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Abstract: Improvement of household food security in the Limpopo Basin has been elusive due to a 

combination of factors related to information and market constraints, but also farmers’ risk aversion 

induced by the high variability of rainfall during the growing season. The purpose of this study was to 

(1) characterize the rainfall and growing season patterns experienced by smallholder farmers, and (2) 

measure soil water dynamics in ripper and basin tillage systems being promoted in the semi-arid 

Limpopo Basin of southern Africa. The results show that the second half of the growing season 

receives more rainfall than the first half in the Limpopo Basin. However, rainfall is more variable 

during the January-March than the October-December period. Growing seasons start earlier and end 

later in the Mozambique part of the basin which is closer to the Indian Ocean. The Limpopo Basin is 

prone to two and three week dry spells with chances of 14 day spells higher (34–42%) than the 21 day 

spells (8–12%). The chances of 14 and 21 day dry spells increase substantially during the second half 

of the growing season. The 1980–1990 was one of the driest decades in the Limpopo Basin. Planting 

basin system conserved more soil water on sandy loam (18–24%) and clay loam (4–12%) soils than 

the conventional practice during flowering and grain filling maize growth stages. Ripper had 17–29% 

more soil water than conventional practice during flowering and grain filling maize growth stages. 

There is a high risk of dry spells and soil water deficits in smallholder cropping systems of the Limpopo 
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basin. There is therefore scope in promoting rain and soil water management technologies, and good 

land husbandry in order to reduce risk of crop failure in the smallholder cropping systems. 

Keywords: drought; dry spell; Limpopo Basin; rainfed agriculture; risk 

 

1. Introduction 

Rainfed agriculture accounts for more than 95% of the land used for staple food production in 

Sub-Saharan Africa [1]. It is projected that rainfed farming will contribute 40% of growth in cereal 

production by 2021–2025 [2]. In the Southern African Development Community region, the human 

population is growing at 2.4% per annum while crop output from the smallholder farming sector is 

declining [3]. While food imports may fill the growing demand gap in the short term, these trends and 

the predominantly subsistence farming and poverty status of the smallholder sector foretells of a 

growing food crisis for the rural-based communities in the region. It is therefore imperative that crop 

production in smallholder systems be improved in order to meet the food demand of the ever increasing 

human population. 

The objective of improving household food security through uptake of crop improvement 

technologies has been elusive due to the risky nature of the semi-arid rainfall [4,5]. Crop production 

in semi-arid environments is heavily dependent on in-season spatial and temporal distribution of 

rainfall [6]. The crop growing period typically extends from November to April and during this period 

rainfall normally occurs as short duration, heavy convective storms covering a few square  

kilometers [7,8]. Rainfall events are poorly distributed during the growing period, taking more than 

three weeks between successive rainfall events in some seasons [9]. Such mid-season dry spells are 

now a characteristic feature of the semi-arid parts of southern Africa [5,10]. The impact of such dry 

spells on smallholder crop production is sometimes more severe than that of drought [11,12].  

The high spatial and temporal variability of in-season rainfall poses a major threat to rainfed 

cropping in the Limpopo Basin of southern Africa. Coefficients of variation for seasonal rainfall in 

Southern Africa range from 20 to 40%, increasing as seasonal rainfall amounts decrease and are 

reported to be the highest in sub-Saharan Africa [4,9,13]. Statistically, complete crop failure in semi-

arid areas can occur once every 10 years [14,15]. Severe crop yield reductions due to mid-season dry 

spells can occur once or twice every five years in semi-arid areas [14]. In semi-arid parts of East Africa 

there is a 70% chance of a dry spell lasting more than 10 days occurring during the flowering period 

of maize [16]. It is possible that the same phenomenon applies in semi-arid Southern Africa. It is 

therefore important to know the chances of experiencing droughts and mid-season dry spells during 

the growing season in an environment where the greatest proportion of farmers depend on rainfall for 

crop and livestock production.  

Soil water management in rainfed agriculture has the potential of reducing the negative impact of 

mid-season dry spells in semi-arid environments [17-19]. Soil water conservation can be achieved 

through various conventional and reduced tillage systems. Soil is the medium for water storage and 

supply to growing crops in farming systems, and sustainable soil management is therefore critical in 

farming systems [20-23]. Minimum and zero tillage practices have been used for better soil 

management and as in-situ soil water conservation strategies [24-26]. Ex-situ rainwater management 
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techniques that complement soil water conservation practices applied to the cropping fields, have also 

been tested on smallholder farms [27-30]. 

