 11.42% (Figure 14, Table 20).

4.7.6 Fine mapping of the QTL for 100-SDW

In order to refine the identified QTL region, progeny testing was carried out on the $F_{2:3}$ recombinant lines. These F_3 lines were grouped into 10 families (BC₆F₃_1 to BC₆F₃_10) each family represents one F_2 individual from which the F_3 lines were derived. These groups carried the homozygous allele of ICC 4958 and homozygous allele of ICC 1882 for the tested markers located in "*QTL-hotspot_a*" and "*QTL_hotspot_b*". Genotypes of these lines were determined and the recombination around "*QTL-hotspot_a*" and "*QTL_hotspot_b*" were identified. This analysis clearly showed that the QTL identified earlier within the "*QTL-hotspot*" region, ('*QR3100sdw03*' from the current study, see chapter 4.3.4, Table 7) for 100-SDW was mapped between CKAM2215 (13297602 bp) and CKAM2217 (13331455 bp) on CaLG04 (Figure 14) which covers a region of 33.85 kb. Due to the deviation observed between genetic and physical map, fine mapped region was considered from CKAM2210 (13221840 bp) and CKAM2217 (13331455 bp). This region spans 113.03 kb on pseudomolecule 4 of chickpea physical map.


Table 20: QTLs identified from F_3 fine mapping population


Trait name	Linkage group	Position (cM)	Left marker	Right marker	LOD [#]	PVE [*] (%)	Additive effect	Dominance effect
100-SDW	4	7	CKAM2210	CKAM2213	11.96	56.12	2.61	6.52
100-SDW	4	24	CKAM2225	CKAM2226	3.65	11.42	-0.55	-8.55

LOD[#] - logarithm of odds (base 10); PVE^{*} - phenotypic variation explained.

Table 21: Genes identified from progeny testing of F₃ homozygous lines

Gene	Start	End	Predicted function
Ca_04546	13238649	13241556	stem-specific protein tsjt1-like
Ca_04547	13249157	13251234	probable inactive serine threonine-protein kinase lvsg-like
Ca_04548	13252578	13253678	transcription initiation factor tfiid subunit 8-like
Ca_04549	13258318	13268884	probable inactive serine threonine-protein kinase lvsg-like
Ca_04550	13277417	13279562	coated vesicle membrane
Ca_04551	13283454	13287152	nad -linked oxidoreductase superfamily protein isoform 1
Ca_04552	13288811	13289685	early light-induced-like protein
Ca_04553	13291505	13297363	dymeclin-like isoform x1
Ca_04554	13306199	13306531	heat stress transcription factor a-6b-like
Ca_04555	13311000	13314040	-dihydroxy-3-keto-5-methylthiopentene dioxygenase 2-like PREDICTED: uncharacterized protein LOC101502642 isoform
Ca_04556	13318116	13320581	X1
Ca_04557	13323350	13324896	-dihydroxy-3-keto-5-methylthiopentene dioxygenase 1-like
Ca_04558	13328534	13333733	divergent cct motif protein
Ca_04559	13354281	13354692	epidermal patterning factor-like protein 4-like
Ca_04560	13374809	13377721	emb: isoform 1

f

Figure 14: Fine mapping of 'QR3100sdw03' through progeny testing. a) Bin map of CaLG04. "OTL-hotspot" region reported earlier was refined through skim sequencing based SNP analysis and highlighted in red colour which covers a shortest physical length of ~ 307.46 kb. This region was delimited into two regions namely, "QTL-hotspot_a" and "QTL-hotspot_b" on CaLG04; b) Map generated on F₂ population. Flanking SNP markers of "QTL-hotspot_a" and "QTL hotspot-b" were converted into KASPar markers and screened on F₂ population. Linkage map was constructed using JoinMap V4.0 which covered a length of 17.39 cM; c) Map generated on F₃ population. In order to identify more recombinants, all the SNPs located in "QTL-hotspot_a" and "QTL-hotspot_b" were converted to KASPar markers and screened on F₃ lines. Genotyping data was used to construct refined genetic map using JoinMap V4.0. This map spanned 41.09 cM; d) QTL identified on F₃ population. QTL analysis using QTL IciMapping Version 3.3 identified QTLs within "QTL_hotspot_a" for 100-SDW e) Jbrowse view of "QTL hotspot a". A total of 15 genes were located in "QTL hotspot a" which are shown in the figure; f) Progeny testing with the selected informative $F_{2:3}$ recombinants. Progeny testing on F_3 lines using genotyping and phenotyping data clearly indicated the role of "QTL_hotspot_a" in controlling 100-SDW.

Figure 15: Field view of fine mapping population in F₁, F₂ and F₃ generations. F₁ and F₃ lines were generated at ICRISAT, Patancheru

during October 2013 and October 2014 respectively, whereas F₂ lines were generated at Indian Institute of Pulses Research-Regional Research Station cum Off-season Nursery, Dharwad, Karnataka during June 2014.

4.8 Candidate Genes in the Refined Regions

The delimited region of 113.03 kb (13221840 bp to 13331455 bp) from "*QTL-hotspot_a*" was examined for candidate gene identification. A total of 15 genes were identified in this region. Gene ontology study was conducted for all these genes. enes and their functional role have been given in Table 21. Among these, few genes were annotated to be stress specific. For instance, Ca_04547, Ca_04548, Ca_04549, Ca_04551 and Ca_04554 codes for probable inactive serine threonine-protein kinase lvsg-like, transcription initiation factor tfiid subunit 8-like, probable inactive serine threonine-protein kinase lvsg-like, nad -linked oxidoreductase superfamily protein isoform and heat stress transcription factor a-6b-like respectively. Additionally, few other important genes from "*QTL-hotspot_b*" also were noted like Ca_04561, Ca_04564, Ca_04567 and Ca_04570 coding for e3 ubiquitin-protein ligase rnf128-like, leucine-rich repeat extensin-like protein 6-like, serine threonine-protein kinase ht1-like isoform x1 and vicilin 47 kDa protein respectively.

DISCUSSION

5. DISCUSSION

Terminal drought is a major constraint to chickpea production and productivity, especially in arid and semi-arid regions. The changes in global climate are predicted to aggravate losses due to drought in particular. In this context, identification of candidate genes for drought tolerance will help to define breeding strategies and provide molecular markers to improve selection efficiency and therefore mitigate yield losses in chickpea. Drought will continue to be a serious constraint to chickpea production. Owing to its complex nature, the genetic dissection of drought tolerance into component traits has been challenging. However, comprehensive insights have been provided into component traits by few recent studies (Hamwieh et al. 2013; Varshney et al. 2014). Varshney and colleagues (2014) reported a promising "*QTL-hotspot*" region on linkage group 4 spanning about 29 cM and harbours QTLs for several drought tolerance related traits. In this present study several approaches were adopted to fine map this genomic region for further use in chickpea improvement programs.

5.1 SNP Discovery and Refining "QTL-hotspot" Region

5.1.1 Linkage map with GBS-derived SNP markers

To date, SSR markers have been extensively used for linkage mapping on chickpea intraspecific populations. Although availability of genomic resources have reduced the SSR marker identification span, polymorphism study and further screening is still a time consuming and labor intensive process. As a result, most genetic maps remain limited to only a few hundred markers (Radhika et al. 2007; Jamalabadi et al. 2013; Varshney et al. 2014). In this study, GBS approach was followed which has the advantage of simultaneous SNP identification and genotyping. As a result, 828 novel SNPs were identified on ICC 4958 × ICC 1882 RIL population. Thus a greater number of markers are now available for this intraspecific population. As compared to GBS studies in other plant species, SNP markers identified in the present study were less (Poland et al. 2012; Sonah et al. 2013). This may be due to variable number of reads generated per RIL (0.28 - 19.23 million reads) resulting in more missing data points or very stringent SNP calling criteria adopted in this study, for instance SNPs present in < 50% RILs were excluded.

A total of 1,146 markers (828 SNPs, 279 SSRs, 21 DArT, 14 EST-SSR and 4 GMM) were used for linkage map construction, out of which 1,007 (87.87%) markers were mapped which spanned 727.29 cM. This saturated map has ~4 fold more markers and increased the marker density from 0.50 to 1.30 per cM as compared to the 241 loci map reported earlier (Varshney et al. 2014). Nearly, 94.60% (228) markers from the earlier study (Varshney et al. 2014), were mapped on the respective linkage groups in the new map, reflecting the higher level of conservation in marker order between the maps. Interestingly, 46% of the SNP markers were mapped on CaLG04. This may be due to high repeat rich regions in the case of Ca4 pseudomolecule and it was evident from the earlier studies (Varshney et al. 2013a), that the average SNP density per kb (7.6) is higher in the case of chickpea "Ca4" psuedomolecule i.e., the CaLG04. Further, the study also indicated higher diversity level in elite cultivars of chickpea in the case of "Ca4" pseudomolecule (θ_{π} =2.8180; θ_{w} =2.2377). High θ_{π} and θ_{w} are usually associated with repeat rich regions in genome (Varshney et al. 2013a).

While undertaking this study, genetic maps with only few hundreds of markers especially with SSR markers were available for chickpea. Even though few high density linkage maps were reported in recent past, these maps were constructed for inter specific crosses (Nayak et al. 2010, Gujaria et al. 2011, Thudi et al. 2011, Hiremath et al. 2012). Up to date, no studies have reported high density linkage map for intra specific crosses (Radhika et al. 2007, Garg et al. 2011, Jamalabadi et al. 2013, Varshney et al. 2014). This study reports high density linkage map with 1,007 loci including NGS based SNP markers.

5.1.2 Developing breeder friendly markers from the "QTL-hotspot" region

This study integrated 49 new markers in the "*QTL-hotspot*" region thereby enriching the same from 7 markers to 55 markers. Integration of these 49 markers has refined the "*QTL-hotspot*" region from 29 cM to 14 cM. Several fine mapping studies earlier have shown that the integration of additional markers have narrowed down the QTL interval. For instance, in the case of rice, Yu et al. (2011) demonstrated that mapping of additional SNP markers not only detected new QTLs but also increased the resolution of the QTL. Similarly, Silvar et al. (2012) fine mapped the QTLs for powdery mildew resistance by integrating 32 markers in the QTL region in Spanish barley. Likewise, in case of basmati rice, the "aro3-1" QTL was narrowed down to an interval of 390 kb from the earlier reported interval of 8.6 Mb and "aro8-1" QTL was narrowed down to a physical interval of 430 kb (Singh et al. 2007).

QTL analysis was performed for 20 different traits and 164 robust M-QTLs were detected for 16 traits which included all 14 reported traits from Varshney et al. (2014). More than 50% (91) of QTLs were located on CaLG04 and all were detected in the "*QTL-hotspot*" region which highlights the importance of this region for drought tolerance mechanism in chickpea. Additionally, the current study also identified new QTLs for PBS and DSI which were not detected or reported earlier. Furthermore, some QTLs which were unstable, inconsistent in the earlier study (Varshney et al. 2014) were identified to be stable and consistent. For instance, five additional QTLs were identified in the case of PHT and one additional QTL each for SDW, DF, BM, POD, SPD and yield (Table 9). Comparatively the PVE observed for most of the traits were significantly high, indicating robustness of the identified QTLs.

In order to enhance the introgression of "*QTL-hotspot*" into molecular breeding program, SNP markers were converted into CAPS/dCAPS. As the SSR markers from the "*QTL-hotspot*" showed less/no polymorphism between ICC 4958 and few recurrent chickpea elite cultivars (Thudi et al. 2014), these CAPS and dCAPS markers would be of interest to breeders in marker assisted breeding programs to introgress the "*QTL-hotspot*" region.

5.1.3 Pinpointing candidate genes in the refined "QTL-hotspot" region

Functional annotation of the candidate genes identified in the "*QTL-hotspot*" region revealed their role in various abiotic and biotic stress tolerance mechanisms. For instance, dehydration responsive element binding protein (DREB) which is a well-known transcription factor involved in abiotic stress including drought tolerance (Liu et al. 1998; Lata and Prasad 2011) was identified in the "*QTL-hotspot*" region. Similarly, thiamine thiazole synthase, which was reported to be involved in stress related mechanisms (Rapala-Kozik et al. 2012) was also identified. In addition to these, few trait specific genes like e3 ubiquitin-protein ligase and TIME FOR COFFEE (TIC) were also identified. The e3 ubiquitin-protein ligase activity has been reported to be involved in grain width and weight in rice (Song et al. 2007) while TIC protein has been reported to play role in plant growth, development and circadian clock (Hall et al. 2003; Sanchez et al. 2011; Shin et al. 2013). Shin et al. (2012) has reported a role of TIC in jasmonic acid signaling pathways and in the control of root meristem size in *Arabidopsis*. Loss of this gene was reported to result in reduced root meristem length and cell number (Hong et al. 2014). Therefore further fine mapping and cloning of genes underlying QTL would unravel the genetics behind drought tolerance in chickpea.

