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Diffuse reflectance spectroscopy (DRS) operating in 
wavelength range of 350–2500 nm is emerging as a 
rapid and non-invasive approach for estimating soil 
nutrient content. The success of the DRS approach re-
lies on the ability of the data mining algorithms to ex-
tract appropriate spectral features while accounting 
for non-linearity and complexity of the reflectance 
spectra. There is no comparative assessment of spec-
tral algorithms for estimating nutrient content of  
Indian soils. We compare the performance of partial-
least-squares regression (PLSR), support vector re-
gression (SVR), discrete wavelet transformation 
(DWT) and their combinations (DWT–PLSR and 
DWT–SVR) to estimate soil nutrient content. The 
DRS models were generated for extractable phospho-
rus (P), potassium (K), sulphur (S), boron (B), zinc 
(Zn), iron (Fe) and aluminium (Al) content in Verti-
sols and Alfisols and were compared using residual 
prediction deviation (RPD) of validation dataset. The 
best DRS models yielded accurate predictions for P 
(RPD = 2.27), Fe (RPD = 2.91) in Vertisols and Fe 
(RPD = 2.43) in Alfisols, while B (RPD = 1.63), Zn 
(RPD = 1.49) in Vertisols and K (RPD = 1.89), Zn 
(RPD = 1.41) in Alfisols were predicted with moderate 
accuracy. The DWT–SVR outperformed all other ap-
proaches in case of P, K and Fe in Vertisols and P, K 
and Zn in Alfisols; whereas the PLSR approach was 
better for B, Zn and Al in Vertisols and B, Fe and Al 
in Alfisols. The DWT–SVR approach yielded parsimo-
nious DRS models with similar or better prediction 
accuracy than PLSR approach. Hence, the DWT–SVR 
may be considered as a suitable data mining approach 
for estimating soil nutrients in Alfisols and Vertisols 
of India.  
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ASSESSMENT of soil nutrient content at different spatial 
and temporal scales is an important step in precision agri-
culture. Conventional nutrient analysis procedures are 