The effects of conventional moldboard ploughing, mulch ripping and no till tied-ridging on soil 

water loss from fields was evaluated in Zimbabwe [23,31]. Mulch ripping gave higher soil moisture in 

the topsoil especially at the beginning of the cropping season. In semi-arid southern Zimbabwe, 

Mupangwa et al. observed that reduced tillage practices such as basins and ripper, when combined 

with mulching using crop residues, conserved soil water on sand and clay soils during the growing 

season [32]. Higher crop yields, increased seasonal water use and water productivity can be achieved 

by using in-field rainwater harvesting techniques under semi-arid conditions of southern Africa [33]. 

Under the semi-arid conditions of East Africa, increased maize yields under conservation tillage and 

improved soil fertility management was recorded on smallholder farms [27]. 

Our study aimed at assessing the trends in growing season, dry spells and drought patterns in parts 

of the Limpopo River Basin of southern Africa. We also sought to assess the potential of reduced 

tillage systems that are being promoted in southern Africa on soil water patterns under semi-arid 

conditions. An extensive analysis of long term daily rainfall from Mozambique, South Africa and 

Zimbabwe was conducted to characterize the contrasting rainfall environments within the Limpopo 

Basin and assess the relative variability and implied risks for crop production in the river basin. We 

hypothesized that there is a high risk in rainfed crop production in the Limpopo Basin owing to low 

and variable seasonal rainfall, frequent in-season dry spells, and variable length of growing season. 

Our second hypothesis was that reduced tillage systems that are being promoted can conserve soil 

water and therefore reduce the risk of crop failure due to dry spells and droughts. The objectives of 

this study were to (1) characterize the rainfall and growing season patterns experienced by smallholder 

farmers, and (2) measure soil water dynamics in ripper and basin tillage systems being promoted in 

the semi-arid Limpopo Basin of southern Africa. 

2. Materials and Methods 

2.1. Characteristics of the Limpopo Basin in southern Africa 

The Limpopo Basin forms a drought corridor in southern Africa [11], stretching from Botswana 

to Mozambique through northern South Africa and southern Zimbabwe (Figure 1). The river basin lies 

between 20 and 26°S, and 25 and 35°E, and covers 412,938 km2 across the four countries [34]. Rainfall 

is seasonal, exhibiting high inter-annual variability with 95% of it occurring between October and 

March. Evaporation varies from 1600 mm/year to more than 2600 mm/year and it is high even during 

the rainfall season [34]. Daily evaporative losses of 5 to 8 mm/day have been recorded in some parts 

of the Limpopo Basin [1,35]. Daily summer temperature may exceed 40 °C while winter temperatures 

can go below 0 °C. The predominant soil types include luvisols and leptosols found in Zimbabwe and 

Botswana, regosols in South Africa and, arenosols and solonetz in Mozambique [34]. Pockets of 

vertisols and nitisols occur in some parts of the river basin. The major agricultural activities include 

growing of drought tolerant varieties of maize, sorghum and pearl millet, and livestock rearing. Total 

cropping area in the Limpopo Basin averages 2.9 million hectares with 91% of it being under rainfed 

conditions [36]. 

The stations chosen in this study included Beitbridge in southern Zimbabwe which is very dry and 

suitable for livestock rearing and production of a narrow range of crop types. Chokwe and Xai Xai in 

Mozambique experience coastal effects of the Indian Ocean and are suitable for both cropping and 



88 
 

AIMS Agriculture and Food  Volume 1, Issue 1, 85-101. 

livestock production. Levubu in South Africa and Matopos in south-western Zimbabwe represent the 

wetter parts of the Limpopo Basin and are more suitable areas for a wider range of smallholder farming 

activities compared to the other sections of the river basin. 

 

Figure 1. Mean annual rainfall distribution in the Limpopo Basin of southern Africa. 

2.2. Meteorological stations in the Limpopo River Basin 

Meteorological stations that lie within the Limpopo Basin in Mozambique (Chokwe and Xai Xai), 

South Africa (Harmony and Levubu) and Zimbabwe (Beitbridge and Matopos) were selected for 

analysis of daily rainfall data collected over varying periods. Daily rainfall data were obtained from 

the Meteorological Services departments in each country. The geographical descriptions and periods 

of available data for each meteorological station are given in Table 1.  