In summary, this study identified and implemented GBS based SNP markers for developing a high density linkage map from an intra-specific population in chickpea. The map contains 1,007 loci spanning 727.29 cM and enriching the "*QTL-hotspot*" region from 7 markers to 55 markers. Also this study had refined the "*QTL-hotspot*" region from 29 cM to 14 cM on a genetic map corresponding to ~3 Mb on the physical map. The current study also identified the presence of several stress related candidate genes including DREB in the "*QTL-hotspot*".

Further characterization of these genes will help in identifying the mechanisms of drought tolerance in chickpea. In addition, the CAPS/dCAPS markers developed from this study can be used in marker assisted breeding program for introgressing the "*QTL-hotspot*" into elite cultivar.

5.2 Marker Saturation in "QTL-hotspot" region through Skim Sequencing

NGS technologies have revolutionized the methods of identifying candidate genes for crop improvement. In this study, a skim sequencing approach was used and more than 53,000 SNPs were identified in a RIL population of ICC 4958 and ICC 1882 cross, which represents the largest number of markers used for QTL mapping in chickpea to date.

5.2.1 High density bin map for chickpea

A sliding window based bin mapping approach identified an average of 35 bins per RIL. Theoretically, each RIL contains 3-5 recombination events on each chromosome (Lai et al. 2010). The results obtained in the current study correlates these assumptions ($4 \times 8 = 32$). The average bin size was 210.60 kb and >90% of bins were less than 1 Mb in size, suggesting that majority of the recombinations were captured in this study. Moreover, ~68% bins contained ≤ 10 genes, indicating a high resolution of the bin map. All 1,610 recombination bins were used as markers to construct a linkage map of 973.94 cM. The average inter-bin distance (0.66 cM) observed in this study was lower than other studies conducted on intraspecific mapping populations (0.94 - 7 cM) in chickpea (Kujur et al. 2015c) indicating that the current map is highly saturated. Such a highly saturated map can be used for targeted QTL mapping, QTL cloning and for identification of candidate genes for important agronomic traits in chickpea. A high correlation between bin orders and their positions on the genome sequence was observed for linkage groups 4 and 8. The interchanging of bin positions observed on other linkage groups could be due to misassembled portions of chickpea genome assembly. Such misassembled regions in chickpea genome have recently been reported (Bayer et al. 2015; Ruperao et al. 2014).

5.2.2 Fine mapping of "QTL-hotspot" region

Majority of QTLs identified in the present study are in concordance with earlier study (Varshney et al. 2014). For instance, in all the three studies (Varshney et al. 2014; current study; chapter 4.2, chapter 4.5.5), QTLs for 100-SDW, RLD, PHT, POD, RTR and SDW were observed on CaLG04, while a QTL for DF was reported to be present on CaLG08 indicating the quality and accuracy of the linkage map. The "OTL-hotspot" region of 7.74 Mb identified in earlier study (Varshney et al. 2014) had 7 SSRs and was further refined to ca. 3 Mb by integration of 49 SNP markers as described in section 5.1.2. The skim sequencing approach based QTL analysis, integrated 1,421 SNPs and identified 38 recombination breakpoints within this region, thereby splits the "QTL-hotspot" into two subregions viz. "QTL-hotspot_a" (139.22 kb; 0.23 cM) and "QTL-hotspot_b"(153.36 kb; 0.22 cM), and thus further narrowed down the earlier reported "QTL-hotspot" region. This demonstrates that whole genome resequencing (WGRS) approach helps to significantly improve the accuracy and resolution of QTL mapping which was observed in several studies in other crops. For example, in soybean, QTLs of sizes 7.90 to 340 kb were identified for root knot nematode resistance using ~100 thousand SNPs and 242 RILs (Xu et al. 2013), while in another study QTLs of 176 kb to 1.28 Mb sizes were identified using 1,798,504 SNPs and 96 ILs for salt tolerance (Qi et al. 2014). This resolution is equivalent to traditional fine mapping studies. For instance, a grain-weight QTL, gw3.1 in rice was narrowed down to 93.8 kb using fine mapping procedures (Li et al. 2004). These studies suggest that the bin mapping approach can be used for candidate gene identification using a RIL population and thus avoiding the laborious time required for traditional fine mapping.

Annotation of the 26 genes located within the refined "*QTL-hotspot_a*" and "*QTL-hotspot_b*" identified several important genes, including e3 ubiquitin-protein ligase, leucine-rich repeat extensin-like protein, serine threonine-protein kinase, homocysteine s-methyltransferase, vicilin, which have been reported to play a role in biotic and abiotic stress tolerance were identified (Osakabe et al. 2013; Ruiz et al. 2002; Song et al. 2007; Wang et al. 2012) and differential gene expression analysis proved their involvement in the drought tolerance mechanism in chickpea. 'Homocysteine s-methyltransferase' gene was also reported to be upregulated in drought tolerant chickpea cultivar 'Xj-209' under stress condition (Wang et al. 2012) and could be one of the important genes involved in drought tolerance mechanism in chickpea. Proteomic analysis of rice seedlings also reported involvement of 'Homocysteine s-methyltransferase' in regulating cold stress (Hashimoto et al. 2007). The Ca_04567 gene was annotated as 'LRR receptor like serine threonine-protein kinases' which are the well characterized membrane proteins known for their roles in stress response and abscisic acid (ABA) regulation (Osakabe et al. 2013).

In addition to this, the Ca_04561 gene was predicted to be an 'e3 ubiquitin-protein ligase'. Ubiquitination is an important post translational modification to regulate growth and development in all eukaryotes. Various studies in plants (Pokhilko et al. 2011; Sonoda et al. 2009; Thomann et al. 2005) reported the role of the ubiquitin 26S proteasome system (UPS) in regulating fundamental processes such as embryogenesis, photomorphogenesis, and organ development. E3 ubiquitin ligase, which determines substrate specificity, is an important enzyme of the ubiquitination pathway (Lee et al. 2011; Lyzenga et al. 2012). Recent studies (Ju et al. 2013; Kim and Kim 2013a; Li et al. 2013) reported the involvement of e3 ubiquitin ligase in the regulation of abiotic stress tolerance. A study in *Arabidopsis* (Kim and Kim 2013b) showed that suppression of one of RING e3 ubiquitin ligase (*AtATL78*) gene was responsible for increasing tolerance to cold stress while decreasing drought stress tolerance.

Regulation of this gene could be responsible for determining drought sensitivity/resistance in chickpea. A loss of function of RING-type e3 ubiquitin ligase was reported to be responsible for enhanced grain width, weight and yield in rice (Song et al. 2007). This indicates that 'e3 ubiquitin-protein ligase' could be responsible for only abiotic stress tolerance in chickpea while a different mechanism might be present for controlling seed size. Ca_04564 gene was identified as 'leucine-rich repeat extensin-like protein'. The role of extensin like genes in seed germination has already been reported in *Arabidopsis* (Dubreucq et al. 2000). They found extensin like genes are expressed specifically in endosperm and might play a role in cell wall modification. This result suggests a detailed study of such genes in the context of seed size/weight is must.

5.3 High Resolution Mapping Population and Progeny Testing

Though a large number of (6,000) progenies were raised, due to unfavorable weather, only around 2,000 plants survived. Usually any fine mapping studies accounts for large population by selecting 1,000 plants per cM distance. In this case, as the QTL was refined to 0.1 - 0.4 cM, theoretically around 10,000 lines might result in identifying useful recombination and might have helped to place the QTL regions into gene level. However we used 1,911 plants for fine mapping study. This may be the reason for identifying less number of recombination during progeny testing. However the resolution of progeny testing has allowed mapping the 100-SDW QTL ("*R3100sdw03*") region into "*QTL-hotspot_a*". Ca_04546 was annotated to be stem-specific protein tsjt1-like, stem specific protein are reported to play a role in dehydration stress (Lata et al. 2010). Therefore the role of Ca_04546 may contribute to seed weight and thus controlling seed weight under drought conditions. Ca_04558 was annotated to divergent cct motif protein. Cct motif was reported to control heading date and flowering time in rice (Zhang et al. 2015; Lee et al. 2015; Song et al. 2013). Other important candidate genes like Ca_04547, Ca_04548, Ca_04549, Ca_04551, Ca_04554 coding for probable

inactive serine threonine-protein kinase lvsg-like, transcription initiation factor tfiid subunit 8-like, probable inactive serine threonine-protein kinase lvsg-like, nad -linked oxidoreductase superfamily protein isoform 1 and heat stress transcription factor a-6b-like respectively.

5.4. Candidate genes for future studies

Further evaluation of the fine mapping population on F_4 lines for all the traits will help in delimiting the regions into finer kbs for each trait. The genes pinpointed from "*QTL-hotspot_a*" through progeny testing in the current study can be focused further for confirming their role in drought tolerance related traits in chickpea. This can be achieved through gene expression studies using RT-PCR, transformation and validation of transgenic lines and knockout studies.

The genes reported from the current study are described as below. These genes can be focused towards cloning in future studies.

5.4.1 Transcription factors

5.4.1.1 Transcription initiation factor TFIID subunit 8-like

Ca_04548 was annotated to transcription initiation factor TFIID subunit 8-like. Earlier studies have reported the role of transcription initiation factor TFIID subunit in drought tolerance mechanism in cotton (Kebede et al. 2015). TFIID has been popularly known for its role in transcription initiation of RNA polymerase II by specifically binding to promoter region. TFIID is not only involved in promoter recruitment but also plays a role in gene activation and it remains associated with the promoter even after promoter is active state, however TFIID is not required for maintaining the transcription but only for initiation (Cler et al. 2009; Papai et. al. 2011). Expression studies for TFIID may reveal its role in drought tolerance in chickpea.

5.4.1.2 Heat stress transcription factor a-6b-like

Ca_04554 annotated to code for heat stress transcription factor a-6b-like. Heat stress transcription factors (Hsfs) are vast studied in plants and reported to play very important role in signal transduction during various biotic and abiotic stresses like heat, drought, heavy metals, cold, salt, metabolic inhibitors, pathogen attack and oxidative stress. Expression of heat shock proteins (HSP) is controlled by heat Hsfs. Plants respond to high temperature by producing isoforms of heat stress proteins (Baniwal et al. 2004; Nover et al. 2001; Scharf et al. 1998; Doring et al. 2007). Up regulation of heat stress transcription were observed in many plant species like Arabidopsis, rice, tomato, pigeonpea, etc. (Schramm et al. 2006; Wang et al. 2009; Mishra et al. 2002; Maibam et al. 2015). It is always understood that the stress tolerance mechanism of plants for various stresses are interlinked. For instance, DREB2A CA of Arabidopsis was found to induce not only drought and salt related genes but also heat shock related genes. Collectively it was reported that DREB2A functions in both heat and drought conditions (Sakuma et al. 2006). These findings supports to our current identification of Hsfs in the "*QTL-hotspot*" region for drought tolerance. This gene can be further targeted for expression and further validation studies.

5.4.1.3 Early light-induced-like protein

Ca_04552 annotated to code for early light-induced-like protein. Early light inducing proteins (ELIP) play important role during high light stress and transcriptional activation of ELIPs has been observed along with other important proteins. In addition to light stress, up regulation of ELIPs were also observed in wide range of stresses like drought, exposure to ultra violet radiation, cold and freezing stress (Bartels et al. 1992; Hayami et al. 2015). Recently it was reported that multi stress signals merge at a single transcriptional unit of ELIP2 promoter to

give the multi stress response. This results in one of the promoter element to unify multi stress signals.

5.4.2 Signal transduction

5.4.2.1 Inactive serine threonine-protein kinase lvsg-like protein

Ca_04547 and Ca_04549 were annotated to code for probable inactive serine threonineprotein kinase lvsg-like protein and Ca_04567 codes for serine threonine-protein kinase ht1like isoform x1. Many studies have reported the role of serine threonine-protein kinases in signaling during biotic and abiotic stresses (Osakabe et al. 2013; Halford and Hardie 1998). Wang et al. (2012) has studied transcriptomic profiling of unigenes in drought stressed root and leaves in chickpea, where the role of serine threonine-protein kinase have been reported to play role in calcium signaling during drought stress. Serine threonine-protein kinases were found to be up regulated after 96 h of dehydration stress in chickpea while studying for the changes in nuclear proteome during drought stress (Pandey et al. 2008). In another study Serine threonine-protein kinases were reported to be expressed in both abiotic and biotic stress conditions for salinity and Ascochyta blight respectively (Mantri et al. 2010). It was reported to regulate both negatively and positively the cell response to stress conditions (Davies et al. 1999). Up regulation of ser/thr protein kinases during dehydration stress was also reported in chickpea by Boominathan et al. (2004). Recently Meena et al. (2015) have reported the role calcium sensors (Calcium B-like-CBL) which regulate a group of ser/thr protein kinases called CBL-interacting protein kinases (CIPKs) during dehydration stress in chickpea. Additionally, it reports the expression of CaCIPK25 gene increased at different stresses like salt, dehydration and different hormonal treatments. Over expression of CaCIPK25 in tobacco enhanced the tolerance of the transgenic plants to water deficit and salt stress. This gene was found to be located in linkage group 4 on chickpea genome. This

supports our assumption that the ser/thr protein kinase gene identified within the refined "*QTL-hotspot*" regions might be one of the possible candidate genes for drought tolerance in chickpea.

