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Mapping rice-fallow cropland areas for short-season grain legumes
intensification in South Asia using MODIS 250 m time-series data
Murali Krishna Gummaa , Prasad S. Thenkabailb, Pardharsadhi Teluguntlab, Mahesh
N. Raoc, Irshad A. Mohammeda and Anthony M. Whitbreada

aInternational Crops Research Institute for the Semi-Arid Tropics, Patancheru, India; bU.S. Geological Survey (USGS),
Western Geographic Science Center, Flagstaff, AZ, USA; cHumboldt State University, Arcata, CA, USA

ABSTRACT
The goal of this study was to map rainfed and irrigated rice-fallow cropland
areas across South Asia, using MODIS 250 m time-series data and identify
where the farming system may be intensified by the inclusion of a short-
season crop during the fallow period. Rice-fallow cropland areas are those
areas where rice is grown during the kharif growing season (June–October),
followed by a fallow during the rabi season (November–February). These
cropland areas are not suitable for growing rabi-season rice due to their
high water needs, but are suitable for a short -season (≤3 months), low
water-consuming grain legumes such as chickpea (Cicer arietinum L.), black
gram, green gram, and lentils. Intensification (double-cropping) in this
manner can improve smallholder farmer’s incomes and soil health via rich
nitrogen-fixation legume crops as well as address food security challenges
of ballooning populations without having to expand croplands. Several
grain legumes, primarily chickpea, are increasingly grown across Asia as a
source of income for smallholder farmers and at the same time providing
rich and cheap source of protein that can improve the nutritional quality of
diets in the region. The suitability of rainfed and irrigated rice-fallow
croplands for grain legume cultivation across South Asia were defined by
these identifiers: (a) rice crop is grown during the primary (kharif) crop
growing season or during the north-west monsoon season (June–October);
(b) same croplands are left fallow during the second (rabi) season or during
the south-east monsoon season (November–February); and (c) ability to
support low water-consuming, short-growing season (≤3 months) grain
legumes (chickpea, black gram, green gram, and lentils) during rabi season.
Existing irrigated or rainfed crops such as rice or wheat that were grown
during kharif were not considered suitable for growing during the rabi
season, because the moisture/water demand of these crops is too high. The
study established cropland classes based on the every 16-day 250 m
normalized difference vegetation index (NDVI) time series for one year (June
2010–May 2011) of Moderate Resolution Imaging Spectroradiometer
(MODIS) data, using spectral matching techniques (SMTs), and extensive
field knowledge. Map accuracy was evaluated based on independent
ground survey data as well as compared with available sub-national level
statistics. The producers’ and users’ accuracies of the cropland fallow classes
were between 75% and 82%. The overall accuracy and the kappa coefficient
estimated for rice classes were 82% and 0.79, respectively. The analysis
estimated approximately 22.3 Mha of suitable rice-fallow areas in South Asia,
with 88.3% in India, 0.5% in Pakistan, 1.1% in Sri Lanka, 8.7% in Bangladesh,
1.4% in Nepal, and 0.02% in Bhutan. Decision-makers can target these areas
for sustainable intensification of short-duration grain legumes.
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1. Introduction

A sustainable, profitable, and resilient smallholder agricultural sector is the key to food and nutri-
tional security for the growing populations of Asia and Africa (FAO 2015). South Asia accounts for
40% of the world’s harvested rice area (USDA 2010) and feeds almost 25% of the world’s popu-
lation domestically and abroad (FAO 2015). Globally, there is tremendous pressure to produce
at least 50% more food to feed the projected world population of 9.15 billion by 2050 (Alexandra-
tos and Bruinsma 2012). There is high demand across South Asia, to increase and diversify food
production to meet the increasing nutritional demands of an economically rich and growing popu-
lation, and to meet export demands that can provide additional income to smallholder farmers.
However, increasing production by expanding the area or through technological means such as
irrigation, fertilizer, and mechanization is limited due to increasing pressure on croplands for
alternative uses as well as environmental concerns, production cost, and severe stresses on
water availability in a changing climate scenario (Garnett et al. 2013; Gray et al. 2014). In addition,
urbanization, industrialization, and salinization are putting more pressure on existing crop area
(Foley et al. 2011). Hence, agronomists consider cropland intensification as an imperative and
variable solution.

In India, areas where the kharif season (June–October) rainfed rice and/or irrigated rice crops
are grown often remain fallow during the rabi season (November–February). This is mainly
because these lands do not have sufficient water to grow important staple crops (e.g. rice,
wheat) during rabi season. There is however the opportunity to grow water-efficient short-season
grain legumes, which have a high market demand and improve soil health via nitrogen fixation
(Dabin et al. 2016; Dixon et al. 2007; Ghosh et al. 2007); this is often termed as rice-fallow
intensification.

Spatial information – which can be used to target areas where rice-fallow intensification may
be possible – is important for designing effective policies, seed systems, and the provision of
extension information (Bantilan et al., forthcoming; Gumma et al. 2014; Kontgis, Schneider,
and Ozdogan 2015; Subbarao et al. 2001). Remote sensing is an ideal tool to provide a powerful,
quick, and independent approach to estimating fallow croplands over large areas and show their
dynamics (Badhwar 1984; Lobell et al. 2003; Thenkabail 2010; Thenkabail et al. 2009b; Thiruven-
gadachari and Sakthivadivel 1997). Over the last 50 years, improved cropland mapping methods
and approaches have evolved. There are several studies on spatio-temporal analysis to map agri-
culture areas by irrigation source (Anderson et al. 2015; Gumma et al. 2011c; Knight et al. 2006;
See et al. 2015; Thenkabail, Schull, and Turral 2005; Velpuri et al. 2009; Xu et al. 2006; Zheng et al.
2015), specific crop type mapping and temporal changes (Foerster et al. 2012; Gumma et al.
2015b; Kontgis, Schneider, and Ozdogan 2015), and crop intensity (Gumma et al. 2014; Sakamoto
et al. 2005).

The major aim of this paper is to define a methodology for mapping rice-fallow cropland classes
for South Asia. Rice-fallow areas those where rice crop is grown during kharif season (June–October)
but are left fallow during rabi season (November–February). The uniqueness and novelty of this
study are twofold. Firstly, no study has explored mapping fallow croplands using innovative spectral
matching techniques (SMTs). This study used every 16-day, MODIS 250 m time-series data (http://
modis.gsfc.nasa.gov/) for one year (June 2010–May 2011) to map fallow croplands in South Asia
using SMTs that were first advocated for cropland mapping by Thenkabail et al. (2007) and later
successfully applied in global and regional mapping of croplands (Biradar et al. 2009; Gray et al.
2014; Gumma et al. 2015a; Pittman et al. 2010; Salmon et al. 2015; See et al. 2015; Thenkabail
et al. 2007, 2009a, 2012). The study, for the first time, used SMTs to map cropland fallow in
order to identify suitable areas for growing short-season (∼3 month), low-water-consuming grain
legumes such as chickpea, black gram, green gram, and lentils. Second, implementation of SMT
methodology to accurately map cropland fallow over large areas, such as South Asia, is invaluable
in order to address food security challenges of the twenty-first century.