time consuming, laborious and expensive, especially for 
large sample numbers. Over the last two decades, diffuse 
reflectance spectroscopy (DRS) over visible to near- and 
shortwave-infrared (VNIR) region is being developed as 
an alternative for rapid and non-invasive characterization 
of different soil constituents1. Specifically, the DRS  
approach has been used for estimating soil constituents 
that directly influence the absorption characteristics of 
incident electromagnetic energy. Such soil constituents 
generally contain spectrally active functional groups and 
influence spectral reflectance, and are called as chromo-
phores. The DRS approach is also used for estimating  
soil properties that do not influence reflectance directly 
but are strongly correlated with chromophores2. These 
spectrally inactive soil attributes are referred to as  
non-chromophores. Recently, Sarathjith et al.3 developed 
an average dependency index based on mutual informa-
tion and showed that soil non-chromophores may be  
estimated by the DRS approach. Soil nutrients are gener-
ally non-chromophores and often exhibit strong depend-
ency on soil chromophores. Therefore, the DRS approach 
is also used for estimating soil nutrients although only a 
few such studies have been reported for Indian soils. 
 The DRS approach requires large soil spectral data-
bases4 for developing soil-specific spectral algorithms. In 
India, limited efforts have been made for developing such 
libraries. For example, Saxena et al.5 developed a spectral 
database for 40 soils in the spectral range of 350 to 
1800 nm from Uttaranchal. Similarly, significant correla-
tions of soil albedo with soil Munsell colour value 
(r = 0.505), chroma (r = 0.496), soil organic carbon 
(SOC) contents (r = –0.39), clay (r = –0.263) and cation 
exchange capacity (CEC) (r = –0.405) were observed for 
the shrink–swell soils of Central India6. Spectral algo-
rithms for soil hydraulic properties were developed using 
reflectance over 350 to 2500 nm for 100 soil samples 
from a microwatershed near Chilika Lake, Odisha7. The 
DRS approach was also used to estimate aggregate size 
distribution parameters8 and SOC content9. While most 
DRS studies focused on soil textural components and 
SOC content, very few DRS studies are reported on  
nutrient assessment for Indian soils10.  
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 Typically, a multivariate regression relationship  
between spectral reflectance over the VNIR region 
(wavelength range: 350–2500 nm) and soil attributes is 
developed using a spectral library. The VNIR spectra are 
characterized by the electronic transitions of iron oxides11, 
overtones and combinations of fundamental vibrations of 
O–H, C–H, N–H and C=O functional groups in the mid-
infrared frequencies1. However, these characteristic fea-
tures are mostly non-specific and weak12. The success of 
the DRS approach to estimate soil attributes from such 
weak signatures relies on the ability of data mining algo-
rithms to extract relevant features concealed in reflec-
tance spectra12. 
 Both linear and non-linear data mining algorithms for 
soil nutrients have been reported. Linear approach in-
cludes stepwise multiple linear regression (SMLR)13, 
principal component regression2 and partial least squares 
regression (PLSR)14, whereas non-linear approaches  
include multivariate adaptive regression splines15 and 
back propagation neural network16 among others. As the 
results of different DRS studies vary with data mining 
approaches, the selection of a modeling approach is a 
challenging task17. Limited studies have compared differ-
ent data mining approaches with the same dataset for the 
estimation of soil nutrient content16. 
 The PLSR approach is widely used for its ability to  
address the multi-collinear nature of reflectance spectra, 
automatic variable selection, statistical efficiency and 
computational performance18. However, it often fails to 
capture the inherent complexity of reflectance spectra19. 
Recently, support vector machine regression (SVR) has 
gained attention in soil DRS studies for its ability to 
account for the non-linearity and noises involved  
in reflectance spectra12,19. The SVR approach is 
computationally more intensive than linear approaches. 
Similarly, the complexity of soil reflectance spectra may 
be resolved by discrete wavelet transformation (DWT)20. 
In the DWT approach, only high frequency spectral 
features are selected for developing spectral algorithms. 
Combinations of DWT and PLSR (DWT–PLSR) or SVR 
(DWT–SVR) have been evaluated for predicting SOC 
content, clay content, pH15 and crop residue mass21 in 
soil. However, their utility has not been examined for 
estimating soil nutrients. The objective of this study is to 
compare the performance of PLSR, SVR, DWT–PLSR 
and DWT–SVR approaches for estimating soil nutrients 
of selected Indian soils. 

Materials and methods 

Soil samples and their analyses 

A total of 500 surface (0–10 cm) soil samples were col-
lected from black (Vertisols) and red (Alfisols) soil  
regions in north (sampled area: 9,839 km2) and south 
(sampled area: 2,602 km2) Karnataka respectively3. Both 

Vertisols and Alfisols differ with regard to pH, iron  
oxides, clay mineral, CEC, silica-sesquioxide ratio and 
parent material22. Air dried and ground samples sifted 
through 2 mm sieve were used for determining extractable 
phosphorus (P), potassium (K), boron (B), zinc (Zn), iron 
(Fe) and aluminium (Al) using inductively coupled plasma 
(ICP)–optical emission spectrometry (OES) (ICP–OES 
HD Prodigy, Leeman Labs, New Hampshire, USA). Spec-
tral reflectance was measured using a contact probe (10 mm 
spot size) and a spectroradiometer (Model: FieldSpec3, 
Analytical Spectral Devices Inc., USA). Reflectance spectra 
were measured at each quadrant of a levelled soil surface 
using 50 g soil in an aluminum moisture box (10 cm dia-
meter). The Spectralon white reference panel (Labsphere, 
USA) was used before scanning each soil sample.  

Data processing 

Data analyses were performed using MATLAB (R2012a, 
The Mathworks). Initially, the frequency distribution of 
soil nutrient content was evaluated for normality using 
Kolmogorov–Smirnov (KS) test at 5% significance level. 
Nutrient contents with skewed distribution was trans-
formed to natural logarithm or Box–Cox scale and exam-
ined for normality. Nutrient contents which failed KS test 
even after transformations were left untransformed. Rep-
resentative spectrum of each soil sample was generated 
by averaging four reflectance spectra (one from each 
quadrant) after smoothing using a third-order Savitsky–
Golay filtering algorithm with 9 nm span length8. Soil 
samples which did not comply at 5% level of significance 
of residuals resulted from principal component regression 
between the first derivative (FD) spectra and nutrient 
contents were treated as outliers and excluded from the 
dataset. The rcoplot subroutine in MATLAB was used to 
implement this step. The sorting algorithm was used to 
divide the whole dataset into calibration and validation 
subsets at a ratio of 3 : 1 (ref. 8). Similarity between cali-
bration and validation datasets with respect to mean and 
variance was evaluated using two-parameter Student’s  
t test and Levene’s F test respectively. 