5.4.3 Protein degradation

5.4.3.1 E3 ubiquitin-protein ligase rnf128-like

Ca_04561 codes for e3 ubiquitin-protein ligase rnf128-like. Ubiquitination is an important post translational modification to regulate growth and development in all eukaryotes. Various studies in plants (Pokhilko et al. 2011; Sonoda et al. 2009; Thomann et al. 2005) reported the role of the ubiquitin 26S proteasome system (UPS) in regulating fundamental processes such as embryogenesis, photomorphogenesis, and organ development. E3 ubiquitin ligase, which determines substrate specificity, is an important enzyme of the ubiquitination pathway (Lee et al. 2011; Lyzenga et al. 2012). Recent studies reported the involvement of e3 ubiquitin ligase in the regulation of abiotic stress tolerance (Ju et al. 2013; Kim et al. 2013a; Li et al. 2013). A study in Arabidopsis showed that suppression of one of RING e3 ubiquitin ligase (AtATL78) gene was responsible for increasing tolerance to cold stress while decreasing drought stress tolerance (Kim et al. 2013b). Regulation of this gene could be responsible for determining drought sensitivity/resistance in chickpea. A loss of function of RING-type e3 ubiquitin ligase was reported to be responsible for enhanced grain width, weight and yield in rice (Song et al. 2007). This indicates that 'e3 ubiquitin-protein ligase' could be responsible for only abiotic stress tolerance in chickpea while a different mechanism might be present for controlling seed size.

5.4.4 Cell defense

5.4.4.1 Leucine-rich repeat extensin-like protein 6-like

Ca_04564 gene was identified as 'leucine-rich repeat extensin-like protein'. The role of extensin like genes in seed germination has already been reported in *Arabidopsis* (Dubreucq et al. 2000). They found extensin like genes are expressed specifically in endosperm and might play a role in cell wall modification. In *Arabidopsis*, LRX (leucine-rich repeat extensin) genes were reported for their role in cell wall development and influencing the plant growth especially in root hair development (Draeger et al. 2015). Baumberger et al. (2001) had reported the role of LRX1, an *Arabidopsis* gene which codes for leucine-rich repeat/extension protein. This study explains the role of LRX1 in root morphogenesis.

5.4.5 Metabolism

5.4.5.1 Stem-specific protein tsjt1-like

Ca_04546 gene codes for stem-specific protein tsjt1-like. Perlikowski et al. (2014) observed stem specific protein to be differentially accumulated during slow and long drought experiments in Lolium and Festuca hybrids. This protein was reported to be involved in hormone metabolism under flooding condition in soybean (Komatsu et al. 2012). This protein was also reported in tomato roots during *fusarium* (FORL) infection (Mazzeo et al. 2014).

5.4.5.2 Nad-linked oxidoreductase superfamily protein isoform 1

Ca_04551 codes for nad-linked oxidoreductase superfamily protein isoform 1. Nicotinamide adenine dinucleotide (NAD) and its derivatives are well known for redox reactions in living organism. They play important role in signaling by generation and scavenging of reactive oxygen species (ROS) and in controlling adaptation to abiotic stresses like heat, salt, drought and biotic stresses (Hashida et al. 2009). NADPH oxidoreductase homolog was identified in the cDNA library of infected chickpea leaves for ascochyta blight and was also identified in chickpea root transcriptome for fusarium wilt (Ichinose et al. 2000). NAD(P)H-dependent oxidoredcutase protein was also identified in roots of chickpea affected by *Fusarium oxysporum* and *Meloidogyne artiellia* (Palomares-Rius et al. 2011).

5.4.6 Storage proteins

5.4.6.1 Vicilin 47 kDa protein

Ca_04570 was annotated to code for vicillin 47 kDa protein. Vicillin is a seed storage protein reported in several plants, such as soybean, pea, faba bean, chickpea, tomato (Boulter et al. 1984; Salgado et al. 2002). Seed storage protein has been reported to play role in seed weight. Johnson et al. (1996) observed a consistent association between seed storage protein, phaseolin (*Phs*) and seed weight in common bean. This study reports *Phs* as candidate gene for seed weight QTL in common bean. So according to the findings from the current study, we may assume this Ca_04570 can be one of the probable candidate genes for seed weight in chickpea.

SUMMARY

6. SUMMARY

The current study entitled "Fine mapping of the "*QTL-hotspot*" region for drought tolerance in chickpea (*Cicer arietinum* L.)" was proposed to understand the molecular mechanism behind drought tolerance in chickpea.

Salient achievements of this study are listed as below:

- In total 6.24 Gb data from ICC 4958, 5.65 Gb data from ICC 1882 and 59.03 Gb data from ICCRIL03 was generated, which identified 828 novel SNPs for genetic mapping. Together with these new markers, a high-density intraspecific genetic map was developed that comprises 1,007 marker loci spanning a distance of 727.29 cM.
- 2. QTL analysis using the extended genetic map along with precise phenotypic data for 20 traits collected over 1-7 seasons identified 49 SNP markers in the "QTL-hotspot" region. These efforts resulted in re-estimating the "QTL-hotspot", which narrowed down the QTL region from 29 cM to 14 cM. In total, 164 main-effect QTLs (M-QTLs) were identified.
- 3. The refined "QTL-hotspot" spanned 14 cM on genetic map corresponding to ~3 Mb on the physical map. A total of 286 genes were identified from this refined "QTL-hotspot" including several stress related genes.
- 4. In addition, a total of 15 novel genic (14 CAPS and 1 dCAPS) markers were newly developed from the SNPs integrated into the "*QTL-hotspot*". These markers can be used in marker assisted breeding program for introgressing the "*QTL-hotspot*" into elite cultivar.

This work (mentioned in points 1-4) has been published in Molecular Genetics and Genomics in 2015 (Jaganathan et al. 2015).

- 5. A total of 82,127 SNPs were identified by employing skim sequencing approach on the RIL population (ICC 4958 \times ICC 1882). Of which, 62,370 SNPs located on pseudomolecules were considered for bin construction. A total of 53,169 SNPs were selected after filtering.
- 6. Sliding window approach was followed to construct bins on the 53,169 SNPs which are derived from skim sequencing approach along with 54 GBS-based SNPs which were integrated into the "*QTL-hostpot*" from objective 1. A total of 1,610 recombination breakpoints were identified and used for linkage map construction. A linkage map spanning 973.94 cM with 1,557 bins was constructed.
- 7. The QTL study identified 71 major QTLs and 63 minor QTLs. Major QTLs were identified for 11 traits (RLD, RTR, SDW, PHT, PBS, DF, DM, POD, 100-SDW, HI and DC) and minor QTLs were identified for all the analyzed traits.
- The high density map delineates the "QTL-hotspot" region from ~3 Mb to two sub-QTL regions viz. "QTL-hotspot_a" of 139.22 kb and "QTL-hotspot_b" of 153.36 kb sizes.
- 9. A total of 15 genes were identified in "QTL-hotspot_a" and 11 genes were identified in "QTL-hotspot_b". Some of the identified genes such as e3 ubiquitin ligase, serine threonine protein kinases, homocysteine s-methyltransferase were annotated as candidate drought tolerance genes, and expression profiling needs to be carried out to understand their involvement in drought tolerance in chickpea.

This work (mentioned in points 5-9) has been published in Nature Scientific Reports in 2015 (Kale and Jaganathan et al. 2015).

10. For further fine mapping of QTL sub regions, a high resolution mapping population was developed by crossing a NIL⁺ line (introgression line with "*QTL-hotspot*" from

ICC 4958) with ICC 1882 genetic background. A total of 6,000 F_2 plants were generated. Of which 1, 911 lines were used for selecting the recombinant lines.

- 11. KASPar assays were developed for 6 SNPs (two flanking and one within the target regions of each sub regions). Genotypic analysis of F₂ lines revealed 42 recombinants.
- 12. Progeny testing on the selected recombinants in F_3 generation confirmed the role of "QTL-hotspot_a" in controlling 100- seed weight trait.
- 13. GBS and skim sequencing based SNP marker integration has narrow down the "*QTLhotspot*" region into two sub-regions of 26 candidate genes.
- 14. Among the two sub regions, "*QTL-hotspot_a*" was identified to play role in controlling 100-seed weight.
- 15. Few candidate genes like Ca_04546, Ca_04547, Ca_04548, Ca_04549, Ca_04551, Ca_04554 and Ca_04558 coding for stem-specific protein tsjt1-like, probable inactive serine threonine-protein kinase lvsg-like, transcription initiation factor tfiid subunit 8-like, probable inactive serine threonine-protein kinase lvsg-like, nad -linked oxidoreductase superfamily protein isoform 1, heat stress transcription factor a-6b-like and divergent cct motif protein respectively were identified in this region.

Future Needs

Although this study provides some basic information on candidate genes, in order to reach prominent conclusions on the role of these genes in drought tolerance, following steps are required. Progeny testing of all the reported major traits identified within the "QTL-*hotspot_a*" and "QTL-*hotspot_b*" in the successive generations will reveal the candidate genes for the respective drought component traits. Therefore further phenotyping for the selected traits and genotyping on the next generation i.e F_4 is prerequisite for identifying more recombinations within these two regions. Additionally, detailed analysis of such identified genes through sequence level variation studies, gene expression, complement

testing, knock down experiments and proteomic analysis will be required to further validate these genes in elucidating drought tolerance mechanism in chickpea.

REFERENCES

7. REFERENCES

Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen R, Kahl G, Winter P, Reifen R (2005) Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (*Cicer arietinum* L.). Theor Appl Genet 111:185-195

Agarwal G, Sabbavarapu MM, Singh VK, Thudi M, Sheelamary S, Gaur PM, Varshney RK (2015) Identification of a non-redundant set of 202 in silico SSR markers and applicability of a select set in chickpea (*Cicer arietinum* L.). Euphytica 205:381-394

Anbessa Y, Bejiga G (2002) Evaluation of Ethiopian chickpea landraces for tolerance to drought. Genet Resour Crop Evol 49:557-564

Anbessa Y, Taran B, Warkentin TD, Tullu A, Vandenberg A (2009) Genetic analyses and conservation of QTL for ascochyta blight resistance in chickpea (*Cicer arietinum* L.). Theor Appl Genet 119:757-765

Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208-218

Azam S, Thakur V, Ruperao P, Shah T, Balaji J, Amindala B, Farmer AD, Studholme DJ, May GD, Edwards D, Jones JD, Varshney RK (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (*Cicer arietinum*; Fabaceae), a crop species without a reference genome. Am J Bot 99:186-192

Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS one 3:10

Bajaj D, Upadhyaya HD, Khan Y, Das S, Badoni S, Shree T, Kumar V, Tripathi S, Gowda CLL, Singh S, Sharma S, Tyagi AK, Chattopdhyay D, Parida SK (2015) A combinatorial approach of comprehensive QTL-based comparative genome mapping and transcript profiling identified a seed weight-regulating candidate gene in chickpea. Sci Rep-UK 5:9264

Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471-487

Bartels D, Hanke C, Schneider K, Michel D, Salamini F (1992) A desiccation-related eliplike gene from the resurrection plant *Craterostigma-plantagineum* is regulated by light and ABA. EMBO J 11:2771-2778

Baumberger N, Ringli C, Keller B. The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in *Arabidopsis thaliana* (2001) Genes Dev 15(9):1128-39

Bayer M, Milne I, Stephen G, Shaw P, Cardle L, Wright F, Marshall D (2011) Comparative visualization of genetic and physical maps with Strudel. Bioinformatics 27:1307-1308

Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Verma PK, Chattopadhyay D (2004) Long term transcript accumulation during the development of dehydration adaptation in *Cicer arietinum*. Plant Physiol 135:1608-1620

Boulter D (1984) Cloning of Pea Storage Protein Genes Philos. Trans Soc Lond B Biol Sci 304:323-332

Buhariwalla HK, Jayashree B, Eshwar K, Crouch JH (2005) Development of ESTs from chickpea roots and their use in diversity analysis of the *Cicer* genus. BMC Plant Biol 5:16

Canci H and Toker C (2009) Evaluation of annual wild *Cicer* species for drought and heat resistance under field conditions. Genet Resour Crop Evol 56:1-6

Chattopadhyay C, Mohapatra SD (2015) Perception of constraints in chickpea production in India. Indian J Agr Sci 85:287-289

Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014) An ultrahigh density bin-map for rapid QTL mapping for tassel and ear architecture in a large F_2 maize population. BMC Genomics 15:433

Cho SH, Kumar J, Shultz JL, Anupama K, Tefera F, Muehlbauer FJ (2002) Mapping genes for double podding and other morphological traits in chickpea. Euphytica 128:285-292

Choudhary S, Sethy NK, Shokeen B, Bhatia S (2006) Development of sequence-tagged microsatellite site markers for chickpea (*Cicer arietinum* L.). Mol Ecol Notes 6:93-95

Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591-608

Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistue L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

Cler E, Papai G, Schultz P, Davidson I (2009) Recent advances in understanding the structure and function of general transcription factor TFIID. Cell Mol Life Sci 66:2123-2134

