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Uncertainty  exists  as  to the  optimum  whole-farm  irrigation  strategy  for  wheat  growing  in subtropi-
cal  Australia  under  water-limited  conditions.  While  deficit  irrigation  has  been  shown  to have  greater
economic  water  productivity  (EWP)  in such  circumstances  in  other  regions,  there  are  limitations  to  the
cost/revenue  function  approach  traditionally  used  to  evaluate  EWP,  including  inapplicability  across  envi-
ronments.  These  limitations  can however  be  overcome  with  the  use  of  a validated  cropping  systems
model.

The APSIM  farming  systems  model  was therefore  used  to determine  whether  growing  larger  areas  of
deficit  irrigated  wheat  is more  profitable  than  full  irrigation  of  a smaller  area in sub-tropical  Australia,
under  water  limited  conditions.  Optimal  irrigation  strategies  were  not  only  profitable  but  also  those
considered  risk-efficient,  i.e. closest  to a 1:2  ‘line  of indifference’  that identifies  the  two  unit  increase  in
risk  (measured  as  standard  deviation)  acceptable  to farmers  in return  for  a unit  increase  in  profit.  The
value  of  stored  soil  water  was assessed  by  simulating  rainfed  crop  production  on  unirrigated  land,  and/or
assigning  an  economic  value  to stored  soil water  remaining  at the  end of  the  season.

The  results  demonstrated  that deficit  irrigation  of  larger  areas  of  wheat  was  generally  more  profitable
and  risk-efficient  than  smaller  areas of  full  irrigation.  When  precipitation  or  stored  soil  water  at  sowing
was  increased,  the  most  risk-efficient  strategies  were  those  that  spread  water  across  a  larger  area  at a
reduced  frequency  of  irrigation.  However  in a low  rainfall  environment  when  water  was  expensive  and
soil water  had the  same  economic  value  as irrigation  water,  fully  irrigating  a  smaller  area  was the most
profitable  and  risk-efficient  option.  The  importance  of  evaluating  farm-management  strategies  using  EWP
(i.e. incorporating  gross  margins)  instead  of crop  water  productivity  (grain  yield  per unit  of water  use)  was
evident,  as re-ranking  of  farm-management  strategies  occurred  between  these  alternative  methods  of

calculating  whole-farm  WP.  Accounting  for the  intrinsic  value  of stored  soil  water  and  precipitation  was
fundamental  to  understanding  the  benefit  of  deficit  irrigation  strategies  in  water  limited  situations,  as
the larger  crop  area  sown  in  conjunction  with  deficit  irrigation  strategies  accessed  much  larger  absolute
volumes  of soil  water  and  precipitation.  Future  evaluations  of deficit  irrigation  strategies  should  account
for  such  considerations.

Crown  Copyright  © 2016  Published  by Elsevier  B.V.  All  rights  reserved.
. Introduction
Maximum crop water productivity (yield per unit of evapotran-
piration) for a single production field of spring wheat has generally
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been achieved in conjunction with high levels of water input at
yield levels of 7–8 t/ha (Steiner et al., 1985; Musick et al., 1994;
Zhang and Oweis, 1999). This occurs because greater transpiration
water use on a given field area decreases the proportion of ‘unpro-
ductive’ water use that is lost through evaporation, as long as the

crop responds to increased water input at maximum transpiration
efficiency (French and Schultz, 1984; Peake, 2015). Water produc-
tivity (WP) is defined herein as suggested by Barker et al. (2003):
“the ratio of crop output to water either diverted or consumed, the
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atio being expressed in either physical or monetary terms, or some
ombination of the two”.

However the profitability of irrigation enterprises relies on max-
mising economic water productivity (EWP) for an entire farm
ather than an individual field. Maximum farm-scale EWP  for irri-
ated wheat has often been achieved through the use of deficit
r supplemental irrigation (Zhang and Oweis, 1999; Tavakkoli and
weis, 2004; Geerts and Raes, 2009), although in dry seasons the
dvantages of deficit irrigation strategies are less apparent (Pereira
t al., 2002). Deficit irrigation is defined herein as the deliberate
nder-irrigation of the crop such that it receives less water than the
mount required to achieve maximum evapotranspiration (English,
990; Fereres and Soriano, 2007).

In practice, deficit irrigation under water-limited conditions
nables irrigation and cropping over a larger area than could oth-
rwise be achieved if the crop water requirement was  fully met.
eficit irrigation may  be highly relevant to irrigated wheat growers

n the northern grains region of eastern Australia (also known as the
orthern grains region), who consider that the typical water avail-
bility prior to sowing an irrigated wheat crop would be enough
or only a single furrow-irrigation event during the season per unit
f irrigable farm area, or approximately 1.3–1.5 ML  ha−1 (Hamish
ligh, Rob Holmes, Phil Lockwood (pers. comm.)). However, uncer-
ainty exists as to the optimum whole-farm irrigation strategy for
heat growing in the region as irrigated wheat cropping has been

istorically uncommon.
Alternative irrigation strategies have frequently been com-

ared using crop production functions (sometimes combined with
dditional economic or cost/revenue functions) that examine the
elationship between yield or economic return, and water con-
umed. The prevalence of production functions in WP evaluation
tudies (Capra et al., 2008) is no doubt due to their simplicity,
owever they ignore the important economic factors involved in
eciding whether irrigating a larger area is indeed more profitable,
uch as the additional cost of preparing, sowing and managing

 larger cropping area, and the price of irrigation water. There-
ore other studies have used the framework of English (1990) to
ombine production functions with cost/revenue functions. Unfor-
unately, there are additional disadvantages that apply to both
ost/revenue and production functions.

Firstly, the functions vary between environments (Zhang, 2003),
o not account for variable crop response to water deficit at dif-

erent growth stages (Geerts and Raes, 2009), and may  not be
pplicable in a specific cropping season if climatic conditions (espe-
ially rainfall) are markedly different from the median (Pereira
t al., 2002). They also do not account for the losses of irriga-
ion water during storage, distribution or application which vary
etween alternative irrigation strategies that hold water in ‘on-
arm’ storage for varying durations, and make up a large proportion
f irrigation water losses (Dalton et al., 2001). Additionally, they
ssume that irrigation water is applied uniformly across the entire
tudy area and do not account for the alternative whole-farm man-
gement strategies available to irrigated farmers. Such alternatives
nclude growing part of the farm as a rainfed crop, or leaving some
f the arable area fallow to increase stored soil water reserves for

 subsequent crop.
Furthermore, evaluations of WP  in wheat that have used

rop production and cost-revenue functions have generally not
ccounted for the volume of water stored in the soil at the end of
he cropping season (Zhang and Oweis, 1999; Tavakkoli and Oweis,
004; Ali et al., 2007). Such analyses typically calculate water
onsumption as the sum of in-season precipitation and applied

rrigation water, or by estimating evapotranspiration. However, if
nd-of-season stored soil water were assigned an intrinsic value
n economic analyses, full irrigation strategies could be relatively

ore profitable because they are more likely to leave water in
anagement 169 (2016) 61–76

the soil at physiological maturity (Zhang et al., 2004). Such con-
siderations are relevant to irrigation areas of sub-tropical eastern
Australia, where late sown summer crops (e.g. sorghum, maize,
mungbeans) can be sown immediately following a wheat crop.

