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Abstract Rust, caused by the fungus Puccinia

substriata var. indica, is one of the most important

production constraints of pearl millet worldwide,

leading to grain yield losses of up to 76 % as well as

major losses in fodder yield and quality. Here, we

report the development of a linkage map integrating

Diversity Arrays Technology (DArT) markers and

simple sequence repeat (SSR) markers, using this to

identify quantitative trait loci (QTLs) for pearl millet

rust resistance. Genotyping data from 256 DArT and

70 SSR markers on 168 F7 recombinant inbred lines

from cross 81B-P6 9 ICMP 451-P8 were used to

construct a linkage map comprised of 286 loci (229

DArT and 57 SSR markers) spanning a total length of

740.3 cM (Haldane) with an average adjacent marker

distance of 2.7 cM. Linkage group 7 (LG7)

(153.5 cM) was the longest and LG6 the shortest

(45.0 cM). The map was used to identify a major QTL

for rust resistance with an LOD score of 27 on LG1,

which explained 58 % of the observed phenotypic

variation. In addition, two putative modifiers of small

effect were detected, one each on LG4 and LG7. The

novel rust resistance QTL identified on LG1 is thought

to confer a durable slow-rusting phenotype, which is

still effective in India more than 20 years after it was

first deployed in the previously popular single-cross

hybrid MH 179 (ICMH 451). The flanking markers

reported here provide a framework for marker-assisted

selection and possible future map-based cloning of

this resistance gene.
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Introduction

Pearl millet, Pennisetum glaucum (L.) R. Br.

(2n = 2x = 14), also known as cattail millet, bulrush

millet, candle millet, cumbu and bajra, is the sixth

most important cereal following rice, wheat, maize,

barley and sorghum. It is a C4 grass with the highest

levels of tolerance to heat and drought among tropical

cereals and is grown on more than 29 million ha in

arid, semi-arid, subtropical and tropical regions of

Asia, Africa and Latin America where it produces

staple food grain and fodder. It is still sometimes

regarded as an ‘orphan’ crop and has received

relatively little attention from researchers outside of

India compared to its potential contribution to human-

ity. There is a need to better understand the genetic

basis of economically important traits in this crop and

develop more efficient genomic tools for use in its

cultivar development. Compared to better studied

cereals such as rice, wheat, maize, barley and

sorghum, there has been relatively little research on

the development and application of molecular genetic

tools for pearl millet (Liu et al. 1994, 1996, 1997;

Jones et al. 1995, 2002; Busso et al. 1995, 2000;

Burton and Wilson 1995; Morgan et al. 1998; Devos

et al. 2000; Poncet et al. 2000, 2002; Allouis et al.

2001; Gale et al. 2001; Qi et al. 2001, 2004;

Bhattacharjee et al. 2002; Breese et al. 2002; Yadav

et al. 2002, 2003, 2004; Azhaguvel et al. 2003; Budak

et al. 2003; vom Brocke et al. 2003; Bidinger et al.

2005, 2007; Hash and Witcombe 2001; Hash et al.

2003, 2006; Bertin et al. 2005; Mariac et al. 2006a, b,

2011; Gulia et al. 2007; Senthilvel et al. (2008);

Saı̈dou et al. 2009, 2014a, b; Stich et al. 2010; Supriya

et al. 2011; Kholová et al. 2012; Nepolean et al. 2012;

Sehgal et al. 2012, 2015; Rajaram et al. 2013;

Vengadessan et al. 2013; Kannan et al. 2014; Ramana

Kumari et al. (2014); Aparna et al., 2015; Gemenet

et al. 2015; Moumouni et al. 2015). The RFLP- and

SSR-based genetic linkage maps developed so far for

pearl millet provide less than optimal genome cover-

age and marker density (Liu et al. 1994; Qi et al. 2004;

Gulia et al. 2007; Rajaram et al. 2013). A consensus

map of 353 RFLP and 65 SSR markers was developed

(Qi et al. 2004) by integrating genetic maps produced

in four different crosses of pearl millet where 85 % of

the markers are clustered and occupy less than one

third of the total map length. Extreme localization of

recombination is toward the chromosome ends,

resulting in gaps on the genetic map of 30 cM or

more in the distal regions (Devos et al. 2000; Qi et al.