Data mining approaches 

In the PLSR23 approach, a set of selected orthogonal fac-
tors (latent variables) that maximize the covariance  
between the predictor and response variables is used to 
develop DRS models. The FD of the reflectance spectra 
were used as predictor variables in PLSR with the soil 
nutrient content. Optimum number of latent variables cor-
responds to first local minima in the plot of root-mean-
squared error (RMSE) of leave-one-out cross-validation 
versus the number of latent variables24. In the SVR25  
approach, the goal is to estimate a function such that the 
deviation of predicted value from actual value is at most  
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for each training point and the function is as flat as possi-
ble. To control the degree of flatness a penalty factor (C) 
is used. Here, we set  to zero because we used a linear 
kernel; therefore, only one parameter C is to be opti-
mized. Following Ramirez-Lopez et al.26, model for each 
property was calibrated for the four values of C: 103, 104, 
105, and 106 and the optimal value of C was retained 
based on leave-one-out cross-validation approach27,28. In 
DWT approach, a set of parsimonious wavelet coeffi-
cients was generated by performing multi-resolution 
analysis (MRA) on soil reflectance spectra21. The pyra-
mid algorithm20 using Haar wavelet was used to imple-
ment MRA in seven dilation levels. The wavelet 
coefficients at each dilation levels were arranged in the 
descending order of their variance (DWT-array). Those 
wavelet coefficients that explained 95% of the cumulative 
variance in the DWT-array were used as predictor vari-
ables in both PLSR (DWT–PLSR) and SVR (DWT–SVR) 
approaches. Developed DRS models were tested on the 
basis of coefficient of determination (R2), RMSE, and the 
residual prediction deviation (RPD) 
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where Y and Ŷ  denote the observed and the model pre-
dicted values respectively, Y  the mean of the observed 
values, and n is the number of soil samples. The RPD 
value of validation was used as an accuracy criterion  
(accurate: RPD > 2, moderate: 1.4 > RPD < 2, poor: 
RPD < 1.4) to classify DRS models2. Although RMSE is 
an unbiased estimator, it does not have designated ranges 
similar to RPD for judging model performance. Hence, 
all the three statistics were used. 

Results and discussion  

Descriptive statistics of soil nutrient content 

Table 1 lists descriptive statistics for soil nutrients in 
calibration and validation dataset of Alfisols and Verti-

sols. The distribution of all the soil nutrients (except P) 
were distinctly different across soil groups as revealed by 
the two-parameter Student’s t test and Levene’s F test at 
5% significance level. Average P content in Vertisols and 
Alfisols were similar. Potassium and B content was high 
in Vertisols, while Zn, Fe and Al content was higher in 
Alfisols. Nutrients such as K and B in Vertisols and P, K, 
Zn and Fe in Alfisols showed log–normal distribution, 
while Zn, Fe and Al in Vertisols showed normal distribu-
tion only after Box–Cox transformation. Nutrients such 
as P in Vertisols and B and Al in Alfisols could not be 
suitably transformed to achieve normality and left un-
transformed. Results of both the Student’s t test and 
Levene’s F test ensured similar distribution of nutrient 
content values between calibration and validation data-
sets. 