Cobos MJ, Rubio J, Ferna ndez-Romero MD, Garza R, Moreno MT, Milla nT, Gil J (2007) Genetic analysis of seed size, yield and days to flowering in a chickpea RIL population derived from a Kabuli \times Desi cross. Ann Appl Biol 151:33-42

Cobos MJ, Fernandez MJ, Rubio J, Kharrat M, Moreno MT, Gil J, Millan T (2005) A linkage map of chickpea (*Cicer arietinum* L.) based on populations from Kabuli x Desi crosses: location of genes for resistance to fusarium wilt race 0. Theor Appl Genet 110:1347-1353

Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Millan T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crop Res 111:130-136

Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674-3676

Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T (2008) Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res 36:19

Cuc LM, Mace ES, Crouch JH, Quang VD, Long TD, Varshney RK (2008) Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated groundnut (*Arachis hypogaea*). BMC Plant Biol 8:55

Daryanto S, Wang L, Jacinthe P (2015) Global synthesis of drought effects on food legume production. PLos One DOI:10.1371/journal.pone.0127401

Davies J (1995) Plant Hormones: Physiology, Biochemistry and Molecular Biology. Kluwer Academic, Dordrecht, The Netherlands

Davies JP, Yildiz FH, Grossman AR (1999) Sac3, an Snf1-like serine threonine kinase that positively and negatively regulates the responses of *Chlamydomonas* to sulfur limitation. Plant Cell 11:1179-1190

Deokar AA, Kondawar V, Jain PK, Karuppayil SM, Raju NL, Vadez V, Varshney RK, Srinivasan R (2011) Comparative analysis of expressed sequence tags (ESTs) between drought-tolerant and -susceptible genotypes of chickpea under terminal drought stress. BMC Plant Biol 11:70

Deschamps S, Nannapaneni K, Zhang Y, Hayes K (2012) Local assemblies of paired end reduced representation libraries sequenced with the Illumina genome analyser in maize. Int J Plant Genomics 2012

Doddamani D, Katta MAVSK, Khan AW, Agarwal G, Shah TM, Varshney RK (2014) CicArMiSatDB: the chickpea microsatellite database. BMC Bioinformatics 15:212

Doddamani D, Khan AW, Katta MA, Agarwal G, Thudi M, Ruperao P, Edwards D, Varshney RK (2015) CicArVarDB: SNP and InDel database for advancing genetics research and breeding applications in chickpea. Database DOI 0.1093/database/bav078

Doring KVP, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12:452-457

Draeger C, Fabrice TN, Gineau E, Mouille G, Kuhn BM, Moller I, Abdou MT, Frey B, Pauly M, Bacic A, Ringli C (2015) Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biol 15:155

Dubreucq B, Berger N, Vincent E, Boisson M, Pelletier G, Caboche M, Lepiniec L. (2000) The Arabidopsis AtEPR1 extensin-like gene is specifically expressed in endosperm during seed germination. Plant J 23:643-652 Elshire RJ, Glaubitz JC, Sun Q, Polland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:5 e19379

Eshed Y, Zamir D (1995) An introgression line population of *Lycopersicon pennellii* in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147-1162

FAOSTAT (2014) FAOSTAT database, www.faostat.fao.org

Flandez-Galvez H, Ford R, Pang EC, Taylor PW (2003) An intraspecific linkage map of the chickpea (*Cicer arietinum* L.) genome based on sequence tagged microsatellite site and resistance gene analog markers. Theor Appl Genet 106:1447-1456

Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718-4723

Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156:1661-1678

Gaur PM, Slinkard AE (1990) Inheritance and linkage of isozyme coding genes in chickpea. J Hered 81:455-461

Gaur PM, Krishnamurthy L, Kashiwagi J (2008) Improving drought-avoidance root traits in chickpea (*Cicer arietinum* L.)-current status of research at ICRISAT. Plant Prod Sci 11.1: 3-11

Gaur PM, Samineni S, Tripathi S, Varshney RK, Gowda CLL (2014) Allelic relationships of flowering time genes in chickpea. Euphytica 203:295-308

Gaur R, Sethy NK, Choudhary S, Shokeen B, Gupta V, Bhatia S (2011) Advancing the STMS genomic resources for defining new locations on the intraspecific genetic linkage map of chickpea (*Cicer arietinum* L.). BMC Genomics 12:117

Golicz AA, Bayer PE, Edwards D (2015) Skim-based genotyping by sequencing. Met Mol Biol 1245:257-270

Gujaria N, Kumar A, Dauthal P, Dubey A, Hiremath P, Bhanu Prakash A, Farmer A, Bhide M, Shah T, Gaur PM, Upadhyaya HD, Bhatia S, Cook DR, May GD, Varshney RK (2011) Development and use of genic molecular markers (GMMs) for construction of a transcript map of chickpea (*Cicer arietinum* L.). Theor Appl Genet 122:1577-1589

Gunes A, Inal A, Adak MS, Bagci EG, Cicek N, Eraslan F (2008) Effect of drought stress implemented at pre- or post-anthesis stage on some physiological parameters as screening criteria in chickpea cultivars. Russian J Plant Physiol 55:59-67

Halford NG, Hardie DG (1998) SNF1-related protein kinases: global regulators of carbon metabolism in plants?. Plant Mol Biol 37:735-748

Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung SB, Halliday KJ, Amasino RM, Millar AJ (2003) The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks. Plant Cell 15:2719-2729

Hamwieh A, Imtiaz M, Malhotra RS (2013) Multi-environment QTL analyses for droughtrelated traits in a recombinant inbred population of chickpea (*Cicer arietinum* L.). Theor Appl Genet 126:1025-1038

Hashida SN, Takahashi H, Uchimiya H (2009) The role of NAD biosynthesis in plant development and stress responses. Ann Bot 103:819-824

Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293-1302

Hayami N, Sakai Y, Kimura M, Saito T, Tokizawa M, Iuchi S, Kurihara Y, Matsui M, Nomoto M, Tada Y, Yamamoto YY (2015) The responses of arabidopsis early light-induced protein2 to ultraviolet B, high Light, and cold stress are regulated by a transcriptional regulatory unit composed of two elements. Plant Physiol 169:840-855

Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, Kavikishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (*Cicer arietinum* L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922-931

Hiremath PJ, Kumar A, Penmetsa RV, Farmer A, Schlueter JA, Chamarthi SK, Whaley AM, Carrasquilla-Garcia N, Gaur PM, Upadhyaya HD, Kishor PBK, Shah TM, Cook DR, Varshney RK (2012) Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes. Plant Biotechnol J 10:716-732

Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156-161

Hong LW, Yan DW, Liu WC, Chen HG, Lu YT (2014) TIME FOR COFFEE controls root meristem size by changes in auxin accumulation in Arabidopsis. J Exp Bot 65:275-286

Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing Genome Res 19:1068-1076

Hüttel B, Winter P, Weising K, Choumane W, Weigand F, Kahl G (1999) Sequence-tagged microsatellite site markers for chickpea (*Cicer arietinum* L.). Genome 42:210-217

Ichinose Y, Tiemann K, Schwenger-Erger C, Toyoda K, Hein F, Hanselle T, Cornels H, Barz W (2000) Genes expressed in *ascochyta raftiei*-inoculated chickpea plants and elicited cell

cultures as detected by differential cDNA-hybridization. Zeitschrift für Naturforschung C 55:44 -54

Ibitoye DO, Akin-Idowu PE (2010) Marker-assisted-selection (MAS): A fast track to increase genetic gain in horticultural crop breeding. African J Biotechnol 9:8889-8895

Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kavi Kishor PB, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a "*QTL-hotspot*" region for drought tolerance in chickpea. Mol Genet Genomics 290:559-571

Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M (2013) A draft genome sequence of the pulse crop chickpea (*Cicer arietinum* L.). The Plant Journal 74(5):715-29

Jamalabadi JG, Saidi A, Karami E, Kharkesh M, Talebi R (2013) Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (*Cicer arietinum* L). Biochem Genet 51:387-397

Jamann TM, Balint-Kurti PJ, Holland JB (2015) QTL mapping using high-throughput sequencing. Met Mol Biol 1284:257-285

Jander G, Norris SR, Rounsley SD, Bush DF, Levin IM, Last RL (2002) Arabidopsis mapbased cloning in the post-genome era. Plant Physiol 129:440-450

Jha UC, Chaturvedi SK, Bohra A, Basu PS, Khan MS, Barh D, Varshney RK (2014) Abiotic stresses, constraints and improvement strategies in chickpea. Plant Breed 133:163-178

Johnson WC, Menéndez C, Nodari R, Koinange EMK, Magnusson S, Singh SP, Gepts P (1996) Association of a seed weight factor with the phaseolin seed storage protein locus across genotypes, environments, and genomes in Phaseolus-Vigna spp: J Agri Genomics 2:5

Ju HW, Min JH, Chung MS, Kim CS (2013) The atrzf1 mutation of the novel RING-type E3 ubiquitin ligase increases proline contents and enhances drought tolerance in Arabidopsis. Plant Sci: 203-204:1-7

Jukanti AK, Gaur PM, Gowda CL, Chibbar RN (2012) Nutritional quality and health benefits of chickpea (*Cicer arietinum* L.): a review. British J Nutrition 108 Suppl 1:S11-26

Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa HB, Thudi M, Roorkiwal M, Katta AVSKM, Doddamani D, Garg V, Kishor PBK, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK (2015) Prioritization of candidate genes in "QTL-hotspot" region for drought tolerance in chickpea (*Cicer arietinum* L.). Sci Rep-UK 5:15296

Kashiwagi J, Krishnamurthy L, Purushothaman R, Upadhyaya HD, Gaur PM, Gowda CLL, Ito O, Varshney RK (2015) Scope for improvement of yield under drought through the root traits in chickpea (*Cicer arietinum* L.). Field Crop Res 170:47-54

Kashiwagi J, Krishnamurthy L, Upadhyaya HD, Krishna H, Chandra S, Vadez V, Serraj R (2005) Genetic variability of drought-avoidance root traits in the mini-core germplasm collection of chickpea (*Cicer arietinum* L.). Euphytica 146:213-222

Kazan K, Muehlbauer FJ, Weeden NE, Ladizinsky G (1993) Inheritance and linkage relationships of morphological and Isozyme loci In chickpea (*Cicer arietinum* L). Theor Appl Genet 86:417-426

Kebede H, Payton P, Pham HT, Allen RD, Wright RJ (2015) Toward Coalescing Gene Expression and Function with QTLs of Water-Deficit Stress in Cotton. Int J Plant Genomics 2015:892716

Kim JH, Kim WT (2013a) The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162:1733-1749

Kim SJ, Kim WT (2013b) Suppression of Arabidopsis RING E3 ubiquitin ligase AtATL78 increases tolerance to cold stress and decreases tolerance to drought stress. FEBS Letters 587:2584-2590

Kimurto PK MR, Towett BK, Cheruiyot EK, Gangarao, R SS, Rutto DK, Kirui G, Gaur PM, Varshney RK (2014) Screening for drought and pod borer (*Helicoverpa armigera*) tolerance in selected chickpea (*Cicer arietinum* L.) germplasm in semi-arid areas of Kenya. Egerton J Sci Technol 9:23-30

Komatsu S, Kuji R, Nanjo Y, Hiraga S, Furukawa K (2012) Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques. J Proteomics 77:531-560

Kosambi DD (1943) The estimation of map distances from recombination values. Ann Hum Genet 12:172-175

Krishnamurthy L, Johansen C, Ito O (1996) Genetic variation in root system development and its implications for drought resistance in chickpea. In: O. Ito, C. Johansen, J.J. Adu-Gyamfi, K. Katayama, J.V.D.K. Kumar Rao & T.J. Rego (Eds.), Root and nitrogen in cropping systems of the semi-arid tropics, pp. 234–250. Culio Corporation, Tsukuba, Japan

Krishnamurthy L, Kashiwagi J, Upadhyaya HD, Gowda CLL, Gaur PM, Singh S, Purushothaman R, Varshney RK (2013) Partitioning coefficient-a trait that contributes to drought tolerance in chickpea. Field Crop Res 149:354-365

Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015a) Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. Front Plant Sci 6:162

Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015b) A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci Rep-UK 5:11166

Kujur A, Upadhyaya HD, Shree T, Bajaj D, Das S, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CL, Sharma S, Singh S, Tyagi AK, Parida SK (2015c) Ultra-high density intraspecific genetic linkage maps accelerate identification of functionally relevant molecular tags governing important agronomic traits in chickpea. Sci Rep-UK 5:9468

Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semi-arid environments. Advances in Agronomy 72:107-138

Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42(11):1027-30

Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731-4748

Lee JH, Kim WT (2011) Regulation of abiotic stress signal transduction by E3 ubiquitin ligases in Arabidopsis. Mol Cell 31:201-208

Lee YS, An G (2015) OsGI controls flowering time by modulating rhythmic flowering time regulators preferentially under short day in rice. J Plant Biol 58:137-145

Leport L, Turner NC, French RJ, Barr MD, Duda R, Davies SL, Tennant D, Siddique KHM (1999) Physiological responses of chickpea genotypes to terminal drought in a Mediterranean type environment. European J Agronomy 11:279-291