The deficiencies outlined above can each be addressed with the
use of a validated cropping systems model. For example, Lobell
and Ortiz-Monasterio (2006) optimised on-farm WP for farmers
in the Yaqui Valley, Mexico. Their results showed that the most
profitable irrigation strategy for spring wheat varied depending on
the amount of stored soil water at sowing, with deficit irrigation
more profitable when stored soil water at sowing was  plentiful,
although they did not account for soil water remaining at the end
of the season.

In a review of irrigation management techniques in water
scarce environments, Pereira et al. (2002) stated: “More research
approaches are required to relate yield responses with gross margin
or revenue responses to water deficits. The development of decision
support tools integrating irrigation simulation models, namely for
extrapolating field trials data, economic evaluation and decision tools
should be useful to base the appropriate irrigation management deci-
sions for water scarcity conditions”. Additionally, a crop modelling
approach can be used to demonstrate the level of risk associated
with different agronomic strategies, by using many decades of his-
torical weather data to assess how well a strategy works in wet,
average or dry cropping seasons, the frequency at which the dif-
ferent types of season are likely to occur, and thus how often the
agronomic strategy of choice is likely to be advantageous (Hammer
et al., 1996; Hochman et al., 2009).

In response to the limited scope of previous WP  analyses along
with their inapplicability across multiple locations, the objective
of this study was to determine whether optimum whole-farm eco-
nomic water productivity (EWP) under water-limited conditions
is achieved through deficit irrigation of a larger cropping area, as
opposed to fully irrigating a smaller area, in the northern grains
production region of eastern Australia. The study was conducted
in the context of broad-scale furrow-irrigated farms where irriga-
tion water rather than land is the limiting factor to production,
using the APSIM farming systems model. A significant emphasis
of the methodology was  validation of the APSIM model for use in
simulating water use of wheat in furrow-irrigated fields.

2. Materials and methods

2.1. Overview

A key component of simulation model experiments is that the
model must first be ‘validated’—that is, the model needs to accu-
rately simulate the system being investigated. The APSIM farming
systems model used in this study (Keating et al., 2003; Carberry
et al., 2009; Holzworth et al., 2014) is the most widely used crop
model in Australia, and has been demonstrated to accurately pre-
dict grain yield of high-yielding rainfed and irrigated wheat plot
trials in sub-tropical and temperate regions of Australia (Asseng
et al., 1998; Chenu et al., 2011; Peake et al., 2011) as well as in
Europe and India (Asseng et al., 2000; Balwinder-Singh et al., 2011).
APSIM has also been successfully utilised by commercial cropping
enterprises to identify optimum rainfed and irrigated cropping
strategies (e.g. Carberry et al., 2009; Power et al., 2011; Gaydon
et al., 2012).

APSIM was  previously evaluated ‘on-farm’ in irrigated spring-
wheat production systems of the northern grains region (Peake

et al., 2014), and satisfactorily simulated yield and soil water con-
tent in the absence of lodging and severe vegetative N stress.
However their evaluation of APSIMs ability to predict water use
was conducted on three separate commercial fields, so additional
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eld evaluation was conducted in the present study to assess the
bility of APSIM to predict wheat water use under multiple furrow
rrigation regimes in the same field.

After validation of the APSIM model, simulation experiments
ere conducted to determine the optimum irrigation strategies for
aximising whole-farm economic water productivity (EWP). This

nitially involved the simulation of six alternative land uses (fallow
and, rainfed cropping, and four levels of irrigation input), followed
y the calculation of EWP  for combinations of these land-uses
hat used the maximum farm area and irrigation water allocation.

hole-farm EWP  was then determined for alternative economic
nalyses where different values (inexpensive vs. expensive) were
ssumed for both irrigation water and stored soil water.

.2. Validation of the APSIM model

.2.1. Field experiments
A field experiment was conducted at the Australian Cotton

esearch Institute farm (S 30◦12′ 22.24′ ′, E 149◦35′ 55.34′ ′) near
ee  Waa, NSW in 2011. Three furrow irrigation treatments were

pplied in a completely randomised block design across three repli-
ates, such that the nine plots of the cultivar Spitfire (sown on
th–7th June) were aligned in a single row, and furrow irrigation
reatments could be applied to individual plots. Ten metre wide sec-
ions of wheat were sown as buffer between irrigation treatments
o prevent sub-surface flow of irrigation water between plots. Plots
ere eight metres long and two metres wide, sown on raised beds
ith 7 rows of wheat spaced 25 cm apart, and separated by 50 cm
ide ‘furrow gaps’.

The three treatments consisted of a (1) a single irrigation at
owing, (2) an irrigation at sowing followed by a single in-crop irri-
ation, and (3) sown without an irrigation, then fully irrigated after
S32 (Tottman, 1987). The experiment was conducted on soil with

ow levels of residual soil N, as the experiment was sown soon after
he harvest of a cotton crop (Table 1). This meant that N fertiliser
ould be applied during the season for the fully irrigated treat-
ent in order to reduce lodging risk through the use of the canopy
anagement technique of in-crop N application (Sylvester-Bradley

t al., 1997; Sylvester-Bradley et al., 2000; Peake et al., 2014). N fer-
iliser was applied at sowing for the partially irrigated treatments.
oil and fertiliser N and irrigation volumes for the three irrigation
reatments are listed in Table 1.

The soil was a brown vertosol, with plant available water
apacity (PAWC) of 248 mm measured to 180 cm,  and bulk den-
ity ranging from 1.31 g cm−3 in the surface (0–15 cm)  layer to
.47 g cm−3 in the deepest layer measured (150–180 cm). Meteoro-

ogical data were collected at the site using an automated weather
tation. Grain yields are reported at 12% moisture.
Soil water content was measured as described in the field mon-
toring of Peake et al. (2014) for soil layers deeper than 15 cm.  This
equired neutron moisture meter (NMM)  readings with a CPN 503
R Hydroprobe (CPN International, Martinez, CA, USA) to be taken

able 1
oil mineral N status, fertiliser N and irrigation water volumes for the validation experim

Irrigation treatment Soil residual N
prior to sowing
(kg N ha−1)

Fertiliser N
prior to so
(kg N ha−1)

Sowing irrigation 36 150 

Sowing + 1 in-crop irrigation 36 150 

Sown  on rain moisture,
full ‘in-crop’ irrigation

36 10 

a The sowing irrigation was not measured, as it was applied before the initial measurem
anagement 169 (2016) 61–76 63

with a 16-s count at regular intervals during the season. NMM
data were calibrated to gravimetric soil water content using soil
cores taken at sowing and periodically during the season to sam-
ple a range of moisture contents. For calibration, access tubes were
installed in the holes from which the samples for gravimetric anal-
ysis were collected, and NMM  readings immediately taken. The
surface layer (0–15 cm)  was  monitored using a ML2x Theta probe
(Delta-T Devices, Cambridge, UK) calibrated on the same cores used
to calibrate the NMM.  Soil characterisation data for Drained Upper
Limit (DUL) and Crop Lower Limit (CLL) were obtained as described
by Dalgliesh and Foale (1998) for DUL, and by using the lowest
NMM moisture readings in the rainfed treatments to determine
CLL (similar to Ritchie (1981), and Ratliff et al. (1983)).