Table 1. Locations of the different meteorological stations on the Mozambique, South Africa and 

Zimbabwe parts of the Limpopo Basin, southern Africa. 

Country Station Latitude Longitude Altitude  

(m asl) 

Data period 

Mozambique Chokwe −24°33' 33°00' 33 1962–1999 

 Xai Xai −25°03' 33°38' 4 1952–1989 

South Africa Harmony −24°11' 30°32' 517 1910–2000 

 Levubu −23°08' 30028' 706 1966–2004 

Zimbabwe Beitbridge −22°22' 30°00' 462 1951–2001 

 Matopos −20°38' 28°50' 1347 1940–2007 

*asl = above sea level 
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2.3. Seasonal rainfall distribution 

In-season rainfall patterns normally vary between the first and second halves of the growing 

season. To assess the rainfall pattern in the two halves of the growing season in the Limpopo Basin, 

the rainfall season was divided into two; the first half covering the October to December (OND) 

period and second half starting in January and ending in March (JFM). Three monthly rainfall totals 

were used to derive the probability of exceedance distribution functions for each half of the growing 

season. 

2.4. Growing season patterns 

The start and end of the growing season were defined as; 

 Start: the first day after 1 October when the rainfall accumulated over 1 or 2 days is at least 

20 mm and no dry spell of more than 10 days within the following 30 days [37]. 

 End: the last day before 30 June that receives 10 mm or more rainfall.  

The cut off point for end of growing season catered for late maturing or late planted crops. 

After 1 June the air temperature normally drops quite significantly [34] and crop growth rate is 

slowed dramatically [38,39]. Smallholder farmers also consider 10 mm as the minimum 

exploitable rainfall amount in their cropping systems [6]. Using the above definitions, Instat 

Statistical programme (Version 3.33) [40] was used to analyze the daily rainfall data for start and 

end of the growing season. 

2.5. Dry spells patterns 

Daily rainfall data for each meteorological station was fitted to the simple Markov chain model [41]. 

The Markov chain model was run to determine probability estimates of getting 14 and 21 day dry 

spells within 30 days following a rainy day based on the July to June calendar. A rainy day was defined 

as a day that receives 5 mm or more of rainfall in 24 hours [40]. The analyses were performed using 

Instat Statistical Programme (Version 3.33) [40]. 

2.6. Standardized Precipitation Index (SPI) 

To assess the trends in drought at each station throughout the periods under review, standardized 

precipitation indices for each station were calculated using the following procedure outlined by Le 

Barbe et al. [42]: 

 

SPI = (P–M) / S    Equation 1 

 

where P is total annual rainfall for each year in the data series, M is mean rainfall for the data series 

and S is the standard deviation for the data series. The categories in Table 2 were adopted for 

classifying each year in the data series according to wetness and dryness.  
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Table 2. Drought classification indices (adapted from [43]). 

SPI value Drought category 

2.00 and above Extremely wet 

1.50 to 1.99 Very wet 

1.00 to 1.49 Moderately wet 

−0.99 to 0.99 Near normal 

−1.00 to −1.49 Moderately dry 

−1.50 to −1.99 Severely dry 

−2.00 and below Extremely dry 

2.7. Soil water dynamics under reduced tillage systems 

During the 2006/07 and 2007/08 seasons, soil water measurements were taken using the micro-

gopher capacitance probe at on-farm and on-station experimental sites (micro-gopher sensor type). At 

each experimental site three sampling positions in each tillage treatment were used and depth of access 

tubes averaged 0.6 m. Soil water was measured at 0.1 m depth increments after planting and before 

harvesting the maize crop grown at all sites in both seasons. Soil water content in millimeters was 

determined by multiplying volumetric water content by thickness of each layer from which soil water 

was measured [44]. 

3. Results and Discussion  

3.1. Seasonal rainfall patterns in the Limpopo Basin 

The Limpopo Basin is characterized by a wide range of seasonal rainfall amounts ranging from a 

low of 316 mm at Beitbridge (462 m asl, 30°00ʹE) to a high of 813 mm at Levubu (706 m asl; 30°28ʹE) 

(Table 3). Generally the JFM period contributes more rainfall during the crop growing period in all 

three countries offering a good opportunity for crops to reach maturity if planting is done on time in 

the November-December period. Results from southern Africa have shown that late planting due to 

delayed start of rains can result in significant yield reductions or total crop failure [5,45,46]. The wetter 