2004). The unequal distribution of recombination has

consequences for the transfer of genes controlling

important agronomic traits from donor to elite pearl

millet germplasm (Qi et al. 2004). To date, only

approximately 200 PCR-compatible markers have

been mapped in pearl millet (Morgan et al. 1998;

Gale et al. 2001; Gulia et al. 2007; Rajaram et al.

2013). The length of published linkage maps so far

ranges from 280 cM (Jones et al. 2002) to 675 cM

(Senthilvel et al. 2008). Hence, there is a continuing

need to fill the gaps in these maps, further saturate

them and extend the portion of the mapped genome

further into subtelomeric regions to facilitate further

application of genomic tools for improvement of this

species. DArT has the potential to generate hundreds

of high-quality genomic dominant markers with a

cost- and time-competitive trade-off (Kilian et al.

2005) and can be used for construction of high-density

genetic linkage maps with even distribution of mark-

ers over the genome, which offer real advantages for a

range of molecular breeding and genomic applica-

tions. Supriya et al. (2011) developed a DArT platform

for pearl millet and used this for diversity analysis and

high-density linkage map construction. Other new

genotyping technologies capable of highly parallel

analysis would represent a major step forward in this

crop. Recently, another high-throughput and low-cost

genotyping method named genotyping-by-sequencing

(GBS) has been developed and has proven its

efficiency in other crops such as maize and barley

(Elshire et al. 2011), sorghum (Nelson et al. 2011;

Morris et al. 2013a, b; Lasky et al. 2015) and pearl

millet (Moumouni et al. 2015).

Apart from grain, pearl millet is also important as a

forage and stover crop (Anand Kumar 1989; Andrews

and Kumar 1992). Its pre-flowering vegetative parts

provide excellent forage because of their low hydro-

cyanic (HCN) acid content and high levels of protein,

calcium, phosphorous and other minerals (Athwal and

Gupta 1966). Sorghum is the main C4 forage, having

potential for toxic levels of HCN, which are hazardous

to livestock when fed green. In contrast, pearl millet

forage (and grain) has low levels of cyanogenic

glucosides, but juvenile plants can accumulate nitrates

at levels that are dangerous for livestock and when

stressed are known to accumulate oxalates to levels

that make the forage unpalatable (Anand Kumar 1989;
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Andrews and Kumar, 1992). Lack of adequate foliar

disease resistance can dramatically reduce the live-

stock feed value of pearl millet green forage, hay,

silage or crop residues remaining after harvest of a

pearl millet grain crop (Monson et al. 1986; Wilson

et al. 1991). Among the various foliar diseases of

economic importance in pearl millet such as downy

mildew (Sclerospora graminicola (Sacc.) J. Schroet.),

rust (Puccinia substriata var. penicillariae (Speg.)

Ramachar & Cumm.) and blast (Pyricularia grisea

(Cke.) Sacc.), rust, caused by the fungus P. substriata

var. penicillariae (de Carvalho et al. 2006), is the most

important forage production constraint for this crop

worldwide, leading to losses of up to 76 % in grain

production and major losses in fodder yield and

quality (Wilson et al. 1996) as well as substantial

reductions in biomass yield and quality when pearl

millet is grown as the mulch component of minimum

tillage systems in Brazil (de Carvalho et al. 2006).

Visual effects of this rust are severe, ranging from

death of young plants from early infection to prema-

ture desiccation and/or death of leaves with later

infection. Green yield, dry-matter yield and forage

quality as measured by in vitro digestibility are

negatively correlated with rust severity (Monson

et al. 1986; Wilson et al. 1991, 1996). Therefore,

improving pearl millet rust resistance to reduce yield

and quality losses has become a high priority for

breeders in regions where this disease is prevalent.