2.2.2. APSIM validation simulations
Results from the field trials were compared with APSIM sim-

ulations of each experimental treatment. The field data described
previously (Section 2.2.1) was used to parameterise each simula-
tion as appropriate. The APSIM “skip row factor” parameter (set at
0.2) was  used to simulate the decreased light interception due to
50 cm ‘furrow gaps’ between the irrigation beds as discussed by
Peake et al. (2014) and Peake (2015). The cultivar Spitfire has not
previously been parameterised for use in APSIM, so the cultivar H45
was used within the simulations for the 2011 experiments on the
basis of its appropriate representation of Spitfire’s flowering date.

2.3. Investigation of whole-farm economic water productivity
using long-term APSIM simulation experiments

2.3.1. Land-use simulations
The investigation of whole-farm EWP  first required simulation

of six land-uses with varying levels of irrigation input; fallow land,
rainfed cropping, three deficit irrigation land-uses, and a fully irri-
gated land-use. Long-term APSIM simulations were conducted for
each land-use at three locations and using two levels of stored soil
water at sowing (100 mm or zero), in order to assess the applica-
bility of alternative irrigation strategies at a range of locations and
sowing conditions.

The four irrigated land-uses were simulated in conjunction with
100 mm of stored soil water as follows: (1) ‘One irrigation’ (LU1),
a deficit irrigation land-use involving a single irrigation where the
entire irrigation supply was applied evenly across the entire farm,
(2) ‘Two irrigations’ (LU2), a partially irrigated land-use that applied
the irrigation water across half of the farm, split into two  applica-
tions, (3) ‘Three irrigations’ (LU3), a land-use that involved up to
three irrigation events on one third of the farm area, and (4) ‘Fully
irrigated’ (LU4), a land-use that used up to four irrigations on one
quarter of the farm area. In a small number of seasons which expe-

rienced high levels of growing season rainfall, the second, third or
fourth irrigation were not always applied due to high levels of soil
moisture. In such cases the simulation was  still included as part of
the analyses, hence the number of irrigations represent a potential

ent at Narrabri in 2011.

 applied
wing

In-crop fertiliser N
(kg N ha−1, date)

Irrigation
(mm, date)

– a,  9-Jun
50, 5th Sep a,  9-Jun

100, 6th Sep
150, 5th Aug
50, 5th Sep

50, 9th Aug
40, 6th Sep
40, 27th Sep
75, 20th Oct

ent of soil water.
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Table 2
Proportion of land-use areas used for the seven farm-management strategies when 100 mm of stored soil water was available at sowing prior to irrigation, and 140 mm of
irrigation  was  applied on average for both sowing and in-crop irrigations.

Farm-management
strategy

Irrigation land-use Alternative
land-use

Irrigated
area (ha)

Maximum no. of
irrigations

Associated area of
fallow or rainfed
land-use (ha)

S LU1—sowing
irrigation only

NA 1000 1 None

S  + 1/F and S + 1/R LU2—sowing + 1
in-crop irrigation

Fallow or
rainfed

500 2 500

S  + 2/F and S + 2/R LU3—sowing + 2
in-crop irrigations

Fallow or
rainfed

333 3 667

S  + 3/F and S + 3/R LU4—sowing + 3
in-crop irrigations

Fallow or
rainfed

250 4 750
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ey to farm-management strategy abbreviation: ‘S’ denotes sowing irrigation; ‘+1,2
se  = fallow (F) or rainfed cropping (R).

aximum rather than the actual number of irrigations applied in
ll simulations. The two remaining land-uses were abbreviated as
UR (rainfed cropping) and LUF (fallow land).

Similar land-use simulations were then conducted with zero soil
ater available at sowing prior to irrigation. However for these

and-use simulations the crop area was adjusted to account for the
arger sowing irrigation of 230 mm that was required to fill a com-
letely dry soil profile, compared with the irrigation of 140 mm that
as required to fill the soil profile when 100 mm of soil water was

lready stored at sowing.

.3.2. Farm-management strategies
Farm management strategies were comprised of combinations

f the six-land uses that fulfilled each of two criteria: (1) use of the
aximum farm area, and (2) planned use of the maximum irriga-

ion allocation. For the purposes of this study the farm was  assumed
o be 1000 ha in size, with 1400 ML  of irrigation water stored ‘on-
arm’ at the beginning of June (the time of sowing), representing
he typical limited water availability status for broad-scale furrow
rrigators of the northern grains region as discussed previously. Fur-
ow irrigation was the focus of this study as it is the predominant
orm of irrigation infrastructure deployed across the region.

Seven farm-management strategies were developed for inves-
igation in conjunction with 100 mm of stored water at sowing.
ne of these involved deficit irrigation of the entire farm area,
nd the remaining six were derived from a factorial combina-
ion of the four irrigated land-uses in conjunction with the two
emaining land-uses; rainfed cropping or fallow land (Table 2). Only
our farm-management strategies were developed for the zero soil
ater simulations (Table 3), all of which included fallow land as the
ole alternative land-use because rainfed cropping in the region is
nown to be substantially unviable in the absence of stored soil
ater at sowing (Moeller et al., 2009).

able 3
roportion of land-use areas used for farm-management strategies when zero stored soil w
nd  average in-crop irrigation was 140 mm.

Farm management
strategy

Irrigation land-use Alternative
land-use

S/F LU1—sowing
irrigation only

Fallow 

S  + 1/F LU2—sowing + 1
in-crop irrigation

Fallow 

S  + 2/F LU3—sowing + 2
in-crop irrigations

Fallow 

S  + 3/F LU4—sowing + 3
in-crop irrigations

Fallow 

ey to farm-management strategy abbreviation: ‘S’ denotes sowing irrigation; ‘+1,2 or
se  = fallow (F).
denotes number of additional irrigations applied; ‘/F or/R’ denotes alternative land

2.3.3. General methods for land-use simulations
All long-term simulations were conducted using a 110 year

historical weather data set obtained from the SILO database
(Jeffrey et al., 2001) for three locations; Emerald, Goondiwindi and
Gunnedah, representing the north, middle and southern end of
the northern grains region. Representative APSIM soil types (Peake
et al., 2010) were used for each location, with Typical Vertosol
#3 (PAWC = 255 mm)  used at Gunnedah, and Typical Vertosol #7
(PAWC = 204 mm)  used at Emerald and Goondiwindi. Water accu-
mulation in fallow fields was simulated according to the specific
curve number characteristics associated with each of the ‘Typ-
ical Vertosol’ soil types as per the APSOIL database (Dalgliesh
et al., 2006). The cultivar Kennedy was used for all long term
simulations, with maximum kernel weight increased to 45 mg  fol-
lowing the field observations of Peake et al. (2014). The APSIM
“skip row factor” parameter (set at 0.2) was used to simulate
decreased light interception due to ‘furrow gaps’ as discussed in
Section 2.2.2.

Peake et al. (2014) observed under-prediction of grain yield in
fields managed using low levels of soil N at sowing (approximately
50 kg ha−1 N or less) for the reduction of lodging risk. Therefore
all long-term simulations conducted in this study were carried
out assuming moderate levels of soil + fertiliser N at sowing for
fully irrigated treatments (100 kg ha−1 N), and higher levels in rain-
fed and partially irrigated treatments (120 and 150 kg ha−1 N). The
N application schedule (Table 4) aimed to replicate farmer best-
practice and thus varied between rainfed and irrigated land-uses
depending on yield expectation and the need to reduce lodging risk.