Li J, Han Y, Zhao Q, Li C, Xie Q, Chong K, Xu Y (2013) The E3 ligase AtRDUF1 positively regulates salt stress responses in Arabidopsis thaliana. PLoS One 8:e71078

Li JM, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187-2195

Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:15 1966-1967

Lichtenzveig J, Scheuring C, Dodge J, Abbo S, Zhang HB (2005) Construction of BAC and BIBAC libraries and their applications for generation of SSR markers for genome analysis of chickpea, *Cicer arietinum* L. Theor Appl Genet 110:492-510

Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low temperatureresponsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391-1406

Lorenc MT, Hayashi S, Stiller J, Lee H, Manoli S, Ruperao P, Visendi P, Berkman PJ, Lai K, Batley J, Edwards D (2012) Discovery of single nucleotide polymorphisms in complex genomes using SGSautoSNP. Biology 1:370-382

Lyzenga WJ, Stone SL (2012) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63:599-616

Maibam A, Tyagi A, Satheesh V (2015) Genome-wide identification and characterization of heat shock factor genes from pigeonpea (*Cajanus cajan*). Mol Plant Breed 6:7 Mantri NL, Ford R, Coram TE, Pang EC (2007) Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought. BMC Genomics 8:303

Mantri NL, Ford R, Coram TE, Pang ECK (2010) Evidence of unique and shared responses to major biotic and abiotic stresses in chickpea. Environ Exp Bot 69:286-292

Mazzeo MF, Cacace G, Ferriello F, Puopolo G, Zoina A, Ercolano MR, Siciliano RA (2014) Proteomic investigation of response to FORL infection in tomato roots. Plant Physiol biochem 74:42-49

Meena MK, Ghawana S, Dwivedi V, Roy A, Chattopadhyay D (2015) Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco. Front plant sci 6:683

Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269-283

Millan T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (*Cicer arietinum* L.) based on 10 mapping populations. Euphytica 175:175-189

Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and costeffective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240-248

Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes & Development 16(12):1555-67

Nayak SN, Zhu HY, Varghese N, Datta S, Choi HK, Horres R, Jungling R, Singh J, Kishor PBK, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415-1441

Nayak SN (2010) Identification of QTLs and genes for drought tolerance using linkage mapping and association mapping approaches in chickpea (*Cicer arietinum*). PhD thesis submitted to Department of Genetics, Osmania University, Hyderabad, India

Nayyar H, Kaur S, Smita, Singh KJ, Dhir KK, Bains T (2005) Water stress induced injury to reproductive phase in chickpea: evaluation of stress sensitivity in wild and cultivated species in relation to abscisic acid and polyamines. J Agronomy Crop Sci 191:450-457

Neff MM, Turk E, Kalishman M (2002) Web-based primer design for single nucleotide polymorphism analysis. Trends Genet 18:613–615

Nover L Bharti K, Do[¬]ring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need?. Cell Stress & Chaperones 6 177-189

Or E, Hovav R, Abbo S (1999) A Major Gene for Flowering Time in Chickpea. Crop Sci 39 315-322

Osakabe Y, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2013) Sensing the environment: key roles of membrane-localized kinases in plant perception and response to abiotic stress. J Exp Bot 64:445-458

Palomares-Rius JE, Castillo P, Navas-Cortes JA, Jimenez-Diaz RM, Tena M (2011) A proteomic study of in-root interactions between chickpea pathogens: the root-knot nematode *Meloidogyne artiellia* and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5. J Proteomics 74:2034-2051

Pandey A, Chakraborty S, Datta A, Chakraborty N (2008) Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (*Cicer arietinum* L.). Mol Cell Proteomics 7:88-107

Papai G, Weil PA, Schultz P (2011) New insights into the function of transcription factor TFIID from recent structural studies. Curr Opin Genet Dev 21:219-224

Price AH (2006) Believe it or not, QTLs are accurate!. Trends Plant Sci 11:213-216

Perlikowski D, Kosmala A, Rapacz M, Kościelniak J, Pawłowicz I, Zwierzykowski Z (2014) Influence of short-term drought conditions and subsequent re-watering on the physiology and proteome of Lolium multiflorum/Festuca arundinacea introgression forms, with contrasting levels of tolerance to long-term drought. Plant Biol 16:385-394

Pfaff T, Kahl G (2003) Mapping of gene-specific markers on the genetic map of chickpea (Cicer arietinum L.). Mol Genet Genomics 269:243-251

Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restrictionsite associated DNA) markers to rapidly identify QTL for stem rust resistance in *Lolium perenne*. Theor Appl Genet 122:1467-1480

Pokhilko A, Ramos JA, Holtan H, Maszle DR, Khanna R, Millar AJ (2011) Ubiquitin ligase switch in plant photomorphogenesis: A hypothesis. J Theor Biol 270:31-41

Poland JA and Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92

Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PloS one 7:2

Pundir RPS, Rao NK, and van den Maesen LJG (1985) Distribution of qualitative traits in the world germplasm of chickpea (*Cicer arietinum* L.). Euphytica 34:697-703

Pushpavalli R, Krishnamurthy L, Thudi M, Gaur PM, Rao MV, Siddique KH, Colmer TD, Turner NC, Varshney RK, Vadez V (2015) Two key genomic regions harbour QTLs for salinity tolerance in ICCV $2 \times JG$ 11 derived chickpea (*Cicer arietinum* L.) recombinant inbred lines. BMC Plant Biol 15:124

Qadir SA, Datta S, Singh NP and ShivKumar (2007) Development of highly polymorphic SSR markers for chickpea (*Cicer arietinum* L.) and their use in parental polymorphism. Indian J Genet 67:329-333

Qi X, Li M, Xie M, Liu X, Ni M, Shao G, Song C, Yim AKY, Tao Y, Wong FL, Isobe S, Wong CF, Wong KS, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, Zhou F, Phang TH, Liu X, Tong SW, Chan TF, Yiu SM, Tabata S, Wang J, Xu X, Lam HM (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5: 4340

Radhika P, Gowda SJ, Kadoo NY, Mhase LB, Jamadagni BM, Sainani MN, Chandra S, Gupta VS (2007) Development of an integrated intraspecific map of chickpea (*Cicer arietinum* L.) using two recombinant inbred line populations. Theor Appl Genet 115:209-216

Rapala-Kozik M, Wolak N, Kujda M, Banas AK (2012) The up regulation of thiamine (vitamin B-1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. BMC Plant Biol 12:2

Ratnaparkhe MB, Santra DK, Tullu A, Muehlbauer FJ (1998) Inheritance of inter-simplesequence-repeat polymorphisms and linkage with a fusarium wilt resistance gene in chickpea. Theor Appl Genet 96:348-353

Redden B, Berger J (2007) History and Origion of Chickpea. In: Chickpea breeding and management (Yadav SS, Redden B, Chen W, Sharma B, eds.). CAB International, Wallingford, 1-13

Rehman AU, Malhotra RS, Bett K, Tar'an B, Bueckert R, Warkentin TD. (2011) Mapping QTL associated with traits affecting grain yield in chickpea (*Cicer arietinum* L.) under terminal drought stress. Crop Sci 51:450-463

Roorkiwal M, Sawargaonkar SL, Chitikineni A, Thudi M, Saxena RK, Upadhyaya HD, Vales MI, Riera-Lizarazu O, Varshney RK (2013) Single nucleotide polymorphism genotyping for breeding and genetics applications in chickpea and pigeonpea using the BeadXpress platform. Plant Genome 6:2

Ruiz JM, Blumwald E (2002) Salinity-induced glutathione synthesis in Brassica napus. Planta 214:965-969

Ruperao P, Chan CK, Azam S, Karafiátová M, Hayashi S, Čížková J, Saxena RK, Šimková H, Song C, Vrána J, Chitikineni A, Visendi P, Gaur PM, Millán T, Singh KB, Taran B, Wang J, Batley J, Doležel J, Varshney RK, Edwards D (2014) A chromosomal genomics approach to assess and validate the desi and 6 kabuli draft chickpea genome assemblies. Plant Biotechnol J 12:778-786

Sabbavarapu MM, Sharma M, Chamarthi SK, Swapna N, Rathore A, Thudi M, Gaur PM, Pande S, Singh S, Kaur L, Varshney RK (2013) Molecular mapping of QTLs for resistance to Fusarium wilt (race 1) and Ascochyta blight in chickpea (*Cicer arietinum* L.). Euphytica 193:121-133

Sakuma Y, Maruyama K, Qin F, Osakabe Y, Shinozaki K, Yamaguchi-Shinozaki K (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Sci USA 103:18822-18827

Salgado P, Freire JB, Ferreira RB, Seabra M, Teixeira AR, Toullec R, Lalles JP (2002) Legume proteins of the vicilin family are more immunogenic than those of the legumin family in weaned piglets. Food Agr Immunol 14:51-63

Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297-304

Sanchez A, Shin J, Davis SJ (2011) Abiotic stress and the plant circadian clock. Plant Signal Behav 6:223-231

Saraf CS and Rupela OP and Hegde DM, Yadav RL, Shivkumar BG, Bhattarai S, Razzaque, MA, Sattar MA (1998) Biological nitrogen fixation and residual effects of winter grain legumes in rice and wheat cropping systems of the Indo-Gangetic Plain In: Residual effects of legumes in rice and wheat cropping systems of the Indo-Gangetic plain Oxford & IBH Publishing Co Pvt Ltd, New Delhi: pp.14-30

Saxena MC (1987) Agronomy of chickpea, In: Saxena, MC, Singh KB (eds) The Chickpea. CAB International, Wallingford, UK: pp.207-232

Saxena MC (1993) The challenge of developing biotic and abiotic streess resistance in coolseason food legumes. In: Singh KB, Saxena M (eds) Breeding for stress tolerance in coolseason food legumes.Wiley, Chichester, UK: pp.3-14

Scharf KD, Hohfeld I, Nover L (1998) Heat stress response and heat stress transcription factors. J Biosci 23:313-329

Schramm F, Ganguli A, Kiehlmann E, Englich G, Walch D, von Koskull-Döring P (2006) The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol Biol 60(5):759-72

Serraj R, Krishnamurthy L, Kashiwagi J, Kumar J, Chandra S, Crouch JH (2004) Variation in root traits of chickpea (*Cicer arietinum* L.) grown under terminal drought. Field Crop Res 88:115-127

Sethy NK, Choudhary S, Shokeen B, Bhatia S (2006a) Identification of microsatellite markers from *Cicer reticulatum*: molecular variation and phylogenetic analysis. Theor Appl Genet 112:347-357

Sethy NK, Shokeen B, Edwards KJ, Bhatia S (2006b) Development of microsatellite markers and analysis of intraspecific genetic variability in chickpea (*Cicer arietinum* L.). Theor Appl Genet 112:1416-1428

Sharma YR, Singh G, Kaur L (1995) A rapid technique for ascochyta blight resistance in chickpea. International Chickpea and Pigeonpea Newsletter 2:34-35

Shin J, Du SX, Bujdoso N, Hu YJ, Davis SJ (2013) Overexpression and loss-of-function at TIME FOR COFFEE results in similar phenotypes in diverse growth and physiological responses. J Plant Biol 56:152-159

Shin J, Heidrich K, Sanchez-Villarreal A, Parker JE, Davis SJ (2012) TIME FOR COFFEE represses accumulation of the MYC2 transcription factor to provide time-of-day regulation of jasmonate signaling in Arabidopsis. Plant Cell 24:2470-2482

Silvar C, Perovic D, Scholz U, Casas AM, Igartua E, Ordon F (2012) Fine mapping and comparative genomics integration of two quantitative trait loci controlling resistance to powdery mildew in a Spanish barley landrace. Theor Appl Genet 124:49-62

Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115-119

Singh KB (1997) Chickpea (*Cicer arietinum* L.). Field Crop Res 53 161-170

Singh R, Singh AK, Sharma TR, Singh A, Singh NK (2007) Fine mapping of aroma QTLs in basmati rice (*Oryza sativa* L.) on Chromosomes 3, 4 and 8. J Plant Biochem Biotechnol 16:75-82

Sonah HBM, Iquira E, Tardivel A, Legare G, Boyle B, Normandeau E, Laroche J, Larose S, Jean M, Belzile F (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping PLoS One 8:e54603

Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623-630

Song XJ, Kuroha T, Ayano M, Furuta T, Nagai K, Komeda N, Segami S, Miura K, Ogawa D, Kamura T, Suzuki T, Higashiyama T, Yamasaki M, Mori H, Inukai Y, Wu JZ, Kitano H, Sakakibara H, Jacobsen SE, Ashikari M (2015) Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice. Proc Nacl Sci USA 112:76-81

Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends plant sci 18:575-583

Sonoda Y, Sako K, Maki Y, Yamazaki N, Yamamoto H, Ikeda A, Yamaguchi J (2009) Regulation of leaf organ size by the Arabidopsis RPT2a 19S proteasome subunit. Plant J 60:68-78

Tekeoglu M, Rajesh PN, Muehlbauer FJ (2002) Integration of sequence tagged microsatellite sites to the chickpea genetic map. Theor Applied Genet 105: 847-854