Although resistance to rust has been reported in some

pearl millet germplasm accessions and breeding lines

(Rao and Rao 1983; Wilson 1993a; Singh et al. 1997),

identification of new physiological races of the

pathogen (Wilson 1991, 1993b; Tapsoba and Wilson

1996) suggests that continuous evaluation of new

sources of resistance is required. Rust resistance has

been reported to be conferred by a single dominant

gene and susceptibility by its recessive allele (An-

drews et al. 1985; Hanna et al. 1985; Wilson 1993a),

with several different sources of major gene and

quantitative resistance having been identified and

exploited (Rao and Rao 1983; Singh et al. 1987, 1990;

Singh 1990; Wilson 1993a, 2006; Wilson et al. 1994,

2001). Quantitative trait locus (QTL) mapping is a

highly effective approach for studying genetically

complex forms of plant disease resistance. Morgan

et al. (1998) used a combination of RAPD and RFLP

markers to map the Rr1 gene from wild pearl millet (P.

glaucum spp. monodii) to linkage group 3 (LG3);

however, this major gene resistance was overcome by

the pathogen population in the southeastern USA soon

after its deployment in forage and grain hybrids

following its backcross transfer to elite hybrid seed

parent maintainer background Tift 85D2A1/85D2B1

(Hanna et al. 1987; Wilson 1993b; Wilson et al. 1994,

1996). Hash et al. (2003) suggested quantitative trait

loci (QTL) mapping and marker-assisted selection

(MAS) for stover yield, foliar disease resistance and

in vitro estimates of the nutritive value of various

stover fractions for ruminants in pearl millet and

sorghum as ways to improve the economic value of

residues of these crops that are available following

grain harvest. In addition to this, QTL mapping of

downy mildew resistance (Jones et al. 1995, 2002;

Hash and Witcombe 2001; Breese et al. 2002; Gulia

et al. 2007), rust and blast resistance (Morgan et al.

1998), drought tolerance (Yadav et al. 2002, 2004;

Bidinger et al. 2007; Kholová et al. 2012; Sehgal et al.

2012, 2015; Aparna et al. 2015) and the association of

flowering time with the genotype 9 environment

interaction of grain and stover yield (Yadav et al.

2003) has been done. However, so far there are no

reports on the identification and mapping of rust

resistance QTLs in pearl millet that are effective in

Asia or Africa. This article reports the development of

an integrated high-density genetic linkage map based

on DArT and SSR markers that has been used for

mapping QTLs for pearl millet rust resistance that is

effective in India.

Materials and methods

Plant material

A mapping population of 168 F7 RILs derived from

cross 81B-P6 9 ICMP 451-P8 was used to construct

an integrated DArT ? SSR based linkage map and

was screened for rust resistance.

DNA extraction and quantification

Pot-grown pearl millet seedlings grown under green-

house conditions at ICRISAT- Patancheru were used.

The youngest 3–5 leaves were taken, and DNA was

extracted using the SDS-potassium acetate method

(Dellaporta et al. 1983). DNA quantification was done

by agarose gel electrophoresis (0.8 %), and it was
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further diluted to 50 ng/ll for DArT and 5 ng/ll for

SSR genotyping.

Genotyping of individual DNA samples using

DArT array

One hundred sixty-eight F7 RILs of the mapping

population were used individually to prepare the

genomic representations using the same complexity

reduction method used for library construction (PstI/

BanII), and genotyping was done as described in

Supriya et al. (2011).

Genotyping with Simple Sequence Repeats (SSRs)

PCR using SSR markers

A set of 30 genic and genomic SSRs (27 fluorescently

labeled SSRs and 3 M13-labeled SSRs) (Table 1) was

screened using the two parental lines and 168 F7 RILs.

Multiplex PCR was carried out to amplify SSRs. For

M13-labeled primers a three-primer strategy was used

with a 1:15:15 ratio for the forward primer with an

M13 tail, regular reverse primer and universal fluo-

rescent-labeled M13 primer, respectively. PCR reac-

tions were carried out in 5 ll reactions containing 1X

PCR buffer, 1.5 mM MgCl2, 0.4 pm primers, 0.2 mM

dNTPs and 0.2 U Taq polymerase (NEB, UK).

Touchdown PCR was performed using the following

program: 94 �C for 3 min and five cycles of touch-

down at 94 �C for 1 min, 56 �C for 1 min and 72 �C
for 1 min followed by 40 cycles of 94 �C for 1 min,

51 �C for 1 min, 72 �C for 1 min and final extension at

72 �C for 20 min.