982 M. K. GUMMA ET AL.

http://modis.gsfc.nasa.gov/
http://modis.gsfc.nasa.gov/


2. Materials and methods

2.1. Study area

South Asia is located between 5°38′40′′ and 36°54′30′′ latitudes and, 61°05′00′′ and 97°14′15′′ longi-
tudes, covering a geographical area of about 477 Mha (Figure 1, Table 1). It has six agro-ecological
zones (AEZs): humid tropics, sub-humid tropics, semi-arid tropics, semi-arid, subtropics, and arid
(FAO-IIASA 2012). South Asia borders Western Asia, Central Asia, Eastern Asia, Southeastern Asia
and the Indian Ocean. It includes six countries: Pakistan, India, Nepal, Bhutan, Bangladesh, and Sri

Table 1. Cropland areas, rice areas, and geographic areas of the South Asian Nations. Basic country-level geographic areas,
cropland areas, irrigated areas, rainfed areas, and rice areas of South Asia for 2010–2011.

Country
Total geographical
area (‘000 ha)

Total gross planted
area (‘000 ha)

Net irrigated areas
(NAS) (‘000 ha)

Net Rainfed areas
(NAS) (‘000 ha)a,b

Harvested area of ricec

(NAS) (‘000 ha)

Bangladesh 14,804 15,002 6749 3400 10,801
Bhutan 4365 121 27 94 26
Indiac 345,623 184,443 63,601 104,500 44,712
Nepal 16,210 4208 1926 2100 1560
Pakistan 89,167 22,817 19,270 3600 2377
Sri Lanka 6453 2076 462 1614 832
Total 476,622 228,668 92,035 115,308 60,308
aSource: World rice statistic, FAO.
bSource: Rainfed farming system (http://link.springer.com/chapter/10.1007/978-1-4020-9132-2_22) (Hobbs and Osmanzai 2011).
chttp://www.indiastat.com.

Figure 1. Study area of South Asia and ground data points. There were 1398 cropland data samples of which 303 were used as
reference/training data for ideal spectra generation, 527 were used for class identification and labeling, and 568 were for class
validation.
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Lanka. In South Asia, about 80% of the poor live in rural areas and are highly dependent on agri-
culture for their livelihood (World Bank 2015). There are nine major river basins in the study
area: the Indus, Ganges, Brahmaputra, Narmada, Tapti, Godavari, Krishna, Kaveri, and Mahanadi.
There are many major and minor irrigation projects connected to these basins in South Asia, cover-
ing a total command area of 133 Mha (Thenkabail et al. 2008). However, the ultimate potential of
irrigated lands is 139 Mha, the increase being primarily due to the revised assessment of minor
ground water schemes and minor surface water schemes to 64 Mha and 17 Mha, respectively.
Rice is the major crop in this region, with single or multiple cropping seasons. Most of the rice
area (63%) is under irrigated systems, while 37% is rainfed (Gumma et al. 2011a).

2.2. Methods: overview

The methodology is presented in Figure 2 and described below. First, MODIS 250 m NDVI imagery
composite of every 16-days was used to create time series for South Asia. Second, ground survey

Figure 2. Overview flowchart of methodology. Flow diagram of methodology for mapping rice-fallow using the every 16-day
MODIS 250 m time-series data, ground data, Google Earth data, spectral matching techniques, and decision trees.
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information was collected to gather precise ground knowledge on rice cropping systems of South
Asia. Third, ideal spectral generation of rice cropping systems based on precise ground knowledge
and by using MODIS 250 m time-series data was performed. Fourth, class spectra were generated
using unsupervised classification of South Asia using MODIS 250 m every 16-day NDVI time series.
Fifth, the class spectra from the unsupervised classification was spectrally matched with ideal spectra
to determine spatial distribution of rice classes across South Asia. Sixth, classes that qualify as rice-
fallow areas and short-season grain legumes intensification in South Asia were identified. Finally,
accuracy assessments were performed on the products and rice-fallow area estimations were com-
pared with national statistics.

2.3. Satellite data and processing

The present study used MOD13Q1.5 product, which provides every 16-day composite images taken
by the MODIS sensor at 250 m spatial resolution. Since rice is the most important crop in South
Asia, rice fields are often contiguous and stretch across 100s or 1000s of ha in one stretch
(Gumma et al. 2011a; Settle et al. 1996). So, 250 m (6.25 ha) pixels that are acquired every day
and processed into 16-day maximum value composites (MVCs) are mostly cloud free, provide excel-
lent wall-to-wall spatial coverage, and have ideal temporal coverage to study crop phenology, vigor,
and dynamics (Biggs et al. 2006). The MOD13Q1 product normalized difference vegetation index
(NDVI) further normalizes data. Twelve tiles covering the South Asian region were downloaded
from the Land Processes Distributed Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov).
The MODIS re-projection tool (MRT) was used to re-project and mosaic the 12 tiles for each com-
posite date (Gumma et al. 2011a; Thenkabail et al. 2009a). Altogether 23 mosaic images were com-
posited for the crop year 2010–2011 (from June 2010 to May 2011).

The NDVI data were further processed to create monthly maximum value composites
(NDVIMVC) for each of the seven months in the kharif season, using Equation (1).

NDVI MVCi = Max(NDVIi1, NDVIi,2), (1)

where NDVI MVCi is monthly MVC of ith month (e.g. ‘i’ is Jan–Dec). i1, i2 are every 16-day com-
posite in a month.