Thomann A, Brukhin V, Dieterle M, Gheyeselinck J, Vantard M, Grossniklaus U, Genschik P (2005) Arabidopsis CUL3A and CUL3B genes are essential for normal embryogenesis. Plant J 43:437-448

Thudi M, Bhora A, Nayak SN, Varghese N, Shah TM, Penmetsa RV, Thirunavukkarasu N, Gudipati S, Gaur PM, Kulwal PL, Upadhyaya HD, KaviKishor PB, Winter P, Kahl G, Town CD, Kilian A, Cook DR, Varshney RK (2011) Novel SSR markers from BAC-end sequences, DArT arrays and a comprehensive genetic map with 1,291 marker Loci for chickpea (*Cicer arietinum* L.). PLoS One 6:e27275

Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NVPR, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9:e96758

Toker C, Lluch C, Tejera NA, Serraj R and Siddique KHM (2007) Abiotic Stresses. In Yadav, S S, & Chen, W (eds) Chickpea breeding and management CABI, Cambridge: pp.474 - 496

Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347

Turner NC, Wright GC, Siddique KHM. (2001) Adaptation of grain legumes (pulses) to water limited environments Advan Agronomy 14:193-231

Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097-1102

Vadez V (2014) Root hydraulics: The forgotten side of roots in drought adaptation. Field Crop Res 165:15-24

Van der Maesen LJG (1972) A monograph of the genus with special reference to the chickpea (*Cicer arietinum* L.), Its ecology and cultivation. Commun Agric University, Wageningen, Dordrecht, The Netherlands

Van der Maesen LJG (1987) *Cicer* L. Origin, history and taxonomy of chickpea. 11-34. In: Saxena MC and Singh KB (ed.), The Chickpea. CAB International Cambrian News Ltd, Aberystwyth, UK

Van Ooijen JW, Voorrips RE (2006) JoinMap version4.0: software for the calculation of genetic linkage maps. Wageningen: Plant Research International

Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trend Plant Sci 10:621-630

Varshney RK, Nayak S, Jayashree B, Eshwar K, Upadhyaya HD and Hoisington DA (2007) Development of cost-effective SNP assays for chickpea genome analysis and breeding. J SAT Agricul Res 3:1 29-31

Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tar'an B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013a) Draft genome sequence of chickpea (*Cicer arietinum* L) provides a resource for trait improvement. Nat Biotechnol 31:240-246

Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D (2013b) Fast-Track Introgression of "QTL-hotspot" for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea. The Plant Genome 6:3

Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (*Cicer arietinum* L.). Theor Appl Genet 127:445-462

Varshney RK, Hiremath PJ, Lekha P, Kashiwagi J, Balaji J, Deokar AA, Vadez V, Xiao YL, Srinivasan R, Gaur PM, Siddique KHM, Town CD, Hoisington DA (2009) A comprehensive resource of drought- and salinity-responsive ESTs for gene discovery and marker development in chickpea (*Cicer arietinum* L.). BMC Genome 10:523

Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77-78

Wang C, Zhang Q, Shou HX (2009) Identification and expression analysis of OsHsfs in rice. J Zhejiang University Science B 10:291-300

Wang S, Basten CJ, Zeng Z-B (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://statgen.ncsu.edu/qtlcart/W-QTLCart.htm)

Wang X, Liu Y, Jia Y, Gu H, Ma H, Yu T, Zhang H, Chen Q, Ma L, Gu A, Zhang J, Shi S, Ma H (2012) Transcriptional responses to drought stress in root and leaf of chickpea seedling. Mol Biol Rep 39:8147-8158

Weising K, Weigand F, Driesel AJ, Kahl G, Zischler H, Epplen JT (1989) Polymorphic Simple Gata/Gaca Repeats in Plant Genomes. Nucleic Acid Res 17:10128-10128

Weising K Beyermann B, Ramser J, Kahl G (1991) Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequences. Electrophoresis 12:159-169

Weising M, Kaemmer D, Weigand F, Epplen JT, Kahl, G (1992) Oligonucleotide fingerprinting reveals various probe-dependent levels of informativeness in chickpea (*Cicer arietinum* L). Genome 35:436-442

Winter P, Pfaff T, Udupa SM, Hüttel B, Sharma PC, Sahi S, Arreguin-Espinoza R, Weigand F, Muehlbauer FJ, Kahl G (1999) Characterization and mapping of sequence-tagged microsatellite sites in the chickpea (*Cicer arietinum* L.) genome. Mol Gen Genet 262:90-101

Winter P, Benko-Iseppon AM, Hüttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer FJ (2000) A linkage map of the chickpea (*Cicer arietinum* L.) genome based on recombinant inbred lines from a *C. arietinum* \times *C. reticulatum* cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155-1163

Wood JA and Grusak MA (2007) Nutritional value of chickpea. In: Chickpea Breeding and Management (Yadav SS, Redden B, Chen W and Sharma B eds) CAB International, Wallingford, pp.1-13

Xu JJ, Zhao Q, Zhao YF, Zhu L, Xu CW, Gu MH, Bin H (2011) Mapping of QTLs for flag leaf shape using whole-genome re-sequenced chromosome segment substitution lines in rice. Chin J Rice Sci 25:483-487

Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705-708

Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Nacl Sci USA 110:13469-13474

Yu H XW, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q (2011) Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PLoS One 6:e17595

Zaman-Allah M, Jenkinson DM, Vadez V (2011) A conservative pattern of water use, rather than deep or profuse rooting, is critical for the terminal drought tolerance of chickpea. J Exp Bot 62:4239-4252

Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983-989

Zhang X, Scheuring CF, Zhang M, Dong JJ, Zhang Y, Huang JJ, Lee MK, Abbo S, Sherman A, Shtienberg D, Chen W (2010) A BAC/BIBAC-based physical map of chickpea, *Cicer arietinum* L. BMC Genomics 11(1):501

Zhang L, Li Q, Dong H, He Q, Liang L, Tan C, Han Z, Yao W, Li G, Zhao H, Xie W, Xing Y (2015) Three CCT domain-containing genes were identified to regulate heading date by candidate gene-based association mapping and transformation in rice. Sci Rep-UK 5:7663

Zohary D, Hopf F (1973) Domestication of pulses in the old world: Legumes were companions of wheat and barley when agriculture began in the Near East. Science 182:887-894

APPENDICES

APPENDICES

Appendix 1: List of CAPS/dCAPS markers developed from the "QTL-hotspot" region

SNP ID	Primer ID	CAPS candidates*	Marker type	Enzyme	Forward sequence (5'- 3')	Reverse sequence (5'- 3')	Amplification*	Product size (bp)	ICC 4958 × PI 489777 [#]	ICC 4958 × ICC 1882	ICC 283 × ICC 8261
Ca4_12558541	CaLG040001	CGMM139	CAPS	MnlI	GGGGGGACCAA GGAATAAAAA	CACCCCTCTCC ATGCATATT	А	320	М	Р	Р
Ca4_13724666	CaLG040002	-	dCAPS	BsrI	CCTACTAGCTG CTTCTGACTG	TTGCCAACTCC AATATGTCG	NA	350	-	-	-
Ca4_13588956	CaLG040003	-	dCAPS	DpnI	AAGTTGTTGTT ATGGCATG <mark>G</mark> A T	TCACATATGGT CCCACCTCA	NA	351	-	-	-
Ca4_13699663	CaLG040004	-	dCAPS	DpnI	CAGCAGATGC TTTCAACTTCC	TTTGGCTTG <mark>G</mark> A T	NA	408	-	-	-
Ca4_13840484	CaLG040005	-	dCAPS	KpnI	ACATGGGCTG GTATTGGAAA	TACCCCCTGGA GC <u>G</u> GT	NA	408	-	-	-
Ca4_13840251	CaLG040006	CGMM140	CAPS	MboII	GGAATTTGCTG CGTTTGAAT	AGCACGGACC AACTTTCATC	А	391	Р	Р	Р
Ca4_11276225	CaLG040007	CGMM141	CAPS	AciI	GATGCACTTGC ATTTCTTGC	TAAGCAGCTTC CCAAATGGT	А	403	М	Р	Р
Ca4_11398889	CaLG040008	-	dCAPS	DpnI	TTTTCCTCTGT GACGAGCAG	ATCAACTAGTC TCAGGTTC GA	NA	367	-	-	-
Ca4_11276413	CaLG040009	-	CAPS	DpnI	CAGCAAGCAG GTTGTTTTCA	TCCACTGTAGC CGCAAAAAT	А	397	-	-	-
Ca4_11234130	CaLG040010	-	dCAPS	MboII	AAGAGAGCTT AAGCCTT <u>G</u> A <u>A</u>	CAGCTGGAGC ATTGACAGAT	NA	374	-	-	-
Ca4_11441735	CaLG040011	-	dCAPS	AvaI	ATGTAATATTA ATAAGCA <u>C</u> CC	TGCATATGCCT GTGGATTTG	NA	363	-	-	-
Ca4_11435380	CaLG040012	CGMM142	CAPS	RsaI	GCCACATGCTT GTTGCTGTA	ATGTCCGAATC CTTTGAAGC	А	397	Р	Р	Р
Ca4_11435651	CaLG040013	CGMM143	dCAPS	HpaII	GATCTACTCAA AGAGATTGAG G <mark>CC</mark>	CAAGATGAAA CAACAGTTAC AATGC	А	338	М	Р	Р
Ca4_11343257	CaLG040014	-	dCAPS	DpnI	ATTTTAGATTG	CACATTGTTCC	NA	387	-	-	-

					ATGTGGC <mark>G</mark> A <u>T</u>	TTCGAAAACC					
Ca4_11343230	CaLG040015	-	dCAPS	DpnI	TCATGGAGGC	ТСТААААТАА	А	388	-	-	-
					TATTTGCATTC	<u>G</u> A <u>T</u>					
Ca4_11547141	CaLG040016	CGMM144	CAPS	HphI	TTTGCAGCCTA	TGGTTAGCCCA	А	626	Р	Р	Р
					CATGACTCG	AAATATGGA					
Ca4_11246164	CaLG040017	-	dCAPS	BsrI	CTTTTCTAATT	TCCACCAGAG	NA	409	-	-	-
					TTTGT <u>AC</u> TG	AGGGAAATTG					
Ca4_11398699	CaLG040018	-	dCAPS	MboII	GAGTAAACCC	ATGGGTTACA	NA	389	-	-	-
					TAA <mark>G</mark> A <u>A</u> G	GCCGAAACTT					
Ca4_11334350	CaLG040019	CGMM145	CAPS	MboII	AAAGCAGAAG	TGCATGGGGA	А	614	Р	Р	Р
					TTCCTGCACAA	TTGTTGTAGA					
Ca4_11246093	CaLG040020	CGMM146	CAPS	AvaI	TCAGTGCCTAG	TGCTACCTCAA	А	404	Р	Р	Р
					CTTGTCT <u>CG</u> A	ATCAAAGAAC					
						AA					
Ca4_11273405	CaLG040021	-	dCAPS	MseI	TATATTAGAA	CCCAAAACAT	NA	326	-	-	-
					GTTCAAAT <u>TA</u>	CATCAAAGAG					
~	~ ~ ~ ~ ~ ~ ~ ~ ~		10.50			AA					
Ca4_11398682	CaLG040022	-	dCAPS	AvaI	TACATCAATTA	ATGGGTTACA	NA	410	-	-	-
<u>a</u>	G X G0 40000		G + D.G		GAAAATC <u>CY</u> C	GCCGAAACTT					
Ca4_11517582	CaLG040023	CGMM147	CAPS	HaeIII	ATTTTCCTGGG	CAACGCCAAT	А	556	М	Р	Р
G 4 11046170	G I G0 40004		104.00		CTTTGAGGT	TCGACAATAC		200			
Ca4_11246173	CaLG040024	-	dCAPS	HaeIII	TTTGTTATGGT	TCCACCAGAG	NA	398	-	-	-
0 4 11517517	G I G040025		10 4 D0	DI	GTTA <mark>GG</mark> C	AGGGAAATTG	NT A	414			
Ca4_11517517	CaLG040025	-	dCAPS	DpnI	AAGAAATTCTT	CGAACCTTGA GATGGTCTCC	NA	414	-	-	-
Ca4_11277574	CaLG040026	-	dCAPS	BsrI	GGCAG <u>G</u> A <u>T</u> TATTTACAAGG	GCGCAGAAGT	NA	404			
Ca4_112//3/4	CaLG040020	-	uCAPS	DST	ATTCACTG	GCTTTCAGAG	NA	404	-	-	-
Ca4 11491864	CaLG040027	_	dCAPS	MseI	CTTAATATATC	TTGAGCCCTGG	NA	379	_		
Ca4_11491604	CaL0040027	-	uCAFS	<i>WISE</i> 1	ACCAAATT	ATAAGTTGC	INA	519	-	-	-
Ca4_11273328	CaLG040028		dCAPS	MboII	TGTCTGATCTT	ATTTTCAGCGT	NA	365			
Ca4_11275526	CaL0040028	-	uCAFS	MDOII	CACCGAACTG	GAA	INA	303	-	-	-
Ca4_11490100	CaLG040029		dCAPS	DpnI	GGTGCAGGTC	ACTAGAGGCC	А	392			
Ca4_11490100	CaL0040029	-	uCAFS	Dpm	CTGTGAT	CACGAAGGAT	A	392	-	-	-
Ca4_11334343	CaLG040030	_	dCAPS	RsaI	CCTCCTGCTCA	CCACAAAAAAG	NA	414		_	-
Cu+_1155+545	Cal:00+0030		uch S	nsui	GATTTTTCCGT	TCTAAGTGCTT	11/1	717	-	-	-
						GAA					
Ca4 11490496	CaLG040031	_	dCAPS	BsrI	CCTAGGACATT	ATCGGAAAGC	NA	387	-	_	
Cu7_117/07/0	CaL00+0031		uch S	10311	CAACTCACT	TTAGGTACGG	11/1	507	-	-	-
	I			1		11100111000					