Analysis of PCR products on the ABI 3730 DNA

analyzer

Two ll of PCR product was taken from each marker of

the multiplex set (markers labeled with different dyes)

and pooled together for simultaneous detection of the

amplified alleles. Seven ll of formamide and 0.2 ll of

fragment-size standard GeneScanTM 500 LIZ were

added to the pooled PCR product and run on an ABI

3730 DNA genetic analyzer (Applied Biosystems).

The data were collected automatically by the detection

of the different fluorescences and analyzed using

GeneMapper v4.0 software (Applied Biosystems).

Linkage map construction

The scores of all polymorphic DArT and SSR

markers were converted into genotype codes (‘A’,

‘B’) according to the scores of the parents. Data for

40 polymorphic ICRISAT pearl millet EST stress

(IPES) EST-SSR markers (Rajaram et al. 2013) were

also added prior to linkage map construction, and

linkage groups were obtained using JoinMap (Stam

1993) at logarithm of odds (LOD) threshold values

ranging from 2 to 10. The order of markers in each

linkage group was finalized by RECORD software

(van Os et al. 2005) and the Haldane mapping

function. The graphical representation of the map was

drawn using MapChart software (Voorrips 2002).

DArT markers were named with the prefix ‘‘PgPb’’

where ‘Pg’ stands for P. glaucum, ‘P’ for PstI

(primary restriction enzyme used) and ‘b’ for BanII

(secondary restriction enzyme used) followed by

numbers corresponding to unique clone ID following

Supriya et al. (2011).

Phenotyping and QTL mapping for rust resistance

Greenhouse screening for rust resistance

Seed of susceptible check entries (ICMB 89111 and

ICMB 06222) and resistant (ICML 11 and ICMP 451)

and 167 F7 RILs segregating for rust resistance from

the cross 81B-P6 (susceptible) 9 ICMP 451-P8 (re-

sistant) were sown in pots (15 seeds/pot) filled with a

sterilized soil-sand-farmyard manure (FYM) mix

(2:1:1 by volume) and placed in a completely

randomized design in a greenhouse maintained at

35 �C. The experiment was conducted with four

replications, and there were two pots per replicate

for each entry. Pots were watered daily, and seedlings

were thinned to ten plants/pot. Twelve days after

germination, when the seedlings were at the third leaf

stage, they were spray-inoculated with an aqueous

urediniospores suspension (&1.0 9 105 uredin-

iospores ml-1) of P. substriata (spores were collected

from the Pathology Section, ICRISAT-Patancheru)

and exposed to high humidity ([90 % RH) under

misting. Rust severity was recorded 10 days after

inoculation using the modified Cobb’s rating scale for

the percentage of infected leaf area within each pot

(Thakur et al. 2011).
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Statistical analysis of disease severity data

Statistical analysis was performed using Genstat 12th

edition from Rothamsted, UK. Analysis of variance

(ANOVA) was performed using a completely ran-

domized design, and the mean of rust severity %, S.E.,

C.V. and heritability were calculated.

QTL analysis

For QTL mapping, the linkage map constructed with

marker data from 146 F7 RILs derived from the cross

(81B-P6 9 ICMP 451-P8) was used. The entry means

of raw data scored for resistance percentage were used

for QTL analysis, which was performed by composite

interval mapping (CIM) with PlabQTL (Utz and

Melchinger 1996) using a LOD of 2.5 as the threshold

value for QTL significance.

Results

Genotyping using DArT array and SSRs

After screening a mapping population of 168 F7 RILs

from the cross 81B-P6 9 ICMP 451-P8, 256 polymor-

phic clones (DArT markers) were identified in a total of

7680 clones (3.3 % of polymorphic clones) on the

array. The call rate ranged from 80.3 to 98.4 % with an

average of 89.5 %, and the scoring reproducibility was

100 %. The DArT markers used displayed high poly-

morphism information content (PIC) values, ranging

from 0.27 to 0.50 with an average of 0.46. The P and

Q values, which are measurements of variation, were

calculated as described by Storey and Tibshirani

(2003), and across individuals they ranged from 65.1

to 92.9 % (average 81.3 %) and 64.8 to 92.5 %

(average 80.9 %), respectively. Out of 30 SSR primer

pairs (Table 1) used for capillary electrophoretic sep-

aration of fluorescent-labeled PCR products, 25 SSRs

(83.3 %) detected reliably scorable polymorphism.