JFM period can be attributed to the influence of the Inter-Tropical Convergence Zone (ITCZ) and the 

associated air masses [10]. During the JFM period the ITCZ often lies over Mozambique and northern 

Zimbabwe resulting in more rainfall during the second half of the growing season. In both halves of 

the growing season the risk of low rainfall, hence soil moisture deficits, decreases as one moves 

eastwards into Mozambique, southwards into South Africa and north-west towards Matopos from 

Beitbridge (Figure 2). Moist winds blowing inland from the Indian Ocean influence rainfall patterns 

with the effect of the ocean on rainfall weakening as one move westwards [47,48]. Rainfed cropping 

is therefore less risky in the lower Limpopo section of Mozambique compared to the other parts of the 

Limpopo Basin.  

Despite having more rainfall than the first half of the season, the JFM period exhibits high rainfall 

variability within the Limpopo Basin (Table 3). However, differences in rainfall variability between 

OND and JFM periods decrease as one moves towards the Indian Ocean as illustrated by Chokwe and 

Xai Xai stations. It is apparent from this analysis that blanket recommendations on soil water 

management techniques, crop species and varieties, and soil fertility management options are not 

appropriate in the Limpopo Basin. For example smallholder farmers in Beitbridge, the most arid 
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section of the Limpopo Basin explored in this study, would require more accurate weekly and 

fortnightly rainfall forecasts compared to Xai Xai in Mozambique and Levubu in South Africa. In 

addition to rainfall forecasts smallholder farmers in Beitbridge would require more robust soil water 

management techniques and, short season and drought tolerant cereal and legume varieties. Soil water 

conserving practices such as conservation agriculture (CA) have the potential of reducing the impact 

of dry spells on smallholder cropping systems through water conservation [49,50]. Combining in-field 

practices such as CA with ex-situ rainwater harvesting techniques [27,28,51] could buffer 

smallholder cropping systems against mid-season dry spells which are now a common feature in 

southern Africa [5]. 

 

Figure 2. Probability of exceedance distribution functions of three monthly rainfall 

totals for the first and second halves of the growing season at stations that lie on the 

Mozambique, South Africa and Zimbabwe sections of the Limpopo Basin. The JFM 

rainfall total was truncated at 1000 mm for clarity of the graph, Levubu had maximum 

total rainfall of 1600 mm. 
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Table 3. Characteristics of the first and second halves of the growing season at stations lying on 

the Mozambique, South Africa and Zimbabwe sections of the Limpopo Basin. 

Station Period of season Mean (mm) CV (%) 

Chokwe Oct–Dec 192 48 

Jan–Mar 263 53 

  455  

Xai Xai Oct–Dec 279 44 

Jan–Mar 379 48 

  658  

Harmony Oct–Dec 191 46 

Jan–Mar 274 60 

  465  

Levubu Oct–Dec 333 33 

Jan–Mar 480 69 

  813  

Beitbridge Oct–Dec 140 42 

 Jan–Mar 176 61 

  316  

Matopos Oct–Dec 248 38 

 Jan–Mar 291 53 

  539  

CV = coefficient of variation 

3.2. Growing season patterns in the Limpopo Basin 

The Mozambique stations experience longer growing seasons while the Zimbabwe part of the 

Limpopo Basin has the shortest growing seasons (Table 4). Smallholder farmers in the lower section 

of the Limpopo Basin such as Xai Xai stand a better chance of getting a harvest if planting is delayed 

in the OND period because of a longer and less variable growing season. Low lying coastal areas 

receive moist air from the east and south of the Limpopo Basin giving rise to a better rainfall 

distribution and longer growing season [8]. The beginning of the growing season is more variable than 

its end in Mozambique compared to South Africa and Zimbabwe. The analysis of the historical rainfall 

data indicated that there are some growing seasons that end as early as February. Abrupt ending of the 

growing season has been reported in other semi-arid parts of sub-Saharan Africa [11]. This implies 

that timeliness of activities such as land preparation and planting are critical in the first half of the 

growing season if crops are to reach maturity. A study conducted in Zimbabwe showed that maize 

yield can be reduced by 5% for each week’s delay in planting [52]. Rainwater harvesting techniques 

will play a crucial role in such growing seasons in the semi-arid Limpopo Basin. Rainwater harvesting 

can play a significant role in reducing production risk in smallholder cropping systems [51]. The high 

variability in the length of growing season further confirms the need for adopting production risk 

mitigating measures such as growing drought tolerant crops, staggered planting and soil water 

management.  
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Table 4. Median start, end and length of the growing season based on historical daily rainfall 

data obtained from six meteorological stations in the Limpopo Basin, southern Africa. 