2.4. Ground survey information

Ground survey information (Table 2) was collected at different times in three distinct field cam-
paigns, which were collectively used to increase the sample size for class identification as well as
to assess accuracy (Figure 1). Overall, there were 1398 ground data samples of which 303 were
used for ideal spectra generation, 527 for class identification and labeling, and 568 for validation
(Table 2). These data were collected based on stratified random sampling. Ground data collection
is stratified by road network and randomized by distance traveled (either every 15 minutes of
drive or every 10 or 15 or 20 km of drive, depending on road conditions or weather conditions or
other field work limitations like safety issues or sensitive locations). Roughly, 20% of all ground
data samples were used for ideal spectra generation. Greater time was spent on ideal spectral sample
locations for the simple reason of finding a local expert to speak and understand agricultural systems.
This was not possible for all 1398 locations, but was successfully done at 303 locations. The rest of the
samples were initially equally split (527 samples) for class identification and validation. However, the
validation samples increased by another 41 points (reaching a total of 568) since these samples came
in almost at the end of class identification; so we just treated them as additional validation samples.
Further, of the 1398 samples, 395 were non-croplands samples and the rest 1003 were cropland
samples. Of the 303 ideal spectral cropland data samples, there were 204 that were from the ideal
spectral category (Figure 4) with the rest 99 being non-croplands. The ground data were extensively
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collected during two growing periods: September 2010 (kharif season) and January and February
2011 (rabi season). At each sample, information was collected on existing crop type, irrigation
type, soil type, and land use land cover (LULC) with a 250 m × 250 m patch size and geolocated
with a hand-held GPS unit. Information pertaining to irrigated area surrounding the point was cate-
gorized into three classes: small (≤10 ha), medium (10–15 ha), and large (≥15 ha). Additional infor-
mation was gathered through interviews with farmers and district agriculture extension officers to
determine crop intensities, and type during the previous year. Based on this, ground data were sys-
tematically collected by adopting the following approach:

Cropland water methods: irrigated or rainfed
Cropping intensity: single crop (SC), double crop (DC), or continuous crop (CC)
Phenology: kharif or season 1 (June–October), rabi or season 2 (November–February)

Based on this naming system and convention, each class was named (Table 3). For example, class 6
is: rainfed-SC-rice in kharif-fallow in rabi-fallow in summer. The 10 cropland classes that will be
mapped are listed in Tables 2 and 3 and their MODIS spectral profiles illustrated in Figure 4.
Table 2 defines how data were collected during field data. Table 3 defines how these classes are
mapped using MODIS data. These classes are further discussed in detail in Section 2.8. Of all the
classes that will be mapped, our primary interest will be the rice-fallow class (i.e. where rice is
grown during kharif season or June–October, and left fallow during the rabi season or Novem-
ber–February).

Samples covered major cropland areas, which in turn were chosen based on the knowledge of dis-
trict agricultural extension officers in order to ensure adequate samples of major crops as well as
other LULC information, including two photographs from each location. In many sample locations,
farmers provided information on planting dates, cropping intensity (single or double crop), and per-
centage canopy cover for these locations. Additional information was obtained from agriculture and

Table 2. Ground data samples used for reference/training and validation. The samples were classified into 11 categories.

Cropland class category
Reference samples for
ideal spectra generation

Reference samples for
class identification

Validation samples
for class accuracies

Total
samples

01. Irrigated-SC-rice in kharif-fallow
in rabi-fallow in summer

14 16 45 75

02. Irrigated-SC-fallow in kharif-rice
in rabi-fallow in summer

9 12 21 42

03. Irrigated-DC-rice in kharif-mixed
crops in rabi-fallow in summer

28 42 40 110

04. Irrigated-DC-rice in kharif-rice in
rabi-fallow in summer

11 28 58 97

05. Irrigated-TC-rice in kharif-mixed
crops in rabi-rice in summer

18 22 74 114

06. Rainfed-SC-rice in kharif-fallow in
rabi-fallow in summer

35 23 62 120

07. Rainfed-SC-fallow in kharif-rice in
rabi-fallow in summer

12 8 12 32

08. Rainfed-SC-flooded in kharif-
flooded in rabi flooded-summer
rice

5 5 7 17

09. Irrigated-DC-mixed crops in
kharif-mixed crops in rabi-fallow in
summer

35 61 102 198

10. Rainfed-SC-mixed crops in kharif-
fallow in rabi-fallow in summer

37 39 122 198

Total cropland samples 204 256 543 1003
11. All other Samples (non-
croplands, other LCLU)

99 271 25 395

Total ground data samples 303 527 568 1398

Note: SC = single crop, DC = double crop, TC = triple crop, LCLU = land cover/land use.
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irrigation departments for areas not accessible due to road conditions and time constraints. LULC
names and class labels were assigned in the field using the protocol (Gumma et al. 2014; Thenkabail
et al. 2009b). Determining the areas where rice-fallow occurs is of great importance as illustrated in
Figure 3.

2.5. Ideal spectral signatures

Ideal spectral signatures (Figure 4) were generated using every 16-day MODIS NDVI time-series
data with precise knowledge on croplands based on extensive ground survey information completed
in 2010 and 2011 (Table 2, Figure 1). Ideal spectral signatures were based on 204 unique reference
samples available from field data (Table 2). The MODIS NDVI time-series ideal spectral signatures
were extracted from each of these 204 ground reference field samples. The 204 reference samples
(Table 2) were grouped according to their unique categories and also grouped under major rice sys-
tems as shown in Figure 4. The samples were grouped into homogeneous categories that generated
ideal spectral signatures taking into consideration cropping intensity, crop type, and cropping sys-
tems (Figure 4). Each signature was generated with group of similar samples. For example Figure 4
(a), class 1: ‘01. Irrigated-single crop-rice in kharif-fallow in rabi-fallow in summer (14)’ signature
defines/means: irrigated rice croplands during the kharif season followed by fallow during the
rabi season, and also fallow during the summer season (14 ground samples). The signatures are
smoothed to remove noise, if present. Overall, a total of 10 unique cropland classes (Figure 4(a–
d)) that are either irrigated (classes 1–5 and 9; Figure 4) or rainfed (classes 6–8 and 10; Figure 4),
have differing cropping intensities (e.g. classes 1, 2, 6–8, and 10 are single crop; classes 3, 4, and 9

Table 3. Classes suitable for rice-fallow. Rationale for considering classes 1 and 6 for rabi season (November–February) as fallow
cropland areas suitable for chickpea cultivation across South Asia.

Class description
Considered or

not
RationaleName Yes/No

01. Irrigated-SC-rice in kharif-fallow
in rabi-fallow in summer

Yes These rice dominant croplands during kharif season are
overwhelmingly fallow in rabi season, have sufficient
moisture/water for growing rabi grain legumes

02. Irrigated-SC-fallow in kharif-rice in
rabi-fallow in summer

No Since this class is already overwhelmingly cropped during rabi
season, areas under this class are not available for rabi grain
legumes

03. Irrigated-DC-rice in kharif-mixed
crops in rabi-fallow in summer

No Since this class is already overwhelmingly cropped during rabi
season, areas under this class are not available for rabi grain
legumes

04. Irrigated-DC-rice in kharif-rice in rabi-
fallow in summer

No Since this class is already overwhelmingly cropped during rabi
season, areas under this class are not available for rabi grain
legumes

05. Irrigated-TC-rice in kharif-mixed
crops in rabi-rice in summer

No Since this class is already overwhelmingly cropped during rabi
season, areas under this class are not available for rabi grain
legumes