Genetic linkage mapping

To assemble the linkage map, 326 polymorphic mark-

ers (256 DArT and 70 SSRs) were used. Out of these,

286 loci (229 DArT markers and 57 SSRs) were

distributed across the expected 7 linkage groups using

LOD thresholds ranging from 2 to 10 and aT
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recombination frequency (r) threshold \0.4 using

JoinMap, and 40 markers (27 DArTs and 13 SSRs)

remained unlinked, probably because of the extremely

high recombination rates observed in subtelomeric

regions of pearl millet chromosomes (Devos et al.

2000). The order of markers in each linkage group was

finalized using RECORD software. The map built with

JoinMap was inflated by 47 % when compared with

that built using RECORD. Markers violating map

stability were removed, and linkage groups were

reanalyzed to construct a stabilized map, which

spanned a total length of 740.3 cM (Haldane) (Fig. 1a,

b) with an average adjacent-marker distance of 2.7 cM,

and an average density of 0.39 markers/cM. The total

number of mapped loci per linkage group ranged from

23 on LG6 to 59 on LG2, and the average was 40.9 loci/

LG. The longest individual linkage group map was for

LG7 (153.5 cM), the shortest was for LG6 (45.0 cM),

and the average LG length was 105.8 cM. The density

of markers on the individual linkage groups ranged

from 0.29 markers/cM on LG5 to 0.51 markers/cM on

LG6. Map distances between two consecutive markers

varied from 0 to 21 cM, and 263 of the 279 intervals

(94.3 %) were\10 cM. There were only 16 intervals

(5.7 %) larger than 10 cM, and the largest gap between

markers was observed on LG7 (21.0 cM). Many DArT

markers were present as clusters in subtelomeric

regions (e.g., the top of LG1) (Fig. 1a). Of the 286

markers placed on the genetic map, 54 were distributed

on LG1, 59 on LG2, 35 on LG3, 42 on LG4, 27 on LG5,

23 on LG6 and 46 on LG7 (Table 2).

Significant segregation distortion from the

expected 1:1 Mendelian ratios was found for 124

(38.0 %) out of 326 markers genotyped across these

146 RILs. Sixty markers (18.4 %) showed distortion

in favor of the 81B-P6 allele, whereas 64 (19.6 %)

showed distortion in favor of the ICMP 451-P8 allele.

Of the 286 markers mapped, 118 (41.2 %) showed

distorted segregation with 57 markers (19.9 %) show-

ing distortion in favor of the 81B-P6 allele and 61

(21.3 %) in favor of the ICMP 451-P8 allele. Dis-

torted markers (Fig. 1a, b) favoring the 81B-P6 alleles

were found primarily on LG2 (49 out of 59 markers

mapping to this group), LG3 and LG6, while those

favoring the ICMP 451-P8 alleles were mapped on

LG1, LG3, LG4 (41 out of 42 markers mapping to this

group), LG5 and LG7. LG3 showed skewed markers

favoring alleles from both parents in different portions

of the linkage group.

QTL identification for rust resistance

General statistics

Rust severity (%) in the test lines ranged from 0 to 95 %

in the RILs derived from the cross (81B-

P6 9 ICMP 451-P8). Highly significant differences

were detected by ANOVA between individual RIL

progenies. Mean rust severity (%) was calculated for

each RIL using the data from four replications, and it

ranged from 0.25 to 89.38 % (grand mean 35.0 %) with

an operational heritability (repeatability) of 99 %, SEm

of 2.5 % and CV of 7.1 %. Parental line ICMP 451-P8

was resistant and exhibited mild symptoms in a few

replications with a mean rust severity of 4.6 %, while

parental line 81B-P6 was highly susceptible recording

77.8 % severity. Among various control entries,

ICML 11 was moderately resistant (10.6 % rust sever-

ity), ICMB 89111 (55.4 %) was susceptible, and

ICMB 06222 (83.5 %) was highly susceptible. Of the

167 RILs, 32 were resistant (B10 % severity), 18

moderately resistant (11–20 % severity), 73 moderately

susceptible (21–50 % severity) and 40 susceptible

(51–75 % severity), and the remaining four lines were

highly susceptible ([75 % severity), as shown in the

histogram in Fig. 2.