Additional ‘tactical’ N applications were applied within each
simulation if residual soil N decreased below 50 kg N ha−1 prior to

anthesis, to simulate in-crop N application in response to increased
yield expectations in high rainfall years (Table 4). N application
strategies did not vary between the zero and 100 mm sowing soil

ater was  available prior to sowing, an irrigation of 230 mm was applied at sowing,

Irrigated
area (ha)

Maximum no. of
irrigations

Associated area of
fallow (ha)

600 1 400

375 2 625

273 3 727

214 4 786

 3′ denotes number of additional irrigations applied; ‘/F denotes alternative land
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Table  4
Fertiliser N application regime for the different land-use simulations.

Land-use Soil + fertiliser N
available at sowing
(kg ha−1)

Scheduled in-crop
N application (kg ha−1)

Tactical in-crop
N applicationa

LUR—rainfed 120 – 30 kg N ha−1 per application
LU1—sowing irrigation only 150 – 30 kg N ha−1 per application
LU2—sowing + 1 in-crop irrigation 150 50 (with in-crop irrigation,

variable growth stage)
30 kg N ha−1 per application

LU3—sowing + 2 in-crop irrigations 100 100 (GS31) 30 kg N ha−1 per application
LU4—sowing + 3 in-crop irrigations 100 100 (GS31) 30 kg N ha−1 per application
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a Tactical in-crop N was only applied if total soil N was below 50 kg N ha−1 betw
rrigation event occurred.

ater simulations as the sowing irrigation event negated the vari-
tion in stored soil water.

Irrigation storage was assumed to be a single dam 33 ha in area
ith maximum storage capacity of 2800 ML,  slightly above-average

apacity for broad-scale irrigated farms in the region (CCCCRC,
011). APSIM manager-logic was used to alter the volume of stored
ater each day in response to rainfall, evaporation (calculated using

he FAO56 method of Allen et al. (1998)), and seepage of 2 mm per
ay (the median seepage for farm storages in the region (CCCCRC,
011)). Differences in mean long-term runoff between the farm-
anagement strategies were negligible and not accounted for in

he modelling of irrigation water storage volumes. The length of
he simulated wheat growing season was determined as the time
etween sowing and physiological maturity, and used to calculate
rop evapotranspiration as well as the net usage of soil water.

The sowing irrigation events were applied one day after sowing,
artly to simulate the practice of ‘watering up’ after dry sowing, a
ommon practice in the region due to the short time-frame (6–8
eeks) between cotton harvest and wheat sowing. The default
PSIM irrigation efficiency was set at 0.75 for all simulations; hence

or irrigation events of 120 mm,  90 mm was added to the crop
oot zone, and 30 mm was assumed lost to the cropping system as
vaporation, deep drainage, and tail drain losses. The APSIM term

irrigation efficiency’ therefore encompasses both distribution effi-
iency and application efficiency (Dalton et al., 2001). In-season
rrigation applications occurred when the soil water deficit to a
epth of 120 cm was greater than 100 mm or 1 ML ha−1, the typi-
al irrigation ‘refill point’ used by furrow irrigators throughout the
egion.

Irrigated land-uses with multiple irrigation events had a smaller
roportion of the stored irrigation water applied during the first

rrigation of the season, compensating for the greater storage losses
hey incurred over time and ensuring that irrigation-event volumes
ere approximately equal for each irrigation event. For example,

he ‘LU1’ land-use had 100% of the available irrigation water applied
o the entire 1000 ha farm on the date of irrigation. However the
LU2’ irrigation treatment had approximately 45% of the available
rrigation water applied on the first irrigation date to the cropped
rea, and 100% of the remaining water applied on the second irri-
ation date.

It should be noted that furrow irrigators have only a limited abil-
ty to adjust irrigation timing, as the size of the soil water deficit is
losely related to the amount of irrigation water that can be applied
n practice. Growers who  delay irrigation applications in an attempt
o conserve water for later growth periods typically end up applying

ore water per unit area than intended, and then have insuffi-
ient water remaining to irrigate the entire cropped area. Hence
his study did not attempt to optimise the timing of these in-crop
rrigations during the growing season.
Irrigation scheduling was modified slightly for the LU3 and LU4
and-uses. This allowed application of irrigation at a smaller soil

ater deficit than normal in years when insufficient rain fell to
he end of tillering and the beginning of flowering, and either 10 mm of rain or an

allow incorporation of scheduled N applications at the beginning
of stem elongation (GS31). If the soil water deficit was  less than
50 mm,  an 80 mm irrigation was  applied to incorporate N, at an
irrigation efficiency of 0.6. If the soil water deficit was  greater than
50 mm,  the full irrigation amount for the first scheduled irrigation
was applied, also at an irrigation efficiency of 0.6. This simulated the
larger distribution and application losses that occur when applying
irrigation to moist soil early in the growing season, solely for the
purpose of incorporating the in-crop N application.

2.3.4. Determination of partial gross margins
Partial gross margins (GMs) were used to evaluate the economic

return of different farm-management strategies by subtracting
the costs involved in preparing land and managing the wheat
crops from the income generated by the wheat production. They
are described as ‘partial’ gross margins because long-term costs
associated with infrastructure (e.g. depreciation) and other farm
overheads were not included in the analysis. The pricing of each
operation was  based on gross margins prepared for irrigated wheat
in northern New South Wales (Scott et al., 2012) but modified
slightly to reflect grower practices across all irrigation areas of the
northern grains region. Ultimately, the fixed cost per unit area of
irrigated and rainfed production was  determined to be similar at
$236.24 ha−1 for rainfed crops, and an additional $11 ha−1 appli-
cable to irrigated crops (the cost of an additional fungicide and
insecticide application). The cost of fertiliser and water (and their
application) were the main costs that varied between simulations.
Nitrogen (priced at $1.32 per kilogram of N) was  assumed to be
applied as urea, with no cost of application when it was applied
‘water-run’ (i.e. dissolved in irrigation water), and a cost of $8 ha−1

for applying 65 kg ha−1 of urea with a spreader before a rain event.
Other macro and micronutrients were assumed to be replaced at a
rate identical to the amount of these nutrients removed per tonne
of grain, calculated at $21 t−1 ha−1. The cost of insurance and levies
were applied at 3.07% of the price of grain (which was $250 per
tonne), while the variable cost of harvesting was applied at $10 per
tonne of yield above 2.5 t ha−1 (the minimum yield level to which
fixed harvesting costs were applied). The grain price was applied
consistently across land-uses and seasons, reflecting the lack of
importance placed on grain protein concentration by local grow-
ers during the period encompassed by this study. This was due to
the small price differences available for higher quality grades that
gave little incentive to achieve specific grain protein and end-user
quality requirements.

2.3.5. EWP  analyses
Four alternative EWP  analyses were developed using a factorial

combination of high vs. low water price, and including/excluding

the application of this price to the net usage of stored soil water
through the wheat growing season. The irrigation water price was
applied to the net usage of soil water in order to reflect that stored
soil water has an economic value, because it decreases the amount
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Table 5
The four alternative analyses used for calculating whole-farm EWP.