Ca4_11274281	CaLG040032	-	dCAPS	RsaI	TCCTCCATTTG CTTCTCTGA	TTCCCATCAAG AGGC <mark>GT</mark>	NA	384	-	-	-
Ca4_11244334	CaLG040033	CGMM148	CAPS	MseI	TGTGCTGTCTT CTTAGCATGG	CCATGCGTTGC TCCATTAG	А	602	М	Р	Р
Ca4_11244395	CaLG040034	-	dCAPS	MboII	TACCCCTCGGG TG <u>AA</u>	GCATTTAAAA ATAAGAAATG GGAGA	NA	384	-	-	-
Ca4_11276484	CaLG040035	-	dCAPS	MboII	GATGCAGCTTC CTAGAAATTG G	TTCTGGACCAT GA <mark>AG</mark>	NA	386	-	-	-
Ca4_11275171	CaLG040036	-	dCAPS	MseI	CACACATATTC ATGGCACTTG AT	AGAGCTGGTA ATCCA <u>TT</u>	NA	378	-	-	-
Ca4_11465075	CaLG040037	CGMM149	CAPS	<i>Bsa</i> BI	TCTAAGCAAG CCGCAGGTAT	TCGTGACGGT ATCGAACAGA	А	598	Р	Р	Р
Ca4_11465057	CaLG040038	-	CAPS	DpnI	TCAACCAATTC GCTCATCAC	CATTGGGGAA TCAAAGGAGT	А	589	-	-	-
Ca4_11441673	CaLG040039	CGMM150	CAPS	EcoRI	CAAGAAACCA TTCACATGCAG	GGATGGCAAG TTTTCTCAGG	А	600	М	Р	Р
Ca4_11441604	CaLG040040	-	dCAPS	MseI	TTATATGACAT ATCTGTATTTG ATGAT <u>T</u> A	TGGTGAGCTTA GTGCTGCTG	NA	431	-	-	-
Ca4_12982420	CaLG040041	-	dCAPS	RsaI	TGATCTCAAA ATGGTGATGA GG	TCACAACACT GG <mark>G</mark> T <u>A</u>	NA	414	-	-	-
Ca4_13787649	CaLG040042	-	dCAPS	MseI	TCTGCAGATA AGAGATGGAG AGG	GAAAGAGTTT GC <u>T</u> T <mark>A</mark>	NA	381	-	-	-
Ca4_13787448	CaLG040043	-	dCAPS	MseI	TTGTTGAATTT TTATTATTCA <u>T</u> T <u>A</u>	AACCCACTTG GTTTCCCAAC	А	425	-	-	-
Ca4_13841340	CaLG040044	-	dCAPS	DpnI	ACCGGTATAG CTGCAGAAGG	CAATAATCTT <u>G</u> A <mark>T</mark>	NA	411	-	-	-
Ca4_13840227	CaLG040045	-	dCAPS	DpnI	CTCCAGCACC AGACGT <mark>GA</mark> T	TGCCATGTTTC CTGGTCATA	NA	391	-	-	-
Ca4_13838796	CaLG040046	CGMM151	CAPS	MnlI	TGGAGAGTTCT TGGCTTGCT	TATGCCTACTG CCATCAACG	А	616	М	М	М
Ca4_13839288	CaLG040047	CGMM152	CAPS	MnlI	CGGAATTGGG	GTGAAACTTCT	А	609	Р	Р	Р

					AAACTTGTTG	CCAGCGTTTG					
Ca4_13839294	CaLG040048	CGMM153	CAPS	MseI	GCTGAAGAAT	TGCCAATGCA	А	591	М	Р	Р
					TTGCTGCTGA	GACACCTAAC					
Ca4_13687456	CaLG040049	-	dCAPS	DpnI	GCAGGGACGA	CTTGTGTTTGA	NA	397	-	-	-
					CAACTTGTTT	GA <mark>G</mark> AT					

TraitID	Trait Name	Year	Locati on ^a	Environme nt ^b	Position (cM)	Markers flanked	LOD	PVE (%) [#]
Root traits								
Root length density (RLD, cm cm ⁻³)	RLD	2007	PAT	CC	45	bin_4_13239546 - bin_4_13378761	5.23	10.36
Root surface area (RSA, cm ²)	RSA	2007	PAT	CC	1	bin_8_16021376 - bin_8_16020537	3.70	7.40
Root Volume (RV, cm ³)	RV	2007	PAT	CC	1	bin_8_16021376 - bin_8_16020537	3.57	7.14
R-T ratio (RTR, %)	RTR	2007	PAT	CC	46	bin_4_13393647 - bin_4_13547009	10.57	20.09
	RTR	2005	PAT	CC	46	bin_4_13393647 - bin_4_13547009	5.89	11.82
Morphological traits								
Shoot dry weight (SDW, g)	SDW	2007	PAT	RF	46	bin_4_13393647 - bin_4_13547009	13.78	25.22
Plant height (PHT, cm)	PHT	2009	HIR	RF	45	bin_4_13239546 - bin_4_13378761	24.34	41.76
	PHT	2009	PAT	RF	45	bin_4_13239546 - bin_4_13378761	21.97	36.68
	PHT	2009	PAT	IR	45	bin_4_13239546 - bin_4_13378761	15.17	28.45
	PHT	2008	PAT	RF	45	bin_4_13239546 - bin_4_13378761	13.99	24.83
	PHT	2009	HIR	IR	45	bin_4_13239546 - bin_4_13378761	11.73	21.62
	PHT	2008	NDL	RF	45	bin_4_13239546 - bin_4_13378761	10.17	19.03
	PHT	2007	PAT	RF	45	bin_4_13239546 - bin_4_13378761	9.02	17.96
	PHT	2008	PAT	RF	52	bin_8_3018346 - bin_8_3013230	8.23	15.73

Appendix 2: QTLs identified for all the traits and two drought indices phenotyped over 1-5 locations and 1-5 seasons in India from the RIL population of the ICC $4958 \times ICC$ 1882 cross using high density bin map

PHT	2009	NDL	RF	45	bin_4_13239546 - bin_4_13378761	7.81	14.97
PHT	2006	PAT	RF	46	bin_8_6034209 - bin_8_5984553	6.78	14.27
PHT	2009	PAT	RF	7	bin_6_3613490 - bin_6_3632957	6.43	12.55
PHT	2005	PAT	RF	8	bin_6_3677353 - bin_6_3683132	5.78	11.34
PHT	2007	PAT	RF	21	bin_6_6943324 - bin_6_6999653	4.65	10.58
PHT	2009	HIR	RF	24	bin_6_6943324 - bin_6_6999653	4.53	9.85
PHT	2009	PAT	RF	49	bin_8_3992475 - bin_8_3962288	4.68	9.28
PHT	2005	PAT	RF	42	bin_4_12586721 - bin_4_12650792	4.40	8.79
PHT	2006	PAT	RF	46	bin_4_13393647 - bin_4_13547009	4.10	8.16
PHT	2009	DUG	IR	37	bin_4_11210420 - bin_4_11690035	4.03	8.10
PHT	2008	NDL	RF	8	bin_6_3677353 - bin_6_3683132	3.96	7.91
PHT	2007	PAT	RF	41	bin_8_6034209 - bin_8_5984553	3.19	7.83
PHT	2009	NDL	RF	48	bin_8_4015752 - bin_8_3992475	3.56	7.35
PHT	2009	HIR	IR	21	bin_6_6943324 - bin_6_6999653	3.29	6.94
PHT	2006	PAT	RF	28	bin_6_7491206 - bin_6_7526573	3.24	6.51
PHT	2009	PAT	RF	99	bin_4_45192563 - bin_4_45238182	3.93	5.53
PHT	2009	PAT	IR	80	bin_4_40000893 - bin_4_40023390	3.33	5.36
PHT	2008	PAT	RF	123	bin_4_48635948 - bin_4_48732122	3.03	4.75

Primary branches (PBS)	PBS	2006 PAT	RF	47	bin_8_6034209 - bin_8_5984553	5.70	11.27
	PBS	2005 PAT	RF	37	bin_8_6167474 - bin_8_6034209	3.91	7.82
	PBS	2006 PAT	RF	102	bin_1_1824635 - bin_1_1821759	3.46	6.97
	PBS	2007 PAT	RF	89	bin_7_4537517 - bin_7_4519483	3.21	6.69
Secondry branches (SBS)	SBS	2007 PAT	RF	46	bin_4_13393647 - bin_4_13547009	4.18	8.63
	SBS	2006 PAT	RF	93	bin_1_4992190 - bin_1_4870121	3.85	7.68
	SBS	2006 PAT	RF	52	bin_8_3018346 - bin_8_3013230	3.38	6.79
Phenological traits							
Days to 50% flowering (DF)	DF	2009 HIR	RF	46	bin_8_6034209 - bin_8_5984553	27.66	48.53
	DF	2009 HIR	IR	47	bin_8_6034209 - bin_8_5984553	28.19	44.76
	DF	2006 PAT	RF	136	bin_1_1216139 - bin_1_45888678	3.12	38.44
	DF	2009 PAT	IR	47	bin_8_6034209 - bin_8_5984553	22.99	38.44
	DF	2005 PAT	RF	46	bin_8_6034209 - bin_8_5984553	17.88	36.72
	DF	2009 PAT	RF	47	bin_8_6034209 - bin_8_5984553	21.30	36.00
	DF	2007 PAT	RF	47	bin_8_6034209 - bin_8_5984553	20.09	34.71
	DF	2006 PAT	RF	47	bin_8_6034209 - bin_8_5984553	19.84	34.05
	DF	2009 DUG	RF	47	bin_8_6034209 - bin_8_5984553	18.38	32.06
	DF	2009 NDL	RF	47	bin_8_6034209 - bin_8_5984553	17.89	31.20
	DF	2008 PAT	RF	46	bin_8_6034209 - bin_8_5984553	15.03	29.74

DF	2009	NDL	IR	47	bin_8_6034209 - bin_8_5984553	8.98	17.18
DF	2008	NDL	RF	47	bin_8_6034209 - bin_8_5984553	8.36	16.06
DF	2009	SEH	RF	47	bin_8_6034209 - bin_8_5984553	7.04	13.77
DF	2008	NDL	RF	65	bin_5_45473300 - bin_5_45530795	3.80	8.70
DF	2009	HIR	IR	66	bin_5_45473300 - bin_5_45530795	3.70	8.69
DF	2009	HIR	RF	67	bin_5_45473300 - bin_5_45530795	3.59	8.66
DF	2009	PAT	RF	69	bin_5_45473300 - bin_5_45530795	3.41	8.12
DF	2005	PAT	RF	70	bin_5_45473300 - bin_5_45530795	3.54	8.06
DF	2006	PAT	RF	65	bin_5_45473300 - bin_5_45530795	3.24	7.65
DF	2007	PAT	RF	56	bin_5_42079654 - bin_5_42142721	3.32	6.66
DF	2008	SEH	RF	50	bin_8_3992475 - bin_8_3962288	3.09	6.37
DF	2005	PAT	RF	19	bin_6_5555667 - bin_6_6943324	3.11	6.28
DN	4 2009	HIR	RF	41	bin_7_12870961 - bin_7_12856579	19.53	45.38
DN	4 2009	PAT	RF	47	bin_8_6034209 - bin_8_5984553	21.37	36.11
DN	4 2009	NDL	RF	47	bin_8_6034209 - bin_8_5984553	20.66	35.09
DN	4 2009	DUG	RF	47	bin_8_6034209 - bin_8_5984553	17.97	31.47
DN	4 2008	PAT	RF	46	bin_8_6034209 - bin_8_5984553	12.26	24.79
DN	4 2009	HIR	RF	48	bin_8_4015752 - bin_8_3992475	11.14	21.33

Days to maturity (DM)