QTL mapping

QTL analysis was performed with PlabQTL using the

integrated DArT-SSR genetic map. A major QTL with a

LOD value of 27 (Fig. 3) was mapped near the top of the

LG1 (Fig. 1), explaining 58 % of the observed pheno-

typic variation in rust reaction of the RIL progenies

(Table 3). At this locus the allele of resistant parent

ICMP 451-P8 conferred resistance. In addition to this

major QTL, two modifiers were also detected, one each

on LG4 and LG7, explaining 9.0 and 8.3 % of the

observed phenotypic variation, respectively (Table 3).

The favorable allele for the LG4 modifier was inherited

from susceptible parent 81B-P6, whereas that for the

LG7 modifier was inherited from ICMP 451-P8.

Discussion

DArT technology enabled identification of many

markers with relatively high polymorphism content

[i.e., 256 polymorphic DArT markers having 100 %
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repeatability were segregating in the (81B-

P6 9 ICMP 451-P8)-derived mapping population] in

a cost-effective manner in comparison to SSRs. Thus,

the pearl millet DArT platform proved useful for

application in genome-wide screening for QTL dis-

covery. It can also be expected to prove useful for

recurrent parent background recovery in marker-

assisted backcrossing, for isolation of genes via map-

based cloning, for comparative mapping and for

genome organization studies. The availability of

better-saturated molecular maps that are achievable

using DArT, GBS-SNPs and other approaches will

certainly provide breeders and geneticists with a

much-wanted tool to identify various genomic regions

of interest, which in turn will increase the efficiency of

marker-assisted breeding (Moumouni et al. 2015).

A well-saturated pearl millet genetic linkage map

was constructed spanning 740.3 cM with an average

adjacent-marker distance of 2.7 cM and smaller marker

intervals than any previously constructed maps with

RFLPs and/or SSRs. The high level of genome

coverage achieved in this map will be particularly

useful to select markers for use in whole-genome

breeding strategies and to saturate genomic regions of

interest in other mapping populations. The distribution

of markers was reasonably uniform including the distal

regions of all chromosome arms because of inclusion of

DArT and EST-SSRs. These markers typically show

improved genome coverage compared to anonymous

(non-coding) SSRs or AFLPs, which are characteristi-

cally clustered around the centromeric regions (Ramsay

et al. 2000). The processes used to develop each type of

marker accounts for this difference in genome cover-

age. Anonymous SSRs are usually developed from

random genomic libraries in which microsatellites

located in the heterochromatic regions are overrepre-

sented (Röder et al. 1998), and the development of

EST-SSRs from genic regions reduces the representa-

tion of regions that are rich in repetitive DNA (Parida

et al. 2006).

In this study, a high proportion of DArT markers

showed clustering in distal regions of several of the 14

chromosome arms, and such clustering of DArT

markers was more frequent than that of SSRs, which

was expected as DArT markers were over four times

more abundant than the SSRs in the data sets (and the

SSRs included both genic and genomic SSRs), and the

endonuclease PstI was used in the preparation of the

reduced representation libraries used for pearl millet

DArT clone development. It appears that DArT mark-

ers prepared using PstI may have a stronger tendency

than genomic SSR and AFLP markers in particular to

map to such gene-rich regions (Vuylsteke et al. 1999),

which may be due to use of the methylation-sensitive

restriction enzyme PstI in the complexity reduction of

bFig. 1 a Linkage groups LG 1 thru LG 4 of the genetic linkage

map for the (81B-P6 9 ICMP 451-P8)-based pearl millet RIL

population. Map distances (Haldane cM) and marker names are

shown on the left and right side of each linkage group,

respectively. SSR markers are underlined, and DArT marker

names begin with the prefix PgPb. Markers that showed

distorted segregation are shown in italics. QTL positions for

rust resistance are shown on LG1 and LG4. b Linkage groups

LG 5 thru LG 7 of the genetic linkage map for the (81B-

P6 9 ICMP 451-P8)-based pearl millet RIL population. Map

distances (Haldane cM) and marker names are shown on the left

and right side of each linkage group, respectively. SSR markers

are underlined, and DArT marker names begin with the prefix

PgPb. Markers that showed distorted segregation are shown in

italics. QTL position for rust resistance is shown on LG7

Table 2 Linkage group details of the DArT- and SSR-based genetic map for a pearl millet RIL population based on cross (81B-