06. Rainfed-SC-rice in kharif-fallow in
rabi-fallow in summer

Yes These rice dominant croplands during kharif season are
overwhelmingly fallow in rabi season, have sufficient
moisture/water for growing rabi grain legumes

07. Rainfed-SC-fallow in kharif-rice in
rabi-fallow in summer

No Since this class is already overwhelmingly cropped during rabi
season, areas under this class are not available for rabi grain
legumes

08. Rainfed-SC-flooded in kharif-flooded
in rabi flooded-summer rice

No Since these areas have excess water during rabi, not suitable for rabi
grain legumes

09. Irrigated-DC-mixed crops in kharif-
mixed crops in rabi-fallow in summer

No Since this class is already overwhelmingly cropped during rabi
season, areas under this class are not available for rabi grain
legumes

10. Rainfed-SC-mixed crops in kharif-
fallow in rabi-fallow in summer

No These croplands do not have sufficient moisture/water for rabi grain
legumes. Thereby, even though these croplands are fallow during
rabi season, are not suitable for rabi grain legumes
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are double crop; and classes 5 is a triple crop; Figure 4), and distinct phenological cycles were estab-
lished (Figure 4)."

2.6. Class spectra generation

First, South Asian croplands were masked out from non-croplands based on recent findings reported
in previous studies (Dheeravath et al. 2010; Gumma et al. 2011a; Thenkabail et al. 2009b). In order to
ensure that cropland masks include all cropland areas, we used masks from multiple studies. Given
that overwhelming majority of croplands (∼99%) are within these cropland masks (that we have ver-
ified by overlaying our cropland ground data points), our emphasis of the study was within this
mask. Second, even non-cropland mask (all areas outside cropland mask) were analyzed separately
to determine whether there were any croplands in the non-cropland mask areas. Third, class spectra
(e.g. Figure 5(a)) were generated based on unsupervised classification of MODIS 250 m, 16-day
NDVI time-series data for the year 2010–2011 using ISOCLASS cluster algorithm (ISODATA in
ERDAS Imagine 2014™) followed by progressive generalization (Cihlar et al. 1998). Finally, the
initial classification was set at a maximum of 160 iterations and a convergence threshold of 0.99,
which resulted in 160 classes for entire South Asian study area. For non-cropland mask areas, we
performed a quick 25-class classification and looked for any cropland areas. Since any cropland
within this was negligible (<1%), we ignored it in our analysis.

Figure 3. Rice-fallow illustration. Rice-fallow are croplands where rice crop is grown during the kharif season (upper photo) and left
fallow during the rabi season (lower photo). Note the MODIS 250 m every 16-day NDVI is also shown on the photo (magenta line)
for the different months.
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2.7. Matching class spectra with ideal spectra to group classes using SMTs

The matching of class spectra with ideal spectra is clearly demonstrated in Figures 5 and 6. The initial
160 unsupervised classes (called class spectra) are grouped into a number of groups based on quan-
titative SMTs (Homayouni and Roux 2003; Thenkabail et al. 2007). The process involves four steps:

1. Grouping similar class spectra (Figure 5(a)): Starting with initial 160 classes, all classes that are
spectrally similar or very close, as determined by qualitative and quantitative spectral matching tech-
niques (QSMTs), are grouped together. In Figure 5(a), we show 12 classes (class numbers: 1, 3, 7, 11,
12, 18, 22, 43, 48, 55, 87, and 121), from the original 160 that were grouped together since they are
highly correlated with one another, which is also shown in qualitative plot (Figure 5(a)).

2. Finding an ideal spectra that matches closest to class spectra (Figure 5(b)): From the ideal
spectral library (Figure 3), an ideal spectra (Figure 5b) was selected that matches closest to class
spectra that are grouped together (Figure 5(a)).

3. Matching class spectra with ideal spectra (Figure 5(c)): The 12-class spectra (Figure 5(a)) were
matched with ideal spectra (Figure 5(b)) through QSMT (Figure 5(c)). This led to determining spec-
tral correlation similarity (SCS) R-square values (a type of QSMT) by correlating ideal spectra
(Figure 5(b)) with class spectra (Figure 5(a)). For example, ‘CL_001 (0.83)’ means the SCS R-square
value between class 1 and the ideal spectra is 0.83. The SCS R-square values varied between 0.79 to
0.97 (Figure 5c), and

4. Combining all similar class spectral classes into a single class (Figure 5(d)): Since all the 12-
class spectral classes are very highly correlated to one another and in turn they are highly correlated
with ideal spectra, the 12-class spectral classes are combined into a single class. This single class
(magenta in Figure 5(d)) has an SCS R-square value of (0.97). So, the 12 classes now become a single

Figure 4. Ideal spectral signatures of 10 cropland classes of South Asia. Here are the 10 ideal spectral signatures. For example, class
name in the legend ‘01. Irrigated, SC, rice in kharif, fallow in rabi, fallow in summer (14)’ (Figure 4(a), green color plot) means
irrigated croplands that have cropping intensity of single crop (crop grown only during 1 season in 12 months) with rice crop
grown during kharif (June–October), but left fallow during rabi (November–February) and also left fallow in summer (March–
May). The number 14 within bracket means that the ideal spectra is established based on 14 samples that are spread across
study area.
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class and will have a preliminary name of ‘rainfed-SC-rice in kharif-fallow in rabi-fallow in summer’.
This preliminary class labeling was verified with other ground data, and very high resolution imagery
to determine the one final label for the 12 combined classes.

Thus, the 12 combined classes take the same label as the ideal spectral, that is, ‘rainfed-SC-rice in
kharif-fallow in rabi-fallow in summer’. The spatial distribution of these classes is shown in Figure 6.
Also, all non-rice classes (i.e. all other crops) were grouped into a single class as they were not classes
of interest in this study. So, the entire focus of this study was in characterizing (e.g. Figure 4), iden-
tifying (e.g. Figure 5), and spatially mapping (e.g. Figure 6) rice classes. These preliminary labeling of
classes were further validated using: (a) ground survey data, (b) very high-resolution imagery, (c)
expert opinion, (d) other published work, or national statistics a combination of these. The same
process is used to identify and label all 160 classes, leading to final classes (Figures 8 and 10, and
Table 4).