EWP  analysis Calculation method

GM40 Irrigation water price of $40 ML−1, �SW not priced
GM40 + �SW Irrigation water price of $40 ML−1 with �SW also priced at $40 ML−1

GM120 Irrigation water price of $120 ML−1, �SW not priced
 �SW

�

o
p
m
a
w
H
p
w
i
t
a

2

a
(

1

2

3

3

3

3

a
t
f
N
n
m

a
e
m
s
t
g
a
N
t

3

t
W

GM120 + �SW Irrigation water price of $120 ML−1 with

SW:  the net change in stored soil water between sowing and harvest.

f water required to sow the subsequent crop planned for the
roduction field. Low-priced water was assumed to cost $40 per
egalitre, a price that incorporated the cost of pumping water in

nd out of the farm storage without applying a price directly to the
ater because it was assumed to be harvested from a flood event.
igh-priced water was assumed to cost $120 ML−1, incorporating
umping costs as well as an $80 ML−1 price directly applied to the
ater, as sometimes occurs when river flow volumes are low and

rrigated producers purchase water from a limited pool available
o growers within a district. Abbreviations used for these analyses
re listed in Table 5.

.3.6. Evaluation terminology
For simplicity of communication, the following abbreviations

re used to describe different forms of crop (CWP) and economic
EWP) water productivity throughout the results and discussion:

. CWPET—measured as yield divided by evapotranspiration
(kg−1 mm−1 ha−1); used only to evaluate individual land-uses.

. CWPET+IE—measured as yield divided by the sum of evapo-
transpiration, irrigation storage/distribution losses, and infield
drainage losses (kg−1 mm−1 ha−1); used to evaluate either indi-
vidual land-uses or the whole-farm management strategies.

. EWP—‘economic’ water productivity calculated using one of the
partial gross margin (GM) analyses. Effectively the unit measure
for EWP  is partial GM ($) per 1400 ML  of irrigation water, for the
entire 1000 ha farm. However for simplicity of discussion, the
measure of partial GM will be stated simply as a dollar value.

. Results

.1. APSIM validation

.1.1. Field observations and agronomic management
The 2011 validation experiment received higher than aver-

ge rainfall, although the month of July was dry. While cold
emperatures were experienced just prior to anthesis, no visible
rost damage symptoms were observed. Substantial rainfall in late
ovember after physiological maturity delayed harvest, but was
ot observed to cause any grain sprouting that could have affected
easured grain yield.

The fully irrigated treatment was grown using the canopy man-
gement technique of in-crop N application (Sylvester-Bradley
t al., 2000) for the reduction of lodging risk. Plots in this treat-
ent were visibly N stressed by the end of tillering and remained

o until the application of in-crop N in early August, after which
hey recovered rapidly. The ‘sowing’ and ‘sowing + 1 in-crop’ irri-
ation treatments had the majority of their N requirement applied
t sowing, and showed no signs of visible N stress at any crop stage.
o significant lodging was  observed in any of the treatments prior

o harvest.
.1.2. Comparison of simulated and observed yield and water use
APSIM accurately simulated water use in the ‘sowing irriga-

ion’ and ‘sowing + 1 in-crop irrigation’ treatments (Fig. 1a and b).
ater use for the fully irrigated treatment was predicted accu-
 also priced at $120 ML−1

rately during early-season growth while N stress was  beginning to
develop (Fig. 1c, solid line), however predicted and observed water
use diverged in late August as APSIM was  unable to simulate the
recovery in crop biomass that was observed in the field, a trend
previously observed by Peake et al. (2014). Simulated grain yield
of the partially irrigated simulations were similar to the observed
grain yields of 3.7 and 5.1 t ha−1 (at or within a standard error
of approximately 0.5 t ha−1). However the simulated yield of the
fully irrigated simulation was 2.2 t ha−1, nearly 4 t ha−1 below the
observed grain yield.

An alternative simulation of the full irrigation treatment was
conducted to determine whether APSIM was able to simulate late-
season water use in this treatment. This was achieved by (1) altering
the simulated date of N application to the day of sowing to elim-
inate vegetative N stress, and (2) resetting soil water after each
of the first two  irrigation events, to compensate for the subse-
quent over-simulation of early-season water-use (due to improved
N availability). The simulation of late season water use for the
fully irrigated treatment was  satisfactory once these compensa-
tions were made (Fig. 1c, dotted line) as was  the prediction of grain
yield which increased to 5.6 t ha−1, close to the observed yield of
6.1 t ha−1.

As discussed in Section 2.3.3, long-term simulations of the alter-
native land-uses were carried out using moderate levels of sowing
N to ensure that severe N stress would not be experienced, thus the
land-use simulations were conducted within the known operating
capabilities of the model.

3.2. Land-use simulations

3.2.1. Environmental characterisation
The three environments used for the long-term land-use sim-

ulations differed in terms of temperature, radiation and rainfall
through the wheat growing season. Average daily temperature
and radiation decreased from north to south, with Emerald hav-
ing higher average daily temperature and radiation (18.4 ◦C and
18.9 MJ  m−2) on average from June to October than Goondiwindi
(14.8 ◦C and 17.2 MJ  m−2) and Gunnedah (13.3 ◦C and 15.9 MJ m−2).
Average rainfall from June to October was similar at Goondiwindi
and Gunnedah (212 and 237 mm)  but lower at Emerald (156 mm).
The higher temperatures at Emerald led to decreased duration of
the simulated wheat growing season, with the average number of
days from sowing to harvest being 128 days, compared with 142
and 153 at Goondiwindi and Gunnedah. As a result, growing season
rainfall (calculated as cumulative rainfall between the date of sow-
ing and physiological maturity in each simulation) showed greater
differences between environments than June to October rainfall, at
101, 174 and 212 mm,  respectively for Emerald, Goondiwindi and
Gunnedah.

3.2.2. Comparison of land-use simulations
Irrigation storage losses were greater in the more frequently
irrigated land-uses, which required water to be held in storage to
allow irrigation later in the growing season (Table 6). Up to 11%
of the irrigation water stored at sowing was lost to seepage and
evaporation in the ‘LU4’ land-use, compared with between 5% and
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as  amended to prevent the underestimation of biomass in response to severe earl

% being lost when the irrigation was applied earlier in the season
cross a larger land area in the ‘LU2’ land-use.

Unsurprisingly, grain yield and evapotranspiration increased in
and-uses with greater irrigation input at each location (Fig. 2a–f),
or the simulations that had 100 mm of stored soil water at sowing.
WPET (grain yield per unit of evapotranspiration) was also greater

n the land-uses that involved higher levels of irrigation (Fig. 2g–i).
owever CWPET+IE (which included seepage and storage losses of

rrigation water in the denominator term) peaked in the second
ost heavily irrigated treatment (LU3) (Fig. 2j–l). This was due to

he increased seepage and storage losses incurred by the most fre-
uently irrigated treatment (LU4), which had similar grain yield to
U3. These trends were almost identical to those found in the sim-
lations where zero stored soil water was available at sowing (data
ot shown).