P6 9 ICMP 451-P8)

Linkage group DArT

marker loci

SSR

marker loci

Total

marker loci

Length (cM) Adjacent-marker

interval (cM)

Density

(markers/cM)

LG1 40 14 54 128.0 2.42 0.42

LG2 49 10 59 118.5 2.04 0.50

LG3 28 7 35 69.6 2.05 0.50

LG4 36 6 42 133.6 3.26 0.31

LG5 21 6 27 92.1 3.54 0.29

LG6 15 8 23 45.0 2.05 0.51

LG7 40 6 46 153.5 3.41 0.30

Total 229 57 286 740.3 2.65 0.39
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the initial library. The occurrence of DArT marker

clusters in distal regions of chromosome arms was

observed in previous DArT mapping studies on barley

(Wenzl et al. 2004) and wheat (Akbari et al. 2006;

Semagn et al. 2006). Similar clustering in distal regions

was also found in tetraploid wheat using PstI-based

AFLP markers (Peng et al. 2000), which is related to the

trend of PstI-based markers to map in gene-rich,

hypomethylated regions of the genome (Langridge

and Chalmers 1998; Moore 2000), although it could

also be a consequence of the presence of redundant

clones on the arrayed genomic representation (Semagn

et al. 2006). Almost all types of markers illustrate

clustering around centromeres due to centromeric

suppression of recombination (Tanksley et al. 1992;

Korol et al. 1994). The high proportion of DArT

markers clustering away from the centromeres may

therefore be indicative of gene-rich regions, and it is an

additional advantage of DArT markers as they can be

helpful for fine mapping of genes/QTLs residing in

gene-rich regions, thereby facilitating positional clon-

ing. Of course, genotyping-by-sequencing SNPs iden-

tified using reduced representation libraries constructed

using PstI will have similar advantages. However,

DArT marker data sets have inherently lower frequen-

cies of missing data points than do GBS-SNP data sets

unless higher than normal sequencing densities are used

for GBS.

The marker orders of SSRs from the present study

were compared with those from maps based on SSRs

only (Rajaram et al. 2013) and were almost identical

except for swapping of some marker orders within

several blocks on a few linkage groups (data not

shown). Such differences in marker order among

genetic maps is not unexpected, as genetic mapping

only gives an indication of the relative positions and

genetic distances of the markers to each other

(Sourdille et al. 2004), and structural rearrangements

of chromosomes are relatively common in pearl millet

(Varshney et al. submitted). Moreover, inconsistency

in the map position of these few SSRs could be

explained by the presence of closely linked DArT loci.

The order of loci was also compared with an integrated

DArT-SSR pearl millet map based on cross (H 77/

833-2 9 PRLT 2/89-33) (Supriya et al. 2011), which

was also very similar with limited levels of marker

position swapping. Seventy-eight markers represent-

ing all seven linkage groups of pearl millet were

mapped in both populations, which will permit the

development of a better-saturated pearl millet consen-

sus linkage map combining DArT and SSR markers.

In this study, segregation distortion was observed for

38 % of the total marker loci analyzed, which is

similar to the report of Supriya et al. (2011).

The high-density linkage map for the RIL popula-

tion based on cross 81B-P6 9 ICMP 451-P8 was

Fig. 2 Frequency

distribution of rust severity

(%) among F7 RIL

progenies from the pearl

millet cross (81B-

P6 9 ICMP 451-P8)
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successfully used to identify QTLs for rust resistance,

and this is the first report on QTL mapping for rust

resistance in pearl millet from India. The only prior

report of rust resistance mapping (Morgan et al. 1998)

reported QTLs for resistance to pathogen populations

present in the southeastern USA, and these mapped to

LG3 and LG4. In contrast, in the present study a major

QTL effective against an Indian population of P.