Predictor variables for DWT-based approaches 

Figure 1 shows the average wavelet coefficient values at 
each dilation level along with the wavelength regions 
(scatter plot). Based on the variance criteria, only the 
wavelet coefficients in dilation levels from 4 to 7 were 
selected as predictor variables for regression modelling. 
Among them, the dilation levels 5–7 were found to be the 
most significant descriptors of variance in DWT array, 
which were known for their ability to act as potential pre-
dictors of soil nutrient content. A total of 40 and 45 pre-
dictor variables selected using DWT approach were 
identical for all the soil nutrient content in Vertisols and 
Alfisols (except for B) respectively. In the case of B in 
Alfisols, the wavelet coefficient at 529 nm in dilation 
level 5 did not comply with the predictor variables selec-
tion criteria. 
 Wavelet coefficients around the water absorption bands 
at 1400, 1900 or 2200 nm (ref. 14) were found to be the 
most prominent predictor variables across different dila-
tion levels in both Vertisols and Alfisols. These wave-
length regions are known for their ability to predict soil 
nutrient content. The reason for the occurrence of same 
spectral feature (e.g. water absorption bands) at different 
dilation levels is associated with the inherent multi-
resolution capability of DWT. In addition to water  
absorption bands, several other spectral features related 
to the electronic transitions of iron-bearing minerals in 
the visible region11, overtones and combinations of fun-
damental vibration of active functional groups (C–H,  
N–H and C=O) in the near- and shortwave-infrared  
regions1 were also identified as significant predictor vari-
ables at higher dilation levels. 

Comparison of different data mining approaches 

Figure 2 shows RPD values for soil nutrients from differ-
ent data mining approaches. The PLSR approach yielded 
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Table 1. Descriptive statistics of soil nutrient content 

 Calibration Validation 
Soil nutrient content  
(mg l−1) n Range Mean n Range Mean 
 

Vertisols 
 P 176 0.47–46.14 8.06 (113) 59 0.63–42.87 8.13 (114) 
 K 175 39–468 232.95 (32) 58 68–428 230.84 (31) 
 S 181 0.85–333 27.25 (196) 61 1.2–344.6 30.11 (206) 
 B 178 0.24–7.66 1.42 (72) 60 0.26–14.72 1.59 (121) 
 Zn 177 0.18–4.56 0.58 (78) 59 0.18–2.4 0.57 (64) 
 Fe 176 1.7–104.7 7.65 (119) 59 1.7–29.6 7.29 (81) 
 Al 178 0.9–2.5 1.51 (24) 59 0.9–2.4 1.49 (24) 
Alfisols 
 P 175 1.2–54.3 11.82 (80) 59 1.4–57.4 12.23 (86) 
 K 176 11–438 115.32 (83) 59 14–438 115.66 (84) 
 S 177 1.7–45.5 5.24 (84) 59 1.7–19.6 5.02 (62) 
 B 175 0.1–1.44 0.49 (61) 59 0.1–1.52 0.5 (64) 
 Zn 174 0.22–2.8 0.92 (54) 58 0.24–2.4 0.91 (53) 
 Fe 177 2–104.8 14.81 (86) 59 2.6–42.1 14.3 (76) 
 Al 180 1.1–4.6 2.08 (33) 60 1.1–4 2.07 (33) 

n, Number of soil samples. †Values in parentheses are the coefficients of variation (%). 
 
 

 
 

Figure 1. Wavelength regions used in DWT-based approaches and corresponding wavelet coefficients. 
 
 
high RPD values for B (RPD = 1.63), Zn (RPD = 1.49) in 
Vertisols and B (RPD = 1.36), Fe (RPD = 2.43) in  
Alfisols; while the SVR approach appeared to be most  
effective for Al (RPD = 1.40) in Vertisols and P 
(RPD = 1.26), K (RPD = 1.91) and Al (RPD = 1.36) in 
Alfisols. The DWT–PLSR was the least performing  
approach for most of the soil nutrients. The DWT–SVR 
outperformed all other approaches to predict P 
(RPD = 2.27), K (RPD = 1.22), Fe (RPD = 2.91) in Verti-
sols and Zn (RPD = 1.41) in Alfisols. In general, all the 
modelling approaches (except DWT–PLSR) provided 

similar prediction accuracy for most of the soil nutrients. 
Specifically, the DWT–PLSR approach failed to predict 
P, B, Zn, Fe and Al in Vertisols and Zn in Alfisols and, 
hence, may not be suitable for estimating soil nutrients. 
 Among PLSR, SVR and DWT–SVR, the DWT–SVR 
used only 2% of the total number of predictor variables 
compared with both PLSR and SVR approaches 
(NSV = 2048). Table 2 lists the regression statistics for 
this modelling approach with the observed versus pre-
dicted nutrient content shown in Figure 3. In general, the 
calibration statistics were better than those of validation 
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Table 2. Regression statistics for soil nutrients using DWT–SVR approach 