.3. EWP  analysis of farm-management strategies

.3.1. Assessing the risk efficiency of farm management strategies

A disadvantage of using mean partial GM as a measure of EWP

s that the mean value does not demonstrate the season to season
ariability associated with alternative management options. This
ariability is demonstrated in the relationship between gross mar-
ted line in (c) shows simulated water use from an additional APSIM simulation that
ress.

gin and growing season rainfall for the ‘GM40’ analysis of the ‘zero
soil water at sowing’ simulations for Goondiwindi (Fig. 3). While
the difference between mean partial GM for farm-management
strategies in this analysis was  small ($5000, or $5 per hectare), the
optimum farm-management strategy varied substantially between
seasons. In high rainfall years, applying a single irrigation to the
entire farm at sowing was most profitable, however the same strat-
egy was least profitable in low rainfall years. In median years (decile
0.5 in Fig. 3b), all farm-management strategies exhibited similar
partial GM.

In order to encapsulate this risk/return trade-off, a commonly
used modified mean-variance approach (e.g. Barah et al., 1981;
McCown et al., 1991; Carberry et al., 1993; Hammer et al., 1996)
was used to identify optimum or ‘risk-efficient’ farm management
strategies. The approach (demonstrated in Fig. 4 re-using the data
from Fig. 3) first involves plotting mean gross margin vs. standard
deviation of the mean for each farm-management strategy. A line
(termed the risk/return frontier) is then drawn, beginning at the ori-
gin, after which it is then joined to the farm-management strategy

with the smallest coefficient of variation (CV, i.e. standard devia-
tion/mean), labelled point 1 in Fig. 4. The frontier then proceeds to
the farm-management strategy with the next lowest CV that has a
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Fig. 2. Boxplots for grain yield, evapotranspiration, CWPET (grain yield/ET) and CWPET + IE(grain yield/(ET + drainage + irrigation storage losses)) for the five cropped land-
use  options and three locations, for long term simulations using 100 mm of stored soil water at sowing. Land use simulations are abbreviated as follows: LUR = Rainfed,
LU1  = sowing irrigation only, LU2 = sowing + 1 in-crop irrigation, LU3 = sowing + 2 in-crop irrigations, LU4 = sowing + 3 in-crop irrigations. Boxed areas indicate the upper and
lower  quartiles, whiskers represent the upper and lower deciles, and the area bounded by circles represents 90% of all years. Median year is represented by the solid line
within the interquartile range box, while the mean value is represented by the dotted line.
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Table  6
Simulated water lost (as % of the 1400 ML  of irrigation water stored at sowing) from storage as evaporation or seepage for the simulated irrigated land-uses at Emerald,
Goondiwindi and Gunnedah.

Location, and stored soil water at sowing (mm) Land use simulation

LU1 LU2 LU3 LU4

Emerald (100) 0.0 6.0 8.3 11.4
(Zero) 0.0 6.5 7.9 11.0

Goondiwindi (100) 0.0 6.5 8.1 11.1
(Zero) 0.0 6.0 7.5 10.3

Gunnedah (100) 0.0 7.2 8.2 11.1
(Zero) 0.0 5.0 7.7 10.6
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he  risk/return frontier, while point 4 lies slightly below and is not joined to the
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igher GM and standard deviation than the previous point on the
rontier (labelled point 2).

This rule is applied until no further farm-management strategies
ave both a greater partial GM and standard deviation. Strategies
l decile, for the farm-management strategies compared at Goondiwindi when zero
; (�—) = S + 2/F; (+– – –) = S + 3/F.

situated on this frontier are potentially logical choices for a grower
depending on their level of risk aversion, whereas strategies lying
beneath the frontier (e.g. point 4) would be illogical in terms of
either maximising mean partial GM or reducing risk, as alternative
strategies exist that fulfil either criteria.

An additional frontier used in the analysis is termed the ‘line of
indifference’ (the dashed line in Fig. 4). This line represents the 1:2
ratio between gross margin and standard deviation that has been
found to represent the intermediate level of risk/return trade-off
preferred by the majority of growers in multiple cultures (Barah
et al., 1981; Ryan, 1984; McCown et al., 1991) and has previously
been used in conjunction with the risk frontier (McCown et al.,
1991; Carberry et al., 2000). For simplicity of presentation, only the
1:2 line of indifference will be presented on remaining risk/return
graphs.

In the particular example in question (Fig. 4) it can be seen that
point 2 (S + 1/F) is the farm-management strategy with the most
favourable position on the risk/return frontier, as its mean partial
GM is close to the highest, possessing the second lowest standard
deviation and a noticeably larger mean partial GM than the strat-
egy with the lowest standard deviation. For the remainder of this
study these ‘optimum’ strategies are referred to as the most ‘risk-
efficient’ strategies. The most risk-efficient strategies are likely to
be preferred by farmers when there is no seasonal forecast available

that might cause them to amend their strategy to take advantage of
a wetter or drier than average season. The absence of such forecasts
is assumed for the analyses conducted herein.
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.3.2. Risk/return analyses—Emerald
When evaluating CWPET+IE at Emerald, the ‘irrigation + rainfed’

trategies were more risk efficient (Fig. 5a) than the ‘irriga-
ion + fallow’ strategies, each having CWPET+IE of approximately
0 kg mm−1 when 100 mm of soil water was available at sowing.
he strategy with the highest mean CWPET+IE (S + 2/R) also had the
econd lowest variance, and was considered the most risk efficient
trategy as it was closest to the 1:2 line of indifference.

However when calculating EWP, different irrigation strategies
ere closest to the 1:2 line of indifference depending on the par-

icular EWP  analysis used (Fig. 5b–e). Most farm-management
trategies lay close to the 1:2 line of indifference when �SW was
ot priced in the calculation of partial GM (Fig. 5b and d). How-
ver when �SW was included in the calculation of partial GM,  the
ingle sowing irrigation and partially rainfed strategies were less
isk efficient than the strategies that incorporated an area of fal-
ow land (Fig. 5c and e). While it did not always have the greatest
WP, the S + 2/F strategy was the most consistently risk-efficient
s it was located on or near the line of indifference for each of the
WP  analyses.

When zero soil water was available, all strategies except S + 3/F
ere situated on the line of indifference in the CWPET+IE analysis

Fig. 5f). In contrast two strategies (S + 2/F and S + 3/F) had similarly
igh EWP  and were closest to the line of indifference in each of
he EWP  analyses (Fig. 5g–j). While the S/F and S + 1/F strategies
ere considered risk efficient in the CWPET+IE analysis, they were

ubstantially below the line of indifference in the EWP  analyses.

.3.3. Risk/return analyses—Goondiwindi and Gunnedah
The results of the risk-return analyses at Goondiwindi and

unnedah are discussed simultaneously as they were similar at
hese locations, but in contrast to those observed at Emerald. When
00 mm of water was available at sowing, four strategies (‘S’, S + 1/R,

 + 2/R, S + 3/R) were markedly closer to the line of indifference
n the CWPET+IE analysis than the remaining farm-management
trategies (Figs. 6a and 7a). The S + 1/R and S + 2/R strategies were
lso at or near the line of indifference for all of the EWP  analyses
Figs. 6b–e and 7b–e). The three strategies involving areas of fallow
and were only close to the line of indifference in the GM120 + �SW
nalysis (Figs. 6e and 7e). The valuation of �SW within the EWP
nalyses improved the relative profitability of the three strategies
nvolving fallow land, but not to the same extent observed at Emer-
ld.