Some classes may not resolve conclusively even after using ground survey information and other
information mentioned above. Such classes were then subset, re-classified, and re-analyzed following
the protocols mentioned above (Gumma et al. 2011a, 2014; Thenkabail et al. 2007). Using the same

Figure 5. Illustration of spectral matching techniques (SMTs). SMTs to match class spectra with ideal spectra where single crop is
grown with rainfed rice crop cultivated during the kharif season (June–October), but is overwhelmingly left fallow during the rabi
season (November–February). The process involves four steps: (1) Grouping similar class spectra (Figure 5(a)): For example, of
the 160 initial unsupervised classes, we grouped all classes that have similar time-series spectral signatures. For example, in Figure
5(a) a total of 12 classes (class numbers: 1, 3, 7, 11, 12, 18, 22, 43, 48, 55, 87, and 121) were grouped together since they are highly
correlated. (2) Finding an ideal spectra that matches closest to class spectra (Figure 5(b)): From the ideal spectral library
(Figure 3), we selected an ideal spectra (Figure 5(b)) that matches closest to class spectra that are grouped together (Figure 5
(a)). (3) Matching class spectra with ideal spectra (Figure 5(c)): The 12 class spectra were matched with ideal spectra through
quantitative spectral matching technique (QSMT). This lead to determining spectral correlation similarity (SCS) R-square value (a
type of QSMT) by correlating ideal spectra with class spectra. For example, ‘CL_001 (0.83)’ means the SCS R-square value between
class 1 and the ideal spectra is 0.83, and (4). Combining all similar class spectral classes to a single class (Figure 5(d)): Since all
the 12 class spectral classes are very highly correlated to one another and in turn they are highly correlated with ideal spectra, the
12 class spectral classes are combined into a single class. This single class (magenta in Figure 5(d)) has an SCS R-square value of
(0.97). So, the 12 classes now become a single class and will have a preliminary name of ‘rainfed-SC-rice in kharif-fallow in rabi-
fallow in summer’. This preliminary class labeling was verified with other ground data, and very high resolution imagery to deter-
mine the one final label for the 12 combined classes.
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approach as above, each of the 160 classes of South Asia were grouped into distinct categories, ident-
ified, and labeled.

The process, led to reducing 160 class spectral classes (Section 2.6) to 11 combined classes (Figure
8). Of these 11 combined classes, 10 classes were croplands (Figure 8, Table 4). The remainder of the
individual non-cropland classes were grouped into a single class (class 11 in Figure 8). Statistics were
only provided for the 10 cropland classes (Table 4).

2.8. Identifying croplands with potential for cultivating chickpea (Cicer arietinum)

Each of the 10 cropland classes in Figure 8 was assessed (Table 3) for their potential for cultivating
grain legumes such as chickpea (Cicer arietinum), black gram (Vigna mungo), green gram (Vigna
radiata), and lentil (Lens culinaris). Using class 6 as an example, Figure 7 illustrates how the
NDVI gradually goes up during mid-July and reaches a peak (0.7) in October and gradually falls
to pre-planting levels of about 0.4 indicating the cultivation of kharif rice followed by cropland fal-
low. The dates of vegetation transitions were determined using the NDVI time series and a double-
logistic model of vegetation phenology (Biggs et al. 2006; Fischer 1994):

NDVIt = vs + k
1+ exp(− c(t − p))

− k+ vs − ve
1+ exp(− d(t − q))

, (2)

where vs is starting of rice growing season, ve is the ending of the rice growing season, k is an asymp-
totic maximum value of NDVI, c and d are the slopes of the NDVI time series at the inflection points,
and p and q are the dates of the inflection points (Figure 7).

Class 6 (Figures 4 and 5) is therefore a cropland class that is rainfed during the kharif season with
rice crop but left fallow in rabi seasons and during summer months. Each of the 10 classes in Figure 4
can be characterized and assessed (Table 3) for their potential for cultivating grain legumes. Within
these classes, our goal is to identify fallow croplands during rabi season. Suitable classes should
meet all of the following conditions:

Figure 6. Spatial distribution of rice-fallow classes of rainfed areas. These 12 classes (left image) have rice crop grown during kharif
(June–October) season, but are left fallow during the rabi (November–February) season. The image on the right is the 12 classes
merged into a single rice-fallow class.
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(A) The class should be a fallow cropland during the rabi season;
(B) The class should be a cropland with rice cultivation during kharif season; and
(C) The class should have sufficient moisture/water during the rabi season to grow short-season

(≤3 month), low water-consuming crop determined based on field surveys or expert opinion.

If all of the above conditions are met, then the class (Table 3, Figure 8) becomes suitable for cultivat-
ing grain legumes such as chickpea. Each of the 10 classes (Figure 8, Table 3) were analyzed to ascer-
tain if they met the three conditions. The rationale for which classes qualify for grain legume
cultivation are given in Table 3.

It is clear that class 1 and class 6 have fallow croplands during the rabi season. These are also
classes where rice is grown in the kharif season under rainfed and irrigated conditions. Field surveys
and expert opinion gathered during extensive field visits and discussions with local experts also
clearly indicated that these two classes have adequate moisture for about three months in the rabi
season (November–February). Thus they were identified as active croplands that are fallow during
rabi, but which also have sufficient moisture to grow a short-season (∼3 month) crop. The rest of the
classes do not qualify for rabi-season chickpea cultivation since they do not meet one or more criteria
mentioned above.

2.9. Calculating sub-pixel areas

Full-pixel areas (FPAs) are not a correct representation of actual areas of crops grown due to obvious
sensor resolution issues. Sub-pixel areas (SPAs) or actual area calculation is of greater significance as
pixel sizes become coarser. In this study, MOD13Q1 pixels cover 250 m on each side and its area is
6.25 ha. So, for example, for a pixel with only 50% cropped, a FPA-based area calculation per pixel
will be 6.25 ha, whereas the SPA or actual area will be 3.125 ha (6.25 ha × 0.5). Therefore, areas must
be calculated based on SPAs to avoid discrepancies in estimates of cropped area.

Cropland area fractions (CAFs) were calculated for the kharif season (June–October) and rabi
season (November–February) using the methodology described by Thenkabail et al. (2007) and
Thenkabail, Schull, and Turral (2005). This resulted in CAFs that varied between 77.1% or 0.771
for class 10 during kharif (June–October) to 97.1% or 0.971 during kharif for class 5 (Table 4). In

Figure 7. Classic case of rainfed rabi-fallow. A model of vegetation phenology and transition dates, as in Equation (3). Tmin defines
the beginning of the time series, Ton is onset of greenness, Tdev beginning of development stage, Tsen onset of senescence, and Thar
is harvesting time. p and q are the inflection points. Figure shows the progression of class 6. Rainfed, single crop during kharif
(June–October), fallow during rabi (November–February), and fallow during summer (March–May). In this study we want to
map rice croplands areas (either in kharif or summer) that are left fallow during rabi.
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Figure 8. Spatial distribution of croplands and their characteristics in South Asia. The first 10 classes show irrigated or rainfed classes that have single or double or triple cropping and where rice or other
crops dominate. The classes also show seasonality of cropping and when croplands are left fallow. Class 11 is non-croplands within the cropland mask. The black areas are non-croplands outside the
cropland mask.
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seasons when there is little or no crop (cropland fallow), the CAFs were negligible (≤5%). The CAFs
were calculated for each season using the same procedure as described in detail by Thenkabail et al.
(2007). This resulted in calculating SPAs also for each season (Table 4). SPAs are important because
we defined a particular class as croplands when, for example, ≥50% of the pixel area is cropped. That
would mean, a pixel whether it has 50% area cropped or 100% area cropped is still mapped as crop-
lands. In order to get actual areas, FPA needs to be multiplied by CAF (Table 4). Overall, the actual
areas are equivalent to SPAs. That is, each pixel in each class is assessed for its actual area as follows:

SPAs or actual areas = FPAs× CAFs

Table 4. Cropland statistics of rice-fallow (classes 1 and 6) and other classes. Rice systems in South Asia, including other agriculture
areas with irrigation source. The table shows full-pixel area (FPA), crop area fraction (CAF), and sub-pixel area (SPA) or actual area.
SPA = FPA × CAF.

Class description

Full-pixel
area (FPA)
(000′ha)

% of
total
area
(FPA)

Cropland area fractions
(CAFs) (%) Actual cropland area (000’ha)

Kharif Rabi Summer Kharif Rabi Summer

Total gross
crop land

area (000’ha)

01. Irrigated-SC-rice in
kharif-fallow in rabi-
fallow in summer

10,273 4.9 96.1 3.1 3.2 9873 318 329 10,520

02. Irrigated-SC-fallow in
kharif-rice in rabi-
fallow in summer

2952 1.4 3.1 92.2 3.1 92 2722 92 2905

03. Irrigated-DC-rice in
kharif-mixed crops in
rabi-fallow in summer

20,811 9.9 94 88.9 3.3 19,562 18,501 687 38,750

04. Irrigated-DC-rice in
kharif-rice in rabi-
fallow in summer

2,801 1.3 96.3 94.6 3 2698 2650 84 5432

05. Irrigated-TC-rice in
kharif-mixed crops in
rabi-rice in summer

5,726 2.7 97.3 91.7 89.8 5571 5250 5142 15,963

06. Rainfed-SC-rice in
kharif-fallow in rabi-
fallow in summer

14,306 6.8 91.3 2.9 2.1 13,061 415 300 13,777

07. Rainfed-SC-fallow in
kharif-rice in rabi-
fallow in summer

891 0.4 3 93.6 3 27 834 27 888

08. Rainfed-SC-flooded in
kharif-flooded in rabi
flooded-summer rice

618 0.3 3 3 91.9 19 19 568 605

09. Irrigated-DC-mixed
crops in kharif-mixed
crops in rabi-fallow in
summer

73,633 35.0 86.7 83.2 3.5 63,840 61,263 2577 127,680

10. Rainfed-SC-mixed
crops in kharif-fallow in
rabi-fallow in summer

78,416 37.3 77.7 18 0 60,929 14,115 0 75,044

Total croplands 210,428 175,671 106,087 9805 291,563

Note: Net cropland areas cultivated in South Asia, full-pixel areas (FPA) = 210,428,000 ha.
Net cropland areas cultivated in South Asia, sub-pixel areas (SPAs) or actual areas during summer season (March–May) = 9,805,241
ha.

Gross cropland areas cultivated in South Asia, sub-pixel areas (SPAs) or actual areas = 291,562,500 ha.
For classes 1 and 6 (Note: these two classes have rice during kharif and left fallow in rabi).
Total net cultivated areas during kharif in South Asia, SPAs or actual areas of classes 1 and 6 = 22,933,730 ha.
Total net cultivated areas during rabi in South Asia, SPAs or actual areas of classes 1 and 6 = 733,343 ha.
Total uncultivated areas during rabi that were cultivated during kharif, SPAs or actual areas of classes 1 and 6 = 22,200,576 ha.
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2.10. Accuracy assessments and comparison with national statistics

Accuracy assessment was based on a total of 568 independent ground samplings, as described in Section
2.4. These ground samples were not used in class identification and labeling and hence are completely
independent. The accuracy assessment is performed using an error matrix (Congalton 1991). The col-
umns (x-axis) of an error matrix contain the ground survey data samples and the rows (y-axis) rep-
resent the results of the classified rice maps. The error matrix is a multi-dimensional table in which
the cells contain changes from one class to another. The statistical approach of accuracy assessment con-
sists of different multi-variate statistical analyses. A frequently used measure is kappa, which is designed
to compare results from different regions or different classifications (Congalton 1991).

The SPAs were calculated at district level administrative units and compared with national stat-
istics at the district level (e.g. www.indiastat.com) (INDIASTAT 2015). Statistics for India were
obtained from the website of the Ministry of Agriculture’s Directorate of Rice Development
(http://dacnet.nic.in/rice/), while statistics for Bangladesh, Nepal, Pakistan, Nepal, and Bhutan
were obtained from national statistical departments (BBS 2011; CBS 2013; SDCS 2013). Based on
the data available from the target countries, we compared irrigated area statistics derived using
MODIS data gathered at the provincial or state level were compared, resulting in 62 administrative
units. Similarly, rice cropland estimates derived from MODIS data analysis were compared at the
sub-district level (812 administrative units).

3. Results

Considering the objectives of this study and based on the methods described in section 2.0 and its
sub-sections, distinct cropland classes of South Asia were mapped (Figure 8). The characteristics of
these cropland classes were then used to determine fallow croplands during the rabi season that are
suitable areas for cultivating grain legumes (Figure 9, Table 4).

3.1. Spatial distribution of croplands in south Asia

The spatial distribution of cropland areas of South Asia with 10 distinct cropland classes and an 11th
other land cover/land use (LCLU) is shown in Figure 8, with statistics provided in Table 4.

Based on the FPA, 44% (210.4 Mha) of the total geographic area (477 Mha) of South Asia was under
croplands (classes 1 to 10 in Figure 8, Table 4). Of the 210.4 Mha, class 9 (irrigated-DC-mixed crops in
kharif-mixed crops in rabi-fallow in summer) with 35% and class 10 (rainfed-SC-mixed crops in kharif-
fallow in rabi-fallow in summer) with 37.3% dominate. Even though these are large areas, class 9 is irri-
gated and cultivated in rabi as well as kharif, whereas class 10 is rainfed and is cultivated only in kharif.
Although during the rabi season class 10 is fallow, cultivation of crops is not viable since these lands are
rainfed during kharif and do not have sufficient residual moisture for crop growth during the rabi sea-
son. The NDVI phenological characteristics of these classes are shown in Figure 4. All 10 cropland
classes are mapped (Figure 4) and their actual areas (or SPAs) are established (Table 4).