 Calibration Validation 
Soil nutrient content  
(mg l–1) PF R2 RMSE RPD R2 RMSE RPD 
 

Vertisols 
 P¶ 106 0.82  3.88 2.36 0.80 4.09 2.27 
 K 103 0.42  0.26 1.32 0.32 0.27 1.22 
 S¶ 106 0.36 42.73 1.25 0.30 51.50 1.20 
 B 104 0.55  0.43 1.50 0.49 0.51 1.41 
 Zn§ 103 0.63  0.41 1.65 0.43 0.51 1.34 
 Fe§ 106 0.82  0.15 2.33 0.88 0.12 2.91 
 Al§ 103 0.35  0.17 1.24 0.26 0.18 1.17 
Alfisols 
 P 105 0.45  0.62 1.35 0.28 0.73 1.19 
 K 103 0.82  0.34 2.39 0.71 0.44 1.89 
 S§ 103 0.31  0.21 1.21 –0.08 0.25 0.97 
 B¶ 103 0.52  0.20 1.45 0.37 0.25 1.27 
 Zn 103 0.58  0.34 1.54 0.49 0.37 1.41 
 Fe 103 0.77  0.38 2.08 0.81 0.33 2.32 
 Al¶ 103 0.47  0.50 1.38 0.42 0.51 1.33 

Log-transformed nutrient content; §Box–Cox transformed nutrient content; ¶Untransformed nutrient content. 
PF, Penalty factor; R2, Coefficient of determination; RMSE, Root-mean-squared error; RPD, Residual 
prediction deviation. 

 

 
 

Figure 2. Performance of data mining approaches for predicting nutrient contents in Vertisols and Alfisols. 
 

 
for all the soil nutrient contents (except Fe) in both soils. 
Reverse trend for Fe may occur because of the presence 
of some calibration samples with values outside valida-
tion range (Table 1). Prediction was accurate for P and Fe 
in Vertisols and Fe in Alfisols, moderate for B and Zn in 
Vertisols and K and Zn in Alfisols while the predictions 
were poor for all the remaining soil nutrient contents. 
Regression statistics were comparable or often better than 
those reported in the literature for P, K29, Zn2, Fe29 and 
Al29. Thus, the DWT–SVR approach may be considered 

as the best calibration approach in terms of both model 
accuracy and parsimony to estimate soil nutrient contents 
in Alfisols and Vertisols samples. 

Summary 

Diffuse reflectance spectroscopy provides a rapid and 
non-invasive alternative to wet chemistry-based methods 
for the simultaneous estimation of different soil proper-
ties. In this study, four different data mining approaches 
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Figure 3. Observed versus predicted soil nutrient contents in Vertisols and Alfisols. 
 
 
namely PLSR, SVR, DWT–PLSR and DWT–SVR were 
used to estimate soil nutrients for two Indian soils of Ver-
tisols and Alfisols. The best DRS models yielded accu-
rate predictions for P (RPD = 2.27), Fe (RPD = 2.91) in 
Vertisols and Fe (RPD = 2.43) in Alfisols; while B 
(RPD = 1.63), Zn (RPD = 1.49) in Vertisols, and K 
(RPD = 1.89), Zn (RPD = 1.41) in Alfisols were pre-
dicted with moderate accuracy. The DWT–SVR outper-
formed all other approaches in case of P, K and Fe in 
Vertisols and P, K, Zn in Alfisols; whereas, the PLSR  
approach was found to be better for B, Zn and Al in Ver-
tisols and B, Fe and Al in Alfisols. The DWT–SVR  
approach yielded parsimonious DRS models with similar 
or even better prediction accuracy than PLSR approach. 
Hence, the DWT–SVR may be considered as the best 
calibration approach for the estimation of soil nutrient 
content for Alfisols and Vertisols of India. 
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