When zero soil water was available at sowing, farm-
anagement strategies that spread water across a wider area

ecame more risk-efficient as the price of water increased, and
s growing season rainfall changed with location. In the CWPET+IE
nalysis at both locations the S/F strategy was the most risk efficient
Figs. 6f and 7f). However in the EWP  analyses, the S/F strat-
gy receded from the line of indifference when �SW was priced,
nd when the price of water increased (Figs. 6g–j and 7g–j). Ulti-
ately the S + 2/F strategy was the most consistent at Goondiwindi,

eing situated on the line of indifference for all the EWP  analyses,
hile the S + 1/F and S + 2/F strategies were equally consistent at
unnedah where average rainfall was slightly higher.

. Discussion

.1. APSIM validation

One of the key aspects of the methodology of this study was

o confirm the ability of APSIM to simulate water use of furrow-
rrigated wheat when comparing multiple irrigation treatments at
he same location. As demonstrated in the results, APSIM closely
imulated grain yield and water use of the irrigated experiment in
anagement 169 (2016) 61–76

Narrabri for the rainfed and single in-crop irrigation treatments,
which were grown with high levels of sowing N. Although the
model was initially unable to simulate the grain yield and water
use of the fully irrigated treatment (grown using the canopy man-
agement strategy of in-crop N application), satisfactory simulation
of grain yield and water use for this treatment was  ultimately
achieved when N was applied at sowing in the simulation. This find-
ing adds further evidence to the observations made by Peake et al.
(2014) that the APSIM wheat module under-estimates the ability
of spring wheat cultivars to recover from severe N stress during
tillering, when fertiliser N is subsequently applied during the crop-
ping season and incorporated under ideal (irrigated) conditions for
rapid N uptake.

Long-term simulations were therefore carried out using mod-
erate levels of sowing N to ensure they were conducted within the
known operating capabilities of the model. It should also be remem-
bered that the analyses herein assume that lodging is avoided
through the use of agronomic methods such as cultivar choice, in-
crop N application and reduced plant populations. These strategies
must therefore be successfully applied in production fields in order
to maximise the relevance of the simulation experiment results.

4.2. Water productivity analyses

The results of the CWP  analyses conducted on alternative land-
uses at an individual field scale showed that the more heavily
irrigated land-uses had the highest water productivity when mea-
sured as CWPET (grain yield/evapotranspiration). When irrigation
inefficiencies were incorporated into the denominator term (as
CWPET+IE), water productivity decreased in the most frequently irri-
gated treatment, compared with the next most irrigated treatment.
These results agreed with trends previously demonstrated in mul-
tiple field studies (e.g. Steiner et al., 1985; Musick et al., 1994; Zhang
and Oweis, 1999) that increasing irrigation increases water produc-
tivity of spring wheat when calculated on a single field basis, until
yields approach yield potential.

However, the profitability of irrigation enterprises is dependent
on maximising EWP  for an entire farm rather than CWP  for an indi-
vidual field, the importance of which can be demonstrated from the
results of the current study. At each location, farm-management
strategies considered risk-efficient in the CWPET+IE analysis were
not always risk-efficient in the EWP  analyses, particularly when
non-irrigation water availability was low (i.e. at the low rainfall
environment or when stored soil water at sowing was low). Sim-
ilar results were obtained in maize by Rodrigues et al. (2013) and
Paredes et al. (2014) who found re-ranking of optimal strategies
depending on whether CWP  or EWP  analyses were used.

The results of the whole-farm EWP  analyses demonstrated that
deficit irrigation strategies involving larger areas of wheat were
more profitable on average than smaller areas of full irrigation in
the two environments with higher in-season rainfall (Goondiwindi
and Gunnedah), and were also more risk-efficient. At these environ-
ments, one of the deficit irrigation strategies was more profitable
and risk-efficient than full irrigation for all permutations of sowing
soil water and method of calculating EWP, regardless of whether
rainfed wheat or fallow land was used as the alternative land-use
to the fully irrigated area. At the environment with lower in-season
rainfall (Emerald), deficit irrigation strategies were superior in most
EWP  analyses except when irrigation water was  expensive and the
stored soil water remaining at the end of the season was  assigned
the same value, in which case growing a smaller area of fully irri-
gated wheat was  the most risk-efficient and profitable strategy.
These results broadly agree with the field-based studies of Zhang
and Oweis, (1999) and Ali et al. (2007) who  also found that EWP
for wheat was generally maximised under deficit irrigation. How-
ever, it is important to note that the present study demonstrated
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Fig. 5. (a and f) Farm scale CWPET + IE vs. standard deviation of the mean, and (remaining graphs) EWP  vs. standard deviation of the mean, from the comparison of farm-
management strategies at Emerald with (a–e) 100 mm or (f–j) zero soil water at sowing. The alternative methods of calculating EWP  were (b and g) GM40; (c and h)
GM40 + �SW;  (d and i) GM120; (e and j) GM120 + �SW.  Farm-management strategies are denoted as follows: × = S (a–e) or S/F (f–j), � = S + 1/F; � = S + 2/F, � = S+3/F; © = S + 1/R;
�  = S + 2/R, � = S + 3/R.
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Fig. 6. (a and f) Farm scale CWPET + IE vs. standard deviation of the mean, and (remaining graphs) EWP  vs. standard deviation of the mean, from the comparison of farm-
management strategies at Goondiwindi with (a–e) 100 mm or (f–j) zero soil water at sowing. The alternative methods of calculating EWP  were (b and g) GM40; (c and h)
GM40 + �SW;  (d and i) GM120; (e and j) GM120 + �SW.  Farm-management strategies are denoted as follows: × = S (a–e) or S/F (f–j), � = S + 1/F; � = S + 2/F, � = S + 3/F; © = S + 1/R;
�  = S + 2/R, � = S + 3/R.
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Fig. 7. (a and f) Farm scale CWPET + IE vs. standard deviation of the mean, and (remaining graphs) EWP  vs. standard deviation of the mean, from the comparison of farm-
management strategies at Gunnedah with (a–e) 100 mm or (f–j) zero soil water at sowing. The alternative methods of calculating EWP  were (b and g) GM40; (c and
h)  GM40 + �SW;  (d and i) GM120; (e and j) GM120 + �SW.  Farm-management strategies are denoted as follows: × = S (a–e) or S/F (f–j), � = S + 1/F; � = S + 2/F, � = S + 3/F;
©  = S + 1/R; � = S + 2/R, � = S + 3/R.
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he importance of several aspects of deficit irrigation analysis that
ave rarely been considered by other studies on deficit irrigation

n wheat, and the inclusion of these factors frequently altered the
hoice of optimum deficit irrigation strategy. In particular, the
trategies considered the most risk-efficient in the current study
ere those that incorporated rainfed crops sown on the unirrigated

rea.

.2.1. Assessing the intrinsic value of soil water and its impact on
he choice of irrigation strategy

While Lobell and Ortiz-Monasterio (2006) examined the inter-
ction between varying levels of soil water at sowing on the success
f different irrigation strategies, they did not specifically investi-
ate the amount of soil water remaining at the end of the season or
ccount for the value of this water. In the current study the intrinsic
alue of stored soil water was investigated through (1) the inclusion
f rainfed cropping on unirrigated land, allowing an assessment of
he value of stored soil water across the entire farm by evaluating its
rop production potential, and (2) by assigning an economic value
o soil water, such that the net change in stored soil water through
he season was given the same monetary value as irrigation water.