Station Median start 

date 

S.D. 

(days) 

Median end 

date 

S.D. 

(days) 

Length of season 

(days) 

S.D. 

(days) 

Chokwe 16 November 36 2 May 30 173 48 

Xai Xai 26 October 21 11 June 17 223 20 

Harmony 18 November 31 13 April 30 142 43 

Levubu 19 November 22 11 May 35 179 45 

Beitbridge 7 December 31 25 March 29 99 30 

Matopos 2 December 30 29 March 31 110 37 

S.D. = standard deviation 

3.3. Dry spells pattern in the Limpopo Basin 

The Limpopo Basin is prone to 14 and 21 day dry spells during the crop growing season (Figure 

3). The November-December period, between days 32 and 92 (Figure 3), is a critical time for 

smallholder farmers to plant as the chances of experiencing 14 and 21 day dry spells decrease quite 

rapidly in the Limpopo Basin. At the most the arid station in the Limpopo Basin, illustrated by 

Beitbridge in southern Zimbabwe, the chances of 14 day dry spells decrease from 67% in November 

to 53% in December while 21 day dry spells decrease from 28 to 17% during the same period. This 

gives smallholder farmers an opportunity to plant when soil moisture is adequate and get the crops 

established before the end of December. Dry planted crops such as sorghum and pearl millet stand a 

better chance of getting well established than maize and grain legumes which are often rain planted. 

Smallholder farmers in semi-arid parts of southern Africa such as the Limpopo Basin tend to use 

staggered opportunistic plantings to spread risks associated with dry spells [53].  

Although the total seasonal rainfall data indicated a wetter JFM period relative to OND (Figure 2 

and Table 3), the risk of experiencing 14 and 21 day dry spells increases quite rapidly in the January-

February period (Figure 3). This coincides with the critical flowering and grain filling stages of cereals 

commonly grown in this part of southern Africa. Planting in January, as observed in some parts of the 

Limpopo Basin [54,55], increases the chances of crops failing to reach maturity due to soil water 

deficits as chances of dry spells increase dramatically in the JFM period. Lately total crop failure has 

become a common characteristic of rainfed smallholder crop production in some parts of the Limpopo 

Basin [5]. The possibility of experiencing a wetter JFM period based on rainfall totals and the increased 

chances of getting dry spells during the same period suggests poor distribution of rainfall events during 

the second part of the growing season. Seasonal rainfall distribution tends to have a more significant 

impact on rainfed crop production than the total rainfall received during the season [9,56]. A 

combination of drought tolerant crop varieties, timely planting, good crop husbandry, and soil water 

conserving practices such as CA and ex-situ rainwater harvesting [46,51,57,58] could reduce crop 

production risk for smallholder farmers in the Limpopo basin. 

The trend in 14 and 21 day dry spells clearly demonstrates that rainfed agriculture will continue 

to struggle if smallholder farmers do not adopt the mitigating interventions that have been developed 

for the region. Seasonal forecasts, particularly the weekly and fortnightly forecasts, have a critical role 

to play in aiding farmers to make tactical within-season decisions such as planting, weed control and 

fertilizer application [59-61]. The long range seasonal forecasts will aid farmers to decide on crop 
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types and varieties [8], soil water and fertility management options, as well as the quantities of different 

farming inputs for the approaching season. 

 

Figure 3. Probability of getting 14 and 21 day spells within 30 days from a wet day 

based on the fitted first order Markov chain probability values for different sections 

of the Limpopo Basin in southern Africa. 

3.4. Standardized precipitation indices in the Limpopo Basin 

Historically there has been a consistent trend of aridity in the Limpopo Basin stretching from the 

1960s to the 1990s based on the daily rainfall data used in this study (Figure 4). In fact, data from 

Harmony station in South Africa indicate the aridity trend stretching back into the 1930s (Figure 4). 

The Limpopo Basin experienced severe droughts during the 1960s, 1980s and 1990s even at Xai Xai 

which has the Indian Ocean affecting its rainfall pattern more than the other locations. These droughts 

were associated with the El Nino-Southern Oscillation (ENSO) phenomenon with warm ENSO events 

often associated with dry conditions in southern Africa [59,62]. The impacts of the ENSO phenomenon 

continue to be felt in the Limpopo basin and the whole of southern Africa [63,64]. Within the Limpopo 
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Basin the severity of droughts experienced varied with location and the 1991/92 drought was the most 

severe in most of the locations reviewed. Rainfall will continue to decrease with variations from region 

to region in southern Africa [65,66].  