DM	2009	HIR	IR	48	bin_8_4015752 - bin_8_3992475	10.60	20.17
DM	2009	PAT	IR	48	bin_8_4015752 - bin_8_3992475	10.40	19.61
DM	2008	NDL	RF	48	bin_8_4015752 - bin_8_3992475	9.14	17.54
DM	2009	DUG	IR	47	bin_8_6034209 - bin_8_5984553	8.60	16.47
DM	2009	SEH	RF	46	bin_8_6034209 - bin_8_5984553	7.18	15.38
DM	2008	SEH	RF	45	bin_4_13239546 - bin_4_13378761	7.74	14.90
DM	2006	PAT	RF	46	bin_8_6034209 - bin_8_5984553	6.99	14.51
DM	2007	PAT	RF	47	bin_8_6034209 - bin_8_5984553	6.08	11.93
DM	2008	PAT	RF	68	bin_5_45473300 - bin_5_45530795	4.27	10.51
DM	2005	PAT	RF	48	bin_8_4015752 - bin_8_3992475	5.08	10.14
DM	2009	PAT	IR	8	bin_6_3677353 - bin_6_3683132	3.99	7.96
DM	2009	SEH	RF	77	bin_2_30506636 - bin_2_30527477	3.67	7.41
DM	2009	HIR	IR	20	bin_6_6943324 - bin_6_6999653	3.51	7.40
DM	2009	DUG	RF	68	bin_5_45473300 - bin_5_45530795	3.04	7.36
DM	2008	PAT	RF	43	bin_7_12389184 - bin_7_12378886	3.60	7.34
DM	2009	DUG	IR	71	bin_5_45473300 - bin_5_45530795	3.25	6.81
DM	2009	HIR	RF	30	bin_6_8283807 - bin_6_8299950	3.21	6.52
DM	2008	SEH	RF	118	bin_5_30232785 - bin_5_30210335	3.20	6.44

	DM	2009	DUG	IR	0	bin_7_29276309 - bin_7_29967944	3.01	6.05
Yield related traits								
Pods/plant (POD)	POD	2009	PAT	RF	45	bin_4_13239546 - bin_4_13378761	9.82	16.66
	POD	2007	PAT	RF	50	bin_4_15082304 - bin_4_15250027	5.91	11.96
Seeds/pod (SPD)	SPD	2007	PAT	RF	11	bin_5_20457969 - bin_5_7323627	3.17	6.66
	SPD	2006	PAT	RF	27	bin_8_8297568 - bin_8_8296790	3.00	6.04
100-seed weight (100SDW, g)	100SD W	2009	DUG	RF	45	bin_4_13239546 - bin_4_13378761	43.56	59.83
	100SD W	2009	HIR	RF	45	bin_4_13239546 - bin_4_13378761	39.20	55.99
	100SD W	2009	HIR	IR	45	bin_4_13239546 - bin_4_13378761	35.73	52.74
	100SD W	2008	PAT	RF	45	bin_4_13239546 - bin_4_13378761	34.64	51.41
	100SD W	2009	NDL	RF	45	bin_4_13239546 - bin_4_13378761	33.93	50.89
	100SD W	2009	PAT	IR	45	bin_4_13239546 - bin_4_13378761	33.21	50.16
	100SD W	2009	NDL	IR	45	bin_4_13239546 - bin_4_13378761	32.47	49.34
	100SD W	2009	DUG	IR	45	bin_4_13239546 - bin_4_13378761	27.30	43.68
	100SD W	2007	PAT	RF	45	bin_4_13239546 - bin_4_13378761	22.96	36.91
	100SD W	2008	NDL	RF	46	bin_4_13393647 - bin_4_13547009	18.31	31.66
	100SD W	2006	PAT	RF	45	bin_4_13239546 - bin_4_13378761	16.20	28.55
	100SD W	2005	PAT	RF	45	bin_4_13239546 - bin_4_13378761	15.75	27.96
	100SD W	2009	PAT	IR	107	bin_1_1202614 - bin_1_1195249	9.13	17.34

100SD W	2009	PAT	RF	106	bin_1_1244015 - bin_1_1229294	7.11	13.71
100SD W	2008	PAT	RF	107	bin_1_1202614 - bin_1_1195249	6.70	12.98
100SD W	2009	HIR	IR	107	bin_1_1202614 - bin_1_1195249	6.02	11.89
100SD W	2005	PAT	RF	107	bin_1_1202614 - bin_1_1195249	5.47	10.78
100SD W	2009	HIR	RF	107	bin_1_1202614 - bin_1_1195249	4.91	9.81
100SD W	2009	PAT	IR	78	bin_1_7476098 - bin_1_7412354	4.00	7.10
100SD W	2009	NDL	IR	107	bin_1_1202614 - bin_1_1195249	3.45	6.96
100SD W	2009	NDL	RF	107	bin_1_1202614 - bin_1_1195249	3.39	6.85
BM	2009	PAT	RF	58	bin_1_45827489 - bin_1_39391172	4.09	8.3
BM	2009	DUG	RF	44	bin_4_13048918 - bin_4_13097584	3.90	7.8
BM	2009	PAT	IR	99	bin_7_3102566 - bin_7_3050024	3.65	7.3
HI	2009	PAT	IR	47	bin_8_6034209 - bin_8_5984553	8.01	15.4
HI	2009	HIR	IR	19	bin_6_5555667 - bin_6_6943324	6.17	12.14
HI	2009	PAT	RF	43	bin_4_12935549 - bin_4_12982420	5.52	10.8
HI	2008	PAT	RF	49	bin_8_3992475 - bin_8_3962288	4.64	9.1
HI	2009	PAT	RF	47	bin_8_6034209 - bin_8_5984553	4.12	8.2
HI	2009	PAT	IR	4	bin_6_2804634 - bin_6_2917216	3.32	6.7
HI	2008	SEH	RF	51	bin_8_3962288 - bin_8_3135881	3.18	6.4

- Biomass (BM, g)
- Harvest index (HI, %)

	HI	2009 PAT	IR	11	bin_7_31651413 - bin_7_31652416	3.16	6.43	
Yield (YLD, g)	YLDG	2007 PAT	RF	110	bin_4_47375605 - bin_4_47453959	4.36	8.74	
	YLDG	2009 DUG	RF	45	bin_7_12083724 - bin_7_11984393	3.53	7.09	
	YLDG	2009 SEH	IR	19	bin_3_35078988 - bin_3_35056553	3.18	6.38	
Transpiration related traits								
Delta carbon ratio (δ^{13} C)	DC	2008 DUG	RF	45	bin_4_13239546 - bin_4_13378761	6.11	11.90	
	DC	2008 PAT	RF	2	bin_4_1710658 - bin_4_1713134	4.44	8.36	
	DC	2008 DUG	RF	86	bin_4_42549627 - bin_4_43207105	3.33	6.32	
Drought indices								
Drought tolerance indices (DTI)	DTI	2009 NAN	RF	46	bin_8_6034209 - bin_8_5984553	3.40	7.38	
	DTI	2009 PAT	RF	92	bin_7_4171826 - bin_7_4156233	3.92	7.33	
	DTI	2009 PAT	RF	63	bin_1_22810338 - bin_1_22349608	3.69	6.87	
	DTI	2009 PAT	RF	16	bin_7_32532047 - bin_7_32710042	3.26	6.05	
Drought susceptibility indices (DSI)	DSI	2009 NAN	RF	47	bin_8_6034209 - bin_8_5984553	4.31	8.64	

Note

^aPAT - Patancheru; NDL - Nandyal; sehore - Sehore; DUG - Durgapura; HIR - Hiriyur

^bRF - Rainfed; IR - Irrigated; CC - Cylider culture

phenotypic variation explained

Major QTLs are shown in green colour.

Lines	TAA170	ICCM0249	GA24	NCPGR21	NCPGR127
ICCX-110125-P18-P1	Н	Н	Н	А	Н
ICCX-110125-P18-P2	А	А	Н	Н	Н
ICCX-110125-P18-P3	А	Н	Н	В	А
ICCX-110125-P18-P4	Н	NA	А	Н	А
ICCX-110125-P18-P5	Н	А	А	В	А
ICCX-110125-P18-P6	А	NA	NA	А	В
ICCX-110125-P18-P7	Н	NA	Н	NA	Н
ICCX-110125-P18-P8	Н	В	Н	Н	В
ICCX-110125-P18-P9	А	А	А	А	А
ICCX-110125-P18-P10	Н	Н	Н	Н	Н
ICCX-110125-P18-P11	Н	Н	Н	Н	А
ICCX-110125-P18-P12	В	Н	В	В	В
ICCX-110125-P18-P13	А	А	Н	А	А
ICCX-110125-P18-P14	В	В	В	В	В
ICCX-110125-P18-P15	Н	Н	А	А	В
ICCX-110125-P18-P16	А	NA	А	А	А
ICCX-110125-P18-P17	В	В	NA	В	В
ICCX-110125-P18-P18	Н	NA	Н	Н	Н
ICCX-110125-P18-P19	В	NA	NA	В	Н
ICCX-110125-P18-P20	В	А	NA	В	А
ICCX-110125-P18-P21	Н	Н	Н	Н	Н
ICCX-110125-P18-P22	В	NA		В	В
ICCX-110125-P18-P23	А	NA	А	Н	А
ICCX-110125-P18-P24	Н	NA	Н	Н	А
ICCX-110125-P18-P25	А	Н	Н	А	В
ICCX-110125-P18-P26	Н	NA	Н	Н	А
ICCX-110125-P18-P27	Н	NA	В	В	А

Appendix 3: List of BC_6F_1 lines screened for the selection of parental line to be used in fine mapping population development

ICCX-110125-P18-P28	Α	Α	Α	Α	Α
ICCX-110125-P18-P29	A	А	А	А	А
ICCX-110125-P18-P30	Н	Н	А	А	Н
ICCX-110125-P18-P31	А	А	А	А	В
ICCX-110125-P18-P32	Н	NA	А	Н	Н
ICCX-110125-P18-P33	Н	Н	А	Н	Н
ICCX-110125-P18-P34	А	А	Н	А	А
ICCX-110125-P18-P35	В	В	Н	Н	В
ICCX-110125-P18-P36	В	В	Н	Н	В
ICCX-110125-P18-P37	А	А	А	А	А
ICCX-110125-P18-P38	А	А	NA	Н	А
ICCX-110125-P18-P39	Н	В	Н	Н	А
ICCX-110125-P18-P40	Н	Н	А	А	Н
ICCX-110125-P18-P41	Н	Н	Н	Н	Н
ICCX-110125-P18-P42	А	А	NA	В	А
ICCX-110125-P18-P43	Н	Н	Н	Н	В
ICCX-110125-P18-P44	Н	Н	Н	Н	Н
ICCX-110125-P18-P45	Н	Н	Н	Н	Н
ICCX-110125-P18-P46	Н	NA	Н	Н	В
ICCX-110125-P18-P47	Н	Н	Н	Н	А
ICCX-110125-P18-P48	В	NA	NA	В	Н
ICCX-110125-P18-P49	Н	Н	Н	Н	Н
ICCX-110125-P18-P50	Н	Н	Н	Н	А
ICCX-110125-P18-P51	В	NA	NA	В	А
ICCX-110125-P18-P52	Н	Н	NA	В	А
ICCX-110125-P18-P53	NA	В	NA	В	В
ICCX-110125-P18-P54	А	А	Н	Н	А
ICCX-110125-P18-P55	Н	NA	Н	Н	A
ICCX-110125-P18-P56	H	NA	Н	Н	Н
ICCX-110125-P18-P57	В	NA	Н	В	В

ICCX-110125-P18-P58	А	А	А	А	А	
ICCX-110125-P18-P59	В	В	NA	В	В	
ICCX-110125-P18-P60	Н	NA	Н	Н	Н	
ICCX-110125-P18-P61	Н	Н	Н	Н	Н	
ICCX-110125-P18-P62	А	А	А	А	А	
ICCX-110125-P18-P63	В	NA	NA	В	В	
ICCX-110125-P18-P64	Н	Н	Н	Н	А	
ICCX-110125-P18-P65	В	Н	NA	В	А	
ICCX-110125-P18-P66	Н	NA	Н	Н	Н	
ICCX-110125-P18-P67	Н	NA	Н	Н	Н	
ICCX-110125-P18-P68	Н	NA	Н	Н	Н	
ICCX-110125-P18-P69	Н	NA	Н	Н	Н	
ICCX-110125-P18-P70	Н	NA	NA	Н	Н	
ICCX-110125-P18-P71	В	NA	NA	В	В	
ICCX-110125-P18-P72	Н	NA	NA	В	Н	
ICCX-110125-P18-P73	NA	Н	А	А	Н	
ICCX-110125-P18-P74	Н	Н	NA	В	А	
ICCX-110125-P18-P75	Н	NA	Н	Н	Н	
ICCX-110125-P18-P76	Н	Н	NA	Н	А	
ICCX-110125-P18-P77	А	А	А	А	А	
ICCX-110125-P18-P78	Н	NA	Н	Н	В	
ICCX-110125-P18-P79	А	NA	А	А	Н	
ICCX-110125-P18-P80	NA	NA	NA	В	А	
ICCX-110125-P18-P81	NA	NA	Н	Н	Н	
ICCX-110125-P18-P82	А	А	А	А	А	
ICCX-110125-P18-P83	NA	NA	Н	Н	Н	
ICCX-110125-P18-P84	NA	NA	Н	Н	Н	
ICCX-110125-P18-P85	NA	NA	NA	В	В	
ICCX-110125-P18-P86	NA	NA	Н	Н	А	

NA- not amplified; Lines highlighted in blue colour are homozygous for "*QTL-hotspot*" region and selected for F₁ generation of fine mapping population.