The FPA of croplands in South Asia was 210.48 Mha (Figure 9, Table 4). Of this, 175.67 Mha
(83% of net cropped area) is SPAs during kharif (Table 4). This significantly differs from the rabi
crop land area that is estimated at about 50% of the net cropped area. While classes 9 and 10,
due to their large area, dominate the kharif season, only class 9 dominates during the rabi season,
followed by class 3, indicating the importance of irrigation for growing a rabi crop.

3.2. Cropland classes with rabi-fallow suitable for cultivating grain legumes across South
Asia

Of the 10 cropland classes (Figure 8, Table 4), two classes (Figure 9) meet the three critical criterion
for being eligible for rabi-season cropping. There two classes were: irrigated-SC-rice in kharif-fallow
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in rabi-fallow in summer (class 1); and rainfed-SC-rice in kharif-fallow in rabi-fallow in summer
(class 6). These classes are rice-fallow areas because rice is grown in these class areas during kharif
and overwhelmingly left fallow during rabi.

The total net cultivated area during kharif in South Asia, SPAs or actual areas, of classes 1 and 6
were 22.93 Mha (Table 4). The total net cultivated area during rabi in South Asia, SPAs or actual
areas, of classes 1 and 6 were 0.73 Mha (Table 4). Therefore this leaves a total uncultivated area ( fal-
low croplands) of 22.2 Mha (22.93–0.73 Mha) during rabi from classes 1 and 6 (Table 4) and poten-
tially available for rabi-season cropping.

3.3. Accuracies and errors

Accuracies of the classes were established based on 568 ground sample data (Table 5). This provided
an overall accuracy of 82% with kappa of 0.79. The user’s and producer’s accuracies of most classes
were above 80%. Even when they were somewhat lower, the class mix is mainly among cropland
classes. Classes 1 and 6 are cropland fallow classes and hence critical to this study. These classes
were determined to have producer’s accuracy of 80% and 75%, respectively, while the user’s accuracy
of 82% and 69%, respectively. The lower accuracies for some of the classes can be improved through

Figure 9. Rice-fallow of South Asia. Two cropland classes where rice is grown during kharif (June–October) season, but are fallow
croplands during rabi (November–February) season are shown here. Class 1 has irrigated rice crop during in kharif season, and class
6 has rainfed rice during kharif season. Both classes are left fallow during the rabi season. The total areas of such rice-fallow is 22.2
Mha where second or rabi–season, low water-consuming, short-season (≤3 month) legume crops such as chickpea, black gram,
green gram, and lentils can be grown.
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Table 5. Accuracy assessments using error matrix. Accuracies and errors of cropland classes including rice-fallow classes of South Asia).

Crop classification 01. 02. 03. 04. 05. 06. 07 08 09. 10. 11.
Class
totals

Reference
totals

Classified
totals

Users’
accuracy (%)

Producers’
accuracy (%) Kappa

01. Irrigated-SC-rice in kharif-fallow in rabi-
fallow in summer

37 0 0 1 1 6 0 0 1 0 0 45 46 37 82 80 0.8

02. Irrigated-SC-fallow in kharif-rice in rabi-
fallow in summer

0 19 0 1 3 0 1 1 1 0 0 21 26 19 90 73 0.7

03. Irrigated-DC-rice in kharif-mixed crops
in rabi-fallow in summer

0 0 37 1 6 1 1 0 2 0 0 40 48 37 93 77 0.8

04. Irrigated-DC-rice in kharif-rice in rabi-
fallow in summer

0 0 0 49 1 1 0 0 2 1 1 58 55 49 84 89 0.9

05. Irrigated-TC-rice in kharif-mixed crops in
rabi-rice in summer

0 0 1 0 54 0 1 0 4 0 0 74 60 54 73 90 0.9

06. Rainfed-SC-rice in kharif-fallow in rabi-
fallow in summer

6 1 0 1 4 43 0 0 0 2 0 62 57 43 70 75 0.7

07. Rainfed-SC-fallow in kharif-rice in rabi-
fallow in summer

0 0 0 2 2 0 5 0 0 0 1 12 10 5 42 50 0.5

08. Rainfed-SC-flooded in kharif-flooded in
rabi flooded-summer rice

0 0 0 0 0 0 0 5 0 0 0 7 5 5 71 100 1

09. Irrigated-DC-mixed crops in kharif-
mixed crops in rabi-fallow in summer

0 1 1 3 2 10 2 1 88 5 2 102 115 88 86 77 0.7

10. Rainfed-SC-mixed crops in kharif-fallow
in rabi-fallow in summer

2 0 1 0 0 0 1 0 0 105 0 122 109 105 86 96 1

11. Other LULC 0 0 0 0 1 1 1 0 4 9 21 25 37 21 84 57 0.5
Column Total 45 21 40 58 74 62 12 7 102 122 25 568 568 463

Note: Overall classification accuracy = 82%; overall kappa statistics = 0.79; X-axis is Ground survey information and Y-axis is Modis derived classification.
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a number of measures that include: (a) access to greater number of reference/training data, (b) con-
ducting more regional analysis and/or analyzing them by AEZs, (c) incorporating other data such as
slope, soils, and elevation, (d) aggregating classes where areas are very small (e.g. small classes like 7
and 8 with a large class like 6 to get broader rainfed group), and (e) incorporating higher resolution
time-series remote sensing data such as Landsat 30 m every 16-day.

3.4. Comparison with district-wise cropland statistics

Figure 6 illustrates the spatial extent of rice growing areas or rice-fallow (Table 5) where rice crop is
grown during the kharif (June–October) and left fallow during rabi (November–February). In order
to assess how well the spatial extent of rice fallow were estimated, we correlated (Figures 10 and 11)
district-wise statistics of rice areas of kharif derived from remote sensing in this study with the stat-
istics obtained from national systems; resulting in a R2 value of 0.84. Some of the uncertainty that we
see in Figure 10 is as a result of the uncertainties existing in the national statistics. Figure 11 shows
district by district correlation map between the MODIS derived areas versus the district statistics
from the national systems. Correlations are high (0.8 or greater) in districts where rice is dominant
crop. Low correlations are in areas where there is fragmentation in rice growing areas.