The drought trends further highlight the fact that rainfed agriculture is risky in the Limpopo Basin 

and appropriate drought and dry spell mitigating interventions that have been developed or are still 

being tested need to be used on the smallholder farms. For smallholder farmers in the Limpopo Basin 

it is imperative that they adopt water and non-water related risk reducing farming practices such as use 

of in-situ and ex-situ rainwater harvesting, conservation agriculture, and improved drought tolerant 

crop species. In addition, there is need for improving the general agronomic practices such as time of 

planting, weed control and soil fertility management in order to improve rainwater productivity which 

currently stands at less than 30% of the rainfall received in sub-Saharan Africa [67]. Diversification of 

farming enterprises at farm scale will also potentially buffer smallholders against the vagaries of 

climate change and variability.  

 

  

  

  
 

Figure 4. Standardized precipitation indices (SPI) derived from total annual rainfall 

data for Chokwe and Xai Xai stations of Mozambique, Levubu and Harmony of 

South Africa, and Beitbridge and Matopos of Zimbabwe. 

3.5. Soil water patterns in conventional ploughing and reduced tillage systems  

Basins and ripper tillage systems retained more soil water than the conventional system at the on-
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system had 17–29% and basin had 18–24% more soil water in the 0–0.60 m profile than the 

conventionally ploughed system. Higher soil water content in reduced tillage related systems was 

consistent with previous studies under different agro-ecologies of southern Africa [32,33,63]. Planting 

basins and the furrows created by ripping collect rainwater and gives it more time to infiltrate into the 

soil. This leaves the soil in the 0–0.60 m profile of basin and ripped furrow moist for much longer than 

in the conventional ploughing system. A similar trend was observed at the clay loam Matopos site 

(Figure 6). During maize flowering to grain filling stages, ripper system had 2–9% and basins had 4–

12% more soil water than the conventional ploughing system. Such higher soil water storage in the 

ripper and basin tillage systems could bridge the soil water deficits which occur during mid-season dry 

spells in smallholder cropping systems in semi-arid environments. The basin tillage system creates more 

soil surface depression which collect rainwater and gives it more time to infiltrate into the soil [64,68]. 

Mid-season dry spells reduce crop yields significantly in southern Africa and their frequency continues 

to increase in the face of climate change [5,10,11]. 

 

Figure 5. Soil water distribution in the 0–0.60 m profile of sandy loam soil in the 

conventional ploughing (CP), ripper and basin tillage systems at on-farm sites in 

Gwanda district, Zimbabwe in 2007/08 growing season. Vertical bars represent 

standard error of means (n = 3). 

 

Figure 6. Soil water distribution in the 0–0.60 m profile of clay loam soil in the 

conventional ploughing (CP), ripper and basin tillage systems at Matopos Research 

Station in 2007/08 growing season. Vertical bars represent standard error of means (n = 3). 
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4. Conclusion  

This study showed that the Limpopo Basin has a wide range of rainfall patterns with the risk of 

rainfed agriculture depending on location in the basin. The second half of the growing season receives 

more rainfall than the OND period in the Limpopo Basin. However, rainfall variability in all sections 

of the Limpopo Basin is high during the same period. The length of the growing season varies 

considerably in the Limpopo basin, highlighting the fact that blanket recommendations for soil water 

management interventions that mitigate against adverse climatic conditions are not appropriate for 

rainfed smallholder agriculture. The Indian Ocean has a strong influence on coastal sections of the 

Limpopo Basin as demonstrated by Xai Xai station resulting in longer growing seasons, less variability 

in start and end of growing season. Our results confirm high rainfall variability and frequent dry spells. 

The chances of experiencing 14 and 21 day dry spells during the cropping period are high in areas far 

from the Indian Ocean. In addition to in-season dry spells the region is prone to drought whose severity 

varies considerably across the river basin. Basin and ripper tillage systems have a higher potential of 

retaining soil water which could benefit crops than the conventional ploughing system. Future studies 

could focus on assessing the efficiency of soil water utilization by crops under different soil 

management practices. More research could also focus on farm scale evaluation risk mitigation 

strategies involving crops and livestock for the smallholder farming systems of the Limpopo River 

Basin. 
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