substriata was detected on LG 1, along with two QTL

modifiers (one each on LG4 and LG7), explaining

58 % of the observed phenotypic variation in rust

reaction among the RIL progenies (Table 3). Highly

significant differences detected by ANOVA between

individual progenies and high operational heritability

of 0.99 demonstrated that resistance was segregating

in the population and that much of the observed

variation in the rust reaction phenotype was

attributable to genetic variation. The host rust reaction

was continuously distributed in the population

(Fig. 2). However, this does not necessarily imply

that the inheritance of rust reaction is complex and that

many genes are segregating. In fact, as the frequency

distribution of the RILs showed two peaks, it was

anticipated that a large portion of the variation would

prove to be attributable to a single genomic region of

large effect, and this was indeed the outcome of the

QTL analysis. Andrews et al. (1985), Hanna et al.

(1985), and Wilson (1993a) have previously reported
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Fig. 3 Logarithm of odds (LOD) profiles for LG1, LG4 and

LG7 for rust resistance QTLs segregating in the (81B-

P6 9 ICMP 451-P8)-based pearl millet RIL population. The

horizontal line across each graph indicates the threshold level

(LOD = 2.5) used for QTL identification
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that pearl millet rust resistance is conferred by single

dominant genes (individually named Rpp1, Rr1, Rr2

and Rr3, respectively) and susceptibility by their

recessive alleles. The major rust resistance gene

mapped in the present study is also expected to be

genetically dominant, although this was not tested.

Further, unlike the Rr1 gene reported by Hanna et al.

(1985), it has proven durable, as it is still effective

[20 years after its initial large-scale deployment in

India in 1986 in dual-purpose pearl millet hybrid

ICMH 451 (MH 179) = 81A 9 ICMP 451 (i.e., a

commercial hybrid having the same nuclear genotype

as the F1 from which the RIL population used in the

present study was generated). This study will help to

assess the role of this rust resistance locus in providing

a framework for MAS and positional cloning of

resistance genes in pearl millet.

The results obtained from the present study indicate

that DArT provides high-quality markers that can be

used to construct medium-density genetic linkage

maps for plants even when no sequence information is

available. The development of a reasonably well-

saturated genetic linkage map of the RIL population

could be useful for precise and fine QTL mapping as

compared to earlier studies based on SSRs only. It is

anticipated that this DArT array will also prove useful

for background genotyping in marker-assisted back-

crossing programs to speed up recovery of elite

recurrent parent genetic backgrounds on genomic

regions outside that targeted for introgression of donor

parent alleles. The rust resistance locus identified on

LG1 is a novel report (although its presence there was

previously suspected, as it often accompanies marker-

assisted introgression of a downy mildew resistance

QTL that maps to the same chromosome arm of

mapping population parent ICMP 451-P6, which was

used as a donor in marker-assisted breeding of the

male parent of pearl millet hybrid ‘‘HHB 67

Improved’’ (Hash et al. 2006) and will be useful for

providing a framework for more effective MAS and

cloning of such resistance genes. An additional

advantage is that DArT clones can be sequenced

readily and thus provide information for their conver-

sion into PCR-based markers (Fiust et al. 2015). This

can be advantageous in cases when there are not yet

any inexpensively assayed markers closely flanking a

potential target QTL that could be used in foreground

selection for the favorable allele. In addition, in

comparison with a DArT assay, the other highly

parallel genotyping tool available is GBS and SNP.

This approach has also been proven to be significantly

efficient while not requiring any prior marker discov-

ery work in the form of array development. Moumouni

et al. (2015) demonstrated the usefulness of such a

GBS approach to quickly produce a genetic map

densely populated with SNP markers for pearl millet.

They further reported that GBS can rapidly and

efficiently provide high-quality, codominant SNP

markers that can be used to construct densely popu-

lated genetic maps even in the absence of a reference

genome, which will certainly be helpful for breeders

and geneticists. The host plant resistance QTLs

detected in the present study are likely to have longer

economic life spans if deployed in heterogenous

cultivars such as those created using a multiline

approach (Witcombe and Hash, 2000; Hash and

Witcombe 2002) or dynamic multiline approach

(Wilson et al. 2001).
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