4. Discussion

Mapping rice-fallow (Figure 9, Table 4) is useful for providing intensification options for producing
more food, which is critical for ensuring the global food security. Greater food production for a
growing population requires more land. Since cropland expansion is not feasible and has costly
environmental and ecological impacts (Kuemmerle et al. 2013; Thenkabail et al. 2012; Tilman
1999; Tilman et al. 2002), cropland intensification by cultivating existing fallow croplands is a poss-
ible option. In certain parts of South Asia, croplands are left fallow over large areas during the rabi
season (November–February) (Figures 6 and 9). The areas where rice crop is grown during the kharif

Figure 10. Remote-sensing-derived rice area comparisons with national statistics. The district-wise rice areas derived using MODIS
250 m are compared with agricultural census data for 2010–11.
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season (June–October) also hold significant moisture/water during the rabi season to sustain a short-
season, low water-consuming grain legume crop such as chickpea. This study extensively investi-
gated South Asia using MODIS 250 m NDVI time series to arrive at cropland classes (Figure 8)
from which two cropland fallow classes (Figure 10) were identified as most suitable areas for the
rabi-season cultivation with short-season, low water-consuming grain legumes. These two classes
have a total area of about 22.2 Mha (Table 4, Figure 9) as fallow croplands during the rabi season.

The present research used MOD13Q1.5 temporal data to identify rice-fallow with rice systems
and irrigated areas across South Asia. MODIS captures imagery on a daily basis. The 16-day com-
posites from the daily acquisitions combine to make a time-series dataset over a crop year or a calen-
dar year. This type of dataset provides temporal profiles of crop growing locations to identify the
start of season, peak growth stage, and harvest date during each season. The value of NDVI as func-
tion of time also helps in identifying the type of crop in an eco-region based on certain peak
thresholds for that crop. This study applies an SMT which is found to be ideal in mapping irrigated
and rainfed areas (Thenkabail et al. 2007) and mapping rice areas (Gumma et al. 2011a). Mapping
the spatial distribution of rice-fallow areas using MODIS 250 m 16-day time series and ground sur-
vey information with SMTs is a significant new advancement in the use of this technology. The
advantage of using an SMT in this study is in ability to selectively use the ideal spectral profiles of
rice during the rainy season. The rainfed rice spectral class varies from 0.25 to 0.70 for purely rainfed
rice and 0.25 to 0.85 for irrigated rice during the rainy season. The qualitative (shape) difference
between ideal spectra and class spectra is narrow and represents the fallow lands accurately.

SMT is a powerful concept (Homayouni and Roux 2003; Thenkabail et al. 2007) for mapping
croplands or for that matter any land use/land cover (LULC) using time-series remotely sensed
data. The process of matching class spectra with ideal spectra will be invaluable in fast and automatic
identification and labeling of classes. However, SMTs will not work without accurate ground data/

Figure 11. Correlation between MODIS derived kharif rice areas versus the national statistics.
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knowledge that help develop accurate sets of ideal spectral libraries. Uncertainties and/or inaccura-
cies in ground data will result in class labeling errors leading to uncertainties in classes that are inter-
preted and mapped.

Cropped area fractions were calculated to better calibrate the MODIS pixel area to the real irri-
gated/rice or rainfed/rice area. Also, this method relies on ground survey information that is a truly
representative sample of the fragmented rice systems. Higher resolution imagery could be used to
provide a more accurate estimate of pure classes, but wall to wall coverage, repeat coverage during
crop growing period, costs, and massive processing are all major issues hard to surmount for such
large areas as South Asia. Results clearly show that present methods and MODIS time-series data
have many advantages such as capturing large-scale cropping pattern. But to minimize errors,
additional research will be attempted with multi-sensor images, including Landsat 30-m data with
advanced fusion techniques (Gumma et al. 2011b).

Source of water and crop intensity are also considered in the classification of land cover. The
potential areas among these rice-based systems are classes 1 and 6 with an extent of around 22.2
Mha (Table 6). The land use class 10 is another potential area where the rabi-fallow are very high
(47 Mha), but the suitability for legume production needs to be assessed. Also, crop modeling
tools can help in assessing the potential yields in classes 1 and 6, but class 10 needs a thorough inves-
tigation of the edapho-climatic suitability. The largest rice-fallow area under class 6 is in the north-
eastern plateau of India, including Chattisgarh, Chotanagpur Plateau and the Assam region, which
are under red and yellow soils. The important states in India where the rice-fallow areas can be
exploited are Chattisgarh, Odissa, West Bengal, Madhya Pradesh, Telangana, Assam and Maharash-
tra. The Barind Tract (Rajshahi, Naogadh, Bogra, and Dinajpur divisions) in Bangladesh is a poten-
tial region based on the eco-physiography covering an area of 2 Mha. In Nepal the eastern and
central terai regions with an extent of 0.3 Mha are the potential areas. Sri Lanka is another potential
country with an area of 0.26 Mha spread over the central, north-central, and eastern regions. The
Sind region in Pakistan has the largest rice-fallow area with about 0.09 Mha specifically in the Sulai-
man Peidmont.

5. Conclusions

The study developed maps of rice-fallow cropland areas, where rice grown during the kharif season
(June–October) but left fallow during the rabi season (November–February), for entire South Asia
based on MODIS 250 m every 16-day NDVI time-series data analyzed using SMTs. These rice-fallow
cropland areas can support low water-consuming, short-growing season (≤3 months) rabi-season
legumes such as chickpea, black gram, green gram, and lentils, but are unsuitable for growing rice
crop or other cereals during the rabi season due to lack of moisture/water to sustain these high
water-consuming, relatively long-growing season (>3 month) crops. In South Asia, the rice-fallow
cropland area classes occupied 22.2 Mha (Figure 9, Table 4) of SPAs or actual areas during the kharif
season. Currently, out of the 22.2 Mha of actual areas identified during the kharif season, only about

Table 6. Rice-fallow by country. Country-wise distribution of areas of rabi-rice-fallow in South Asia.

Area in (000’ha)

Country
01. Irrigated-SC-rice in kharif-fallow in rabi-fallow in

summer
06. Rainfed-SC-rice in kharif-fallow in rabi-fallow in

summer Total

Bangladesh 1190 739 1929
Bhutan 3 1 4
India 7909 11,695 19,604
Nepal 194 117 311
Pakistan 14 93 107
Sri Lanka 244 1 245
Total 9554 12,646 22,200
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0.77 Mha is cropped during the rabi season. This has left a massive 21.43 Mha of fallow cropland
areas available to grow short duration, low water-consuming legume crops during the rabi after
monsoon kharif rice cultivation in these areas. The overall accuracy of cropland mapping was
82% with kappa coefficient of 0.79. The rabi-fallow cropland classes (with rice as kharif crop) showed
producer’s accuracies between 75% and 80% and user’s accuracies between 69% and 82%. Thus, this
study has demonstrated the use of remote-sensing data and techniques to identify and map rice- fal-
low cropland areas in South Asia, with the overall goal of providing baseline information to policy
and resource planning for sustainable development of production agriculture through cropland
intensification and diversification rather than cropland area expansion for meeting the food and
nutritional demands of growing population that is also economically advancing.
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