The use of deficit irrigation across a larger area accesses a greater
bsolute volume of stored soil water and precipitation (and poten-
ially in some farming systems, water from a subterranean water
able). This can be illustrated by considering the results from the
our farm-management strategies that consisted of irrigated land
n conjunction with fallow land. When 100 mm of stored soil water

as available at sowing, the optimum irrigation + fallow strategy
as generally one that spread the water over a wider area (i.e. S/F,

r S + 1/F). These strategies accessed additional water equivalent
o the difference in the cropping area multiplied by the volume of
tored soil water and precipitation, per unit area. As the 1000 ha
arm in this study had 100 mm (or 1 ML  ha−1) of stored soil water
er hectare, this meant an additional 50 ML  of stored soil water was
vailable for crop use in the sowing irrigation (S/F) strategy that irri-
ated 1000 ha, compared with the S + 1/F strategy that applied two
rrigations to 500 ha of land. Additionally, at Gunnedah for instance,

 further 212 mm of rainfall fell on average during the growing sea-
on equating to a further 1060 ML  available to crop production in
he sowing irrigation strategy. The difference in partial GM between
he S/F and S + 1/F strategies was large in some EWP  analyses (e.g.
150,000 at Gunnedah in the GM40 analysis), but heavily biased due
o the additional soil water and precipitation used to grow crops
ver the wider area of the S/F strategy that was unavailable to the

 + 1/F strategy. The equivalent strategy that included rainfed crop-
ing (S + 1/R) had an almost identical gross margin to the ‘S’ strategy
t Gunnedah because it was able to use the additional precipitation
nd stored soil water in producing the rainfed crop, and was  more
isk-efficient due to its lower year-to-year variability.

Ultimately the analyses showed (unsurprisingly) that rainfed
ropping was either similar to or more profitable than fallow land
hen used in conjunction with deficit irrigation strategies in most

f the EWP  analyses, and was also more risk-efficient. It is impor-
ant to note however that the ability to choose rainfed cropping
longside an irrigated area will fluctuate between seasons due to
ariability in soil moisture at sowing (required both for seed ger-
ination and as a stored soil moisture ‘buffer’ for reliable crop

roduction). Irrigated growers may  therefore prefer to irrigate the
ntire cropping area in certain seasons in response to these practi-
al limitations.

Assigning an economic value to stored soil water impacted on
he choice of the most risk-efficient farm-management strategy

y reducing the relative profitability of strategies that cropped

arger farm areas in comparison to the strategies that included fal-
ow land. In the higher rainfall environments this did not cause
ignificant changes to the relative risk efficiency of the alterna-
anagement 169 (2016) 61–76

tive farm-management strategies, but did increase the number
of strategies at or near the line of indifference when the price of
water was  high. However in the low rainfall environment (Emerald)
it significantly re-ranked the farm-management strategies such
that irrigation + fallow strategies became more profitable and risk-
efficient than the irrigation + rainfed strategies.

4.2.2. The effect of stored soil water, environment and
year-to-year variability on the choice of risk-efficient irrigation
strategies

The importance of stored soil water at sowing in determining
the optimum farm-management strategy was first apparent when
developing simulation scenarios for the study, as strategies that
included rainfed cropping were not considered viable (and hence,
not simulated) when there was  zero stored soil water at sowing, a
well understood principle in the region (e.g. Moeller et al., 2009).
However in order to assess the effect of additional soil water at sow-
ing, it was necessary to compare farm-management strategies that
were simulated for both levels of sowing soil water, i.e. only the
strategies that incorporated irrigation in conjunction with fallow
land. Comparison of these strategies showed that increasing soil
water at sowing altered the most risk-efficient strategy to one that
had a larger deficit irrigated area with reduced frequency of irriga-
tion, for each of the environments studied. These results agree with
those of Lobell and Ortiz-Monasterio (2006), who also showed that
deficit irrigation of spring wheat was  more profitable in conjunction
with high levels of stored soil water at sowing.

The most profitable and risk-efficient farm-management strate-
gies varied between environments according to the relative
difference in average rainfall between the environments. When
100 mm of soil water was  available at sowing and rainfed crop-
ping was  considered as a potential land-use, optimal strategies
in the higher rainfall environments (Gunnedah and Goondiwindi)
were generally irrigation + rainfed strategies that utilised irriga-
tion water across a wider area. These results were similar to those
observed in an area of southern Australia with similar growing
season rainfall to Gunnedah by Gaydon et al. (2012), who  found
that maximum farm profitability under limited water situations
was obtained by spreading irrigation water over a wider area in
winter cereal crops. The same trend was  not observed at the low-
est rainfall environment where all strategies were either ranked
similarly, or strategies including fallow land were considered the
most risk-efficient. The identification of different optimal strategies
between environments was unsurprising, given the relationship
already identified between soil water and risk-efficient deficit irri-
gation strategies that is logically extended to variable precipitation
between environments. Oweis and Hachum (2006) also identified
alternative optimum deficit irrigation strategies for different wheat
growing environments in Syria with varying rainfall.

It should be remembered that the risk-efficiency of the dif-
ferent irrigation strategies is a long term average generated from
multi-year simulations. In individual seasons with markedly higher
rainfall than the mean, strategies spreading irrigation water across
a wider area will be more profitable than the strategy that is most
risk efficient across all years. Conversely in low rainfall years, strate-
gies that have increased irrigation frequency on a smaller crop area
are likely to have increased profitability compared with the most
risk-efficient strategies from the long term analyses. While it is pos-
sible that the use of seasonal climate forecasts could improve the

probability of selecting a better strategy for the particular season
(e.g. Hammer et al., 1996), evaluation of the value of seasonal fore-
casting in improving the selection of deficit irrigation strategies is
beyond the scope of the present study.
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. Conclusions

The results of the simulation study into whole-farm water pro-
uctivity in a limited water situation demonstrated that applying
eficit irrigation strategies across larger areas of wheat was gener-
lly more profitable and risk-efficient (on average across seasons)
han full irrigation of smaller areas. The optimal deficit irrigation
trategies typically involved using one-third to one-half of the farm
rea to grow partially irrigated wheat, while the remaining area was
own to rainfed wheat.

Increased access to non-irrigation water (i.e. in higher rain-
all environments or through greater stored soil water at sowing)
ltered the relative risk-efficiency of irrigation strategies and meant
hat larger areas of deficit irrigated cropping (with decreased fre-
uency of irrigation across the area) became more risk-efficient.
owever in a low rainfall environment where water was expen-

ive and soil water was given the same economic value as irrigation
ater, fully irrigated wheat in conjunction with fallow land was

he most risk-efficient strategy. The importance of evaluating farm-
anagement strategies using EWP  instead of CWP  was  also evident

n this study, as re-ranking of the risk/return profile occurred
etween these alternative methods of calculating whole-farm WP.

Accounting for the intrinsic value of stored soil water and
recipitation was identified as fundamental when assessing the
enefits of deficit irrigation strategies in water limited situations,
iven that the larger land area utilised by deficit irrigation strategies
ccessed much larger absolute volumes of soil water and pre-
ipitation. The use of rainfed crops in the whole-farm simulation
nalyses demonstrated the intrinsic value of this additional water,
nd altered the choice of optimum farm-management strategy. Re-
anking of farm-management strategies was also observed when
pplying an economic value to soil water remaining at the end of the
ropping season. Future evaluations of deficit irrigation strategies
ust begin to account for such considerations.
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