Mapping Quantitative Trait Loci of Resistance to Tomato Spotted Wilt Virus and Leaf Spots in a Recombinant Inbred Line Population of Peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022

Khera, P and Pandey, M K and Wang, H and Feng, S and Qiao, L and Culbreath, A K and Kale, S and Wang, J and Holbrook, C C and Zhuang, W and Varshney, R K and Guo, B (2016) Mapping Quantitative Trait Loci of Resistance to Tomato Spotted Wilt Virus and Leaf Spots in a Recombinant Inbred Line Population of Peanut (Arachis hypogaea L.) from SunOleic 97R and NC94022. PLOS ONE, 11 (7). 01-17. ISSN 1932-6203

[img]
Preview
PDF (It is an Open Access article) - Published Version
Download (3MB) | Preview

Abstract

Peanut is vulnerable to a range of diseases, such as Tomato spotted wilt virus (TSWV) and leaf spots which will cause significant yield loss. The most sustainable, economical and eco-friendly solution for managing peanut diseases is development of improved cultivars with high level of resistance. We developed a recombinant inbred line population from the cross between SunOleic 97R and NC94022, named as the S-population. An improved genetic linkage map was developed for the S-population with 248 marker loci and a marker density of 5.7 cM/loci. This genetic map was also compared with the physical map of diploid progenitors of tetraploid peanut, resulting in an overall co-linearity of about 60% with the average co-linearity of 68% for the A sub-genome and 47% for the B sub-genome. The analysis using the improved genetic map and multi-season (2010–2013) phenotypic data resulted in the identification of 48 quantitative trait loci (QTLs) with phenotypic variance explained (PVE) from 3.88 to 29.14%. Of the 48 QTLs, six QTLs were identified for resistance to TSWV, 22 QTLs for early leaf spot (ELS) and 20 QTLs for late leaf spot (LLS), which included four, six, and six major QTLs (PVE larger than 10%) for each disease, respectively. A total of six major genomic regions (MGR) were found to have QTLs controlling more than one disease resistance. The identified QTLs and resistance gene-rich MGRs will facilitate further discovery of resistance genes and development of molecular markers for these important diseases.

Item Type: Article
Divisions: Research Program : Genetic Gains
CRP: CGIAR Research Program on Grain Legumes
Uncontrolled Keywords: Genetic Map, Peanut, Groundnut, Quantitative Trait Loci, QTLs, Genetics
Subjects: Mandate crops > Groundnut
Others > Genetics and Genomics
Depositing User: Mr Ramesh K
Date Deposited: 26 Jul 2016 05:54
Last Modified: 09 Feb 2017 06:50
URI: http://oar.icrisat.org/id/eprint/9585
Official URL: http://dx.doi.org/10.1371/journal.pone.0158452
Projects: UNSPECIFIED
Funders: UNSPECIFIED
Acknowledgement: Authors thank Billy Wilson, Jake Fountain, Stephanie Lee, Lucero Gutierrez, Sara Beth Pelham, Victoria Weaver, and Jake Weaver for technical assistance in the field and the laboratory. This research was partially supported by funds provided by the USDA Agricultural Research Service, the Georgia Peanut Commission, Peanut Foundation and National Peanut Board of USA and World Bank assisted Watershed Development Project-II (KWDP-II) by Government of Karnataka, India. This work has been also undertaken as part of the CGIAR Research Program on Grain Legumes. ICRISAT is a member of CGIAR Consortium. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. Funding: This research was partially supported by funds provided by the USDA Agricultural Research Service, the Georgia Peanut Commission, Peanut Foundation and National Peanut Board of USA and World Bank assisted Watershed Development Project-II (KWDP-II) by Government of Karnataka, India. This work has been also undertaken as part of the CGIAR Research Program on Grain Legumes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Links:

Actions (login required)

View Item View Item